Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HydroGen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a new pageHuadeHydroChinaHydroGen Jump

2

Hydrogen Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydroHydrogen Solar Ltd Jump

3

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power  

SciTech Connect (OSTI)

This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

Milbrandt, A.; Mann, M.

2009-02-01T23:59:59.000Z

4

Hydro, Solar, Wind The Future of Renewable Energy  

E-Print Network [OSTI]

Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical. Hydropower Water has grown in previous years to become the most widely used form of renewable energy across years to come from Hydropower. It is considered to be a renewable energy source because it uses

Lavaei, Javad

5

Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority Solar Thermochemical Hydrogen Production Research (STCH):...

6

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network [OSTI]

M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

7

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Office of Environmental Management (EM)

borrower must be rural small business or agricultural producer * Technology: biomass, solar, wind, hydro, hydrogen, geothermal * Applications: equipment, construction,...

8

Solar hydrogen for urban trucks  

SciTech Connect (OSTI)

The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

1997-12-31T23:59:59.000Z

9

What does it take to create a clean energy future for Washington? Solar, Wind, Hydro  

E-Print Network [OSTI]

Solar, Wind, Hydro A Complete Energy System Home and Commercial Generation Demand Response 10-10 m 10's leadership and economic advantages in clean energy. - The mission of the Clean Energy Institute is to accelerate the adoption of a clean energy future by advancing next generation solar energy and electrical

Hochberg, Michael

10

Solar Thermochemical Hydrogen Production Research (STCH)  

Fuel Cell Technologies Publication and Product Library (EERE)

Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meet

11

Screening analysis of solar thermochemical hydrogen concepts.  

SciTech Connect (OSTI)

A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

Diver, Richard B., Jr.; Kolb, Gregory J.

2008-03-01T23:59:59.000Z

12

Solar and Wind Technologies for Hydrogen Production Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

13

Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies  

E-Print Network [OSTI]

.........................5 1.4 Potential Capacity for Hydrogen Production from Conventional Electrolysis Using Wind and SolarSolar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies For Hydrogen Production Report to Congress December 2005 (ESECS EE-3060) #12;Solar and Wind Technologies

14

The solar system mimics a hydrogen atom  

E-Print Network [OSTI]

The solar system and the hydrogen atom are two well known systems on different scales and look unrelated: The former is a classical system on the scale of about billions of kilometers and the latter a quantum system of about tens of picometers. Here we show a connection between them. Specifically, we find that the orbital radii of the planets mimic the mean radii of the energy levels of a quantum system under the Coulomb-like potential. This connection might be explained by very light dark matter which manifests quantum behavior in the solar system, thereby hinting at a dark matter mass around $8 \\times 10^{-14}$ electron-volts.

Je-An Gu

2014-03-28T23:59:59.000Z

15

Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV IncentiveSolarSwapCycle

16

Solar-hydrogen energy system model for Libya  

SciTech Connect (OSTI)

A solar-hydrogen energy-system model for Libya was developed, obtaining relationships for and between the main energy and energy related parameters of Libya and the world. The parameters included are: population, energy demand, fossil-fuel production, fossil-fuel resources, hydrogen production, hydrogen introduction rates, energy prices, gross domestic product, pollution and quality of life. The trends of these parameters with and without hydrogen introduction were investigated over a period of time - through the year 2100. The results indicate that the fossil-fuel resources in Libya could be exhausted, due to production for local and export demands, within three to four decades unless serious measures for reducing production are taken. The results indicate that adopting solar-hydrogen energy system would extend the availability of fossil-fuel resources for a longer time period, reduce pollution, improve quality of life and establish a permanent energy system for Libya. It also shows that eventually Libya could export hydrogen in lieu of oil and natural gas.

Eljrushi, G.S.

1987-01-01T23:59:59.000Z

17

Assessment of methods for hydrogen production using concentrated solar energy  

SciTech Connect (OSTI)

The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

Glatzmaier, G. [Peak Design, Evergreen, CO (United States); Blake, D. [National Renewable Energy Lab., Golden, CO (United States); Showalter, S. [Sandia National Lab., Albuquerque, NM (United States)

1998-01-01T23:59:59.000Z

18

Quidi Vidi Lake Hydro Power Demonstration Project  

E-Print Network [OSTI]

walking trail Comprised of a micro hydro generator a wind turbine and a solar array, metered and interpreted This presentation describes the preliminary work on the micro hydro component of the installation interests in using existing infrastructure for low impact micro hydro generation. Insurmountable Roadblocks

Bruneau, Steve

19

Sandia National Laboratories: solar to hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Testthermal storage Sandiasolar

20

Sandia National Laboratories: Solar Thermochemical Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSitingMolten SaltSandiaParabolicSolar

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sandia National Laboratories: Solar Thermochemical Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperationalfor DownloadSolarUser FeesLeading

22

In search of an alternative fuel: Bio-Solar Hydrogen Production  

E-Print Network [OSTI]

In search of an alternative fuel: Bio-Solar Hydrogen Production from Arthrospira maxima Dariya Comparison of Potential Corn, Cellulose, and Aquatic Microbial Fuel Production Assuming demonstrated biomass

Petta, Jason

23

Solar photoproduction of hydrogen. IEA technical report of the IEA Agreement of the Production and Utilization of Hydrogen  

SciTech Connect (OSTI)

The report was prepared for the International Energy Agency (IEA) Hydrogen Program and represents the result of subtask C, Annex 10 - Photoproduction of Hydrogen. The concept of using solar energy to drive the conversion of water into hydrogen and oxygen has been examined, from the standpoints of potential and ideal efficiencies, measurement of (and how to calculate) solar hydrogen production efficiencies, a survey of the state-of-the-art, and a technological assessment of various solar hydrogen options. The analysis demonstrates that the ideal limit of the conversion efficiency for 1 sun irradiance is {approximately}31% for a single photosystem scheme and {approximately}42% for a dual photosystem scheme. However, practical considerations indicate that real efficiencies will not likely exceed {approximately}10% and {approximately}16% for single and dual photosystem schemes, respectively. Four types of solar photochemical hydrogen systems have been identified: photochemical systems, semiconductor systems, photobiological systems, and hybrid and other systems. A survey of the state-of-the-art of these four types is presented. The four types (and their subtypes) have also been examined in a technological assessment, where each has been examined as to efficiency, potential for improvement, and long-term functionality. Four solar hydrogen systems have been selected as showing sufficient promise for further research and development: (1) Photovoltaic cells plus an electrolyzer; (2) Photoelectrochemical cells with one or more semiconductor electrodes; (3) Photobiological systems; and (4) Photodegradation systems. The following recommendations were presented for consideration of the IEA: (1) Define and measure solar hydrogen conversion efficiencies as the ratio of the rate of generation of Gibbs energy of dry hydrogen gas (with appropriate corrections for any bias power) to the incident solar power (solar irradiance times the irradiated area); (2) Expand support for pilot-plant studies of the PV cells plus electrolyzer option with a view to improving the overall efficiency and long-term stability of the system. Consideration should be given, at an appropriate time, to a full-scale installation as part of a solar hydrogen-based model community; (3) Accelerate support, at a more fundamental level for the development of photoelectrochemical cells, with a view to improving efficiency, long-term performance and multi-cell systems for non-biased solar water splitting; (4) Maintain and increase support for fundamental photobiological research with the aim of improving long-term stability, increasing efficiencies and engineering genetic changes to allow operation at normal solar irradiances; and (5) Initiate a research program to examine the feasibility of coupling hydrogen evolution to the photodegradation of waste or polluting organic substances.

Bolton, J.R. [Dept. of Chemistry, Univ. of Western Ontario, London, Ontario (CA) N6A 5B7

1996-09-30T23:59:59.000Z

24

Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997  

SciTech Connect (OSTI)

This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

Provenzano, J.J.

1997-04-01T23:59:59.000Z

25

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

of the Hydrogen Compressor .. 85results of the hydrogen compressor. The net work required toBalances of the Hydrogen Compressor Total In Out Relative

Luc, Wesley Wai

26

Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation  

SciTech Connect (OSTI)

Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

Grimes, Craig A.

2014-11-26T23:59:59.000Z

27

The International Partnership for the Hydrogen Economy  

E-Print Network [OSTI]

Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources. . Distributed Generation TransportationBiomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With program has tripled in size since 1995. Initiated Roadmaps and Programs: Australia, Brazil, Canada, China

28

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

Two, Mojave Desert, California [22] Solar thermal is not aSolar Two, Mojave Desert, California ..OF CALIFORNIA, SAN DIEGO A Continuous Solar Thermochemical

Luc, Wesley Wai

29

The Solar Wind Charge-Exchange Production Factor for Hydrogen  

E-Print Network [OSTI]

The production factor, or broad band averaged cross-section, for solar wind charge-exchange with hydrogen producing emission in the ROSAT 1/4 keV (R12) band is $3.8\\pm0.2\\times10^{-20}$ count degree$^{-2}$ cm$^4$. This value is derived from a comparison of the Long-Term (background) Enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8 to 4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of 1/4 keV band flux that is due to the Local Hot Bubble, for planning future observations in the 1/4 keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the 3/4 keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally,...

Kuntz, K D; Collier, M R; Connor, H K; Cravens, T E; Koutroumpa, D; Porter, F S; Robertson, I P; Sibeck, D G; Snowden, S L; Thomas, N E; Wash, B M

2015-01-01T23:59:59.000Z

30

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

Overview of Hydrogen and Fuel Cell Research." Energy, v.34,Quantum Boost,” DOE Hydrogen and Fuel Cells Program: FY 2012Analysis. ” DOE Hydrogen and Fuel Cells Program, Web. 22

Luc, Wesley Wai

31

The U.S. Department of Energy Hydrogen Delivery Mark Paster  

E-Print Network [OSTI]

Reforming biomass producer gas from gasification/pyrolysis Biolog Transportation Biomass Water Hydro Wind Solar Geothermal Coal Nuclear Natural Gas WithCarbonSequestration HIGH Technologies Program ­ Solar Program ­ Wind Program ­ Biomass Program #12;Timeline for Hydrogen Economy

32

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

A.W. , “Likely Near-Term Solar-Thermal Water SplittingFundamentals of s Solar-thermal Mn 2 O 3 /MnO ThermochemicalPower-Photovaltaics or Solar Thermal Power? ” Proceedings of

Luc, Wesley Wai

33

Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells  

E-Print Network [OSTI]

In this work we examine the effectiveness of hydrogen passivation at grain boundaries as a function of defect type and microstructure in multicrystalline silicon. We analyze a specially prepared solar cell with alternating ...

Bertoni, Mariana I.

34

A comprehensive review on the hydro metallurgical process for the production of nickel and copper powders by hydrogen reduction  

SciTech Connect (OSTI)

Production of nickel and copper powders from leach solutions and other aqueous streams by hydrogen reduction under pressure has been reviewed in the present paper. By optimising the optimum process condition, powders or composite materials of required specification could be produced from different types of acidic and alkaline solutions by coating nickel or copper powders on the secondary materials such as graphite, tungsten carbide and aluminium. The paper also highlights the kinetics of reduction and the use of various inorganic and organic additives to improve the quality of the powder on bench and commercial scale. Effect of various experimental factors such as pH of the solution, concentration of metals, particle size and nature of additives, operating condition of autoclave, etc. on the rate of reduction and quality of powder are also discussed.

Agrawal, A. [Non Ferrous Process Group, National Metallurgical Laboratory, Jamshedpur 831007 (India)]. E-mail: archana@nmlindia.com; Kumar, V. [Non Ferrous Process Group, National Metallurgical Laboratory, Jamshedpur 831007 (India); Pandey, B.D. [Non Ferrous Process Group, National Metallurgical Laboratory, Jamshedpur 831007 (India); Sahu, K.K. [Non Ferrous Process Group, National Metallurgical Laboratory, Jamshedpur 831007 (India)

2006-04-13T23:59:59.000Z

35

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

16, 2013 [22] “Solar Central Power Towers. ” Web. 22 AprilA diagram of the solar field, the receiver tower, the NaCl

Luc, Wesley Wai

36

Collisional Thermalization of Hydrogen and Helium in Solar Wind Plasma  

E-Print Network [OSTI]

In situ observations of the solar wind frequently show the temperature of $\\alpha$-particles (fully ionized helium), $T_\\alpha$, to significantly differ from that of protons (ionized hydrogen), $T_p$. Many heating processes in the plasma act preferentially on $\\alpha$-particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the $\\textit{Wind}$ spacecraft's Faraday cups reveal that, at $r=1.0\\ \\textrm{AU}$ from the Sun, the observed values of the $\\alpha$-proton temperature ratio, $\\theta_{\\alpha p} \\equiv T_\\alpha\\,/\\,T_p$ has a complex, bimodal distribution. This study applied a simple model for the radial evolution of $\\theta_{\\alpha p}$ to these data to compute expected values of $\\theta_{\\alpha p}$ at $r=0.1\\ \\textrm{AU}$. These inferred $\\theta_{\\alpha p}$-values have no trace of the bimodality seen in the $\\theta_{\\alpha p}$-values measured at $r=1.0\\ \\textrm{AU}$ but are instead consistent with the actions of the known mechanisms for $\\alpha$-particle p...

Maruca, Bennett A; Sorriso-Valvo, Luca; Kasper, Justin C; Stevens, Michael L

2013-01-01T23:59:59.000Z

37

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

energy including hydroelectric, wind, geothermal, biomass, photovoltaic, and solar thermal, each having its own advantages and

Luc, Wesley Wai

38

High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water  

SciTech Connect (OSTI)

The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

2011-09-29T23:59:59.000Z

39

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

Solar thermal energy is used to drive the overall process and required electricity is generated internally from waste heat.

Luc, Wesley Wai

40

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

Hydrogen Production Plant Heat Exchangers Turbines Electrolyzer Pumps and Compressors NaCl Storage Separators Thermochemical Reactors + Chemical Absorber Figure 6.2: Equipment Cost

Luc, Wesley Wai

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Helioseismic analysis of the hydrogen partition function in the solar interior  

E-Print Network [OSTI]

The difference in the adiabatic gradient gamma_1 between inverted solar data and solar models is analyzed. To obtain deeper insight into the issues of plasma physics, the so-called ``intrinsic'' difference in gamma_1 is extracted, that is, the difference due to the change in the equation of state alone. Our method uses reference models based on two equations of state currently used in solar modeling, the Mihalas-Hummer-Dappen (MHD) equation of state, and the OPAL equation of state (developed at Livermore). Solar oscillation frequencies from the SOI/MDI instrument on board the SOHO spacecraft during its first 144 days in operation are used. Our results confirm the existence of a subtle effect of the excited states in hydrogen that was previously studied only theoretically (Nayfonov & Dappen 1998). The effect stems from internal partition function of hydrogen, as used in the MHD equation of state. Although it is a pure-hydrogen effect, it takes place in somewhat deeper layers of the Sun, where more than 90% of hydrogen is ionized, and where the second ionization zone of helium is located. Therefore, the effect will have to be taken into account in reliable helioseismic determinations of the astrophysically relevant helium-abundance of the solar convection zone.

S. Basu; W. Dappen; A. Nayfonov

1998-12-17T23:59:59.000Z

42

Department of Energy - Hydrogen  

Broader source: Energy.gov (indexed) [DOE]

Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

43

Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution  

SciTech Connect (OSTI)

The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo{sub 3}S{sub 4}) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory calculations of the Mo{sub 3}S{sub 4} clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site.

Hou, Yidong

2011-11-08T23:59:59.000Z

44

Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere  

E-Print Network [OSTI]

The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) Non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Halpha, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements and above quiet internetwork. d) The hydrogen n = 2 population and column density are persistently high in dynamic fibrils, suggesting that these obtain their visibility from being optically thick in Halpha also at low temperature.

J. Leenaarts; M. Carlsson; V. Hansteen; R. J. Rutten

2007-09-24T23:59:59.000Z

45

Development of efficient photoreactors for solar hydrogen production  

SciTech Connect (OSTI)

The rate of hydrogen evolution from a photocatalytic process depends not only on the activity of a photocatalyst, but also on photoreactor design. Ideally, a photoreactor should be able to absorb the incident light, promoting photocatalytic reactions in an effective manner with minimal photonic losses. There are numerous technical challenges and cost related issues when designing a large-scale photoreactor for hydrogen production. Active stirring of the photocatalyst slurry within a photoreactor is not practical in large-scale applications due to cost related issues. Rather, the design should allow facile self-mixing of the flow field within the photoreactor. In this paper two types of photocatalytic reactor configurations are studied: a batch type design and another involving passive self-mixing of the photolyte. Results show that energy loss from a properly designed photoreactor is mainly due to reflection losses from the photoreactor window. We describe the interplay between the reaction and the photoreactor design parameters as well as effects on the rate of hydrogen evolution. We found that a passive self-mixing of the photolyte is possible. Furthermore, the use of certain engineering polymer films as photoreactor window materials has the potential for substantial cost savings in large-scale applications, with minimal reduction of photon energy utilization efficiency. Eight window materials were tested and the results indicate that Aclar trademark polymer film used as the photoreactor window provides a substantial cost saving over other engineering polymers, especially with respect to fused silica glass at modest hydrogen evolution rates. (author)

Huang, Cunping; Yao, Weifeng; T-Raissi, Ali; Muradov, Nazim [University of Central Florida, Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, Fl 32922-5703 (United States)

2011-01-15T23:59:59.000Z

46

Solar photo-catalytic hydrogen: systems considerations, economics, and potential markets. Final report  

SciTech Connect (OSTI)

A three part analysis was done consisting of (1) an examination of the physical principles of solar photocatalytic energy conversion and the status of research in this area, (2) an economic analysis of the potential costs of producing hydrogen from such a system, and (3) an analysis of the markets for hydrogen and the possible penetration of these markets by solar photocatalytic hydrogen. The cost range of flat plate thermal collectors, heliostats, and a photovoltaic system are compared. The cost range of flat plate thermal collectors was used to represent the cost of photocatalytic systems. On the basis of the photovoltaics cost outlook, it is found that photocatalytic systems would not cost less than $180 to $330 per m/sup 2/ range. On the basis of the heliostat cost outlook, a cost lower than $180 to $330 per m could be projected only for very large production volumes and very large installations. (LEW)

Steele, R.V.; Witwer, J.G.

1981-05-01T23:59:59.000Z

47

Lighting Up Enzymes for Solar Hydrogen Production (Fact Sheet)  

SciTech Connect (OSTI)

Scientists at the National Renewable Energy Laboratory (NREL) have combined quantum dots, which are spherical nanoparticles that possess unique size-tunable photophysical properties, with the high substrate selectivity and fast turnover of hydrogenase enzymes to achieve light-driven hydrogen (H2) production. They found that quantum dots of cadmium telluride coated in carboxylic acids easily formed highly stable complexes with the hydrogenase and that these hybrid assemblies functioned to catalyze H2 production using the energy of sunlight.

Not Available

2011-02-01T23:59:59.000Z

48

Potential Of Emerging And Future CO2-Neutral Hydrogen Sources On The European Scale  

E-Print Network [OSTI]

nuclear power, one of the great advantages of hydrogen lies in its capability to relatively easy utilise renewable energies in the existing power systems. It allows the use of intermittent sources and thus helps (biomass, wind, PV, solar thermolysis, photo- electrochemical, hydro, geothermal) and CO2- neutral fossil

49

Hydrogen from Diverse Domestic ResourcesHydrogen from Diverse Domestic Resources Distributed  

E-Print Network [OSTI]

Sequestration Biomass Hydro Wind Solar Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Sequestration #12 on foreign oil. · Promote the use of diverse, domestic, and sustainable energy sources. · Reduce carbon

50

Solar-hydrogen energy system for a Libyan coastal county (El-Gharabulli)  

SciTech Connect (OSTI)

A model for a solar-hydrogen energy system was developed for a Libyan Coastal (Mediterranean) County, (i.e., El-Gharabulli). Present energy and economic conditions were studied. A comparison of the present conditions with the proposed solar-hydrogen energy system is presented. In the model, it is proposed to cover the southern parts of the county with photovoltaic cells in order to provide partly the electric energy needs of the county for the different sectors, such as domestic, commercial and industrial, as well as to electrolyze water to produce hydrogen and oxygen. Hydrogen would be stored and distributed for different uses, such as fuel for transportation and industry, and as gas for domestic and commercial use. Part of the hydrogen would be used though fuel cells to generate electricity for night times and cloudy days when the sun is not available. The area under the photovoltaic cells would be partly shaded, which would provide suitable environment for growing some varieties of cash crops. Sea water would be desalinated through a desalination plant on the coast to provide fresh water for domestic, commercial and industrial use, as well as for irrigation of the new agricultural areas in the south.

