Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants  

Science Journals Connector (OSTI)

We propose a stochastic model for the daily operation scheduling of a generation system including pumped storage hydro plants and wind power plants, where the uncertainty is represented by the hourly wind power p...

Maria Teresa Vespucci; Francesca Maggioni

2012-03-01T23:59:59.000Z

2

Opportunities of increase of energy efficiency of Andijan Hydro Power Plant using wind farms. Part 1  

Science Journals Connector (OSTI)

The possibility of the increase in energy efficiency of Andijan Hydro Power Plant by the design of wind farm build-ups has been shown.

U. A. Tadjiev; E. I. Kiseleva; M. U. Tadjiev; R. A. Zakhidov

2014-07-01T23:59:59.000Z

3

Variable speed drive as an alternative solution for a micro-hydro power plant.  

E-Print Network [OSTI]

?? This diploma work is mainly focused on developing the control strategy for avariable speed drive as an alternative solution to a micro-hydro power plant. (more)

Akhtar, Malik Usman

2012-01-01T23:59:59.000Z

4

A test case for implementing feedback control in a micro hydro power plant.  

E-Print Network [OSTI]

??Micro-hydro turbines generate power for small villages and industries in Afghanistan. They usually produce less than 100 kW of power. Currently the flow into the (more)

Suliman, Ahmad

2010-01-01T23:59:59.000Z

5

Pumping station design for a pumped-storage wind-hydro power plant  

Science Journals Connector (OSTI)

This work presents a numerical study of the optimum sizing and design of a pumping station unit in a hybrid wind-hydro plant. The standard design that consists of a number of identical pumps operating in parallel is examined in comparison with two other configurations, using one variable-speed pump or an additional set of smaller jockey pumps. The aim is to reduce the amount of the wind generated energy that cannot be transformed to hydraulic energy due to power operation limits of the pumps and the resulting step-wise operation of the pumping station. The plant operation for a period of one year is simulated by a comprehensive evaluation algorithm, which also performs a detailed economic analysis of the plant using dynamic evaluation methods. A preliminary study of the entire plant sizing is carried out at first using an optimization tool based on evolutionary algorithms. The performance of the three examined pumping station units is then computed and analyzed in a comparative study. The results reveal that the use of a variable-speed pump constitutes the most effective and profitable solution, and its superiority is more pronounced for less dispersed wind power potential.

John S. Anagnostopoulos; Dimitris E. Papantonis

2007-01-01T23:59:59.000Z

6

Micro Hydro Kinetic Turbines from Smart Hydro Power | Open Energy...  

Open Energy Info (EERE)

to the MHK database homepage Retrieved from "http:en.openei.orgwindex.php?titleMicroHydroKineticTurbinesfromSmartHydroPower&oldid720939" Category: Marine and...

7

Frequency Control Of Micro Hydro Power Plant Using Electronic Load Controller  

E-Print Network [OSTI]

Water turbines, like petrol or diesel engines, will vary in speed as load is applied or relieved. Although not such a great problem with machinery which uses direct shaft power, this speed variation will seriously affect both frequency and voltage output from a generator. Traditionally, complex hydraulic or mechanical speed governors altered flow as the load varied, but more recently an electronic load controller (ELC) has been developed which has increased the simplicity and reliability of modern micro-hydro sets. An ELC is a solid-state electronic device designed to regulate output power of a micro-hydropower system and maintaining a near-constant load on the turbine generates stable voltage and frequency. In this paper an ELC constantly senses and regulates the generated frequency. The frequency is directly proportional to the speed of the turbine.

unknown authors

8

Main Canal, Maverick County Water Control and Improvement District above Central Power and Light hydro-electric plant, at Maverick and Kinney Counties, Texas  

E-Print Network [OSTI]

BAIN CANAL NA~ICK COUNTY WATW CONTROL AND INPROllZXBZ DISTRICT ABOVE C~ POWER AND LION HYDRO ELECTRIC PLANT& AT, SIAVERICK AND KINNEY COUNT'S, T~~S By John J. Ledbetter, Jr. Approved as to style and content by: (Che man Committee Heed of pa... Hydro Plant K'KWFS Determfnatfans vcfth Power Canal Current Later Lbiasuremsnts Made by Various Hydrographsrs Using Rated Current Meters Tabulation Shaming f&7CID Irrigated and Irrigable Areas. Tabulation Shawing Average IIumber of' Acres Irrigated...

Ledbetter, John J

2012-06-07T23:59:59.000Z

9

Effects of variable renewable power on a country-scale electricity system: High penetration of hydro power plants and wind farms in electricity generation  

Science Journals Connector (OSTI)

The present article analyses the effects caused by variable power. The analysis concerns a country-scale electricity system with a relatively high penetration of seasonally variable hydro power plants and wind farms in the total electricity generation in 2030. For this purpose, the Latvian electricity system was chosen as an appropriate case study, as around half of its electricity is already generated from hydro power and numerous wind farm installations are planned for 2030. Results indicate that in such systems high renewable power variations occur between seasons causing a high probability of power deficit in the winter and power surplus in the spring. Based on the results, the wind farms' influence on the power deficit and surplus occurrences are discussed in detail. Wind farm generation decreases the probability of the electricity system being in power deficit, but increases the probability of the system being in power surplus. In the latter situation, the maximum value of power surplus increases since it is enhanced by the wind farm generation. Probability equations to express these changes are provided.

Arturs Purvins; Ioulia T. Papaioannou; Irina Oleinikova; Evangelos Tzimas

2012-01-01T23:59:59.000Z

10

Particle Swarm Optimization and Gradient Descent Methods for Optimization of PI Controller for AGC of Multi-area Thermal-Wind-Hydro Power Plants  

Science Journals Connector (OSTI)

The automatic generation control (AGC) of three unequal interconnected Thermal, Wind and Hydro power plant has been designed with PI controller. Further computational intelligent technique Particle Swarm Optimization and conventional Gradient Descent ... Keywords: Automatic generation control, Particle swarm optimization, Gradient Descent method, Generation rate constraint, Area control error, Wind energy conversion system

Naresh Kumari; A N. Jha

2013-04-01T23:59:59.000Z

11

Antu County Hengxin Hydro Power Development Co Ltd | Open Energy...  

Open Energy Info (EERE)

Power Development Co., Ltd Place: China Zip: 133609 Sector: Hydro Product: China-based small hydro CDM project developer. References: Antu County Hengxin Hydro Power Development...

12

Flood survival: Getting a hydro plant back on line  

SciTech Connect (OSTI)

The Remmel Dam and Hydro Plant of Arkansas Power and Light Company was flooded on May 20, 1990. This article describes the teamwork and innovation that went into restoring the powerhouse in a short amount of time.

Weatherford, C.W. (Entergy Services, Inc., Little Rock, AR (United States))

1991-12-01T23:59:59.000Z

13

PP-54 Ontario Hydro Electric Power Commission  

Broader source: Energy.gov [DOE]

Presidential Permit authorizing Ontario Hydro Electric Power Commission to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border.

14

Micro Hydro Power: Promising Solution for Off-grid Renewable Energy Source  

E-Print Network [OSTI]

Abstract Micro hydro current power plant studies to date have aimed at finding feasible solution of its realistic implementation to the different parts of the world.This paper will briefly review the micro hydro current power plant?s prospect as a possible off grid source of renewable energy.

Md Tanbhir Hoq; Nawshad U. A; Md. N. Islam; Md. K. Syfullah; Raiyan Rahman

15

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

16

An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage  

E-Print Network [OSTI]

is the active power delivered by the wind-hydro plant, during interval i; PHi is the active power produced1 An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage Edgardo D Claude Daunesse, F-06904 Sophia Antipolis, France. Abstract The increasing wind power penetration

Paris-Sud XI, Université de

17

Forestry Commission Wales Guidance on rental levels for Hydro Power  

E-Print Network [OSTI]

initiated a process to facilitate the development of small- scale hydro-electricity schemes on land ownedForestry Commission Wales Guidance on rental levels for Hydro Power Guidance on rental levels for hydro power projects Tel: 02920 475961 Email: hydrowales@forestry.gsi.gov.uk Version 1.0 Mike Pitcher 17

18

PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM  

E-Print Network [OSTI]

comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed of big coal red blocks with several pumped storage plants of di ering e ciencies provides the mainPRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller

Römisch, Werner

19

Micro Hydro-Diesel Hybrid Power System  

E-Print Network [OSTI]

This paper presents the design and analysis of Neuro-Fuzzy controller based on Adaptive Neuro-Fuzzy Inference System (ANFIS) architecture for Load frequency control of an isolated wind-micro hydro-diesel hybrid power system, to regulate the frequency deviation and power deviations. Due to the sudden load changes and intermittent wind power, large frequency fluctuation problem can occur. This newly developed control strategy combines the advantage of neural networks and fuzzy inference system and has simple structure that is easy to implement. So, in order to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to control the system. Simulations of the proposed ANFIS based Neuro-Fuzzy controller in an isolated wind-micro hydro-diesel hybrid power system with different load disturbances are performed. Also, a conventional proportional Integral (PI) controller and a fuzzy logic (FL) controller were designed separately to control the same hybrid power system for the performance comparison. The performance of the proposed controller is verified from simulations and comparisons. Simulation results show that the performance of the proposed ANFIS based Neuro-Fuzzy Controller damps out the frequency deviation and attains the steady state value with less settling time. The proposed ANFIS based Neuro-Fuzzy controller provides best control performance over a wide range of operating conditions.

Dhanalakshmi R; Palaniswami S

20

PP-22 British Columbia Hydro and Power Authority, Amendment 1967  

Broader source: Energy.gov [DOE]

Presidential permit authorizing British Columbia Hydro and Power Authority to construct, operate, and maintain electric transmision facilities at the U.S-Canadian border.

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A  

Broader source: Energy.gov [DOE]

Main Report and Appendix A: Evaluates water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects.

22

Quidi Vidi Lake Hydro Power Demonstration Project  

E-Print Network [OSTI]

walking trail Comprised of a micro hydro generator a wind turbine and a solar array, metered and interpreted This presentation describes the preliminary work on the micro hydro component of the installation interests in using existing infrastructure for low impact micro hydro generation. Insurmountable Roadblocks

Bruneau, Steve

23

Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation of Real  

E-Print Network [OSTI]

of a Mini-Hydro Power Generator to the Rural Grid The UK distribution network has been significantly exten1 Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation Control (APFC) modes. The ability to export active and reactive power from mini-hydro power generators

Harrison, Gareth

24

AD Hydro Power Ltd ADHPL | Open Energy Information  

Open Energy Info (EERE)

AD Hydro Power Ltd ADHPL AD Hydro Power Ltd ADHPL Jump to: navigation, search Name AD Hydro Power Ltd. (ADHPL) Place Noida, Uttar Pradesh, India Zip 201301 Sector Hydro Product Noida-based small hydro project developer. It is a subsidiary of Malana Power Company Limited. Coordinates 28.56737°, 77.36779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.56737,"lon":77.36779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Enhancing fire safety at Hydro plants with dry transformers  

SciTech Connect (OSTI)

Hydroelectric plant owners and engineers can use dry-type transformers to reduce fire hazards in auxiliary power systems. The decision to replace a liquid-immersed transformer with a dry-type product has a price: higher unit cost and a need to be more vigilant in detailing transformer specifications. But, whether the change affects only one failed transformer or is part of a plant rehabilitation project, the benefits in safety can be worth it. Voltages on hydroelectric plant auxiliary power systems can range from a 20 kV medium-voltage system to the normal 480-208/120 V low-voltage system. Dry transformers typically are used in such systems to reduce the fire hazard present with liquid-filled transformers. For a hydro plant owner or engineer seeking alternatives to liquid-filled transformers, there are two main kinds of dry-type transformers to consider: vacuum pressure impregnated (VPI) and cast coil epoxy resin. VPI transformers normally are manufactured in sizes up to 6,000 kVA with primary voltage ratings up to 20 kV. Cast coil transformers can be made in sizes from 75 to 10,000 kVA, with primary voltage ratings up to 34,500 V. Although the same transformer theory applies to dry transformers as to liquid-filled units, the cooling medium, air, required different temperature rise ratings, dielectric tests, and construction techniques to ensure reliability. Consequently, the factory and field tests for dry units are established by a separate set of American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards. Cast coil transformers have several important advantages over VPI units.

Clemen, D.M. (Harza Engineering Company, Chicago, IL (United States))

1993-06-01T23:59:59.000Z

26

Evaluation of fossil plants versus hydro plants for load frequency control  

SciTech Connect (OSTI)

The economics of using hydroplants with Francis turbines or fossil plants for load frequency control are evaluated. Using data from the TVA Gallatin steam plant and the TVA Cherokee, Wilson, and Fontana hydroplants, a cost comparison of different modes of operation for load frequency control was performed considering two plants at a time. The results showed that when the fossil plant was used for load frequency control instead of a hydro plant a lower system generation cost was incurred. Dynamic responses of fossil and hydro units, improved controls for fossil plants, and maneuvering costs of the Gallatin plant are also considered.

Broadwater, R.P.; Johnson, R.L.; Duckett, F.E.; Boston, W.T.

1985-01-01T23:59:59.000Z

27

MHK Technologies/The Ocean Hydro Electricity Generator Plant | Open Energy  

Open Energy Info (EERE)

MHK Technologies/The Ocean Hydro Electricity Generator Plant MHK Technologies/The Ocean Hydro Electricity Generator Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The O H E G plant is a revolutionary concept using tidal energy designed by FreeFlow 69 The plant uses tidal energy to create electricity 24 hours a day making this a unique project 24 hour power is produced by using both the kinetic energy in tidal flow and the potential energy created by tidal height changes The O H E G plant is completely independent of the wind farm however it does make an ideal foundation for offshore wind turbines combining both tidal energy and wind energy The O H E G plant is not detrimental to the surrounding environment or ecosystem and due to its offshore location it will not be visually offensive

28

A comparison between a hydro-wind plant and wind speed forecasting using ARIMA models  

Science Journals Connector (OSTI)

In this paper we will present a comparison between two options for harnessing wind power. We will first analyze the behaviour of a wind farm that goes to the electricity market having previously made a forecast of wind speed while accepting the deviation penalties that these may incur. Second we will study the possibility of the wind farm not going to the market individually but as part of a hydro-wind plant.

2014-01-01T23:59:59.000Z

29

Canadian Hydro-Electric Power Development  

Science Journals Connector (OSTI)

... to investigate more widely, though admittedly in a superficial manner, the present stage of hydroelectric power development in the province of Quebec, where he visited power-sites and waterfalls ... Out of the impressive total, whatever it may be, so far the actual utiHsable turbine installations established at the present time yield only 4| million h.p.-a very ...

BRYSSON CUNNINGHAM

1927-08-27T23:59:59.000Z

30

Smart Hydro Power GmbH | Open Energy Information  

Open Energy Info (EERE)

Str. 17 Place: Garatshausen Zip: 82340 Sector: Marine and Hydrokinetic Product: Micro Hydro Kinetic Turbine Website: http:www.smart-hydro.de Coordinates: 47.9257,...

31

Stochastic Co-optimization for Hydro-Electric Power Generation  

E-Print Network [OSTI]

in three hydroelectric power plants and is currently constructing a fourth, earns income from power sales and maintain stable towns close to the river. We both get the benefits of improved hydroelectric power

32

HydroVenturi Ltd previously RV Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

HydroVenturi Ltd previously RV Power Company Ltd HydroVenturi Ltd previously RV Power Company Ltd Jump to: navigation, search Name HydroVenturi Ltd (previously RV Power Company Ltd) Place London, Greater London, United Kingdom Zip SW7 1NA Sector Marine and Hydrokinetic Product String representation "Established tho ... ating stations." is too long. Website http://www.hydroventuri.com References HydroVenturi Ltd (previously RV Power Company Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. HydroVenturi Ltd (previously RV Power Company Ltd) is a company located in London, Greater London, United Kingdom . References ↑ "[ HydroVenturi Ltd (previously RV Power Company Ltd)]"

33

Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A  

Broader source: Energy.gov [DOE]

Evaluates water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 to identify which could feasibly be developed using a set of feasibility criteria.

34

Alternative off-site power supply improves nuclear power plant safety  

Science Journals Connector (OSTI)

Abstract A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source.

Blae Gjorgiev; Andrija Volkanovski; Duko Kan?ev; Marko ?epin

2014-01-01T23:59:59.000Z

35

Stochastic model for energy commercialisation of small hydro plants in the Brazilian energy market  

Science Journals Connector (OSTI)

This paper presents a stochastic model for energy commercialisation strategies of small hydro plants (SHPs) in the Brazilian electricity market. The model aims to find the maximum ... of the generation company, c...

Vitor L. de Matos; Mauro A. G. Sierra; Erlon C. Finardi

2014-04-01T23:59:59.000Z

36

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

37

Portland Company to Receive $1.3 Million to Improve Hydro Power  

Broader source: Energy.gov (indexed) [DOE]

Portland Company to Receive $1.3 Million to Improve Hydro Power Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies September 15, 2009 - 12:00am Addthis Washington, DC - US Energy Secretary Steven Chu today awarded more than $1.3 million to Ocean Renewable Power Company in Portland, Maine to improve the efficiency, flexibility, and environmental performance of hydroelectric energy. The investment will further the nation's supply of domestic clean hydroelectricity through technological innovation and will advance research to maximize the nation's largest renewable energy source. "Hydropower is our largest source of renewable energy and it can play an even bigger role in the further. These investments will create jobs, cut

38

14 IEEE power & energy magazine july/august 2008 THE CONTRIBUTION OF HYDRO-  

E-Print Network [OSTI]

the International Energy Agency). Producers Canada China Brazil United States Russia Norway Japan Sweden France14 IEEE power & energy magazine july/august 2008 T THE CONTRIBUTION OF HYDRO- power to modern to be in the spotlight because of two com- pletely opposite views. On one hand, supporters quote its clean energy pro

Dixon, Juan

39

EIS-0141: Washington Water Power/B.C. Hydro Transmission Interconnection Project  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of constructing and operating a double-circuit 230-kilovolt electrical transmission line that would link the electrical systems of the Washington Water Power Company and the British Columbia Hydro and Power Authority.

40

Asia Power Leibo Hydroelectricity Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sichuan Province, China Sector: Hydro Product: China-based developer and operator of small hydro plants. References: Asia Power (Leibo) Hydroelectricity Co Ltd1 This article...

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Canadian Hydro-Electric Power Development during 1929  

Science Journals Connector (OSTI)

... be found that the present recorded water power resources of the Dominion will permit of turbine installations aggregating about 43,700,000 horse-power.

BRYSSON CUNNINGHAM

1930-05-31T23:59:59.000Z

42

Nevada: Kingston Creek Hydro Project Powers 100 Households  

Broader source: Energy.gov [DOE]

Hydropower project produces enough electricity to annually power nearly 100 typical American households.

43

HydroChina Corporation | Open Energy Information  

Open Energy Info (EERE)

HydroChina Corporation Place: Beijing Municipality, China Zip: 100011 Sector: Hydro, Wind energy Product: Beijing-based firm focused on hydro and wind power development....

44

Sustainability in the power plant choice  

Science Journals Connector (OSTI)

International literature presents several studies on the economics of power plants based on cash flows. However there are sustainability factors (e.g., environmental and social aspects, etc.) able to heavily bear on the sustainability of certain investments. This paper lists and quantifies these factors and ranks under different scenarios the following technologies: hydro, coal, oil, gas and nuclear. Then an overall multi-attribute model, based on the quality function deployment approach, delivers a weight for each factor, dividing its impact in the three different sustainability dimensions: economic, environmental and social. Finally the factor weights and their performances are coupled to obtain an overall ranking. The results show that hydroelectric plants are usually the best solution. Coal and nuclear could be a good choice even if each type of plant has its strengths and weaknesses. On the contrary, the oil and gas-fired plants are always the worst choice.

