Sample records for hydro hydrogen solar

  1. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect (OSTI)

    Milbrandt, A.; Mann, M.

    2009-02-01T23:59:59.000Z

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  2. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority Solar Thermochemical Hydrogen Production Research (STCH):...

  3. Sandia National Laboratories: Solar Thermochemical Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  4. Hydro, Solar, Wind The Future of Renewable Energy

    E-Print Network [OSTI]

    Lavaei, Javad

    Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical. Hydropower Water has grown in previous years to become the most widely used form of renewable energy across years to come from Hydropower. It is considered to be a renewable energy source because it uses

  5. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

  6. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Broader source: Energy.gov (indexed) [DOE]

    borrower must be rural small business or agricultural producer * Technology: biomass, solar, wind, hydro, hydrogen, geothermal * Applications: equipment, construction,...

  7. Solar hydrogen for urban trucks

    SciTech Connect (OSTI)

    Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

    1997-12-31T23:59:59.000Z

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  8. HydroGen Aquaphile sarl | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project JumpHyEnergy SystemsHydro

  9. HydroGen Corporation formerly Chiste Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project JumpHyEnergy SystemsHydroChiste Corp

  10. Solar Thermochemical Hydrogen Production Research (STCH)

    Fuel Cell Technologies Publication and Product Library (EERE)

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meet

  11. Screening analysis of solar thermochemical hydrogen concepts.

    SciTech Connect (OSTI)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01T23:59:59.000Z

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  12. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  13. Solar/hydro integration study. Technical progress report, February-July 1980. [STORMRK code

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Water and Power Resources Service in cooperation with the Department of Energy (DOE) is investigating the technical and economic feasibility of integrating solar central receiver powerplants with the Federal hydroelectric power system in the southwest United States. The principal hydro facility in this region is Hoover Dam. It is located on the Colorado River with Lake Mead on the upstream side and Lake Mohave on the downstream side. The central receiver was selected for this application because DOE has identified it as the most economically feasible design for large power systems, i.e., 100-MWe systems or larger. Typical meteorological year (TMY) data were obtained for Las Vegas from the Solar Energy Research Institute. Plots of available solar energy at Yuma and Mormon Mesa are presented for several operational threshold levels. The data show that a solar plant's operational time can be reduced by 20% and still utilize more than 97% of the available solar energy. The Mormon Mesa site has slightly more solar energy available than the Yuma site. A meteorological surface observation network (MESONET) weather station is being prepared for installation at the Yuma site. The MESONET station which normally measures temperature, relative humidity, barometric pressure, wind speed, and wind direction will be retrofitted to measure direct beam and global radiation. The radiation data will be used in dynamic simulations of solar power systems. (WHK)

  14. Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies

    E-Print Network [OSTI]

    .........................5 1.4 Potential Capacity for Hydrogen Production from Conventional Electrolysis Using Wind and SolarSolar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies For Hydrogen Production Report to Congress December 2005 (ESECS EE-3060) #12;Solar and Wind Technologies

  15. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGas Streamsof the

  16. The solar system mimics a hydrogen atom

    E-Print Network [OSTI]

    Je-An Gu

    2014-03-28T23:59:59.000Z

    The solar system and the hydrogen atom are two well known systems on different scales and look unrelated: The former is a classical system on the scale of about billions of kilometers and the latter a quantum system of about tens of picometers. Here we show a connection between them. Specifically, we find that the orbital radii of the planets mimic the mean radii of the energy levels of a quantum system under the Coulomb-like potential. This connection might be explained by very light dark matter which manifests quantum behavior in the solar system, thereby hinting at a dark matter mass around $8 \\times 10^{-14}$ electron-volts.

  17. Recent progress in enhancing solar-to-hydrogen efficiency

    SciTech Connect (OSTI)

    Chen, Jianqing [Hohai University, China; Yang, Donghui [Hohai University, China; Song, Dan [Hohai University, China; Jiang, Jinghua [Hohai University, China; Ma, Aibin [Hohai University, China; Hu, Michael Z. [ORNL; Ni, Chaoying [University of Delaware

    2015-01-01T23:59:59.000Z

    Solar water splitting is a promising and ideal route for renewable production of hydrogen by using the most abundant resources of solar light and water. Focusing on the working principal of solar water splitting, including photon absorption and exciton generation in semiconductor, exciton separation and transfer to the surface of semiconductor, and respective electron and hole reactions with absorbed surface species to generate hydrogen and oxygen, this review covers the comprehensive efforts and findings made in recent years on the improvement for the solar-to-hydrogen efficiency (STH) determined by a combination of light absorption process, charge separation and migration, and catalytic reduction and oxidation reactions. Critical evaluation is attempted on the strategies for improving solar light harvesting efficiency, enhancing charge separation and migration, and improving surface reactions. Towards the end, new and emerging technologies for boosting the STH efficiency are discussed on multiple exciton generation, up-conversion, multi-strategy modifications and the potentials of organometal hybrid perovskite materials.

  18. Solar hydrogen energy system. Annual report, 1995--1996

    SciTech Connect (OSTI)

    Veziroglu, T.N.

    1996-12-31T23:59:59.000Z

    The paper reports progress on three tasks. Task A, System comparison of hydrogen with other alternative fuels in terms of EPACT requirements, investigates the feasibility of several alternative fuels, namely, natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000. The analysis was divided into two parts: analysis of vehicle technologies and analysis of fuel production, storage and distribution. Task B, Photovoltaic hydrogen production, involves this fuel production method for the future. The process uses hybrid solar collectors to generate dc electricity, as well as high temperature steam for input to the electrolyzer. During the first year, solar to hydrogen conversion efficiencies have been considered. The third task, Hydrogen safety studies, covers two topics: a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels; and an experimental investigation of hydrogen flame impingement.

  19. Sandia National Laboratories: solar to hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

  20. Solar/hydrogen systems for the 1985 to 2000 time frame. Volume I. Solar/hydrogen systems assessment. Final report

    SciTech Connect (OSTI)

    Foster, R. W.; Tison, R. R.; Escher, W. J.D.; Hanson, J. A.

    1980-06-01T23:59:59.000Z

    The findings of a study of opportunities for commercialization of systems capable of producing hydrogen from solar energy are presented in two volumes. A compendium of monographs by specialists in the fields of solar energy conversion technologies, hydrogen production technologies and related technology descriptions from the general literature comprise Volume II. This data base was used to support an evaluation and selection process that identified four candidate solar/hydrogen systems best suited to commercialization within the next two decades. Volume I first reviews the background of the work and the methods used. Then an evaluation of the hydrogen product costs that might be achieved by the four selected candidate systems (photovoltaic/water electrolysis, thermal-heat engine/water electrolysis, wind energy/water electrolysis, small hydrogen/water electrolysis) is compared with the pricing structure and practices of the commodity gas market. Subsequently, product cost and market price match is noted to exist in the small user sector of the hydrogen marketplace. Barriers to and historical time lags in, commercialization of new technologies are then reviewed. Finally, recommendations for development and demonstration programs designed to accelerate the commercialization of the candidate systems are presented.

  1. Solar-hydrogen energy system model for Libya

    SciTech Connect (OSTI)

    Eljrushi, G.S.

    1987-01-01T23:59:59.000Z

    A solar-hydrogen energy-system model for Libya was developed, obtaining relationships for and between the main energy and energy related parameters of Libya and the world. The parameters included are: population, energy demand, fossil-fuel production, fossil-fuel resources, hydrogen production, hydrogen introduction rates, energy prices, gross domestic product, pollution and quality of life. The trends of these parameters with and without hydrogen introduction were investigated over a period of time - through the year 2100. The results indicate that the fossil-fuel resources in Libya could be exhausted, due to production for local and export demands, within three to four decades unless serious measures for reducing production are taken. The results indicate that adopting solar-hydrogen energy system would extend the availability of fossil-fuel resources for a longer time period, reduce pollution, improve quality of life and establish a permanent energy system for Libya. It also shows that eventually Libya could export hydrogen in lieu of oil and natural gas.

  2. What does it take to create a clean energy future for Washington? Solar, Wind, Hydro

    E-Print Network [OSTI]

    Hochberg, Michael

    energy storage materials, devices and systems, as well as their integration with the grid. The CEI seeks-of-the-art infrastructure. Visit us at www.cei.washington.edu Electrical Storage Solar Farm Prototype DevicesNano wires Flexible Solar Film Atomic Force Microscope Materials Science Molecule Polymers Nanostructured Solar Cells

  3. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect (OSTI)

    Glatzmaier, G. [Peak Design, Evergreen, CO (United States); Blake, D. [National Renewable Energy Lab., Golden, CO (United States); Showalter, S. [Sandia National Lab., Albuquerque, NM (United States)

    1998-01-01T23:59:59.000Z

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  4. Solar photoproduction of hydrogen. IEA technical report of the IEA Agreement of the Production and Utilization of Hydrogen

    SciTech Connect (OSTI)

    Bolton, J.R. [Dept. of Chemistry, Univ. of Western Ontario, London, Ontario (CA) N6A 5B7

    1996-09-30T23:59:59.000Z

    The report was prepared for the International Energy Agency (IEA) Hydrogen Program and represents the result of subtask C, Annex 10 - Photoproduction of Hydrogen. The concept of using solar energy to drive the conversion of water into hydrogen and oxygen has been examined, from the standpoints of potential and ideal efficiencies, measurement of (and how to calculate) solar hydrogen production efficiencies, a survey of the state-of-the-art, and a technological assessment of various solar hydrogen options. The analysis demonstrates that the ideal limit of the conversion efficiency for 1 sun irradiance is {approximately}31% for a single photosystem scheme and {approximately}42% for a dual photosystem scheme. However, practical considerations indicate that real efficiencies will not likely exceed {approximately}10% and {approximately}16% for single and dual photosystem schemes, respectively. Four types of solar photochemical hydrogen systems have been identified: photochemical systems, semiconductor systems, photobiological systems, and hybrid and other systems. A survey of the state-of-the-art of these four types is presented. The four types (and their subtypes) have also been examined in a technological assessment, where each has been examined as to efficiency, potential for improvement, and long-term functionality. Four solar hydrogen systems have been selected as showing sufficient promise for further research and development: (1) Photovoltaic cells plus an electrolyzer; (2) Photoelectrochemical cells with one or more semiconductor electrodes; (3) Photobiological systems; and (4) Photodegradation systems. The following recommendations were presented for consideration of the IEA: (1) Define and measure solar hydrogen conversion efficiencies as the ratio of the rate of generation of Gibbs energy of dry hydrogen gas (with appropriate corrections for any bias power) to the incident solar power (solar irradiance times the irradiated area); (2) Expand support for pilot-plant studies of the PV cells plus electrolyzer option with a view to improving the overall efficiency and long-term stability of the system. Consideration should be given, at an appropriate time, to a full-scale installation as part of a solar hydrogen-based model community; (3) Accelerate support, at a more fundamental level for the development of photoelectrochemical cells, with a view to improving efficiency, long-term performance and multi-cell systems for non-biased solar water splitting; (4) Maintain and increase support for fundamental photobiological research with the aim of improving long-term stability, increasing efficiencies and engineering genetic changes to allow operation at normal solar irradiances; and (5) Initiate a research program to examine the feasibility of coupling hydrogen evolution to the photodegradation of waste or polluting organic substances.

  5. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect (OSTI)

    Provenzano, J.J.

    1997-04-01T23:59:59.000Z

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  6. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    of the Hydrogen Compressor .. 85results of the hydrogen compressor. The net work required toBalances of the Hydrogen Compressor Total In Out Relative

  7. Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation

    SciTech Connect (OSTI)

    Grimes, Craig A.

    2014-11-26T23:59:59.000Z

    Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

  8. The Solar Wind Charge-Exchange Production Factor for Hydrogen

    E-Print Network [OSTI]

    Kuntz, K D; Collier, M R; Connor, H K; Cravens, T E; Koutroumpa, D; Porter, F S; Robertson, I P; Sibeck, D G; Snowden, S L; Thomas, N E; Wash, B M

    2015-01-01T23:59:59.000Z

    The production factor, or broad band averaged cross-section, for solar wind charge-exchange with hydrogen producing emission in the ROSAT 1/4 keV (R12) band is $3.8\\pm0.2\\times10^{-20}$ count degree$^{-2}$ cm$^4$. This value is derived from a comparison of the Long-Term (background) Enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8 to 4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of 1/4 keV band flux that is due to the Local Hot Bubble, for planning future observations in the 1/4 keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the 3/4 keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally,...

  9. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    Overview of Hydrogen and Fuel Cell Research." Energy, v.34,Quantum Boost,” DOE Hydrogen and Fuel Cells Program: FY 2012Analysis. ” DOE Hydrogen and Fuel Cells Program, Web. 22

  10. autonomous solar hydrogen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles University of California eScholarship Repository Summary: Furuhama S. (1988) Hydrogen engine systems for land ve-hydrogen vehicles to date have used internal...

  11. Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells

    E-Print Network [OSTI]

    Bertoni, Mariana I.

    In this work we examine the effectiveness of hydrogen passivation at grain boundaries as a function of defect type and microstructure in multicrystalline silicon. We analyze a specially prepared solar cell with alternating ...

  12. Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst

    E-Print Network [OSTI]

    Martindale, Benjamin C. M.; Hutton, Georgina A. M.; Caputo, Christine A.; Reisner, Erwin

    2015-04-13T23:59:59.000Z

    Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst Benjamin C. M. Martindale,† Georgina A. M. Hutton,† Christine A. Caputo, and Erwin Reisner* Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department...

  13. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    A.W. , “Likely Near-Term Solar-Thermal Water SplittingFundamentals of s Solar-thermal Mn 2 O 3 /MnO ThermochemicalPower-Photovaltaics or Solar Thermal Power? ” Proceedings of

  14. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    Plant Production 5000 kg/day Solar Plant Module Cost (with2, which was a solar thermal plant built by the Departmentfor a continuous solar thermochemical plant was modeled and

  15. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    process powered by solar thermal energy for hydrogencontinuous operation. Solar thermal energy is used to drive2.5) and Eq. (2.6). Solar thermal energy is used to drive

  16. DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting

    Broader source: Energy.gov [DOE]

    EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology research and development, specifically addressing discovery and development of advanced materials systems and chemical proceesses for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

  17. Hydrogenated Nanocrystalline Silicon p-Layer in a-Si:H n-i-p Solar Cells Wenhui Dua)

    E-Print Network [OSTI]

    Deng, Xunming

    Hydrogenated Nanocrystalline Silicon p-Layer in a-Si:H n-i-p Solar Cells Wenhui Dua) , Xianbo Liaob hydrogenated amorphous silicon (a-Si:H) solar cells. Raman scattering spectroscopy and transmission electron). Using this kind of p-layer in n-i-p a-Si:H solar cells, the cell performances were improved with a Voc

  18. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29T23:59:59.000Z

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

  19. Hydro-Québec Net Metering (Quebec, Canada) | Open Energy Information

    Open Energy Info (EERE)

    Canada) Policy Type Net Metering Affected Technologies Geothermal Electric, Solar Photovoltaics Active Policy Yes Implementing Sector Utility Funding Source Hydro-Quebec Primary...

  20. Optimizing Trading Decisions for Hydro Storage Systems using ...

    E-Print Network [OSTI]

    2012-09-19T23:59:59.000Z

    solar, or run-of-river. The European ... and generating companies are currently investing about 26 billion Euros into new pumped-hydro storage plants with a ...

  1. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    Solar thermal energy is used to drive the overall process and required electricity is generated internally from waste heat.

  2. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  3. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  4. Helioseismic analysis of the hydrogen partition function in the solar interior

    E-Print Network [OSTI]

    S. Basu; W. Dappen; A. Nayfonov

    1998-12-17T23:59:59.000Z

    The difference in the adiabatic gradient gamma_1 between inverted solar data and solar models is analyzed. To obtain deeper insight into the issues of plasma physics, the so-called ``intrinsic'' difference in gamma_1 is extracted, that is, the difference due to the change in the equation of state alone. Our method uses reference models based on two equations of state currently used in solar modeling, the Mihalas-Hummer-Dappen (MHD) equation of state, and the OPAL equation of state (developed at Livermore). Solar oscillation frequencies from the SOI/MDI instrument on board the SOHO spacecraft during its first 144 days in operation are used. Our results confirm the existence of a subtle effect of the excited states in hydrogen that was previously studied only theoretically (Nayfonov & Dappen 1998). The effect stems from internal partition function of hydrogen, as used in the MHD equation of state. Although it is a pure-hydrogen effect, it takes place in somewhat deeper layers of the Sun, where more than 90% of hydrogen is ionized, and where the second ionization zone of helium is located. Therefore, the effect will have to be taken into account in reliable helioseismic determinations of the astrophysically relevant helium-abundance of the solar convection zone.