El-Osta, W.B.

1987-01-01T23:59:59.000Z

51

Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.  

SciTech Connect (OSTI)

The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

Kronawitter, Coleman X. [Lawrence Berkeley National Laboratory, Berkeley, CA; Antoun, Bonnie R.; Mao, Samuel S. [Lawrence Berkeley National Laboratory, Berkeley, CA

2012-01-01T23:59:59.000Z

52

Hydro Capital Asset Manager  

Broader source: Energy.gov [DOE]

This position is located in Federal Hydro Projects, Generation Asset Management, Power Services. Additional vacancies may be filled through this vacancy announcement or if they become available.

53

Performance of Hydrogenated a-Si:H Solar Cells with Downshifting Coating: Preprint  

SciTech Connect (OSTI)

We apply a thin luminescent downshifting (LDS) coating to a hydrogenated amorphous Si (a-Si:H) solar cell and study the mechanism of possible current enhancement. The conversion material used in this study converts wavelengths below 400 nm to a narrow line around 615 nm. This material is coated on the front of the glass of the a-Si:H solar cell with a glass/TCO/p/i/n/Ag superstrate configuration. The initial efficiency of the solar cell without the LDS coating is above 9.0 % with open circuit voltage of 0.84 V. Typically, the spectral response below 400 nm of an a-Si:H solar cell is weaker than that at 615 nm. By converting ultraviolet (UV) light to red light, the solar cell will receive more red photons; therefore, solar cell performance is expected to improve. We observe evidence of downshifting in reflectance spectra. The cell Jsc decreases by 0.13 mA/cm2, and loss mechanisms are identified.

Nemeth, B.; Xu, Y.; Wang, H.; Sun, T.; Lee, B. G.; Duda, A.; Wang, Q.

2011-05-01T23:59:59.000Z

54

Nanotechnology for Solar-hydrogen Production via Photoelectrochemical Water-splitting: Design, Synthesis, Characterization, and Application of Nanomaterials and Quantum Dots  

E-Print Network [OSTI]

-scale ..................................................... 35 1.25 Atoms nucleation and growth rate during synthesis .................................. 36 1.26 The AM 1.5 solar spectrum as function of photon energy. ........................ 37 1.27 Thermal solar energy systems (A) parabolic dish (B... Page 1.1 Hydrogen production pathways ................................................................. 4 1.2 Solar to hydrogen conversion pathways, STC is solar thermochemical, CST is concentrating solar thermal, and PEC...

Alenzi, Naser D.

2012-02-14T23:59:59.000Z

55

Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells  

E-Print Network [OSTI]

Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells trapping, for the nc- Si:H absorber in the Si-based thin film solar cells. Furthermore, nc-Si:H is usually bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc- Si) triple-junction solar cell due to its higher optical

Deng, Xunming

56

An on sun parametric study of solar hydrogen production using WO{sub 3} photoanodes  

SciTech Connect (OSTI)

The solar production of hydrogen using photoactive electrodes is a topic receiving much attention in recent years. The use of thin metal oxide films as photoanodes allows the water splitting reaction to occur at a much lower applied voltage than would be necessary with a straight electrolysis process. The University of Nevada Las Vegas in collaboration with the UK based firm Hydrogen Solar and funded by the United States Department of Energy, has developed a prototype of this type of cell using a WO{sub 3} photoanode. An on-sun test facility has been constructed by the UNLV Center for Energy Research (CER) where a study is being conducted with regard to the effects various design parameters on the rate of hydrogen evolution. Parameters being studied include electrolyte temperature, electrolyte flow rate, electrolyte resistivity, applied voltage, and membrane to electrode spacing. The data collected is used in a parametric study of the cell performance. The results of this study are then used to establish general trends as to the effects of these parameters on the performance of the cells outside of a laboratory environment. (author)

Halford, Christopher K. [UNLV Center for Energy Research, 4505 S. Maryland Parkway, Las Vegas, NV 89154 (United States); Boehm, Robert F. [UNLV Center for Energy Research, 4505 S. Maryland Parkway, UNLV Box 454027, Las Vegas, NV 89154-4027 (United States)

2011-01-15T23:59:59.000Z

57

Hydrogen and fuel cell research | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydroHydrogen Solar Ltd

58

The U.S. National Hydrogen Storage Project Overview (presentation...  

Broader source: Energy.gov (indexed) [DOE]

ZERONEAR ZERO EMISSIONS Transportation Coal with carbon sequestration Natural Gas* Nuclear Distributed Generation Hydro Wind Solar Geothermal Biomass *Transition only...

59

Solar-to-Hydrogen Photovoltaic/Photoelectrochemical Devices Using Amorphous Silicon Carbide as the Photoelectrode  

SciTech Connect (OSTI)

We report the use of hydrogenated amorphous silicon carbide (a-SiC:H) prepared by plasma enhanced chemical vapor deposition (PECVD) as the photoelectrode in an integrated 'hybrid' photoelectrochemical (PEC) cell to produce hydrogen directly from water using sunlight. Results on the durability of hydrogenated amorphous silicon carbide (a-SiC:H) photoelectrodes in an electrolyte are presented. In a pH2 electrolyte, the a-SiC:H photoelectrode exhibits excellent stability for 100 hour test so far performed. A photocurrent onset shift (anodically) after a 24- or 100-hour durability test in electrolyte is observed, likely due to changes in the surface chemical structure of the a-SiC:H photoelectrode. It is also observed that a thin SiOx layer native to the air exposed surface of the a-SiC:H affects the photocurrent and the its onset shift. Finally, approaches for eliminating the external bias voltage and enhancing the solar-to-hydrogen efficiency in a PV/PEC hybrid structure to achieve {>=} 10% are presented.

Hu, J.; Zhu, F.; Matulionis, I.; Kunrath, A.; Deutsch, T.; Kuritzky, L.; Miller, E.; Madan, A.

2008-01-01T23:59:59.000Z

60

Neutral interstellar hydrogen in the inner heliosphere under influence of wavelength-dependent solar radiation pressure  

E-Print Network [OSTI]

We study the influence of the non-flat shape of the solar Lyman-alpha line on the distribution of neutral interstellar hydrogen in the inner heliosphere and assess importance of this effect for interpretation of heliospheric in situ measurements. Based on available data, construct a model of evolution of the solar Lyman-alpha line profile with solar activity. Modify an existing test-particle code calculating distribution of neutral interstellar hydrogen in the inner heliosphere to take into account the dependence of radiation pressure on radial velocity. Discrepancies between the classical and Doppler models appear at ~ 5 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates density everywhere except a ~ 60 deg cone around the downwind direction, where a density deficit appears. The magnitude of discrepancies depends appreciably on the phase of solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~ 1 AU, as those planned for IBEX, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degree, which, when unaccounted for, would bring an error of a few degrees and a few km/s in determination of the bulk velocity vector at the termination shock. The Doppler correction is appreciable for in situ observations of neutral H populations and their derivatives performed a few AU from the Sun.

S. Tarnopolski; M. Bzowski

2008-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar thermal hydrogen production process: Final report, January 1978-December 1982  

SciTech Connect (OSTI)

Under sponsorship by the United States Department of Energy, Westinghouse Advanced Energy-Systems Division has investigated the potential for using solar thermal energy to split water into hydrogen and oxygen. A hybrid thermochemical/electrochemical process, known as the Sulfur Cycle, has been the focus of these investigations. Process studies have indicated that, with adequate and ongoing research and development, the Sulfur Cycle can be effectively driven with solar heat. Also, economic analyses have indicated that the cycle has the potential to produce hydrogen in economic competitiveness with conventional methods (e.g. methane/steam reforming) by the turn of the century. A first generation developmental system has been defined along with its critical components, i.e. those components that need substantial engineering development. Designs for those high temperature components that concentrate, vaporize and decompose the process circulating fluid, sulfuric acid, have been prepared. Extensive experimental investigations have been conducted with regard to the selection of construction materials for these components. From these experiments, which included materials endurance tests for corrosion resistance for periods up to 6000 hours, promising materials and catalysts have been identified.

Not Available

1982-12-01T23:59:59.000Z

62

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network [OSTI]

and J.A. Lercher, “Hydrogen Storage in Microspheres - FinalHydrogen Program Review Hydrogen Storage”, U.S. DepartmentAn overview of hydrogen storage methods”, in Hydro- gen

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

63

Strategic partnerships final LDRD report : nanocomposite materials for efficient solar hydrogen production.  

SciTech Connect (OSTI)

This 'campus executive' project sought to advance solar thermochemical technology for producing the chemical fuels. The project advanced the common interest of Sandia National Laboratories and the University of Arizona in creating a sustainable and viable alternative to fossil fuels. The focus of this effort was in developing new methods for creating unique monolithic composite structures and characterizing their performance in thermochemical production of hydrogen from water. The development and processing of the materials was undertaken in the Materials Science and Engineering Department at the University of Arizona; Sandia National Laboratories performed the thermochemical characterization. Ferrite/yttria-stabilized zirconia composite monoliths were fabricated and shown to have exceptionally high utilization of the ferrite for splitting CO{sub 2} to obtain CO (a process analogous to splitting H{sub 2}O to obtain H{sub 2}).

Corral, Erica L. (University of Arizona, Tucson, AZ); Miller, James Edward; Walker, Luke S. (University of Arizona, Tucson, AZ); Evans, Lindsey R.

2012-05-01T23:59:59.000Z

64

HydroPulse Drilling  

SciTech Connect (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

65

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

66

Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: A way to solar energy conversion  

SciTech Connect (OSTI)

A photosystem for hydrogen peroxide photoproduction formed by immobilized cells of the blue-green alga, Anabaena variabilis and the redox mediator methyl viologen is described. Hydrogen peroxide is produced in a redox catalyst cycle in which methyl viologen is reduced by electrons from water obtained by the photosynthetic apparatus of the algae using solar energy, and reoxidized by the introduction of oxygen into the solution. Hydrogen peroxide is produced during methyl viologen re-oxidation in two steps by means of the formation of superoxide. Experimental conditions for maximum photoproduction (catalyst charge, chlorophyll, and agar final concentration for cell immobilization) have been investigated using a continuous photosystem with immobilized A. variabilis as photocatalyst. Under the determined optimum conditions, the photosystem with immobilized A. variabilis is photocatalyst. Under the determined optimum conditions, the photosystem produces hydrogen peroxide at a rate of 100 {mu}moles/mg Chl{center dot}h, maintaining the production for several hours, and with an energy conversion efficiency of about 2%. Taking into account the use of hydrogen peroxide as fuel, this photosystem can be a useful tool in the storage of solar energy.

Morales, I.; La Rosa, F.F. de (Univ. de Sevilla y CSIC (Spain))

1992-07-01T23:59:59.000Z

67

Hydro | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydro or hydroelectric

68

Hydrogenated TiO{sub 2} film for enhancing photovoltaic properties of solar cells and self-sensitized effect  

SciTech Connect (OSTI)

Hydrogenated TiO{sub 2} film was obtained by annealing TiO{sub 2} film at 350?°C for 2?h with hydrogen, and TiO{sub 2} films were prepared by screen printing on fluorine-doped tin oxide glass. Structural characterization by X-ray diffraction and electron microscopy did not show obvious difference between hydrogenated TiO{sub 2} film and pristine TiO{sub 2} film. Through optical and electrochemical characterization, the hydrogenated TiO{sub 2} film showed enhanced absorption and narrowed band gap, as well as reduced TiO{sub 2} surface impedance and dark current. As a result, an obviously enhanced photovoltaic effect was observed in the solar cell with hydrogenated TiO{sub 2} as photoanode without adding any dye due to the self-sensitized effect of hydrogenated TiO{sub 2} film, which excited electrons injecting internal conduction band of TiO{sub 2} to generate more photocurrent.

He, Hongcai; Yang, Kui; Wang, Ning, E-mail: ning-wang@uestc.edu.cn; Luo, Feifei; Chen, Haijun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

2013-12-07T23:59:59.000Z

69

SOLAR RADIATION PRESSURE AND LOCAL INTERSTELLAR MEDIUM FLOW PARAMETERS FROM INTERSTELLAR BOUNDARY EXPLORER LOW ENERGY HYDROGEN MEASUREMENTS  

SciTech Connect (OSTI)

Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Ly?. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (?) has increased slightly from ? = 0.94 ± 0.04 in 2009 to ? = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

Schwadron, N. A.; Moebius, E.; Kucharek, H.; Lee, M. A.; French, J. [University of New Hampshire, Durham, NH 03824 (United States); Saul, L.; Wurz, P. [University of Bern, 3012 Bern (Switzerland); Bzowski, M. [Space Research Centre of the Polish Academy of Sciences, Warsaw (Poland); Fuselier, S. A.; Livadiotis, G.; McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States); Frisch, P. [University of Chicago, Chicago, IL 60637 (United States); Gruntman, M. [University of Southern California, Los Angeles, CA 90089 (United States); Mueller, H. R. [Dartmouth College, Hanover, NH 03755 (United States)

2013-10-01T23:59:59.000Z

70

Wind/Hydro Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry2 BONNEVILLEWind/Hydro

71

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...  

Broader source: Energy.gov (indexed) [DOE]

compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES). Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

72

Hydrologic Modeling with Arc Hydro Tools 1 Copyright 2007 ESRI. All rights reserved. Arc Hydro  

E-Print Network [OSTI]

Hydrologic Modeling with Arc Hydro Tools 1 Copyright © 2007 ESRI. All rights reserved. Arc Hydro Arc Hydro: GIS in Water Resources Seminar/Workshop Gainesville, Florida ­ November 15, 2007 Christine Dartiguenave, ESRI inc. cdartiguenave@esri.com #12;Hydrologic Modeling with Arc Hydro Tools 2 2Arc Hydro

Kane, Andrew S.

73

A COMPARISON OF THE AQUATIC IMPACTS OF LARGE HYDRO AND SMALL HYDRO PROJECTS  

E-Print Network [OSTI]

A COMPARISON OF THE AQUATIC IMPACTS OF LARGE HYDRO AND SMALL HYDRO PROJECTS by Lara A. Taylor, P Project: A Comparison of the Aquatic Impacts of Large Hydro and Small Hydro Projects Project No.: 501 of small hydro development in British Columbia has raised concerns surrounding the effects

74

E-Print Network 3.0 - autonomous solar hydrogen Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VALIDATION ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

75

Ontario Hydro Motor Efficiency Study  

E-Print Network [OSTI]

Electric motors consume more than one-half of the electrical energy produced by Ontario Hydro. In the residential sector, the major motor load is for refrigerators and freezers while packaged equipment dominate the motor load in the commercial...

Dautovich, D. R.

1980-01-01T23:59:59.000Z

76

Midwest Hydro Users Group Meeting  

Broader source: Energy.gov [DOE]

The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

77

Gas Diffusion in Metals: Fundamental Study of Helium-Point Defect Interactions in Iron and Kinetics of Hydrogen Desorption from Zirconium Hydride  

E-Print Network [OSTI]

sources for electricity constitute a diverse group, from wind, solar, tidal and wave energy to hydro, geothermal and

Hu, Xunxiang

2013-01-01T23:59:59.000Z

78

Back-side hydrogenation technique for defect passivation in silicon solar cells  

DOE Patents [OSTI]

A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts.

Sopori, Bhushan L. (Denver, CO)

1994-01-01T23:59:59.000Z

79

Back-side hydrogenation technique for defect passivation in silicon solar cells  

DOE Patents [OSTI]

A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts. 3 figures.

Sopori, B.L.

1994-04-19T23:59:59.000Z

80

Extreme hydro-meteorological events and their probabilities  

E-Print Network [OSTI]

Extreme hydro-meteorological events and their probabilities Jules Beersma #12;Promotor: Prof. dr. A Onderzoekschool (BBOS) #12;Extreme hydro-meteorological events and their probabilities Extreme hydro

Beersma, Jules

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL Melds Nature with Nanotech for Solar-Powered Hydrogen Production (Fact Sheet)  

SciTech Connect (OSTI)

NREL researchers are finding ways to mimic photosynthesis by combining enzymes with nanoparticles - particles on the scale of a billionth of a meter - to produce hydrogen directly from water and sunlight. This breakthrough project began in 2008 with scientists and researchers asking how they might learn from nature and develop a synthetic process that is more efficient than plants at converting sunlight to hydrogen. The goal was to find a new way to produce hydrogen that could then be commercialized inexpensively for fuel cells and other uses. Among the various approaches to making hydrogen, the NREL researchers wondered about a hybrid molecular assembly that might pair the best natural molecule with a synthesized nanoparticle. Researchers looked at using hydrogenase enzymes as one part of the equation. These biological catalysts can convert electrons and protons into hydrogen gas, or convert hydrogen into electrons and protons. The choice seemed worthwhile because the hydrogenase enzyme has some intriguing properties: a high substrate selectivity, meaning a very high preference for catalyzing reactions with protons rather than with other atoms and molecules; and fast turnover, which enables it to produce a hydrogen molecule in milliseconds.

Not Available

2011-09-01T23:59:59.000Z

82

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect (OSTI)

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

83

Hydro-Québec Net Metering (Quebec, Canada)  

Broader source: Energy.gov [DOE]

In line with Hydro-Québec's commitment to the environment and sustainable development, Hydro-Québec is supporting self-generation with a new rate offering: the net metering option. This option...

84

North West Hydro Resource Model Research to identify potential capacity and assist NW hydro power development  

E-Print Network [OSTI]

North West Hydro Resource Model Research to identify potential capacity and assist NW hydro power University wide research, aims to develop a system to promote the exploitation of hydro power in North with regard to hydro schemes Reviewing and re-formulating ill defined requirements for environmental

Meju, Max

85

Prparation de votre examen stabilit hydro  

E-Print Network [OSTI]

Préparation de votre examen stabilité hydro: - Relisez vos notes de cours - Refaites les exercices

Hoepffner, Jérôme

86

Runner upgrading: Learning from Ontario Hydro`s experience  

SciTech Connect (OSTI)

Planning, design, and implementation of turbine runner replacement at Ontario Hydro is described in the article. The use of fully homologous modeling for upgrade projects, including both francis and propeller runner types, is outlined. Confirmation of physical model efficiency is obtained through numerical modeling. Inlet connections, setting cavitation-erosion guarantees, and other guarantees included in tender documents are also described in some detail.

Kee, D.C.; Markovich, M.S.; Munro, R.I. [Ontario Hydro (Canada)

1997-02-01T23:59:59.000Z

87

4, 18791891, 2007 hydro-information  

E-Print Network [OSTI]

HESSD 4, 1879­1891, 2007 WS for hydro-information systems J. Horak et al. Title Page Abstract for distributed and interoperable hydro-information systems J. Horak, A. Orlik, and J. Stromsky Institute (antonin.orlik.hgf@vsb.cz) 1879 #12;HESSD 4, 1879­1891, 2007 WS for hydro-information systems J. Horak et

Paris-Sud XI, Université de

88

The C OH O hydrogen bond: A determinant of stability and specificity  

E-Print Network [OSTI]

recovered by hydro- gen bond formation, so hydrogen bonds provide a small or even unfavorable net energy hydro- gen bond has been unclear and its interaction energy has been believed to be small. Recently that apparent carbon hydro- gen bonds cluster frequently at glycine-, serine-, and threonine-rich packing

Senes, Alessandro

89

Solar decomposition of cadmium oxide for hydrogen production. Final subcontract report  

SciTech Connect (OSTI)

The reactor developed for this study performed satisfactorily in establishing the feasibility of cadmium oxide decomposition under the realistic conditions of the solar-furnace environment. The solar-furnace environment is very appropriate for the evaluation of design concepts. However, the solar furnace probably cannot give precise rate data. The flux is too nonuniform, so temperatures of reactant and corresponding reaction rates are also nonuniform. One of the most important results of this project was the recovery of samples from the quench heat exchanger that contained a surprisingly large amount of metallic cadmium. The fact that the sample taken from the quench heat exchanger was metallic in appearance and contained between 67% and 84% metallic cadmium would tend to indicate recombination of cadmium vapor and oxygen can be effectively prevented by the quenching operation. It would also tend to confirm recent studies that show cadmium oxide does not sublime appreciably. Determination of the decomposition rate of cadmium oxide was severely limited by fluctuating and nonuniform reactant temperatures and baseline drift in the oxygen sensor. However, the estimated rate based on a single run seemed to follow a typical solid decomposition rate pattern with an initial acceleratory period, followed by a longer deceleratory period. From a preliminary flowsheet analysis of the cadmium-cadmium oxide cycle, it was determined that at a cadmium oxide decomposition temperature of 1400/sup 0/C and a requirement of 0.2 V in the electrolyzer the efficiency was 41%, assuming total quenching of the cadmium oxide decomposition products. This efficiency could increase to a maximum of 59% if total recovery of the latent heats of vaporization and fusion of the decomposition products is possible.

