National Library of Energy BETA

Sample records for hydro hydrogen solar

  1. Hydrogen Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Ltd Jump to: navigation, search Name: Hydrogen Solar Ltd Place: Guildford, United Kingdom Zip: GU2 7YG Sector: Hydro, Hydrogen, Solar Product: Hydrogen Solar Ltd is...

  2. HydroGen | Open Energy Information

    Open Energy Info (EERE)

    HydroGen Jump to: navigation, search Logo: HydroGen Name: HydroGen Address: Head Office, 9 GreenMeadows Place: Cardiff, Wales Country: United Kingdom Sector: Hydro, Hydrogen,...

  3. HydroGen Corporation formerly Chiste Corp | Open Energy Information

    Open Energy Info (EERE)

    HydroGen Corporation formerly Chiste Corp Jump to: navigation, search Name: HydroGen Corporation (formerly Chiste Corp) Place: Jefferson Hills, Pennsylvania Zip: 15025 Sector:...

  4. HydroGen Aquaphile sarl | Open Energy Information

    Open Energy Info (EERE)

    Aquaphile sarl Jump to: navigation, search Name: HydroGen Aquaphile sarl Region: France Sector: Marine and Hydrokinetic Website: www.hydro-gen.fr This company is listed in the...

  5. Commercializing solar hydrogen production

    SciTech Connect (OSTI)

    Holmes, J.T.; Prairie, M.R.

    1991-01-01

    This paper discusses the need for a government-supported program to commercialize hydrogen production methods which use solar energy as the main source of energy. Current methods use hydrocarbons and generate large amounts of carbon dioxide. The paper describes results from a literature survey performed to identify technologies using direct solar energy that were likely to succeed on an industrial scale in the near term. Critical parameters included calculated efficiencies, measured efficiencies, and development status. The cost of solar collectors is cited as the reason most promising solar hydrogen research is not taken to the pilot plant stage. The author recommends use of existing DOE facilities already in operation for pilot plant testing. 14 refs. (CK)

  6. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect (OSTI)

    Milbrandt, A.; Mann, M.

    2009-02-01

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  7. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar Potential Strategies for Integrating Solar Hydrogen Production and ...

  8. Hydrogen production at run-of-river hydro plants

    SciTech Connect (OSTI)

    Tarnay, D.S.

    1983-12-01

    Production of energy from non-renewable petroleum, natural gas and coal is declining due to depletion and high prices. Presently, the research concentrates on reduction of consumption and more efficient use of traditional fuels, and on development of renewable sources of energy and new energy technologies. Most of the new energy sources, however, are not available in a convenient form for consumer. The new energy must be renewable, economically feasible and transportable. Not all the available renewable energy sources have these qualities. Many scientists and engineers believe that hydrogen meets these criteria best. Hydrogen can be produced from various renewable sources such as solar, wind, geothermal, tidal and glacier energies, ocean thermal energy conversion (OTEC), and obviously from - waterpower. The production of hydrogen at run-of-river hydropower plants via electrolysis could be the front-runner in developing new hydrogen energy technologies, and open the way to a new hydrogen era, similarly as the polyphase system and the a-c current generator of N. Tesla used at the Niagara Falls Hydropower Plant, opened the door to a new electrical age in 1895.

  9. Clean Hydrogen Producers Ltd CHP | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Producers Ltd CHP Jump to: navigation, search Name: Clean Hydrogen Producers Ltd (CHP) Place: Geneva, Switzerland Zip: 1209 Sector: Hydro, Hydrogen, Solar Product: Swiss...

  10. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis U.S. Department of Energy Fuel Cell Technologies Office January ...

  11. Solar hydrogen for urban trucks

    SciTech Connect (OSTI)

    Provenzano, J.: Scott, P.B.; Zweig, R.

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  12. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Selection and Investment Priority | Department of Energy Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority This Sandia National Laboratories report documents the evaluation of nine solar thermochemical reaction cycles for the production of hydrogen and identifies the critical path challenges to the commercial

  13. Solar Hydrogen Production

    SciTech Connect (OSTI)

    Koval, C.; Sutin, N.; Turner, J.

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  14. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and identifies the critical path challenges to the commercial potential of each cycle. PDF icon Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical ...

  15. Webinar: Potential Strategies for Integrating Solar Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eastern Standard Time (EST). An analysis conducted by Sandia National Laboratories explored potential synergies that may be realized by integrating solar hydrogen production and ...

  16. German Center for Solar Energy and Hydrogen Research ZSW | Open...

    Open Energy Info (EERE)

    Solar Energy and Hydrogen Research ZSW Jump to: navigation, search Name: German Center for Solar Energy and Hydrogen Research (ZSW) Place: Stuttgart, Baden-Wrttemberg, Germany...

  17. SHEC Energy Formerly SHEC Labs Solar Hydrogen Energy Corporation...

    Open Energy Info (EERE)

    SHEC Energy Formerly SHEC Labs Solar Hydrogen Energy Corporation Jump to: navigation, search Name: SHEC Energy (Formerly SHEC Labs - Solar Hydrogen Energy Corporation) Place:...

  18. Solar Thermochemical Hydrogen Production Research (STCH)

    Fuel Cell Technologies Publication and Product Library (EERE)

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meet

  19. Center for Solar Energy and Hydrogen Research ZSW | Open Energy...

    Open Energy Info (EERE)

    and Hydrogen Research ZSW Jump to: navigation, search Name: Center for Solar Energy and Hydrogen Research (ZSW) Place: Stutgart, Baden-Wrttemberg, Germany Zip: 70565 Product:...

  20. Screening analysis of solar thermochemical hydrogen concepts.

    SciTech Connect (OSTI)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  1. Solar Frontier K K | Open Energy Information

    Open Energy Info (EERE)

    Name: Solar Frontier K.K. Place: Tokyo, Tokyo, Japan Zip: 135-8074 Sector: Hydro, Hydrogen, Solar Product: Japanese oil company with urban gas and electricity, solar, fuel cell...

  2. High-Efficiency Solar Thermochemical Reactor for Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Solar Thermochemical Reactor for Hydrogen Production - Sandia Energy Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  3. Florida Hydro Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Florida Hydro Inc Place: Palatka, Florida Zip: 32177 Sector: Hydro, Hydrogen Product: Develops electrical generation and hydrogen production devices. Coordinates:...

  4. Student Winners Announced in Solar and Hydrogen Fuel Cell Car...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student Winners Announced in Solar and Hydrogen Fuel Cell Car Races May 21, 2011 Sixty-five teams from 24 Colorado schools participated in today's Junior Solar Sprint and Hydrogen ...

  5. Pathways to Solar Hydrogen Technologies Leiden, The Netherlands...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathways to Solar Hydrogen Technologies Leiden, The Netherlands) Pathways to Solar Hydrogen Technologies Leiden, The Netherlands) Mon, Jun 13, 2016 11:30am 11:30 Fri, Jun 17, 2016 ...

  6. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  7. Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon Solar Cells:

    Office of Scientific and Technical Information (OSTI)

    Preprint (Conference) | SciTech Connect Conference: Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon Solar Cells: Preprint Citation Details In-Document Search Title: Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon Solar Cells: Preprint Post-deposition hydrogenation by remote plasma significantly improves performance of heteroepitaxial silicon solar cells. Heteroepitaxial deposition of thin crystal silicon on sapphire for photovoltaics (PV) is an excellent model

  8. MHK Technologies/HydroGen 10 | Open Energy Information

    Open Energy Info (EERE)

    HydroGen 10 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroGen 10.jpg Technology Profile Primary Organization HydroGen Aquaphile sarl...

  9. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect (OSTI)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  10. Solar Thermochemical Hydrogen Production Research (STCH)

    SciTech Connect (OSTI)

    Perret, Robert

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  11. Tehri Hydro Development Corporation Limited | Open Energy Information

    Open Energy Info (EERE)

    Solar, Wind energy Product: Focused on hydro projects; diversifying into solar and wind power. References: Tehri Hydro Development Corporation Limited1 This article is a stub....

  12. Wind & Hydro Energy Feasiblity Study for the Yurok Tribe

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    showed that wind, hydro, biomass and solar energy resources are available on the Reservation. * Solar is appropriate only at the facility household scale. * Wind, hydro and ...

  13. Norsk Hydro ASA | Open Energy Information

    Open Energy Info (EERE)

    Norsk Hydro ASA Jump to: navigation, search Name: Norsk Hydro ASA Place: Oslo, Norway Zip: NO-0283 Sector: Hydro, Renewable Energy, Solar Product: Oslo-based energy and aluminium...

  14. Webinar: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. Eastern Standard Time (EST).

  15. Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" held on January 21, 2016.

  16. The Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: The Hydrogen Company Abbreviation: HydroGen Address: The Hydrogen Company, HydroGen Engineering and Consulting, Head Office, 9...

  17. Pathways to Solar Hydrogen Technologies (Leiden, The Netherlands) - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathways to Solar Hydrogen Technologies (Leiden, The Netherlands) Pathways to Solar Hydrogen Technologies (Leiden, The Netherlands) Mon, Jun 13, 2016 11:30am 11:30 Fri, Jun 17, 2016 12:30pm 12:30 Lorentz Center, Leiden, The Netherlands Frances Houle, "Materials Research toward Technology Development" May 29 229th Electrochemical Society (ECS) Meeting (San Diego, CA) June 14 20th Annual Green Chemistry & Engineering Conference (Portland, OR

  18. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  19. Recent progress in enhancing solar-to-hydrogen efficiency

    SciTech Connect (OSTI)

    Chen, Jianqing; Yang, Donghui; Song, Dan; Jiang, Jinghua; Ma, Aibin; Hu, Michael Z.; Ni, Chaoying

    2015-01-01

    Solar water splitting is a promising and ideal route for renewable production of hydrogen by using the most abundant resources of solar light and water. Focusing on the working principal of solar water splitting, including photon absorption and exciton generation in semiconductor, exciton separation and transfer to the surface of semiconductor, and respective electron and hole reactions with absorbed surface species to generate hydrogen and oxygen, this review covers the comprehensive efforts and findings made in recent years on the improvement for the solar-to-hydrogen efficiency (STH) determined by a combination of light absorption process, charge separation and migration, and catalytic reduction and oxidation reactions. Critical evaluation is attempted on the strategies for improving solar light harvesting efficiency, enhancing charge separation and migration, and improving surface reactions. Towards the end, new and emerging technologies for boosting the STH efficiency are discussed on multiple exciton generation, up-conversion, multi-strategy modifications and the potentials of organometal hybrid perovskite materials.