  5. Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere

    E-Print Network [OSTI]

    J. Leenaarts; M. Carlsson; V. Hansteen; R. J. Rutten

    2007-09-24T23:59:59.000Z

    The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) Non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Halpha, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements and above quiet internetwork. d) The hydrogen n = 2 population and column density are persistently high in dynamic fibrils, suggesting that these obtain their visibility from being optically thick in Halpha also at low temperature.

  6. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    of the process, using a steam hydro-gasification reactor (simultaneously in the presence of both hydrogen and steam toundergo steam pyrolysis and hydro-gasification in a single

  7. Department of Energy - Hydrogen

    Broader source: Energy.gov (indexed) [DOE]

    Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

  8. In search of an alternative fuel: Bio-Solar Hydrogen Production

    E-Print Network [OSTI]

    Petta, Jason

    In search of an alternative fuel: Bio-Solar Hydrogen Production from Arthrospira maxima Dariya Comparison of Potential Corn, Cellulose, and Aquatic Microbial Fuel Production Assuming demonstrated biomass production by ­ Sodium substitution ­ Nitrate elimination ­ Hypotonic stress · Conclusions Overview #12;b a

  9. Development of efficient photoreactors for solar hydrogen production

    SciTech Connect (OSTI)

    Huang, Cunping; Yao, Weifeng; T-Raissi, Ali; Muradov, Nazim [University of Central Florida, Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, Fl 32922-5703 (United States)

    2011-01-15T23:59:59.000Z

    The rate of hydrogen evolution from a photocatalytic process depends not only on the activity of a photocatalyst, but also on photoreactor design. Ideally, a photoreactor should be able to absorb the incident light, promoting photocatalytic reactions in an effective manner with minimal photonic losses. There are numerous technical challenges and cost related issues when designing a large-scale photoreactor for hydrogen production. Active stirring of the photocatalyst slurry within a photoreactor is not practical in large-scale applications due to cost related issues. Rather, the design should allow facile self-mixing of the flow field within the photoreactor. In this paper two types of photocatalytic reactor configurations are studied: a batch type design and another involving passive self-mixing of the photolyte. Results show that energy loss from a properly designed photoreactor is mainly due to reflection losses from the photoreactor window. We describe the interplay between the reaction and the photoreactor design parameters as well as effects on the rate of hydrogen evolution. We found that a passive self-mixing of the photolyte is possible. Furthermore, the use of certain engineering polymer films as photoreactor window materials has the potential for substantial cost savings in large-scale applications, with minimal reduction of photon energy utilization efficiency. Eight window materials were tested and the results indicate that Aclar trademark polymer film used as the photoreactor window provides a substantial cost saving over other engineering polymers, especially with respect to fused silica glass at modest hydrogen evolution rates. (author)

  10. Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells

    E-Print Network [OSTI]

    Deng, Xunming

    Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc- Si) triple-junction solar cell due to its higher optical in an a-Si based multiple- junction solar cell. 1. INTRODUCTION Narrow bandgap amorphous SiGe (a

  11. Lighting Up Enzymes for Solar Hydrogen Production (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Scientists at the National Renewable Energy Laboratory (NREL) have combined quantum dots, which are spherical nanoparticles that possess unique size-tunable photophysical properties, with the high substrate selectivity and fast turnover of hydrogenase enzymes to achieve light-driven hydrogen (H2) production. They found that quantum dots of cadmium telluride coated in carboxylic acids easily formed highly stable complexes with the hydrogenase and that these hybrid assemblies functioned to catalyze H2 production using the energy of sunlight.

  12. The U.S. Department of Energy Hydrogen Delivery Mark Paster

    E-Print Network [OSTI]

    1999. #12;0 10 20 30 40 50 60 70 80 90 100 CO NOx VOC SOx PM10 PM2.5 CO2 Electricity Buildings Industry Transportation Biomass Water Hydro Wind Solar Geothermal Coal Nuclear Natural Gas WithCarbonSequestration HIGH that can reduce pollution and our dependence on foreign oil until long-term technologies like hydrogen fuel

  13. Solar-hydrogen energy system for a Libyan coastal county (El-Gharabulli)

    SciTech Connect (OSTI)

    El-Osta, W.B.

    1987-01-01T23:59:59.000Z

    A model for a solar-hydrogen energy system was developed for a Libyan Coastal (Mediterranean) County, (i.e., El-Gharabulli). Present energy and economic conditions were studied. A comparison of the present conditions with the proposed solar-hydrogen energy system is presented. In the model, it is proposed to cover the southern parts of the county with photovoltaic cells in order to provide partly the electric energy needs of the county for the different sectors, such as domestic, commercial and industrial, as well as to electrolyze water to produce hydrogen and oxygen. Hydrogen would be stored and distributed for different uses, such as fuel for transportation and industry, and as gas for domestic and commercial use. Part of the hydrogen would be used though fuel cells to generate electricity for night times and cloudy days when the sun is not available. The area under the photovoltaic cells would be partly shaded, which would provide suitable environment for growing some varieties of cash crops. Sea water would be desalinated through a desalination plant on the coast to provide fresh water for domestic, commercial and industrial use, as well as for irrigation of the new agricultural areas in the south.

  14. Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.

    SciTech Connect (OSTI)

    Kronawitter, Coleman X. [Lawrence Berkeley National Laboratory, Berkeley, CA; Antoun, Bonnie R.; Mao, Samuel S. [Lawrence Berkeley National Laboratory, Berkeley, CA

    2012-01-01T23:59:59.000Z

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  15. Hydrogen from Diverse Domestic ResourcesHydrogen from Diverse Domestic Resources Distributed

    E-Print Network [OSTI]

    Sequestration Biomass Hydro Wind Solar Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Sequestration #12 on foreign oil. · Promote the use of diverse, domestic, and sustainable energy sources. · Reduce carbon

  16. Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels

    E-Print Network [OSTI]

    Jawitz, James W.

    the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen solar energy to syngas, which is then converted to "drop in" fuel (diesel, gasoline or hydrogen

  17. Nanotechnology for Solar-hydrogen Production via Photoelectrochemical Water-splitting: Design, Synthesis, Characterization, and Application of Nanomaterials and Quantum Dots

    E-Print Network [OSTI]

    Alenzi, Naser D.

    2012-02-14T23:59:59.000Z

    -scale ..................................................... 35 1.25 Atoms nucleation and growth rate during synthesis .................................. 36 1.26 The AM 1.5 solar spectrum as function of photon energy. ........................ 37 1.27 Thermal solar energy systems (A) parabolic dish (B... Page 1.1 Hydrogen production pathways ................................................................. 4 1.2 Solar to hydrogen conversion pathways, STC is solar thermochemical, CST is concentrating solar thermal, and PEC...

  18. Neutral interstellar hydrogen in the inner heliosphere under influence of wavelength-dependent solar radiation pressure

    E-Print Network [OSTI]

    Tarnopolski, S

    2007-01-01T23:59:59.000Z

    We study the influence of the non-flat shape of the solar Lyman-alpha line on the distribution of neutral interstellar hydrogen in the inner heliosphere, assess importance of this effect for interpretation of heliospheric measurements. Based on available data, we construct a model of evolution of the solar Lyman-alpha line profile with solar activity. Modify existing test-particle code calculating distribution of neutral interstellar hydrogen in the inner heliosphere to take into account the dependence of radiation pressure on radial velocity. Discrepancies between the classical and Doppler models appear at ~ 10 AU and increase towards the Sun from a few percent to a factor of 2 at 1 AU. The classical model overestimates density everywhere except a ~ 60 deg cone around the downwind direction, where a density deficit appears. The magnitude of discrepancies depends appreciably on the phase of solar cycle, but only weakly on the parameters of the gas at the termination shock. The intensity of backscatter radiati...

  19. An on sun parametric study of solar hydrogen production using WO{sub 3} photoanodes

    SciTech Connect (OSTI)

    Halford, Christopher K. [UNLV Center for Energy Research, 4505 S. Maryland Parkway, Las Vegas, NV 89154 (United States); Boehm, Robert F. [UNLV Center for Energy Research, 4505 S. Maryland Parkway, UNLV Box 454027, Las Vegas, NV 89154-4027 (United States)

    2011-01-15T23:59:59.000Z

    The solar production of hydrogen using photoactive electrodes is a topic receiving much attention in recent years. The use of thin metal oxide films as photoanodes allows the water splitting reaction to occur at a much lower applied voltage than would be necessary with a straight electrolysis process. The University of Nevada Las Vegas in collaboration with the UK based firm Hydrogen Solar and funded by the United States Department of Energy, has developed a prototype of this type of cell using a WO{sub 3} photoanode. An on-sun test facility has been constructed by the UNLV Center for Energy Research (CER) where a study is being conducted with regard to the effects various design parameters on the rate of hydrogen evolution. Parameters being studied include electrolyte temperature, electrolyte flow rate, electrolyte resistivity, applied voltage, and membrane to electrode spacing. The data collected is used in a parametric study of the cell performance. The results of this study are then used to establish general trends as to the effects of these parameters on the performance of the cells outside of a laboratory environment. (author)

  20. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  1. Hydro Capital Asset Manager

    Broader source: Energy.gov [DOE]

    This position is located in Federal Hydro Projects, Generation Asset Management, Power Services. Additional vacancies may be filled through this vacancy announcement or if they become available.

  2. Neutral interstellar hydrogen in the inner heliosphere under influence of wavelength-dependent solar radiation pressure

    E-Print Network [OSTI]

    S. Tarnopolski; M. Bzowski

    2008-04-21T23:59:59.000Z

    We study the influence of the non-flat shape of the solar Lyman-alpha line on the distribution of neutral interstellar hydrogen in the inner heliosphere and assess importance of this effect for interpretation of heliospheric in situ measurements. Based on available data, construct a model of evolution of the solar Lyman-alpha line profile with solar activity. Modify an existing test-particle code calculating distribution of neutral interstellar hydrogen in the inner heliosphere to take into account the dependence of radiation pressure on radial velocity. Discrepancies between the classical and Doppler models appear at ~ 5 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates density everywhere except a ~ 60 deg cone around the downwind direction, where a density deficit appears. The magnitude of discrepancies depends appreciably on the phase of solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~ 1 AU, as those planned for IBEX, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degree, which, when unaccounted for, would bring an error of a few degrees and a few km/s in determination of the bulk velocity vector at the termination shock. The Doppler correction is appreciable for in situ observations of neutral H populations and their derivatives performed a few AU from the Sun.

  3. Solar thermal hydrogen production process: Final report, January 1978-December 1982

    SciTech Connect (OSTI)

    Not Available

    1982-12-01T23:59:59.000Z

    Under sponsorship by the United States Department of Energy, Westinghouse Advanced Energy-Systems Division has investigated the potential for using solar thermal energy to split water into hydrogen and oxygen. A hybrid thermochemical/electrochemical process, known as the Sulfur Cycle, has been the focus of these investigations. Process studies have indicated that, with adequate and ongoing research and development, the Sulfur Cycle can be effectively driven with solar heat. Also, economic analyses have indicated that the cycle has the potential to produce hydrogen in economic competitiveness with conventional methods (e.g. methane/steam reforming) by the turn of the century. A first generation developmental system has been defined along with its critical components, i.e. those components that need substantial engineering development. Designs for those high temperature components that concentrate, vaporize and decompose the process circulating fluid, sulfuric acid, have been prepared. Extensive experimental investigations have been conducted with regard to the selection of construction materials for these components. From these experiments, which included materials endurance tests for corrosion resistance for periods up to 6000 hours, promising materials and catalysts have been identified.

  4. Solar-assisted hydrogen generation by photoelectrocatalysis. Annual report, 1 October 1983-30 September 1984

    SciTech Connect (OSTI)

    Sammells, A.F.; Wessels, B.W.; Raccah, P.M.; Cook, R.L.; Ang, P.G.P.

    1984-12-01T23:59:59.000Z

    This research effort is directed towards gaining basic insight into those factors which will help to improve the efficiency of hydrogen generation in photoelectrochemical cells. Emphasis of the program is on photoelectrode surface modification as an approach to improve such efficiencies. Both electrooptical and photoelectrochemical techniques are being used to characterize photoelectrode surfaces and includes photocapacitance spectroscopy and automatic scanning ellipsometry techniques. For surface modified p-InP the dependency of exchange current density as measured before and after the inception of hydrogen evolution has been examined as a function of incident light intensity. This was performed using the surface modifications Co/Pt, Ru/Pt, Rh/Pt, Ru, Pt, Rh and Co. Experimental results indicated that a progressively lower applied cathodic bias is required for hydrogen evolution in the order Ru/Pt < Rh/Pt < Co/Pt < Rh < Pt < Co < Ru < unmodified. Photoelectrode kinetics on alpha-Fe2O3 based photoanodes can be enhanced by the incorporation of platinum within the thermally grown oxide. A model is evolving which invokes the role surface states play in this order and in determining the shape of the experimental io vs incident light flux curves. The overall solar efficiency, as power savings for photoelectrochemical cells using a p-InP photocathode surface modified by sequential deposited Co and Pt and a platinum counter electrode, have been increased to 16% in alkaline electrolytes by depolarization of the counter electrode with monosaccharides.

  5. Microscopic Measurements of Electrical Potential in Hydrogenated Nanocrystalline Silicon Solar Cells: Preprint

    SciTech Connect (OSTI)

    Jiang, C. S.; Moutinho, H. R.; Reedy, R. C.; Al-Jassim, M. M.; Yan, B.; Yue, G.; Sivec, L.; Yang, J.; Guha, S.; Tong, X.

    2012-04-01T23:59:59.000Z

    We report on a direct measurement of electrical potential and field profiles across the n-i-p junction of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells, using the nanometer-resolution potential imaging technique of scanning Kelvin probe force microscopy (SKPFM). It was observed that the electric field is nonuniform across the i layer. It is much higher in the p/i region than in the middle and the n/i region, illustrating that the i layer is actually slightly n-type. A measurement on a nc-Si:H cell with a higher oxygen impurity concentration shows that the nonuniformity of the electric field is much more pronounced than in samples having a lower O impurity, indicating that O is an electron donor in nc-Si:H materials. This nonuniform distribution of electric field implies a mixture of diffusion and drift of carrier transport in the nc-Si:H solar cells. The composition and structure of these nc-Si:H cells were further investigated by using secondary-ion mass spectrometry and Raman spectroscopy, respectively. The effects of impurity and structural properties on the electrical potential distribution and solar cell performance are discussed.

  6. Solar Wind Charge Exchange Studies of Highly Charged Ions on Atomic Hydrogen

    SciTech Connect (OSTI)

    Draganic, Ilija N [ORNL; Seely, D. G. [Albion College; McCammon, D [University of Wisconsin, Madison; Havener, Charles C [ORNL

    2011-01-01T23:59:59.000Z

    Accurate studies of low energy charge exchange (CX) are critical to understanding underlying soft X ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H like, and He like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H like ions of C, N, O and fully stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV u 20 keV u) and compared to previous H oven measurements. The present measurements are performed using a merged beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV u 3.3 keV u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  7. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    SciTech Connect (OSTI)

    Draganic, I. N.; Havener, C. C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Seely, D. G. [Department of Physics, Albion College, Albion, MI 49224 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2011-06-01T23:59:59.000Z

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  8. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  9. Strategic partnerships final LDRD report : nanocomposite materials for efficient solar hydrogen production.

    SciTech Connect (OSTI)

    Corral, Erica L. (University of Arizona, Tucson, AZ); Miller, James Edward; Walker, Luke S. (University of Arizona, Tucson, AZ); Evans, Lindsey R.

    2012-05-01T23:59:59.000Z

    This 'campus executive' project sought to advance solar thermochemical technology for producing the chemical fuels. The project advanced the common interest of Sandia National Laboratories and the University of Arizona in creating a sustainable and viable alternative to fossil fuels. The focus of this effort was in developing new methods for creating unique monolithic composite structures and characterizing their performance in thermochemical production of hydrogen from water. The development and processing of the materials was undertaken in the Materials Science and Engineering Department at the University of Arizona; Sandia National Laboratories performed the thermochemical characterization. Ferrite/yttria-stabilized zirconia composite monoliths were fabricated and shown to have exceptionally high utilization of the ferrite for splitting CO{sub 2} to obtain CO (a process analogous to splitting H{sub 2}O to obtain H{sub 2}).