Schreiber, J. D.; Yudow, B. D.; Carty, R. H.; Whaley, T. P.; Pangborn, J. B.

1981-11-01T23:59:59.000Z

90

Manitoba Hydro | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town in Carroll County,Manitoba Hydro Jump to:

91

Solar Energy Education. Solar solutions: Reader, Part III  

SciTech Connect (OSTI)

A collection of magazine articles which focus on the subject of solar energy is presented in this booklet. This is the third of a four part series of the Solar Energy Reader books. The articles provide brief discussions on the various applications of solar energy including: heat, photovoltaics; wind, hydro, and biomass. A glossary of terms is included. (BCS)

Not Available

1981-05-01T23:59:59.000Z

92

Linkage of the ArcHydro Data Model with SWAT  

E-Print Network [OSTI]

Linkage of the ArcHydro Data Model with SWAT Francisco Olivera, Ph.D., P.E. Milver Valenzuela Texas on a hub basis. Independent of the already connected models HUB #12;Arc Hydro Arc Hydro can be used as the hub for connecting hydrologic models. #12;Arc Hydro #12;What it is and what it is not ... Arc Hydro

93

Subsea Pumped Hydro Storage -A Technology Assessment.  

E-Print Network [OSTI]

??A novel technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources… (more)

Falk, Johan

2013-01-01T23:59:59.000Z

94

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

95

Are collisions with neutral hydrogen important for modelling the Second Solar Spectrum of Ti I and Ca II ?  

E-Print Network [OSTI]

The physical interpretation of scattering line polarization offers a novel diagnostic window for exploring the thermal and magnetic structure of the quiet regions of the solar atmosphere. Here we evaluate the impact of isotropic collisions with neutral hydrogen atoms on the scattering polarization signals of the 13 lines of multiplet 42 of Ti I and on those of the K line and of the IR triplet of Ca II, with emphasis on the collisional transfer rates between nearby J-levels. To this end, we calculate the linear polarization produced by scattering processes considering realistic multilevel models and solving the statistical equilibrium equations for the multipolar components of the atomic density matrix. We confirm that the lower levels of the 13 lines of multiplet 42 of Ti I are completely depolarized by elastic collisions. We find that upper-level collisional depolarization turns out to have an unnoticeable impact on the emergent linear polarization amplitudes, except for the ${\\lambda 4536$ line for which it is possible to notice a rather small depolarization caused by the collisional transfer rates. Concerning the Ca II lines, we show that the collisional rates play no role on the polarization of the upper level of the K line, while they have a rather small depolarizing effect on the atomic polarization of the metastable lower levels of the Ca II IR triplet.

M. Derouich; J. Trujillo Bueno; R. Manso Sainz

2007-05-14T23:59:59.000Z

96

Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities. Final report  

SciTech Connect (OSTI)

In this project, the authors show the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This technical analysis provides estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies have been matched to their most viable (high quality and quantity) regional resources (e.g., examining wind electricity production in high wind resource areas only). The renewables are assumed to produce electricity which is instantaneously used by the local utility to meet its loads; any excess electricity is used to produce hydrogen electrolytically and stored for use later in the day, week or year. The hydrogen production from renewables and hydrogen storage use are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 20% of electric load). Renewable production/utility load/hydrogen storage coupling models have been developed for wind, photovoltaics, and solar thermal. Hydro power (which normally has its own inherent storage capability) has been analyzed separately.

Iannucci, J.J.; Eyer, J.M.; Horgan, S.A.; Schoenung, S.M. [Distributed Utility Associates, San Ramon, CA (United States)]|[Longitude 122 West, Inc., Menlo Park, CA (United States)

1997-05-01T23:59:59.000Z

97

Non-grey hydrogen burning evolution of sub-Solar mass Population III stars  

E-Print Network [OSTI]

The primordial elements, H, He and Li are included in a low temperature equation of state and monochromatic opacity function. The equation of state and opacity function are incorporated into the stellar evolution code NG-ELMS, which makes use of a non-grey model atmosphere computed at runtime. NG-ELMS is used to compute stellar evolution models for primordial and lithium free element mixtures, for stars in the sub-Solar mass range 0.8--0.15 Msol. We find that lithium has little or no effect upon the structure and observable properties of of stars in this mass range. Furthermore lithium is completely destroyed by fusion before the main sequence in stars of mass less than ~0.7 Mol. We find that on the red giant branch and Hayashi track, the use of a non-grey model atmosphere to provide the upper boundary conditions for the stellar evolution calculation, results in significantly cooler less luminous stars, across the mass range

G. J. Harris; A. E. Lynas-Gray; S. Miller; J. Tennyson

2006-10-05T23:59:59.000Z

98

Master Programme REMA/EUREC Course 2008/2009  

E-Print Network [OSTI]

Winter Micro Hydro Fuel Cells & Hydrogen Hydro Energy & Pump LeadAcid Battery (Lab Solar Spectrum (Lab) Selective Surfaces (Lab) PV Cell Characteristics (Lab) Solar

Damm, Werner

99

Sandia National Laboratories: Tech Reference for Hydrogen Compatibilit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Password: Submit Tagged with: Energy Security * Fuel Cells * Hydrogen * Hydrogen and Fuel Cells * Hydrogen Compatibility of Materials * Renewable Energy * solar This post is...

100

Study of the thermochemistry for oxygen production for a solar sulfur-ammonia  

E-Print Network [OSTI]

Temperature Solar Hydrogen Production,” Chemical Reviews,Steinfeld, A. , “Solar Hydrogen Production via a Two-Stepon Nuclear Hydrogen Production and the Thermochemical Cu- Cl

Wang, Mimi Kai Wai

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vortex Hydro Energy Develops Transformational Technology to Harness...  

Energy Savers [EERE]

Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water...

102

NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys  

E-Print Network [OSTI]

NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys: Surf Clams and Ocean Quahogs December 19..................................................................................................................................... 1 NOAA Fisheries Hydro-dynamic Clam Dredge Survey Protocols

103

PHNOMNES DITS HYDRO-LECTRIQUES ET HYDRO-MAGNTIQUES; THO-RMES FONDAMENTAUX ET LEUR CONSTATATION EXPRIMENTALE;  

E-Print Network [OSTI]

PH�NOM�NES DITS HYDRO-�LECTRIQUES ET HYDRO-MAGN�TIQUES; TH�O- R�MES FONDAMENTAUX ET LEUR nouveaux phénomènes. Je les désignerai ainsi comme une hydro-électicité, un hydro-magnétisme, etc. Mais'idée, d'aimants au lieu d'hydro-aimants, de masses électriques au lieu de masses hydro-électriques, et

Paris-Sud XI, Université de

104

2013 Biological Hydrogen Production Workshop Summary Report  

Broader source: Energy.gov (indexed) [DOE]

for Hydrogen Production: In vitro biohybrid systems and enzyme engineering for solar hydrogen Non-Light Driven Biological Breakout Groups - Day 2 Fermentative...

105

HEITSCH, R OMISCH --HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems in Power Generation  

E-Print Network [OSTI]

HEITSCH, R ¨OMISCH -- HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems that owns a hydro-thermal generation sys- tem and trades on the power market often lead to complex stochas- tic optimization problems. We present a new approach to solving stochastic hydro-storage subproblems

Römisch, Werner

106

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network [OSTI]

Using Self-Sustained Hydro- Gasification." [0011] In aprocess, using a steam hydro-gasification reactor (SHR) thepyrolysis and hydro-gasification in a single step. This

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

107

Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation  

E-Print Network [OSTI]

We study polarization independent improved light trapping in commercial thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-resonant nano-disk structures embedded in a silicon nitride anti-reflection coating (ARC) to enhance optical absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle. Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit current density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar cell (NDPSC) was found to be higher than the commercial reference structure for any incident angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by surface plasmon resonances. The detrimental Staebl...

Vora, Ankit; Pearce, Joshua M; Bergstrom, Paul L; Güney, Durdu Ö

2014-01-01T23:59:59.000Z

108

HydroGen Aquaphile sarl | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybrids Plus JumpAddress: 1359sarl

109

HydroGen Corporation formerly Chiste Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybrids Plus JumpAddress:

110

Sustainable hydrogen production  

SciTech Connect (OSTI)

This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

Block, D.L.; Linkous, C.; Muradov, N.

1996-01-01T23:59:59.000Z

111

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

U.S. ProjectS Hydrogen Production from Renewables-Basedstations in California. Hydrogen Production from Biomass 10.of Methods for Hydrogen Production Using Concentrated Solar

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

112

hydro | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Power Forum Description: Forum

113

Coupled hydro-mechanical processes in crytalline rock and in induratedand plastic clays: A comparative discussion  

E-Print Network [OSTI]

at Grimsel. In Coupled Thermo-Hydro- Mechanical-ChemicalCOUPLED HYDRO-MECHANICAL PROCESSES IN CRYTALLINE ROCK AND IN

Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

2008-01-01T23:59:59.000Z

114

| JANUARY/FEBRUARY 2014 | Hydro INTERNATIONAL22 symbols and features used on a  

E-Print Network [OSTI]

| JANUARY/FEBRUARY 2014 | Hydro INTERNATIONAL22 symbols and features used on a nautical chart #12;Hydro INT

New Hampshire, University of

115

Transcending the Hydro-Illogical Building a Texas Hydrologic  

E-Print Network [OSTI]

Transcending the Hydro-Illogical Cycle Building a Texas Hydrologic Information System TX-HIS #12;Q to couple streamflow models to GCMs · We need to break the hydro-illogical cycle and plan for the delivery

Yang, Zong-Liang

116

Assessing Hydrogen-Assisted Cracking Fracture Modes in High-Strength  

E-Print Network [OSTI]

theoretical hydro- gen-assisted cracking mechanisms. In- deed, it was found that the microplastic- ity theory of Beachem can best describe how the stress intensity faqor and hydro- gen content affect the modes of inter to reassociate into diatomic hydrogen in pores and micro- voids. The pressure of diatomic hyd~oge~ KEY WORDS

Eagar, Thomas W.

117

Analysis of Renewable Hydrogen Rangan Banerjee  

E-Print Network [OSTI]

Analysis of Renewable Hydrogen Rangan Banerjee Energy Systems Engineering IIT Bombay Lecture Dioxide Concentrations #12;Hydrogen Energy Can hydrogen energy mitigate the energy problem? Can hydrogen,COOKED FOOD etc.. #12;Source : Energy After Rio: UNDP Publication. #12;Hydrogen pathways Photo chemical Solar

Banerjee, Rangan

118

Fraser River Hydro and Fisheries Research Project fonds  

E-Print Network [OSTI]

Fraser River Hydro and Fisheries Research Project fonds Revised by Erwin Wodarczak (1998 Fraser River Hydro and Fisheries Research Project fonds. ­ 19561961. 13 cm of textual records. Administrative History The Fraser River Hydro and Fisheries Research Project was established in 1956, financed

Handy, Todd C.

119

Interconnected hydro-thermal systems Models, methods, and applications  

E-Print Network [OSTI]

Interconnected hydro-thermal systems Models, methods, and applications Magnus Hindsberger Kgs. Lyngby 2003 IMM-PHD-2003-112 Interconnected hydro-thermalsystems #12;Technical University of Denmark 45882673 reception@imm.dtu.dk www.imm.dtu.dk IMM-PHD-2003-112 ISSN 0909-3192 #12;Interconnected hydro

120

Stochastic Co-optimization for Hydro-Electric Power Generation  

E-Print Network [OSTI]

1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Forestry Commission Wales Guidance on rental levels for Hydro Power  

E-Print Network [OSTI]

initiated a process to facilitate the development of small- scale hydro-electricity schemes on land ownedForestry Commission Wales Guidance on rental levels for Hydro Power Guidance on rental levels for hydro power projects Tel: 02920 475961 Email: hydrowales@forestry.gsi.gov.uk Version 1.0 Mike Pitcher 17

122

NOAA Technical Memorandum NWS HYDRO 45 RELATIONSHIP BETWEEN  

E-Print Network [OSTI]

NOAA Technical Memorandum NWS HYDRO 45 RELATIONSHIP BETWEEN STORM AND ANTECEDENT PRECIPITATION OVER TECHNICAL MEMORANDUMS National Weather Service. Office of Hydrology Series The Office of Hydrology (HYDRO and development. NOAA Technical Memorandums in the NWS HYDRO series facilitate prompt distribution of scientific

123

Atomic scale mixing for inertial confinement fusion associated hydro instabilities  

E-Print Network [OSTI]

Atomic scale mixing for inertial confinement fusion associated hydro instabilities J. Melvina, , P Alamos, NM 87545, USA Abstract Hydro instabilities have been identified as a potential cause- able. We find numerical convergence for this important quantity, in a purely hydro study, with only

New York at Stoney Brook, State University of

124

NOAA Technical Memorandum NWS HYDRO 46 A CLIMATIC ANALYSIS  

E-Print Network [OSTI]

NOAA Technical Memorandum NWS HYDRO 46 A CLIMATIC ANALYSIS OF OROGRAPHIC PRECIPITATION OVER THE BIGHydrology (HYDRO) ofthe National Weather Service (NWS) develops procedures for making river and water supply, and conducts pertinent research and development NOAA Teclmical Memorandums in the NWS HYDRO series facilitate

125

Ontario Hydro`s transportation of radioactive material and emergency response plan  

SciTech Connect (OSTI)

Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro`s shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation`s ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada.

Karmali, N. [Ontario Hydro, Toronto, Ontario (Canada). Nuclear Operations Branch

1993-12-31T23:59:59.000Z

126

LANL hydro test update(u)  

SciTech Connect (OSTI)

Briefings presenting W78 programmatic activities for FY11 and the status and plan for associated Hydro 3617, is included wherewith in support of the NNSA W78 Program Review Meeting scheduled for January 11 thru 13, 2011, at the Savannah River Plant, SC.

Aragon, Ezekiel D [Los Alamos National Laboratory

2011-01-06T23:59:59.000Z

127

3-D hydro + cascade model at RHIC  

E-Print Network [OSTI]

We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

Chiho Nonaka; Steffen A. Bass

2005-11-07T23:59:59.000Z

128

THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL  

E-Print Network [OSTI]

THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL RESERVOIR STIMULATIONRESERVOIR STIMULATION Silvia Seminario del Grupo de Hidrologìa Subterrànea - UPC, Barcelona #12;INTRODUCTION Enhanced geothermal systems Geothermal gradient ~ 33 °C/Km Hydraulic stimulation enhances fracture permeability (energy

Politècnica de Catalunya, Universitat

129

Doctoral Defense "Thermal-hydro-mechanical model  

E-Print Network [OSTI]

Doctoral Defense "Thermal-hydro-mechanical model for freezing and thawing soils" Yao Zhang Date & Environmental Engineering Frost susceptible soils are vulnerable to frost action in seasonal freezing as well and strengthening occurs as the soils freeze, whereas settlement and thaw weakening is expected during the melting

Kamat, Vineet R.

130

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

SciTech Connect (OSTI)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

131

Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure  

E-Print Network [OSTI]

With the plethora of detailed results from heliospheric missions and at the advent of the first mission dedicated IBEX, we have entered the era of precision heliospheric studies. Interpretation of these data require precision modeling, with second-order effects quantitatively taken into account. We study the influence of the non-flat shape of the solar Ly-alpha line on the distribution of neutral interstellar H in the inner heliosphere. Based on available data, we (i) construct a model of evolution for the solar Ly-alpha line profile with solar activity, (ii) modify an existing test-particle code used to calculate the distribution of neutral interstellar H in the inner heliosphere so that it takes the dependence of radiation pressure on radial velocity into account, and (iii) compare the results of the old and new version. Discrepancies between the classical and Doppler models appear between ~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates the density everywhere except for a ~60-degr cone around the downwind direction, where a density deficit appears. The magnitude of the discrepancies appreciably depends on the phase of the solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~1 AU, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degrees, respectively, which, when unaccounted for, would introduce an error of a few km/s and degrees in determination of the magnitude and direction of the bulk velocity vector at the termination shock.

S. Tarnopolski; M. Bzowski

2008-12-04T23:59:59.000Z

132

Ab-Initio Quantum Dynamics Calculation of Hydrogen Interaction with Surfaces  

E-Print Network [OSTI]

hydrogen economy [7], infrastructures have to be built. Development of efficient processes for hydro- gen, from an economics point-of- view, the transition to an economy based on hydrogen (energy) couldAb-Initio Quantum Dynamics Calculation of Hydrogen Interaction with Surfaces --Exploiting

Katsumoto, Shingo

133

A Si Photocathode Protected and Activated with a Catalytic Ti and Ni Composite Film for Solar Hydrogen Production in Water  

E-Print Network [OSTI]

, stable and scalable hybrid photo- electrode for visible-light-driven H2 generation in an aque- ous pH 9.2 electrolyte solution is reported. The photoca- thode consists of a p-type Si substrate layered with a Ti and Ni-containing composite film, which acts... for several hours, and serves as a benchmark non-noble photocathode for solar H2 evolution that operates efficiently under neutral–alka- line conditions. Photoelectrochemical (PEC) water splitting is an attractive strategy to generate the renewable energy...

Lai, Yi-Hsuan; Park, Hyun S.; Zhang, Jenny Z.; Matthews, Peter D.; Wright, Dominic S.; Reisner, Erwin

2015-02-04T23:59:59.000Z

134

The President's Hydrogen Fuel Initiative Workshop on  

E-Print Network [OSTI]

, nuclear, and coal with carbon sequestration, can reduce dependence on petroleum, and yield virtually zero criteria and greenhouse gas emissions. Coal Only with carbon capture & sequestration Gasification process with carbon sequestration Distributed Natural Gas* Nuclear Distributed Generation Hydro Wind Solar Geothermal

135

The U.S. Department of Energy Hydrogen and Fuel Cells Mark Paster  

E-Print Network [OSTI]

Water Hydro Wind Solar Geothermal Coal Nuclear Natural Gas WithCarbonSequestration HIGH EFFICIENCY IcelandCanada Russian Federation Australia South Korea China IPHE Partners' Economy: · Over $35 Trillion

136

The U.S. Department of Energy Hydrogen and Fuel Cells  

E-Print Network [OSTI]

Hydro Wind Solar Geothermal Coal Nuclear Natural Gas WithCarbonSequestration HIGH EFFICIENCY, by 2020." - Secretary Abraham, April 2003 China Germany India Italy European CommissionAustralia Brazil

137

Optimizing Trading Decisions for Hydro Storage Systems using ...  

E-Print Network [OSTI]

Trading with a system of hydro storage plants in a wholesale electricity market involves many decisions ...... prices due to higher demand for heating and cooling.

2012-09-19T23:59:59.000Z

138

Robust optimization based self scheduling of hydro-thermal Genco ...  

E-Print Network [OSTI]

Dec 29, 2013 ... Abstract: This paper proposes a robust optimization model for optimal self scheduling of a hydro-thermal generating company. The proposed ...

Alireza Soroudi

2013-12-29T23:59:59.000Z

139

A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...  

Open Energy Info (EERE)

to the most hydraulically conductive fractures in two orthogonal and vertical fracture sets. The mathematical model representing the hydro-mechanical interactions that are...

140

Microsoft Word - SNOPUD_Youngs_Cr_Hydro_CX_+_Checklist.doc  

Broader source: Energy.gov (indexed) [DOE]

Interconnection of Snohomish County Public Utility District No.1 (SNOPUD) Young's Creek Hydro Small Generation Budget Information: WO 00231295, Task 01 Categorical Exclusion...

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Rye Patch geothermal development, hydro-chemistry of thermal...  

Open Energy Info (EERE)

development, hydro-chemistry of thermal water applied to resource definition Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Rye Patch geothermal...