Giorgio Locatelli; Mauro Mancini

2013-01-01T23:59:59.000Z

45

Design Of Hydel Power Plant At Mid- Pennar Reservoir  

E-Print Network [OSTI]

Micro-hydro-electric power is both an efficient and reliable form of clean source of renewable energy. It can be an excellent method of harnessing renewable energy from small rivers and streams. The micro-hydro project designed to be a run-of-river type, because it requires very little or no reservoir in order to power the turbine. The water will run straight through the turbine and back into the river or stream to use it for the other purposes. This has a minimal environmental impact on the local ecosystem. The design procedure of micro-hydro power plant was implemented practically. The choice of the turbine type depending mainly on the site head and flow rate. The turbine power and speed were directly proportional with the site head, but there were specific points for maximum turbine power and speed with the variation of the site water flow rate. The head losses in the penstock could range from 5 to 10 percent of the gross head, depending on the length of the penstock, quantity of water flow rate and its velocity. The turbine efficiency could range from 80 to 95 percent depending on the turbine type, and the generator efficiency about 90 percent. The design study showed that construction of micro-hydroelectric project was feasible in the project site and there were no major problems apparent at the design and implementation stages of the micro-hydro-electric power plant.

P. Nagendra; Dr. G. Prasanthi

46

Nevada: Kingston Creek Hydro Project Powers 100 Households |...  

Energy Savers [EERE]

in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Geothermal Energy Growth Continues, Industry Survey Reports Project Overview Positive Impact...

47

PP-369 British Columbia Hydro and Power Authority  

Broader source: Energy.gov [DOE]

Presidential Permit authorizing British Columbia and Power Authority to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.

48

Power Plant Cycling Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

49

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

50

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

51

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

52

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

53

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

54

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

55

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

56

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

57

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

58

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

59

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

60

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

62

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

63

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

64

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

65

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

66

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

67

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

68

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

69

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

70

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

71

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

72

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

73

Microsoft PowerPoint - NERC Reliability Standards and Mandatory Compliance Presentation to Hydro-Power Conference - June 2007.p  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERC Reliability NERC Reliability NERC Reliability NERC Reliability Standards and Standards and Mandatory Compliance Mandatory Compliance Hydro Hydro - - Power Conference Power Conference June 13, 2007 June 13, 2007 Stan Mason Stan Mason 2 EPACT 2005 EPACT 2005 Congress approved the related legislation Congress approved the related legislation in August 2005 in August 2005 It required creation of an Electric It required creation of an Electric Reliability Organization (ERO) to be Reliability Organization (ERO) to be approved by the Federal Energy approved by the Federal Energy Regulatory Commission (FERC) Regulatory Commission (FERC) It mandated Standards that would be It mandated Standards that would be approved by FERC with financial sanctions approved by FERC with financial sanctions

74

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

75

Final environmental impact statement, Washington Water Power/B.C. Hydro Transmission Interconnection Project  

SciTech Connect (OSTI)

Washington Water Power (WWP) proposes to construct and operate an electric transmission line that would connect with the electrical system of the British Columbia Hydro and Power Authority (B.C. Hydro). The project would be composed of a double-circuit, 230-kilovolt (kV) transmission line from WWP`s existing Beacon Substation located northeast of Spokane, Washington to the international border located northwest of Metaline Falls, Washington. The original Presidential permit application and associated proposed route presented in the draft environmental impact statement (DEIS) have been modified to terminate at the Beacon Substation, instead of WWP`s initially proposed termination point at the planned Marshall Substation located southwest of Spokane. A supplemental draft EIS was prepared and submitted for review to not only examine the new proposed 5.6 miles of route, but to also compare the new Proposed Route to the other alternatives previously analyzed in the DEIS. This final EIS (FEIS) assesses the environmental effects of the proposed transmission line through construction, operation, maintenance, and abandonment activities and addresses the impacts associated with the Proposed Action, Eastern Alternative, Western Alternative, Northern Crossover Alternative, Southern Crossover Alternative, and No Action Alternative. The FEIS also contains the comments received and the responses to these comments submitted on the DEIS and Supplemental DEIS.

Not Available

1992-10-01T23:59:59.000Z

76

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

77

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

78

Hydro Capital Asset Manager  

Broader source: Energy.gov [DOE]

This position is located in Federal Hydro Projects, Generation Asset Management, Power Services. Additional vacancies may be filled through this vacancy announcement or if they become available.

79

Geothermal electric power plant status  

SciTech Connect (OSTI)

A status summary of the activity for the 44 proposed geothermal electric power plants in the United States as of March 31, 1981 is presented, as well as the power on-line electric plants to date. The information comes from the Department of Energy Geothermal Progress Monitor System (DOE, 1981).

Murphy, M.; Entingh, D.J.

1981-10-01T23:59:59.000Z

80

Risk-Based Strategies for Wind/Pumped-Hydro Coordination under Electricity Markets  

E-Print Network [OSTI]

be reduced by coupling the wind farm with energy storage facilities, thus constituting a virtual power plant--Decision-Making, Risk, Virtual Power Plant Operation, Wind Power, Pumped-Hydro, Electricity Markets, Wind Power is not the case of power producers using non-dispatchable RES units (e.g.: wind or solar plants). As a consequence

Boyer, Edmond

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A numerical method for calculation of power output from ducted vertical axis hydro-current turbines  

Science Journals Connector (OSTI)

Abstract This paper investigates effects of ducting on power output from vertical axis hydro-current turbines. A numerical two-dimensional method based on the potential flow theory is developed for calculation of non-dimensional power output from these turbines. In this method, the blades are represented by vortex filaments. The vortex shedding from the blades is modeled by discrete vortices. A boundary element method is used to incorporate the duct shape which is represented by a series of panels with constant distributions of sources and doublets. The aerodynamic loading on the blades are calculated using a quasi-steady modeling. A time-marching scheme is used for implementation of the numerical method. The results of this method are compared with experimental results for a turbine model. A good correlation between the numerical and experimental results is obtained for tip speed ratios equal and higher than 2.25. However due to a lack of dynamic stall modeling, the numerical method is not able to predict power output accurately at lower tip speed ratios wherein effects of dynamic stall are significant. Both numerical and experimental results also showed that the power output from a turbine can increase significantly when it is enclosed within a well-designed duct. The maximum power output of the turbine model investigated in this paper showed a 74% increase when the turbine is operating within the duct relative to the case it is in free-stream conditions.

Mahmoud Alidadi; Sander Calisal

2014-01-01T23:59:59.000Z

82

NETL Water and Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

83

small hydro | OpenEI  

Open Energy Info (EERE)

03 03 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278803 Varnish cache server small hydro Dataset Summary Description (Abstract): Three case studies in (1) Solar market electrification, (2) Wind-solar hybrid system in Kuakata Sea Beach and (3) Micro hydro power plant of Aung Thuwi Khoi. (Purpose): SWERA Documentation Source Renewable Energy Research Centre Date Released December 02nd, 2003 (11 years ago) Date Updated October 20th, 2007 (7 years ago) Keywords Bangladesh case studies documentation GEF renewable energy small hydro solar SWERA UNEP wind Data application/pdf icon Download Document (pdf, 566.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

84

Owners of nuclear power plants  

SciTech Connect (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

85

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

86

Profit Maximization of a Power Plant Martin Kragelund, John Leth, Rafal Wisniewski, and Ulf Jonsson  

E-Print Network [OSTI]

consisting of wind energy and hydropower. Also in this work, the demand for balancing power production in Norway is considered by maximizing the profit of a hydro plant such that the production Plug and Play Process Control and Hybrid Systems. The authors would like to thank DONG Energy

Hansen, René Rydhof

87

DSM Power Plant in India  

Science Journals Connector (OSTI)

India is facing acute energy shortage that is likely to affect its economic development. There are severe supply side constraints in term of coal and gas shortages that are likely to continue in the near future. Hence, in its current focus to solving the energy shortage problem and sustaining the development trajectory, the country should aim at a balance between supply side and demand side measures. Energy Efficiency in end use is increasingly gaining importance as one of the most cost effective options for achieving short to medium term energy savings. India has initiated the National Mission for Enhanced Energy Efficiency under National Action Plan for Climate Change which addresses various aspects of energy efficiency such as technology, financing, fiscal incentive and also creation of energy efficiency as a market instrument. However, even though energy efficiency has substantial scope in the Indian subcontinent, the market for energy efficiency has been limited. This paper discusses the concept of mega Demand Side Management projects as a DSM Power Plant. A DSM Power Plant acts as an umbrella with multiple energy efficiency schemes under its ambit aimed at transforming energy efficiency into a business by providing a push to the scale of operation as well as financial sustenance to energy efficiency projects. This paper expounds on the various aspects of DSM Power Plant in terms of its policy and institutional mechanism for the large scale implementation of energy efficiency in India. This paper provides an illustration of the concept of DSM Power Plant model through a case study in one of the states (Rajasthan) of India. Further, a comparative analysis of the cost of generation from DSM Power Plant and a representative conventional power plant (CPP) in Rajasthan has been undertaken and the DSM Power Plant comes out to be a more cost effective option. The concept of DSM Power Plant will not only address the issue of energy shortages but will also help the financially thwarted utilities to reduce their revenue deficit in the near future.

Saurabh Gupta; Tanushree Bhattacharya

2013-01-01T23:59:59.000Z

88

Tuzla Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tuzla Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Ayvacik, Canakkale Coordinates 39.553940696342, 26.161228192504 Loading...

89

Negotiating river ecosystems: Impact assessment and conflict mediation in the cases of hydro-power construction  

SciTech Connect (OSTI)

In this paper we discuss how the legitimacy of the impact assessment process is a key issue in conflict mediation in environmental impact assessment. We contrast two EIA cases in hydro-power generation plans made for the Ii River, Finland in different decades, and evaluate how impact assessment in these cases has contributed to the creation, mediation and resolution of conflicts. We focus on the elements of distributional and procedural justice that made the former EIA process more legitimate and consensual and the latter more conflictual. The results indicate that it is crucial for conflict mediation to include all the values and interests of the parties in the goal-setting process and in the definition and assessment of alternatives. The analysis also indicates that procedural justice is the most important to help the people and groups involved to accept the legitimacy of the impact assessment process: how different parties and their values and interests are recognized, and how participation and distribution of power are organized in an impact assessment process. It is confirmed in this article that SIA may act as a mediator or a forum providing a process through which competing knowledge claims, various values and interests can be discussed and linked to the proposed alternatives and interventions.

Karjalainen, Timo P., E-mail: timopauli.karjalainen@oulu.f [Thule Institute, University of Oulu, P.O. Box 7300, FI-90014 University of Oulu (Finland); Jaervikoski, Timo, E-mail: timo.jarvikoski@oulu.f [Unit of Sociology, University of Oulu, P.O. Box 2000, FI-90014 University of Oulu (Finland)

2010-09-15T23:59:59.000Z

90

Okeanskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

91

Mendeleevskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

92

About Us - Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

selling its products and services. BPA markets wholesale electrical power from 31 federal hydro projects in the Columbia River Basin, one nonfederal nuclear plant and several other...

93

Energy intensities, \\{EROIs\\} (energy returned on invested), and energy payback times of electricity generating power plants  

Science Journals Connector (OSTI)

The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no primary energy weighting, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an unbuffered scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power.

D. Weibach; G. Ruprecht; A. Huke; K. Czerski; S. Gottlieb; A. Hussein

2013-01-01T23:59:59.000Z

94

Large-scale Wind Power integration in a Hydro-Thermal Power Market.  

E-Print Network [OSTI]

?? This master thesis describes a quadratic programming model used to calculate the spot prices in an efficient multi-area power market. The model has been (more)

Trtscher, Thomas

2007-01-01T23:59:59.000Z

95

Power plant | OpenEI  

Open Energy Info (EERE)

Power plant Power plant Dataset Summary Description No description given. Source Environmental Protection Agency (EPA) Date Released January 26th, 2009 (5 years ago) Date Updated June 07th, 2010 (4 years ago) Keywords eGrid eGRID2007 EIA Electricity emissions epa Power plant Data application/zip icon eGRID2007_Version1-1.zip (zip, 18.7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

96

Researching power plant water recovery  

SciTech Connect (OSTI)

A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

NONE

2008-04-01T23:59:59.000Z

97

Solar thermionic power plant (II)  

SciTech Connect (OSTI)

It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

1981-01-01T23:59:59.000Z

98

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

99

A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources  

Science Journals Connector (OSTI)

Abstract Several factors must be considered before adopting a full-phase power generation system based on renewable energy sources. Long-term necessary data (for one year if possible) should be collected before making any decisions concerning implementation of such a systems. To accurately assess the potential of available resources, we measured solar irradiation, wind speed, and ambient temperature at two high-altitude locations in Nepal: the Lama Hotel in Rasuwa District and Thingan in Makawanpur District. Here, we propose two practical, economical hybridization methods for small off-grid systems consisting entirely of renewable energy sourcesspecifically solar photovoltaic (PV), wind, and micro-hydro sources. One of the methods was tested experimentally, and the results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. Hydro, wind, and solar photovoltaic energy are the top renewable energy sources in terms of globally installed capacity. However, no reports have been published about off-grid hybrid systems comprised of all three sources, making this implementation the first of its kind anywhere. This research may be applied as a practical guide for implementing similar systems in various locations. Of the four off-grid PV systems installed by the authors for village electrification in Nepal, one was further hybridized with wind and hydro power sources. This paper presents a novel approach for connecting renewable energy sources to a utility mini-grid.

Binayak Bhandari; Kyung-Tae Lee; Caroline Sunyong Lee; Chul-Ki Song; Ramesh K. Maskey; Sung-Hoon Ahn

2014-01-01T23:59:59.000Z

100

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Power Transmission, Distribution and Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Transmission, Distribution and Plants A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abdel-Aal, Radwan E. - Computer Engineering Department, King Fahd University of...

102

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

103

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

104

For the Federal Columbia River Power System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

its products and services . BPA markets wholesale electrical power from 31 federal hydro projects in the Columbia River Basin, one nonfederal nuclear plant and several small...

105

Commercial Viability of Strategic Choice on Green Energy Business: Hydro Power versus Wind Power (Latvian case)  

Science Journals Connector (OSTI)

Development of green energy, especially such types as hydropower and wind power, presents great opportunities for companies growth. The aim of the paper is to investigate commercial viability of green energy business to make an investment choice for Latvian privately owned small sized hydropower producer and seller LLCGreen Energy Solutions (GES). Firstly the paper investigated theoretical and practical application of such concept of commercial viability of a strategy as a SFA: suitability, feasibility and acceptability. Then the latest trends of Green Energy Business in EU and in Latvia have been explored and strategic suitability has been defined. Secondly, to confirm or disprove investments in a hydropower station or wind turbine, Equivalent annual annuities of each alternative investment project have been calculated and financial feasibility has been discussed. Finally, recommendations for stakeholders regarding further growth of company GES and acceptability of given strategic choice have been reviewed in detail.

Andrejs ?irjevskis; Jekaterina Novikova

2012-01-01T23:59:59.000Z

106

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

107

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

108

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

109

Matsukawa Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Matsukawa Geothermal Power Plant Facility ower Plant Sector Geothermal energy Location Information Location Iwate, Japan Coordinates 39.980897288029,...

110

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rate Schedules Skip Navigation Links Excess Energy Hydro Peaking Power Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative (Rayburn) Hydro Power and Energy Sold to...

111

Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development  

E-Print Network [OSTI]

new solar, wind and large hydro power plants. A closer lookof wind development is lower than coal-fired power plants,wind power in China: A case study of nonrenewable energy cost and greenhouse gas emissions by plant

Zheng, Nina

2014-01-01T23:59:59.000Z

112

World electric power plants database  

SciTech Connect (OSTI)

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

113

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network [OSTI]

Wind-Powered Generation Examples are: The rough running bands of hydro turbines Loadings of coal burning steam plants at which coal mills

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

114

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

115

Energeticals power plant engineering | Open Energy Information  

Open Energy Info (EERE)

Energeticals power plant engineering Energeticals power plant engineering Jump to: navigation, search Name energeticals power plant engineering Place München, Bavaria, Germany Zip 81371 Sector Biomass, Geothermal energy Product Planning, design, installation and operation of turnkey plants for heat and electricity generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References energeticals power plant engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energeticals power plant engineering is a company located in München, Bavaria, Germany . References ↑ "[ energeticals power plant engineering]" Retrieved from "http://en.openei.org/w/index.php?title=Energeticals_power_plant_engineering&oldid=344770

116

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

117

Specialized Materials and Fluids and Power Plants  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Specialized Materials and Fluids and Power Plants.

118

Tracking New Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Coal-Fired Power Plants New Coal-Fired Power Plants (data update 1/13/2012) January 13, 2012 National Energy Technology Laboratory Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to provide an overview of proposed new coal-fired power plants that are under development. This report may not represent all possible plants under consideration but is intended to illustrate the potential that exists for installation of new coal-fired power plants. Additional perspective has been added for non-coal-fired generation additions in the U.S. and coal-fired power plant activity in China. Experience has shown that public announcements of power plant developments do not provide an accurate representation of eventually

119

BPA Power Generation (pbl/main)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Power Generation Hydro Power Federal Columbia River Power System (FCRPS) Hydro Projects FCRPS...

120

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear power pros and cons: A comparative analysis of radioactive emissions from nuclear power plants and thermal power plants  

Science Journals Connector (OSTI)

On the basis of the public data statistics of recent years on pollution and emissions from nuclear power plants (NPPs) and thermal power plants...

V. A. Gordienko; S. N. Brykin; R. E. Kuzin

2012-02-01T23:59:59.000Z

122

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

123

Coal Power Plant Database | Open Energy Information  

Open Energy Info (EERE)

Power Plant Database Power Plant Database Jump to: navigation, search Name Coal Power Plant Database Data Format Excel Spreadsheet, Excel Pivot Table, Access Database Geographic Scope United States TODO: Import actual dataset contents into OpenEI The Coal Power Plant Database (CPPDB) is a dataset which "consolidates large quantities of information on coal-fired power plants in a single location."[1] It is produced by the National Energy Technology Laboratory (NETL). External links 2007 Edition Excel Spreadsheet Excel Pivot Table Access Database User's Manual (PDF) References ↑ "User's Manual: Coal Power Plant Database" Retrieved from "http://en.openei.org/w/index.php?title=Coal_Power_Plant_Database&oldid=273301" Categories: Datasets Articles with outstanding TODO tasks

124

DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.  

E-Print Network [OSTI]

(thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact - that have a special dynamic behaviour, and the wind turbines. Detailed models for each one of the power system components are developed. Emphasis is given in the representation of different hydro power plant

Paris-Sud XI, Université de

125

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

126

Power Plant Analyser -- A computer code for power plant operation studies  

SciTech Connect (OSTI)

This paper describes Power Plant Analyser (PPA), a computer code for power plant dynamic and steady-state performance analysis. Power Plant Analyser simulates fossil power plant systems, such as drum-type, once-through, gas turbine, and combined cycle plants in a user-friendly manner. It provides a convenient tool for power engineers to understand the complex and interrelated thermodynamic processes and operating characteristics of the plant. It can also be used for conceptual training of power plant operators, and as a test bed for control and operating strategies.

Lu, S.; Hogg, B.W. [Queen`s Univ. of Belfast, Northern Ireland (United Kingdom). Dept. of Electrical and Electronic Engineering] [Queen`s Univ. of Belfast, Northern Ireland (United Kingdom). Dept. of Electrical and Electronic Engineering

1996-12-01T23:59:59.000Z

127

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

128

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

129

Power Plant Optimization Demonstration Projects Cover Photos:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

130

Turkerler Alasehir Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Turkerler Alasehir Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Turkerler Alasehir Geothermal Power Plant Project...