  10. Sandia National Laboratories: Hydrogen Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Safety Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  11. Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: A way to solar energy conversion

    SciTech Connect (OSTI)

    Morales, I.; La Rosa, F.F. de (Univ. de Sevilla y CSIC (Spain))

    1992-07-01T23:59:59.000Z

    A photosystem for hydrogen peroxide photoproduction formed by immobilized cells of the blue-green alga, Anabaena variabilis and the redox mediator methyl viologen is described. Hydrogen peroxide is produced in a redox catalyst cycle in which methyl viologen is reduced by electrons from water obtained by the photosynthetic apparatus of the algae using solar energy, and reoxidized by the introduction of oxygen into the solution. Hydrogen peroxide is produced during methyl viologen re-oxidation in two steps by means of the formation of superoxide. Experimental conditions for maximum photoproduction (catalyst charge, chlorophyll, and agar final concentration for cell immobilization) have been investigated using a continuous photosystem with immobilized A. variabilis as photocatalyst. Under the determined optimum conditions, the photosystem with immobilized A. variabilis is photocatalyst. Under the determined optimum conditions, the photosystem produces hydrogen peroxide at a rate of 100 {mu}moles/mg Chl{center dot}h, maintaining the production for several hours, and with an energy conversion efficiency of about 2%. Taking into account the use of hydrogen peroxide as fuel, this photosystem can be a useful tool in the storage of solar energy.

  12. Hydrogenated TiO{sub 2} film for enhancing photovoltaic properties of solar cells and self-sensitized effect

    SciTech Connect (OSTI)

    He, Hongcai; Yang, Kui; Wang, Ning, E-mail: ning-wang@uestc.edu.cn; Luo, Feifei; Chen, Haijun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2013-12-07T23:59:59.000Z

    Hydrogenated TiO{sub 2} film was obtained by annealing TiO{sub 2} film at 350?°C for 2?h with hydrogen, and TiO{sub 2} films were prepared by screen printing on fluorine-doped tin oxide glass. Structural characterization by X-ray diffraction and electron microscopy did not show obvious difference between hydrogenated TiO{sub 2} film and pristine TiO{sub 2} film. Through optical and electrochemical characterization, the hydrogenated TiO{sub 2} film showed enhanced absorption and narrowed band gap, as well as reduced TiO{sub 2} surface impedance and dark current. As a result, an obviously enhanced photovoltaic effect was observed in the solar cell with hydrogenated TiO{sub 2} as photoanode without adding any dye due to the self-sensitized effect of hydrogenated TiO{sub 2} film, which excited electrons injecting internal conduction band of TiO{sub 2} to generate more photocurrent.

  13. SOLAR RADIATION PRESSURE AND LOCAL INTERSTELLAR MEDIUM FLOW PARAMETERS FROM INTERSTELLAR BOUNDARY EXPLORER LOW ENERGY HYDROGEN MEASUREMENTS

    SciTech Connect (OSTI)

    Schwadron, N. A.; Moebius, E.; Kucharek, H.; Lee, M. A.; French, J. [University of New Hampshire, Durham, NH 03824 (United States); Saul, L.; Wurz, P. [University of Bern, 3012 Bern (Switzerland); Bzowski, M. [Space Research Centre of the Polish Academy of Sciences, Warsaw (Poland); Fuselier, S. A.; Livadiotis, G.; McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States); Frisch, P. [University of Chicago, Chicago, IL 60637 (United States); Gruntman, M. [University of Southern California, Los Angeles, CA 90089 (United States); Mueller, H. R. [Dartmouth College, Hanover, NH 03755 (United States)

    2013-10-01T23:59:59.000Z

    Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Ly?. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (?) has increased slightly from ? = 0.94 ± 0.04 in 2009 to ? = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

  14. Nanotechnology for Solar-hydrogen Production via Photoelectrochemical Water-splitting: Design, Synthesis, Characterization, and Application of Nanomaterials and Quantum Dots 

    E-Print Network [OSTI]

    Alenzi, Naser D.

    2012-02-14T23:59:59.000Z

    NANOTECHNOLOGY FOR SOLAR-HYDROGEN PRODUCTION VIA PHOTOELECTROCHEMICAL WATER-SPLITTING: DESIGN, SYNTHESIS, CHARACTERIZATION, AND APPLICATION OF NANOMATERIALS AND QUANTUM DOTS A Dissertation by NASER D. ALENZI Submitted... to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Petroleum Engineering NANOTECHNOLOGY FOR SOLAR-HYDROGEN PRODUCTION VIA...

  15. Hydrogen Production & Delivery Sara Dillich

    E-Print Network [OSTI]

    ). 15% solar-to-chemical energy efficiency by microalgae Biomass Gasification Hydrogen Production Cost

  16. HydroGen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei

  17. Cauvery Hydro Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang Corporation Trina SolarCathayCauvery Hydro

  18. Back-side hydrogenation technique for defect passivation in silicon solar cells

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1994-01-01T23:59:59.000Z

    A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts.

  19. Back-side hydrogenation technique for defect passivation in silicon solar cells

    DOE Patents [OSTI]

    Sopori, B.L.

    1994-04-19T23:59:59.000Z

    A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts. 3 figures.

  20. NREL Melds Nature with Nanotech for Solar-Powered Hydrogen Production (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    NREL researchers are finding ways to mimic photosynthesis by combining enzymes with nanoparticles - particles on the scale of a billionth of a meter - to produce hydrogen directly from water and sunlight. This breakthrough project began in 2008 with scientists and researchers asking how they might learn from nature and develop a synthetic process that is more efficient than plants at converting sunlight to hydrogen. The goal was to find a new way to produce hydrogen that could then be commercialized inexpensively for fuel cells and other uses. Among the various approaches to making hydrogen, the NREL researchers wondered about a hybrid molecular assembly that might pair the best natural molecule with a synthesized nanoparticle. Researchers looked at using hydrogenase enzymes as one part of the equation. These biological catalysts can convert electrons and protons into hydrogen gas, or convert hydrogen into electrons and protons. The choice seemed worthwhile because the hydrogenase enzyme has some intriguing properties: a high substrate selectivity, meaning a very high preference for catalyzing reactions with protons rather than with other atoms and molecules; and fast turnover, which enables it to produce a hydrogen molecule in milliseconds.

  1. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Hydro Hydrogen Services Solar Wind energy AQWON Motors AQWON Motors Speinshart Germany Hydro Hydrogen AQWON Motors has developed the first hydrogen powered stroke engine...

  2. A COMPARISON OF THE AQUATIC IMPACTS OF LARGE HYDRO AND SMALL HYDRO PROJECTS

    E-Print Network [OSTI]

    A COMPARISON OF THE AQUATIC IMPACTS OF LARGE HYDRO AND SMALL HYDRO PROJECTS by Lara A. Taylor, P Project: A Comparison of the Aquatic Impacts of Large Hydro and Small Hydro Projects Project No.: 501 of small hydro development in British Columbia has raised concerns surrounding the effects

  3. Solar-assisted hydrogen generation by photoelectrocatalysis. Annual report, November 1, 1986-October 31, 1987

    SciTech Connect (OSTI)

    Sammells, A.F.; Cook, R.L.; Wessels, B.W.

    1987-11-07T23:59:59.000Z

    Carbon dioxide was electrochemically reduced at high rates and Faradaic efficiencies using in-situ deposited copper electrodes in CO/sub 2/ saturated potassium bicarbonate. Both methane and ethylene were found as reduction products. At a current density of 8.3mA/sq. cm. the cumulative yield for those two species was essentially Faradaic, and at 25mA/sq. cm. 79%. Carbon dioxide reduction did not appear to be a direct electrochemical process, but proceeded through the reaction of weakly adsorbed carbon dioxide with electrochemically generated chemisorbed hydrogen at the in situ deposited copper surface. Subsequent hydrogenation of this reduced species by chemisorbed hydrogen probably led to bridged CO groups which could either desorb to give carbon monoxide or become further reduced to give carbidic carbon available for subsequent hydrogenation to yield methane and ethylene. Carbon dioxide reduction to gaseous hydrocarbons was also promoted using solid polymer electrolyte cells, where the reaction occurred at less cathodic potentials than found in aqueous electrolyte.

  4. Sandia National Laboratories: hydrogen production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production High-Efficiency Solar Thermochemical Reactor for Hydrogen Production On July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar...

  5. Ontario Hydro Motor Efficiency Study

    E-Print Network [OSTI]

    Dautovich, D. R.

    1980-01-01T23:59:59.000Z

    Electric motors consume more than one-half of the electrical energy produced by Ontario Hydro. In the residential sector, the major motor load is for refrigerators and freezers while packaged equipment dominate the motor load in the commercial...

  6. Midwest Hydro Users Group Meeting

    Broader source: Energy.gov [DOE]

    The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

  7. Extreme hydro-meteorological events and their probabilities

    E-Print Network [OSTI]

    Beersma, Jules

    Extreme hydro-meteorological events and their probabilities Jules Beersma #12;Promotor: Prof. dr. A Onderzoekschool (BBOS) #12;Extreme hydro-meteorological events and their probabilities Extreme hydro

  8. Solar-assisted hydrogen generation by photoelectrocatalysis. Final report, September 3, 1982-September 30, 1985

    SciTech Connect (OSTI)

    Sammells, A.F.; Wessels, B.W.; Cook, R.L.; Dempsey, P.F.; Goodman, C.E.

    1985-11-01T23:59:59.000Z

    The technical objective of the program was to apply a multidisciplinary approach to systematically elucidate the role of purposely introduced metal electrocatalysts on the photoelectrode surface for enhancing PEC efficiency leading to hydrogen generation. The overall approach was termed photoelectrocatalysis. A variety of photoelectrodes were investigated with emphasis being placed upon p-InP as a model substrate for hydrogen evolution and on n-Fe/sub 2/O/sub 3/ for oxygen evolution. Experimental measurement techniques used in the performance of the program included steady-state and transient photoelectrochemistry, photocapacitance, admittance and Raman spectroscopy together with automatic scanning ellipsometry. Specific features investigated at this interface region included photoelectrode kinetics, semiconductor surface molecular structure, and charge-carrier energetics, together with the energetics and populations associated with electronic surface states.

  9. Solar-assisted hydrogen generation by photoelectrocatalysis. Annual report, October 1, 1985-October 31, 1986

    SciTech Connect (OSTI)

    Sammells, A.F.; Cook, R.L.; Wessels, B.W.; Dempsey, P.F.; Pons, S.

    1986-12-01T23:59:59.000Z

    A detailed characterization of the electronic, chemical, and structural interfacial characteristics of p-InP in aqueous electrolytes was performed to provide a clearer understanding of its behavior so that systematic improvements in performance could be made. Measurement techniques for the in-situ detection of molecular-level photoelectrode/electrolyte interface parameters were employed. Techniques used to address this included classical electrochemical measurements, transient laser-pulse-induced photopotential and photocurrent measurements, together with photocapacitance, Raman, Auger and FTIR spectroscopy. Interfacial parameters investigated included charge-carrier energetics, the energies and densities of electronic surface states, photoelectrode kinetics, and interfacial molecular structure. This insight suggested new surface modifications strategies and PEC cell designs for efficient hydrogen evolution from aqueous electrolytes. In the absence of suitable surface modifications, p-InP can possess poor energetics and kinetics for small-molecule multielectron redox reactions such as hydrogen evolution.

  10. The C OH O hydrogen bond: A determinant of stability and specificity

    E-Print Network [OSTI]

    Senes, Alessandro

    recovered by hydro- gen bond formation, so hydrogen bonds provide a small or even unfavorable net energy hydro- gen bond has been unclear and its interaction energy has been believed to be small. Recently that apparent carbon hydro- gen bonds cluster frequently at glycine-, serine-, and threonine-rich packing

  11. The International Partnership for the Hydrogen Economy

    E-Print Network [OSTI]

    . . Distributed Generation TransportationBiomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With program has tripled in size since 1995. Initiated Roadmaps and Programs: Australia, Brazil, Canada, China

  12. Doctoral Defense "Thermal-hydro-mechanical model

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Thermal-hydro-mechanical model for freezing and thawing soils" Yao Zhang Date been implemented in a finite element system, with a thermal-hydro- mechanical framework being used

  13. Hydro Research Program Seeking Graduate Student Applicants

    Broader source: Energy.gov [DOE]

    The Hydro Research Foundation is now accepting graduate student applications for its DOE-funded graduate student research program. The Hydro Research Awards Program is designed to spur innovation...

  14. Hydro-Québec Net Metering (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    In line with Hydro-Québec's commitment to the environment and sustainable development, Hydro-Québec is supporting self-generation with a new rate offering: the net metering option. This option...

  15. North West Hydro Resource Model Research to identify potential capacity and assist NW hydro power development

    E-Print Network [OSTI]

    Meju, Max

    North West Hydro Resource Model Research to identify potential capacity and assist NW hydro power University wide research, aims to develop a system to promote the exploitation of hydro power in North with regard to hydro schemes Reviewing and re-formulating ill defined requirements for environmental

  16. Prparation de votre examen stabilit hydro

    E-Print Network [OSTI]

    Hoepffner, Jérôme

    Préparation de votre examen stabilité hydro: - Relisez vos notes de cours - Refaites les exercices

  17. 4, 18791891, 2007 hydro-information

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HESSD 4, 1879­1891, 2007 WS for hydro-information systems J. Horak et al. Title Page Abstract for distributed and interoperable hydro-information systems J. Horak, A. Orlik, and J. Stromsky Institute (antonin.orlik.hgf@vsb.cz) 1879 #12;HESSD 4, 1879­1891, 2007 WS for hydro-information systems J. Horak et

  18. Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities. Final report

    SciTech Connect (OSTI)

    Iannucci, J.J.; Eyer, J.M.; Horgan, S.A.; Schoenung, S.M. [Distributed Utility Associates, San Ramon, CA (United States)]|[Longitude 122 West, Inc., Menlo Park, CA (United States)

    1997-05-01T23:59:59.000Z

    In this project, the authors show the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This technical analysis provides estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies have been matched to their most viable (high quality and quantity) regional resources (e.g., examining wind electricity production in high wind resource areas only). The renewables are assumed to produce electricity which is instantaneously used by the local utility to meet its loads; any excess electricity is used to produce hydrogen electrolytically and stored for use later in the day, week or year. The hydrogen production from renewables and hydrogen storage use are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 20% of electric load). Renewable production/utility load/hydrogen storage coupling models have been developed for wind, photovoltaics, and solar thermal. Hydro power (which normally has its own inherent storage capability) has been analyzed separately.

  19. Are collisions with neutral hydrogen important for modelling the Second Solar Spectrum of Ti I and Ca II ?

    E-Print Network [OSTI]

    M. Derouich; J. Trujillo Bueno; R. Manso Sainz

    2007-05-14T23:59:59.000Z

    The physical interpretation of scattering line polarization offers a novel diagnostic window for exploring the thermal and magnetic structure of the quiet regions of the solar atmosphere. Here we evaluate the impact of isotropic collisions with neutral hydrogen atoms on the scattering polarization signals of the 13 lines of multiplet 42 of Ti I and on those of the K line and of the IR triplet of Ca II, with emphasis on the collisional transfer rates between nearby J-levels. To this end, we calculate the linear polarization produced by scattering processes considering realistic multilevel models and solving the statistical equilibrium equations for the multipolar components of the atomic density matrix. We confirm that the lower levels of the 13 lines of multiplet 42 of Ti I are completely depolarized by elastic collisions. We find that upper-level collisional depolarization turns out to have an unnoticeable impact on the emergent linear polarization amplitudes, except for the ${\\lambda 4536$ line for which it is possible to notice a rather small depolarization caused by the collisional transfer rates. Concerning the Ca II lines, we show that the collisional rates play no role on the polarization of the upper level of the K line, while they have a rather small depolarizing effect on the atomic polarization of the metastable lower levels of the Ca II IR triplet.

  20. Solar Energy Education. Solar solutions: Reader, Part III

    SciTech Connect (OSTI)

    Not Available

    1981-05-01T23:59:59.000Z

    A collection of magazine articles which focus on the subject of solar energy is presented in this booklet. This is the third of a four part series of the Solar Energy Reader books. The articles provide brief discussions on the various applications of solar energy including: heat, photovoltaics; wind, hydro, and biomass. A glossary of terms is included. (BCS)

  1. Sandia National Laboratories: produce and deliver hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produce and deliver hydrogen High-Efficiency Solar Thermochemical Reactor for Hydrogen Production On July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI),...

  2. Linkage of the ArcHydro Data Model with SWAT

    E-Print Network [OSTI]

    Linkage of the ArcHydro Data Model with SWAT Francisco Olivera, Ph.D., P.E. Milver Valenzuela Texas on a hub basis. Independent of the already connected models HUB #12;Arc Hydro Arc Hydro can be used as the hub for connecting hydrologic models. #12;Arc Hydro #12;What it is and what it is not ... Arc Hydro

  3. Smart Hydro Power GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG SolarSkykomish,NewEnergySmallSystem |Smart Hydro

  4. Invervar Hydro | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensys Building SystemInvervar Hydro

  5. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Energy Savers [EERE]

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water...