142

Thermo-hydro-chemical Predictive analysis for the drift-scale predictive heater test,  

E-Print Network [OSTI]

Characterization Project Thermo-Hydro-Chemical Predictive90-1116 Berkeley, C A 94720 Thermo-Hydro-Chemical PredictiveVersion 1.0 Thermo-Hydro-Chemical Predictive Analysis for

Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John; Simmons, Ardyth

1998-01-01T23:59:59.000Z

143

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network [OSTI]

OPERATION OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BEDMaterial Using Self-Sustained Hydro- Gasification." [0011]the process, using a steam hydro-gasification reactor (SHR)

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

144

Optimierung eines hydro-thermischen Kraftwerks-systems unter Ungewi heit  

E-Print Network [OSTI]

Optimierung eines hydro-thermischen Kraftwerks- systems unter Ungewi heit Dr. rer. nat. N. Growe Arbeit beschreiben wir ein stochastisches Modell fur den ko- stenoptimalen Einsatz eines hydro ein, entwickeln ein Losungsverfahren und validieren dies am Beispiel des hydro

Römisch, Werner

145

Hydrogen Filling Station  

SciTech Connect (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

146

Voith Hydro Wavegen Limited | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS data Jump to: navigation, search ToolVoith Hydro Wavegen

147

Ascent Hydro Projects Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergyElectric Coop CorpInformation ArthurAscendantHydro Projects

148

HydroChina Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a new pageHuadeHydroChina Corporation

149

Property:HydroSystem | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY JumpThis is a property ofHydroSystem Jump to:

150

Hydro Green Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybrids Plus Jump to:EnergyHydro

151

HydroVolts | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybrids PlusHydroVolts Jump to:

152

E-Print Network 3.0 - atmosphere-sea hydro-ecological model Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sensitive to climate change because numerous hydro-ecological processes respond to even small changes... (see section on general hydro-ecology and 6). Even more dramatic...

153

POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY  

E-Print Network [OSTI]

POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 Forschungsgemeinschaft. leads to a tremendous increase in the complex- ity of the traditional power optimization mod- els-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

Römisch, Werner

154

Hydro-Thermal Scheduling (HTS) 1.0 Introduction  

E-Print Network [OSTI]

1 Hydro-Thermal Scheduling (HTS) 1.0 Introduction From an overall systems view, the single most, relative to that of thermal plants, are very small. There are three basic types of hydroelectric plants;2 Pump-storage This kind of hydro plant is a specialized reservoir-type plant which has capability to act

McCalley, James D.

155

NH4-smectite: Characterization, hydration properties and hydro mechanical behaviour  

E-Print Network [OSTI]

NH4-smectite: Characterization, hydration properties and hydro mechanical behaviour M. Gautier a and drive to environmental problems. The purpose of this study was to understand the hydro- physical changes the pressure on small amounts of samples, proved the strong increase of the permeability of NH4-smectite

Paris-Sud XI, Université de

156

Micro Hydro-Diesel Hybrid Power System  

E-Print Network [OSTI]

This paper presents the design and analysis of Neuro-Fuzzy controller based on Adaptive Neuro-Fuzzy Inference System (ANFIS) architecture for Load frequency control of an isolated wind-micro hydro-diesel hybrid power system, to regulate the frequency deviation and power deviations. Due to the sudden load changes and intermittent wind power, large frequency fluctuation problem can occur. This newly developed control strategy combines the advantage of neural networks and fuzzy inference system and has simple structure that is easy to implement. So, in order to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to control the system. Simulations of the proposed ANFIS based Neuro-Fuzzy controller in an isolated wind-micro hydro-diesel hybrid power system with different load disturbances are performed. Also, a conventional proportional Integral (PI) controller and a fuzzy logic (FL) controller were designed separately to control the same hybrid power system for the performance comparison. The performance of the proposed controller is verified from simulations and comparisons. Simulation results show that the performance of the proposed ANFIS based Neuro-Fuzzy Controller damps out the frequency deviation and attains the steady state value with less settling time. The proposed ANFIS based Neuro-Fuzzy controller provides best control performance over a wide range of operating conditions.

Dhanalakshmi R; Palaniswami S

157

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

158

Optimal sequencing site of hydro-power stations  

SciTech Connect (OSTI)

At the first stage of a hydro-power survey of a river, it is important to select the optimal hydro-power site. The most important condition to be satisfied is to determine the optimal site where the greatest and most economical amount of hydro-energy can be obtained. This paper proposes a new method in which the optimal arrangement of the hydro-power stations is determined by a computational operation using discrete data at points along the river such as the drainage area, altitude, and distance along the river channel as obtained from topographical maps instead of drawing on engineers` experiences and the intuitions of experts. The results by this method are then compared with data on existing hydro-power stations and the results planned by expert engineers to show that this new computational method is superior.

Hayashi, T.; Yoshino, F.; Waka, R. [Tottori Univ., Koyama (Japan). Dept. of Mechanical Engineering

1995-06-01T23:59:59.000Z

159

DOE Hydrogen Program FY 2004 Progress Report II.E.2 Photoelectrochemical Hydrogen Production  

E-Print Network [OSTI]

to commercialization Technical Barriers The Hydrogen, Fuel Cells & Infrastructure Technologies (HFCIT) Program MultiDOE Hydrogen Program FY 2004 Progress Report II.E.2 Photoelectrochemical Hydrogen Production Eric L DOE in the development of technology to produce hydrogen using solar energy to photoelectrochemically

160

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubbles andof the Trough and its60-42773

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network [OSTI]

, environmentally harmful, oil exploration and drilling. Technology Solar Fuel's proprietary technology converts wasteful thermal energy production. Solar Fuel has two patents filed and in process. Market Potential There are many potential markets for Solar Fuel, however, the beachhead target is the oil and gas in- dustry

Jawitz, James W.

162

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Hydrogen Production, National Renewable Energy Laboratory,Production Using Concentrated Solar Energy, National Renewablethe production of hydrogen from renewable energy sources. In

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

163

Strongly Correlated Electron Systems Functionalized for Solar Cells and Memristors  

E-Print Network [OSTI]

" #12;Grand Energy Challenge Gap between production and demand: ~14TW by 2050 Install one 1GW new power Demand total industrial developing US ee/fsu Energy source World Capacity Solar Geothermal Biomass Hydro Optimization of gap: max efficiency: 31% (Shockley Queisser 1961) In real PV cells 80-85% of incident solar

164

Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals  

E-Print Network [OSTI]

1 Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals M. J and Hydro-meteorology Hydrology GRACE Hydro-meteorology RQ dt dS dt dMdS RETP . dt AH a #12;3 GRACE, times based signals #12;12 CCA on catchments based ­ GRACE and hydro-meteorology T GDGDGD T VUQ dt d

Stuttgart, Universität

165

Oxide nanowires for solar cell applications Qifeng Zhang, Supan Yodyingyong, Junting Xi, Daniel Myers and Guozhong Cao*  

E-Print Network [OSTI]

conversion and storage including solar cells, lithium-ion batteries, super- capacitors, and hydrogen storage

Cao, Guozhong

166

Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.  

SciTech Connect (OSTI)

Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

Prezhdo, Oleg V.

2012-03-22T23:59:59.000Z

167

Hydro-Gravitational-Dynamics of Planets and Dark Energy  

E-Print Network [OSTI]

Self-gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and frag-ments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC on 0.03 Mpc galaxy accretion disks. Star deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates produce white dwarfs that evaporate surrounding gas planets by spin-radiation to form planetary nebulae before Supernova Ia events, dimming some events to give systematic distance errors misinterpreted as the dark energy hypothesis and overestimates of the universe age. Failures of standard LCDM cosmological models reflect not only obsolete Jeans 1902 fluid mechanical assumptions, but also failures of standard turbulence models that claim the cascade of turbulent kinetic energy is from large scales to small. Because turbulence is always driven at all scales by inertial-vortex forces the turbulence cascade is always from small scales to large.

Carl H. Gibson; Rudolph E. Schild

2008-08-24T23:59:59.000Z

168

EIS-0166: Bangor Hydro-Electric Transmission Line, Maine  

Broader source: Energy.gov [DOE]

The Department of Energy prepared this environmental impact statement while considering whether to authorize a Presidential permit for Bangor Hydro to construct a new electric transmission facility at the U.S. border with Canada.

169

Final Report - Wind and Hydro Energy Feasibility Study - June 2011  

SciTech Connect (OSTI)

This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

2011-06-17T23:59:59.000Z

170

Flood survival: Getting a hydro plant back on line  

SciTech Connect (OSTI)

The Remmel Dam and Hydro Plant of Arkansas Power and Light Company was flooded on May 20, 1990. This article describes the teamwork and innovation that went into restoring the powerhouse in a short amount of time.

Weatherford, C.W. (Entergy Services, Inc., Little Rock, AR (United States))

1991-12-01T23:59:59.000Z

171

Master Programme REMA/EUREC Course 2008/2009  

E-Print Network [OSTI]

Winter Micro Hydro Fuel Cells & Hydrogen Hydro Energy & Pump LeadAcid Battery (Lab Solar Spectrum (Lab) Selective Surfaces (Lab) PV Cell Characteristics (Lab) Solar Specialisation Photovoltaics Module Title Term Title of lectures Photovoltaic Cell and Module Technology

Habel, Annegret

172

Speeding up solar disinfection : effects of hydrogen peroxide, temperature, and copper plus ascorbate on the photoinactivation of E. coli in Charles River water  

E-Print Network [OSTI]

Sunlight efficiently disinfects drinking water in plastic bottles over two days, but simple additives may show promise for reducing this time to several hours. This study found that adding up to 500 [micro]M hydrogen ...

Fisher, Michael Benjamin, 1979-

2004-01-01T23:59:59.000Z

173

Hydro-Balanced Stuffing Box field test  

SciTech Connect (OSTI)

The Hydro-Balanced Stuffing Box is a seal assembly for polished rod pumping installations commonly used in oil and gas pumping well installations to contain produced well fluids. The improved stuffing box was developed and patented by Harold H. Palmour of The Palmour Group of Livingston, TX. The stuffing box is designed to reduce the incidence of seal leakage and to utilize an environmentally safe fluid, so that if there is any leakage, environmental damage is reduced or eliminated. The unit was tested on two wells at the Rocky Mountain Oilfield Testing Center. During the test period, the performance of the stuffing box was measured by monitoring the pressure on the tubing and the inner chamber with a Barton Two-pen recorder. The amount of safe fluid consumed, fluid leakage at the top of the stuffing box, pressure supplied from the nitrogen bottle, ambient temperature, and polish rod temperature was recorded. The stuffing box is capable of providing a better seal between well fluids an d the environment than conventional stuffing boxes. It allows the polished rod to operate cooler and with lubrication, extending the life of the packing elements, and reducing the amount of attention required to prevent leakage.

Giangiacomo, L.A.

1999-05-28T23:59:59.000Z

174

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

175

EV Project: Solar-Assisted Charging Demo  

Broader source: Energy.gov (indexed) [DOE]

Melissa Lapsa 2014 DOE Vehicle Technologies Office Review Presentation EV Project - Solar- Assisted Charging Demo VSS138 2014 U.S. DOE Hydrogen Program and Vehicle Technologies...

176

Evolving Einstein's Field Equations with Matter: The ``Hydro without Hydro'' Test  

E-Print Network [OSTI]

We include matter sources in Einstein's field equations and show that our recently proposed 3+1 evolution scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravitational waveforms from strong-field sources dominated by longitudinal fields, like binary neutron stars: approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be evolved without having to re-solve the hydrodynamical equations (``hydro without hydro'').

Thomas W. Baumgarte; Scott A. Hughes; Stuart L. Shapiro

1999-02-09T23:59:59.000Z

177

Assess the key physics that underpins high-hydro coupling-efficiency in NDCX-II experiments and high-gain heavy ion direct drive target designs using proven hydro codes like HYDRA  

E-Print Network [OSTI]

physics that underpins high-hydro coupling-efficiency in N Dtarget designs using proven hydro codes like H Y D R A . byF E targets, we have studied hydro and implosion efficiency

Barnard, J. J.

2010-01-01T23:59:59.000Z

178

High Temperature Solar Splitting of Methane  

E-Print Network [OSTI]

-term commercialization opportunities #12;Why Use Solar Energy?Why Use Solar Energy? · High concentrations possible (>1000High Temperature Solar Splitting of Methane to Hydrogen and Carbon High Temperature Solar Splitting and worldwide) ­ Sufficient to power the world (if we choose to) · Advantages tradeoff against collection area

179

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

must come from renewable resources, such as wind, solar,numerous domestic and renewable resources, makes hydrogen annon-dispatchable renewable resources, such as wind power,

Yang, Christopher

2008-01-01T23:59:59.000Z

180

Sandia National Laboratories: Portable Hydrogen Fuel-Cell Unit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green, Sustainable Power to Honolulu Port Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port Solar Glare Hazard Analysis Tool Available for...

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Code for Hydrogen Hydrogen Pipeline  

E-Print Network [OSTI]

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

182

Geo Hydro Supply | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa is a

183

Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual-to-decadal time scales  

E-Print Network [OSTI]

Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual Available online 3 March 2006 Abstract An examination of a wide spectrum of hydro

Dippner, Joachim W.

184

Application of life cycle assessment methodology at Ontario Hydro  

SciTech Connect (OSTI)

Ontario Hydro is an electrical utility located in Ontario, Canada. In 1995, Ontario Hydro adopted Sustainable Energy Development Policy and Principles that include the governing principle: {open_quotes}Ontario Hydro will integrate environmental and social factors into its planning, decision-making, and business practices.{close_quotes} Life cycle assessment was identified as a useful tool for evaluating environmental impacts of products and processes in support of decision-making. Ontario Hydro has developed a methodology for life cycle assessment (LCA) that is consistent with generally accepted practices, practical, and suitable for application in Ontario Hydro Business Units. The methodology is based on that developed by the Society of Environmental Toxicology and Chemistry (SETAC) but follows a pragmatic and somewhat simplified approach. In scoping an LCA, the breadth and depth of analysis are compatible with and sufficient to address the stated goal of the study. The depth of analysis is tied to (i) the dollar value of the commodity, process or activity being assessed, (ii) the degree of freedom available to the assessor to make meaningful choices among options, and (iii) the importance of the environmental or technological issues leading to the evaluation. A pilot study was completed to apply the methodology to an LCA of the light vehicle fleet (cars, vans and light pick-up trucks) at Ontario Hydro. The objective of the LCA was to compare the life cycle impacts of alternative vehicle fuel cycles: gasoline, diesel, natural gas, propane, and alcohol; with particular focus on life cycle emissions, efficiency and cost. The study concluded that for large vehicles (1/2 ton and 3/4 ton) that travel more than 35000 km/year, natural gas and propane fuelling offer both cost reduction and emissions reduction when compared to gasoline vehicles.

Reuber, B.; Khan, A. [Ontario Hydro, Ontario (Canada)

1996-12-31T23:59:59.000Z

185

E-Print Network 3.0 - antas river hydro Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Luytens Close, Chineham, Hants, UK Summary: productivity and lifetime. Hydropower on a small-scale, or micro-hydro, is the exploitation of a river's hydro... of the water at the...

186

Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay  

E-Print Network [OSTI]

Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay. The consequences for both the hydrology and 41 #12;42 HYDRO-ECOLOGIC RESPONSES TO LAND USE IN SMALL URBANIZING

Palmer, Margaret A.

187

Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation System  

E-Print Network [OSTI]

Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation Old Main Hill, Logan, UT, 84322-8200, USA Abstract: In this work, we used the Regional Hydro

Tarboton, David

188

Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs  

E-Print Network [OSTI]

Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

Victoria, University of

189

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

190

ROOT LOCUS TECHNIQUE 323 7.6.1 Hydro Power Plant Experiment  

E-Print Network [OSTI]

ROOT LOCUS TECHNIQUE 323 7.6.1 Hydro Power Plant Experiment The design of a static controller for a real hydro power plant is considered in Skatariâ?? c and Gajiâ?? c (1992). The hydro power plant is treated variables of this hydro power plant are represented by x T = [1` 1! 1u f 1/ d 1/ q 1/ f 1/D 1/Q ] where 1

Gajic, Zoran

191

Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario Hydro`s Bruce Nuclear Generating Station `A`  

SciTech Connect (OSTI)

Ontario Hydro at the Bruce Nuclear Generating Station `A` has undertaken a program to render the station`s liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants to satisfy regulatory requirements for emissions. The system will remove radionuclide and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology.

Day, J.E.; Baker, R.L.

1995-05-01T23:59:59.000Z

192

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomerHydrogen Companies Loading

193

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomerHydrogen Companies

194

To: NW Hydro Association From: Dick Wanderscheid, Angus Duncan and Todd Reeve  

E-Print Network [OSTI]

Memo To: NW Hydro Association From: Dick Wanderscheid, Angus Duncan and Todd Reeve Re: The Bonneville Environmental Foundation's comments on the draft hydro potential study BEF staff completed to address the larger, conceptual picture of the hydro potential in the region. In particular, we attempted

195

Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new numerical scheme  

E-Print Network [OSTI]

ii Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new.S. Fairbanks, Alaska August 2005 #12;iii Abstract The Hydro-Thermodynamic Soil-Vegetation Scheme (HTSVS........................................................................................................................... 24 Evaluation of snow depth and soil temperatures predicted by the Hydro- Thermodynamic Soil

Moelders, Nicole

196

Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS)  

E-Print Network [OSTI]

Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS) Pamela Spier, University of Alaska, Fairbanks, AK Abstract This paper presents an evaluation of the Hydro. Introduction and Motivation The Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS, Kramm et al. 1996, Mölders

Moelders, Nicole

197

Towards Better Utilization of NEXRAD Data in Hydrology: an Overview of Hydro-NEXRAD  

E-Print Network [OSTI]

Towards Better Utilization of NEXRAD Data in Hydrology: an Overview of Hydro-NEXRAD Witold F metadata extraction and management techniques are required. The authors describe and discuss the Hydro of the Hydro-NEXRAD project is to increase the use of NEXRAD data in hydrologic research. The project

Lawrence, Ramon

198

Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706  

E-Print Network [OSTI]

Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706 PARTICIPANT ORGANIZATION NAME: CNRS Synthetic 2nd year report Related with Work Package............ HYDRO-THERMAL FLOW in the influence of a realistic geometry of the fracture on its hydro-thermal response. Several studies have

Schmittbuhl, Jean

199

Constraints on the lake volume required for hydro-fracture through ice sheets  

E-Print Network [OSTI]

Constraints on the lake volume required for hydro-fracture through ice sheets M. J. Krawczynski,1 M April 2009; published 16 May 2009. [1] Water-filled cracks are an effective mechanism to drive hydro to rapidly drive hydro-fractures through 1­1.5 km of subfreezing ice. This represents $98% of the meltwater

Skemer, Philip

200

14 IEEE power & energy magazine july/august 2008 THE CONTRIBUTION OF HYDRO-  

E-Print Network [OSTI]

14 IEEE power & energy magazine july/august 2008 T THE CONTRIBUTION OF HYDRO- power to modern%, with these differences reflecting respective economic devel- opment. Hydro contributes 17% of the total world electricity hand, the interna- tional antidam lobby demands that major hydro developments be stopped altogether

Dixon, Juan

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Estimating runoff using hydro-geodetic approaches; assessment and comparison M. J. Tourian1  

E-Print Network [OSTI]

Estimating runoff using hydro-geodetic approaches; assessment and comparison M. J. Tourian1 , C- drological balance equation, hydro-meteorological balance equation, least squares prediction using change from GRACE hydro-meteorological balance equation (Ratm) Ratm = - · Q - dM dt . · Q refers

Stuttgart, Universität

202

An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage  

E-Print Network [OSTI]

1 An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage Edgardo D of the integrated system. Keywords: wind power, generation dispatch, pumped storage, hydro generation, deterministic is the active power delivered by the wind-hydro plant, during interval i; PHi is the active power produced

Paris-Sud XI, Université de

203

Climate Change in Scotland: Impact on Mini-Hydro G.P. Harrison  

E-Print Network [OSTI]

be generated from wind, wave, biomass or small- or mini-hydro plant. Production from these resources some 300 MW is small hydro potential capable of producing energy at less than 7p/kWh (Garrad Hassan, 2001). Although many of the better sites for small and mini-hydro have already been developed

Harrison, Gareth

204

Hierarchical Control Strategy for a Hybrid Hydro-mechanical Transmission (HMT) Power-Train  

E-Print Network [OSTI]

Hierarchical Control Strategy for a Hybrid Hydro-mechanical Transmission (HMT) Power-Train Kai Loon a Hydro-mechanical Transmission (HMT) or power-split archi- tecture is being developed as a testbed within hybrid powertrain has a hydro- mechanical transmission (HMT) or power-split architecture. This combines

Li, Perry Y.