131

Miravalles V Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Miravalles V Geothermal Power Plant Project Location Information Coordinates...

132

Requirements for Power Plant and Power Line Development (Wisconsin) |  

Broader source: Energy.gov (indexed) [DOE]

Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Siting and Permitting Provider Public Service Commission of Wisconsin

133

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

134

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

135

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

136

Nuclear power plants: structure and function  

SciTech Connect (OSTI)

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

137

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

138

Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts of TMDLs on Impacts of TMDLs on Coal-Fired Power Plants April 2010 DOE/NETL-2010/1408 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The

139

Efficiency combined cycle power plant  

SciTech Connect (OSTI)

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

140

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Methodology for Scaling Fusion Power Plant Availability  

SciTech Connect (OSTI)

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

142

Tracking New Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 8, 2010 National Energy Technology Laboratory Office of Systems Analyses and Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to...

143

Uenotai Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.001204660867, 140.60390925355 Loading map... "minzoom":false,"mapp...

144

Wave Power Plant Inc | Open Energy Information  

Open Energy Info (EERE)

Powered Compressed Air Stations This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleWavePowerPlantInc&oldid76915...

145

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Aluto-Langano Geotermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

System - Ethiopian Rift Valley Plant Information Facility Type Binary Cycle Power Plant, ORC Owner Ethiopian Electric Power Corporation Developer Ethiopian Electric Power...

148

Lessons learned from existing biomass power plants  

SciTech Connect (OSTI)

This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

Wiltsee, G.

2000-02-24T23:59:59.000Z

149

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonefficiency of a solar power plant with gas-turbine toppingfor a solar power plant with Brayton-cycle gas turbine

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

150

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

151

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing (except water vapor) is emitted to the atmosphere. Resources below 400°F

152

Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island  

Science Journals Connector (OSTI)

Abstract This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 2948% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote areas.

Tao Ma; Hongxing Yang; Lin Lu

2014-01-01T23:59:59.000Z

153

Desalination study of Florida Power and Light power plants  

SciTech Connect (OSTI)

This report documents the results of a project to determine the viability of converting existing power plants to large scale, dual-purpose cogeneration of power and fresh water from desalination. The work involved evaluating suitable desalination technologies, developing utility based dual-product economic methods, screening FPL plant and desalination system combinations for promising candidates, and performing three case studies in greater detail to illustrate the viability of producing water at a utility power plant. The study was motivated by the fact that certain synergisms can be obtained by combining or co-locating power and desalination plants at a common site. Economic synergisms are obtained from better use of available energy, sharing common facilities and sharing staff. In addition, environmental synergisms are achieved by using existing industrial sites, common intake/outfalls, and combining thermal with brine effluents to obtain neutral buoyance and achieve more rapid dispersion.

Labar, M.P.; Loh, G.T.; Schleicher, R.W.; Sinha, A.K. (General Atomics International Services Corp., San Diego, CA (United States))

1992-12-01T23:59:59.000Z

154

Brawley Power Plant Abandoned | Open Energy Information  

Open Energy Info (EERE)

Abandoned Abandoned Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brawley Power Plant Abandoned Abstract N/A Authors California Division of Oil, Gas and and Geothermal Resources Published Journal Geothermal Hot Line, 1985 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Brawley Power Plant Abandoned Citation California Division of Oil, Gas, and Geothermal Resources. 1985. Brawley Power Plant Abandoned. Geothermal Hot Line. 15(2):76-77. Retrieved from "http://en.openei.org/w/index.php?title=Brawley_Power_Plant_Abandoned&oldid=682727" Categories: References Uncited References Geothermal References What links here Related changes Special pages Printable version Permanent link Browse properties

155

Cost Analysis of Solar Power Plants  

Science Journals Connector (OSTI)

The factors influencing the desirability of solar power plants (SPPs), and of SPP investment decisions, will be discussed in this chapter. The numerical details presented axe based, as far as possible, on actu...

H. P. Hertlein; H. Klaiss; J. Nitsch

1991-01-01T23:59:59.000Z

156

Geothermal Power Plants Meeting Clean Air Standards  

Broader source: Energy.gov [DOE]

Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

157

Beta Dosimetry at Nuclear Power Plants  

Science Journals Connector (OSTI)

......function of gamma dose and energy of the beta rays. Measurements...radiation and effective beta energy obtained in the working environment at nuclear power plants during the shut-down...decommissioning. The effective beta energy is most frequently between......

P. Carn; M. Lieskovsky

1991-08-01T23:59:59.000Z

158

Coal-Fuelled Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Combined cycle power plant, when used as a generic ... which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion .....

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

159

Cabell on Nuclear Energy Power Plants  

Science Journals Connector (OSTI)

Cabell on Nuclear Energy Power Plants ... IN EXPLAINING the function of his research group t o the new works superintendent of a nuclear power plant at a mining and reduction installation in the Alaskan mountains, Dr. Blank, of the United Nations Inspection and Research Laboratories, said, "We can't inspect what we don't know. ... In order to know what you're doing, we have to know more about atomic energy than you domore than anybody does. ...

1947-02-17T23:59:59.000Z

160

Parabolic Trough Organic Rankine Cycle Power Plant  

SciTech Connect (OSTI)

Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

with Sensible- Heat Storage Solar Power Plant with Sulfurof the Solar Power Plant Storage-Vessel Design, . . . . .System for Chemical Storage of Solar Energy. UC Berkeley,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

162

Dora-3 Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Dora-3 Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Coordinates 37.875046144284, 28.102602480794 Loading...

163

Zhangbei Guotou Wind Power Plant | Open Energy Information  

Open Energy Info (EERE)

Zhangbei Guotou Wind Power Plant Jump to: navigation, search Name: Zhangbei Guotou Wind Power Plant Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A...

164

MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

Yongsoo Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Yongsoo Wave Power Plant.jpg Technology Profile Technology Type Click...

165

World's Largest Concentrating Solar Power Plant Opens in California...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah,...

166

RAPID/Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

for compensation. Geothermal Power Plant in Federal Bureau of Land Management Federal Energy Regulatory Commission Geothermal Power Plant in New Mexico None NA Every person...

167

DOE Announces Loan Guarantee Applications for Nuclear Power Plant...  

Energy Savers [EERE]

Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

168

Saradambika Power Plant Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Saradambika Power Plant Pvt Ltd Jump to: navigation, search Name: Saradambika Power Plant Pvt. Ltd Place: Hyderabad, Andhra Pradesh, India Zip: 500082 Sector: Biomass Product:...

169

Department for International Development, UK. BEST PRACTICES FOR SUSTAINABLE DEVELOPMENT OF MICRO HYDRO POWER IN DEVELOPING COUNTRIES FINAL SYNTHESIS REPORT  

E-Print Network [OSTI]

and The World Bank March 2000Front page photograph of micro hydro penstock in Peru (ITDG E3 Peru X4.007).TABLE OF CONTENTS Sources and Acknowledgements...........................................................................................vii Executive Summary................................................................................................................ix Abbreviations and Acronyms...............................................................................................xiii

Contract R; Smail Khennas; Andrew Barnett; In Association

170

Modelling power output at nuclear power plant by neural networks  

Science Journals Connector (OSTI)

In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. NNs are widely used for time series prediction, ... Keywords: evaluation methods, model input selection, neural networks, nuclear power plant, one-step ahead prediction

Jaakko Talonen; Miki Sirola; Eimontas Augilius

2010-09-01T23:59:59.000Z

171

FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES  

E-Print Network [OSTI]

FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical & Computer Eng. and Fusion Energy Research Program, University of California, San Diego, La Jolla, CA 92093-0417 619-534-7869 (619-534-7716, Fax) ABSTRACT Fusion is one of a few future power sources with the poten

Najmabadi, Farrokh

172

Evolution of Nuclear Power Plant Design  

Science Journals Connector (OSTI)

... research is expensive, and applied research and development on atomic energy is so expensive that expenditure should be justified either by the needs of defence or by the expectation of a ... per cent) have risen, and this rise reacts against nuclear power with its high capital cost. The result of these changes is that nuclear power from the plants which ...

CHRISTOPHER HINTON

1960-09-24T23:59:59.000Z

173

ANALYSIS FOR AN ECONOMICALLY SUITABLE COAL TO PUTTALAM COAL POWER STATION TO RUN THE PLANT IN FULL LOAD CAPACITY.  

E-Print Network [OSTI]

?? Sri Lanka is an island at the Indian Ocean with 65234 km2 and it has a power demand of 2000 MW. The hydro power (more)

Weerathunga, Lahiru

2014-01-01T23:59:59.000Z

174

Marine-current power generation by diffuser-augmented floating hydro-turbines  

Science Journals Connector (OSTI)

The oceans represent a huge energy reservoir consistent of stored solar and gravitational energy in several forms, causing ceaseless movements of an enormous volume of water. This energy is generally diffuse but, in many cases, significantly more concentrated than other forms of renewable energy already being successfully exploited on land. Among the ocean-energy resources, wave and marine-current energy emerge as the most promising options for massive ocean-energy generation in the immediate future. The main objective of this paper is to focus on trends that can lead to a feasible massive marine-current-power future scenario, and to introduce a technological solution which could help to reach that goal. We shall describe the main features of a floating marine-current-power system that introduces conceptual innovations in order to improve the technical and economical performance.

F.L. Ponta; P.M. Jacovkis

2008-01-01T23:59:59.000Z

175

Video camera use at nuclear power plants  

SciTech Connect (OSTI)

A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

Estabrook, M.L.; Langan, M.O.; Owen, D.E. (ENCORE Technical Resources, Inc., Middletown, PA (USA))

1990-08-01T23:59:59.000Z

176

Power Plant Dams (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Dams (Kansas) Power Plant Dams (Kansas) Power Plant Dams (Kansas) < Back Eligibility Commercial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across any watercourse, the party so desiring to do the same may run the stream over the land of any other person by ditching or otherwise, and he, she or it may obtain the right to erect and maintain said dam and keep up and maintain the necessary ditches

177

Implications of near-term coal power plant retirement for SO2 and NOX, and life cycle GHG emissions  

E-Print Network [OSTI]

prices of electricity production Plant type Unit Price Nuclear ($/MWh) 16.51 Wind ($/MWh) 201 Hydro Top SO2 100 430 95 440 100 430 Top NOX 105 350 100 380 105 345 Small, inefficient 125 410 125 405 125) Manitoba Hydro Manitoba Hydro Undertaking # 57 http://www.pub.gov.mb.ca/exhibits/mh-83.pdf. (5) Sotkiewicz

Jaramillo, Paulina

178

Dynamic modeling of IGCC power plants  

Science Journals Connector (OSTI)

Integrated Gasification Combined Cycle (IGCC) power plants are an effective option to reduce emissions and implement carbon-dioxide sequestration. The combination of a very complex fuel-processing plant and a combined cycle power station leads to challenging problems as far as dynamic operation is concerned. Dynamic performance is extremely relevant because recent developments in the electricity market push toward an ever more flexible and varying operation of power plants. A dynamic model of the entire system and models of its sub-systems are indispensable tools in order to perform computer simulations aimed at process and control design. This paper presents the development of the lumped-parameters dynamic model of an entrained-flow gasifier, with special emphasis on the modeling approach. The model is implemented into software by means of the Modelica language and validated by comparison with one set of data related to the steady operation of the gasifier of the Buggenum power station in the Netherlands. Furthermore, in order to demonstrate the potential of the proposed modeling approach and the use of simulation for control design purposes, a complete model of an exemplary IGCC power plant, including its control system, has been developed, by re-using existing models of combined cycle plant components; the results of a load dispatch ramp simulation are presented and shortly discussed.

F. Casella; P. Colonna

2012-01-01T23:59:59.000Z

179

Microsoft PowerPoint - SW Fed Hydro Conference Jun 12 presentation Final [Compatibility Mode]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects Impacting Federal Projects Impacting Federal Power Tulsa District Tulsa District Beau Biffle Beau Biffle 13 June 2012 BUILDING STRONG ® Topics Topics  Interior Least Tern Operations and Habitat Creation  Tulsa Vision 2025  Dam Safety Issues ► Keystone ► Pine Creek ► Tenkiller  Lake Eufaula Advisory Committee  Lake Eufaula Advisory Committee  Tenkiller Downstream Fishery Issues  Broken Bow Seasonal Pool Update - Cultural Broken Bow Seasonal Pool Update Cultural Resources Impacts  Arkansas River Navigation Improvement BUILDING STRONG ®  Oklahoma Comprehensive Water Plan Update Interior Least Tern Operations and H bit t C ti Habitat Creation  2011 Breeding Season Survey Results: - Arkansas River System: 517 adults, 358 fledglings. Season totals exceeded

180

Power Generation and the Environment  

Science Journals Connector (OSTI)

...such as hydro and gas tur- bines. It...these increases in power costs will be a...aspects of power generation: the exploration...residual fuels for power plants, as well...concepts of oil-fired power generation plants for the...

Rolf Eliassen

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Evolution of Nuclear Power Plant Design: Synopsis  

Science Journals Connector (OSTI)

1 April 1961 research-article The Evolution of Nuclear Power Plant Design: Synopsis Christopher Hinton

1961-01-01T23:59:59.000Z

182

Fossil Power Plant Applications of Expert Systems: An EPRI Perspective  

E-Print Network [OSTI]

the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

Divakaruni, S. M.

183

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

184

power plant | OpenEI Community  

Open Energy Info (EERE)

plant plant Home Kyoung's picture Submitted by Kyoung(155) Contributor 12 November, 2012 - 09:17 Legal Reviews are Underway BHFS Legal review permitting power plant roadmap transmission The legal review of the Regulatory Roadmap flowcharts and supporting content is well underway and will continue for the next several months with our legal team at [www.bhfs.com Brownstein Hyatt Farber and Schreck]. The BHFS has been meeting with the NREL roadmap team during weekly 2-3 hour meetings to provide comments and suggestions on each flowchart at the federal and state levels. They have had some fantastic recommendations for updates - particularly for Sections 7 and 8 of the roadmap, pertaining to the permitting of power plants and transmission lines. Syndicate content 429 Throttled (bot load)

185

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc" "Oconee Unit 1, Unit 2, Unit 3","2,538","20,943",40.3,"Duke Energy Carolinas, LLC" "V C Summer Unit 1",966,"8,487",16.3,"South Carolina Electric&Gas Co" "4 Plants 7 Reactors","6,486","51,988",100.0

186

Stateline Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Stateline Solar Power Plant Stateline Solar Power Plant Jump to: navigation, search Name Stateline Solar Power Plant Facility Stateline Sector Solar Facility Type Photovoltaic Developer First Solar Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Blythe Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Blythe Solar Power Plant Blythe Solar Power Plant Jump to: navigation, search Name Blythe Solar Power Plant Facility Blythe Sector Solar Facility Type Photovoltaic Developer First Solar Location Blythe, California Coordinates 33.6172329°, -114.5891744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6172329,"lon":-114.5891744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

189

MHD power plant instrumentation and control  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) has awarded a contract to the MHD Development Corporation (MDC) to develop instrumentation and control requirements and strategies for commercial MHD power plants. MDC subcontracted MSE to do the technical development required. MSE is being assisted by Montana State University (MSU) for the topping cycle development. A computer model of a stand-alone MHD/steam plant is being constructed. The plant is based on the plant design set forth in the MDC proposal to the Federal Clean Coal Technology 5 solicitation. It consists of an MHD topping plant, a Heat Recovery Seed Recovery (HRSR) plant, and a steam turbo-generator. The model is based on the computer code used for a study of the Corette plant retrofitted with an MHD plant. Additional control strategies, based on MHD testing results and current steam bottoming plant control data, will be incorporated. A model will be devised and implemented for automatic control of the plant. Requirements regarding instrumentation and actuators will be documented. Instrumentation and actuators that are not commercially available will be identified. The role and desired characteristics of an expert system in the automated control scheme is being investigated. Start-up and shutdown procedures will be studied and load change dynamic performance will be evaluated. System response to abnormal topping cycle and off-design system operation will be investigated. This includes use of MHD topping cycle models which couple gasdynamic and electrical behavior for the study of controlling of the MHD topping cycle. A curvefitter, which uses cubic Hermitian spline interpolation functions in as many as five dimensions, allows much more accurate reproduction of nonlinear, multidimensional functions. This project will be the first to investigate plant dynamics and control using as many as seven independent variables or control inputs to the MHD topping cycle.

Lofftus, D.; Rudberg, D. [MSE Inc., Butte, MT (United States); Johnson, R.; Hammerstrom, D. [Montana State Univ., Bozeman, MT (United States)

1993-12-31T23:59:59.000Z

190

Report on Hawaii geothermal power plant project  

SciTech Connect (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

191

Slim Holes for Small Power Plants  

SciTech Connect (OSTI)

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

192

Strategies in tower solar power plant optimization  

E-Print Network [OSTI]

A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

Ramos, A

2012-01-01T23:59:59.000Z

193

Automation of hydroelectric power plants  

SciTech Connect (OSTI)

This paper describes how the author's company has been automating its hydroelectric generating plants. The early automations were achieved with a relay-type supervisory control system, relay logic, dc tachometer, and a pneumatic gate-position controller. While this system allowed the units to be started and stopped from a remote location, they were operated at an output that was preset by the pneumatic control at the generating site. The supervisory control system at the site provided such information as unit status, generator breaker status, and a binary coded decimal (BCD) value of the pond level. The generating units are started by energizing an on-site relay that sets the pneumatic gate controller to a preset value above the synchronous speed of the hydroelectric generator. The pneumatic controller then opens the water-wheel wicket gates to the preset startup position. As the hydroelectric generator starts to turn, the machine-mounted dc tachometer produces a voltage. At a dc voltage equivalent to synchronous speed, the generator main breaker closes, and a contact from the main breaker starts a field-delay timer. Within a few seconds, the field breaker closes. Once the cycle is complete, a relay changes the pneumatic setpoint to a preset operating point of about 8/10 wicket gate opening.

Grasser, H.S. (Consolidated Papers, Inc., Wisconsin Rapids, WI (US))

1990-03-01T23:59:59.000Z

194

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

195

DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Program Area of Interest: No.5--Environmental and Water Resources. The project team includes the Electric Power Research Institute (EPRI) as the contractor and the University of North Dakota Energy & Environmental Research Center (EERC) and Frontier Geosciences as subcontractors. Wisconsin Energies and its Pleasant Prairie Power Plant acted as host for the field-testing portion of the research. The project is aimed at clarifying the role, rates, and end results of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. Mercury emitted from power plants emerges in either its elemental, divalent, or particulate-bound form. Deposition of the divalent form is more likely to occur closer to the source than that of the other two forms, due to its solubility in water. Thus, if chemical transformations occur in the stack emissions plume, measurements in the stack may mischaracterize the fate of the material. Initial field and pilot plant measurements have shown significant and rapid chemical reduction of divalent to elemental mercury may occur in these plumes. Mercury models currently assume that the chemical form of mercury occurring in stacks is the same as that which enters the free atmosphere, with no alteration occurring in the emissions plume. Recent data indicate otherwise, but need to be evaluated at full operating scale under field conditions. Prestbo and others have demonstrated the likelihood of significant mercury chemical reactions occurring in power plant plumes (Prestbo et al., 1999; MDNR-PPRP, 2000; EERC, 2001). This experiment will thus increase our understanding of mercury atmospheric chemistry, allowing informed decisions regarding source attribution. The experiment was carried out during the period August 22-September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods. This progress report summarizes activities during a period of results review from the stack/aircraft subcontractor, data analysis and synthesis, and preparation and presentation of preliminary results to technical and oversight meetings.