  6. PHNOMNES DITS HYDRO-LECTRIQUES ET HYDRO-MAGNTIQUES; THO-RMES FONDAMENTAUX ET LEUR CONSTATATION EXPRIMENTALE;

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PH�NOM�NES DITS HYDRO-�LECTRIQUES ET HYDRO-MAGN�TIQUES; TH�O- R�MES FONDAMENTAUX ET LEUR nouveaux phénomènes. Je les désignerai ainsi comme une hydro-électicité, un hydro-magnétisme, etc. Mais'idée, d'aimants au lieu d'hydro-aimants, de masses électriques au lieu de masses hydro-électriques, et

  7. Hydrogen H$?$ line polarization in solar flares. Theoretical investigation of atomic polarization by proton beams considering self-consistent NLTE polarized radiative transfer

    E-Print Network [OSTI]

    Jiri Stepan; Petr Heinzel; Sylvie Sahal-Brechot

    2007-01-22T23:59:59.000Z

    Context. We present a theoretical review of the effect of impact polarization of a hydrogen H$\\alpha$ line due to an expected proton beam bombardment in solar flares. Aims. Several observations indicate the presence of the linear polarization of the hydrogen H$\\alpha$ line observed near the solar limb above 5% and preferentially in the radial direction. We theoretically review the problem of deceleration of the beam originating in the coronal reconnection site due to its interaction with the chromospheric plasma, and describe the formalism of the density matrix used in our description of the atomic processes and the treatment of collisional rates. Methods. We solve the self-consistent NLTE radiation transfer problem for the particular semiempirical chromosphere models for both intensity and linear polarization components of the radiation field. Results. In contrast to recent calculations, our results show that the energy distribution of the proton beam at H$\\alpha$ formation levels and depolarizing collisions by background electrons and protons cause a significant reduction of the effect below 0.1%. The radiation transfer solution shows that tangential resonance-scattering polarization dominates over the impact polarization effect in all considered models. Conclusions. In the models studied, proton beams are unlikely to be a satisfying explanation for the observed linear polarization of the H$\\alpha$ line.

  8. Sustainable hydrogen production

    SciTech Connect (OSTI)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01T23:59:59.000Z

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  9. Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation

    E-Print Network [OSTI]

    Vora, Ankit; Pearce, Joshua M; Bergstrom, Paul L; Güney, Durdu Ö

    2014-01-01T23:59:59.000Z

    We study polarization independent improved light trapping in commercial thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-resonant nano-disk structures embedded in a silicon nitride anti-reflection coating (ARC) to enhance optical absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle. Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit current density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar cell (NDPSC) was found to be higher than the commercial reference structure for any incident angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by surface plasmon resonances. The detrimental Staebl...

  10. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar Storing Hydrogen Underground Could Boost Transportation, Energy Security On February 26, 2015, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  11. HEITSCH, R OMISCH --HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems in Power Generation

    E-Print Network [OSTI]

    Römisch, Werner

    HEITSCH, R ¨OMISCH -- HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems that owns a hydro-thermal generation sys- tem and trades on the power market often lead to complex stochas- tic optimization problems. We present a new approach to solving stochastic hydro-storage subproblems

  12. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    Using Self-Sustained Hydro- Gasification." [0011] In aprocess, using a steam hydro-gasification reactor (SHR) thepyrolysis and hydro-gasification in a single step. This

  13. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    SciTech Connect (OSTI)

    Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

    2009-11-01T23:59:59.000Z

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  14. Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure

    E-Print Network [OSTI]

    S. Tarnopolski; M. Bzowski

    2008-12-04T23:59:59.000Z

    With the plethora of detailed results from heliospheric missions and at the advent of the first mission dedicated IBEX, we have entered the era of precision heliospheric studies. Interpretation of these data require precision modeling, with second-order effects quantitatively taken into account. We study the influence of the non-flat shape of the solar Ly-alpha line on the distribution of neutral interstellar H in the inner heliosphere. Based on available data, we (i) construct a model of evolution for the solar Ly-alpha line profile with solar activity, (ii) modify an existing test-particle code used to calculate the distribution of neutral interstellar H in the inner heliosphere so that it takes the dependence of radiation pressure on radial velocity into account, and (iii) compare the results of the old and new version. Discrepancies between the classical and Doppler models appear between ~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates the density everywhere except for a ~60-degr cone around the downwind direction, where a density deficit appears. The magnitude of the discrepancies appreciably depends on the phase of the solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~1 AU, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degrees, respectively, which, when unaccounted for, would introduce an error of a few km/s and degrees in determination of the magnitude and direction of the bulk velocity vector at the termination shock.

  15. Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure

    E-Print Network [OSTI]

    Tarnopolski, S; 10.1051/0004-6361:20077058

    2008-01-01T23:59:59.000Z

    With the plethora of detailed results from heliospheric missions and at the advent of the first mission dedicated IBEX, we have entered the era of precision heliospheric studies. Interpretation of these data require precision modeling, with second-order effects quantitatively taken into account. We study the influence of the non-flat shape of the solar Ly-alpha line on the distribution of neutral interstellar H in the inner heliosphere. Based on available data, we (i) construct a model of evolution for the solar Ly-alpha line profile with solar activity, (ii) modify an existing test-particle code used to calculate the distribution of neutral interstellar H in the inner heliosphere so that it takes the dependence of radiation pressure on radial velocity into account, and (iii) compare the results of the old and new version. Discrepancies between the classical and Doppler models appear between ~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestima...

  16. Ab-Initio Quantum Dynamics Calculation of Hydrogen Interaction with Surfaces

    E-Print Network [OSTI]

    Katsumoto, Shingo

    hydrogen economy [7], infrastructures have to be built. Development of efficient processes for hydro- gen, from an economics point-of- view, the transition to an economy based on hydrogen (energy) couldAb-Initio Quantum Dynamics Calculation of Hydrogen Interaction with Surfaces --Exploiting

  17. Coupled hydro-mechanical processes in crytalline rock and in induratedand plastic clays: A comparative discussion

    E-Print Network [OSTI]

    Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

    2008-01-01T23:59:59.000Z

    at Grimsel. In Coupled Thermo-Hydro- Mechanical-ChemicalCOUPLED HYDRO-MECHANICAL PROCESSES IN CRYTALLINE ROCK AND IN

  18. | JANUARY/FEBRUARY 2014 | Hydro INTERNATIONAL22 symbols and features used on a

    E-Print Network [OSTI]

    New Hampshire, University of

    | JANUARY/FEBRUARY 2014 | Hydro INTERNATIONAL22 symbols and features used on a nautical chart #12;Hydro INT

  19. Solar Photocatalytic Hydrogen Production from Water Using a Dual Bed Photosystem - Phase I Final Report and Phase II Proposal

    SciTech Connect (OSTI)

    Clovis A. Linkous; Darlene K. Slattery

    2000-09-11T23:59:59.000Z

    In this work we are attempting to perform the highly efficient storage of solar energy in the form of H{sub 2} via photocatalytic decomposition of water. While it has been demonstrated that H{sub 2} and O{sub 2} can be evolved from a single vessel containing a single suspended photocatalyst (Sayama 1994; 1997), we are attempting to perform net water-splitting by using two photocatalysts immobilized in separate containers, or beds. A schematic showing how the device would work is shown.

  20. NREL: Hydrogen and Fuel Cells Research - NREL Teams with Southern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electricity from renewable sources, such as solar and wind power, to make carbon-free hydrogen gas by breaking down water into hydrogen and oxygen. The hydrogen can then be...

  1. NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys

    E-Print Network [OSTI]

    NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys: Surf Clams and Ocean Quahogs December 19..................................................................................................................................... 1 NOAA Fisheries Hydro-dynamic Clam Dredge Survey Protocols........................................................................... 5 Clam Dredge Construction and Repair

  2. Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of...

    Broader source: Energy.gov (indexed) [DOE]

    Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE...

  3. Transcending the Hydro-Illogical Building a Texas Hydrologic

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Transcending the Hydro-Illogical Cycle Building a Texas Hydrologic Information System TX-HIS #12;Q to couple streamflow models to GCMs · We need to break the hydro-illogical cycle and plan for the delivery

  4. Lac Courte Oreilles Hydro Dam Assessment

    SciTech Connect (OSTI)

    Weaver, Jason [Lac Courte Oreilles; Meyers, Amy [Kiser Hydro

    2014-12-31T23:59:59.000Z

    The main objective of this project was to investigate upgrading the existing hydro power generating system at the Winter Dam. The tribe would like to produce more energy and receive a fair market power purchase agreement so the dam is no longer a drain on our budget but a contributor to our economy. We contracted Kiser Hydro, LLC Engineering for this project and received an engineering report that includes options for producing more energy with cost effective upgrades to the existing turbines. Included in this project was a negotiation of energy price sales negotiations.

  5. The President's Hydrogen Fuel Initiative Workshop on

    E-Print Network [OSTI]

    , nuclear, and coal with carbon sequestration, can reduce dependence on petroleum, and yield virtually zero criteria and greenhouse gas emissions. Coal Only with carbon capture & sequestration Gasification process with carbon sequestration Distributed Natural Gas* Nuclear Distributed Generation Hydro Wind Solar Geothermal

  6. NOAA Technical Memorandum NWS HYDRO 45 RELATIONSHIP BETWEEN

    E-Print Network [OSTI]

    NOAA Technical Memorandum NWS HYDRO 45 RELATIONSHIP BETWEEN STORM AND ANTECEDENT PRECIPITATION OVER TECHNICAL MEMORANDUMS National Weather Service. Office of Hydrology Series The Office of Hydrology (HYDRO and development. NOAA Technical Memorandums in the NWS HYDRO series facilitate prompt distribution of scientific

  7. Atomic scale mixing for inertial confinement fusion associated hydro instabilities

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    Atomic scale mixing for inertial confinement fusion associated hydro instabilities J. Melvina, , P Alamos, NM 87545, USA Abstract Hydro instabilities have been identified as a potential cause- able. We find numerical convergence for this important quantity, in a purely hydro study, with only

  8. NOAA Technical Memorandum NWS HYDRO 46 A CLIMATIC ANALYSIS

    E-Print Network [OSTI]

    NOAA Technical Memorandum NWS HYDRO 46 A CLIMATIC ANALYSIS OF OROGRAPHIC PRECIPITATION OVER THE BIGHydrology (HYDRO) ofthe National Weather Service (NWS) develops procedures for making river and water supply, and conducts pertinent research and development NOAA Teclmical Memorandums in the NWS HYDRO series facilitate

  9. Fraser River Hydro and Fisheries Research Project fonds

    E-Print Network [OSTI]

    Handy, Todd C.

    Fraser River Hydro and Fisheries Research Project fonds Revised by Erwin Wodarczak (1998 Fraser River Hydro and Fisheries Research Project fonds. ­ 19561961. 13 cm of textual records. Administrative History The Fraser River Hydro and Fisheries Research Project was established in 1956, financed

  10. Forestry Commission Wales Guidance on rental levels for Hydro Power

    E-Print Network [OSTI]

    Forestry Commission Wales Guidance on rental levels for Hydro Power Guidance on rental levels for hydro power projects Tel: 02920 475961 Email: hydrowales@forestry.gsi.gov.uk Version 1.0 Mike Pitcher 17th December, 2012 #12;2 Guidance on rental levels for hydro power |Version 1.0 | Mike Pitcher 17

  11. Interconnected hydro-thermal systems Models, methods, and applications

    E-Print Network [OSTI]

    Interconnected hydro-thermal systems Models, methods, and applications Magnus Hindsberger Kgs. Lyngby 2003 IMM-PHD-2003-112 Interconnected hydro-thermalsystems #12;Technical University of Denmark 45882673 reception@imm.dtu.dk www.imm.dtu.dk IMM-PHD-2003-112 ISSN 0909-3192 #12;Interconnected hydro

  12. Stochastic Co-optimization for Hydro-Electric Power Generation

    E-Print Network [OSTI]

    1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

  13. Hawaii Renewable Hydrogen Program State & Regional Initiatives Webinar

    E-Print Network [OSTI]

    MWPotential Biom ass W ind G eotherm alHydro Solar(roof) Solar(utility) M SW O cean Molokai Lanai Hawaii Maui Kauai Routes Crater Rim Drive 11 miles Elevation 4,000 ft Chain of Craters Road 48 miles round trip Steep

  14. Lifecycle impacts of natural gas to hydrogen pathways on urban air quality

    E-Print Network [OSTI]

    Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

    2007-01-01T23:59:59.000Z

    California, which resulted in more air pollution than central power plants [Power-plant type Oil Biomass NG Coal Nuclear Solar Wind Hydro Total Generation mix (%) Central Plant Demand Centers California

  15. Ontario Hydro`s transportation of radioactive material and emergency response plan

    SciTech Connect (OSTI)

    Karmali, N. [Ontario Hydro, Toronto, Ontario (Canada). Nuclear Operations Branch

    1993-12-31T23:59:59.000Z

    Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro`s shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation`s ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada.

  16. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    harvesting. With solar photovoltaic efficiencies approachingthat the photovoltaic solar cell efficiency plays a dominantEfficiency of Solar Powered Hydrogen Generation using Photovoltaic-

  17. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24T23:59:59.000Z

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  18. 3-D hydro + cascade model at RHIC

    E-Print Network [OSTI]

    Chiho Nonaka; Steffen A. Bass

    2005-11-07T23:59:59.000Z

    We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

  19. LANL hydro test update(u)

    SciTech Connect (OSTI)

    Aragon, Ezekiel D [Los Alamos National Laboratory

    2011-01-06T23:59:59.000Z

    Briefings presenting W78 programmatic activities for FY11 and the status and plan for associated Hydro 3617, is included wherewith in support of the NNSA W78 Program Review Meeting scheduled for January 11 thru 13, 2011, at the Savannah River Plant, SC.

  20. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    R. H. Williams, Solar hydrogen: moving beyond fossil fuels.J. S. Cannon, Harnessing Hydrogen: The Key to Sustainablefuel cell power systems hydrogen vs. methanol: a comparative

  1. University of Colorado-Boulder Researches Solar-Thermochemical...

    Broader source: Energy.gov (indexed) [DOE]

    EERE funds research at the University of Colorado-Boulder for a hydrogen production technology that uses solar energy to produce hydrogen from water. The thermochemical process...

  2. Chemical Engineering Journal 93 (2003) 6980 Production of COx-free hydrogen for fuel cells via step-wise hydrocarbon

    E-Print Network [OSTI]

    Goodman, Wayne

    Chemical Engineering Journal 93 (2003) 69­80 Production of COx-free hydrogen for fuel cells via Abstract The stringent COx-free hydrogen requirement for the current low temperature fuel cells has motivated the development of COx-free hydro- gen production alternatives to the conventional hydrogen

  3. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30T23:59:59.000Z

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  4. ancient solar wind: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2006-02-03 5 Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies Energy Storage, Conversion and Utilization Websites Summary: )...

  5. Study of the thermochemistry for oxygen production for a solar sulfur-ammonia

    E-Print Network [OSTI]

    Wang, Mimi Kai Wai

    2012-01-01T23:59:59.000Z

    to use concentrated solar thermal energy to power a costSolar-Thermal Water Splitting Technologies,” International Journal of Hydrogen Energy,Solar-Thermal Water Splitting Technologies,” International Journal of Hydrogen Energy,

  6. Hydrogen Cryomagnetics

    E-Print Network [OSTI]

    Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

    2014-01-01T23:59:59.000Z

    in our current approach. The liquefaction of hydrogen allows also for its use in transport applications for example BMW developed a car that utilises liquid hydrogen instead of compressed gas hydrogen making the use of cryogenic hydrogen even more... efficient. 11     Figure 13. Decentralised production of hydrogen pathways for Energy and Hydrogen Cryomagnetic solutions for a hospital environment. The shaded region in the figure represents the decentralised production of hydrogen using renewable...