205

Dimensionnement et gestion d'un systme de stockage thermique par hydro-accumulation : application la  

E-Print Network [OSTI]

Dimensionnement et gestion d'un système de stockage thermique par hydro-accumulation : application de stockage thermique de type hydro-accumulation destiné à une chaufferie collective multi, mix-énergétique, stockage thermique, hydro-accumulation, dimensionnement optimal, gestion, graphe d

Paris-Sud XI, Université de

206

Mod`ele Elements Finis d'un Pli Vocal Artificiel avec Couplage Hydro-elastique  

E-Print Network [OSTI]

Mod`ele El´ements Finis d'un Pli Vocal Artificiel avec Couplage Hydro-´elastique N. Hermanta , F formulation variationnelle du couplage hydro-élastique. Un premier calcul hyper-élastique simule le gonflement dans l'analyse modale des vibrations de petite amplitude du système hydro-élastique, permettant ainsi

Paris-Sud XI, Université de

207

NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER  

E-Print Network [OSTI]

NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER DEERFIELD RIVER The Office of Hydrology (HYDRO) of the National Weather Service (NWS) develops procedures for making river agencies, and conducts pertinent research and development. NOAA Technical Memorandums in the NWS HYDRO

208

Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate  

E-Print Network [OSTI]

Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate Ludovic Cassan1 Abstract: The article describes the hydraulic functioning of a mixed water level control hydro- mechanical of the model to reproduce the functioning of this complex hydro-mechanical system. CE database Subject headings

Paris-Sud XI, Université de

209

Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2  

E-Print Network [OSTI]

Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2 , James T of Civil Engineering, University of Roma Tre Low-frequency hydro-acoustic waves are precursors of tsunamis. Detection of hydro-acoustic waves generated due to the water column compression triggered by sudden seabed

Kirby, James T.

210

LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Submitted by  

E-Print Network [OSTI]

THESIS LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Submitted by Tumenjargal Sukh 2012 All Rights Reserved #12;ABSTRACT LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Air the degree of change of Mongolian water resources. We find that herders' local knowledge of hydro

MacDonald, Lee

211

A lattice-based query system for assessing the quality of hydro-ecosystems  

E-Print Network [OSTI]

A lattice-based query system for assessing the quality of hydro-ecosystems Agn`es Braud1 Cristina used for building a hierarchy of site pro- files which are annotated by hydro in the project. This paper presents an application of Galois lattices to the hydro-ecological domain, focussing

Paris-Sud XI, Université de

212

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network [OSTI]

OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOROF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOR F Iis fed into a hydro-gasifier reactor. One such process was

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

213

Microbial Fuel Cells -Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6/28/2006 11:32 AM  

E-Print Network [OSTI]

.com Hydrogen Fuel Cells Buy Commercial & Educational Stacks PEM, Fuel Cell Generators & More! www.TheHydrogenCompany.com Hydrogen Fuel Cell Improve Your Fuel Economy 20 to 50% Begin Saving Fuel Now www.SaveMoreWithHydrogenMicrobial Fuel Cells - Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6

Lovley, Derek

214

Hydrogen Analysis  

Broader source: Energy.gov [DOE]

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

215

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen High temperature options for nuclear generation of hydrogen on a commercial basis are several years in the future. Thermo-chemical water splitting has been proven to be...

216

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

217

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

218

Purdue Hydrogen Systems Laboratory  

SciTech Connect (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

219

DOE Hydrogen Program FY 2005 Progress Report IV.F Photoelectrochemical  

E-Print Network [OSTI]

barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells and Infrastructure TechnologiesDOE Hydrogen Program FY 2005 Progress Report 13 IV.F Photoelectrochemical IV.F.1 High-Efficiency Generation of Hydrogen Using Solar Thermochemical Splitting of Water - UNLV: Photoelectrochemical Hydrogen

220

Downscaling, Data Fusion, and Data Assimilation in Hydro-meteorology  

E-Print Network [OSTI]

Downscaling, Data Fusion, and Data Assimilation in Hydro (1997 -) GPM (2014 -) PR #12;3 GPM: a multi-satellite mission extending beyond the tropics #12;4 DPR of precipitation #12;Multi-sensor Data Fusion Problem · Optimal merging of multi-sensor precipitation observations

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

SciTech Connect (OSTI)

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

222

Hydrogenation apparatus  

DOE Patents [OSTI]

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

223

Hydrogen Production & Delivery Sara Dillich  

E-Print Network [OSTI]

(May 9, 2011) #12;2 Goals and Objectives: Develop technologies to produce hydrogen from clean, domestic Electrolysis (Solar) 2015-2020Today-2015 2020-2030 Coal Gasification (No Carbon Capture) Electrolysis Water (Grid) Coal Gasification (Carbon Capture) Biomass Gasification Water Electrolysis (Wind) High-Temp Water

224

PHOTOELECTROCHEMICAL SYSTEMS FOR HYDROGEN PRODUCTION  

E-Print Network [OSTI]

to allow the overlap of the bandedges with the water redox potentials in the dark. Charge transfer analysis A photoelectrochemical (PEC) system combines the harvesting of solar energy with the electrolysis of water. When, the energy can be sufficient to split water into hydrogen and oxygen. Depending on the type of semiconductor

225

Hydrogen and OUr Energy Future  

SciTech Connect (OSTI)

In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

Rick Tidball; Stu Knoke

2009-03-01T23:59:59.000Z

226

Hydrogen: Fueling the Future  

SciTech Connect (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

227

University of Colorado-Boulder Researches Solar-Thermochemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and temperature quenching or in an electrolysis step. The conversion of solar radiation into chemical fuel, such as hydrogen, is an engineering challenge; however,...

228

Hydrogen Bibliography  

SciTech Connect (OSTI)

The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

Not Available

1991-12-01T23:59:59.000Z

229

PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION Eric Miller and Richard Rocheleau  

E-Print Network [OSTI]

(indium-tin-oxide), and polymer-encapsulation films deposited at the University of Hawaii. The a-Si solar these catalytic coatings, solar-to-hydrogen efficiencies of 6% to 8% were expected for the a-Si based-stacks was reduced from 1.8 V to below 1 V, making water-splitting impossible, despite predicted solar

230

PHNOMNES DITS HYDRO-LECTRIQUES ET HYDROMAGNTIQUES; PAR M. C.-A. BJERKNES (1),  

E-Print Network [OSTI]

509 PH�NOM�NES DITS HYDRO-�LECTRIQUES ET HYDROMAGN�TIQUES; PAR M. C.-A. BJERKNES (1), Professeur à corps hydro- électrisés s'attirent ou se repoussent, suivant que leurs vibrations sont concordantes ou- minuent en même temps). Un hydro-aimant, formé ou bien d'une splzère oscillante ou de deux pulsateurs

Paris-Sud XI, Université de

231

Sandia National Laboratories: Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAidsCanal,GridInfrastructureHydrogen Sandia

232

An experimental study of improvement of a micro hydro turbine performance.  

E-Print Network [OSTI]

??The thesis includes a literature survey of small hydraulic turbines, incorporating a historical review. The possible role of "micro hydros" in generating power in various… (more)

Yassi, Yousef

1999-01-01T23:59:59.000Z

233

BC Hydro Brings Energy Savings to Low-Income Families in Canada...  

Energy Savers [EERE]

needs described in their application. Other BC Hydro incentives not based on income include a rebate program for insulation, draft-proof measures, heat pumps, and water heaters...

234

Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint  

SciTech Connect (OSTI)

The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

2013-05-01T23:59:59.000Z

235

Variable speed drive as an alternative solution for a micro-hydro power plant.  

E-Print Network [OSTI]

?? This diploma work is mainly focused on developing the control strategy for avariable speed drive as an alternative solution to a micro-hydro power plant.… (more)

Akhtar, Malik Usman

2012-01-01T23:59:59.000Z

236

Solar Rights  

Broader source: Energy.gov [DOE]

In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors...

237

Technical Analysis of Hydrogen Production  

SciTech Connect (OSTI)

The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

Ali T-Raissi

2005-01-14T23:59:59.000Z

238

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

239

Pion correlations in hydro-inspired models with resonances  

E-Print Network [OSTI]

The effects of the freeze-out hypersurface and resonance decays on the pion correlation functions in relativistic heavy-ion collisions are studied with help of the hydro-inspired models with single freeze-out. The heavy-ion Monte-Carlo generator THERMINATOR is used to generate hadronic events describing production of particles from a thermalized and expanding source. We find that the short-lived resonances increase the pionic HBT radii by about 1 fm. We also find that the pion HBT data from RHIC are fully compatible with the single freeze-out scenario provided a special choice of the freeze-out hypersurface is made.

W. Florkowski; W. Broniowski; A. Kisiel; J. Pluta

2006-09-19T23:59:59.000Z

240

A new multidimensional AMR Hydro+Gravity Cosmological code  

E-Print Network [OSTI]

A new cosmological multidimensional hydrodynamic and N-body code based on an Adaptive Mesh Refinement scheme is described and tested. The hydro part is based on modern high-resolution shock-capturing techniques, whereas N-body approach is based on the Particle Mesh method. The code has been specifically designed for cosmological applications. Tests including shocks, strong gradients, and gravity have been considered. A cosmological test based on Santa Barbara cluster is also presented. The usefulness of the code is discussed. In particular, this powerful tool is expected to be appropriate to describe the evolution of the hot gas component located inside asymmetric cosmological structures.

Vicent Quilis

2004-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New England Hydro-Trans Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServicesNeuCo620572°,York:Hydro-Trans Corp Jump

242

OpenHydro Group Limited | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarter Jump to:sourceStub Jump to:OpenHydro

243

MHK Technologies/HydroVenturi | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWECHelix < MHK TechnologiesHydroVenturi

244

COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES  

SciTech Connect (OSTI)

Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

Schmelz, J. T. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Reames, D. V. [IPST, University of Maryland, College Park, MD 20742 (United States); Von Steiger, R. [ISSI, Hallerstrasse 6, 3012 Bern (Switzerland); Basu, S., E-mail: jschmelz@memphis.edu [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

2012-08-10T23:59:59.000Z

245

A.W. Blakers, 'Solar and Wind Electricity in Australia', Australian Journal of Environmental Management, Vol 7, pp 223-236, 2000 SOLAR AND WIND ELECTRICITY IN AUSTRALIA  

E-Print Network [OSTI]

environmental impact associated with the construction of what amounts to a coastal hydro scheme. Solar energy.blakers@anu.edu.au Abstract This paper examines the renewable generation of electricity in Australia from photovoltaics (PV environmental impacts even when deployed on very large scales. They are the only fully sustainable technologies

246

Formulaire de demande de bourse institutionnelle d'Hydro-Qubec Bourse de recrutement* OU Bourse de persvrance**  

E-Print Network [OSTI]

Annexe B Formulaire de demande de bourse institutionnelle d'Hydro-Québec Bourse de recrutement* OU'étudiant : Montant de la bourse institutionnelle d'Hydro-Québec : 5 000 $ Montant de l

Vellend, Mark

247

Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms  

E-Print Network [OSTI]

Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro

248

Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation of Real  

E-Print Network [OSTI]

1 Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation Control (APFC) modes. The ability to export active and reactive power from mini-hydro power generators electrical power generation from renewable resources. Additionally, the potential early retiral of central

Harrison, Gareth

249

PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM  

E-Print Network [OSTI]

PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed aims at the cost optimal scheduling of on/o decisions and output levels for generating units. The power

Römisch, Werner

250

Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger Vehicle  

E-Print Network [OSTI]

Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger Vehicle Perry Y. Li Felicitas Mensing Center for Compact and Efficient Fluid Power, University of Minnesota, Minneapolis, USA ABSTRACT Hydro-mechanical transmission (HMT) based hybrid hydraulic vehicle

Li, Perry Y.

251

ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE  

E-Print Network [OSTI]

for optimal engine management. The hydro-mechanical drive train splits the engine power through two pathsANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE Teck Ping, Sim Minneapolis, Minnesota 55455 Email: tpsim@me.umn.edu Perry Y. Li Center for Compact and Efficient Fluid Power

Li, Perry Y.

252

Paper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive  

E-Print Network [OSTI]

for the Center for Compact and Efficient Fluid Power at the University of Minnesota. The hydro-mechanical hybrid is leveraging the intrinsically high power density of the hydraulic energy storage system through optimal enginePaper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive Train with Independent Wheel

Li, Perry Y.

253

Author's personal copy Opportunities and barriers to pumped-hydro energy storage in the United States  

E-Print Network [OSTI]

available commercially for grid-tied electricity storage, pumped- hydro energy storage (PHES) and compressed air energy storage (CAES). Of the two, PHES is far more widely adopted. In the United StatesAuthor's personal copy Opportunities and barriers to pumped-hydro energy storage in the United

Jackson, Robert B.

254

MOMENT-FREQUENCY DISTRIBUTION USED AS A CONSTRAINT FOR HYDRO-MECHANICAL  

E-Print Network [OSTI]

MOMENT-FREQUENCY DISTRIBUTION USED AS A CONSTRAINT FOR HYDRO-MECHANICAL MODELLING IN FRACTURE fractured rocks for EGS purposes is accompanied by microseismicity. From our numerical hydro are partly liberated and the resulting small sliding movements give rise to low frequency stress waves

Paris-Sud XI, Université de

255

A Study of the Hydro-Mechanical Behaviour of Compacted Crushed Argillite  

E-Print Network [OSTI]

1 A Study of the Hydro-Mechanical Behaviour of Compacted Crushed Argillite C.S. Tang a, b , A and the microstruc- ture on the hydro-mechanical behaviour of the compacted crushed argillite have been in compression only reduces the inter-aggregate porosity in the stress range considered; (iii) the micro

Paris-Sud XI, Université de

256

Micro Hydro Power: Promising Solution for Off-grid Renewable Energy Source  

E-Print Network [OSTI]

Abstract — Micro hydro current power plant studies to date have aimed at finding feasible solution of its realistic implementation to the different parts of the world.This paper will briefly review the micro hydro current power plant?s prospect as a possible off grid source of renewable energy.

Md Tanbhir Hoq; Nawshad U. A; Md. N. Islam; Md. K. Syfullah; Raiyan Rahman

257

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

258

Hydrogen program overview  

SciTech Connect (OSTI)

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

259

Hydro-kinetic approach to relativistic heavy ion collisions  

E-Print Network [OSTI]

We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

2008-08-28T23:59:59.000Z

260

Compensated amorphous silicon solar cell  

DOE Patents [OSTI]

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network [OSTI]

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J and industry expectations · DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use #12;3 OAK

262

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

263

The Hype About Hydrogen  

E-Print Network [OSTI]

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

264

Hydrogen Transition Infrastructure Analysis  

SciTech Connect (OSTI)

Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

Melendez, M.; Milbrandt, A.

2005-05-01T23:59:59.000Z

265

A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir  

E-Print Network [OSTI]

A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR of New South Wales, Sydney 2052, Australia. Abstract The constitutive thermo-hydro-mechanical equations is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo-hydro

Boyer, Edmond

266

Do phreatomagmatic eruptions at Ubehebe Crater (Death Valley, California) relate to a wetter than present hydro-climate?  

E-Print Network [OSTI]

present hydro-climate? Peri Sasnett,1,2 Brent M. Goehring,1,2,3 Nicholas Christie-Blick,1,2 and Joerg M the idea that volcanism may relate to a wetter than present hydro-climate. Twelve of the fifteen ages that eruptive timing relates to a wetter hydro-climate. Instead, the presence of a relatively shallow modern

Christie-Blick, Nicholas

267

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1002/, Hydro-acoustic and tsunami waves generated by the1  

E-Print Network [OSTI]

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1002/, Hydro-acoustic and tsunami waves TSUNAMI Abstract. Detection of low-frequency hydro-acoustic waves as precur-4 sor components model gave us the opportunity to study13 the hydro-acoustic wave propagation in a large-scale domain

Kirby, James T.

268

Phenomene couple thermo-hydro-mecanique des roches fracturees: Recents developpements des methodes de modelisation et tests de validation  

E-Print Network [OSTI]

95-54 Phenomene couple thermo-hydro-mecanique des roches fracturees: Recents developpements des methodes de modelisation et tests de validation Coupled thermo-hydro-mechanical phenomena in fractured fracture.La deuxiemequestion concemela modelisation des phenomenes couples thenno-hydro-mecaniques. L

Paris-Sud XI, Université de

269

February 16-18, 2011 / Biel (Bienne), Switzerland Comparison between accelerated thermo-hydro aged wood and naturally  

E-Print Network [OSTI]

Bois 3 DEISTAF ­ University of Florence, Italy Key words: accelerated aging, micro-mechanics, thermo-hydroFebruary 16-18, 2011 / Biel (Bienne), Switzerland Comparison between accelerated thermo-hydro aged]. It has been observed that similar degradation can be found in thermo-hydro (TH) treated wood [4]. The aim

Paris-Sud XI, Université de

270

1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States THERMAL ACTIVATION OF DEEP OXYGEN DEFECT FORMATION AND HYDROGEN EFFUSION  

E-Print Network [OSTI]

1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States BACKGROUND THERMAL ACTIVATION OF DEEP was partially supported by a DOE grant through United Solar Ovonics, Inc., under the Solar America Initiative

271

Understanding and improving hole transport in hydrogenated amorphous silicon photovoltaics  

E-Print Network [OSTI]

While hydrogenated amorphous silicon (a-Si:H) solar cells have been studied extensively for the previous four decades, the low performance of the devices is still not well understood. The poor efficiency (below 10%, even ...

Johlin, Eric (Eric Carl)

2014-01-01T23:59:59.000Z

272

The Hype About Hydrogen  

E-Print Network [OSTI]

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

273

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

274

Hydrogen Analysis Group  

SciTech Connect (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

275

Solar Easements  

Broader source: Energy.gov [DOE]

New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

276

Solar Easements  

Broader source: Energy.gov [DOE]

Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

277

Solar opacities constrained by solar neutrinos and solar oscillations  

SciTech Connect (OSTI)

This review discusses the current situation for opacities at the solar center, the solar surface, and for the few million kelvin temperatures that occur below the convection zone. The solar center conditions are important because they are crucial for the neutrino production, which continues to be predicted about 4 times that observed. The main extinction effects there are free-free photon absorption in the electric fields of the hydrogen, helium and the CNO atoms, free electron scattering of photons, and the bound-free and bound-bound absorption of photons by iron atoms with two electrons in the 1s bound level. An assumption that the iron is condensed-out below the convection zone, and the opacity in the central regions is thereby reduced, results in about a 25 percent reduction in the central opacity but only a 5 percent reduction at the base of the convection zone. Furthermore, the p-mode solar oscillations are changed with this assumption, and do not fit the observed ones as well as for standard models. A discussion of the large effective opacity reduction by weakly interacting massive particles also results in poor agreement with observed p-mode oscillation frequencies. The much larger opacities for the solar surface layers from the Los Alamos Astrophysical Opacity Library instead of the widely used Cox and Tabor values show small improvements in oscillation frequency predictions, but the largest effect is in the discussion of p-mode stability. Solar oscillation frequencies can serve as an opacity experiment for the temperatures and densities, respectively, of a few million kelvin and between 0.1 and 10 g/cm/sup 3/. Current oscillation frequency calculations indicate that possibly the Opacity Library values need an increase of typically 15 percent just at the bottom of the convection zone at 3 /times/ 10/sup 6/K. 41 refs., 15 figs., 1 tab.

Cox, A.N.

1989-08-15T23:59:59.000Z

278

Revue. Volume X n x/anne, pages 1 X Comportement thermo-hydro-mcanique  

E-Print Network [OSTI]

Revue. Volume X ­ n° x/année, pages 1 à X Comportement thermo-hydro-mécanique (THM) d'un ouvrage en'évaluer les risques de la dégradation de la pierre dues aux couplages thermo-hydro-mécaniques qui conduisent à'année 2008 par une station météo aérienne située proche du château. Les analyses couplées thermo-hydro

Paris-Sud XI, Université de

279

Method for processing silicon solar cells  

DOE Patents [OSTI]

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

1997-05-06T23:59:59.000Z

280

Method for processing silicon solar cells  

DOE Patents [OSTI]

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network [OSTI]

is ter for PEM fuel cells: thinner membranes cost less andPEM fuel cells, the extra yearly mineproduc- ciency, environmental impacts and Iife-cycle costcost air-separation or COz- removal methods are found, alkaline fuel cells could prove to be superior to PEM

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

282

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network [OSTI]

even price of gasoline is that retail price of gasoline, inGasoline ICEV FCEV FCEV BPEV 640-kmrange 400-kin range 250-kin range 400-kmrange b retail priceretail price of vehicle($)" Maintenance cost ¢S/year) Life-cyclecost Icents/kin) Break- even gasoline

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

283

RELATIVE ECONOMIC INCENTIVES FOR HYDROGEN FROM NUCLEAR, RENEWABLE, AND FOSSIL ENERGY SOURCES  

SciTech Connect (OSTI)

The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

Gorensek, M; Charles W. Forsberg, C

2008-08-04T23:59:59.000Z

284

Relative Economic Incentives for Hydrogen from Nuclear, Renewable, and Fossil Energy Sources  

SciTech Connect (OSTI)

The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

Forsberg, Charles W [ORNL] [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL)] [Savannah River National Laboratory (SRNL)

2007-01-01T23:59:59.000Z

285

TECHNOECONOMIC ANALYSIS OF AREA II HYDROGEN PRODUCTION -PART II  

E-Print Network [OSTI]

storage medium for hydrogen produced by the ocean thermal energy conversion (OTEC) plantships [16 Florida Solar Energy Center Cocoa, FL 32922-5703, ali@fsec.ucf.edu Abstract The aim of this analysis power interface, 3) Ammonia and ammonia adducts as hydrogen energy storers for fuel cell applications

286

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Estimating Unmeasured Solar Radiation Quantities . . . . . .Appendix C - Appendix 0 - Solar Radiation Glossary. ConversSolar Data a. Solar Radiation. , , . , . . , , , , . , . . .