  20. Solar hydrogen energy system. Annual report, 1995--1996

    SciTech Connect (OSTI)

    Veziroglu, T.N.

    1996-12-31

    The paper reports progress on three tasks. Task A, System comparison of hydrogen with other alternative fuels in terms of EPACT requirements, investigates the feasibility of several alternative fuels, namely, natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000. The analysis was divided into two parts: analysis of vehicle technologies and analysis of fuel production, storage and distribution. Task B, Photovoltaic hydrogen production, involves this fuel production method for the future. The process uses hybrid solar collectors to generate dc electricity, as well as high temperature steam for input to the electrolyzer. During the first year, solar to hydrogen conversion efficiencies have been considered. The third task, Hydrogen safety studies, covers two topics: a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels; and an experimental investigation of hydrogen flame impingement.

  1. Mechanism of Hydrogen Formation in Solar Parabolic Trough Receivers

    SciTech Connect (OSTI)

    Moens, L.; Blake, D. M.

    2008-03-01

    Solar parabolic trough systems for electricity production are receiving renewed attention, and new solar plants are under construction to help meet the growing demands of the power market in the Western United States. The growing solar trough industry will rely on operating experience it has gained over the last two decades. Recently, researchers found that trough plants that use organic heat transfer fluids (HTF) such as Therminol VP-1 are experiencing significant heat losses in the receiver tubes. The cause has been traced back to the accumulation of excess hydrogen gas in the vacuum annulus that surrounds the steel receiver tube, thus compromising the thermal insulation of the receiver. The hydrogen gas is formed during the thermal decomposition of the organic HTF that circulates inside the receiver loop, and the installation of hydrogen getters inside the annulus has proven to be insufficient for controlling the hydrogen build-up over the lifetime of the receivers. This paper will provide an overview of the chemical literature dealing with the thermal decomposition of diphenyl oxide and biphenyl, the two constituents of Therminol VP-1.

  2. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect (OSTI)

    Glatzmaier, G.; Blake, D.; Showalter, S.

    1998-01-01

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  3. Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis U.S. Department of Energy Fuel Cell Technologies Office January 21st, 2016 Presenter: Scott Paap - Sandia National Laboratory DOE Host: Eric Miller - DOE Fuel Cell Technologies Office Question and Answer  Please type your questions into the question box 2 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary

  4. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  5. Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  6. Webinar January 21: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  7. CTP Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    CTP Hydrogen Jump to: navigation, search Name: CTP Hydrogen Place: Westborough, Massachusetts Zip: 1581 Sector: Hydro, Hydrogen Product: CTP Hydrogen is an early stage company...

  8. Seventy-eight Teams Race Innovative Solar and Hydrogen Model Cars - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Seventy-eight Teams Race Innovative Solar and Hydrogen Model Cars Students Recognized for Creativity and Talent in Energy Education Event May 16, 2009 Seventy-eight teams from 29 Colorado middle schools participated in today's Junior Solar Sprint and Hydrogen Fuel Cell car competitions hosted by the U.S. Department of Energy's National Renewable Energy Laboratory. The student teams raced solar or hydrogen powered vehicles that they designed and built themselves. The fastest

  9. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect (OSTI)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  10. International Partnership for a Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Partnership for the Hydrogen Economy (IPHE) U.S. Department of Energy Why Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources. . Distributed Generation Transportation Biomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With Carbon Sequestration HIGH EFFICIENCY & RELIABILITY ZERO/NEAR ZERO EMISSIONS 3 President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1.2 billion in research funding ....

  11. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    SciTech Connect (OSTI)

    Heaton, H.

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  12. Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation

    SciTech Connect (OSTI)

    Grimes, Craig A.

    2014-11-26

    Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

  13. Appendix HYDRO: Hydrological Investigations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HYDRO-2014 Hydrological Investigations United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix HYDRO-2014 Table of Contents HYDRO-1.0 Hydrological Studies HYDRO-2.0 Optimization of Culebra Monitoring Well Network HYDRO-3.0 Geochemical Analyses HYDRO-4.0 Steel-Cased Well Reconfiguration and Replacement HYDRO-5.0 Geological Information HYDRO-6.0 Hydraulic Test Interpretation HYDRO-7.0 Monitoring

  14. Safe Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen LLC Jump to: navigation, search Name: Safe Hydrogen LLC Place: Lexington, Massachusetts Sector: Hydro, Hydrogen Product: Focused on hydrogen storage, through a 'slurry' of...

  15. Hydrogen Car Co | Open Energy Information

    Open Energy Info (EERE)

    Car Co Jump to: navigation, search Name: Hydrogen Car Co Place: Los Angeles, California Zip: 90036 Sector: Hydro, Hydrogen Product: The Hydrogen Car Company produces hydrogen...

  16. POSTPONED: Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    This webinar has been postponed until further notice. The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST.

  17. FCRPS Hydro Projects (generation/hydro)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydro Power FCRPS Hydro Projects FCRPS Information Kiosk Current Hydrological Info Fish Funding Agreement FCRPS Definitions Wind Power Monthly GSP BPA White Book Dry Year...

  18. Students to race their innovative solar, hydrogen and lithium ion battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model cars Saturday - News Releases | NREL Students to race their innovative solar, hydrogen and lithium ion battery model cars Saturday May 10, 2012 Middle school students from around the state will participate in the Junior Solar Sprint, Hydrogen Fuel Cell, and Lithium Ion Battery car competitions on Saturday, May 12, at Dakota Ridge High School in Littleton. Sponsored by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), the competitions give students the

  19. DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting

    Broader source: Energy.gov [DOE]

    EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology research and development, specifically addressing discovery and development of advanced materials systems and chemical proceesses for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

  20. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  1. Multi-criteria analysis on how to select solar radiation hydrogen production system

    SciTech Connect (OSTI)

    Badea, G.; Naghiu, G. S. Felseghi, R.-A.; Giurca, I.; Răboacă, S.; Aşchilean, I.

    2015-12-23

    The purpose of this article is to present a method of selecting hydrogen-production systems using the electric power obtained in photovoltaic systems, and as a selecting method, we suggest the use of the Advanced Multi-Criteria Analysis based on the FRISCO formula. According to the case study on how to select the solar radiation hydrogen production system, the most convenient alternative is the alternative A4, namely the technical solution involving a hydrogen production system based on the electrolysis of water vapor obtained with concentrated solar thermal systems and electrical power obtained using concentrating photovoltaic systems.

  2. Improved performance in GaInNAs solar cells by hydrogen passivation

    SciTech Connect (OSTI)

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R.; Hossain, K.; Golding, T. D.; Leroux, M.; Al Khalfioui, M.

    2015-04-06

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells.

  3. Infinity Fuel Cell and Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search Name: Infinity Fuel Cell and Hydrogen Place: Suffield, Connecticut Zip: 6078 Sector: Hydro, Hydrogen Product: A team of fuel cell, hydrogen and...

  4. Florida Hydrogen Initiative Inc | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Initiative Inc Jump to: navigation, search Name: Florida Hydrogen Initiative Inc Place: Florida Sector: Hydro, Hydrogen Product: Provides grants to aid the development of...

  5. National Hydrogen Association | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association Jump to: navigation, search Name: National Hydrogen Association Place: Washington, Washington, DC Zip: 20036 Sector: Hydro, Hydrogen Product: The source for...

  6. Highline Hydrogen Hybrids | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Hybrids Jump to: navigation, search Name: Highline Hydrogen Hybrids Place: farmington, Arkansas Zip: 72730-1500 Sector: Hydro, Hydrogen, Vehicles Product: US-based...

  7. Chevron Hydrogen Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

  8. The London Hydrogen Partnership | Open Energy Information

    Open Energy Info (EERE)

    London Hydrogen Partnership Jump to: navigation, search Name: The London Hydrogen Partnership Place: London, United Kingdom Zip: SE1 2AA Sector: Hydro, Hydrogen Product: The London...

  9. Hunterston Hydrogen Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hunterston Hydrogen Ltd Jump to: navigation, search Name: Hunterston Hydrogen Ltd Place: Anglesey, United Kingdom Zip: LL65 4RJ Sector: Hydro, Hydrogen, Wind energy Product:...

  10. German Hydrogen Association DWV | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association DWV Jump to: navigation, search Name: German Hydrogen Association (DWV) Place: Berlin, Germany Zip: 12205 Sector: Hydro, Hydrogen Product: String...

  11. Hydrogen Engine Center HEC | Open Energy Information

    Open Energy Info (EERE)

    Engine Center HEC Jump to: navigation, search Name: Hydrogen Engine Center (HEC) Place: Algona, Iowa Zip: IA 50511 Sector: Hydro, Hydrogen Product: The Hydrogen Engine Center (HEC)...

  12. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60-42773 February 2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy...

  13. Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Hydrogen Energy Place: Surrey, England, United Kingdom Zip: KT13 0NY Sector: Carbon, Hydro, Hydrogen Product: Surrey-based BP subsidiary...