Leonard Levin

2006-06-01T23:59:59.000Z

196

E-Print Network 3.0 - advanced power plants Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power plants...

197

E-Print Network 3.0 - atomic power plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plant Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic power plant...

198

E-Print Network 3.0 - advanced power plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plant Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power plant...

199

E-Print Network 3.0 - atomic power plants Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic power plants...

200

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Combined cycle power plant incorporating coal gasification  

DOE Patents [OSTI]

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

202

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-Print Network [OSTI]

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California, Center for Ocean Health, Long Marine Lab GREGOR CAILLIET, Moss Landing Marine Laboratories DAVID MAYER be obvious that large studies like these require the coordinated work of many people. We would first like

203

Chapter 3 - Coal-fired Power Plants  

Science Journals Connector (OSTI)

Abstract Coal provides around 40% of the worlds electricity, more than any other source. Most modern coal-fired power stations burn pulverized coal in a boiler to raise steam for a steam turbine. High efficiency is achieved by using supercritical boilers made of advanced alloys that produce high steam temperatures, and large, high-efficiency steam turbines. Alternative types of coal-fired power plants include fluidized bed boilers that can burn a variety of poor fuels, as well as coal gasifiers that allow coal to be turned into a combustible gas that can be burned in a gas turbine. Emissions from coal plants include sulfur dioxide, nitrogen oxide, and trace metals, all of which must be controlled. Capturing carbon dioxide from a coal plant is also under consideration. This can be achieved using post-combustion capture, a pre-combustion gasification process, or by burning coal in oxygen instead of air.

Paul Breeze

2014-01-01T23:59:59.000Z

204

Wind Power Plant Voltage Stability Evaluation: Preprint  

SciTech Connect (OSTI)

Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

Muljadi, E.; Zhang, Y. C.

2014-09-01T23:59:59.000Z

205

Mohave Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Mohave Solar Power Plant Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Owner Mojave Solar LLC, Developer Abengoa Solar, Mohave Sun LLC Location Mohave County, Arizona Coordinates 35.017264°, -117.316607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.017264,"lon":-117.316607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)  

E-Print Network [OSTI]

SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

207

Configuration management in nuclear power plants  

E-Print Network [OSTI]

Configuration management (CM) is the process of identifying and documenting the characteristics of a facility's structures, systems and components of a facility, and of ensuring that changes to these characteristics are properly developed, assessed, approved, issued, implemented, verified, recorded and incorporated into the facility documentation. The need for a CM system is a result of the long term operation of any nuclear power plant. The main challenges are caused particularly by ageing plant technology, plant modifications, the application of new safety and operational requirements, and in general by human factors arising from migration of plant personnel and possible human failures. The IAEA Incident Reporting System (IRS) shows that on average 25% of recorded events could be caused by configuration errors or deficiencies. CM processes correctly applied ensure that the construction, operation, maintenance and testing of a physical facility are in accordance with design requirements as expressed in the d...

2003-01-01T23:59:59.000Z

208

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-10-20T23:59:59.000Z

209

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-08-04T23:59:59.000Z

210

Ahuachapan Geothermal Power Plant, El Salvador  

SciTech Connect (OSTI)

The Ahuachapan geothermal power plant has been the subject of several recent reports and papers (1-7). This article is a condensation of the author's earlier writings (5-7), and incorporates new information on the geothermal activities in El Salvador obtained recently through a telephone conversation with Ing. R. Caceres of the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) who has been engaged in the design and engineering of the newest unit at Ahuachapan. El Salvador is the first of the Central American countries to construct and operate a geothermal electric generating station. Exploration began in the mid-1960's at the geothermal field near Ahuachapan in western El Salvador. The first power unit, a separated-steam or so-called ''single-flash'' plant, was started up in June 1975, and was followed a year later by an identical unit. In July 1980, the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) will complete the installation of a third unit, a dual-pressure (or ''double-flash'') unit rated at 35 MW. The full Ahuachapan plant will then constitute about 20% of the total installed electric generating capacity of the country. During 1977, the first two units generated nearly one-third of all the electricity produced in El Salvador. C.E.L. is actively pursuing several other promising sites for additional geothermal plants. There is the possibility that eventually geothermal energy will contribute about 450 MW of electric generating capacity. In any event it appears that by 1985 El Salvador should be able to meet its domestic needs for electricity by means of its indigenous geothermal and hydroelectric power plants, thus eliminating any dependence on imported petroleum for power generation.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

211

Modeling Generator Power Plant Portfolios and Pollution Taxes in  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

Nagurney, Anna

212

Hydro-Thermal Scheduling (HTS) 1.0 Introduction  

E-Print Network [OSTI]

1 Hydro-Thermal Scheduling (HTS) 1.0 Introduction From an overall systems view, the single most, relative to that of thermal plants, are very small. There are three basic types of hydroelectric plants;2 Pump-storage This kind of hydro plant is a specialized reservoir-type plant which has capability to act

McCalley, James D.

213

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

214

NETL: Coal-Fired Power Plants (CFPPs)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOx Sources NOx Sources Coal-Fired Power Plants (CFPPs) Causes of greenhouse gases, Including NOx What is NOx? Environmental Impacts NOx Sources Reduction Efforts Several greenhouse gases, including NOx, are increasing due to human activities in the following areas: Burning of fossil fuel (for example, coal-fired power plants), Logging (mainly contributes to carbon monoxide), Agriculture processes, Use of chlorofluorocarbons (CFC) in holon fire suppression and refrigeration The chart below shows the three major gases contributing to greenhouse gas emissions along with their source by sector. Annual Greenhouse Gas Emissions by Sector Note: This figure was created and copyrighted by Robert A. Rohde from published data and is part of the Global Warming Art project. This image is an original work created for Global Warming Art Permission is granted to copy, distribute and/or modify this image under either:

215

Clean Power Plan: Reducing Carbon Pollution From Existing Power Plants  

E-Print Network [OSTI]

Efficiency Improvements Efficiency improvements Co-firing or switching to natural gas Coal retirements Retrofit CCS (e.g.,WA Parish in Texas) 2. Use lower-emitting power sources more Dispatch changes to existing natural gas combined cycle (CC) Dispatch... that are high emitting. Energy conservation programs. Retrofitting units with partial CCS. Use of certain biomass. Efficiency improvements at higher- emitting plants.* Market-based trading programs. Building new renewables. Dispatch changes. Co...

Bremer,K.

2014-01-01T23:59:59.000Z

216

Advanced Power Plant Development and Analysis Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

217

Advanced Power Plant Development and Analyses Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

218

Running dry at the power plant  

SciTech Connect (OSTI)

In the future, competition for water will require electricity generators in the United States to address conservation of fresh water. There are a number of avenues to consider. One is to use dry-cooling and dry-scrubbing technologies. Another is to find innovative ways to recycle water within the power plant itself. A third is to find and use alternative sources of water, including wastewater supplies from municipalities, agricultural runoff, blackish groundwater, or seawater. Dry technologies are usually more capital intensive and typically exact a penalty in terms of plant performance, which in turn raises the cost of power generation. On the other hand, if the cost of water increases in response to greater demand, the cost differences between dry and wet technologies will be reduced. EPRI has a substantial R & D programme evaluating new water-conserving power plant technologies, improving dry and hybrid cooling technologies, reducing water losses in cooling towers, using degraded water sources and developing resource assessment and management decision support tools. 5 refs., 10 figs.

Barker, B.

2007-07-01T23:59:59.000Z

219

Aspects Regarding Design of Wind Power Plants Foundation System  

Science Journals Connector (OSTI)

During the past years wind power plants projects have become very important all over ... must be calculated for dynamic loads, especially wind charge. The article present the particularities of the wind power plants

Vasile Farcas; Nicoleta Ilies

2014-01-01T23:59:59.000Z

220

Power Plant and Industrial Fuel Use Act | Department of Energy  

Office of Environmental Management (EM)

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended...

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

1 INTRODUCTION In Nuclear Power Plant (NPP) systems, effective  

E-Print Network [OSTI]

1 INTRODUCTION In Nuclear Power Plant (NPP) systems, effective prediction methods are sought for Nuclear Power Plant Failure Scenarios Using an Ensemble-based Approach J. Liu & V. Vitelli Chair

Paris-Sud XI, Université de

222

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

provide solar power plant energy storage for a reasonablefor Chemical Storage of Solar Energy. UC Berkeley, M.S.for a solar power plant without energy storage for nighttime

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

223

A study of a commercial MHD power plant scheme  

Science Journals Connector (OSTI)

This paper is devoted to an investigation of one of the possible process flow diagrams of MHD electrical power plants. The structure of MHD electrical power plants, the interrelation between the ... theoretical a...

S. A. Pashkov; E. V. Shishkov

1980-07-01T23:59:59.000Z

224

Unusual Condition Mining for Risk Management of Hydroelectric Power Plants  

Science Journals Connector (OSTI)

Kyushu Electric Power Co.,Inc. collects different sensor data and weather information to maintain the safety of hydroelectric power plants while the plants are running. In this paper, we consider that the abnormal condition sign may be unusual condition. ...

Takashi Onoda; Norihiko Ito; Hironobu Yamasaki

2006-12-01T23:59:59.000Z

225

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

226

How a Geothermal Power Plant Works (Simple) | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Works (Simple) Most power plants-whether fueled by coal, gas, nuclear power, or geothermal energy-have one feature in common: they convert heat to electricity. Heat from...

227

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Cecil. E. A. , Research on Dry-Type Cooling _T_o_w_e_r~s~f~oTower Type Wet-Cooled Power Plant Solar-Power Plant Dry-Cool

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

228

Tehri Hydro Development Corporation Limited | Open Energy Information  

Open Energy Info (EERE)

Tehri Hydro Development Corporation Limited Tehri Hydro Development Corporation Limited Jump to: navigation, search Name Tehri Hydro Development Corporation Limited Place Noida, Uttar Pradesh, India Zip 201 301 Sector Hydro, Solar, Wind energy Product Focused on hydro projects; diversifying into solar and wind power. References Tehri Hydro Development Corporation Limited[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Tehri Hydro Development Corporation Limited is a company located in Noida, Uttar Pradesh, India . References ↑ "Tehri Hydro Development Corporation Limited" Retrieved from "http://en.openei.org/w/index.php?title=Tehri_Hydro_Development_Corporation_Limited&oldid=352096

229

Loan Guarantee Recipient Awarded Power Plant of the Year  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Electric Generating System, a DOE loan guarantee recipient, won 2014 Plant of the Year from POWER Magazine.

230

Geothermal Power Plants Meeting Water Quality and Conservation Standards  

Broader source: Energy.gov [DOE]

U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

231

World's Largest Concentrating Solar Power Plant Opens in California  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Electric Generating System, the world’s largest concentrating solar power plant, officially opened on February 13.

232

Modeling mercury in power plant plumes  

SciTech Connect (OSTI)

Measurements of speciated mercury (Hg) downwind of coal-fired power plants suggest that the Hg{sup II}/(Hg{sup 0} + Hg{sup II}) ratio decreases significantly between the point of emission and the downwind ground-level measurement site, but that the SO{sub 2}/(Hg{sup 0} + Hg{sup II}) ratio is conserved. The authors simulated nine power plant plume events with the Reactive & Optics Model of Emissions (ROME), a reactive plume model that includes a comprehensive treatment of plume dispersion, transformation, and deposition. The model simulations fail to reproduce such a depletion in Hg{sup II}. A sensitivity study of the impact of the Hg{sup II} dry deposition velocity shows that a difference in dry deposition alone cannot explain the disparity. Similarly, a sensitivity study of the impact of cloud chemistry on results shows that the effect of clouds on Hg chemistry has only minimal impact. Possible explanations include Hg{sup II} reduction to Hg{sup 0} in the plume, rapid reduction of Hg{sup II} to Hg{sup 0} on ground surfaces, and/or an overestimation of the Hg{sup II} fraction in the power plant emissions. The authors propose that a chemical reaction not included in current models of atmospheric mercury reduces Hg{sup II} to Hg{sup 0} in coal-fired power plant plumes. The incorporation of two possible reduction pathways for Hg{sup II} shows better agreement between the model simulations and the ambient measurements. These potential Hg{sup II} to Hg{sup 0} reactions need to be studied in the laboratory to investigate this hypothesis. Because the speciation of Hg has a significant effect on Hg deposition, models of the fate and transport of atmospheric Hg may need to be modified to account for the reduction of Hg{sup II} in coal-fired power plant plumes if such a reaction is confirmed in further experimental investigations. 31 refs., 2 figs., 6 tabs.

Kristen Lohman; Christian Seigneur; Eric Edgerton; John Jansen [Atmospheric & Environmental Research, Inc., San Ramon, CA (United States)

2006-06-15T23:59:59.000Z

233

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

E-Print Network [OSTI]

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis ¨Ozge I¸slegen Graduate School excellent research assistance. #12;Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis Abstract: For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer

Silver, Whendee

234

Multi-objective optimization of solar tower power plants  

E-Print Network [OSTI]

Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 MW) in Andalusia, Spain · Solar tower with receiver · Heliostat field with self-aligning mirrors

Ábrahám, Erika

235

Hybrid Modeling and Control of a Hydroelectric Power Plant  

E-Print Network [OSTI]

Hybrid Modeling and Control of a Hydroelectric Power Plant Giancarlo Ferrari-Trecate, Domenico,mignone,castagnoli,morari}@aut.ee.ethz.ch Abstract In this work we present the model of a hydroelectric power plant in the framework of Mixed Logic with a model predictive control scheme. 1 Introduction The outflow control for hydroelectric power plants

Ferrari-Trecate, Giancarlo

236

EIS-0066: The Role of Bonneville Power Administration in the Pacific Northwest Power Supply System- including its Participation in a Hydro-Thermal Power Program  

Broader source: Energy.gov [DOE]

The Bonneville Power Administration (BPA) prepared this EIS to examine the environmental impacts of the Pacific Northwest Power Planning and Conservation Act, which will foster regional electric power planning in the four Northwest states, as well as increase BPAs authority to address future power needs.

237

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

Roshandell, Melina

2013-01-01T23:59:59.000Z

238

District Cooling Using Central Tower Power Plant  

Science Journals Connector (OSTI)

Abstract During the operation of solar power towers there are occasions, commonly in the summer season, where some of the heliostats have to stop focusing at the central receiver, located at the top of the tower, because the maximum temperature that the receiver can withstand has been reached. The highest demands of cooling for air conditioning take place at these same occasions. In the present paper, we have analyzed the possibility of focusing the exceeding heliostats to the receiver increasing the mass flow rate of the heat transfer fluid over the nominal value and using the extra heat as a source of an absorption chiller. The chilled water would be used to cool buildings and offices, using a district cooling network. Using the extra heat of the solar power tower plant would greatly reduce the electricity usage. In this work we have analyzed the case of a circular field of heliostats focusing at a circular receiver, such as the case of Gemasolar plant. We have quantified the thermal power that can be obtained from the unused heliostats, the cooling capacity of the absorption system as well as the heat losses through the insulated pipes that distribute the chilled water to the buildings of the network.

C. Marugn-Cruz; S. Snchez-Delgado; M.R. Rodrguez-Snchez; M. Venegas

2014-01-01T23:59:59.000Z

239

Magnetohydrodynamic (MHD) power plant interface engineering  

SciTech Connect (OSTI)

This report summarizes the results of EPRI Research Project 2466-10. The objective of this project was to identify the preliminary interface requirements and characteristics for a coal-fired magnetohydrodynamic retrofit power plant located at the Scholz Generating Station, Sneads, Florida. An initial building arrangement has been developed and incorporated into the plot plan of the Scholz Generating Station. An MHD process flow diagram was generated and integrated with the existing plant process flow diagram. The electrical interface schematic for the MHD system was also developed. A preliminary list of process flow, electrical, and physical interfaces was produced and the respective interface requirements defined. The existing facilities were inspected and the necessary modifications imposed by the MHD system have been identified. 6 refs., 24 figs., 11 tabs.

Van Bibber, L.E.; Wiseman, D.A. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Advanced Energy Systems Div.); Cuchens, J.W. (Southern Electric International, Birmingham, AL (USA))

1990-07-01T23:59:59.000Z

240

(Nuclear power plant control and instrumentation technology)  

SciTech Connect (OSTI)

While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

White, J.D.

1990-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CFD analysis for solar chimney power plants  

Science Journals Connector (OSTI)

Abstract Solar chimney power plants are investigated numerically using ANSYS Fluent and an in-house developed Computational Fluid Dynamics (CFD) code. Analytical scaling laws are verified by considering a large range of scales with tower heights between 1m (sub-scale laboratory model) and 1000m (largest envisioned plant). A model with approximately 6m tower height is currently under construction at the University of Arizona. Detailed time-dependent high-resolution simulations of the flow in the collector and chimney of the model provide detailed insight into the fluid dynamics and heat transfer mechanisms. Both transversal and longitudinal convection rolls are identified in the collector, indicating the presence of a RayleighBnardPoiseuille instability. Local separation is observed near the chimney inflow. The flow inside the chimney is fully turbulent.

Hermann F. Fasel; Fanlong Meng; Ehsan Shams; Andreas Gross

2013-01-01T23:59:59.000Z

242

Efficient bidding for hydro power plants in markets for energy and ancillary services  

E-Print Network [OSTI]

In order to preserve stability of electricity supply generators must provide ancillary services in addition to energy production. Hydroelectric resources have significant ancillary service capability because of their dynamic ...

Perekhodtsev, Dmitri

2006-01-01T23:59:59.000Z

243

Relative Movements for Design of Commodities in Nuclear Power Plants  

Broader source: Energy.gov [DOE]

Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

244

Single stage rankine and cycle power plant  

SciTech Connect (OSTI)

The specification describes a Rankine cycle power plant of the single stage type energized by gasified freon, the latter being derived from freon in the liquid state in a boiler provided in the form of a radio frequency heating cell adapted at low energy input to effect a rapid change of state from liquid freon at a given temperature and pressure to gaseous freon of relatively large volume, thereby to drive a Rankine cycle type of engine recognized in the prior art as a steam engine type of engine of the piston or turbine type.

Closs, J.J.

1981-10-13T23:59:59.000Z

245

Fuel Cell Power Plant Experience Naval Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

246

NSR and the Power Plant Improvement Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOURCE REVIEW (NSR) and the CLEAN COAL SOURCE REVIEW (NSR) and the CLEAN COAL POWER INITIATIVE (CCPI) Summary Changes which result in increases in emissions of air pollutants from existing industrial facilities, such as power plants, can invoke stringent and costly new regulations. However, it is not the intent of such requirements to present a barrier to the installation of environmentally beneficial pollution control projects, or to projects demonstrating new methods to burn coal cleanly under the DOE Clean Coal Technology Program. Special provisions are included in the Clean Air Act and its implementing regulations to address potential exemptions of such projects from new source review regulations. This paper provides a general review of those provisions, and encourages project managers to

247

Power System Frequency Control Characteristics as a Function of Nuclear Power Plant Participation  

Science Journals Connector (OSTI)

When the participation of nuclear power plants in electric power system increases then they have to be ... take an increasing part in the frequency and power control of the power system. However there are specifi...