  7. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA)

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond interpretation of the hydrogen isotope ratios of plant leaf waxes extracted from sediments requires a thor- ough at a single site to determine how leaf wax hydro- gen isotope (D/H) ratios differ in different plant types

  8. Hydrogen, Fuel Infrastructure

    E-Print Network [OSTI]

    be powered by hydrogen, and pollution-free." "Join me in this important innovation to make our air for the foreseeable future. Even with the significant energy efficiency benefits that gasoline- electric hybrid - fossil fuels like natural gas and coal; renewable energy sources such as solar radiation, wind

  9. Oxide nanowires for solar cell applications Qifeng Zhang, Supan Yodyingyong, Junting Xi, Daniel Myers and Guozhong Cao*

    E-Print Network [OSTI]

    Cao, Guozhong

    conversion and storage including solar cells, lithium-ion batteries, super- capacitors, and hydrogen storage

  10. Robust optimization based self scheduling of hydro-thermal Genco ...

    E-Print Network [OSTI]

    Alireza Soroudi

    2013-12-29T23:59:59.000Z

    Dec 29, 2013 ... Abstract: This paper proposes a robust optimization model for optimal self scheduling of a hydro-thermal generating company. The proposed ...

  11. Rye Patch geothermal development, hydro-chemistry of thermal...

    Open Energy Info (EERE)

    development, hydro-chemistry of thermal water applied to resource definition Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Rye Patch geothermal...

  12. Office of Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    . Hydrogen Storage 2. Hydrogen Production 3. Fuel Cell Cost Reduction #12;Major Fuel Cell Decisions FuelOffice of Hydrogen, Fuel Cells & Infrastructure Technologies (proposed) Steve Chalk May 6, 2002 #12 DAS Associate DASIndustrial Technologies Implementation A Director Solar Energy Technologies Director

  13. May 19-22, 2003 DTE Hydrogen Power Park

    E-Print Network [OSTI]

    biomass/solar power to hydrogen generation and storage to electrical generation and vehicle fueling energy into an end-to-end hydrogen energy station concept that utilizes solar & biomass power combined/ Compression and Controls Water Supply Storage Equipment w/ Controls Electricity Water Hydrogen Customer Site

  14. Optimierung eines hydro-thermischen Kraftwerks-systems unter Ungewi heit

    E-Print Network [OSTI]

    Römisch, Werner

    Optimierung eines hydro-thermischen Kraftwerks- systems unter Ungewi heit Dr. rer. nat. N. Growe Arbeit beschreiben wir ein stochastisches Modell fur den ko- stenoptimalen Einsatz eines hydro ein, entwickeln ein Losungsverfahren und validieren dies am Beispiel des hydro

  15. Thermo-hydro-chemical Predictive analysis for the drift-scale predictive heater test,

    E-Print Network [OSTI]

    Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John; Simmons, Ardyth

    1998-01-01T23:59:59.000Z

    Characterization Project Thermo-Hydro-Chemical Predictive90-1116 Berkeley, C A 94720 Thermo-Hydro-Chemical PredictiveVersion 1.0 Thermo-Hydro-Chemical Predictive Analysis for

  16. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    OPERATION OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BEDMaterial Using Self-Sustained Hydro- Gasification." [0011]the process, using a steam hydro-gasification reactor (SHR)

  17. Hydrogen Production Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovemberInvestigationsCommittee on EnergyMarketHollettHow itHydroVisionHydrogen

  18. Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.

    SciTech Connect (OSTI)

    Prezhdo, Oleg V.

    2012-03-22T23:59:59.000Z

    Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

  19. Florida Hydro Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirstFlorence High SchoolHydro Inc

  20. First Hydro Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park at MethilGlobalFirstFirst Hydro Company

  1. HydroChina Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei SungrowHelukabelHonitonHydroChina

  2. Vortex Hydro Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility RateVirginia/WindCounty, California |Vortex Hydro

  3. Property:HydroInfo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate Jump to:Property Edit withpurposeHydroInfo

  4. Hydro Green Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project JumpHyEnergy SystemsHydro Green Energy

  5. Dharmshala Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilaria dethe MekongDharmshala Hydro

  6. Ambient Hydro Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch Green FuelsEnergyAmandus KahlAmbient Hydro

  7. Turnbull Hydro LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull Hydro LLC Jump to: navigation, search

  8. Himalayan Hydro P Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess RetailHillsdale BoardHimalayan Hydro P

  9. Bhilangana Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative Sources ofBeyondPV Co LtdBhilangana Hydro

  10. Strongly Correlated Electron Systems Functionalized for Solar Cells and Memristors

    E-Print Network [OSTI]

    " #12;Grand Energy Challenge Gap between production and demand: ~14TW by 2050 Install one 1GW new power Demand total industrial developing US ee/fsu Energy source World Capacity Solar Geothermal Biomass Hydro Optimization of gap: max efficiency: 31% (Shockley Queisser 1961) In real PV cells 80-85% of incident solar

  11. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23T23:59:59.000Z

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  12. MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES E. Ortego, A. Dazin, G. Caignaert, F. Colas, O. Coutier-Delgosha Abstract: Modelling of a hydro-pneumatic energy storage system is the main demand response strategy. 1 Introduction Energy storage is one of the most exciting solutions considered

  13. antas river hydro: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    antas river hydro First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Dworshak & Brownlee Hydro Operations...

  14. Hydro-Thermal Scheduling (HTS) 1.0 Introduction

    E-Print Network [OSTI]

    McCalley, James D.

    1 Hydro-Thermal Scheduling (HTS) 1.0 Introduction From an overall systems view, the single most, relative to that of thermal plants, are very small. There are three basic types of hydroelectric plants;2 Pump-storage This kind of hydro plant is a specialized reservoir-type plant which has capability to act

  15. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 Forschungsgemeinschaft. leads to a tremendous increase in the complex- ity of the traditional power optimization mod- els-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

  16. Optimal sequencing site of hydro-power stations

    SciTech Connect (OSTI)

    Hayashi, T.; Yoshino, F.; Waka, R. [Tottori Univ., Koyama (Japan). Dept. of Mechanical Engineering

    1995-06-01T23:59:59.000Z

    At the first stage of a hydro-power survey of a river, it is important to select the optimal hydro-power site. The most important condition to be satisfied is to determine the optimal site where the greatest and most economical amount of hydro-energy can be obtained. This paper proposes a new method in which the optimal arrangement of the hydro-power stations is determined by a computational operation using discrete data at points along the river such as the drainage area, altitude, and distance along the river channel as obtained from topographical maps instead of drawing on engineers` experiences and the intuitions of experts. The results by this method are then compared with data on existing hydro-power stations and the results planned by expert engineers to show that this new computational method is superior.

  17. Speeding up solar disinfection : effects of hydrogen peroxide, temperature, and copper plus ascorbate on the photoinactivation of E. coli in Charles River water

    E-Print Network [OSTI]

    Fisher, Michael Benjamin, 1979-

    2004-01-01T23:59:59.000Z

    Sunlight efficiently disinfects drinking water in plastic bottles over two days, but simple additives may show promise for reducing this time to several hours. This study found that adding up to 500 [micro]M hydrogen ...

  18. DOE Hydrogen Program FY 2005 Progress Report IV.F Photoelectrochemical

    E-Print Network [OSTI]

    DOE Hydrogen Program FY 2005 Progress Report 13 IV.F Photoelectrochemical IV.F.1 High-Efficiency Generation of Hydrogen Using Solar Thermochemical Splitting of Water - UNLV: Photoelectrochemical Hydrogen hydrogen using solar energy to photoelectrochemically split water · Specific focus on developing multi

  19. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 Photoelectrochemical Hydrogen Production Eric L. Miller (Primary Contact), Daniela Paluselli, Bjorn Marsen, Richard HPEs based on best available materials systems. · Demonstrate 7.5% solar-to-hydrogen (STH) efficiency

  20. Sandia National Laboratories: Portable Hydrogen Fuel-Cell Unit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green, Sustainable Power to Honolulu Port Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port Solar Glare Hazard Analysis Tool Available for...

  1. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01T23:59:59.000Z

    must come from renewable resources, such as wind, solar,numerous domestic and renewable resources, makes hydrogen annon-dispatchable renewable resources, such as wind power,

  2. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  3. Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals

    E-Print Network [OSTI]

    Stuttgart, Universität

    1 Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals M. J and Hydro-meteorology Hydrology GRACE Hydro-meteorology RQ dt dS dt dMdS RETP . dt AH a #12;3 GRACE, times based signals #12;12 CCA on catchments based ­ GRACE and hydro-meteorology T GDGDGD T VUQ dt d

  4. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    applications including coal gasification, fer- tilizers fromin hydro-gasification reactions, such as coal and biomass,

  5. Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  6. Hydro-Gravitational-Dynamics of Planets and Dark Energy

    E-Print Network [OSTI]

    Carl H. Gibson; Rudolph E. Schild

    2008-08-24T23:59:59.000Z

    Self-gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and frag-ments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC on 0.03 Mpc galaxy accretion disks. Star deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates produce white dwarfs that evaporate surrounding gas planets by spin-radiation to form planetary nebulae before Supernova Ia events, dimming some events to give systematic distance errors misinterpreted as the dark energy hypothesis and overestimates of the universe age. Failures of standard LCDM cosmological models reflect not only obsolete Jeans 1902 fluid mechanical assumptions, but also failures of standard turbulence models that claim the cascade of turbulent kinetic energy is from large scales to small. Because turbulence is always driven at all scales by inertial-vortex forces the turbulence cascade is always from small scales to large.

  7. Support for Cost Analyses on Solar-Driven High Temperature Thermochemi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    near-term (2015) and longer-term (2025) cost projections for eight solar thermochemical hydrogen production reaction cycles. Support for Cost Analyses on Solar-Driven High...

  8. Final Report - Wind and Hydro Energy Feasibility Study - June 2011

    SciTech Connect (OSTI)

    Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

    2011-06-17T23:59:59.000Z

    This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

  9. EIS-0166: Bangor Hydro-Electric Transmission Line, Maine

    Broader source: Energy.gov [DOE]

    The Department of Energy prepared this environmental impact statement while considering whether to authorize a Presidential permit for Bangor Hydro to construct a new electric transmission facility at the U.S. border with Canada.

  10. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  11. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  12. Hydrogen Analysis

    Broader source: Energy.gov (indexed) [DOE]

    A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter...

  13. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  14. Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint

    SciTech Connect (OSTI)

    Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

    2005-09-01T23:59:59.000Z

    To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

  15. Hydro - Power and peril ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel Cell Hydrogen andHydra-TH:

  16. Hydrogen Storage Technologies Hydrogen Delivery

    E-Print Network [OSTI]

    Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission and clean advanced lightduty vehicles, as well as related energy infrastructure. For more information about

  17. Hydro-Balanced Stuffing Box field test

    SciTech Connect (OSTI)

    Giangiacomo, L.A.

    1999-05-28T23:59:59.000Z

    The Hydro-Balanced Stuffing Box is a seal assembly for polished rod pumping installations commonly used in oil and gas pumping well installations to contain produced well fluids. The improved stuffing box was developed and patented by Harold H. Palmour of The Palmour Group of Livingston, TX. The stuffing box is designed to reduce the incidence of seal leakage and to utilize an environmentally safe fluid, so that if there is any leakage, environmental damage is reduced or eliminated. The unit was tested on two wells at the Rocky Mountain Oilfield Testing Center. During the test period, the performance of the stuffing box was measured by monitoring the pressure on the tubing and the inner chamber with a Barton Two-pen recorder. The amount of safe fluid consumed, fluid leakage at the top of the stuffing box, pressure supplied from the nitrogen bottle, ambient temperature, and polish rod temperature was recorded. The stuffing box is capable of providing a better seal between well fluids an d the environment than conventional stuffing boxes. It allows the polished rod to operate cooler and with lubrication, extending the life of the packing elements, and reducing the amount of attention required to prevent leakage.

  18. Assess the key physics that underpins high-hydro coupling-efficiency in NDCX-II experiments and high-gain heavy ion direct drive target designs using proven hydro codes like HYDRA

    E-Print Network [OSTI]

    Barnard, J. J.

    2010-01-01T23:59:59.000Z

    physics that underpins high-hydro coupling-efficiency in N Dtarget designs using proven hydro codes like H Y D R A . byF E targets, we have studied hydro and implosion efficiency

  19. Evolving Einstein's Field Equations with Matter: The ``Hydro without Hydro'' Test

    E-Print Network [OSTI]

    Thomas W. Baumgarte; Scott A. Hughes; Stuart L. Shapiro

    1999-02-09T23:59:59.000Z

    We include matter sources in Einstein's field equations and show that our recently proposed 3+1 evolution scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravitational waveforms from strong-field sources dominated by longitudinal fields, like binary neutron stars: approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be evolved without having to re-solve the hydrodynamical equations (``hydro without hydro'').

  20. PHOTOELECTROCHEMICAL SYSTEMS FOR HYDROGEN PRODUCTION

    E-Print Network [OSTI]

    to allow the overlap of the bandedges with the water redox potentials in the dark. Charge transfer analysis A photoelectrochemical (PEC) system combines the harvesting of solar energy with the electrolysis of water. When, the energy can be sufficient to split water into hydrogen and oxygen. Depending on the type of semiconductor

  1. Solar-assisted hydrogen generation by photoelectrocatalysis: electric birefringence and ellipsometric spectroscopy of the semiconductor/electrolyte interface. Annual report 3 Sep 82-31 Aug 83

    SciTech Connect (OSTI)

    Ang, P.G.P.; St. John, M.R.; Sammells, A.F.

    1983-09-01T23:59:59.000Z

    The project goals are to apply and develop electro-optical techniques (electric birefringence and ellipsometric spectroscopy) for in-situ investigation of modified and unmodified photoelectrode/liquid junctions. This information will be used in conjunction with other spectroscopic and photoelectro-chemical techniques to delineate those features, necessary at this interface, for the achievement of high photo-electrolysis efficiencies. The thorough understanding obtained for both the photoelectrode and its liquid junction with aqueous electrolytes will be directed toward the development of high-efficiency photo-electrochemical cells for hydrogen generation.

  2. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Program A Prospectus for Biological H 2 Production The Hydrogen Economy The hydrogen economy pertains to a world fundamentally different from the one we now know. Hydrogen...

  3. Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production

    E-Print Network [OSTI]

    Javey, Ali

    thin film with TiO2 encapsulation layer is demonstrated as a highly promising and stable photo- cathode for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0 for solar hydrogen production. KEYWORDS: Water splitting, hydrogen production, photochemistry, high

  4. Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual-to-decadal time scales

    E-Print Network [OSTI]

    Dippner, Joachim W.

    Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual Available online 3 March 2006 Abstract An examination of a wide spectrum of hydro

  5. Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation System

    E-Print Network [OSTI]

    Tarboton, David

    Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation Old Main Hill, Logan, UT, 84322-8200, USA Abstract: In this work, we used the Regional Hydro

  6. HESSD '98 17 Safety concerns at Ontario Hydro: The need for safety

    E-Print Network [OSTI]

    Lee, John D.

    HESSD '98 17 Safety concerns at Ontario Hydro: The need for safety management through incident of complex socio-technical systems Ontario Hydro -- one of the largest electrical utilities in North America

  7. GE Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd...

    Open Energy Info (EERE)

    GE Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd Kvaerner Hangfa Jump to: navigation, search Name: GE Hydro Asia Co Ltd (formerly Kvaerner Power Equipment Co., Ltd...

  8. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs

    E-Print Network [OSTI]

    Victoria, University of

    Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

  9. Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay

    E-Print Network [OSTI]

    Palmer, Margaret A.

    Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay. The consequences for both the hydrology and 41 #12;42 HYDRO-ECOLOGIC RESPONSES TO LAND USE IN SMALL URBANIZING

  10. Hydrogen and OUr Energy Future

    SciTech Connect (OSTI)

    Rick Tidball; Stu Knoke

    2009-03-01T23:59:59.000Z

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  11. Application of life cycle assessment methodology at Ontario Hydro

    SciTech Connect (OSTI)

    Reuber, B.; Khan, A. [Ontario Hydro, Ontario (Canada)

    1996-12-31T23:59:59.000Z

    Ontario Hydro is an electrical utility located in Ontario, Canada. In 1995, Ontario Hydro adopted Sustainable Energy Development Policy and Principles that include the governing principle: {open_quotes}Ontario Hydro will integrate environmental and social factors into its planning, decision-making, and business practices.{close_quotes} Life cycle assessment was identified as a useful tool for evaluating environmental impacts of products and processes in support of decision-making. Ontario Hydro has developed a methodology for life cycle assessment (LCA) that is consistent with generally accepted practices, practical, and suitable for application in Ontario Hydro Business Units. The methodology is based on that developed by the Society of Environmental Toxicology and Chemistry (SETAC) but follows a pragmatic and somewhat simplified approach. In scoping an LCA, the breadth and depth of analysis are compatible with and sufficient to address the stated goal of the study. The depth of analysis is tied to (i) the dollar value of the commodity, process or activity being assessed, (ii) the degree of freedom available to the assessor to make meaningful choices among options, and (iii) the importance of the environmental or technological issues leading to the evaluation. A pilot study was completed to apply the methodology to an LCA of the light vehicle fleet (cars, vans and light pick-up trucks) at Ontario Hydro. The objective of the LCA was to compare the life cycle impacts of alternative vehicle fuel cycles: gasoline, diesel, natural gas, propane, and alcohol; with particular focus on life cycle emissions, efficiency and cost. The study concluded that for large vehicles (1/2 ton and 3/4 ton) that travel more than 35000 km/year, natural gas and propane fuelling offer both cost reduction and emissions reduction when compared to gasoline vehicles.