  14. Hydro | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Hydro Jump to: navigation, search Hydro or hydroelectric systems capture the energy in naturally flowing water and convert it to electricity. Related Links List...

  15. Hydro | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Hydro (Redirected from Hydropower) Jump to: navigation, search Hydro or hydroelectric systems capture the energy in naturally flowing water and convert it to...

  16. Designing catalysts for hydrogen production | Center for Bio-Inspired Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Production catalysts for hydrogen production 12 Oct 2012 Dr. Anne Jones is a Principal Investigator in the Center of Bio-Inspired Solar Fuel production at Arizona State University. Her lab is involved in Subtasks 1 (Total systems analysis, assembly and testing) and Subtask 3 (Fuel production complex) of the Center. Major research efforts are directed towards developing artificial, hydrogen-producing catalysts and functionally connecting them to electrode surfaces. In the Jones group,

  17. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content

    SciTech Connect (OSTI)

    Fortmann, C.M.; Hegedus, S.S. )

    1992-12-01

    Results and conclusions obtained during a research program of the investigation of amorphous silicon and amorphous silicon based alloy materials and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  18. LOCAL INTERSTELLAR HYDROGEN'S DISAPPEARANCE AT 1 AU: FOUR YEARS OF IBEX IN THE RISING SOLAR CYCLE

    SciTech Connect (OSTI)

    Saul, Lukas; Rodriguez, Diego; Scheer, Juergen; Wurz, Peter; Bzowski, Maciej; Kubiak, Marzena; Sokol, Justina; Fuselier, Stephen; McComas, Dave; Moebius, Eberhard

    2013-04-20

    NASA's Interstellar Boundary Explorer (IBEX) mission has recently opened a new window on the interstellar medium (ISM) by imaging neutral atoms. One ''bright'' feature in the sky is the interstellar wind flowing into the solar system. Composed of remnants of stellar explosions as well as primordial gas and plasma, the ISM is by no means uniform. The interaction of the local ISM with the solar wind shapes our heliospheric environment with hydrogen being the dominant component of the very local ISM. In this paper, we report on direct sampling of the neutral hydrogen of the local ISM over four years of IBEX observations. The hydrogen wind observed at 1 AU has decreased and nearly disappeared as the solar activity has increased over the last four years; the signal at 1 AU has dropped off in 2012 by a factor of {approx}8 to near background levels. The longitudinal offset has also increased with time presumably due to greater radiation pressure deflecting the interstellar wind. We present longitudinal and latitudinal arrival direction measurements of the bulk flow as measured over four years beginning at near solar minimum conditions. The H distribution we observe at 1 AU is expected to be different from that outside the heliopause due to ionization, photon pressure, gravity, and filtration by interactions with heliospheric plasma populations. These observations provide an important benchmark for modeling of the global heliospheric interaction. Based on these observations we suggest a further course of scientific action to observe neutral hydrogen over a full solar cycle with IBEX.

  19. Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution

    SciTech Connect (OSTI)

    Hou, Yidong

    2011-11-08

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo{sub 3}S{sub 4}) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory calculations of the Mo{sub 3}S{sub 4} clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site.

  20. Development of efficient photoreactors for solar hydrogen production

    SciTech Connect (OSTI)

    Huang, Cunping; Yao, Weifeng; T-Raissi, Ali; Muradov, Nazim

    2011-01-15

    The rate of hydrogen evolution from a photocatalytic process depends not only on the activity of a photocatalyst, but also on photoreactor design. Ideally, a photoreactor should be able to absorb the incident light, promoting photocatalytic reactions in an effective manner with minimal photonic losses. There are numerous technical challenges and cost related issues when designing a large-scale photoreactor for hydrogen production. Active stirring of the photocatalyst slurry within a photoreactor is not practical in large-scale applications due to cost related issues. Rather, the design should allow facile self-mixing of the flow field within the photoreactor. In this paper two types of photocatalytic reactor configurations are studied: a batch type design and another involving passive self-mixing of the photolyte. Results show that energy loss from a properly designed photoreactor is mainly due to reflection losses from the photoreactor window. We describe the interplay between the reaction and the photoreactor design parameters as well as effects on the rate of hydrogen evolution. We found that a passive self-mixing of the photolyte is possible. Furthermore, the use of certain engineering polymer films as photoreactor window materials has the potential for substantial cost savings in large-scale applications, with minimal reduction of photon energy utilization efficiency. Eight window materials were tested and the results indicate that Aclar trademark polymer film used as the photoreactor window provides a substantial cost saving over other engineering polymers, especially with respect to fused silica glass at modest hydrogen evolution rates. (author)

  1. Turnbull Hydro LLC | Open Energy Information

    Open Energy Info (EERE)

    Turnbull Hydro LLC Jump to: navigation, search Name: Turnbull Hydro LLC Place: Montana Sector: Hydro Product: Montana-based small hydro developer. References: Turnbull Hydro LLC1...

  2. Invervar Hydro | Open Energy Information

    Open Energy Info (EERE)

    Invervar Hydro Jump to: navigation, search Name: Invervar Hydro Place: United Kingdom Product: Scottish private project developer. References: Invervar Hydro1 This article is a...

  3. India National Hydrogen Energy Board NHEB | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Energy Board NHEB Jump to: navigation, search Name: India National Hydrogen Energy Board (NHEB) Place: New Delhi, India Zip: 110 003 Sector: Hydro, Hydrogen Product: Set...

  4. Spanish Hydrogen Association AeH | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association AeH Jump to: navigation, search Name: Spanish Hydrogen Association (AeH) Place: Madrid, Spain Zip: 28760 Sector: Hydro, Hydrogen Product: Spanish conference...

  5. South Carolina Hydrogen and Fuel Cell Alliance | Open Energy...

    Open Energy Info (EERE)

    Hydrogen and Fuel Cell Alliance Jump to: navigation, search Name: South Carolina Hydrogen and Fuel Cell Alliance Place: Columbia, South Carolina Zip: 29201 Sector: Hydro, Hydrogen...

  6. Aiken County Center for Hydrogen Research | Open Energy Information

    Open Energy Info (EERE)

    Aiken County Center for Hydrogen Research Jump to: navigation, search Name: Aiken County Center for Hydrogen Research Place: South Carolina Zip: 29803 Sector: Hydro, Hydrogen...

  7. International Partnership for Hydrogen Energy IPHE | Open Energy...

    Open Energy Info (EERE)

    for Hydrogen Energy IPHE Jump to: navigation, search Name: International Partnership for Hydrogen Energy (IPHE) Place: Washington, Washington, DC Zip: 20004 Sector: Hydro, Hydrogen...

  8. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect (OSTI)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S.

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  9. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect (OSTI)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C., Jr.; Unold, T.; Crandall, R.S.; Guha, S.; Yang, J. |

    1997-02-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. We find that the treatment of the top surface of the HW i-layer while it is cooled from its high deposition temperature is crucial to device performance. We present data concerning these surface treatments, and correlate these treatments with Schottky device performance. We also present first generation HW n-i-p solar cell data, where a glow discharge (GD) {mu}c-Si(p) layer completes the partial devices. No light trapping layer is used to increase the device Jsc. Our preliminary results yield efficiencies of up to 6.8{percent} for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10{percent} after a 900h AM1 light soak. We suggest areas for further improvement of our devices. {copyright} {ital 1997 American Institute of Physics.}

  10. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect (OSTI)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S.; Guha, S.; Yang, J.

    1996-09-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and they correlate these treatments with Schottky device performance. They also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. The preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4,000 {angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. They suggest avenues for further improvement of the devices.

  11. Manitoba Hydro | Open Energy Information

    Open Energy Info (EERE)

    Hydro Jump to: navigation, search Name: Manitoba Hydro Place: Winnipeg, Manitoba, Canada Zip: R3M 3T1 Sector: Hydro Product: Manitoba Hydro is the province's major energy...

  12. Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.

    SciTech Connect (OSTI)

    Kronawitter, Coleman X.; Antoun, Bonnie R.; Mao, Samuel S.

    2012-01-01

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  13. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect (OSTI)

    Mahan, A.H.; Nelson, B.P.; Iwaniczko, E.; Wang, Q.; Molenbroek, E.C.; Asher, S.E.; Reedy, R.C. Jr.; Crandall, R.S.

    1996-01-01

    This paper details preliminary results obtained in incorporating low H content, high substrate temperature hot wire (HW) deposited amorphous silicon material into a substrate solar cell structure. By necessity, since the learning curve for this complete structure involves metal/{ital n}-{ital i}/Schottky barrier structure optimization, a large part of the results are focused on this (partial) structure. We have found that the treatment of the top surface of the HW {ital i} layer during cooling is crucial to device performance. Without any particular attention paid to the treatment of this surface while the sample is cooling from its high deposition temperature, a significant amount of H diffuses out of the sample during the cooling process, particularly near the surface, resulting in devices with very poor photovoltaic properties. By designing a surface treatment to address this problem, we have been able to deposit HW Schottky structures with device characteristics as good as the best glow discharge devices produced in our laboratory. We present data concerning these surface treatments, and how they influence the H content at the {ital i}/Pd interface. {copyright} {ital 1996 American Institute of Physics.}

  14. Performance of Hydrogenated a-Si:H Solar Cells with Downshifting Coating: Preprint

    SciTech Connect (OSTI)

    Nemeth, B.; Xu, Y.; Wang, H.; Sun, T.; Lee, B. G.; Duda, A.; Wang, Q.