Z. Domachowski

1988-01-01T23:59:59.000Z

248

Tribology in coal-fired power plants  

Science Journals Connector (OSTI)

Material wear and degradation is of great importance to the economy of South Africa especially within the mining, agriculture, manufacturing and power generation fields. It has been found that unexpected and high rates of fly-ash erosion occur at certain sections of power plants, this is particularly evident at the Majuba power station. The loss of small amounts of material due to erosion can be enough to cause serious damage and significantly reduce the working lifetime of, for, e.g. hopper liners. This study investigated the long-term solid particle erosion of a range of oxide and nitride-fired SiC-based ceramics and alumina with the aim of reducing erosive wear damage in power plants. This entailed carrying out experimental tests on an in-house built erosion testing machine that simulate the problems encountered in the industry. The target materials were eroded with 125180?m silica sand at shallow and high impact angles. The surface wear characteristics were studied using both light and scanning electron microscopy (SEM). The results obtained indicate that the erosion rates of the materials remain fairly constant from the onset. It was found that prolonged exposure to erosion results in the progressive removal of the matrix and subsequent loss of unsupported SiC particulates. The fact that the particles were relatively small did not have a significant effect on the erosion rate. This would explain the observed constant rates of erosion for longer periods. These behaviours can be further explained in terms of the composition and mechanical properties of the erodents and target ceramics.

D.O. Moumakwa; K. Marcus

2005-01-01T23:59:59.000Z

249

hydro | OpenEI Community  

Open Energy Info (EERE)

03 03 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234803 Varnish cache server hydro Home Water Power Forum Description: Forum for information related to the Water Power Gateway The Water Power Community Forum provides you with a way to engage with other people in the community about the water power topics you care about forum gateway hydro Power Water Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

250

Optimal Endogenous Carbon Taxes Electric Power Supply Chains with Power Plants  

E-Print Network [OSTI]

Optimal Endogenous Carbon Taxes for Electric Power Supply Chains with Power Plants Anna Nagurney for the determination of optimal carbon taxes applied to electric power plants in the con- text of electric power supply portion of such policy inter- ventions directed at the electric power industry. The general framework

Nagurney, Anna

251

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

252

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

253

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

254

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

255

Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems  

SciTech Connect (OSTI)

A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

2008-09-30T23:59:59.000Z

256

PP-369 British Columbia Transmission Corporation and British Columbia Hydro  

Broader source: Energy.gov (indexed) [DOE]

PP-369 British Columbia Transmission Corporation and British PP-369 British Columbia Transmission Corporation and British Columbia Hydro and Power Authority PP-369 British Columbia Transmission Corporation and British Columbia Hydro and Power Authority Presidential Permit authorizing British Columbia Transmission Corporation and British Columbia Hydro and Power Authority to construct, operate,a dn maintain electric transmission facilities at the U.S. - Canada Border. PP-369 British Columbia Transmission Corporation and British Columbia Hydro and Power Authority More Documents & Publications PP-369 British Columbia Hydro and Power Authority Application for Presidential Permit OE Docket No. PP-369 British Columbia Transmission Corporation and British Columbia Hydro and Power Authority Application to Amend Presidential Permit OE Docket No. PP-022-4 British

257

Power/desal plant evolves to meet changing needs  

SciTech Connect (OSTI)

This article reviews the design and operation of a dual purpose power/desalination plant in the Virgin Islands. The topics of the article include a description of the original plant design and operation, combined-cycle integration with existing power/desalination plant, system design, operating experience and incorporation of the St. Croix design at St. Thomas.

Atkins, T.E.; Rothgeb, G.

1993-08-01T23:59:59.000Z

258

The effect of high penetration of wind power on primary frequency control of power systems.  

E-Print Network [OSTI]

??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine (more)

Motamed, Bardia

2013-01-01T23:59:59.000Z

259

Renewable Energy Resources Inc formerly Internal Hydro International Inc |  

Open Energy Info (EERE)

Internal Hydro International Inc Internal Hydro International Inc Jump to: navigation, search Name Renewable Energy Resources Inc (formerly Internal Hydro International Inc) Place Tampa, Florida Zip 33603 Sector Hydro Product Internal Hydro's technology takes waste, pumped pressures of fluids, gases or the constantly available natural flows of water and extracts power from them via a turbine. References Renewable Energy Resources Inc (formerly Internal Hydro International Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Resources Inc (formerly Internal Hydro International Inc) is a company located in Tampa, Florida . References ↑ "Renewable Energy Resources Inc (formerly Internal Hydro

260

Appendix HYDRO: Hydrological Investigations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supports the observed shift in monthly water levels (see Figure HYDRO-14 and Figure HYDRO-16). Small-scale fluctuations in downhole pressure readings are due to effects of...

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect (OSTI)

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

262

Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint  

SciTech Connect (OSTI)

This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

2014-07-01T23:59:59.000Z

263

UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS  

E-Print Network [OSTI]

1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault of Nuclear Power Plants (NPPs) [Cheon et al., 1993; Kim et al., 1996; Reifman, 1997; Zio et al., 2006a; Zio

Boyer, Edmond

264

Corrosion Investigations at Masned Combined Heat and Power Plant  

E-Print Network [OSTI]

Corrosion Investigations at Masnedø Combined Heat and Power Plant Part VI Melanie Montgomery AT MASNED? COMBINED HEAT AND POWER PLANT PART VI CONTENTS 1. Introduction Department for Manufacturing Engineering Technical University of Denmark Asger Karlsson Energi E2 Power

265

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

production plants, and steam methane reforming (SMR) systemsproduction via steam methane reforming, (e) power plant FGD

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

266

Hydro Alternative Energy | Open Energy Information  

Open Energy Info (EERE)

Alternative Energy Alternative Energy Jump to: navigation, search Name Hydro Alternative Energy Place Boca Raton, Florida Zip 33486 Sector Ocean Product Marine project developer focusing on ocean current and tidal power development using underwater turbines. References Hydro Alternative Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Oceanus This article is a stub. You can help OpenEI by expanding it. Hydro Alternative Energy is a company located in Boca Raton, Florida . References ↑ "Hydro Alternative Energy" Retrieved from "http://en.openei.org/w/index.php?title=Hydro_Alternative_Energy&oldid=678899

267

Definition: Micro/Nano Hydro | Open Energy Information  

Open Energy Info (EERE)

Micro/Nano Hydro Micro/Nano Hydro Jump to: navigation, search Dictionary.png Micro/Nano Hydro A very small type of hydroelectric power conversion, created by harnessing free-flowing water.[1] View on Wikipedia Wikipedia Definition Micro hydro is a type of hydroelectric power that typically produce up to 100 kW of electricity using the natural flow of water. These installations can provide power to an isolated home or small community, or are sometimes connected to electric power networks. There are many of these installations around the world, particularly in developing nations as they can provide an economical source of energy without the purchase of fuel. Micro hydro systems complement photovoltaic solar energy systems because in many areas, water flow, and thus available hydro power, is highest in the

268

Unsupervised neural network for forecasting alarms in hydroelectric power plant  

Science Journals Connector (OSTI)

Power plant management relies on monitoring many signals that represent the technical parameters of the real plant. The use of neural networks (NN) is a novel approach that can help to produce decisions when i...

P. Isasi-Viuela; J. M. Molina-Lpez

1997-01-01T23:59:59.000Z

269

Risk-informed incident management for nuclear power plants  

E-Print Network [OSTI]

Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

Smith, Curtis Lee, 1966-

2002-01-01T23:59:59.000Z

270

Fuel Cell Power Plant Experience Naval Applications | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plant Experience Naval Applications Fuel Cell Power Plant Experience Naval Applications Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu20118wolak.pdf More...

271

Fuel Cell Power Plants Renewable and Waste Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plants Renewable and Waste Fuels Fuel Cell Power Plants Renewable and Waste Fuels Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop...

272

North Brawley Power Plant Asset Impairment Analysis | Open Energy  

Open Energy Info (EERE)

North Brawley Power Plant Asset Impairment Analysis North Brawley Power Plant Asset Impairment Analysis Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Asset Impairment Analysis Author Giza Singer Even Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Asset Impairment Analysis Citation Giza Singer Even. North Brawley Power Plant Asset Impairment Analysis [Internet]. [updated 2012;cited 2012]. Available from: http://www.sec.gov/Archives/edgar/data/1296445/000119312512118396/d316623dex991.htm Retrieved from "http://en.openei.org/w/index.php?title=North_Brawley_Power_Plant_Asset_Impairment_Analysis&oldid=682476" Categories: References

273

Florida Electrical Power Plant Siting Act (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electrical Power Plant Siting Act (Florida) Electrical Power Plant Siting Act (Florida) Florida Electrical Power Plant Siting Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Buying & Making Electricity Solar Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection The Power Plant Siting Act (PPSA) is the state's centralized process for licensing large power plants. One license-a certification- replaces local and state permits. Local governments and state agencies within whose jurisdiction the power plant is to be built participate in the process. For

274

Investment Decisions for Baseload Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investment Decisions for Investment Decisions for Baseload Power Plants January 29, 2010 402/012910 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

275

SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT  

SciTech Connect (OSTI)

Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

2005-07-01T23:59:59.000Z

276

Power plant report (EIA-759), current (for microcomputers). Data file  

SciTech Connect (OSTI)

The purpose of Form EIA-759, formerly FPC-4, Power Plant Report, is to collect data necessary to fulfill regulatory responsibility; ensure power reliability; and measure fuel consumption and power production. The data diskette contains data collected by the survey. Specific ownership code, prime mover code, fuel code, company code, plant name, current capacity, fuel name, old capacity, effective date - month/year, status, multistate code, current year, generation, consumption, stocks, electric plant code, and NERC code are included.

NONE

1992-08-01T23:59:59.000Z

277

Benchmarking Variable Cost Performance in an Industrial Power Plant  

E-Print Network [OSTI]

and deploy a tool that can help plants benchmark operating performance. This paper introduces a benchmarking methodology designed to meet this need. The "Energy Conversion Index" (ECn ratios the "value" of utilities exported from the power plant... Index" (ECl) methodology ratios the ''value'' of utilities exported from the power plant to the actual cost of the fuel and . electricity required to produce them, generating a single number or "index." ECI is a powerful technique because...

Kane, J. F.; Bailey, W. F.

278

From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the Worlds First nuclear power plant  

Science Journals Connector (OSTI)

Successful commissioning in the 1954 of the Worlds First nuclear power plant constructed at the Institute for Physics ... center for training Soviet and foreign specialists on nuclear power plants, the personnel...

V. I. Rachkov; S. G. Kalyakin; O. F. Kukharchuk; Yu. I. Orlov

2014-05-01T23:59:59.000Z

279

NEPA Process for Geothermal Power Plants in the Deschutes National...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NEPA Process for Geothermal Power Plants in the Deschutes National Forest EIS at Newberry...

280

The Chena Hot Springs 400kw Geothermal Power Plant: Experience...  

Open Energy Info (EERE)

efficiency requiresincreased power plant equipment size (turbine, condenser,pump and boiler) that can ordinarily become cost prohibitive.One of the main goals for the Chena...

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Virtual Power Plant Simulation and Control Scheme Design.  

E-Print Network [OSTI]

?? Virtual Power Plant (VPP) is a concept that aggregate Distributed Energy Resources (DER) together, aims to overcome the capacity limits of single DER and (more)

Chen, Zhenwei

2012-01-01T23:59:59.000Z

282

Water generator replaces bottled water in nuclear power plant  

Science Journals Connector (OSTI)

WaterPure International Incorporated of Doylestown, Pennsylvania, USA, has announced that it has placed its atmospheric water generator (AWG) inside a selected nuclear power plant.

2007-01-01T23:59:59.000Z

283

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

284

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

285

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network [OSTI]

Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the...

Kengy Barty

2012-02-17T23:59:59.000Z

286

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

287

Insights for Quantitative Risk Assessment of Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Traditional techniques of risk analysis have been fitted for the application to combined cycle power plants and the results of several...

Gabriele Ballocco; Andrea Carpignano

2004-01-01T23:59:59.000Z

288

Sandia National Laboratories: character-izing solar-power-plant...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

289

How a Geothermal Power Plant Works (Simple) - Text Version |...  

Energy Savers [EERE]

Lines Deliver Electricity Electrical current from the generator is sent to a step-up transformer outside the power plant. Voltage is increased in the transformer and electrical...

290

North Brawley Geothermal Power Plant Project Overview | Open...  

Open Energy Info (EERE)

Project Overview Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Geothermal Power Plant Project Overview Author PCL Construction...

291

Construction Underway on First Geothermal Power Plant in New Mexico  

Broader source: Energy.gov [DOE]

New Mexico Governor Bill Richardson and Raser Technologies, Inc. announced in late August that construction has begun on the first commercial geothermal power plant in New Mexico.

292

Geothermal Power Plants Minimizing Solid Waste and Recovering Minerals  

Broader source: Energy.gov [DOE]

Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

293

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network [OSTI]

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant. (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

294

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy, (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

295

RAPID/BulkTransmission/Power Plant | Open Energy Information  

Open Energy Info (EERE)

BulkTransmissionPower Plant < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk...

296

Suginoi Hotel Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Beppu, Japan Coordinates 33.283191762234, 131.47605371632 Loading map... "minzoom":false,"mapp...

297

Optimal Placement of Wind Power Plants for Delivery Loss Minimization  

Science Journals Connector (OSTI)

In this chapter we investigate how to minimize power delivery losses in the distribution system on ... We show that strategically placing and utilizing new wind power plants can lead to significant loss reduction...

Masoud Honarvar Nazari

2013-01-01T23:59:59.000Z

298

Can New Nuclear Power Plants be Project Financed?  

E-Print Network [OSTI]

This paper considers the prospects for financing a wave of new nuclear power plants (NPP) using project financing, which is used widely in large capital intensive infrastructure investments, including the power and gas sectors, but has...

Taylor, Simon

299

Salton Sea Power Plant Recognized as Most Innovative Geothermal Project  

Broader source: Energy.gov [DOE]

The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

300

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Feasibility study of a solar chimney power plant in Jordan  

Science Journals Connector (OSTI)

A solar chimney power plant system is theoretically designed for ... by mathematical software. The actual values of solar irradiation in Jordan are used in the ... simulation to predict the power output of the solar

Aiman Al Alawin; Omar Badran; Ahmad Awad; Yaser Abdelhadi

2012-10-01T23:59:59.000Z

302

MHK Technologies/Morild Power Plant | Open Energy Information  

Open Energy Info (EERE)

Morild Power Plant Morild Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Morild Power Plant.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/MORILD Demonstration Plant Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

303

Materials for Ultra-Supercritical Steam Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

304

GRR/Section 7-CA-b - State Plant Commissioning Process, Small Power Plant  

Open Energy Info (EERE)

7-CA-b - State Plant Commissioning Process, Small Power Plant 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Click to View Fullscreen Contact Agencies California Energy Commission Regulations & Policies California Code of Regulations, Title 20 - Public Utilities and Energy Triggers None specified Click "Edit With Form" above to add content 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

305

Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vogtle Nuclear Power Plant Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Just over 60 years ago, scientists in Arco, Idaho, successfully used nuclear energy to power four light bulbs, laying the foundation for U.S.

306

Power Plant Research and Siting Program (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of Natural Resources The Power Plant Research and Siting Act of 1971 established the Power Plant Research Program (PPRP) to evaluate electric generation issues in the state and recommend responsible, long-term solutions. The program manages a consolidated review of all issues related to power generation in Maryland: it reviews applications, evaluates impacts, and recommends conditions for

307

Energy Department Report Calculates Emissions and Costs of Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Report Calculates Emissions and Costs of Power Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. Grid operators typically cycle power plants to accommodate fluctuations in

308

Baca geothermal demonstration project. Power plant detail design document  

SciTech Connect (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

309

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

curve approach supplements with load shape information the data contained in a supply curve of conservedLBL-27286 Conservation Screening Curves to Compare Efficiency Investments to Power Plants Jonathan to Compare Efficiency Investments to Power Plants Jonathan Koomey, Arthur H. Rosenfeld, and Ashok Gadgil

310

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants GIS Catalog Graphic Arthur Langhus Layne, LLC will create an internet-based, geographic information system (GIS) catalog of non-traditional sources of cooling water for coal-fired power plants. The project will develop data to identify the availability of oil and gas produced water, abandoned coal mine water, industrial waste water, and low-quality ground water. By pairing non-traditional water sources to power plant water needs, the research will allow power plants that are affected by water shortages to continue to operate at full-capacity without adversely affecting local communities or the environment. The nationwide catalog will identify the location, water withdrawal, and

311

DOE Signs Cooperative Agreement for New Hydrogen Power Plant | Department  

Broader source: Energy.gov (indexed) [DOE]

DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant November 6, 2009 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has signed a cooperative agreement with Hydrogen Energy California LLC (HECA) to build and demonstrate a hydrogen-powered electric generating facility, complete with carbon capture and storage, in Kern County, Calif. The new plant is a step toward commercialization of a clean technology that enables use of our country's vast fossil energy resources while addressing the need to reduce greenhouse gas emissions. HECA, which is owned by Hydrogen Energy International, BP Alternative Energy, and Rio Tinto, plans to construct an advanced integrated gasification combined cycle (IGCC) plant that will produce power by

312

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect (OSTI)

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

313

Solar thermal power plants for the Spanish electricity market  

Science Journals Connector (OSTI)

Solar thermal power plants are at present the cheapest technology for solar electricity production. At good sites Levelised Electricity Costs (LEC) of 11 Ct/kWh have been achieved in commercially operated power plants. Economy of scale and further technical improvements will reduce the LEC for future projects. On the 27th of March 2004 in Spain the existing feed-in-law has been modified in order to support the erection of solar thermal power plants and thus make use of the huge solar potential of Spain. A payment of approx. 21 Ct/kWh, guaranteed for the first 25 years of operation, makes the erection and operation of solar thermal power plants very profitable for possible investors on the Spanish peninsula. This paper will present the present situation in Spain and the planned power plant projects. For one specific project the set-up is presented in more detail.

M. Eck; F. Rueda; S. Kronshage; C. Schillings; F. Trieb; E. Zarza

2007-01-01T23:59:59.000Z

314

Phase IV - Resource Production and Power Plant Construction | Open Energy  

Open Energy Info (EERE)

Phase IV - Resource Production and Power Plant Construction Phase IV - Resource Production and Power Plant Construction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase IV: Resource Production and Power Plant Construction GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation

315

US nuclear power plants: Emergency planning inadequate  

Science Journals Connector (OSTI)

... local ! area are considered inadequate. The I operators of the plants - both at IndianIndianPoint ...

Peter David

1983-05-12T23:59:59.000Z

316

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

317

HydroVision International  

Broader source: Energy.gov [DOE]

The HydroVision International Conference and Exhibition offers attendees countless opportunities to network, share best practices, meet with product and service providers, and more. Held over five...

318

Hydro | Open Energy Information  

Open Energy Info (EERE)

Hydro or hydroelectric systems capture the energy in naturally flowing water and convert it to electricity. Related Links List of Hydroelectric Incentives References http:...

319

Comparison of conventional solar chimney power plants and sloped solar chimney power plants using second law analysis  

Science Journals Connector (OSTI)

Abstract In the present paper the performance of solar chimney power plants based on second law analysis is investigated for various configurations. A comparison is made between the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP). The appropriate entropy generation number and second-law efficiency for solar chimney power plants are proposed in this study. Results show that there is the optimum collector size that provides the minimum entropy generation and the maximum second-law efficiency. The second-law efficiency of both systems increases with the increasing of the system height. The study reveals the influence of various effects that change pressure and temperature of the systems. It was found that SSCPP is thermodynamically better than CSCPP for some configurations. The results obtained here are expected to provide information that will assist in improving the overall efficiency of the solar chimney power plant.