  12. ROOT LOCUS TECHNIQUE 323 7.6.1 Hydro Power Plant Experiment

    E-Print Network [OSTI]

    Gajic, Zoran

    ROOT LOCUS TECHNIQUE 323 7.6.1 Hydro Power Plant Experiment The design of a static controller for a real hydro power plant is considered in Skatariâ?? c and Gajiâ?? c (1992). The hydro power plant is treated variables of this hydro power plant are represented by x T = [1` 1! 1u f 1/ d 1/ q 1/ f 1/D 1/Q ] where 1

  13. Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario Hydro`s Bruce Nuclear Generating Station `A`

    SciTech Connect (OSTI)

    Day, J.E.; Baker, R.L.

    1995-05-01T23:59:59.000Z

    Ontario Hydro at the Bruce Nuclear Generating Station `A` has undertaken a program to render the station`s liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants to satisfy regulatory requirements for emissions. The system will remove radionuclide and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology.

  14. A Study of the Hydro-Mechanical Behaviour of Compacted Crushed Argillite

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A Study of the Hydro-Mechanical Behaviour of Compacted Crushed Argillite C.S. Tang a, b , A and the microstruc- ture on the hydro-mechanical behaviour of the compacted crushed argillite have been in a strong effect of the grain size distribution on the hydro-mechanical behaviour and thus the close link

  15. Dimensionnement et gestion d'un systme de stockage thermique par hydro-accumulation : application la

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Dimensionnement et gestion d'un système de stockage thermique par hydro-accumulation : application de stockage thermique de type hydro-accumulation destiné à une chaufferie collective multi, mix-énergétique, stockage thermique, hydro-accumulation, dimensionnement optimal, gestion, graphe d

  16. Mod`ele Elements Finis d'un Pli Vocal Artificiel avec Couplage Hydro-elastique

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mod`ele El´ements Finis d'un Pli Vocal Artificiel avec Couplage Hydro-´elastique N. Hermanta , F formulation variationnelle du couplage hydro-élastique. Un premier calcul hyper-élastique simule le gonflement dans l'analyse modale des vibrations de petite amplitude du système hydro-élastique, permettant ainsi

  17. NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER

    E-Print Network [OSTI]

    NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER DEERFIELD RIVER The Office of Hydrology (HYDRO) of the National Weather Service (NWS) develops procedures for making river agencies, and conducts pertinent research and development. NOAA Technical Memorandums in the NWS HYDRO

  18. Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate Ludovic Cassan1 Abstract: The article describes the hydraulic functioning of a mixed water level control hydro- mechanical of the model to reproduce the functioning of this complex hydro-mechanical system. CE database Subject headings

  19. Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2

    E-Print Network [OSTI]

    Kirby, James T.

    Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2 , James T of Civil Engineering, University of Roma Tre Low-frequency hydro-acoustic waves are precursors of tsunamis. Detection of hydro-acoustic waves generated due to the water column compression triggered by sudden seabed

  20. A lattice-based query system for assessing the quality of hydro-ecosystems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A lattice-based query system for assessing the quality of hydro-ecosystems Agn`es Braud1 Cristina used for building a hierarchy of site pro- files which are annotated by hydro in the project. This paper presents an application of Galois lattices to the hydro-ecological domain, focussing

  1. To: NW Hydro Association From: Dick Wanderscheid, Angus Duncan and Todd Reeve

    E-Print Network [OSTI]

    Memo To: NW Hydro Association From: Dick Wanderscheid, Angus Duncan and Todd Reeve Re: The Bonneville Environmental Foundation's comments on the draft hydro potential study BEF staff completed to address the larger, conceptual picture of the hydro potential in the region. In particular, we attempted

  2. Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new numerical scheme

    E-Print Network [OSTI]

    Moelders, Nicole

    ii Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new.S. Fairbanks, Alaska August 2005 #12;iii Abstract The Hydro-Thermodynamic Soil-Vegetation Scheme (HTSVS........................................................................................................................... 24 Evaluation of snow depth and soil temperatures predicted by the Hydro- Thermodynamic Soil

  3. Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS)

    E-Print Network [OSTI]

    Moelders, Nicole

    Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS) Pamela Spier, University of Alaska, Fairbanks, AK Abstract This paper presents an evaluation of the Hydro. Introduction and Motivation The Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS, Kramm et al. 1996, Mölders

  4. Towards Better Utilization of NEXRAD Data in Hydrology: an Overview of Hydro-NEXRAD

    E-Print Network [OSTI]

    Lawrence, Ramon

    Towards Better Utilization of NEXRAD Data in Hydrology: an Overview of Hydro-NEXRAD Witold F metadata extraction and management techniques are required. The authors describe and discuss the Hydro of the Hydro-NEXRAD project is to increase the use of NEXRAD data in hydrologic research. The project

  5. Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706

    E-Print Network [OSTI]

    Schmittbuhl, Jean

    Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706 PARTICIPANT ORGANIZATION NAME: CNRS Synthetic 2nd year report Related with Work Package............ HYDRO-THERMAL FLOW in the influence of a realistic geometry of the fracture on its hydro-thermal response. Several studies have

  6. Constraints on the lake volume required for hydro-fracture through ice sheets

    E-Print Network [OSTI]

    Skemer, Philip

    Constraints on the lake volume required for hydro-fracture through ice sheets M. J. Krawczynski,1 M April 2009; published 16 May 2009. [1] Water-filled cracks are an effective mechanism to drive hydro to rapidly drive hydro-fractures through 1­1.5 km of subfreezing ice. This represents $98% of the meltwater

  7. Estimating runoff using hydro-geodetic approaches; assessment and comparison M. J. Tourian1

    E-Print Network [OSTI]

    Stuttgart, Universität

    Estimating runoff using hydro-geodetic approaches; assessment and comparison M. J. Tourian1 , C- drological balance equation, hydro-meteorological balance equation, least squares prediction using change from GRACE hydro-meteorological balance equation (Ratm) Ratm = - · Q - dM dt . · Q refers

  8. Climate Change in Scotland: Impact on Mini-Hydro G.P. Harrison

    E-Print Network [OSTI]

    Harrison, Gareth

    be generated from wind, wave, biomass or small- or mini-hydro plant. Production from these resources some 300 MW is small hydro potential capable of producing energy at less than 7p/kWh (Garrad Hassan, 2001). Although many of the better sites for small and mini-hydro have already been developed

  9. PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION Eric Miller and Richard Rocheleau

    E-Print Network [OSTI]

    (indium-tin-oxide), and polymer-encapsulation films deposited at the University of Hawaii. The a-Si solar these catalytic coatings, solar-to-hydrogen efficiencies of 6% to 8% were expected for the a-Si based-stacks was reduced from 1.8 V to below 1 V, making water-splitting impossible, despite predicted solar

  10. NREL: Learning - Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure TheSolar EnergyHydrogen Basics

  11. Voith Hydro Wavegen Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah: Energydba Vision Motor CorpEIAVogt Solar

  12. Reproducedwith permissionfrom Elsevier/Pergamon Int. J. Hydrogen Energy, Vol. 15, No.3, pp. 155-169, 1990. 0360-3199/90 $3.00 + 0.00

    E-Print Network [OSTI]

    to the "greenhouse thin-film solar cells is presented and the cost of PV warming" of the planet. hydrogen production Associationfor HydrogenEnergy. ELECTROLYTIC HYDROGEN FROM THIN-FILM SOLAR CELLS* J. M. OGDEN and R. H. WILLIAMS-In the last few years there have been rapid advances in thin-film solar cell technology. Industry projections

  13. Hydrogen Fueling Systems and Infrastructure

    E-Print Network [OSTI]

    ;Projects Hydrogen Infrastructure Development · Turnkey Commercial Hydrogen Fueling Station · Autothermal

  14. Technical Analysis of Hydrogen Production

    SciTech Connect (OSTI)

    Ali T-Raissi

    2005-01-14T23:59:59.000Z

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  15. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  16. The U.S. Department of Energy Hydrogen and Fuel Cells Mark Paster

    E-Print Network [OSTI]

    #12;0 10 20 30 40 50 60 70 80 90 100 CO NOx VOC SOx PM10 PM2.5 CO2 Electricity Buildings Industry vehicles are a bridge technology that can reduce pollution and our dependence on foreign oil until long Water Hydro Wind Solar Geothermal Coal Nuclear Natural Gas WithCarbonSequestration HIGH EFFICIENCY

  17. Abengoa Solar, Inc. (Mojave Solar) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa...

  18. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31T23:59:59.000Z

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  19. Solar Rights

    Broader source: Energy.gov [DOE]

    In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors...

  20. The Hype About Hydrogen

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01T23:59:59.000Z

    economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

  1. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  2. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01T23:59:59.000Z

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  3. Hydrogen Delivery Analysis Models

    Broader source: Energy.gov (indexed) [DOE]

    insert our Research Targets to see the impact List of Delivery Components Compressed Hydrogen Gas Truck (Tube trailer) Compressed Hydrogen Gas Truck Terminal Liquid Hydrogen Truck...

  4. COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES

    SciTech Connect (OSTI)

    Schmelz, J. T. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Reames, D. V. [IPST, University of Maryland, College Park, MD 20742 (United States); Von Steiger, R. [ISSI, Hallerstrasse 6, 3012 Bern (Switzerland); Basu, S., E-mail: jschmelz@memphis.edu [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2012-08-10T23:59:59.000Z

    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  5. Reproduced with pennission from Elsevier Solar CelLS',30 (1991) 515-523 515'f'

    E-Print Network [OSTI]

    -site use or pipeline transmission to distant users. 2. A base case "year 2000" PV hydrogen system and performance sensitivity studies for solar photovoltaic/electrolytic hydrogen systems ~ Joan M. Ogden Centerilin solar cell technology for producing electrolytic hydrogen from photovoltaic (PV) electricity

  6. Automatic Solar Flare Detection Using MLP, RBF and SVM , Frank Y. Shih1

    E-Print Network [OSTI]

    1 Automatic Solar Flare Detection Using MLP, RBF and SVM Ming Qu1 , Frank Y. Shih1 , Ju Jing2. The focus of the automatic solar flare detection is on the development of efficient feature methods for solar flare detection on the solar H (Hydrogen-Alpha) images obtained from the Big Bear Solar

  7. HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM

    E-Print Network [OSTI]

    HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM date ­ November 23, 2004 · Contract end date ­ March 31, 2006 #12;Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania · Objectives ­ Capture

  8. Understanding and improving hole transport in hydrogenated amorphous silicon photovoltaics

    E-Print Network [OSTI]

    Johlin, Eric (Eric Carl)

    2014-01-01T23:59:59.000Z

    While hydrogenated amorphous silicon (a-Si:H) solar cells have been studied extensively for the previous four decades, the low performance of the devices is still not well understood. The poor efficiency (below 10%, even ...

  9. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  10. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  11. 1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States THERMAL ACTIVATION OF DEEP OXYGEN DEFECT FORMATION AND HYDROGEN EFFUSION

    E-Print Network [OSTI]

    was partially supported by a DOE grant through United Solar Ovonics, Inc., under the Solar America Initiative1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States BACKGROUND THERMAL ACTIVATION OF DEEP

  12. PHNOMNES DITS HYDRO-LECTRIQUES ET HYDROMAGNTIQUES; PAR M. C.-A. BJERKNES (1),

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    509 PH�NOM�NES DITS HYDRO-�LECTRIQUES ET HYDROMAGN�TIQUES; PAR M. C.-A. BJERKNES (1), Professeur à corps hydro- électrisés s'attirent ou se repoussent, suivant que leurs vibrations sont concordantes ou- minuent en même temps). Un hydro-aimant, formé ou bien d'une splzère oscillante ou de deux pulsateurs

  13. A.W. Blakers, 'Solar and Wind Electricity in Australia', Australian Journal of Environmental Management, Vol 7, pp 223-236, 2000 SOLAR AND WIND ELECTRICITY IN AUSTRALIA

    E-Print Network [OSTI]

    environmental impact associated with the construction of what amounts to a coastal hydro scheme. Solar energy.blakers@anu.edu.au Abstract This paper examines the renewable generation of electricity in Australia from photovoltaics (PV environmental impacts even when deployed on very large scales. They are the only fully sustainable technologies

  14. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    SciTech Connect (OSTI)

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01T23:59:59.000Z

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  15. BC Hydro Brings Energy Savings to Low-Income Families in Canada...

    Broader source: Energy.gov (indexed) [DOE]

    The number of British Columbia, Canada, households eligible for Better Buildings Residential Network member BC Hydro's Energy Conservation Assistance Program (ECAP) just doubled....

  16. RELATIVE ECONOMIC INCENTIVES FOR HYDROGEN FROM NUCLEAR, RENEWABLE, AND FOSSIL ENERGY SOURCES

    SciTech Connect (OSTI)

    Gorensek, M; Charles W. Forsberg, C

    2008-08-04T23:59:59.000Z

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

  17. PROCESS ANALYSIS WORK FOR THE DOE HYDROGEN PROGRAM -2001

    E-Print Network [OSTI]

    . For the power production scenario, the hydrogen is co-fired in a turbine at a natural gas combined-cycle (NGCC) plant. 1 Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405 #12;Material of the reactor. The material and energy balances along with hourly solar data from Phoenix, Arizona were used

  18. TECHNOECONOMIC ANALYSIS OF AREA II HYDROGEN PRODUCTION -PART II

    E-Print Network [OSTI]

    storage medium for hydrogen produced by the ocean thermal energy conversion (OTEC) plantships [16 Florida Solar Energy Center Cocoa, FL 32922-5703, ali@fsec.ucf.edu Abstract The aim of this analysis power interface, 3) Ammonia and ammonia adducts as hydrogen energy storers for fuel cell applications

  19. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01T23:59:59.000Z

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

  20. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of...

  1. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

  2. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  3. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Environmental Management (EM)

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  4. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  5. Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  6. Advanced thermochemical hydrogen cycles

    SciTech Connect (OSTI)

    Hollabaugh, C.M.; Bowman, M.G.

    1981-01-01T23:59:59.000Z

    The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

  7. Pion correlations in hydro-inspired models with resonances

    E-Print Network [OSTI]

    W. Florkowski; W. Broniowski; A. Kisiel; J. Pluta

    2006-09-19T23:59:59.000Z

    The effects of the freeze-out hypersurface and resonance decays on the pion correlation functions in relativistic heavy-ion collisions are studied with help of the hydro-inspired models with single freeze-out. The heavy-ion Monte-Carlo generator THERMINATOR is used to generate hadronic events describing production of particles from a thermalized and expanding source. We find that the short-lived resonances increase the pionic HBT radii by about 1 fm. We also find that the pion HBT data from RHIC are fully compatible with the single freeze-out scenario provided a special choice of the freeze-out hypersurface is made.

  8. A new multidimensional AMR Hydro+Gravity Cosmological code

    E-Print Network [OSTI]

    Vicent Quilis

    2004-05-20T23:59:59.000Z

    A new cosmological multidimensional hydrodynamic and N-body code based on an Adaptive Mesh Refinement scheme is described and tested. The hydro part is based on modern high-resolution shock-capturing techniques, whereas N-body approach is based on the Particle Mesh method. The code has been specifically designed for cosmological applications. Tests including shocks, strong gradients, and gravity have been considered. A cosmological test based on Santa Barbara cluster is also presented. The usefulness of the code is discussed. In particular, this powerful tool is expected to be appropriate to describe the evolution of the hot gas component located inside asymmetric cosmological structures.