    2011-05-01

    We apply a thin luminescent downshifting (LDS) coating to a hydrogenated amorphous Si (a-Si:H) solar cell and study the mechanism of possible current enhancement. The conversion material used in this study converts wavelengths below 400 nm to a narrow line around 615 nm. This material is coated on the front of the glass of the a-Si:H solar cell with a glass/TCO/p/i/n/Ag superstrate configuration. The initial efficiency of the solar cell without the LDS coating is above 9.0 % with open circuit voltage of 0.84 V. Typically, the spectral response below 400 nm of an a-Si:H solar cell is weaker than that at 615 nm. By converting ultraviolet (UV) light to red light, the solar cell will receive more red photons; therefore, solar cell performance is expected to improve. We observe evidence of downshifting in reflectance spectra. The cell Jsc decreases by 0.13 mA/cm2, and loss mechanisms are identified.

  15. Hydro-Pac Inc., A High Pressure Company

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydro-Pac Inc. A High Pressure Company * Founded in 1972 * Manufacturer of Hydraulically Driven Intensifiers * High Pressure Hydrogen Compressors Hydrogen Compressor Cost Reduction Topics * Standardize Configuration and Fueling Strategy * Simple Designs and Proven Technologies * Identify Economical Hydrogen Compatible Materials * Specify Well Ventilated Sites with Remote Controls Standardize Configuration and Fueling Strategy * Limit the number of compressors and stages * Narrow the range of

  16. Dharmshala Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dharmshala Hydro Power Ltd Jump to: navigation, search Name: Dharmshala Hydro Power Ltd. Place: Hyderabad, India Sector: Hydro Product: Hyderabad-based small hydro project...

  17. Ascent Hydro Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ascent Hydro Projects Ltd Jump to: navigation, search Name: Ascent Hydro Projects Ltd. Place: Pune, Maharashtra, India Zip: 411007 Sector: Hydro Product: Pune-based small hydro...

  18. Neora Hydro Ltd | Open Energy Information

    Open Energy Info (EERE)

    Neora Hydro Ltd Jump to: navigation, search Name: Neora Hydro Ltd. Place: Kolkata, West Bengal, India Sector: Hydro Product: Kolkata-based small hydro project developer....

  19. EA-281 Manitoba Hydro | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manitoba Hydro EA-281 Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. PDF icon EA-281 Manitoba Hydro More Documents & Publications EA-281-B

  20. The boron-tailing myth in hydrogenated amorphous silicon solar cells

    SciTech Connect (OSTI)

    Stuckelberger, M. Bugnon, G.; Despeisse, M.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C.; Park, B.-S.

    2015-11-16

    The boron-tailing effect in hydrogenated amorphous silicon (a-Si:H) solar cells describes the reduced charge collection specifically in the blue part of the spectrum for absorber layers deposited above a critical temperature. This effect limits the device performance of state-of-the art solar cells: For enhanced current density (reduced bandgap), the deposition temperature should be as high as possible, but boron tailing gets detrimental above 200 °C. To investigate this limitation and to show potential paths to overcome it, we deposited high-efficiency a-Si:H solar cells, varying the deposition temperatures of the p-type and the intrinsic absorber (i) layers between 150 and 250 °C. Using secondary ion mass spectroscopy, we study dedicated stacks of i-p-i layers deposited at different temperatures. This allows us to track boron diffusion at the p-i and i-p interfaces as they occur in the p-i-n and n-i-p configurations of a-Si:H solar cells for different deposition conditions. Finally, we prove step-by-step that the common explanation for boron tailing—boron diffusion from the p layer into the i layer leading to enhanced recombination—is not generally true and propose an alternative explanation for the experimentally observed drop in the external quantum efficiency at short wavelengths.

  1. Micro Hydro Kinetic Turbines from Smart Hydro Power | Open Energy...

    Open Energy Info (EERE)

    Hydro Kinetic Turbines from Smart Hydro Power Jump to: navigation, search << Return to the MHK database homepage Tauchturbine.jpg Technology Profile Project(s) where this...

  2. New Mexico Hydrogen Technology Partners HyTep | Open Energy Informatio...

    Open Energy Info (EERE)

    Hydrogen Technology Partners HyTep Jump to: navigation, search Name: New Mexico Hydrogen Technology Partners (HyTep) Place: New Mexico Sector: Hydro, Hydrogen Product: An alliance...

  3. Hydro Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation > Generation Hydro Power FCRPS Hydro Projects FCRPS Information Kiosk Current Hydrological Info Fish Funding Agreement FCRPS Definitions Wind Power Monthly GSP BPA White...

  4. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  5. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  6. Hydrogen company Hamburg E V | Open Energy Information

    Open Energy Info (EERE)

    company Hamburg E V Jump to: navigation, search Name: Hydrogen company Hamburg E V Place: Hamburg, Hamburg, Germany Sector: Hydro, Hydrogen Product: This organisation was created...

  7. EUHYFIS Hydrogen Filling Station Consortium | Open Energy Information

    Open Energy Info (EERE)

    EUHYFIS Hydrogen Filling Station Consortium Jump to: navigation, search Name: EUHYFIS (Hydrogen Filling Station Consortium) Place: Oldenburg, Germany Zip: 26123 Sector: Hydro,...

  8. Marine Hydrogen and Fuel Cell Association MHFCA | Open Energy...

    Open Energy Info (EERE)

    Hydrogen and Fuel Cell Association MHFCA Jump to: navigation, search Name: Marine Hydrogen and Fuel Cell Association (MHFCA) Place: Leipzig, Germany Zip: D-04318 Sector: Hydro,...

  9. EERC National Center for Hydrogen Technology | Open Energy Information

    Open Energy Info (EERE)

    National Center for Hydrogen Technology Jump to: navigation, search Name: EERC National Center for Hydrogen Technology Place: Grand Forks, North Dakota Zip: 58203 Sector: Hydro,...

  10. Microscopic Measurements of Electrical Potential in Hydrogenated Nanocrystalline Silicon Solar Cells: Preprint

    SciTech Connect (OSTI)

    Jiang, C. S.; Moutinho, H. R.; Reedy, R. C.; Al-Jassim, M. M.; Yan, B.; Yue, G.; Sivec, L.; Yang, J.; Guha, S.; Tong, X.

    2012-04-01

    We report on a direct measurement of electrical potential and field profiles across the n-i-p junction of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells, using the nanometer-resolution potential imaging technique of scanning Kelvin probe force microscopy (SKPFM). It was observed that the electric field is nonuniform across the i layer. It is much higher in the p/i region than in the middle and the n/i region, illustrating that the i layer is actually slightly n-type. A measurement on a nc-Si:H cell with a higher oxygen impurity concentration shows that the nonuniformity of the electric field is much more pronounced than in samples having a lower O impurity, indicating that O is an electron donor in nc-Si:H materials. This nonuniform distribution of electric field implies a mixture of diffusion and drift of carrier transport in the nc-Si:H solar cells. The composition and structure of these nc-Si:H cells were further investigated by using secondary-ion mass spectrometry and Raman spectroscopy, respectively. The effects of impurity and structural properties on the electrical potential distribution and solar cell performance are discussed.

  11. Brigham City Hydro Generation Project

    SciTech Connect (OSTI)

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and

  12. HydroVision International

    Broader source: Energy.gov [DOE]

    The HydroVision International Conference and Exhibition offers attendees countless opportunities to network, share best practices, meet with product and service providers, and more.  Held over five...

  13. Strategic partnerships final LDRD report : nanocomposite materials for efficient solar hydrogen production.

    SciTech Connect (OSTI)

    Corral, Erica L.; Miller, James Edward; Walker, Luke S.; Evans, Lindsey R.

    2012-05-01

    This 'campus executive' project sought to advance solar thermochemical technology for producing the chemical fuels. The project advanced the common interest of Sandia National Laboratories and the University of Arizona in creating a sustainable and viable alternative to fossil fuels. The focus of this effort was in developing new methods for creating unique monolithic composite structures and characterizing their performance in thermochemical production of hydrogen from water. The development and processing of the materials was undertaken in the Materials Science and Engineering Department at the University of Arizona; Sandia National Laboratories performed the thermochemical characterization. Ferrite/yttria-stabilized zirconia composite monoliths were fabricated and shown to have exceptionally high utilization of the ferrite for splitting CO{sub 2} to obtain CO (a process analogous to splitting H{sub 2}O to obtain H{sub 2}).

  14. The effects of hydrogen dilution on Voc in a-Si:H pin solar cells

    SciTech Connect (OSTI)

    Wang, Q.; Crandall, R.S.; Han, D.

    1997-07-01

    The authors study the effects of hydrogen dilution on the open circuit voltage of a-Si:H pin solar cells fabricated by rf glow discharge growth. They keep the p and n layers the same and only vary the i-layer properties. A normal a-Si:H i-layer, an H-diluted i-layer, and a thin H-diluted layer inserted between p and normal i layer are selected for this study. They measure the JV characteristics and the internal electric field distribution using a transient-null-current technique both in annealed and light soaked states. They find that hydrogen dilution does stabilize the Voc either in a bulk H-diluted i layer or in a thin layer between p and normal i layer after 100 hours Am1 sun light soaking. From dark IV measurement, both H-diluted cells show little change in current at voltage near Voc before and after light soaking; while the normal a-Si:H cell does show a noticeable change. Also the internal field measurements find a stronger electric field starting from p and i interface for both H-diluted cells compared to the normal a-Si:H cell. Furthermore, there are no measurable changes in the field profiles after 100 hour AM1 light-soaking for both H-diluted and normal a-Si cells. All these suggest that hydrogen dilution increases the field strength near p and i interface, which is the key that leads to a more stable Voc of H-diluted cells.

  15. North American Hydro | Open Energy Information

    Open Energy Info (EERE)

    Hydro Jump to: navigation, search Name: North American Hydro Place: Schofield, Wisconsin Zip: 54476 Sector: Hydro Product: Focused on developing, upgrading, owning, and operating...