Atit Koonsrisuk

2013-01-01T23:59:59.000Z

320

Economical load distribution in power networks that include hybrid solar power plants  

Science Journals Connector (OSTI)

With respect to the growing share of renewable resources in secure provision of electrical energy, proper utilization of hybrid power plants is of great importance. Therefore, an optimal production planning for operation of these power plants is evidently necessary. Generally, economical load distribution refers to determination of an optimal point in production that fully provides for the total network load. In other words, the economical load distribution refers to cost minimization of the produced electrical power for satisfying the total network demand, with consideration of the actual constraints in the power system. To serve this purpose, several methods have been in use, but with the entry of power plants that use renewable energy resources, necessary steps should be taken to ensure their optimal use. However, economical optimization and sufficient reliability in serving concurrent demands are the two-fold objectives of the electrical power system and need to be considered simultaneously. Therefore, in analyzing the share of renewable energy resources in the total electrical power network, both their economical advantages and their reliable level of production should be considered. Presently, many countries show interest in using hybrid solar power plants and fossil fuel power plants. In this research, the problem of augmenting power networks with solar power plants and finding their optimal production point is dealt with. Some models for the production cost functions of these power plants are presented and discussed.

Mohammad Taghi Ameli; Saeid Moslehpour; Mehdi Shamlo

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network [OSTI]

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

322

Nevada manufacturer installing geothermal power plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

323

Minnesota Power Plant Siting Act (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Siting Act (Minnesota) Power Plant Siting Act (Minnesota) Minnesota Power Plant Siting Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This Act regulates the siting of large electric power generating plants, which are defined as plants designed for or capable of operating with a

324

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

325

Fuel Cell Power Plants Biofuel Case Study - Tulare, CA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

clean clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park in the world Delivering ultra-clean baseload distributed generation globally Growing Market Presence 180 MW installed and in backlog Over 80 Direct FuelCell® plants generating power at more than 50 sites globally Providing:

326

Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

Abstract In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740MW coal-fired power plant project located at latitude 28S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 2537MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location.

Rodrigo Soto; Julio Vergara

2014-01-01T23:59:59.000Z

327

2/1/2014 Tinywindmills mayone daypower cell phones | INDIAN POWER SECTOR http://indianpowersector.com/home/2014/01/tiny-windmills-may-one-day-power-cell-phones/ 1/8  

E-Print Network [OSTI]

Electricity Regulation RGGVY National Solar Mission R-APDRP Power Plant Thermal Power Plant Hydro Power Plant and recharge smartphone batteries. The micro-windmill is so small that 10 such windmills could be mounted, would generate the electricity that could be collected by the cell phone's battery." Figure 1: A micro

Chiao, Jung-Chih

328

The design of solar chimney power plant for sustainable power generation.  

E-Print Network [OSTI]

??The solar chimney power plant (SCPP) also known as solar updraft tower is a nonconcentrating solar thermal technology, which employs both solar and wind energy (more)

Asante, David

2014-01-01T23:59:59.000Z

329

On Line Power Plant Performance Monitoring  

E-Print Network [OSTI]

in achieving the best operation of the plant 3. To evaluate component performance and deterioration for use in a maintenance program 4. To develop cost data and incremental cost characteristics for the economic operation or dispatch of the unit... ? Analyze current plant?eQuipment status and diagnostics for preventive maintenance and equipment damage ? Provide current energy management and system dispatch operation information ? Capability for plant and equipment acceptance and periodic...

Ahner, D. J.; Priestley, R. R.

330

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Use of Restored Wetlands to Enhance Power Plant Cooling and Mitigate the Demand on Surface Water Use The Use of Restored Wetlands to Enhance Power Plant Cooling and Mitigate the Demand on Surface Water Use Photo of a Temperate Wetland. Photo of a Temperate Wetland Applied Ecological Services, Inc. (AES) will study the use of restored wetlands to help alleviate the increasing stress on surface and groundwater resources from thermoelectric power plant cooling requirements. The project will develop water conservation and cooling strategies using restored wetlands. Furthermore, the project aims to demonstrate the benefits of reduced water usage with added economic and ecological values at thermoelectric power plant sites, including: enhancing carbon sequestration in the corresponding wetlands; improving net heat rates from existing power generation units; avoiding limitations when low-surface

331

The 2001 Power Plant Improvement Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2001 Power Plant Improvement Initiative 2001 Power Plant Improvement Initiative The 2001 Power Plant Improvement Initiative When U.S. consumers were confronted in 1999 and 2000 with blackouts and brownouts of electric power in major regions of the country, Congress responded by directing the Department of Energy to issue "a general request for proposals for the commercial scale demonstration of technologies to assure the reliability of the nation's energy supply from existing and new electric generating facilities...." The Congress transferred $95 million from previously appropriated funding for the 1986-93 Clean Coal Technology Program. On February 6, 2001, the Energy Department issued a solicitation for proposals under the program it called the "Power Plant Improvement Initiative" (PPII). By the April 19, 2001, deadline, 24 candidate projects

332

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces Loan Guarantee Applications for Nuclear Power Plant DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are

333

Finding Alternative Water Sources for Power Plants with Google Earth |  

Broader source: Energy.gov (indexed) [DOE]

Finding Alternative Water Sources for Power Plants with Google Finding Alternative Water Sources for Power Plants with Google Earth Finding Alternative Water Sources for Power Plants with Google Earth May 29, 2013 - 12:07pm Addthis A sample image from the AWSIS system. A sample image from the AWSIS system. Gayland Barksdale Technical Writer, Office of Fossil Energy Sobering news from experts: Rising populations, regional droughts, and decreasing groundwater levels are draining the nation's fresh water supply. And it's not just that we're using that water for our personal consumption; even the electricity we rely on to power our society requires a lot of water. In fact, major energy producers - like coal-fired power plants, which produce about 40 percent of our electricity - require about 150 billion gallons of fresh water per day to produce the electricity we

334

Preconstruction of the Honey Lake Hybrid Power Plant  

SciTech Connect (OSTI)

The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

Not Available

1988-04-30T23:59:59.000Z

335

Preconstruction of the Honey Lake Hybrid Power Plant: Final report  

SciTech Connect (OSTI)

The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

Not Available

1988-04-30T23:59:59.000Z

336

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Loan Guarantee Applications for Nuclear Power Plant Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are represented in the Part I applications. DOE also has received Part I

337

Finding Alternative Water Sources for Power Plants with Google Earth |  

Broader source: Energy.gov (indexed) [DOE]

Finding Alternative Water Sources for Power Plants with Google Finding Alternative Water Sources for Power Plants with Google Earth Finding Alternative Water Sources for Power Plants with Google Earth May 29, 2013 - 12:07pm Addthis A sample image from the AWSIS system. A sample image from the AWSIS system. Gayland Barksdale Technical Writer, Office of Fossil Energy Sobering news from experts: Rising populations, regional droughts, and decreasing groundwater levels are draining the nation's fresh water supply. And it's not just that we're using that water for our personal consumption; even the electricity we rely on to power our society requires a lot of water. In fact, major energy producers - like coal-fired power plants, which produce about 40 percent of our electricity - require about 150 billion gallons of fresh water per day to produce the electricity we

338

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial...

339

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

340

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Olkhovskii; A. V. Ageev; S. V. Malakhov

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydro Green Energy | Open Energy Information  

Open Energy Info (EERE)

Green Energy Green Energy Jump to: navigation, search Name Hydro Green Energy Place Houston, Texas Zip 77056 Sector Hydro Product Hydro Green Energy is a project developer and integrator that designs, builds, and operates kinetic hydro power projects. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

343

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification Technology Manager: Gary J. Stiegel DOE Project Manager: James R. Longanbach Project Manager: Michael D. Rutkowski Principal Investigators: Michael G. Klett Norma J. Kuehn Ronald L. Schoff Vladimir Vaysman Jay S. White Power Plant Water Usage and Loss Study i August 2005 TABLE OF CONTENTS TABLE OF CONTENTS ...................................................................................................................... I LIST OF TABLES.............................................................................................................................III

344

A Survey of Power Plant Designs  

E-Print Network [OSTI]

is mixed with compressed air in the combustion chamber and burned. High-pressure combustion gases spin;Sustainable Energy, MIT 2005. #12;Allen Fossil Plant is on the Mississippi River five miles southwest (TVA), http://www.tva.gov #12;Coal fired Plant Otpco.com Fuel handling (1) Rotary dumper (2) Storage

Ervin, Elizabeth K.

345

Energy Department Report Calculates Emissions and Costs of Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Report Calculates Emissions and Costs of Power Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling.

346

Norsk Hydro's environmental report  

Science Journals Connector (OSTI)

This article describes the background to Norsk Hydro's decision to produce the U.K.'s first audited environmental report, the mechanics of its production, its findings and how it was subsequently used to achieve other objectives in the U.K., both for Norsk Hydro and for industry in general.

Charles Duff

1992-01-01T23:59:59.000Z

347

Water recovery using waste heat from coal fired power plants.  

SciTech Connect (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

348

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

349

Effect of the shutdown of a large coal fired power plant on ambient mercury species  

E-Print Network [OSTI]

Effect of the shutdown of a coal-fired power plant on urbanof the shutdown of a large coal-fired power plant on ambientof the shutdown of a large coal-fired power plant on ambient

Wang, Yungang

2014-01-01T23:59:59.000Z

350

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Broader source: Energy.gov (indexed) [DOE]

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances Docket No. EO-05-01. Order No. 202-05-3: Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan

351

North Brawley Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Brawley Geothermal Power Plant Brawley Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North Brawley Geothermal Power Plant General Information Name North Brawley Geothermal Power Plant Facility North Brawley Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.015046°, -115.542267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.015046,"lon":-115.542267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Sauder Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sauder Power Plant Biomass Facility Sauder Power Plant Biomass Facility Jump to: navigation, search Name Sauder Power Plant Biomass Facility Facility Sauder Power Plant Sector Biomass Location Fulton County, Ohio Coordinates 41.5719341°, -84.1435136° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5719341,"lon":-84.1435136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Stowe Power Production Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Stowe Power Production Plant Biomass Facility Stowe Power Production Plant Biomass Facility Jump to: navigation, search Name Stowe Power Production Plant Biomass Facility Facility Stowe Power Production Plant Sector Biomass Facility Type Landfill Gas Location Montgomery County, Pennsylvania Coordinates 40.2290075°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2290075,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants Drexel University is conducting research with the overall objective of developing technologies to reduce freshwater consumption at coal-fired power plants. The goal of this research is to develop a scale-prevention technology based on a novel filtration method and an integrated system of physical water treatment in an effort to reduce the amount of water needed for cooling tower blowdown. This objective is being pursued under two coordinated, National Energy Technology Laboratory sponsored research and development projects. In both projects, pulsed electrical fields are employed to promote the precipitation and removal of mineral deposits from power plant cooling water, thereby allowing the water to be recirculated for longer periods of time before fresh makeup water has to be introduced into the cooling water system.

355

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Water Management Power Plant Water Management A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Impaired Water as Cooling Water in Coal-Based Power Plants – Nalco Company Example of Pipe Scaling The overall objective of this project, conducted by Nalco Company in partnership with Argonne National Laboratory, is to develop advanced-scale control technologies to enable coal-based power plants to use impaired water in recirculating cooling systems. The use of impaired water is currently challenged technically and economically due to additional physical and chemical treatment requirements to address scaling, corrosion, and biofouling. Nalco's research focuses on methods to economically manage scaling issues (see Figure 1). The overall approach uses synergistic

356

Nove Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Nove Power Plant Biomass Facility Nove Power Plant Biomass Facility Jump to: navigation, search Name Nove Power Plant Biomass Facility Facility Nove Power Plant Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Lesson 7 - Waste from Nuclear Power Plants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7 - Waste from Nuclear Power Plants 7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing Decommissioning Lesson 7 - Waste.pptx More Documents & Publications National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

359

DOE - Office of Legacy Management -- Shippingport Atomic Power Plant - PA  

Office of Legacy Management (LM)

Shippingport Atomic Power Plant - Shippingport Atomic Power Plant - PA 13 FUSRAP Considered Sites Site: SHIPPINGPORT ATOMIC POWER PLANT (PA.13 ) Eliminated from further consideration under FUSRAP. Designated Name: Not Designated Alternate Name: Duquesne Light Company PA.13-1 Location: 25 miles west of Pittsburgh in Beaver County , Shippingport , Pennsylvania PA.13-2 Evaluation Year: circa 1987 PA.13-3 Site Operations: First commercially operated nuclear power reactor. Joint project (Federal Government an Duquesne Light Company) to demonstrate pressurized water reactor technology and to generate electricity. Plant operated by Duquesne Light Company under supervision of the Office of the DOE Deputy Assistant Secretary for Naval Reactors -- 1957 to October 1982. PA.13-2 Site Disposition: Eliminated - No Authority. DOE chartered Major Project #118, Shippingport Station Decommissioning Project completed cleanup in 1989. PA.13-1

360

Feasibility study of a VirtualPower Plant for Ludvika.  

E-Print Network [OSTI]

?? This thesis is a feasibility study of avirtual power plant (VPP) in centralSweden and part of a project withInnoEnergy Instinct and STRI. The VPPconsists (more)

Lundkvist, Johanna

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel Cell Power Plants Biofuel Case Study- Tulare, CA  

Broader source: Energy.gov [DOE]

Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

362

EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010  

Broader source: Energy.gov [DOE]

Presentation to the Electricity Advisory Committe on October 29, 2010by the US Environmental Protection Agency Office of Air and Radiation on Reducing Pollution from Power Plants and the need for...

363

Characteristics of an Economically Attractive Fusion Power Plant  

E-Print Network [OSTI]

Characteristics of an Economically Attractive Fusion Power Plant Farrokh Najmabadi University: Assessment Based on Attractiveness & Feasibility Periodic Input from Energy Industry Goals and Requirements Scientific & Technical Achievements Evaluation Based on Customer Attributes Attractiveness Characterization

364

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

365

Analytic model of solar power plant with a Stirling engine  

Science Journals Connector (OSTI)

An analytic model is proposed of a solar power plant (SPP) with a Stirling engine that is based on the isothermal model of the Stirling engine (SE) working process and is improved...

I. A. Tursunbaev

2007-03-01T23:59:59.000Z

366

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

Office of Scientific and Technical Information (OSTI)

(NREL) at www.nrel.govpublications. Executive Summary Many binary-cycle geothermal power plants use air as the heat rejection medium. An air-cooled condenser (ACC) system is...

367

Numerical Investigation of Solar Chimney Power Plant in UAE  

Science Journals Connector (OSTI)

This paper presents a numerical simulation results for a steady air flow inside a solar chimney power plant. A standard k-epsilon turbulence model is used to model a prototype solar chimney that was built in Al A...

Mohammad O. Hamdan; Saud Khashan

2014-01-01T23:59:59.000Z

368

Simulation Calculation on Solar Chimney Power Plant System  

Science Journals Connector (OSTI)

It is unpractical to establish a Solar Chimney Power Plant System (SCPPS) used to ... flow field of the SCPPS which caused by solar radiation intensity have been analyzed. The calculated ... as well as the differ...

HuiLan Huang; Hua Zhang; Yi Huang; Feng Lu

2007-01-01T23:59:59.000Z

369

Operation and Maintenance Methods in Solar Power Plants  

Science Journals Connector (OSTI)

A solar chimney power plant has a high chimney (tower), with a height of up ... , the roof curves upward to join the chimney, creating a funnel. The sun heats ... is absorbed by the water within the dark solar pa...

Mustapha Hatti

2014-01-01T23:59:59.000Z

370

Design and construction of Khanom barge mounted power plant  

SciTech Connect (OSTI)

The design and construction of 75 MW barge mounted power plant or power plant barge (PPB) which is to be installed in the southern region of Thailand is described. The PPB is being fabricated as a complete unit on its own integral hull, and will be transported in July 1988 from the fabrication site, Daewoo's Okpo Shipyard in Korea to the Khanom site. The PPB will be positioned and set on prepared foundation in a temporary pond at the site by controlled ballasting. The project design consists of two major parts; one is the system design of the power plant and the other is the design of the barge structure. This paper describes the power plant system design and the design of the barge highlighting unique design and construction concepts with regard to fabrication, transportation and installation of the PPB.

Yoon, H.W.; Sampathkumar, C.B.; Keller, J.J. (Burns and Roe, Inc., Oradell, NJ (USA))

1988-01-01T23:59:59.000Z

371

Marsh Road Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Marsh Road Power Plant Biomass Facility Marsh Road Power Plant Biomass Facility Jump to: navigation, search Name Marsh Road Power Plant Biomass Facility Facility Marsh Road Power Plant Sector Biomass Facility Type Landfill Gas Location San Mateo County, California Coordinates 37.4337342°, -122.4014193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4337342,"lon":-122.4014193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

How Gas Turbine Power Plants Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

373

Salton Sea Power Plant Recognized as Most Innovative Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

as Most Innovative Geothermal Project February 10, 2013 - 3:32pm Addthis The first power plant to be built in the Salton Sea area in 20 years was recognized in December by...

374

Novel Dry Cooling Technology for Power Plants  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

375

Quantifying the Operational Benefits of Conventional and Advanced Pumped Storage Hydro on Reliability and Efficiency: Preprint  

SciTech Connect (OSTI)

Pumped storage hydro (PSH) plants have significant potential to provide reliability and efficiency benefits in future electric power systems with high penetrations of variable generation. New PSH technologies, such as adjustable-speed PSH, have been introduced that can also present further benefits. This paper demonstrates and quantifies some of the reliability and efficiency benefits afforded by PSH plants by utilizing the Flexible Energy Scheduling Tool for the Integration of Variable generation (FESTIV), an integrated power system operations tool that evaluates both reliability and production costs.

Krad, I.; Ela, E.; Koritarov, V.

2014-07-01T23:59:59.000Z

376

The Industrial Power Plant Management System - An Engineering Approach  

E-Print Network [OSTI]

THE INDUSTRIAL POWER PLANT MANAGEMENT SYSTEM AN ENGINEERING APPROACH Seppo E. Aarnio, Heikki J. Tarvainen and Valentin Tinnis EKONO Oy, Helsinki, Finland EKONO Inc., Bellevue, Washington ABSTRACT Based on energy studies in over 70 plants... in Finland. The results of the optimization calculations are used for two types of operations guidance. The first duty of the operators is to adjust the determined set points for the most economic loading, fuel firing and purchasing of power. This is done...

Aarnio, S. E.; Tarvainen, H. J.; Tinnis, V.

1979-01-01T23:59:59.000Z

377

Power Plant Report (EIA-759): Historic, 1989. Data file  

SciTech Connect (OSTI)

The purpose of the form is to collect data necessary to fulfill regulatory responsibility; ensure power reliability; and measure fuel consumption and power production. The data tape contains data collected by the survey. Specific Ownership Code, Prime Mover Code, Fuel Code, Company Code, Plant Name, Current Capacity, Fuel Name, Old Capacity, Effective Date - Month/Year, Status, Multistate Code, Current Year, Generation, Consumption, Stocks, Electric Plant Code, and NERC Code are included.

Not Available

1989-01-01T23:59:59.000Z

378

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

379

Nuclear Power Plants and Their Fuel as Terrorist Targets  

Science Journals Connector (OSTI)

...applied to terrorism. To tell...Shipment Risk Estimates...Director of Nuclear Control Institute...said that an attack on a plant could make a huge...believe nuclear power is being...operation of nuclear facilities...applied to terrorism. To...Shipment Risk Estimates...Director of Nuclear Control Institute...said that an attack on a plant could make...believe nuclear power is being...

Douglas M. Chapin; Karl P. Cohen; W. Kenneth Davis; Edwin E. Kintner; Leonard J. Koch; John W. Landis; Milton Levenson; I. Harry Mandil; Zack T. Pate; Theodore Rockwell; Alan Schriesheim; John W. Simpson; Alexander Squire; Chauncey Starr; Henry E. Stone; John J. Taylor; Neil E. Todreas; Bertram Wolfe; Edwin L. Zebroski

2002-09-20T23:59:59.000Z

380

Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation  

E-Print Network [OSTI]

UTILITY & REGULATORY FACTORS AFFECTiNG COGENERATION & INDEPENDENT POWER PLANT DESIGN & OPERATION Richard P. Felak General Electric Company Schenectady, New York ABSTRACT In specifying a cogeneration or independent power plant, the owner... should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design. reliability/ availabilitY, operating capabilities and modes, etc. This paper will note examples...