  9. Fengning Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman AerospaceEfficiencyInformationFengning Hydro Power

  10. AD Hydro Power Ltd ADHPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's APTAPFinal ReportAD Hydro Power

  11. Qingyang Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZipQingdao DTKQinghaiQingyang Hydro Power

  12. Qingyuan County Xiankeng Hydro Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZipQingdao DTKQinghaiQingyang Hydro

  13. HydroCoil Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project JumpHyEnergy SystemsHydro Green

  14. Snohomish PUD see OpenHydro | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSloughCreekRhodePUD see OpenHydro

  15. Jinxiu Guangneng Hydro Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co Ltd JumpInformationGuangneng Hydro

  16. Ledong Xinyuan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaor BatteriesLedong Xinyuan Hydro Power Co

  17. Madkini Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to:Macquarie Energy LLC JumpMadkini Hydro Power

  18. Tongdao Yaolaitan Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:TiogaTongdao Yaolaitan Hydro Power

  19. Usaka Hydro Powers Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAGUnitilMichiganNewUrbemisUsaka Hydro

  20. Voith Hydro Ocean Current Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph Home Wzeng's pictureVivergo FuelsVoith Hydro

  1. Birahi Ganga Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins Energia Jump to: navigation,Birahi Ganga Hydro

  2. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    FCEVs because the peak-power battery in the 160-km FCEVmustto use a small, high-power battery to provide the peak powerbipolar lead/acid peak-power battery in a FCEV would be more

  3. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    nosulfur. fA methanol/fuel-cell vehicle wouldhaveno tailpipeanalysis of fuel cell vehicles using methanol and hy- drogenused fuel-cell vehicles and (d) biomass-derived methanol

  4. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    even price of gasoline is that retail price of gasoline, inGasoline ICEV FCEV FCEV BPEV 640-kmrange 400-kin range 250-kin range 400-kmrange b retail priceretail price of vehicle($)" Maintenance cost ¢S/year) Life-cyclecost Icents/kin) Break- even gasoline

  5. Sandia National Laboratories: Solar Thermochemical Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  6. Hydrogen Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 CorporationHydraA) Jump to:Energy

  7. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycle Selection and Investment

  8. Method for processing silicon solar cells

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

    1997-01-01T23:59:59.000Z

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

  9. Method for processing silicon solar cells

    DOE Patents [OSTI]

    Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

    1997-05-06T23:59:59.000Z

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

  10. Formulaire de demande de bourse institutionnelle d'Hydro-Qubec Bourse de recrutement* OU Bourse de persvrance**

    E-Print Network [OSTI]

    Vellend, Mark

    Annexe B Formulaire de demande de bourse institutionnelle d'Hydro-Québec Bourse de recrutement* OU'étudiant : Montant de la bourse institutionnelle d'Hydro-Québec : 5 000 $ Montant de l

  11. Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms

    E-Print Network [OSTI]

    Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro

  12. Ris Energy Report 3 On the face of it hydrogen seems to have low impact on

    E-Print Network [OSTI]

    . Hydrogen ­ Environmental and safety aspects Hydrogen - Environmental and safety aspects 57 #12;6.1 Risø and solar cells. The production and distribution of hydrogen inevitably involves energy losses environmental balance and to compare this with alternatives such as the direct use of electricity from windmills

  13. NRG Solar (California Valley Solar Ranch) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) Location: San...

  14. Author's personal copy Opportunities and barriers to pumped-hydro energy storage in the United States

    E-Print Network [OSTI]

    Jackson, Robert B.

    Author's personal copy Opportunities and barriers to pumped-hydro energy storage in the United available commercially for grid-tied electricity storage, pumped- hydro energy storage (PHES) and compressed air energy storage (CAES). Of the two, PHES is far more widely adopted. In the United States

  15. Stephen N. Ehrenberg $ StatoilHydro, N-9481, Harstad, Norway; present address

    E-Print Network [OSTI]

    Miami, University of

    studies for exploration and production projects. Tore A. Sva°na° $ StatoilHydro, N-9481 Harstad, Norway at Norsk Hydro and thereafter at Statoil. He has worked on Barents Sea exploration and Mideastern carbonate versions of this article. Uranium depletion across the Permian­Triassic boundary in Middle East carbonates

  16. Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation of Real

    E-Print Network [OSTI]

    Harrison, Gareth

    1 Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation Control (APFC) modes. The ability to export active and reactive power from mini-hydro power generators electrical power generation from renewable resources. Additionally, the potential early retiral of central

  17. PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM

    E-Print Network [OSTI]

    Römisch, Werner

    PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed aims at the cost optimal scheduling of on/o decisions and output levels for generating units. The power

  18. Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger Vehicle

    E-Print Network [OSTI]

    Li, Perry Y.

    Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger Vehicle Perry Y. Li Felicitas Mensing Center for Compact and Efficient Fluid Power, University of Minnesota, Minneapolis, USA ABSTRACT Hydro-mechanical transmission (HMT) based hybrid hydraulic vehicle

  19. ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE

    E-Print Network [OSTI]

    Li, Perry Y.

    for optimal engine management. The hydro-mechanical drive train splits the engine power through two pathsANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE Teck Ping, Sim Minneapolis, Minnesota 55455 Email: tpsim@me.umn.edu Perry Y. Li Center for Compact and Efficient Fluid Power

  20. Paper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive

    E-Print Network [OSTI]

    Li, Perry Y.

    for the Center for Compact and Efficient Fluid Power at the University of Minnesota. The hydro-mechanical hybrid is leveraging the intrinsically high power density of the hydraulic energy storage system through optimal enginePaper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive Train with Independent Wheel

  1. LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Submitted by

    E-Print Network [OSTI]

    MacDonald, Lee

    THESIS LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Submitted by Tumenjargal Sukh 2012 All Rights Reserved #12;ABSTRACT LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Air temperatures have increased more in semi-arid regions than in many other parts of the world. Mongolia has

  2. Hydrogen Delivery Mark Paster

    E-Print Network [OSTI]

    Liquids (e.g. ethanol etc.) ­ Truck: HP Gas & Liquid Hydrogen ­ Regional Pipelines ­ Breakthrough Hydrogen;Delivery Key Challenges · Pipelines ­ Retro-fitting existing NG pipeline for hydrogen ­ Utilizing existing NG pipeline for Hythane with cost effective hydrogen separation technology ­ New hydrogen pipeline

  3. Solar Easements

    Broader source: Energy.gov [DOE]

    Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

  4. U.S. National Hydrogen Energy Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull Hydro LLCNational Hydrogen Energy

  5. SOLAR WIND HELIUM ABUNDANCE AS A FUNCTION OF SPEED AND HELIOGRAPHIC LATITUDE: VARIATION THROUGH A SOLAR CYCLE

    E-Print Network [OSTI]

    Richardson, John

    SOLAR WIND HELIUM ABUNDANCE AS A FUNCTION OF SPEED AND HELIOGRAPHIC LATITUDE: VARIATION THROUGH of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind theoretical work in which enhancements of coronal helium lead to stagnation of the escaping proton flux

  6. analyze solar-sail space-environment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for interactions of solar photons, electrons and protons with atoms, nuclei and hydrogen molecules. It is shown that for high-energy photons, electrons and protons the...

  7. Hydro-kinetic approach to relativistic heavy ion collisions

    E-Print Network [OSTI]

    S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

    2008-08-28T23:59:59.000Z

    We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

  8. Laboratory Hydro-mechanical Characterisation of Boom Clay at Essen and Mol Y. F. Deng1, 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Laboratory Hydro-mechanical Characterisation of Boom Clay at Essen and Mol Y. F. Deng1, 2 , A. M. In the present work, the hydro-mechanical behaviour of Boom clay samples from the borehole Essen-1 at a depth and hydro-mechanical behaviour of Boom clay from Essen at 227-m, 240-m and 248-m depths are similar

  9. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1002/, Hydro-acoustic and tsunami waves generated by the1

    E-Print Network [OSTI]

    Kirby, James T.

    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1002/, Hydro-acoustic and tsunami waves TSUNAMI Abstract. Detection of low-frequency hydro-acoustic waves as precur-4 sor components model gave us the opportunity to study13 the hydro-acoustic wave propagation in a large-scale domain

  10. Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model and Computations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model In this paper we present the development of the macroscopic model describing the hydro-mechanical coupling) In this paper we present the macroscopic model describing the hydro-mechanical behaviour of such class

  11. Phenomene couple thermo-hydro-mecanique des roches fracturees: Recents developpements des methodes de modelisation et tests de validation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    95-54 Phenomene couple thermo-hydro-mecanique des roches fracturees: Recents developpements des methodes de modelisation et tests de validation Coupled thermo-hydro-mechanical phenomena in fractured fracture.La deuxiemequestion concemela modelisation des phenomenes couples thenno-hydro-mecaniques. L

  12. February 16-18, 2011 / Biel (Bienne), Switzerland Comparison between accelerated thermo-hydro aged wood and naturally

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    February 16-18, 2011 / Biel (Bienne), Switzerland Comparison between accelerated thermo-hydro aged Bois 3 DEISTAF ­ University of Florence, Italy Key words: accelerated aging, micro-mechanics, thermo-hydro]. It has been observed that similar degradation can be found in thermo-hydro (TH) treated wood [4]. The aim

  13. Hydro-economic models: Concepts, design, applications, and future prospects Julien J. Harou a,*, Manuel Pulido-Velazquez b

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Review Hydro-economic models: Concepts, design, applications, and future prospects Julien J. Harou of Frank Ward, Associate Editor Keywords: Hydro-economic models Integrated water resource management (IWRM and space will increasingly motivate efforts to address water scarcity and reduce water conflicts. Hydro

  14. Do phreatomagmatic eruptions at Ubehebe Crater (Death Valley, California) relate to a wetter than present hydro-climate?

    E-Print Network [OSTI]

    Christie-Blick, Nicholas

    present hydro-climate? Peri Sasnett,1,2 Brent M. Goehring,1,2,3 Nicholas Christie-Blick,1,2 and Joerg M the idea that volcanism may relate to a wetter than present hydro-climate. Twelve of the fifteen ages that eruptive timing relates to a wetter hydro-climate. Instead, the presence of a relatively shallow modern

  15. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect (OSTI)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01T23:59:59.000Z

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  16. HYDROGEN IN GERMANIUM

    E-Print Network [OSTI]

    Haller, E.E.

    2011-01-01T23:59:59.000Z

    •^f-1? c^4--^ LBL-7996 HYDROGEN IN GERMANIUM E. E. HallerW-7405-ENG-48 LBL-7996 HYDROGEN IN GERMANIUM* E. E. Haller48. LBL-7996 Abstract Hydrogen is shown to form molecular

  17. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is...

  18. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Appendix C - Appendix 0 - Solar Radiation Glossary. ConversSolar Data a. Solar Radiation. , , . , . . , , , , . , . . .

  19. Community Shared Solar with Solarize

    Broader source: Energy.gov [DOE]

    An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

  20. Sandia Hydrogen Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Combustion Research Sandia Hydrogen Combustion Research Sebastian A. Kaiser (PI) Sandia National Laboratories Christopher M. White University of New Hampshire Sponsor: DoE...

  1. Hydrogen Permeation Barrier Coatings

    SciTech Connect (OSTI)

    Henager, Charles H.

    2008-01-01T23:59:59.000Z

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  2. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  3. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sources Hydrogen Hydrogen September 30, 2014 Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter...

  4. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for clean energy technology manufacturers. March 28, 2014 Sales Tax Exemption for Hydrogen Generation Facilities In North Dakota, the sale of hydrogen used to power an internal...

  5. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

  6. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Pipelines * Nuclear Energy * Office of Science Extending Collaborations * Other Federal Agencies - DOT, EPA, Others * International Collaborations Hydrogen from Diverse...

  7. A Theoretical Study of Methanol Synthesis from CO(2) Hydrogenation on Metal-doped Cu(111) Surfaces

    SciTech Connect (OSTI)

    Liu P.; Yang, Y.; White, M.G.

    2012-01-12T23:59:59.000Z

    Density functional theory (DFT) calculations and Kinetic Monte Carlo (KMC) simulations were employed to investigate the methanol synthesis reaction from CO{sub 2} hydrogenation (CO{sub 2} + 3H{sub 2} {yields} CH{sub 3}OH + H{sub 2}O) on metal-doped Cu(111) surfaces. Both the formate pathway and the reverse water-gas shift (RWGS) reaction followed by a CO hydrogenation pathway (RWGS + CO-Hydro) were considered in the study. Our calculations showed that the overall methanol yield increased in the sequence: Au/Cu(111) < Cu(111) < Pd/Cu(111) < Rh/Cu(111) < Pt/Cu(111) < Ni/Cu(111). On Au/Cu(111) and Cu(111), the formate pathway dominates the methanol production. Doping Au does not help the methanol synthesis on Cu(111). Pd, Rh, Pt, and Ni are able to promote the methanol production on Cu(111), where the conversion via the RWGS + CO-Hydro pathway is much faster than that via the formate pathway. Further kinetic analysis revealed that the methanol yield on Cu(111) was controlled by three factors: the dioxomethylene hydrogenation barrier, the CO binding energy, and the CO hydrogenation barrier. Accordingly, two possible descriptors are identified which can be used to describe the catalytic activity of Cu-based catalysts toward methanol synthesis. One is the activation barrier of dioxomethylene hydrogenation, and the other is the CO binding energy. An ideal Cu-based catalyst for the methanol synthesis via CO{sub 2} hydrogenation should be able to hydrogenate dioxomethylene easily and bond CO moderately, being strong enough to favor the desired CO hydrogenation rather than CO desorption but weak enough to prevent CO poisoning. In this way, the methanol production via both the formate and the RWGS + CO-Hydro pathways can be facilitated.

  8. Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.

    2009-06-10T23:59:59.000Z

    The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

  9. Dye-Sensitized Solar Cells DOI: 10.1002/anie.201300070

    E-Print Network [OSTI]

    Dye-Sensitized Solar Cells DOI: 10.1002/anie.201300070 Stable Dye-Sensitized Solar Cell,* and Udo Bach* Dye-sensitized solar cells (DSCs) can be fabricated from low- cost components with simple fields, including renewable energy research focusing on DSCs and solar-driven hydrogen generation from

  10. Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Philadelphia, Pennsylvania: Solar in Action (Brochure),...

  11. Photoelectrochemical Hydrogen Production

    SciTech Connect (OSTI)

    Hu, Jian

    2013-12-23T23:59:59.000Z

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short-circuit photocurrent density of the hybrid device (measured in a 2-electrode configuration) increased significantly without assistance of any external bias, i.e. from ?1 mA/cm{sup 2} to ~5 mA/cm{sup 2}. With the copper chalcopyrite compounds, we have achieved a STH efficiency of 3.7% in a coplanar configuration with 3 a-Si solar cells and one CuGaSe{sub 2} photocathode. This material class exhibited good durability at a photocurrent density level of -4 mA/cm{sup 2} (“5% STH” equivalent) at a fixed potential (-0.45 VRHE). A poor band-edge alignment with the hydrogen evolution reaction (HER) potential was identified as the main limitation for high STH efficiency. Three new pathways have been identified to solve this issue. First, PV driver with bandgap lower than that of amorphous silicon were investigated. Crystalline silicon was identified as possible bottom cell. Mechanical stacks made with one Si solar cell and one CuGaSe{sub 2} photocathode were built. A 400 mV anodic shift was observed with the Si cell, leading to photocurrent density of -5 mA/cm{sup 2} at 0VRHE (compared to 0 mA/cm{sup 2} at the same potential without PV driver). We also investigated the use of p-n junctions to shift CuGaSe{sub 2} flatband potential anodically. Reactively sputtered zinc oxy-sulfide thin films was evaluated as n-type buffer and deposited on CuGaSe{sub 2}. Ruthenium nanoparticles were then added as HER catalyst. A 250 mV anodic shift was observed with the p-n junction, leading to photocurrent density at 0VRHE of -1.5 mA/cm{sup 2}. Combining this device with a Si solar cell in a mechanical stack configuration shifted the onset potential further (+400 mV anodically), leading to photocurrent density of -7 mA/cm{sup 2} at 0VRHE. Finally, we developed wide bandgap copper chalcopyrite thin film materials. We demonstrated that Se can be substituted with S using a simple annealing step. Photocurrent densities in the 5-6 mA/cm{sub 2} range were obtained with red 2.0eV CuInGaS{sub 2} photocathodes. With the metal oxide compounds, we have demonstrated that a WO{sub 3}-based hybrid p

  12. Revue. Volume X n x/anne, pages 1 X Comportement thermo-hydro-mcanique

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Revue. Volume X ­ n° x/année, pages 1 à X Comportement thermo-hydro-mécanique (THM) d'un ouvrage en'évaluer les risques de la dégradation de la pierre dues aux couplages thermo-hydro-mécaniques qui conduisent à'année 2008 par une station météo aérienne située proche du château. Les analyses couplées thermo-hydro

  13. Gaseous Hydrogen Delivery Breakout - Strategic Directions for...

    Broader source: Energy.gov (indexed) [DOE]

    Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

  14. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  15. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  16. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogen EnergyHydrogen &

  17. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogen EnergyHydrogen

  18. EFFEP GORSKY HYDROGEN DIFFUSION IN TANTALUM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to the small dimensions of the samples, the content of hydro- gen cannot be determined with good accuracy of T - l . This quantity measured in specimen 1 after some subsequent hydro- gen loading treatments treatment. It can be seen that hydro- gen impurities bring about a well-developed Gorsky 5 Article published

  19. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  20. For Immediate Release --Friday, September 20, 2013 Current polygamy challenges and First Nations Hydro-

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    of Norway. Both groups were affected by large-scale hydroelectric power developments challenges and First Nations Hydro- power rights in Norway and Canada: Parkland framed the implementation of hydroelectric projects on indigenous land. Though

  1. A Geological and Hydro-Geochemical Study of the Animas Geothermal...

    Open Energy Info (EERE)

    Hydro-Geochemical Study of the Animas Geothermal Area, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Geological...