  16. Dharamshala Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dharamshala Hydro Power Ltd Jump to: navigation, search Name: Dharamshala Hydro Power Ltd Place: New Delhi, Delhi (NCT), India Zip: 110008 Sector: Hydro Product: Delhi-based...

  17. Bhilangana Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Bhilangana Hydro Power Ltd Jump to: navigation, search Name: Bhilangana Hydro Power Ltd. Place: Noida, Uttar Pradesh, India Zip: 201301 Sector: Hydro Product: Noida-based small...

  18. Hydro Green Energy | Open Energy Information

    Open Energy Info (EERE)

    Green Energy Jump to: navigation, search Name: Hydro Green Energy Place: Houston, Texas Zip: 77056 Sector: Hydro Product: Hydro Green Energy is a project developer and integrator...

  19. Advanced Hydro Solutions | Open Energy Information

    Open Energy Info (EERE)

    Hydro Solutions Jump to: navigation, search Name: Advanced Hydro Solutions Place: Fairlawn, Ohio Zip: 44333 Sector: Hydro Product: Ohio-based company seeking to develop...

  20. Himalayan Hydro P Ltd | Open Energy Information

    Open Energy Info (EERE)

    P Ltd Jump to: navigation, search Name: Himalayan Hydro (P) Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500 033 Sector: Hydro Product: Hyderabad-based small hydro project...

  1. Cauvery Hydro Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Cauvery Hydro Energy Ltd Jump to: navigation, search Name: Cauvery Hydro Energy Ltd. Place: Bangalore, Karnataka, India Zip: 560080 Sector: Hydro Product: Bangalore based small...

  2. Ayyappa Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ayyappa Hydro Power Ltd Jump to: navigation, search Name: Ayyappa Hydro Power Ltd. Place: Kolkata, West Bengal, India Zip: 700 017 Sector: Hydro Product: Kolkata-based small hydro...

  3. Gehra Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gehra Hydro Power Ltd Jump to: navigation, search Name: Gehra Hydro Power Ltd. Place: New Delhi, Delhi (NCT), India Zip: 110008 Sector: Hydro Product: Delhi-based small hydro...

  4. Jiuquan Sanyuan Hydro Power | Open Energy Information

    Open Energy Info (EERE)

    Hydro Power Jump to: navigation, search Name: Jiuquan Sanyuan Hydro Power Place: China Sector: Hydro Product: Developer of 26.55MW Gansu hydro plant in China. References: Jiuquan...

  5. KKK Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    KKK Hydro Power Ltd Jump to: navigation, search Name: KKK Hydro Power Ltd. Place: Faridabad, Haryana, India Zip: 121 003 Sector: Hydro Product: Faridabad-based small hydro project...

  6. Hydrogenated TiO{sub 2} film for enhancing photovoltaic properties of solar cells and self-sensitized effect

    SciTech Connect (OSTI)

    He, Hongcai; Yang, Kui; Wang, Ning Luo, Feifei; Chen, Haijun

    2013-12-07

    Hydrogenated TiO{sub 2} film was obtained by annealing TiO{sub 2} film at 350 °C for 2 h with hydrogen, and TiO{sub 2} films were prepared by screen printing on fluorine-doped tin oxide glass. Structural characterization by X-ray diffraction and electron microscopy did not show obvious difference between hydrogenated TiO{sub 2} film and pristine TiO{sub 2} film. Through optical and electrochemical characterization, the hydrogenated TiO{sub 2} film showed enhanced absorption and narrowed band gap, as well as reduced TiO{sub 2} surface impedance and dark current. As a result, an obviously enhanced photovoltaic effect was observed in the solar cell with hydrogenated TiO{sub 2} as photoanode without adding any dye due to the self-sensitized effect of hydrogenated TiO{sub 2} film, which excited electrons injecting internal conduction band of TiO{sub 2} to generate more photocurrent.

  7. SOLAR RADIATION PRESSURE AND LOCAL INTERSTELLAR MEDIUM FLOW PARAMETERS FROM INTERSTELLAR BOUNDARY EXPLORER LOW ENERGY HYDROGEN MEASUREMENTS

    SciTech Connect (OSTI)

    Schwadron, N. A.; Moebius, E.; Kucharek, H.; Lee, M. A.; French, J.; Saul, L.; Wurz, P.; Bzowski, M.; Fuselier, S. A.; Livadiotis, G.; McComas, D. J.; Frisch, P.; Gruntman, M.; Mueller, H. R.

    2013-10-01

    Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Ly?. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (?) has increased slightly from ? = 0.94 0.04 in 2009 to ? = 1.01 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

  8. HydroPulse Drilling

    SciTech Connect (OSTI)

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  9. American Wind Power Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    Power Hydrogen LLC Jump to: navigation, search Name: American Wind Power & Hydrogen LLC Place: New York, New York Zip: 10022 Sector: Hydro, Hydrogen, Vehicles Product: AWP&H is a...

  10. Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Hydro-electric generator

    SciTech Connect (OSTI)

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.

  12. Thirumala Hydro Power P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Thirumala Hydro Power P Ltd Jump to: navigation, search Name: Thirumala Hydro Power (P) Ltd. Place: Guntur, Andhra Pradesh, India Sector: Hydro Product: Guntur-based small hydro...

  13. EA-281-A Manitoba Hydro | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Manitoba Hydro EA-281-A Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. PDF icon EA-281-A Manitoba Hydro More Documents & Publications ...

  14. EA-281-B Manitoba Hydro | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -B Manitoba Hydro EA-281-B Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. PDF icon EA-281-B Manitoba Hydro More Documents & Publications ...

  15. V B Hydro Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydro Projects Ltd Jump to: navigation, search Name: V. B. Hydro Projects Ltd. Place: Pathankot, Punjab, India Zip: 145001 Sector: Hydro Product: Pathankot-based small hydro...

  16. Real-time hydro coordination and economic hydro optimization

    SciTech Connect (OSTI)

    Dasigenis, A.T.; Garcia-San Pedro, A.R.

    1995-12-31

    This paper addresses the real-time aspects of the Hydro-Thermal Coordination problem. It describes the real-time modeling and monitoring of hydro resources, and the use of the resulting real-time hydraulic data in the on-line Economic Dispatch algorithm. A variable head, hydro loss model is incorporated that allows for on-line changes to the hydro topology. The method presented provides the operator with a current view of the available water resources, enables the validation of the real-time hydro data received from the field, and enables real-time optimization of the Hydro-Thermal Unit Commitment plan. The implementation of this approach on the Iberdrola system in Spain is described.

  17. FCRPS Definitions (hydro/fcrps)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Reclamation (USBR). Portion of Cost Allocated to Power The cost allocated to the power generating portion of hydro projects. Flood control, navigation, and irrigation are...

  18. Hydrogenated indium oxide window layers for high-efficiency Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect (OSTI)

    Jäger, Timo Romanyuk, Yaroslav E.; Nishiwaki, Shiro; Bissig, Benjamin; Pianezzi, Fabian; Fuchs, Peter; Gretener, Christina; Tiwari, Ayodhya N.; Döbeli, Max

    2015-05-28

    High mobility hydrogenated indium oxide is investigated as a transparent contact for thin film Cu(In,Ga)Se{sub 2} (CIGS) solar cells. Hydrogen doping of In{sub 2}O{sub 3} thin films is achieved by injection of H{sub 2}O water vapor or H{sub 2} gas during the sputter process. As-deposited amorphous In{sub 2}O{sub 3}:H films exhibit a high electron mobility of ∼50 cm{sup 2}/Vs at room temperature. A bulk hydrogen concentration of ∼4 at. % was measured for both optimized H{sub 2}O and H{sub 2}-processed films, although the H{sub 2}O-derived film exhibits a doping gradient as detected by elastic recoil detection analysis. Amorphous IOH films are implemented as front contacts in CIGS based solar cells, and their performance is compared with the reference ZnO:Al electrodes. The most significant feature of IOH containing devices is an enhanced open circuit voltage (V{sub OC}) of ∼20 mV regardless of the doping approach, whereas the short circuit current and fill factor remain the same for the H{sub 2}O case or slightly decrease for H{sub 2}. The overall power conversion efficiency is improved from 15.7% to 16.2% by substituting ZnO:Al with IOH (H{sub 2}O) as front contacts. Finally, stability tests of non-encapsulated solar cells in dry air at 80 °C and constant illumination for 500 h demonstrate a higher stability for IOH-containing devices.

  19. Back-side hydrogenation technique for defect passivation in silicon solar cells

    DOE Patents [OSTI]

    Sopori, B.L.

    1994-04-19

    A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts. 3 figures.

  20. Back-side hydrogenation technique for defect passivation in silicon solar cells

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1994-01-01

    A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts.

  1. HydroChina Corporation | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100011 Sector: Hydro, Wind energy Product: Beijing-based firm focused on hydro and wind power development. References: HydroChina Corporation1 This article is a...

  2. Aquaphile sarl Hydro Gen | Open Energy Information

    Open Energy Info (EERE)

    Aquaphile sarl Hydro Gen Jump to: navigation, search Name: Aquaphile sarl Hydro Gen Address: 210 Le Vrennic Place: Landda Zip: 29870 Region: France Sector: Marine and Hydrokinetic...

  3. Belij Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Belij Hydro Power Ltd Jump to: navigation, search Name: Belij Hydro Power Ltd Place: New Delhi, Delhi (NCT), India Zip: 110008 Product: Private investorproject developer which has...

  4. Beck Mickle Hydro Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mickle Hydro Ltd Jump to: navigation, search Name: Beck Mickle Hydro Ltd. Place: Lancashire, England, United Kingdom Zip: LA4 4AY Product: Development of a technology, which...

  5. Geo Hydro Supply | Open Energy Information

    Open Energy Info (EERE)

    Hydro Supply Jump to: navigation, search Name: Geo Hydro Supply Address: 997 State Route 93 NW Place: Sugarcreek, Ohio Zip: 44681 Sector: Geothermal energy Phone Number:...