Berdahl, P.

2010-01-01T23:59:59.000Z

287

Summary of Electrolytic Hydrogen Production: Milestone Completion Report  

SciTech Connect (OSTI)

This report provides an overview of the current state of electrolytic hydrogen production technologies and an economic analysis of the processes and systems available as of December 2003. The operating specifications of commercially available electrolyzers from five manufacturers, i.e., Stuart, Teledyne, Proton, Norsk Hydro, and Avalence, are summarized. Detailed economic analyses of three systems for which cost and economic data were available were completed. The contributions of the cost of electricity, system efficiency, and capital costs to the total cost of electrolysis are discussed.

Ivy, J.

2004-09-01T23:59:59.000Z

288

Summary of Electrolytic Hydrogen Production: Milestone Completion Report  

SciTech Connect (OSTI)

This report provides an overview of the current state of electrolytic hydrogen production technologies and an economic analysis of the processes and systems available as of December 2003. The operating specifications of commercially available electrolyzers from five manufacturers, i.e., Stuart, Teledyne, Proton, Norsk Hydro, and Avalence, are summarized. Detailed economic analyses of three systems for which cost and economic data were available were completed. The contributions of the cost of electricity, system efficiency, and capital costs to the total cost of electrolysis are discussed.

Ivy, J.

2004-04-01T23:59:59.000Z

289

Community Shared Solar with Solarize  

Broader source: Energy.gov [DOE]

An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

290

Advanced thermochemical hydrogen cycles  

SciTech Connect (OSTI)

The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

Hollabaugh, C.M.; Bowman, M.G.

1981-01-01T23:59:59.000Z

291

Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario hydro`s Bruce nuclear generating station {open_quotes}A{close_quotes}  

SciTech Connect (OSTI)

Ontario Hydro at the Bruce Nuclear Generating Station {open_quotes}A{close_quotes} has undertaken a program to render the station`s liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology.

Day, J.E.; Baker, R.L. [ADTECHS Corporation, Herndon, VA (United States)

1994-12-31T23:59:59.000Z

292

Bangor Hydro Electric Company- Residential and Small Commercial Heat Pump Program (Maine)  

Broader source: Energy.gov [DOE]

Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to...

293

Hydro-Québec Distribution- Biomass- EAP 2011-1 (Quebec, Canada)  

Broader source: Energy.gov [DOE]

Hydro-Québec Distribution established a program for the purchase of 300 MW of electricity in Quebec from cogeneration based residual forest biomass. Each project is limited to a maximum of 50 MW....

294

A Geological and Hydro-Geochemical Study of the Animas Geothermal...  

Open Energy Info (EERE)

Hydro-Geochemical Study of the Animas Geothermal Area, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Geological...

295

A test case for implementing feedback control in a micro hydro power plant.  

E-Print Network [OSTI]

??Micro-hydro turbines generate power for small villages and industries in Afghanistan. They usually produce less than 100 kW of power. Currently the flow into the… (more)

Suliman, Ahmad

2010-01-01T23:59:59.000Z

296

BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006)  

E-Print Network [OSTI]

BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000...

Willis, P.; Wallace, K.

2005-01-01T23:59:59.000Z

297

Impact of land use change on a hydro-meteorological event in Kampala, Uganda  

E-Print Network [OSTI]

Impact of land use change on a hydro-meteorological event in Kampala, Uganda Problem statement Kampala is the capital city of Uganda on the northern shores of Lake Victoria. Here, future climate change

Jetten, Victor

298

Hydro-Quebec Sustainable Development Action Plan 2009-2013 (Quebec, Canada)  

Broader source: Energy.gov [DOE]

To meet the requirements set out in the Québec government’s Sustainable Development Strategy and strategy to ensure the occupancy and vitality of territories, Hydro-Québec has established a...

299

Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray  

E-Print Network [OSTI]

Atomic force microscopy has been applied to an acrylate polymer microarray to achieve a full topographic characterisation. This process discovered a small number of hydro-responsive materials created from monomers with ...

Hook, Andrew L.

300

Thermo-and hydro-mechanical processes along faults during rapid slip  

E-Print Network [OSTI]

Thermo- and hydro-mechanical processes along faults during rapid slip James R. Rice & Eric M micro-contacts, and (2) Thermal pressurization of fault-zone pore fluid. Both have characteristics which

Dunham, Eric M.

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Failure in shear bands for granular materials: thermo-hydro-chemo-mechanical effects  

E-Print Network [OSTI]

Failure in shear bands for granular materials: thermo-hydro-chemo- mechanical effects M. VEVEAKIS depends on the chemical reaction characteristics and that micro-inertia due to grain translations

Paris-Sud XI, Université de

302

Overview of interstate hydrogen pipeline systems.  

SciTech Connect (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

303

Hydrogen Storage in Ammonia and Aminoborane Complexes  

E-Print Network [OSTI]

Hydrogen Storage in Ammonia and Aminoborane Complexes Ali Raissi Florida Solar Energy Center;Advantages of Ammonia Costs about $150 per short ton or less than $6.25 per million BTU of H2 contained and utilization Stores 30% more energy by liquid volume than LH2 Easily reformed using 16% of the energy

304

Hydrogen and Fuel Cell Technical Advisory  

E-Print Network [OSTI]

, distribution, delivery, storage or use of hydrogen energy and fuel cells; and 3) the plan called for by section to funding a substantial portion of that investment, and numerous entrepreneurial companies have attracted falling behind in developing and implementing some renewable technologies such as solar, and is in danger

305

DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen...

306

Hydrogen permeability and Integrity of hydrogen transfer pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

307

NREL Wind to Hydrogen Project: Renewable Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

308

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

309

HYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES  

E-Print Network [OSTI]

, Michael D. HamptonDarlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FLFL Solar Energy Center, U. of Central FL #12;Objective · Identify a hydrogen storage system that meets the DOEHYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES Darlene K. Slattery

310

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network [OSTI]

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

311

Hydrogen Delivery Mark Paster  

E-Print Network [OSTI]

Liquids (e.g. ethanol etc.) ­ Truck: HP Gas & Liquid Hydrogen ­ Regional Pipelines ­ Breakthrough Hydrogen;Delivery Key Challenges · Pipelines ­ Retro-fitting existing NG pipeline for hydrogen ­ Utilizing existing NG pipeline for Hythane with cost effective hydrogen separation technology ­ New hydrogen pipeline

312

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Philadelphia, Pennsylvania: Solar in Action (Brochure),...

313

A Theoretical Study of Methanol Synthesis from CO(2) Hydrogenation on Metal-doped Cu(111) Surfaces  

SciTech Connect (OSTI)

Density functional theory (DFT) calculations and Kinetic Monte Carlo (KMC) simulations were employed to investigate the methanol synthesis reaction from CO{sub 2} hydrogenation (CO{sub 2} + 3H{sub 2} {yields} CH{sub 3}OH + H{sub 2}O) on metal-doped Cu(111) surfaces. Both the formate pathway and the reverse water-gas shift (RWGS) reaction followed by a CO hydrogenation pathway (RWGS + CO-Hydro) were considered in the study. Our calculations showed that the overall methanol yield increased in the sequence: Au/Cu(111) < Cu(111) < Pd/Cu(111) < Rh/Cu(111) < Pt/Cu(111) < Ni/Cu(111). On Au/Cu(111) and Cu(111), the formate pathway dominates the methanol production. Doping Au does not help the methanol synthesis on Cu(111). Pd, Rh, Pt, and Ni are able to promote the methanol production on Cu(111), where the conversion via the RWGS + CO-Hydro pathway is much faster than that via the formate pathway. Further kinetic analysis revealed that the methanol yield on Cu(111) was controlled by three factors: the dioxomethylene hydrogenation barrier, the CO binding energy, and the CO hydrogenation barrier. Accordingly, two possible descriptors are identified which can be used to describe the catalytic activity of Cu-based catalysts toward methanol synthesis. One is the activation barrier of dioxomethylene hydrogenation, and the other is the CO binding energy. An ideal Cu-based catalyst for the methanol synthesis via CO{sub 2} hydrogenation should be able to hydrogenate dioxomethylene easily and bond CO moderately, being strong enough to favor the desired CO hydrogenation rather than CO desorption but weak enough to prevent CO poisoning. In this way, the methanol production via both the formate and the RWGS + CO-Hydro pathways can be facilitated.

Liu P.; Yang, Y.; White, M.G.

2012-01-12T23:59:59.000Z

314

Solar powered desalination system  

E-Print Network [OSTI]

Photoelectrochemical Hydrogen Production. Proceedings of theof Photoelectrochemical (PEC) Hydrogen Production. DirectedPhotoelectrochemical Hydrogen Production 17 There are a few

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

315

Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)  

SciTech Connect (OSTI)

The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

Steward, D. M.

2009-06-10T23:59:59.000Z

316

Dye-Sensitized Solar Cells DOI: 10.1002/anie.201300070  

E-Print Network [OSTI]

Dye-Sensitized Solar Cells DOI: 10.1002/anie.201300070 Stable Dye-Sensitized Solar Cell,* and Udo Bach* Dye-sensitized solar cells (DSCs) can be fabricated from low- cost components with simple fields, including renewable energy research focusing on DSCs and solar-driven hydrogen generation from

317

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

318

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

319

Congrs SHF : Environnement et Hydro-lectricit , Lyon,6 & 7 octobre 2010 Pigay, Aelbrecht, Beal RESTAURATION MORPHO-DYNAMIQUE ET  

E-Print Network [OSTI]

Congrès SHF : « Environnement et Hydro-électricité », Lyon,6 & 7 octobre 2010 ­Piégay, Aelbrecht pour la protection contre les crues et la navigation, puis après la construction de barrages hydro deux projets est de définir un plan de restauration hydro-morphologique et écologique conduisant à la

Paris-Sud XI, Université de

320

Hydrogen and Infrastructure Costs  

Broader source: Energy.gov (indexed) [DOE]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen and fuel taxation.  

E-Print Network [OSTI]

??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and… (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

322

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

323

Hydrogen Program Overview  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

324

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sources Hydrogen Hydrogen September 30, 2014 Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter...

325

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

326

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

power http www relion inc com Pacific Northwest Area Roth Rau AG Roth Rau AG Zimmritz Germany Hydro Hydrogen Solar Roth Rau offers equipment for fully automated solar cell...

327

CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN  

E-Print Network [OSTI]

such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel cells failed unless costs were assumed to descend independent of demand. However, hydrogen vehicles were; Hydrogen as fuel -- Economic aspects; Technological innovations -- Environmental aspects; Climatic changes

328

China energy, environment, and climate study: Background issues paper  

E-Print Network [OSTI]

Power Generation Resource Small Hydro Criteria for Selectioncapacity in 2000 (mainly small hydro; excludes large hydro),Generation, MW Technology Small Hydro Wind Solar PV Solar

Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

2000-01-01T23:59:59.000Z

329

Enhancing fire safety at Hydro plants with dry transformers  

SciTech Connect (OSTI)

Hydroelectric plant owners and engineers can use dry-type transformers to reduce fire hazards in auxiliary power systems. The decision to replace a liquid-immersed transformer with a dry-type product has a price: higher unit cost and a need to be more vigilant in detailing transformer specifications. But, whether the change affects only one failed transformer or is part of a plant rehabilitation project, the benefits in safety can be worth it. Voltages on hydroelectric plant auxiliary power systems can range from a 20 kV medium-voltage system to the normal 480-208/120 V low-voltage system. Dry transformers typically are used in such systems to reduce the fire hazard present with liquid-filled transformers. For a hydro plant owner or engineer seeking alternatives to liquid-filled transformers, there are two main kinds of dry-type transformers to consider: vacuum pressure impregnated (VPI) and cast coil epoxy resin. VPI transformers normally are manufactured in sizes up to 6,000 kVA with primary voltage ratings up to 20 kV. Cast coil transformers can be made in sizes from 75 to 10,000 kVA, with primary voltage ratings up to 34,500 V. Although the same transformer theory applies to dry transformers as to liquid-filled units, the cooling medium, air, required different temperature rise ratings, dielectric tests, and construction techniques to ensure reliability. Consequently, the factory and field tests for dry units are established by a separate set of American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards. Cast coil transformers have several important advantages over VPI units.

Clemen, D.M. (Harza Engineering Company, Chicago, IL (United States))

1993-06-01T23:59:59.000Z

330

Solar Easements  

Broader source: Energy.gov [DOE]

Rhode Island allows property owners to establish solar easements in the same manner and with the same effect as a conveyance of an interest in real property. Solar easements must be created in...

331

Solar Forecasting  

Broader source: Energy.gov [DOE]

On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

332

Solar Easements  

Broader source: Energy.gov [DOE]

Kansas' solar easement provisions do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar easement contracts for the purpose of ensuring adequate...

333

Solar Rights  

Broader source: Energy.gov [DOE]

Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

334

MHUG process for production of low sulfur and low aromatic diesel fuel. [Medium-pressure Hydro UpGrading  

SciTech Connect (OSTI)

A new hydro-upgrading process operated under medium pressure has been developed to reduce the sulfur and the aromatics content in light cycle oil (LCO). Two catalysts were used in series in this technology. The commercial RN-1 catalyst, which is known as having high activity in hydrodenitrogenation, desulfurization and aromatic saturation, was chosen as the first catalyst. The second one was a nickel-tungsten zeolite catalyst, named RT-5, which was developed by RIPP specially for hydrogenolysis of naphthenic and aromatic hydrocarbons. The pilot plant tests showed that high quality diesel oil with aromatics content less than 20 v% and sulfur content less than 0.05 wt% could be produced from various LCO/straight-run-gas-oil (SRGO) blended feedstocks under hydrogen partial pressure of 6.4 MPa. The reaction temperature and overall space velocity (S.V.) varied in the range of 350--380 C and 0.6--1.2 h[sup [minus]1], respectively, depending on the properties of the feedstocks to be processed and the upgrading depth required. Several examples presented also illustrated that this technology could be used to prepare catalytic reforming feedstock as well, which is in urgent need in China. A life test operated in relatively high severity for 3,000 hr. indicated that the catalysts possessed excellent stability. A commercial demonstration unit has been running well since the last Oct 1.

Shi, Yu Lin; Shi, Jian Wen; Zhang, Xin Wei; Shi, Ya Hua; Li, Da Dong (SINOPEC, Beijing (China). Research Inst. of Petroleum Processing)

1993-01-01T23:59:59.000Z

335

EFFEP GORSKY HYDROGEN DIFFUSION IN TANTALUM  

E-Print Network [OSTI]

to the small dimensions of the samples, the content of hydro- gen cannot be determined with good accuracy of T - l . This quantity measured in specimen 1 after some subsequent hydro- gen loading treatments treatment. It can be seen that hydro- gen impurities bring about a well-developed Gorsky 5 Article published

Paris-Sud XI, Université de

336

Hydrogen Evolution on Hydrophobic Aligned Carbon Nanotube  

E-Print Network [OSTI]

).3 From a fundamental standpoint, hydro- phobicity is governed by the surface micro- structure Institute of Technology, Pasadena, California 91125 C arbon nanotubes (CNTs) hydro- phobic and hydrophilic pressure on the stability of water droplets sitting on hydro- phobic vertically aligned CNT forests

Daraio, Chiara

337

Photoelectrochemical Hydrogen Production  

SciTech Connect (OSTI)

The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short-circuit photocurrent density of the hybrid device (measured in a 2-electrode configuration) increased significantly without assistance of any external bias, i.e. from ?1 mA/cm{sup 2} to ~5 mA/cm{sup 2}. With the copper chalcopyrite compounds, we have achieved a STH efficiency of 3.7% in a coplanar configuration with 3 a-Si solar cells and one CuGaSe{sub 2} photocathode. This material class exhibited good durability at a photocurrent density level of -4 mA/cm{sup 2} (“5% STH” equivalent) at a fixed potential (-0.45 VRHE). A poor band-edge alignment with the hydrogen evolution reaction (HER) potential was identified as the main limitation for high STH efficiency. Three new pathways have been identified to solve this issue. First, PV driver with bandgap lower than that of amorphous silicon were investigated. Crystalline silicon was identified as possible bottom cell. Mechanical stacks made with one Si solar cell and one CuGaSe{sub 2} photocathode were built. A 400 mV anodic shift was observed with the Si cell, leading to photocurrent density of -5 mA/cm{sup 2} at 0VRHE (compared to 0 mA/cm{sup 2} at the same potential without PV driver). We also investigated the use of p-n junctions to shift CuGaSe{sub 2} flatband potential anodically. Reactively sputtered zinc oxy-sulfide thin films was evaluated as n-type buffer and deposited on CuGaSe{sub 2}. Ruthenium nanoparticles were then added as HER catalyst. A 250 mV anodic shift was observed with the p-n junction, leading to photocurrent density at 0VRHE of -1.5 mA/cm{sup 2}. Combining this device with a Si solar cell in a mechanical stack configuration shifted the onset potential further (+400 mV anodically), leading to photocurrent density of -7 mA/cm{sup 2} at 0VRHE. Finally, we developed wide bandgap copper chalcopyrite thin film materials. We demonstrated that Se can be substituted with S using a simple annealing step. Photocurrent densities in the 5-6 mA/cm{sub 2} range were obtained with red 2.0eV CuInGaS{sub 2} photocathodes. With the metal oxide compounds, we have demonstrated that a WO{sub 3}-based hybrid p

Hu, Jian

2013-12-23T23:59:59.000Z

338

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

339

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

340

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NATIONAL HYDROGEN ENERGY ROADMAP  

E-Print Network [OSTI]

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

342

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

343

Composition for absorbing hydrogen  

DOE Patents [OSTI]

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

344

Development of HydroImage, A User Friendly Hydrogeophysical Characterization Software  

SciTech Connect (OSTI)

HydroImage, user friendly software that utilizes high-resolution geophysical data for estimating hydrogeological parameters in subsurface strate, was developed under this grant. HydroImage runs on a personal computer platform to promote broad use by hydrogeologists to further understanding of subsurface processes that govern contaminant fate, transport, and remediation. The unique software provides estimates of hydrogeological properties over continuous volumes of the subsurface, whereas previous approaches only allow estimation of point locations. thus, this unique tool can be used to significantly enhance site conceptual models and improve design and operation of remediation systems. The HydroImage technical approach uses statistical models to integrate geophysical data with borehole geological data and hydrological measurements to produce hydrogeological parameter estimates as 2-D or 3-D images.

Mok, Chin Man [GSI Environmental] [GSI Environmental; Hubbard, Susan [Lawrence Berkeley National Laboratory] [Lawrence Berkeley National Laboratory; Chen, Jinsong [Lawrence Berkeley National Laboratory] [Lawrence Berkeley National Laboratory; Suribhatla, Raghu [AMEC E& I] [AMEC E& I; Kaback, Dawn Samara [AMEC E& I] [AMEC E& I

2014-01-29T23:59:59.000Z

345

Compensated amorphous-silicon solar cell  

DOE Patents [OSTI]

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

Devaud, G.

1982-06-21T23:59:59.000Z

346

Bangor Hydro-Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,AurantiaBanbury Geothermalanalysis,Bangor

347

Author's personal copy Maximizing the solar to H2 energy conversion efficiency  

E-Print Network [OSTI]

to thermochemical or electrolytic hydrogen production technologies [1­3]. However, solar to hydrogen energyAuthor's personal copy Maximizing the solar to H2 energy conversion efficiency of outdoor, Cockrell School of Engineering, The University of Texas at Austin ­ Austin, TX 78712, USA b Mechanical

Pilon, Laurent

348

Producing Solar Cells By Surface Preparation For Accelerated Nucleation Of Microcrystalline Silicon On Heterogeneous Substrates.  