Felak, R. P.

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ivanpah: World's Largest Concentrating Solar Power Plant  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Energy Generating System has the capacity to generate 392 megawattsof clean electricity -- enough to power 94,400 average American homes. As the first commercial deployment of innovative power tower CSP technology in the United States, the Ivanpah project was the recipient of a $1.6 billion loan guarantee from the Departments Loan Programs Office (LPO).

382

Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants  

Broader source: Energy.gov (indexed) [DOE]

Federal Risk Insurance for Nuclear Power Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building the next six new nuclear power plants in the United States to qualify for a portion of $2 billion in federal risk insurance. The rule will be available on DOE's web site soon. "Providing federal risk insurance is an important step in speeding the nuclear renaissance in this country," Secretary Bodman said. "Companies

383

CO2 Capture Membrane Process for Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

384

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect (OSTI)

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

385

Fault Analysis at a Wind Power Plant for One Year of Observation: Preprint  

SciTech Connect (OSTI)

This paper analyzes the fault characteristics observed at a wind power plant, and the behavior of the wind power plant under fault events.

Muljadi, E.; Mills, Z.; Foster, R.; Conto, J.; Ellis, A.

2008-07-01T23:59:59.000Z

386

FAULT DETECTION IN NUCLEAR POWER PLANTS COMPONENTS BY A COMBINATION OF STATISTICAL METHODS  

E-Print Network [OSTI]

FAULT DETECTION IN NUCLEAR POWER PLANTS COMPONENTS BY A COMBINATION OF STATISTICAL METHODS Independent Component Analysis nc Normal conditions NPP Nuclear Power Plant PCA Principal Component Analysis

Paris-Sud XI, Université de

387

Low-Rank Coal Grinding Performance Versus Power Plant Performance  

SciTech Connect (OSTI)

The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

Rajive Ganguli; Sukumar Bandopadhyay

2008-12-31T23:59:59.000Z

388

Map of Solar Power Plants/Data | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plants/Data Solar Power Plants/Data < Map of Solar Power Plants Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus AV Solar Ranch I Solar Power Plant Photovoltaics NextLight Renewable Power Antelope Valley, California 230 MW230,000 kW 230,000,000 W 230,000,000,000 mW 0.23 GW 2.3e-4 TW Agua Caliente Solar Power Plant Photovoltaics NextLight Renewable Power Yuma County, Arizona 280 MW280,000 kW 280,000,000 W 280,000,000,000 mW 0.28 GW 2.8e-4 TW Agua Caliente Solar Project Utility scale solar First Solar Yuma County, Arizona 290 MW290,000 kW 290,000,000 W 290,000,000,000 mW

389

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Carnegie Mellon University, in a joint effort with the University of Pittsburgh, is conducting a study of the use of treated municipal wastewater as cooling system makeup for coal fired power plants. This project builds upon a study sponsored by the U.S. Department of Energy entitled, "Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants," which showed that treated municipal wastewater is the most common and widespread source in the United States. Data analysis revealed that 81 percent of power plants proposed for construction by the Energy Information Administration (EIA) would have sufficient cooling water supply from one to two publicly owned treatment works (POTW) within a 10-mile radius, while 97 percent of the proposed power plants would be able to meet their cooling water needs with one to two POTWs within 25 miles of these plants. Thus, municipal wastewater will be the impaired water source most likely to be locally available in sufficient and reliable quantities for power plants. Results of initial studies indicate that it is feasible to use secondary treated municipal wastewater as cooling system makeup. The biodegradable organic matter, ammonia-nitrogen, and phosphorus in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, although current research is demonstrating that these problems can be controlled through aggressive chemical management. It is currently unclear whether tertiary treatment of municipal waste water prior to its re-use can be a cost-effective option to aggressive chemical management of the bulk cooling water volume.

390

A Simulated Field Trip: "The Visual Aspects of Power Plant Sitings1"  

E-Print Network [OSTI]

A Simulated Field Trip: "The Visual Aspects of Power Plant Sitings1" Bill Bottom 2 Alex Young 3 of conventional thermal (fossil fuel and nuclear), geo- thermal, wind and solar power plants. There are several be dependent on conventional thermal power plants to generate electricity. These power plants are powered

Standiford, Richard B.

391

Climate Change in Scotland: Impact on Mini-Hydro G.P. Harrison  

E-Print Network [OSTI]

be generated from wind, wave, biomass or small- or mini-hydro plant. Production from these resources some 300 MW is small hydro potential capable of producing energy at less than 7p/kWh (Garrad Hassan, 2001). Although many of the better sites for small and mini-hydro have already been developed

Harrison, Gareth

392

Organic Power | Open Energy Information  

Open Energy Info (EERE)

Hydro, Wind energy Product: Irish project developer active in wind energy, combined heat and power from biomass and pumped hydro electrical storage. References: Organic...

393

Modelling Power Output at Nuclear Power Plant by Neural Networks  

Science Journals Connector (OSTI)

In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. N...

Jaakko Talonen; Miki Sirola; Eimontas Augilius

2010-01-01T23:59:59.000Z

394

The 2001 Power Plant Improvement Initiative  

Broader source: Energy.gov [DOE]

When U.S. consumers were confronted in 1999 and 2000 with blackouts and brownouts of electric power in major regions of the country, Congress responded by directing the Department of Energy to...

395

EEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description  

E-Print Network [OSTI]

. Environmental impact of electric generation (3 lectures) 9. Advanced energy conversion systems (geothermalEEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description: Generation of electric power using fossil, nuclear and renewable, including solar, geothermal, wind, hydroelectric, biomass and ocean

Zhang, Junshan

396

Solar electric power plant due to start up  

Science Journals Connector (OSTI)

In early April of this year, Solar One, a central receiver pilot plant designed to show that solar energy can be harnessed by utilities to produce electricity on a commercial scale, will begin producing power. ... With a rated maximum power output to the utility grid of 10.8 MW, Solar One is the world's largest solarpowered electrical generating facility. ...

RUDY M. BAUM

1982-03-15T23:59:59.000Z

397

MHK Technologies/HydroGen 10 | Open Energy Information  

Open Energy Info (EERE)

HydroGen 10 HydroGen 10 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroGen 10.jpg Technology Profile Primary Organization HydroGen Aquaphile sarl Project(s) where this technology is utilized *MHK Projects/Hydro Gen Technology Resource Click here Current/Tidal Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydro Gen is a big floating paddle wheels turbine included in a catamaran frame venturi shaped The frame is optimized to allow tapping a maximum of water in move in order to capture a maximum of kinetic energy which is transformed in mechanical energy by the wheel motion and then transformed into electrical energy through a generator mechanically driven by the wheel And then finally changed by a power control station to a steady electrical current normed at the customer request

398

The Flakt-Hydro process: flue gas desulfurisation by use of seawater  

Science Journals Connector (OSTI)

ABB's seawater scrubbing process (the Flakt-Hydro process) for flue gas desulfurisation has recently triggered much interest among power producers because of its simple operating principle and high reliability. The process uses seawater to absorb and neutralise sulfur dioxide in flue gases. The absorbed gas is oxidised and returned to the ocean in the form it originated in the first place, namely as dissolved sulfate salts. The process uses the seawater downstream of the power plant condensers. This paper gives an introduction to the basic principle of the process and presents some of the recent power plant applications, namely at the Paiton Private Power Project, Phase 1 (2 ? 670 Mwe) in Indonesia and at the Shenzhen West Power Plant, Unit 2 (300 MWe) in China.

Wu Zhao Xia

1999-01-01T23:59:59.000Z

399

NETL: News Release - Premier Power Plant Test Facility Achieves Milestone,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 8, 2000 May 8, 2000 Premier Power Plant Test Facility Achieves Milestone,Raises Hopes for New Clean Coal Technology The world's premier test facility for future power plants has achieved a major milestone - and in the process, raised prospects for a new class of coal technology that researchers now believe could lead to cleaner, more efficient and lower cost electric power generation. The Power System Development Facility The Power System Development Facility at Wilsonville, Alabama, is the Nation's state-of-the-art test facility for 21st century power generating technologies. The U.S. Department of Energy and Southern Company today jointly announced the first successful test of a new type of technology for turning coal into gas. The gas could then be used in future turbines or fuel cells to

400

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Broader source: Energy.gov (indexed) [DOE]

DOE Orders Mirant Power Plant to Operate Under Limited DOE Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. "After weighing all of the information, I believe an emergency situation exists, and that issuance of this order is in the public interest. This order will provide the level of electricity reliability necessary to keep

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Running Dry at the Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Running Dry at the Power Plant Running Dry at the Power Plant Running Dry at the Power Plant Securing sufficient supplies of fresh water for societal, industrial, and agricultural uses while protecting the natural environment is becoming increasingly difficult in many parts of the United States. Climate variability and change may exacerbate the situation through hotter weather and disrupted precipitation patterns that promote regional droughts. Achieving long- term water sustainability will require balancing competing needs effectively, managing water resources more holistically, and developing innovative approaches to water use and conserva- tion. Utility companies-which use substantial amounts of water for plant cooling and other needs-are doing their part by pursuing water-conserving

402

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Broader source: Energy.gov (indexed) [DOE]

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. "After weighing all of the information, I believe an emergency situation exists, and that issuance of this order is in the public interest. This order will provide the level of electricity reliability necessary to keep

403

Malavi Power Plant Ltd MPPL pltd | Open Energy Information  

Open Energy Info (EERE)

Malavi Power Plant Ltd MPPL pltd Malavi Power Plant Ltd MPPL pltd Jump to: navigation, search Name Malavi Power Plant Ltd. (MPPL pltd) Place Bangalore, India Zip 560 001 Sector Biomass Product Biomass/biogas project developer and plant operator. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Optimization of Technical Diagnostics Procedures for Hydroelectric Power Plants  

Science Journals Connector (OSTI)

In this paper, a mathematical model is proposed for determination of the optimal solution for the maintenance system of a specific steel structure the hydraulic power plant. The aim is to obtain the maximum efficiency of the plant within existing conditions and limitations. The objective of a mathematical model is to select the diagnostics parameters, which define knowledge of the permissible reliability level and certain analytic expression, which corresponds to precisely described state of hydroelectric power plant components assembly. Model of technical diagnostics procedures optimization represents a specific approach to problems of preventive maintaining according to state. It is related to the concept of state parameters change, which represents a basis for obtaining the optimal solution for procedures of technical diagnostics. It also creates direct relations between the law of the state parameter changes and reliability of the considered power plant components.

D. Nikoli?; R.R. Nikoli?; B. Krsti?; V. Lazi?; I.. Nikoli?; I. Krsti?; V. Krsti?

2012-01-01T23:59:59.000Z

405

Advanced Feed Water and Cooling Water Treatment at Combined Cycle Power Plant  

Science Journals Connector (OSTI)

Tokyo Gas Yokosuka Power Station is an IPP combined cycle power plant supplied by Fuji Electric Systems...

Ryo Takeishi; Kunihiko Hamada; Ichiro Myogan

2007-01-01T23:59:59.000Z

406

Some aspects of the decommissioning of nuclear power plants  

SciTech Connect (OSTI)

The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

2012-03-15T23:59:59.000Z

407

The Salton Sea 10 MWe power plant, unit 1  

SciTech Connect (OSTI)

The Southern California Edison Company's Salton Sea Geothermal Electric Project is the second of two flashsteam projects located in the Imperial Valley of California to successfully demonstrate the feasibility of utilizing steam from highly saline geothermal fluids for electric power generation. The objective of Edison's Power Plant Unit 1 program at the Salton Sea KGRA is to develop design, operating, and economic criteria for commercial geothermal developments in the Imperial Valley of California. The Edison plant is designed specifically for utilization of geothermal steam and employs principles found in conventional fossil-fueled electric generating plants. This plant serves as a model of a full scale commercial plant, using systems and components which likely will be utilized in large scale follow-on units.

Moss, W.E.; Whitescarver, O.D.; Yamasaki, R.N.

1982-10-01T23:59:59.000Z

408

Investigation of valve failure problems in LWR power plants  

SciTech Connect (OSTI)

An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems (BWRs, 21% and PWRs, 34%).

None

1980-04-01T23:59:59.000Z

409

GV1 Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

GV1 Solar Power Plant GV1 Solar Power Plant Jump to: navigation, search Name GV1 Solar Power Plant Facility GV1 Sector Solar Facility Type Concentrating Solar Power Developer Greenvolts Location Tracy, California Coordinates 37.7396513°, -121.4252227° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7396513,"lon":-121.4252227,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

SEGS VI Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SEGS VI Solar Power Plant SEGS VI Solar Power Plant Jump to: navigation, search Name SEGS VI Solar Power Plant Facility SEGS VI Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Kramer Junction, California Coordinates 34.9925°, -117.540833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9925,"lon":-117.540833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Tonopah Airport Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tonopah Airport Solar Power Plant Tonopah Airport Solar Power Plant Jump to: navigation, search Name Tonopah Airport Solar Power Plant Facility Tonopah Airport Solar Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC Location Nye County, Nevada Coordinates 38.5807111°, -116.0413889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5807111,"lon":-116.0413889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants |  

Broader source: Energy.gov (indexed) [DOE]

Feasibility Study of Hydrogen Production at Existing Nuclear Power Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants A funding opportunity announcement of the cost shared feasibility studies of nuclear energy based production of hydrogen using available technology. The objective of this activity is to select and conduct project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants More Documents & Publications https://e-center.doe.gov/iips/faopor.nsf/UNID/E67E46185A67EBE68 Microsoft Word - FOA cover sheet.doc Microsoft Word - hDE-FOA-0000092.rtf

413

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermoelectric Power Plant Water Demands Using Alternative Water Supplies: Thermoelectric Power Plant Water Demands Using Alternative Water Supplies: Power Demand Options in Regions of Water Stress and Future Carbon Management Sandia National Laboratories (SNL) is conducting a regional modeling assessment of non-traditional water sources for use in thermoelectric power plants. The assessment includes the development of a model to characterize water quantity and quality from several sources of non-traditional water, initially focused within the Southeastern United States. The project includes four primary tasks: (1) identify water sources, needs, and treatment options; (2) assess and model non-traditional water quantity and quality; (3) identify and characterize water treatment options including an assessment of cost; and (4) develop a framework of metrics, processes, and modeling aspects that can be applied to other regions of the United States.

414

Solar Millenium Palen Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Palen Solar Power Plant Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Owner BrightSource Developer Solar Millenium, LLC Location Palen, California Coordinates 33.695923°, -115.225468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.695923,"lon":-115.225468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Golden Hills Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Hills Solar Power Plant Hills Solar Power Plant Jump to: navigation, search Name Golden Hills Solar Power Plant Facility Golden Hills Solar Sector Solar Facility Type Photovoltaic Developer PowerWorks Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Unlocking Customer Value: The Virtual Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to balance these new requirements with the financial obligations of providing reliable power (at a reasonable price) while attempting to meet shareholder expectations. Each of these goals are not necessarily complimentary, thus utilities need to determine how to address each one.

418

Starwood Solar I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Starwood Solar I Solar Power Plant Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar Power Developer Lockheed Martin/Starwood Energy Location Harquahala Valley, Arizona Coordinates 33.45729°, -113.1619359° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.45729,"lon":-113.1619359,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Mojave Solar Park Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Park Solar Power Plant Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power Developer Solel Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Power Plant Emission Reductions Using a Generation Performance Standard  

Gasoline and Diesel Fuel Update (EIA)

Power Plant Emission Reductions Power Plant Emission Reductions Using a Generation Performance Standard by J. Alan Beamon, Tom Leckey, and Laura Martin There are many policy instruments available for reducing power plant emissions, and the choice of a policy will affect compliance decisions, costs, and prices faced by consumers. In a previous analysis, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and carbon dioxide (CO 2 ) emissions, assuming a policy instru- ment patterned after the SO 2 allowance program created in the Clean Air Act Amendments of 1990. 1 This report compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard (GPS) as an instrument for reducing CO 2 emissions. 2 In general, the results of the two analyses are similar: to reduce

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SEGS IX Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

IX Solar Power Plant IX Solar Power Plant Jump to: navigation, search Name SEGS IX Solar Power Plant Facility SEGS IX Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Harper Lake, California Coordinates 35.0305°, -117.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0305,"lon":-117.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

AV Solar Ranch I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AV Solar Ranch I Solar Power Plant AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer NextLight Renewable Power Location Antelope Valley, California Coordinates 38.70833°, -121.32889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.70833,"lon":-121.32889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Carrizo Energy Solar Farm Solar Power Plant Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility Type Concentrating Solar Power Developer Ausra CA II Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Unlocking Customer Value: The Virtual Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to balance these new requirements with the financial obligations of providing reliable power (at a reasonable price) while attempting to meet shareholder expectations. Each of these goals are not necessarily complimentary, thus utilities need to determine how to address each one.

425

Beacon Solar Energy Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility Type Concentrating Solar Power Developer NextEra Energy Location Kern County, California Coordinates 35.4937274°, -118.8596804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.4937274,"lon":-118.8596804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

SEGS IV Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name SEGS IV Solar Power Plant Facility SEGS IV Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Kramer Junction, California Coordinates 34.9925°, -117.540833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9925,"lon":-117.540833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Don Ana Sun Tower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Don Ana Sun Tower Solar Power Plant Don Ana Sun Tower Solar Power Plant Jump to: navigation, search Name Don Ana Sun Tower Solar Power Plant Facility Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Dona Ana County, New Mexico Coordinates 32.485767°, -106.7234639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.485767,"lon":-106.7234639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Alpine SunTower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SunTower Solar Power Plant SunTower Solar Power Plant Jump to: navigation, search Name Alpine SunTower Solar Power Plant Facility Alpine SunTower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Lancaster, California Coordinates 34.6867846°, -118.1541632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6867846,"lon":-118.1541632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

SES Solar Two Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Project Solar Power Plant Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar Power Developer Stirling Energy Systems, Tessera Solar Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

SEGS VIII Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

VIII Solar Power Plant VIII Solar Power Plant Jump to: navigation, search Name SEGS VIII Solar Power Plant Facility SEGS VIII Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Harper Lake, California Coordinates 35.0305°, -117.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0305,"lon":-117.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Ridgecrest Solar Power Plant Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC Location Ridgecrest, California Coordinates 35.6224561°, -117.6708966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6224561,"lon":-117.6708966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Parabolic Trough Solar Power Plant Simulation Model: Preprint  

SciTech Connect (OSTI)

As interest for clean renewable electric power technologies grows, a number of parabolic trough power plants of various configurations are being considered for deployment around the globe. It is essential that plant designs be optimized for each specific application. The optimum design must consider the capital cost, operations and maintenance cost, annual generation, financial requirements, and time-of-use value of the power generated. Developers require the tools for evaluating tradeoffs between these various project elements. This paper provides an overview of a computer model that is being used by scientists and developers to evaluate the tradeoff between cost, performance, and economic parameters for parabolic trough solar power plant technologies. An example is included that shows how this model has been used for a thermal storage design optimization.

Price, H.

2003-01-01T23:59:59.000Z

434

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

SciTech Connect (OSTI)

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

435

Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants  

Science Journals Connector (OSTI)

A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of...

Shuichi Umezawa

2007-01-01T23:59:59.000Z

436

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network [OSTI]

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

437

Submerged passively-safe power plant  

SciTech Connect (OSTI)

The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

Herring, J.S.