  6. Voith Hydro Wavegen Limited | Open Energy Information

    Open Energy Info (EERE)

    Voith Hydro Wavegen Limited Jump to: navigation, search Name: Voith Hydro Wavegen Limited Region: United Kingdom Sector: Marine and Hydrokinetic Website: www.wavegen.co.uk This...

  7. The Small Hydro Company | Open Energy Information

    Open Energy Info (EERE)

    Hydro Company Jump to: navigation, search Name: The Small Hydro Company Place: Oxfordshire, United Kingdom Product: Privately-held owner, developer and operator of assets....

  8. Village Hydro Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Hydro Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Village Hydro Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus...

  9. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation

    SciTech Connect (OSTI)

    Shabani, Bahman; Andrews, John; Watkins, Simon

    2010-01-15

    A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

  10. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for ...

  11. Pumped Hydro | Open Energy Information

    Open Energy Info (EERE)

    Introduction caption:Pumped Storage diagram at TVA's Racoon mountain Pumped Hydro is an energy storage technique where water is used as a medium in order to store energy. During...

  12. Midwest Hydro Users Group Meeting

    Broader source: Energy.gov [DOE]

    The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

  13. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen can be produced using diverse, domestic resources. Fossil fuels, such as natural gas and coal, can be converted to produce hydrogen, and the use of carbon capture, utilization, and storage can reduce the carbon footprint of these processes. Hydrogen can also be produced from low carbon and renewable resources, including biomass grown from non-food crops and splitting water using electricity from wind, solar, geothermal, nuclear, and hydroelectric. This diversity of potential

  14. Enhanced absorption in tandem solar cells by applying hydrogenated In{sub 2}O{sub 3} as electrode

    SciTech Connect (OSTI)

    Yin, Guanchao Manley, Phillip; Steigert, Alexander; Klenk, Reiner; Schmid, Martina

    2015-11-23

    To realize the high efficiency potential of perovskite/chalcopyrite tandem solar cells in modules, hydrogenated In{sub 2}O{sub 3} (IO:H) as electrode is investigated. IO:H with an electron mobility of 100 cm{sup 2} V{sup −1} s{sup −1} is demonstrated. Compared to the conventional Sn doped In{sub 2}O{sub 3} (ITO), IO:H exhibits a decreased electron concentration and leads to almost no sub-bandgap absorption up to the wavelength of 1200 nm. Without a trade-off between transparency and lateral resistance in the IO:H electrode, the tandem cell keeps increasing in efficiency as the IO:H thickness increases and efficiencies above 22% are calculated. In contrast, the cells with ITO as electrode perform much worse due to the severe parasitic absorption in ITO. This indicates that IO:H has the potential to lead to high efficiencies, which is otherwise constrained by the parasitic absorption in conventional transparent conductive oxide electrode for tandem solar cells in modules.

  15. Vindhyachal Hydro Power Ltd VHPL | Open Energy Information

    Open Energy Info (EERE)

    Vindhyachal Hydro Power Ltd VHPL Jump to: navigation, search Name: Vindhyachal Hydro Power Ltd. (VHPL) Place: Mumbai, Maharashtra, India Zip: 400001 Sector: Hydro Product:...

  16. Yushan Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yushan Hydro Power Development Co Ltd Jump to: navigation, search Name: Yushan Hydro Power Development Co. Ltd. Place: Chongqing, Jiangsu Province, China Zip: 405800 Sector: Hydro...

  17. Fengning Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fengning Hydro Power Development Co Ltd Jump to: navigation, search Name: Fengning Hydro Power Development Co., Ltd. Place: Guizhou Province, China Sector: Hydro Product:...

  18. Madkini Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Madkini Hydro Power Pvt Ltd Jump to: navigation, search Name: Madkini Hydro Power Pvt Ltd. Place: Dehradun, Uttaranchal, India Zip: 248006 Sector: Hydro Product: Dehradun-based...

  19. Vijayalakshmi Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vijayalakshmi Hydro Power Pvt Ltd Jump to: navigation, search Name: Vijayalakshmi Hydro Power Pvt. Ltd. Place: Bangalore, Karnataka, India Zip: 560 001 Sector: Hydro Product:...

  20. Longchuan Minhong Hydro power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Minhong Hydro power Co Ltd Jump to: navigation, search Name: Longchuan Minhong Hydro power Co. Ltd Place: Yunnan Province, China Zip: 678700 Sector: Hydro Product: China-based...

  1. Gunsola Hydro Power Generation Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gunsola Hydro Power Generation Pvt Ltd Jump to: navigation, search Name: Gunsola Hydro Power Generation Pvt Ltd Place: Dehradun, Uttaranchal, India Sector: Hydro Product:...

  2. Jinxiu Guangneng Hydro Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guangneng Hydro Power Company Ltd Jump to: navigation, search Name: Jinxiu Guangneng Hydro Power Company Ltd. Place: Guangxi Autonomous Region, China Zip: 530022 Sector: Hydro...

  3. Fujian Jinzaoqiao Hydro Power Limited Corporation | Open Energy...

    Open Energy Info (EERE)

    Jinzaoqiao Hydro Power Limited Corporation Jump to: navigation, search Name: Fujian Jinzaoqiao Hydro Power Limited Corporation Place: Ningde, Fujian Province, China Sector: Hydro...

  4. Janapadu Hydro Power Project Pvt Ltd JHPPPL | Open Energy Information

    Open Energy Info (EERE)

    Janapadu Hydro Power Project Pvt Ltd JHPPPL Jump to: navigation, search Name: Janapadu Hydro Power Project Pvt. Ltd.(JHPPPL) Place: Andhra Pradesh, India Zip: 522005 Sector: Hydro...

  5. Zhangping Huakou Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhangping Huakou Hydro Power Co Ltd Jump to: navigation, search Name: Zhangping Huakou Hydro Power Co Ltd Place: Zhangping, Fujian Province, China Sector: Hydro Product:...

  6. Him Kailash Hydro Power P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Him Kailash Hydro Power P Ltd Jump to: navigation, search Name: Him Kailash Hydro Power (P) Ltd. Place: West Godavari District, Andhra Pradesh, India Zip: 434101 Sector: Hydro...

  7. Shri Shashi Hydro Electric Power P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shri Shashi Hydro Electric Power P Ltd Jump to: navigation, search Name: Shri Shashi Hydro Electric Power (P) Ltd. Place: Mandi, Himachal Pradesh, India Zip: 174401 Sector: Hydro...

  8. Shizong Heier Hydro power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shizong Heier Hydro power Development Co Ltd Jump to: navigation, search Name: Shizong Heier Hydro power Development Co.Ltd Place: Yunnan Province, China Sector: Hydro Product:...

  9. Jiangxi Jiangwan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiangwan Hydro Power Co Ltd Jump to: navigation, search Name: Jiangxi Jiangwan Hydro Power Co., Ltd. Place: Shangrao, China Zip: 344000 Sector: Hydro Product: China-based small...

  10. Guizhou Sanhe Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydro Power Development Co Ltd Jump to: navigation, search Name: Guizhou Sanhe Hydro Power Development Co.Ltd. Place: Guiyang, Guizhou Province, China Zip: 550002 Sector: Hydro...

  11. Libo Lidu Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lidu Hydro Power Development Co Ltd Jump to: navigation, search Name: Libo Lidu Hydro Power Development Co.Ltd. Place: Guizhou Province, China Zip: 558400 Sector: Hydro Product:...

  12. Antu County Hengxin Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Antu County Hengxin Hydro Power Development Co Ltd Jump to: navigation, search Name: Antu County Hengxin Hydro Power Development Co., Ltd Place: China Zip: 133609 Sector: Hydro...

  13. Qingyuan Longjing Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Longjing Hydro Power Development Co Ltd Jump to: navigation, search Name: Qingyuan Longjing Hydro Power Development Co. Ltd. Place: Lishui City, China Zip: 323800 Sector: Hydro...

  14. Yu County Hydro electric Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    County Hydro electric Power Co Ltd Jump to: navigation, search Name: Yu County Hydro-electric Power Co., Ltd. Place: Shaanxi Province, China Zip: 45100 Sector: Hydro Product:...

  15. Ningshan Luotuoya Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ningshan Luotuoya Hydro Power Co Ltd Jump to: navigation, search Name: Ningshan Luotuoya Hydro Power Co. Ltd., Place: Ankang, Shaanxi Province, China Zip: 711600 Sector: Hydro...

  16. Leshan Kaiyuan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Leshan Kaiyuan Hydro Power Co., Ltd. Place: Leshan, Sichuan Province, China Zip: 614000 Sector: Hydro Product: Sichuan-based small hydro...

  17. Macaohe Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Macaohe Hydro Power Development Co Ltd Jump to: navigation, search Name: Macaohe Hydro Power Development Co., Ltd. Place: Tongren, Guizhou Province, China Sector: Hydro Product:...

  18. Zhongjing Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhongjing Hydro Power Development Co Ltd Jump to: navigation, search Name: Zhongjing Hydro Power Development Co., Ltd. Place: Guizhou Province, China Sector: Hydro Product:...

  19. Guizhou Anshun Sanchawan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Anshun Sanchawan Hydro Power Co Ltd Jump to: navigation, search Name: Guizhou Anshun Sanchawan Hydro Power Co., Ltd. Place: Anshun, Guizhou Province, China Sector: Hydro Product:...

  20. Shimen Zhangjiadu Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhangjiadu Hydro Power Co Ltd Jump to: navigation, search Name: Shimen Zhangjiadu Hydro Power Co. Ltd. Place: Changde City, Hunan Province, China Zip: 415000 Sector: Hydro Product:...