DOE Patents [OSTI]

Attractive multi-junction solar cells and single junction solar cells with excellent conversion efficiency can be produced with a microcrystalline tunnel junction, microcrystalline recombination junction or one or more microcrystalline doped layers by special plasma deposition processes which includes plasma etching with only hydrogen or other specified etchants to enhance microcrystalline growth followed by microcrystalline. nucleation with a doped hydrogen-diluted feedstock.

Yang, Liyou (Plainsboro, NJ); Chen, Liangfan (Langhorne, PA)

1998-03-24T23:59:59.000Z

349

Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas  

E-Print Network [OSTI]

Abstract- Coal and hydro will be the main sources of electric energy in Chile for the near future and the environmental dilemma faced by the country, where both coal and hydro produce some kind of impact. The role

Dixon, Juan

350

Proposition de sujet de Thse de Doctorat Caractrisation multi chelle des proprits hydro-go-physiques des  

E-Print Network [OSTI]

Proposition de sujet de Thèse de Doctorat Caractérisation multi échelle des propriétés hydro structurales et ainsi développer des méthodologies d'acquisition hydro-géo-physique en ce milieu complexe

Naud Frédéric

351

Hydro-economic models: Concepts, design, applications, and future prospects Julien J. Harou a,*, Manuel Pulido-Velazquez b  

E-Print Network [OSTI]

Review Hydro-economic models: Concepts, design, applications, and future prospects Julien J. Harou Engineering, University College London, Pearson Building, Gouwer Street, London, UK b Departamento de of Frank Ward, Associate Editor Keywords: Hydro-economic models Integrated water resource management (IWRM

Pasternack, Gregory B.

352

Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model and Computations  

E-Print Network [OSTI]

Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model In this paper we present the development of the macroscopic model describing the hydro-mechanical coupling model in the micro-porous domain saturated by a fluid. In the crack/vug domain the Stokes equation

Paris-Sud XI, Université de

353

Evaluation of fossil plants versus hydro plants for load frequency control  

SciTech Connect (OSTI)

The economics of using hydroplants with Francis turbines or fossil plants for load frequency control are evaluated. Using data from the TVA Gallatin steam plant and the TVA Cherokee, Wilson, and Fontana hydroplants, a cost comparison of different modes of operation for load frequency control was performed considering two plants at a time. The results showed that when the fossil plant was used for load frequency control instead of a hydro plant a lower system generation cost was incurred. Dynamic responses of fossil and hydro units, improved controls for fossil plants, and maneuvering costs of the Gallatin plant are also considered.

Broadwater, R.P.; Johnson, R.L.; Duckett, F.E.; Boston, W.T.

1985-01-01T23:59:59.000Z

354

A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration  

SciTech Connect (OSTI)

We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

2012-05-15T23:59:59.000Z

355

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

356

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

357

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

358

Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...  

Broader source: Energy.gov (indexed) [DOE]

Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

359

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

Berdahl, P.

2010-01-01T23:59:59.000Z

360

Solar forecasting review  

E-Print Network [OSTI]

and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

Inman, Richard Headen

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Post Retort, Pre Hydro-treat Upgrading of Shale Oil  

SciTech Connect (OSTI)

Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

Gordon, John

2012-09-30T23:59:59.000Z

362

Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru)  

E-Print Network [OSTI]

Toward hydro-social modeling: Merging human variables and the social sciences with climate mountain range, this paper provides a holistic hydro-social framework that identifies five major human of watershed dynamics. This hydro-social framework has wide- spread implications for hydrological modeling

McKenzie, Jeffrey M.

363

Virtues of simple hydro-economic optimization: Baja California, Mexico J. Medellin-Azuara a,*, L.G. Mendoza-Espinosa b  

E-Print Network [OSTI]

Virtues of simple hydro-economic optimization: Baja California, Mexico J. Medelli´n-Azuara a,*, L in revised form 1 May 2009 Accepted 22 May 2009 Available online 26 June 2009 Keywords: Hydro-economic models simple hydro-economic optimization to investigate a wide range of regional water system management

Pasternack, Gregory B.

364

Long-term evaluation of the Hydro-Thermodynamic Soil-Vegetation Scheme's frozen ground/permafrost component using observations at  

E-Print Network [OSTI]

Long-term evaluation of the Hydro-Thermodynamic Soil-Vegetation Scheme's frozen ground/permafrost component of the hydro-thermodynamic soil-vegetation scheme (HTSVS) was evaluated by means of permafrost computational time. Citation: Mo¨lders, N., and V. E. Romanovsky (2006), Long-term evaluation of the Hydro

Moelders, Nicole

365

Hydro-climatology: Variability and Change (Proceedings of symposium J-H02 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 344, 2011).  

E-Print Network [OSTI]

Hydro-climatology: Variability and Change (Proceedings of symposium J-H02 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 344, 2011). Copyright © 2011 IAHS Press 195 How could hydro , L. COLLET2 , S. ARDOIN-BARDIN3 & P. ROUCOU4 1 CNRS, 2 UM2, 3 IRD ­ UMR HydroSciences Montpellier

Paris-Sud XI, Université de

366

Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte region case study Hydrology and Earth System Sciences, 9(4), 457466 (2005) EGU  

E-Print Network [OSTI]

Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte region case study 457 Hydrology and Earth System Sciences, 9(4), 457466 (2005) © EGU Operational hydro forecasting system in the context of the Piemonte Regions hydro-meteorological operational alert procedure

Paris-Sud XI, Université de

367

Eco-Hydro-Climate Science/Engineering in SESE Definition: An emerging frontier in Earth system science is the interaction of ecological,  

E-Print Network [OSTI]

Eco-Hydro-Climate Science/Engineering in SESE Definition: An emerging frontier in Earth system that are `retooled' to treat the coupled eco-hydro-climate system. Arid and semiarid regions (deserts) are a fruitful Southwest is thus an ideal laboratory for eco-hydro-climate studies and provides several case studies

Rhoads, James

368

A FULLY COUPLED THERMO-HYDRO MECHANICAL ANALYSIS OF THE IMPACT OF TEMPERATURE AND HUMIDITY VARIATION ON THE STATE OF HISTORICAL STONE  

E-Print Network [OSTI]

A FULLY COUPLED THERMO-HYDRO MECHANICAL ANALYSIS OF THE IMPACT OF TEMPERATURE AND HUMIDITY Keywords: Thermo-hydro-mechanical coupling, modelling, inverse problem, tuffeau, monument, in situ measures initiation and growth due to the variation of climate conditions; thermo-hydro-mechanical incompatibility

Paris-Sud XI, Université de

369

Hydrogen energy systems studies  

SciTech Connect (OSTI)

In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

1996-10-01T23:59:59.000Z

370

New England Hydro-Tran Elec Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) | OpenInc Jump to: navigation,Tran Elec Co

371

Plasma Diffuser Sorts Light Atoms to Solar Surface  

E-Print Network [OSTI]

The Sun operates like a giant plasma diffuser that sorts lighter isotopes and elements to the solar surface. Measurements indicate that the interior of the Sun consists mostly of the same seven, even-numbered elements as ordinary meteorites: Iron, oxygen, nickel, silicon, sulfur, magnesium, and calcium. These ordinary elements compose clothing on the central neutron star that was produced at the core of the supernova that exploded here 5 billion years ago. Neutron emission generates most solar energy. Neutron-decay near the core produces Hydrogen ions that are accelerated upward by deep-seated magnetic fields. This is the carrier gas that maintains mass separation in the Sun. Like smoke, Hydrogen is a by-product from the solar furnace that powers the Sun. As smoke passes over catalytic converters in the flue of a high-efficiency furnace, most Hydrogen is fused into Helium during its upward journey. H-fusion makes less than 38 percent of solar energy. Each year 50 trillion tons of Hydrogen reach the solar surface and are flung off in the solar wind, with isotopes of other trace elements carefully sorted by mass. Hydrogen is smoke from the solar furnace, rather than its primary fuel.

O. Manuel

2005-02-10T23:59:59.000Z

372

Hydrogen Bus Technology Validation Program  

E-Print Network [OSTI]

and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

373

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

374

Liquid Hydrogen Absorber for MICE  

E-Print Network [OSTI]

REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

Ishimoto, S.

2010-01-01T23:59:59.000Z

375

Hydrogen in semiconductors and insulators  

E-Print Network [OSTI]

the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

376

Solar Mapper  

Broader source: Energy.gov [DOE]

Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

377

Solar Rights  

Broader source: Energy.gov [DOE]

Maine law requires that any municipal ordinance, bylaw, or regulation adopted after September 30, 2009 regulating solar energy devices on residential property follow certain requirements. The rules...

378

Solar Energy.  

E-Print Network [OSTI]

??This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to… (more)

Bafana, Ramzi

2014-01-01T23:59:59.000Z

379

Solar Car  

SciTech Connect (OSTI)

Des Moines Central Academy Middle School students compete in the Solar Car Challenge at the National Science Bowl, May 2 in Washington D.C.

None

2010-01-01T23:59:59.000Z

380

Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems  

SciTech Connect (OSTI)

Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich Demonstration Plant Research Centre, Juelich (FZJ) (Germany); Schatz Solar Hydrogen Project, Schatz Energy Research Centre, Humboldt State University (USA); INTA Solar Hydrogen Facility, INTA (Spain); Solar Hydrogen Fueled Trucks, Clean Air Now, Xerox (USA), Electrolyser (Canada); SAPHYS: Stand-Alone Small Size Photovoltaic Hydrogen Energy System, ENEA (Italy), IET (Norway), FZJ (Germany); Hydrogen Generation from Stand-Alone Wind-Powered Electrolysis Systems, RAL (United Kingdom), ENEA (Italy), DLR (Germany); Palm Desert Renewable Hydrogen Transportation Project; Schatz Energy Research Centre, City of Palm Desert (USA). Other demonstration projects are summarized in chapter 11.

Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

1999-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

382

HESSD '98 17 Safety concerns at Ontario Hydro: The need for safety  

E-Print Network [OSTI]

HESSD '98 17 Safety concerns at Ontario Hydro: The need for safety management through incident analysis and safety assessment John D. Lee Battelle Seattle Research Center 4000 NE 41st Street Seattle, WA Engineering University of Toronto benfica@mie.utoronto.ca Safety management and the long-term operation

Lee, John D.

383

Hydro-Mechanical Loading and Compressibility of Fibrous Media for Resin Infusion Processes  

E-Print Network [OSTI]

1 Hydro-Mechanical Loading and Compressibility of Fibrous Media for Resin Infusion Processes P investigating the compressibility behaviour of composite preform with a view of modelling resin infusion Infusion The need for manufacturing large composite parts in the aeronautic industry is ever increasing

Paris-Sud XI, Université de

384

Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks  

E-Print Network [OSTI]

1 Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks Stephen Dawson-based traffic, or optimize for point-to-point traffic in a homogeneous network. As these networks become more by the resource constraints of low-power and lossy networks (L2Ns). Our design leverages the predominantly two

California at Berkeley, University of

385

A model for dynamic chance constraints in hydro power reservoir management  

E-Print Network [OSTI]

A model for dynamic chance constraints in hydro power reservoir management L. Andrieu , R. Henrion In this paper, a model for (joint) dynamic chance constraints is proposed and ap- plied to an optimization for two and three stages. 1 Introduction A conventional optimization problem under chance constraints

Römisch, Werner

386

EIS-0141: Washington Water Power/B.C. Hydro Transmission Interconnection Project  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of constructing and operating a double-circuit 230-kilovolt electrical transmission line that would link the electrical systems of the Washington Water Power Company and the British Columbia Hydro and Power Authority.

387

Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation  

Broader source: Energy.gov [DOE]

Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

388

Biological Systems for Hydrogen Photoproduction (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

Ghirardi, M. L.

2012-05-01T23:59:59.000Z

389

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

390

DOE Hydrogen Program Overview  

Broader source: Energy.gov (indexed) [DOE]

Intl. J. Hydrogen Energy 27: 1217-1228 Melis A, Seibert M and Happe T (2004) Genomics of green algal hydrogen research. Photosynth. Res. 82: 277- 288 Maness P-C, Smolinski...

391

Gaseous Hydrogen Delivery Breakout  

E-Print Network [OSTI]

Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 detection Pipeline Safety: odorants, flame visibility Compression: cost, reliability #12;Breakout Session goal of a realistic, multi-energy distribution network model Pipeline Technology Improved field

392

Hydrogen transport membranes  

DOE Patents [OSTI]

Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

Mundschau, Michael V.

2005-05-31T23:59:59.000Z

393

Hydrogen Fuel Quality (Presentation)  

SciTech Connect (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

394

Hydrogen Technologies Safety Guide  

SciTech Connect (OSTI)

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

395

Webinar: Hydrogen Refueling Protocols  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

396

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

397

Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production  

E-Print Network [OSTI]

of California, Berkeley, California 94720, United States Joint Center for Artificial Photosynthesis and § Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0

Javey, Ali

398

Hydrogen Production CODES & STANDARDS  

E-Print Network [OSTI]

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS for 2010 · Reduce the cost of distributed production of hydrogen from natural gas and/or liquid fuels to $1 SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pete Devlin #12;Hydrogen

399

Sensitive hydrogen leak detector  

DOE Patents [OSTI]

A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

Myneni, Ganapati Rao (Yorktown, VA)

1999-01-01T23:59:59.000Z

400

Solar Thermal Reactor Materials Characterization  

SciTech Connect (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen Delivery Liquefaction and Compression  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

402

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

403

Department of Solar Energy & Environmental Physics Conference presentations, 2006-2007.  

E-Print Network [OSTI]

Department of Solar Energy & Environmental Physics Conference presentations, 2006-2007. Albu, (eds.) Proceedings of the 22nd European Photovoltaic Solar Energy Conference. Milan, Italy, pp. 132: L. Vayssieres (ed.) Solar Hydrogen and Nanotechnology - Proceedings of SPIE, San Diego, USA. Albu

Prigozhin, Leonid

404

Reproduced with pennission from Elsevier Solar CelLS',30 (1991) 515-523 515'f'  

E-Print Network [OSTI]

emerged since the early 1980s. In particular, thin film solar cell technologies such as amorphous silicon To investigate the implications of projected advances in thin film solar cells for PV hydrogen production, we set). A large (> 10 MW) tilted, fixed, flat plate PV array using thin film solar modules is coupled directly

405

innovati nNREL Melds Nature with Nanotech for Solar-Powered  

E-Print Network [OSTI]

are nanoparticles of the same semiconductors used to make solar cells. Light hitting a quantum dot will freeinnovati nNREL Melds Nature with Nanotech for Solar-Powered Hydrogen Production NREL researchers an electron--in a solar cell, the electrons would be collected to produce an electrical current. But because

406

A photonic nano-architecture is designed to enhance solar water splitting effi-  

E-Print Network [OSTI]

energy into hydrogen. However, the solar- to-H2 conversion efficiency is still very low due to rapid bulk artificial photosynthesis routes using solar energy to produce H2 or other fuels is an attractive scientificA photonic nano-architecture is designed to enhance solar water splitting effi- ciency

Steiner, Ullrich

407

Electroabsorption measurements and built-in potentials in amorphous silicongermanium solar cells  

E-Print Network [OSTI]

-1130 S. Guha and J. Yang United Solar Systems Corporation, 1100 West Maple Road, Troy, Michigan 48084Electroabsorption measurements and built-in potentials in amorphous silicon­germanium solar cells J spectra in n-i-p solar cells with hydrogenated amorphous silicon­germanium alloy absorber layers. At lower

Schiff, Eric A.

408

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

409

La dynamique de communication entre Hydro-Qubec et les Innus dans le cadre du projet de la Romaine  

E-Print Network [OSTI]

La dynamique de communication entre Hydro-Québec et les Innus dans le cadre du projet de la Romaine Fortin, 2014 #12;#12;iii Résumé Le mémoire porte sur la dynamique de communication entre Hydro-Québec et, composées dInnus et de représentants dHydro-Québec, et dont le rôle est de gérer les fonds. De plus, le

410

Anti-Hydrogen Jonny Martinez  

E-Print Network [OSTI]

Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

Budker, Dmitry

411

Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"  

SciTech Connect (OSTI)

The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

Slade, A; Turner, J; Stone, K; McConnell, R

2008-09-02T23:59:59.000Z

412

Solar-thermal fluid-wall reaction processing  

DOE Patents [OSTI]

The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

2006-04-25T23:59:59.000Z

413

Solar-Thermal Fluid-Wall Reaction Processing  

DOE Patents [OSTI]

The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

2006-04-25T23:59:59.000Z

414

Method for producing hydrogen  

SciTech Connect (OSTI)

In a method for producing high quality hydrogen, the carbon monoxide level of a hydrogen stream which also contains hydrogen sulfide is shifted in a bed of iron oxide shift catalyst to a desired low level of carbon monoxide using less catalyst than the minimum amount of catalyst which would otherwise be required if there were no hydrogen sulfide in the gas stream. Under normal operating conditions the presence of even relatively small amounts of hydrogen sulfide can double the activity of the catalyst such that much less catalyst may be used to do the same job.

Preston, J.L.

1980-02-26T23:59:59.000Z

415

HYDROGEN USAGE AND STORAGE  

E-Print Network [OSTI]

It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

416

Available online at www.sciencedirect.com International Journal of Hydrogen Energy 28 (2003) 615623  

E-Print Network [OSTI]

Available online at www.sciencedirect.com International Journal of Hydrogen Energy 28 (2003) 615/photoelectrochemical multijunction cell for hydrogen production E.L. Millera;, R.E. Rocheleaua, X.M. Dengb aHawaii Natural Energy-Si) solar cells demonstrating photovoltaic (PV) e ciencies up to 12.7% and open-circuit voltages up to 2:3 V

Deng, Xunming

417

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network [OSTI]

onsite SMRs. Hydrogen from 100% solar photovoltaic poweredphotovoltaic (PV) electricity. Oxygen exhaust stream 12 x 6,250-psi compressed hydrogenphotovoltaic (PV) electricity Alkaline Electrolyzer Reverse osmosis and deionizer water purification Oxygen exhaust stream 12 x 6,250-psi compressed hydrogen

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

418

Solar Rights  

Broader source: Energy.gov [DOE]

Hawaii law prohibits the creation of any covenant or restriction contained in any document restricting the installation or use of a solar energy system on a residential dwelling or townhouse. ...

419

Implementation of a low-cost smart grid device to prevent brownouts in village micro-hydro systems.  

E-Print Network [OSTI]

??Brownouts are a common problem in micro-hydro mini-grid systems due to the limited supply of power and the difficulty of restricting usage. The GridShare is… (more)

Quetchenbach, Thomas

2011-01-01T23:59:59.000Z

420

Ris Energy Report 5 Hydro, ocean and geothermal 4 This chapter gives an overview of the development of  

E-Print Network [OSTI]

in 2003. [1] OECD, 47% Latin America, 20% China, 11% Former USSR, 9% Other Asia, 7% Africa, 3% Non of the development of other renewable energy technologies such as hydro, ocean and geothermal. These technologies

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Department for International Development, UK. BEST PRACTICES FOR SUSTAINABLE DEVELOPMENT OF MICRO HYDRO POWER IN DEVELOPING COUNTRIES FINAL SYNTHESIS REPORT  

E-Print Network [OSTI]

and The World Bank March 2000Front page photograph of micro hydro penstock in Peru (ITDG E3 Peru X4.007).TABLE OF CONTENTS Sources and Acknowledgements...........................................................................................vii Executive Summary................................................................................................................ix Abbreviations and Acronyms...............................................................................................xiii

Contract R; Smail Khennas; Andrew Barnett; In Association

422

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

psi) High-pressure hydrogen compressor Compressed hydrogen2005 High-pressure hydrogen compressor Compressed hydrogenthe hydrogen, a hydrogen compressor, high-pressure tank

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

423

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

424

Solar cell structure incorporating a novel single crystal silicon material  

DOE Patents [OSTI]

A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

1983-01-01T23:59:59.000Z

425

Feasibility of Hydrogen Production from Micro Hydropower Projects in Nepal  

E-Print Network [OSTI]

The current energy crisis in Nepal clearly indicates that the future energy-demand cannot be met by traditional energy-sources. Community-based micro-hydropower operations are considered to be one of the most feasible options for energy development. However, the power plant capacity factor remains very low due to limited commercial and business opportunities. Generation of hydrogen (H2) from the unutilized power could eradicate this problem. This new energy carrier is clean, can save foreign currency and increases the energy-security. The aim of this study is to determine the potential of H2 production from excess energy of a micro-hydro project in rural Nepal using “HOMER ” from NREL.