1991-12-31T23:59:59.000Z

438

Submerged passively-safe power plant  

DOE Patents [OSTI]

The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

Herring, J. Stephen (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

439

Submerged passively-safe power plant  

DOE Patents [OSTI]

The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process. 8 figures.

Herring, J.S.

1993-09-21T23:59:59.000Z

440

Fusion power plant for water desalination and reuse  

Science Journals Connector (OSTI)

Development of industry and agriculture demands a huge fresh water consumption. Exhaust of water sources together with pollution arises a difficult problem of population, industry, and agriculture water supply. Request for additional water supply in next 50 years is expected from industrial and agricultural sectors of many countries in the world. The presented study of fusion power plant for water desalination and reuse is aimed to widen a range of possible fusion industrial applications. Fusion offers a safe, long-term source of energy with abundant resources and major environmental advantages. Thus fusion can provide an attractive energy option to society in the next century. Fusion power tokamak reactor based on RF DEMO-S project [Proc. ISFNT-5 (2000) in press; Conceptual study of RF DEMO-S fusion reactor (2000)] was chosen as an energy source. A steady state operation mode is considered with thermal power of 4.0 GW. The reactor has to operate in steady-state plasma mode with high fraction of bootstrap current. Average plant availability of ?0.7 is required. A conventional type of water cooled blanket is the first choice, helium or lithium coolants are under consideration. Desalination plant includes two units: reverse osmosis and distillation. Heat to electricity conversion schemes is optimized fresh water production and satisfy internal plant electricity demand The plant freshwater capacity is ?6?000?000 m3 per day. Fusion power plant of this capacity can provide a region of a million populations with fresh water, heat and electricity.

A.A. Borisov; A.V. Desjatov; I.M. Izvolsky; A.G. Serikov; V.P. Smirnov; Yu.N. Smirnov; G.E. Shatalov; S.V. Sheludjakov; N.N. Vasiliev; E.P. Velikhov

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nuclear Power Plant NDE Challenges - Past, Present, and Future  

SciTech Connect (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship, not fitness for service) and with good engineering judgment. Fortuitously, those nuclear power plants were designed using defense-in-depth concepts, with nondestructive examination (NDE) an important layer, so they can tolerate almost any component failure and still continue to operate safely. In the 30+ years of reactor operation, many material failures have occurred. Unfortunately, NDE has not provided the reliability to detect degradation prior to initial failure (breaching the pressure boundary). However, NDE programs have been improved by moving from prescriptive procedures to performance demonstrations that quantify inspection effectiveness for flaw detection probability and sizing accuracy. Other improvements include the use of risk-informed strategies to ensure that reactor components contributing the most risk receive the best and most frequent inspections. Another challenge is the recent surge of interest in building new nuclear power plants in the United States to meet increasing domestic energy demand. New construction will increase the demand for NDE but also offers the opportunity for more proactive inspections. This paper reviews the inception and evolution of NDE for nuclear power plants over the past 40 years, recounts lessons learned, and describes the needs remaining as existing plants continue operation and new construction is contemplated.

Doctor, S. R. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

2007-03-21T23:59:59.000Z

442

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Sandia National Laboratories (SNL) is conducting a study on the use of nanofiltration (NF) treatment options to enable use of non-traditional water sources as an alternative to freshwater make-up for thermoelectric power plants. The project includes a technical and economic evaluation of NF for two types of water that contain moderate to high levels of total dissolved solids (TDS): (1) cooling tower recirculating water and (2) produced waters from oil & gas extraction operations. Reverse osmosis (RO) is the most mature and commonly considered option for high TDS water treatment. However, RO is generally considered to be too expensive to make treatment of produced waters for power plant use a feasible application. Therefore, SNL is investigating the use of NF, which could be a more cost effective treatment option than RO. Similar to RO, NF is a membrane-based process. Although NF is not as effective as RO for the removal of TDS (typical salt rejection is ~85 percent, compared to >95 percent for RO), its performance should be sufficient for typical power plant applications. In addition to its lower capital cost, an NF system should have lower operating costs because it requires less pressure to achieve an equivalent flux of product water.

443

A proposal of nuclear fusion power plant equipped with SMES  

Science Journals Connector (OSTI)

When we intend to operate the nuclear fusion power plant (NFPP) under the economically efficient conditions as an independent power plant, it is desirable that the generated electric power should be sent to network according to the power demand. With such strategy being expanded, some energy storage system is available. In this paper, NFPP equipped with the superconducting magnetic energy storage system (SMES) as electric power storage device is proposed. The advantages of NFPP equipped with SMES are discussed and a case study of 500 MW NFPP equipped with 6 \\{GWh\\} SMES is done with estimating its operational value. For SMES coil, the concept of Force Balanced Coil (FBC) is applied and 6 \\{GWh\\} class FBC is briefly designed.

Tatsuya Natsukawa; Hirokazu Makamura; Marta Molinas; Shinichi Nomura; Shunji Tsuji-Iio; Ryuichi Shimada

2000-01-01T23:59:59.000Z

444

Regulatory guidance for lightning protection in nuclear power plants  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)

Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.; Korsah, K. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6007 (United States); Antonescu, C. E. [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

2006-07-01T23:59:59.000Z

445

Regulatory Guidance for Lightning Protection in Nuclear Power Plants  

SciTech Connect (OSTI)

Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

Kisner, Roger A [ORNL; Wilgen, John B [ORNL; Ewing, Paul D [ORNL; Korsah, Kofi [ORNL; Antonescu, Christina E [ORNL

2006-01-01T23:59:59.000Z

446

Performance Assessment of Flashed Steam Geothermal Power Plant  

SciTech Connect (OSTI)

Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor is the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.

Alt, Theodore E.

1980-12-01T23:59:59.000Z

447

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-01-31T23:59:59.000Z

448

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-04-27T23:59:59.000Z

449

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

2003-04-21T23:59:59.000Z

450

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-10-27T23:59:59.000Z

451

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-04-23T23:59:59.000Z

452

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-07-30T23:59:59.000Z

453

Boiler Materials For Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-09-30T23:59:59.000Z

454

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-01-23T23:59:59.000Z

455

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-08-01T23:59:59.000Z

456

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-01-31T23:59:59.000Z

457

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-07-17T23:59:59.000Z

458

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2004-10-30T23:59:59.000Z

459

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-04-20T23:59:59.000Z

460

Hydro Research Program Seeking Graduate Student Applicants |...  

Office of Environmental Management (EM)

Hydro Research Program Seeking Graduate Student Applicants Hydro Research Program Seeking Graduate Student Applicants December 18, 2014 - 3:37pm Addthis The Hydro Research...

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

STRUCTURAL HEALTH MONITORING SOLUTIONS FOR POWER PLANTS Benoit Jouan, Jurgen Rudolph, Steffen Bergholz  

E-Print Network [OSTI]

but also in the context of conventional power plants and renewables such as wind power plants. ConsequentlySTRUCTURAL HEALTH MONITORING SOLUTIONS FOR POWER PLANTS Benoit Jouan, J¨urgen Rudolph, Steffen solutions gain in importance not only as part of the ageing management of nuclear power plant components

Paris-Sud XI, Université de

462

Statement from Energy Secretary Ernest Moniz on Proposed New EPA Rules for Existing Power Plants  

Broader source: Energy.gov [DOE]

Energy Secretary Ernest Moniz's statement on the EPA's proposed new rules for existing power plants.

463

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect (OSTI)

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

464

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

465

Fiber optic sensors for nuclear power plant applications  

SciTech Connect (OSTI)

Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

2012-05-17T23:59:59.000Z

466

20 - Licensing for nuclear power plant siting, construction and operation  

Science Journals Connector (OSTI)

Abstract: This chapter addresses the need for licensing of nuclear power plants, and how such licenses can be requested by an applicant and granted by a regulatory authority. The licensing process is country dependent, although based on the common principle that the applicant must demonstrate that the proposed nuclear power plant will comply with the established regulations, and that it will operate safely without undue risks to the health and safety of plant personnel, the population and the environment. During the construction and operational phases the regulatory authority ensures compliance with the the license conditions through evaluation, monitoring and inspection. The license may be a single document covering all the phases in the life of the plant, or a set of consecutive documents requested and issued for different phases, which may include design certification, site approval, design and construction, commissioning and operation, design changes during operation, life extension and, finally, decommissioning.

A. Alonso; S.K. Sharma; D.F. Torgerson

2012-01-01T23:59:59.000Z

467

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use of Air2Air™ Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants – SPX Cooling Systems Use of Air2Air™ Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants – SPX Cooling Systems In this project, SPX Cooling Systems, formerly Marley Cooling Technologies, Inc., evaluates the performance of its patented Air2Air(tm) condensing technology in cooling tower applications at coal-fired electric power plants. Researchers quantify Air2Air(tm) water conservation capabilities with results segmented by season and time of day. They determine the pressure drop and energy use during operation. Additionally, SPX Cooling Systems develops a collection method for the recovered water, analyzes water quality, and identifies potential on-site processes capable of utilizing the recovered water.

468

SCE Roof Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SCE Roof Project Solar Power Plant SCE Roof Project Solar Power Plant Jump to: navigation, search Name SCE Roof Project Solar Power Plant Facility SCE Roof Project Sector Solar Facility Type Photovoltaic Developer First Solar Location California Coordinates 36.778261°, -119.4179324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Victorville 2 Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Victorville 2 Solar Power Plant Victorville 2 Solar Power Plant Jump to: navigation, search Name Victorville 2 Solar Power Plant Facility Victorville 2 Sector Solar Facility Type Hybrid Developer Inland Energy Location Victorville, California Coordinates 34.5361067°, -117.2911565° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5361067,"lon":-117.2911565,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Cimarron I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

I Solar Power Plant I Solar Power Plant Jump to: navigation, search Name Cimarron I Solar Power Plant Facility Cimarron I Sector Solar Facility Type Photovoltaic Developer First Solar Location Colfax County, New Mexico Coordinates 36.5799757°, -104.4723301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5799757,"lon":-104.4723301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from 2010-2012. The objective is to engage customers in lowering peak demand using smart technologies in homes and businesses and to achieve greater efficiencies on the distribution system. The immediate goal: To defer two 165 MW power plants currently planned for

472

Topaz Solar Farm Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name Topaz Solar Farm Solar Power Plant Facility Topaz Solar Farm Sector Solar Facility Type Photovoltaic Developer OptiSolar Location San Luis Obispo County, California Coordinates 35.3102296°, -120.4357631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.3102296,"lon":-120.4357631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

CalRENEW-1 Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

CalRENEW-1 Solar Power Plant CalRENEW-1 Solar Power Plant Jump to: navigation, search Name CalRENEW-1 Solar Power Plant Facility CalRENEW-1 Sector Solar Facility Type Photovoltaic Developer Cleantech America Location Fresno County, California Coordinates 36.9858984°, -119.2320784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.9858984,"lon":-119.2320784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

El Dorado Solar Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Dorado Solar Project Solar Power Plant Dorado Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic Developer First Solar/Sempra Generation Location Boulder City, Nevada Coordinates 35.9785911°, -114.8324851° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9785911,"lon":-114.8324851,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

SES Solar Three Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Three Project Solar Power Plant Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics Facility Status Proposed Developer Stirling Energy Systems, Tessera Solar Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Inspection technologies protect and enhance materials for power plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inspection technologies protect and enhance materials for power plants Inspection technologies protect and enhance materials for power plants Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Inspection technologies protect and enhance materials for power plants A researcher makes thermal images of ceramic defects THERMAL IMAGING - Julian Benz uses Argonne's thermal imaging system

477

Power Plant and Industrial Fuel Use Act | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended (42 U.S.C. 8301 et seq.), provides that no new baseload electric powerplant may be constructed or operated without the capability to use coal or another alternate fuel as a primary energy source. In order to meet the requirement of coal capability, the owner or operator of such facilities proposing to use natural gas or petroleum as its primary energy source shall certify, pursuant to FUA section 201(d), and Section 501.60(a)(2) of DOE's regulations to the Secretary of Energy prior to construction, or prior to operation as a base load powerplant, that such powerplant has the capability to use coal or another alternate fuel.

478

Niland Solar Farm LLC Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Niland Solar Farm LLC Solar Power Plant Niland Solar Farm LLC Solar Power Plant Jump to: navigation, search Name Niland Solar Farm LLC Solar Power Plant Facility Niland Solar Farm LLC Sector Solar Facility Type Photovoltaic Developer First Solar Location Niland, California Coordinates 33.2400366°, -115.5188756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2400366,"lon":-115.5188756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Palmdale Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Palmdale Project Solar Power Plant Palmdale Project Solar Power Plant Jump to: navigation, search Name Palmdale Project Solar Power Plant Facility Palmdale Project Sector Solar Facility Type Hybrid Developer Inland Energy Location Palmdale, California Coordinates 34.5794343°, -118.1164613° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5794343,"lon":-118.1164613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Sunset Reservoir Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Reservoir Solar Power Plant Reservoir Solar Power Plant Jump to: navigation, search Name Sunset Reservoir Solar Power Plant Facility Sunset Reservoir Sector Solar Facility Type Photovoltaic Developer Recurrent Energy Location San Francisco, California Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7749295,"lon":-122.4194155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hydro power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Kings River Conservation District (KRCD) Solar Farm Solar Power Plant |  

Open Energy Info (EERE)

KRCD) Solar Farm Solar Power Plant KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility Kings River Conservation District (KRCD) Solar Farm Sector Solar Facility Type Photovoltaic Developer Cleantech America Location San Joachin Valley, California Coordinates 34.0787104°, -117.8660029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0787104,"lon":-117.8660029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

Atlantic City Convention Center Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Convention Center Solar Power Plant Convention Center Solar Power Plant Jump to: navigation, search Name Atlantic City Convention Center Solar Power Plant Facility Atlantic City Convention Center Sector Solar Facility Type Photovoltaic Developer Pepco Energy Services Location Atlantic City, New Jersey Coordinates 39.3642834°, -74.4229266° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3642834,"lon":-74.4229266,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

How Coal Gasification Power Plants Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasification » How Coal Gasification » How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work The heart of a gasification-based system is the gasifier. A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam. A gasifier differs from a combustor in that the amount of air or oxygen available inside the gasifier is carefully controlled so that only a relatively small portion of the fuel burns completely. This "partial oxidation" process provides the heat. Rather than burning, most of the carbon-containing feedstock is chemically broken apart by the gasifier's heat and pressure, setting into motion chemical reactions that produce "syngas." Syngas is primarily hydrogen and carbon monoxide, but can include

484

Emcore/SunPeak Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Emcore/SunPeak Solar Power Plant Emcore/SunPeak Solar Power Plant < Emcore Jump to: navigation, search Name Emcore/SunPeak Solar Power Plant Facility Emcore/SunPeak Sector Solar Facility Type Concentrating Photovoltaic Developer SunPeak Solar Location Albuquerque, New Mexico Coordinates 35.0844909°, -106.6511367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0844909,"lon":-106.6511367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Desert Sunlight Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Sunlight Solar Power Plant Sunlight Solar Power Plant Jump to: navigation, search Name Desert Sunlight Solar Power Plant Facility Desert Sunlight Sector Solar Facility Type Photovoltaic Developer First Solar Location Desert Center, California Coordinates 33.7541038°, -115.3311778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7541038,"lon":-115.3311778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

486

Nellis AFB Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Nellis AFB Solar Power Plant Nellis AFB Solar Power Plant Jump to: navigation, search Name Nellis AFB Solar Power Plant Facility Nellis AFB Sector Solar Facility Type Photovoltaic Developer Fotowatio Renewable Ventures Location Clark County, Nevada Coordinates 36.0795613°, -115.094045° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0795613,"lon":-115.094045,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Seawater pumped-storage power plant in Okinawa island, Japan  

Science Journals Connector (OSTI)

The authors describe the characteristics, problems and treatment of a seawater pumped-storage power plant which is the first high headtype power plant in the world. The authors propose a general geologic investigation program using boreholes for underground projects. The effectiveness of the investigations conducted by EPDC are evaluated before construction of the vertical shaft of the seawater pumped-storage power plant in Okinawa island, Japan. In the investigation stage of the project, no adit was excavated and all geological and geotechnical information about the underground facilities were obtained efficiently from exploration by drill holes including logging and geotechnical tests such as observation by borehole scanner, prospecting by VSP, initial stress measurement by sleeve fracturing method and JFT test.

Akitaka Hiratsuka; Takashi Arai; Tsukasa Yoshimura

1993-01-01T23:59:59.000Z

488

Gasification CFD Modeling for Advanced Power Plant Simulations  

SciTech Connect (OSTI)

In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETLs Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

Zitney, S.E.; Guenther, C.P.

2005-09-01T23:59:59.000Z

489

Fuel Cell Power Plants Renewable and Waste Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

490

Searchlight Solar I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Searchlight Solar I Solar Power Plant Searchlight Solar I Solar Power Plant Jump to: navigation, search Name Searchlight Solar I Solar Power Plant Facility Searchlight Solar I Sector Solar Facility Type Photovoltaic Developer American Capital Energy Location Searchlight, Nevada Coordinates 35.48428°, -114.937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.48428,"lon":-114.937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Solaren Space Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solaren Space Solar Power Plant Solaren Space Solar Power Plant Jump to: navigation, search Name Solaren Space Solar Power Plant Facility Solaren Space Solar Sector Solar Facility Type Photovoltaic Developer Solaren Corp Generating Capacity (MW) 200.0200 MW 200,000 kW 200,000,000 W 200,000,000,000 mW 0.2 GW References [1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

492

MHK Technologies/HydroCoil Turbine | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » MHK Technologies/HydroCoil Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroCoil Turbine.jpg Technology Profile Primary Organization HydroCoil Power Inc Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The HydroCoil device is set inside of a molded plastic cylinder six inches in diameter to produce hydro electric power at low cost and with high efficiency in places with low head and low water flow The unit s coiled vane sequentially slows the water thereby extracting more energy

493

Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant  

Science Journals Connector (OSTI)

The present work has been undertaken for energetic and exergetic analysis of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant. Comparative analysis has been conducted ...

V. Siva Reddy; S. C. Kaushik; S. K. Tyagi

2014-03-01T23:59:59.000Z

494

Thermodynamics of combined-cycle electric power plants  

Science Journals Connector (OSTI)

Published data imply an average thermal efficiency of about 0.34 for U.S. electricity generating plants. With clever use of thermodynamics and technology modern gas and steam turbines can be coupled to effect dramatic efficiency increases. These combined-cycle power plants now reach thermal efficiencies in excess of 0.60. It is shown how the laws of thermodynamics make this possible.

Harvey S. Leff

2012-01-01T23:59:59.000Z

495

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Innovative Fresh Water Production Process for Fossil Fired Power Plants An Innovative Fresh Water Production Process for Fossil Fired Power Plants Using Energy Stored in Main Condenser Cooling Water - University of Florida This project replaces the cooling tower in a fossil fired power plant with an innovative diffusion driven desalination (DDD) plant that will render the power plant a net producer of fresh water. The energy required to drive the desalination process comes from the main condenser cooling water, which would otherwise be discharged. Saline water is used to condense the low pressure steam exiting the turbine. The hot, saline water exiting the condenser is sprayed into the top of a diffusion tower. The diffusion tower is filled with high surface area packing material such as that used in air stripping towers to enhance the water/air surface area. Air is blown through the bottom of the tower and becomes humidified. The humidified air goes to a direct-contact condenser where the fresh water is condensed. This process has an advantage over conventional desalination technology in that it may be driven by waste heat with very low thermodynamic availability. Also, cold air is a byproduct of this process which can be used to cool buildings.

496

Map of Solar Power Plants | Open Energy Information  

Open Energy Info (EERE)

Map of Solar Power Plants Map of Solar Power Plants Jump to: navigation, search Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"100%","height":"550px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":true,"searchmarkers":"","icon":"File:Sun

497