  1. Jiangshan Jinlong hydro power development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jiangshan Jinlong hydro power development Co Ltd Jump to: navigation, search Name: Jiangshan Jinlong hydro power development Co. Ltd. Place: Jiangshan, China Sector: Hydro Product:...

  2. Sunan Longchanghe Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sunan Longchanghe Hydro Power Co Ltd Jump to: navigation, search Name: Sunan Longchanghe Hydro Power Co., Ltd Place: Zhangye, Gansu Province, China Zip: 620721 Sector: Hydro...

  3. Kapil Mohan Associates Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kapil Mohan Associates Hydro Power Pvt Ltd Jump to: navigation, search Name: Kapil Mohan & Associates Hydro Power Pvt. Ltd. Place: Chandigarh, Chandigarh, India Sector: Hydro...

  4. Qingyang Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Qingyang Hydro Power Development Co Ltd Jump to: navigation, search Name: Qingyang Hydro Power Development Co. Ltd. Place: Lishui City, China Zip: 323800 Sector: Hydro Product:...

  5. Huaiji County Huilian Hydro electric Group Company Limited |...

    Open Energy Info (EERE)

    Zip: 526400 Sector: Hydro Product: Hydro-electric project designer, constructor, and maintenance service provider. CLP Holding has 25% ownership of Huilian Hydro-electric....

  6. Sichuan Tianquan Xiacun Hydro Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xiacun Hydro Generation Co Ltd Jump to: navigation, search Name: Sichuan Tianquan Xiacun Hydro Generation Co. Ltd Place: Ya'an, Sichuan Province, China Zip: 625500 Sector: Hydro...

  7. Voith Hydro Ocean Current Technologies | Open Energy Information

    Open Energy Info (EERE)

    Ocean Current Technologies Jump to: navigation, search Name: Voith Hydro Ocean Current Technologies Place: Germany Sector: Hydro Product: Germany-based JV between Voith Hydro and...

  8. Paschim Hydro Energy Pvt Ltd PHEPL | Open Energy Information

    Open Energy Info (EERE)

    Paschim Hydro Energy Pvt Ltd PHEPL Jump to: navigation, search Name: Paschim Hydro Energy Pvt. Ltd. (PHEPL) Place: Hyderabad, Andhra Pradesh, India Zip: 500034 Sector: Hydro...

  9. Nagarjuna Hydro Energy Pvt Ltd NHEPL | Open Energy Information

    Open Energy Info (EERE)

    Hydro Energy Pvt Ltd NHEPL Jump to: navigation, search Name: Nagarjuna Hydro Energy Pvt. Ltd. (NHEPL) Place: Hyderabad, Andhra Pradesh, India Sector: Hydro Product: Hyderabad-based...

  10. Gowthami Hydro Electric Co P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydro Electric Co P Ltd Jump to: navigation, search Name: Gowthami Hydro Electric Co. (P) Ltd. Place: Secunderabad, Andhra Pradesh, India Zip: 500 003 Sector: Hydro Product:...

  11. PP-54 Ontario Hydro Electric Power Commission | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Ontario Hydro Electric Power Commission PP-54 Ontario Hydro Electric Power Commission Presidential Permit authorizing Ontario Hydro Electric Power Commission to construct, ...

  12. Sichuan Xingchen Hydro Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xingchen Hydro Investment Co Ltd Jump to: navigation, search Name: Sichuan Xingchen Hydro Investment Co., Ltd. Place: Mianyang, Sichuan Province, China Zip: 617067 Sector: Hydro...

  13. AD Hydro Power Ltd ADHPL | Open Energy Information

    Open Energy Info (EERE)

    AD Hydro Power Ltd ADHPL Jump to: navigation, search Name: AD Hydro Power Ltd. (ADHPL) Place: Noida, Uttar Pradesh, India Zip: 201301 Sector: Hydro Product: Noida-based small hydro...

  14. Western Wind and Solar Integration Study: Executive Summary,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... benefit of integrating wind and solar forecasting into grid operations? * How can hydro ... different interstate transmission build-outs and in- cluded these costs in the scenarios. ...

  15. Hydro Research Program Seeking Graduate Student Applicants

    Broader source: Energy.gov [DOE]

    The Hydro Research Foundation is now accepting graduate student applications for its DOE-funded graduate student research program. The Hydro Research Awards Program is designed to spur innovation...

  16. Solar Photo Catalytic Hydrogen Production from water using a dual bed photosystem

    SciTech Connect (OSTI)

    Florida Solar Energy Center

    2003-03-30

    A body of work was performed in which the feasibility of photocatalytically decomposing water into its constituent elements using a dual bed, or modular photosystem, under solar radiation was investigated. The system envisioned consists of two modules, each consisting of a shallow, flat, sealed container, in which microscopic photocatalytic particles are immobilized. The photocatalysts absorb light, generating free electrons and lattice vacancy holes, which are capable of performing reductive and oxidative chemistry, respectively. The photocatalysts would be chosen as to whether they specifically promote H{sub 2} or O{sub 2} evolution in their respective containers. An aqueous solution containing a redox mediator is pumped between the two chambers in order to transfer electron equivalents from one reaction to the other.

  17. Hydro Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Services Product: Micro hydropower company. Provides technical services such as feasibility studies, mechanicalcivilelectical design. References: Hydro Generation Ltd1...

  18. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas. Electricity-from the grid or from renewable sources such as wind, solar, geothermal, or biomass-is also currently used to produce hydrogen. In the longer term, solar energy and biomass can be used more directly to generate hydrogen. Natural Gas and Other Fossil Fuels Fossil fuels can be reformed to release the hydrogen from

  19. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  20. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  1. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  2. Role of hydrogen dilution in a-Si:H {ital p}-{ital i}-{ital n} solar cells stability

    SciTech Connect (OSTI)

    Wang, Q.; Xu, Y.; Crandall, R.S.

    1996-01-01

    We study the effect of H-diluted silane during rf glow discharge growth of {ital p}-{ital i}-{ital n} solar cells and companion {ital i} layers. Arriving at a conclusion drawn by other groups, we find that H dilution of the {ital i} layer increases device stability. H diluted devices usually degrade to saturation in less than 100 hours at AM1 Sun light intensity. We also find that our devices grown without H dilution degrade to saturation in less than 100 hours. However, they degrade to a lower value than the devices grown with H dilution. The main reason is that {ital V}{sub OC} does not decrease in the former (H-diluted) devices, whereas it does in the later devices. Changes in the stability of material properties in the {ital i} layer, as measured on companion films, show little if any affect of the hydrogen dilution. We describe experiments that suggest that H-dilution affects the doped/intrinsic layer interface region. {copyright} {ital 1996 American Institute of Physics.}

  3. Research on the Hydrogen Passivation of Defects and Impurities in Si Relevant to Crystalline Si Solar Cell Materials: Final Report, 16 February 2000 -- 15 April 2003

    SciTech Connect (OSTI)

    Stavola, M.

    2003-09-01

    The goal of this experimental research program is to increase the understanding, at a microscopic level, of hydrogenation processes and passivation mechanisms for crystalline-Si photovoltaics. In our experiments, vibrational spectroscopy was used to study the properties of the interstitial H2 molecule in Si and the transition-metal-hydrogen complexes in Si. The interstitial H2 molecule is formed readily in Si when hydrogen is introduced. Our studies establish that interstitial H2 in Si behaves as a nearly free rotator, solving puzzles about the behavior of this defect that have persisted since the discovery of its vibrational spectrum. The transition metals are common impurities in Si that decrease the minority-carrier lifetime and degrade the efficiencies of solar cells. Therefore, the possibility that transition-metal impurities in Si might be passivated by hydrogen has long been of interest. Our studies of transition-metal-H complexes in Si help to establish the structural and electrical properties of a family of Pt-H complexes in Si, and have made the Pt-H complexes a model system for understanding the interaction of hydrogen with transition-metal impurities in Si.

  4. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  5. Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon...

    Office of Scientific and Technical Information (OSTI)

    Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon Solar Cells: Preprint Bolen, M. L.; Grover, S.; Teplin, C. W.; Bobela, D.; Branz, H. M.; Stradins, P. 08 HYDROGEN; 14...

  6. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    ANV Partners ANV Partners Denver Colorado Hydro Hydrogen Services Solar Wind energy AQWON Motors AQWON Motors Speinshart Germany Hydro Hydrogen AQWON Motors has developed the first...

  7. Himalaya Hydro Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    project developer expanding into biomass and wind and planning to raise a fund to invest in a pipeline of identified projects. References: Himalaya Hydro Pvt Ltd1 This...

  8. Hydro Alternative Energy | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Jump to: navigation, search Name: Hydro Alternative Energy Place: Boca Raton, Florida Zip: 33486 Sector: Ocean Product: Marine project developer focusing on...

  9. HydroVolts | Open Energy Information

    Open Energy Info (EERE)

    Hydro Product: Aims to develop renewable energy from canals, waterways, streams, and ocean currents Website: www.hydrovolts.com Coordinates: 47.645778, -122.3257532 Show...

  10. First Hydro Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: First Hydro Company Place: Flintshire, England, United Kingdom Zip: CH5 3XJ Sector: Renewable Energy Product: Flintshire-based renewable...

  11. Vortex Hydro Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Energy LLC Jump to: navigation, search Name: Vortex Hydro Energy LLC Address: 4870 West Clark Rd Suite 108 Place: Ypsilanti Zip: 48197 Region: United States Sector: Marine and...

  12. Ambient Hydro Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydro Ltd develops small Hydroelectric projects. It also offers a range of technical and financial consultancy services. Coordinates: 51.431505, -2.187229 Show Map Loading...

  13. Ledong Xinyuan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ledong Xinyuan Hydro Power Co Ltd Jump to: navigation, search Name: Ledong Xinyuan Hydro Power Co. Ltd Place: Hainan Province, China Zip: 572500 Sector: Hydro Product: China-based...