M. S. Zaman; A. B. Chhetri; M. S. Tango

2010-01-01T23:59:59.000Z

426

Analysis of hydrogen isotope mixtures  

DOE Patents [OSTI]

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

427

Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydro Models  

E-Print Network [OSTI]

We have performed detailed NLTE spectral synthesis modeling of 2 types of 1-D hydro models: the very highly parameterized deflagration model W7, and two delayed detonation models. We find that overall both models do about equally well at fitting well observed SNe Ia near to maximum light. However, the Si II 6150 feature of W7 is systematically too fast, whereas for the delayed detonation models it is also somewhat too fast, but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II 6150 line near maximum light and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydro model to fit the spectra of observed SNe Ia near maximum light.

E. Baron; S. Bongard; David Branch; Peter H. Hauschildt

2006-03-03T23:59:59.000Z

428

THERMOCATALYTIC CO2-FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS  

E-Print Network [OSTI]

THERMOCATALYTIC CO2- FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS N. Muradov Florida Solar Energy Center 1679 Clearlake Road, Cocoa, Florida 32922 tel. 321-638-1448, fax. 321-638-1010, muradov (except for the start-up operation). This results in the following advantages: (1) no CO/CO2 byproducts

429

Advances in constitutive modelling of jointed rock hydro mechanical interactions at laboratory scale  

E-Print Network [OSTI]

) INPL-LAEGO-ENSMN, Parc de Saurupt, Ecole des mines, 54000 Nancy, France) (2) INERIS, Parc de Saurupt. The hydro mechanical modelling performed using 3DEC code can be improved from the previous analysis through débit hydraulique dans la fracture. La modélisation hydromécanique réalisée à l'aide du code 3DEC peut

Paris-Sud XI, Université de

430

Buda-Lund hydro model and the elliptic flow at RHIC  

E-Print Network [OSTI]

The ellipsoidally symmetric Buda-Lund hydrodynamic model describes naturally the transverse momentum and the pseudorapidity dependence of the elliptic flow in Au+Au collisions at $\\sqrt{s_{NN}} = 130$ and 200 GeV. The result confirms the indication of quark deconfinement in Au+Au collisions at RHIC, obtained from Buda-Lund hydro model fits to combined spectra and HBT radii of BRAHMS, PHOBOS, PHENIX and STAR.

M. Csanad; T. Csorgo; B. Lorstad

2004-02-12T23:59:59.000Z

431

Turbulent Flow Effects on the Biological Performance of Hydro-Turbines  

SciTech Connect (OSTI)

The hydro-turbine industry uses Computational Fluid Dynamics (CFD) tools to predict the flow conditions as part of the design process for new and rehabilitated turbine units. Typically the hydraulic design process uses steady-state simulations based on Reynolds-Averaged Navier-Stokes (RANS) formulations for turbulence modeling because these methods are computationally efficient and work well to predict averaged hydraulic performance, e.g. power output, efficiency, etc. However, in view of the increasing emphasis on environmental concerns, such as fish passage, the consideration of the biological performance of hydro-turbines is also required in addition to hydraulic performance. This leads to the need to assess whether more realistic simulations of the turbine hydraulic environment ?those that resolve unsteady turbulent eddies not captured in steady-state RANS computations? are needed to better predict the occurrence and extent of extreme flow conditions that could be important in the evaluation of fish injury and mortality risks. In the present work, we conduct unsteady, eddy-resolving CFD simulations on a Kaplan hydro-turbine at a normal operational discharge. The goal is to quantify the impact of turbulence conditions on both the hydraulic and biological performance of the unit. In order to achieve a high resolution of the incoming turbulent flow, Detached Eddy Simulation (DES) turbulence model is used. These transient simulations are compared to RANS simulations to evaluate whether extreme hydraulic conditions are better captured with advanced eddy-resolving turbulence modeling techniques. The transient simulations of key quantities such as pressure and hydraulic shear flow that arise near the various components (e.g. wicket gates, stay vanes, runner blades) are then further analyzed to evaluate their impact on the statistics for the lowest absolute pressure (nadir pressures) and for the frequency of collisions that are known to cause mortal injury in fish passing through hydro-turbines.

Richmond, Marshall C.; Romero Gomez, Pedro DJ

2014-08-25T23:59:59.000Z

432

Quantifying Barotrauma Risk to Juvenile Fish during Hydro-turbine Passage  

SciTech Connect (OSTI)

We introduce a method for hydro turbine biological performance assessment (BioPA) to bridge the gap between field and laboratory studies on fish injury and turbine engineering design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed hydro turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism (stressor) and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, engineers and biologists can identify the more-promising designs and operating conditions to minimize hydraulic conditions hazardous to passing fish. In this paper, the BioPA method is applied to estimate barotrauma induced mortal injury rates for Chinook salmon exposed to rapid pressure changes in Kaplan-type hydro turbines. Following the description of the general method, application of the BioPA to estimate the probability of mortal injury from exposure to rapid decompression is illustrated using a Kaplan hydro turbine at the John Day Dam on the Columbia River in the Pacific Northwest region of the USA. The estimated rates of mortal injury increased from 0.3% to 1.7% as discharge through the turbine increased from 334 to 564 m3/s for fish assumed to be acclimated to a depth of 5 m. The majority of pressure nadirs occurred immediately below the runner blades, with the lowest values in the gap at the blade tips and just below the leading edge of the blades. Such information can help engineers focus on problem areas when designing new turbine runners to be more fish-friendly than existing units.

Richmond, Marshall C.; Serkowski, John A.; Ebner, Laurie L.; Sick, Mirjam; Brown, Richard S.; Carlson, Thomas J.

2014-03-15T23:59:59.000Z

433

HydroChina ZhongNan Engineering Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a new pageHuadeHydroChina

434

Solar hydrogen production using Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} solid solutions via a thermochemical, two-step water-splitting cycle  

SciTech Connect (OSTI)

The reactivity of Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} (x=0.025, 0.05, 0.075 and 0.1) solid solutions during the redox and two-step water-splitting cycles has been investigated in this work. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) patterns and field-emission scanning electron microscopy (FE-SEM) indicate that there are two reaction mechanisms in the O{sub 2}-releasing step and the shift in the reaction mechanisms occurs in the O{sub 2}-releasing step because of sintering at high temperatures, and a decrease in the concentration of lattice oxygen occurs as the O{sub 2}-releasing step proceeds. The reaction in the O{sub 2}-releasing step follows a second-order mechanism over a temperature range of 1000-1170 Degree-Sign C and a contracting-area model over a temperature range of 1170-1500 Degree-Sign C. According to direct gas mass spectroscopy (DGMS), ceria doped at 5 mol% Li exhibits the highest reactivity in the O{sub 2}-releasing step during both redox cycles in air and two-step water-splitting cycles, whereas ceria doped at 2.5 mol% Li yields the highest amount of hydrogen (4.79 ml/g) in the H{sub 2}-generation step during the two-step water-splitting cycles, which is higher than ceria doped with other metals. DGMS and electrochemical impedance spectroscopy (EIS) suggest that the average reaction rate in the H{sub 2}-generation step is influenced by the concentration of extrinsic oxygen vacancies, and thus, the reactivity in the H{sub 2}-generation step, to some degree, could be tuned by varying the concentration of extrinsic oxygen vacancies (Li content). - Graphical abstract: Average reduction fraction of Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} (x=0.025, 0.05, 0.075 and 0.10) solid solutions versus Li content in the O{sub 2}-releasing step during the redox cycles in air and the two-step water-splitting cycles. Highlights: Black-Right-Pointing-Pointer We have investigated Li-doped ceria for hydrogen production using two-step water-splitting cycles. Black-Right-Pointing-Pointer The sintering effect on the reaction mechanisms was first clarified. Black-Right-Pointing-Pointer The shift of reaction mechanisms occurs during the O{sub 2}-releasing step. Black-Right-Pointing-Pointer The reaction-mechanism shift occurs because of sintering at high temperatures. Black-Right-Pointing-Pointer Doping at 2.5 mol% Li results in the highest H{sub 2} yield and cyclability for hydrogen production.

Meng, Qing-Long; Lee, Chong-il; Shigeta, Satoshi [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan); Kaneko, Hiroshi [Solutions Research Laboratory, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Solutions Research Laboratory, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan); Tamaura, Yutaka, E-mail: ytamaura@chem.titech.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)

2012-10-15T23:59:59.000Z

435

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

436

Hawaii hydrogen power park Hawaii Hydrogen Power Park  

E-Print Network [OSTI]

. (Barrier R ­ Cost) Generate public interest & support. (Barrier S­Siting) #12;Hawaii hydrogen power park H Electrolyzer ValveManifold Water High Pressure H2 Storage Fuel Cell AC Power H2 Compressor Hydrogen Supply O2Hawaii hydrogen power park H Hawaii Hydrogen Power Park 2003 Hydrogen & Fuel Cells Merit Review

437

Electric utility applications of hydrogen energy storage systems  

SciTech Connect (OSTI)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

438

Hydrogenation of carbonaceous materials  

DOE Patents [OSTI]

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

439

Solar forecasting review  

E-Print Network [OSTI]

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

440

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

for Daily Solar Radiation Data. Proceedings of the 1977from total horizontal radiation data, they both suffer froma. SOLAR RADIATION Solar radiation data provide a measure of

Berdahl, P.

2010-01-01T23:59:59.000Z

442

Solar powered desalination system  

E-Print Network [OSTI]

2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

443

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Solar Energy Laboratory 1303 Engineering Research Building UniversitySolar Energy Laboratory 1303 Engineering Research laboratory UniversitySolar Energy Group, Energy and Lawrence Berkeley Laboratory University

Berdahl, P.

2010-01-01T23:59:59.000Z

444

Nanocrystal Solar Cells  

E-Print Network [OSTI]

Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish them

Gur, Ilan

2006-01-01T23:59:59.000Z

445

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

room )I I( I I ,i I CALIFORNIA SOLAR DATA MANUAL I. ! I ienergy resource. The California Solar Data Manual describestowards fulfilling California's solar data needs is the

Berdahl, P.

2010-01-01T23:59:59.000Z

446

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

for Reno, Nevada . . . . . (Q) Solar Data for China Lake/using Nominal Solar Profiles China Lake/Inyokern ANGLE OFStations - China Lake, Edwards Monthly Latitude: Jan SOLAR

Berdahl, P.

2010-01-01T23:59:59.000Z

447

Solar forecasting review  

E-Print Network [OSTI]

Figure 6.3: Birds-eye view of solar array deployment siteBirds-eye 7. Birds-eye view of of solar solar array array

Inman, Richard Headen

2012-01-01T23:59:59.000Z

448

Solar Contractor Licensing  

Broader source: Energy.gov [DOE]

The California Contractors State License Board administers contractor licenses. The C-46 Solar Contractor license covers active solar water and space heating systems, solar pool heating systems,...

449

Solar forecasting review  

E-Print Network [OSTI]

2.1.2 European Solar Radiation Atlas (ESRA)for supplementing solar radiation network data,” FinalEstimating incident solar radiation at the surface from geo-

Inman, Richard Headen

2012-01-01T23:59:59.000Z

450

Solar Resource Assessment  

Broader source: Energy.gov [DOE]

DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

451

Solar powered desalination system  

E-Print Network [OSTI]

As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

452

Boundary Conditions of the Hydro-Cascade Model and Relativistic Kinetic Equations for Finite Domains  

E-Print Network [OSTI]

A detailed analysis of the coupled relativistic kinetic equations for two domains separated by a hypersurface having both space- and time-like parts is presented. Integrating the derived set of transport equations, we obtain the correct system of the hydro+cascade equations to model the relativistic nuclear collision process. Remarkably, the conservation laws on the boundary between domains conserve separately both the incoming and outgoing components of energy, momentum and baryonic charge. Thus, the relativistic kinetic theory generates twice the number of conservation laws compared to traditional hydrodynamics. Our analysis shows that these boundary conditions between domains, the three flux discontinuity, can be satisfied only by a special superposition of two cut-off distribution functions for the ``out'' domain. All these results are applied to the case of the phase transition between quark gluon plasma and hadronic matter. The possible consequences for an improved hydro+cascade description of the relativistic nuclear collisions are discussed. The unique properties of the three flux discontinuity and their effect on the space-time evolution of the transverse expansion are also analyzed. The possible modifications of both transversal radii from pion correlations generated by a correct hydro+cascade approach are discussed.

K. A. Bugaev

2004-01-29T23:59:59.000Z

453

High Pressure Hydrogen Materials Compatibility of Piezoelectric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

454

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Biomass Geothermal Small Hydro Solar Wind Statewide CA-N CA-with a relatively small hydro resource require additionaldairy Photovoltaic Parabolic Small hydro Wind Hydro 1 Steam

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

455

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

456

Hydrogen energy systems studies  

SciTech Connect (OSTI)

For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

1995-09-01T23:59:59.000Z

457

Innovative solar thermochemical water splitting.  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

2008-02-01T23:59:59.000Z

458

Renewable Hydrogen (Presentation)  

SciTech Connect (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

459

Hydrogen Industrial Trucks  

Broader source: Energy.gov [DOE]

Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

460

Hydrogen purification system  

DOE Patents [OSTI]

The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

Golben, Peter Mark

2010-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

462

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

463

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

464

Reproducedwith permissionfrom Elsevier/Pergamon Int. J. Hydrogen Energy, Vol. 15, No.3, pp. 155-169, 1990. 0360-3199/90 $3.00 + 0.00  

E-Print Network [OSTI]

Associationfor HydrogenEnergy. ELECTROLYTIC HYDROGEN FROM THIN-FILM SOLAR CELLS* J. M. OGDEN and R. H. WILLIAMS environmental advantages over fossil fuel- sition [5], and poor urban air quality [6] are powerful based energyReproducedwith permissionfrom Elsevier/Pergamon Int. J. Hydrogen Energy, Vol. 15, No.3, pp. 155

465

Hydrogen Delivery - Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

466

Enhancing hydrogen spillover and storage  

DOE Patents [OSTI]

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

2011-05-31T23:59:59.000Z

467

Enhancing hydrogen spillover and storage  

SciTech Connect (OSTI)

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

2013-02-12T23:59:59.000Z

468

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

469

Process for exchanging hydrogen isotopes between gaseous hydrogen and water  

DOE Patents [OSTI]

A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

1980-08-12T23:59:59.000Z

470

Membrane for hydrogen recovery from streams containing hydrogen sulfide  

DOE Patents [OSTI]

A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

Agarwal, Pradeep K.

2007-01-16T23:59:59.000Z

471

Rocket borne solar eclipse experiment to measure the temperature structure of the solar corona via lyman-. cap alpha. line profile observations  

SciTech Connect (OSTI)

A rocket borne experiment to measure the temperature structure of the inner solar corona via the doppler broadening of the resonance hydrogen Lyman-..cap alpha.. (lambda1216A) radiation scattered by ambient neutral hydrogen atoms was attempted during the 16 Feb 1980 solar eclipse. Two Nike-Black Brant V sounding rockets carrying instrumented payloads were launched into the path of the advancing eclipse umbra from the San Marco satellite launch platform 3 miles off the east coast of Kenya.

Argo, H.V.

1981-01-01T23:59:59.000Z

472

Solar ADEPT: Efficient Solar Energy Systems  

SciTech Connect (OSTI)

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

473

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network [OSTI]

for hydrogen refueling and storage, by 2006; · Complete and adopt the revised NFPA 55 standard for hydrogen storage of hydrogen, by 2008; · Complete U.S. adoption of a Global Technical Regulation (GTR) for hydrogen, storage, and use of hydrogen incorporate project safety requirements into the procurements, by 2005

474

Thick film hydrogen sensor  

DOE Patents [OSTI]

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

475

August 2006 Hydrogen Program  

E-Print Network [OSTI]

after the date of enactment of this Act, the Secretary shall submit to Congress a report evaluating's primary transportation fuel from petroleum, which is increasingly imported, to hydrogen, which can the energy, environmental and economic benefits of a hydrogen economy. The goals and milestones

476

Hydrogen, Fuel Infrastructure  

E-Print Network [OSTI]

results of using hydrogen power, of course, will be energy independence for this nation... think about between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

477

Hydrogen Delivery- Current Technology  

Broader source: Energy.gov [DOE]

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

478

Concentrating Solar Power  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2008-09-01T23:59:59.000Z

479

Renewable Resources for Hydrogen (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

Jalalzadeh-Azar, A. A.

2010-05-03T23:59:59.000Z

480

Hydrogen in semiconductors and insulators  

E-Print Network [OSTI]

type can be applied to hydrogen storage materials. Keywords:can be applied to hydrogen storage materials. Manuscript O-of the formalism to hydrogen storage materials. A partial

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydro hydrogen solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

in the cost of hydrogen production, distribution, and use.accelerate R&D of zero-emission hydrogen production methods.Renewable hydrogen production is a key area for focused

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

482

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

483

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

It appears to us that hydrogen is a highly promising option06—16 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

484

Hydrogen Fuel Quality  

SciTech Connect (OSTI)

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

485

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership  

E-Print Network [OSTI]

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39 Installations happen where process is easier #12;EVERGREEN STATE SOLAR PARTNERSHIP Commerce NWSEEDEdmonds

486

FINE-GRAINED NANOCRYSTALLINE SILICON P-LAYER FOR HIGH OPEN CIRCUIT VOLTAGE A-SI:H SOLAR CELLS  

E-Print Network [OSTI]

FINE-GRAINED NANOCRYSTALLINE SILICON P-LAYER FOR HIGH OPEN CIRCUIT VOLTAGE A-SI:H SOLAR CELLS of Michigan, Ann Arbor, MI 48109, USA ABSTRACT Hydrogenated amorphous silicon (a-Si:H) single- junction solar). It is found that the p-layer that leads to high Voc a-Si:H solar cells is a mixed-phase material that contains

Deng, Xunming

487

Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a  

E-Print Network [OSTI]

Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk understanding of thin film solar cell device physics, including important module performance variability issues

Alam, Muhammad A.

488

Hydrogen Data Book from the Hydrogen Analysis Resource Center  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

489

Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice  

E-Print Network [OSTI]

Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of this processing, we have conducted a systematic laboratory study of the irradiation of crystalline water ice in an ultrahigh vacuum setup by energetic electrons holding a linear energy transfer of 4.3 +/- 0.1 keV mm-1. The irradiated samples were monitored during the experiment both on line and in situ via mass spectrometry (gas phase) and Fourier transform infrared spectroscopy (solid state). We observed the production of hydrogen and oxygen, both molecular and atomic, and of hydrogen peroxide. The likely reaction mechanisms responsible for these species are discussed. Additional formation routes were derived from the sublimation profiles of molecular hydrogen (90-140 K), molecular oxygen (147 -151 K) and hydrogen peroxide (170 K). We also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building blocks to yield hydrogen peroxide at low temperatures (12 K) and via a diffusion-controlled mechanism in the warming up phase of the irradiated sample.

Weijun Zheng; David Jewitt; Ralf I. Kaiser

2005-11-18T23:59:59.000Z

490

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network [OSTI]

Oil ICE Running cost Coal ST Hydroelectric Nuclear ImportsPumped Hydro Coal Nuclear Hydroelectric Imports Hours/year (Pumped Hydro Coal Nuclear Hydroelectric Imports Hours/year (

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

491

Turing Water into Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

492

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power (CHP) or fuel cell technologies. The ACC has not set a firm...

493

Sandia National Laboratories: Hydrogen Contaminant Detection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAidsCanal,GridInfrastructureHydrogen

494

Air Liquide Hydrogen Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information LightningAiken Electric CoopCooling: AirHydrogen

495

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment  

E-Print Network [OSTI]

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University.................................................................................................. 2 2.2 Solar Radiation Data for Calculating Solar Energy Resource .................... 3 3 Campus.1 Evaluation of Suitability for Solar Energy Generation................................ 12 4.2 Solar

Brownstone, Rob

496

Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment  

DOE Patents [OSTI]

A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.

Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

1982-01-01T23:59:59.000Z

497

Advancing the Hydrogen Safety Knowledge Base  

SciTech Connect (OSTI)

A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

Weiner, Steven C.

2014-12-01T23:59:59.000Z

498

Boston Massachusetts: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency &...

499

Chromatographic hydrogen isotope separation  

DOE Patents [OSTI]

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

500

NREL's Hydrogen Program  

SciTech Connect (OSTI)

The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful element—hydrogen—to power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

None

2011-01-01T23:59:59.000Z