  14. Hul Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hul Hydro Power Pvt Ltd Jump to: navigation, search Name: Hul Hydro Power Pvt. Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500004 Sector: Hydro Product: Hyderabad-based small...

  15. Huichang Bai exia Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huichang Bai exia Hydro Power Co Ltd Jump to: navigation, search Name: Huichang Bai'exia Hydro Power Co., Ltd Place: Jiangxi Province, China Zip: 342600 Sector: Hydro Product:...

  16. Puer Xianmei Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Puer Xianmei Hydro Power Co Ltd Jump to: navigation, search Name: Puer Xianmei Hydro Power Co., Ltd. Place: Yunnan Province, China Zip: 665108 Sector: Hydro Product: Yunnan-based...

  17. Siri Ram Syal Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Siri Ram Syal Hydro Power Pvt Ltd Jump to: navigation, search Name: Siri Ram Syal Hydro Power Pvt Ltd Place: New Delhi, Delhi (NCT), India Zip: 110070 Sector: Hydro Product:...

  18. Cosmos Hydro Power Ltd CHPL | Open Energy Information

    Open Energy Info (EERE)

    Ltd CHPL Jump to: navigation, search Name: Cosmos Hydro Power Ltd. (CHPL) Place: New Delhi, Delhi (NCT), India Zip: 110060 Sector: Hydro Product: Delhi-based small hydro project...

  19. Birahi Ganga Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Birahi Ganga Hydro Power Ltd Jump to: navigation, search Name: Birahi Ganga Hydro Power Ltd. Place: New Delhi, Delhi (NCT), India Zip: 110019 Sector: Hydro Product: Delhi-based...

  20. Chamoli Hydro Power P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Chamoli Hydro Power P Ltd Jump to: navigation, search Name: Chamoli Hydro Power (P) Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500 033 Sector: Hydro Product: Hyderabad-based...

  1. Super Hydro Electric Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Electric Pvt Ltd Jump to: navigation, search Name: Super Hydro Electric Pvt. Ltd. Place: New Delhi, Delhi (NCT), India Zip: 1100024 Sector: Hydro Product: Delhi-based small hydro...

  2. SBA Hydro Systems Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    SBA Hydro Systems Pvt Ltd Jump to: navigation, search Name: SBA Hydro Systems Pvt. Ltd. Place: New Delhi, Delhi (NCT), India Zip: 110019 Sector: Hydro Product: Delhi-based...

  3. Usaka Hydro Powers Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Usaka Hydro Powers Pvt Ltd Jump to: navigation, search Name: Usaka Hydro Powers Pvt. Ltd. Place: Anand Parvat, Delhi (NCT), India Zip: 110005 Sector: Hydro Product: Delhi-based...

  4. MHK Technologies/HydroCoil Turbine | Open Energy Information

    Open Energy Info (EERE)

    HydroCoil Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroCoil Turbine.jpg Technology Profile Primary Organization HydroCoil...

  5. NREL Photoelectrode Research Advances Hydrogen Production Efforts

    SciTech Connect (OSTI)

    Gu, Jing

    2015-12-01

    Scientists have created a high-performing photoelectrode that boosts the ability of solar water-splitting to produce hydrogen.

  6. Smart Hydro Power GmbH | Open Energy Information

    Open Energy Info (EERE)

    Smart Hydro Power GmbH Address: Alte Traubinger Str. 17 Place: Garatshausen Country: Germany Zip: 82340 Sector: Marine and Hydrokinetic Product: Micro Hydro Kinetic Turbine...

  7. Kingston Creek Hydro Project Powers 100 Households | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kingston Creek Hydro Project Powers 100 Households Kingston Creek Hydro Project Powers 100 Households August 21, 2013 - 12:00am Addthis Nevada-based contracting firm Nevada ...

  8. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water ...

  9. Zhushan County Yuyuan Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhushan County Yuyuan Hydro Power Development Co Ltd Jump to: navigation, search Name: Zhushan County Yuyuan Hydro Power Development Co. Ltd Place: Zhushan county, Hubei Province,...

  10. Langao County Guangming Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    County Guangming Hydro Power Development Co Ltd Jump to: navigation, search Name: Langao County Guangming Hydro Power Development Co., Ltd. Place: Ankang, Shaanxi Province, China...

  11. Jinxiu Yao Autonomous County Jinsheng Hydro Power Co Ltd | Open...

    Open Energy Info (EERE)

    Jinxiu Yao Autonomous County Jinsheng Hydro Power Co Ltd Jump to: navigation, search Name: Jinxiu Yao Autonomous County Jinsheng Hydro Power Co., Ltd. Place: Laibin, Guangxi...

  12. Guizhou Zhenning Yuefeng Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Zhenning Yuefeng Hydro Power Development Co Ltd Jump to: navigation, search Name: Guizhou Zhenning Yuefeng Hydro Power Development Co.Ltd. Place: Anshun, Guizhou Province, China...

  13. Diebu Lazikou Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lazikou Hydro Power Development Co Ltd Jump to: navigation, search Name: Diebu Lazikou Hydro Power Development Co., Ltd Place: Gannan Tibetan Autonomous Prefecture, Gansu Province,...

  14. Chishui Zhongshui Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Chishui Zhongshui Hydro Power Development Co Ltd Jump to: navigation, search Name: Chishui Zhongshui Hydro Power Development Co.Ltd. Place: Zunyi City, Guizhou Province, China Zip:...

  15. Department of Hydro Power Development | Open Energy Information

    Open Energy Info (EERE)

    Development Jump to: navigation, search Name: Department of Hydro Power Development Place: Itanagar, Arunachal Pradesh, India Zip: 791 110 Sector: Hydro Product: Itanagar-based...

  16. Jichuan Taiyang River Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jichuan Taiyang River Hydro Power Development Co Ltd Jump to: navigation, search Name: Jichuan Taiyang River Hydro Power Development Co., Ltd. Place: Sichuan Province, China Zip:...

  17. Neijiang Tiangongtang Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Neijiang Tiangongtang Hydro Power Development Co Ltd Jump to: navigation, search Name: Neijiang Tiangongtang Hydro Power Development Co., Ltd Place: Neijiang, Sichuan Province,...

  18. Lushui County Quanyi Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Quanyi Hydro Power Development Co Ltd Jump to: navigation, search Name: Lushui County Quanyi Hydro Power Development Co., Ltd Place: Yunnan Province, China Zip: 673100 Sector:...

  19. Longyuan Hydro Power Development in Congjiang County Co Ltd ...

    Open Energy Info (EERE)

    Hydro Power Development in Congjiang County Co Ltd Jump to: navigation, search Name: Longyuan Hydro Power Development in Congjiang County Co.Ltd. Place: Guizhou Province, China...

  20. Guangdong Huaiji Xinlian Hydro electric Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Huaiji Xinlian Hydro electric Power Co Ltd Jump to: navigation, search Name: Guangdong Huaiji Xinlian Hydro-electric Power Co., Ltd. Place: Guangdong Province, China Zip: 526400...

  1. Yunnan Daoyao County Duodi River Hydro Power Development Co Ltd...

    Open Energy Info (EERE)

    Daoyao County Duodi River Hydro Power Development Co Ltd Jump to: navigation, search Name: Yunnan Daoyao County Duodi River Hydro Power Development Co., Ltd. Place: Yunnan...

  2. Guizhou Qiannan Zhongshui Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Qiannan Zhongshui Hydro Power Development Co Ltd Jump to: navigation, search Name: Guizhou Qiannan Zhongshui Hydro Power Development Co.Ltd. Place: Duyun City, Guizhou Province,...

  3. Zhaidong Hydro Power Plant in Benxi County | Open Energy Information

    Open Energy Info (EERE)

    Zhaidong Hydro Power Plant in Benxi County Jump to: navigation, search Name: Zhaidong Hydro Power Plant in Benxi County Place: Benxi City, Liaoning Province, China Zip: 117100...

  4. Tongdao Yaolaitan Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Tongdao Yaolaitan Hydro Power Development Co Ltd Jump to: navigation, search Name: Tongdao Yaolaitan Hydro Power Development Co. Ltd Place: Huaihua, Hunan Province, China Zip:...

  5. Wanyuan Baiyangxi Hydro electric Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Wanyuan Baiyangxi Hydro electric Power Development Co Ltd Jump to: navigation, search Name: Wanyuan Baiyangxi Hydro-electric Power Development Co., Ltd Place: Wanyuan, Sichuan...

  6. Jianyuan Hydro Power Development in Jianhe County Co Ltd | Open...

    Open Energy Info (EERE)

    Jianyuan Hydro Power Development in Jianhe County Co Ltd Jump to: navigation, search Name: Jianyuan Hydro Power Development in Jianhe County Co Ltd Place: Kaili, China Zip: 556000...

  7. Orissa Hydro Power Corporation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Orissa Hydro Power Corporation Ltd Jump to: navigation, search Name: Orissa Hydro Power Corporation Ltd. Place: Bhubaneswar, Orissa, India Zip: 751002 Product: Bhubaneswar-based...

  8. Gansu Diantou Tao River Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    River Hydro Power Development Co Ltd Jump to: navigation, search Name: Gansu Diantou Tao River Hydro Power Development Co. Ltd. Place: Lanzhou, Gansu Province, China Zip: 730030...

  9. Qingyuan County Xiankeng Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Xiankeng Hydro Power Development Co Ltd Jump to: navigation, search Name: Qingyuan County Xiankeng Hydro Power Development Co. Ltd. Place: Lishui City, China Zip: 323800 Sector:...

  10. Ningyuan County Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Development Co Ltd Jump to: navigation, search Name: Ningyuan County Hydro Power Development Co., Ltd. Place: Yongzhou, Hunan Province, China Zip: 425600 Sector: Hydro Product:...