  2. Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray

    E-Print Network [OSTI]

    Hook, Andrew L.

    Atomic force microscopy has been applied to an acrylate polymer microarray to achieve a full topographic characterisation. This process discovered a small number of hydro-responsive materials created from monomers with ...

  3. Hydro-Quebec Sustainable Development Action Plan 2009-2013 (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    To meet the requirements set out in the Québec government’s Sustainable Development Strategy and strategy to ensure the occupancy and vitality of territories, Hydro-Québec has established a...

  4. Bangor Hydro Electric Company- Residential and Small Commercial Heat Pump Program (Maine)

    Broader source: Energy.gov [DOE]

    Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to...

  5. DOE/RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RMOTC05.98001 Hydro-Balanced Stuffing Box Field Test Field Test Project Report Date Published: May 28, 1999 Leo A. Giangiacomo, P.E. Rocky Mountain Oilfield Testing Center 907 N....

  6. Hydro-Québec Distribution- Biomass- EAP 2011-1 (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    Hydro-Québec Distribution established a program for the purchase of 300 MW of electricity in Quebec from cogeneration based residual forest biomass. Each project is limited to a maximum of 50 MW....

  7. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    GASIFIER IN A FLUIDIZED BED REACTOR Inventors: Joseph M .a steam hydro-gasification reactor (SHR) the carbonaceous0012] Fluidized bed reactors are well known and used in a

  8. BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006)

    E-Print Network [OSTI]

    Willis, P.; Wallace, K.

    2005-01-01T23:59:59.000Z

    BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000...

  9. Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario hydro`s Bruce nuclear generating station {open_quotes}A{close_quotes}

    SciTech Connect (OSTI)

    Day, J.E.; Baker, R.L. [ADTECHS Corporation, Herndon, VA (United States)

    1994-12-31T23:59:59.000Z

    Ontario Hydro at the Bruce Nuclear Generating Station {open_quotes}A{close_quotes} has undertaken a program to render the station`s liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology.

  10. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  11. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  12. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  13. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...

    Broader source: Energy.gov (indexed) [DOE]

    5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

  14. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Broader source: Energy.gov (indexed) [DOE]

    Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

  15. Webinar January 13: Highly Efficient Solar Thermochemical Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    69% solar-to-chemical energy conversion efficiency, converting methane and water into syngas-a mix of hydrogen and carbon monoxide-and the technology received an R&D 100 Award in...

  16. Solar Rights

    Broader source: Energy.gov [DOE]

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  17. Producing Solar Cells By Surface Preparation For Accelerated Nucleation Of Microcrystalline Silicon On Heterogeneous Substrates.

    DOE Patents [OSTI]

    Yang, Liyou (Plainsboro, NJ); Chen, Liangfan (Langhorne, PA)

    1998-03-24T23:59:59.000Z

    Attractive multi-junction solar cells and single junction solar cells with excellent conversion efficiency can be produced with a microcrystalline tunnel junction, microcrystalline recombination junction or one or more microcrystalline doped layers by special plasma deposition processes which includes plasma etching with only hydrogen or other specified etchants to enhance microcrystalline growth followed by microcrystalline. nucleation with a doped hydrogen-diluted feedstock.

  18. Author's personal copy Maximizing the solar to H2 energy conversion efficiency

    E-Print Network [OSTI]

    Pilon, Laurent

    to thermochemical or electrolytic hydrogen production technologies [1­3]. However, solar to hydrogen energyAuthor's personal copy Maximizing the solar to H2 energy conversion efficiency of outdoor, Cockrell School of Engineering, The University of Texas at Austin ­ Austin, TX 78712, USA b Mechanical

  19. Compensated amorphous-silicon solar cell

    DOE Patents [OSTI]

    Devaud, G.

    1982-06-21T23:59:59.000Z

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

  20. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01T23:59:59.000Z

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  1. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

  2. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01T23:59:59.000Z

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  3. Hydrogen Bus Technology Validation Program

    E-Print Network [OSTI]

    Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

    2005-01-01T23:59:59.000Z

    and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

  4. Hydrogen in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, Chris G.

    2007-01-01T23:59:59.000Z

    the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

  5. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    SciTech Connect (OSTI)

    Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

    1999-12-31T23:59:59.000Z

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich Demonstration Plant Research Centre, Juelich (FZJ) (Germany); Schatz Solar Hydrogen Project, Schatz Energy Research Centre, Humboldt State University (USA); INTA Solar Hydrogen Facility, INTA (Spain); Solar Hydrogen Fueled Trucks, Clean Air Now, Xerox (USA), Electrolyser (Canada); SAPHYS: Stand-Alone Small Size Photovoltaic Hydrogen Energy System, ENEA (Italy), IET (Norway), FZJ (Germany); Hydrogen Generation from Stand-Alone Wind-Powered Electrolysis Systems, RAL (United Kingdom), ENEA (Italy), DLR (Germany); Palm Desert Renewable Hydrogen Transportation Project; Schatz Energy Research Centre, City of Palm Desert (USA). Other demonstration projects are summarized in chapter 11.

  6. Hydrogen Delivery Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector Workshop Hydrogen

  7. Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

  8. Biological Systems for Hydrogen Photoproduction (Presentation)

    SciTech Connect (OSTI)

    Ghirardi, M. L.

    2012-05-01T23:59:59.000Z

    This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

  9. Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop

    Broader source: Energy.gov [DOE]

    Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

  10. Gaseous Hydrogen Delivery Breakout

    E-Print Network [OSTI]

    Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 detection Pipeline Safety: odorants, flame visibility Compression: cost, reliability #12;Breakout Session goal of a realistic, multi-energy distribution network model Pipeline Technology Improved field

  11. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31T23:59:59.000Z

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  12. Hydrogen Fuel Quality (Presentation)

    SciTech Connect (OSTI)

    Ohi, J.

    2007-05-17T23:59:59.000Z

    Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

  13. Congrs SHF : Environnement et Hydro-lectricit , Lyon,6 & 7 octobre 2010 Pigay, Aelbrecht, Beal RESTAURATION MORPHO-DYNAMIQUE ET

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Congrès SHF : « Environnement et Hydro-électricité », Lyon,6 & 7 octobre 2010 ­Piégay, Aelbrecht pour la protection contre les crues et la navigation, puis après la construction de barrages hydro deux projets est de définir un plan de restauration hydro-morphologique et écologique conduisant à la

  14. Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  15. Webinar: Hydrogen Refueling Protocols

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

  16. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  17. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1999-01-01T23:59:59.000Z

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  18. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    renewable energy-to-electricity costs of solar, wind, and biomassinto biomass-based hydrogen and other renewable methods suchBiomass Pyrolysis Liquids and Natural Gas, National Renewable

  19. Moøller polarimetry with polarized atomic hydrogen at MESA

    SciTech Connect (OSTI)

    Bartolomé, P. Aguar; Aulenbacher, K.; Tyukin, V. [Institut für Kernphysik, Johannes Gutenberg-University, D-55099 Mainz (Germany)

    2013-11-07T23:59:59.000Z

    A new generation of parity violation (PV) electron scattering experiments are planned to be carried out at the Institut für Kernphysik in Mainz. These experiments will be performed at low energies of 100-200 MeV using the new accelerator MESA (Mainz Energy recovering Superconducting Accelerator). One of the main challenges of such experiments is to achieve an accuracy in beam polarization measurements that must be below 0.5%. This very high accuracy can be reached using polarized atomic hydrogen gas, stored in an ultra-cold magnetic trap, as the target for electron beam polarimetry based on Mo/ller scattering. Electron spin-polarized atomic hydrogen can be stored at high densities of 10{sup 16} cm{sup ?2}, over relatively long time periods, in a high magnetic field (8T) and at low temperatures (0.3K). The gradient force splits the ground state of the hydrogen into four states with different energies. Atoms in the low energy states are trapped in the strong magnetic field region whereas the high energy states are repelled and pumped away. The physics of ultra-cold atomic hydrogen in magnetic traps and the status of the Mainz Hydro-Mo/ller project will be presented.

  20. Hydrogen Delivery Liquefaction and Compression

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

  1. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  2. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

  3. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS...

  4. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+...

  5. Anti-Hydrogen Jonny Martinez

    E-Print Network [OSTI]

    Budker, Dmitry

    Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

  6. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24T23:59:59.000Z

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  7. Method for producing hydrogen

    SciTech Connect (OSTI)

    Preston, J.L.

    1980-02-26T23:59:59.000Z

    In a method for producing high quality hydrogen, the carbon monoxide level of a hydrogen stream which also contains hydrogen sulfide is shifted in a bed of iron oxide shift catalyst to a desired low level of carbon monoxide using less catalyst than the minimum amount of catalyst which would otherwise be required if there were no hydrogen sulfide in the gas stream. Under normal operating conditions the presence of even relatively small amounts of hydrogen sulfide can double the activity of the catalyst such that much less catalyst may be used to do the same job.

  8. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    SciTech Connect (OSTI)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02T23:59:59.000Z

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

  9. Institution Investigator

    E-Print Network [OSTI]

    Manufacturing Inc, HydroGen Corp, Keithley Instruments, McKinsey & Company, MetaMateria Partners LLC, NexEnergy Inc, Honda of America Manufacturing Inc, HydroGen Corporation, Keithley Instruments, Mc Industry Partners Process Technology Commercialization of Inline Heater for uses in Photovoltaic Solar Cell

  10. Solar Car

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Des Moines Central Academy Middle School students compete in the Solar Car Challenge at the National Science Bowl, May 2 in Washington D.C.

  11. Solar Rights

    Broader source: Energy.gov [DOE]

    Maine law requires that any municipal ordinance, bylaw, or regulation adopted after September 30, 2009 regulating solar energy devices on residential property follow certain requirements. The rules...

  12. HYDROGEN USAGE AND STORAGE

    E-Print Network [OSTI]

    It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

  13. Discovery and High-Throughput Screening of Heteroleptic Iridium Complexes for Photoinduced Hydrogen Production

    E-Print Network [OSTI]

    Bernhard, Stefan

    researchers. Simple solar devices focus or collect sunlight, harnessing radiation in order to heat dwellings December 3, 2004; E-mail: sbernhar@princeton.edu Abstract: The catalytic process of photoinduced hydrogen of the hydrogen evolution process and facilitated mechanistic studies. All six compounds investigated produced

  14. Available online at www.sciencedirect.com International Journal of Hydrogen Energy 28 (2003) 615623

    E-Print Network [OSTI]

    Deng, Xunming

    Available online at www.sciencedirect.com International Journal of Hydrogen Energy 28 (2003) 615/photoelectrochemical multijunction cell for hydrogen production E.L. Millera;, R.E. Rocheleaua, X.M. Dengb aHawaii Natural Energy-Si) solar cells demonstrating photovoltaic (PV) e ciencies up to 12.7% and open-circuit voltages up to 2:3 V

  15. An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California

    E-Print Network [OSTI]

    Nicholas, Michael A; Ogden, J

    2010-01-01T23:59:59.000Z

    onsite SMRs. Hydrogen from 100% solar photovoltaic poweredphotovoltaic (PV) electricity. Oxygen exhaust stream 12 x 6,250-psi compressed hydrogenphotovoltaic (PV) electricity Alkaline Electrolyzer Reverse osmosis and deionizer water purification Oxygen exhaust stream 12 x 6,250-psi compressed hydrogen

  16. Department of Solar Energy & Environmental Physics Conference presentations, 2006-2007.

    E-Print Network [OSTI]

    Prigozhin, Leonid

    Department of Solar Energy & Environmental Physics Conference presentations, 2006-2007. Albu, (eds.) Proceedings of the 22nd European Photovoltaic Solar Energy Conference. Milan, Italy, pp. 132: L. Vayssieres (ed.) Solar Hydrogen and Nanotechnology - Proceedings of SPIE, San Diego, USA. Albu

  17. Nanodome Solar Cells with Efficient Light Management and Self-Cleaning

    E-Print Network [OSTI]

    Cui, Yi

    Nanodome Solar Cells with Efficient Light Management and Self-Cleaning Jia Zhu, Ching-Mei Hsu 94305 ABSTRACT Here for the first time, we demonstrate novel nanodome solar cells, which have periodic and enhance absorption over a broad spectral range. Nanodome solar cells with only a 280 nm thick hydrogenated

  18. Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    solar cells M. Duchamp1 , M. den Hertog2 , R. Imlau1 , C. B. Boothroyd1 , A. Kovács1 , A. H. Tavabi1, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active absorber layers in solar cells deposited on low cost substrates using plasma-enhanced chemical vapour

  19. A photonic nano-architecture is designed to enhance solar water splitting effi-

    E-Print Network [OSTI]

    Steiner, Ullrich

    energy into hydrogen. However, the solar- to-H2 conversion efficiency is still very low due to rapid bulk artificial photosynthesis routes using solar energy to produce H2 or other fuels is an attractive scientificA photonic nano-architecture is designed to enhance solar water splitting effi- ciency

  20. Neutral hydrogen in galactic fountains

    E-Print Network [OSTI]

    C. M. Booth; Tom Theuns

    2007-08-02T23:59:59.000Z

    Simulations of an isolated Milky Way-like galaxy, in which supernovae power a galactic fountain, reproduce the observed velocity and 21cm brightness statistics of galactic neutral hydrogen (HI). The simulated galaxy consists of a thin HI disk, similar in extent and brightness to that observed in the Milky Way, and extra-planar neutral gas at a range of velocities due to the galactic fountain. Mock observations of the neutral gas resemble the HI flux measurements from the Leiden-Argentine-Bonn (LAB) HI, survey, including a high-velocity tail which matches well with observations of high-velocity clouds. The simulated high-velocity clouds are typically found close to the galactic disk, with a typical line-of-sight distance of 13kpc from observers on the solar circle. The fountain efficiently cycles matter from the centre of the galaxy to its outskirts at a rate of around 0.5 M_sun/yr

  1. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    psi) High-pressure hydrogen compressor Compressed hydrogen2005 High-pressure hydrogen compressor Compressed hydrogenthe hydrogen, a hydrogen compressor, high-pressure tank

  2. Solar Thermal Reactor Materials Characterization

    SciTech Connect (OSTI)

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01T23:59:59.000Z

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  3. Solar-Thermal Fluid-Wall Reaction Processing

    DOE Patents [OSTI]

    Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

    2006-04-25T23:59:59.000Z

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  4. Solar-thermal fluid-wall reaction processing

    DOE Patents [OSTI]

    Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

    2006-04-25T23:59:59.000Z

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  5. Development of HydroImage, A User Friendly Hydrogeophysical Characterization Software

    SciTech Connect (OSTI)

    Mok, Chin Man [GSI Environmental] [GSI Environmental; Hubbard, Susan [Lawrence Berkeley National Laboratory] [Lawrence Berkeley National Laboratory; Chen, Jinsong [Lawrence Berkeley National Laboratory] [Lawrence Berkeley National Laboratory; Suribhatla, Raghu [AMEC E& I] [AMEC E& I; Kaback, Dawn Samara [AMEC E& I] [AMEC E& I

    2014-01-29T23:59:59.000Z

    HydroImage, user friendly software that utilizes high-resolution geophysical data for estimating hydrogeological parameters in subsurface strate, was developed under this grant. HydroImage runs on a personal computer platform to promote broad use by hydrogeologists to further understanding of subsurface processes that govern contaminant fate, transport, and remediation. The unique software provides estimates of hydrogeological properties over continuous volumes of the subsurface, whereas previous approaches only allow estimation of point locations. thus, this unique tool can be used to significantly enhance site conceptual models and improve design and operation of remediation systems. The HydroImage technical approach uses statistical models to integrate geophysical data with borehole geological data and hydrological measurements to produce hydrogeological parameter estimates as 2-D or 3-D images.

  6. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  7. Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas

    E-Print Network [OSTI]

    Dixon, Juan

    Abstract- Coal and hydro will be the main sources of electric energy in Chile for the near future and the environmental dilemma faced by the country, where both coal and hydro produce some kind of impact. The role

  8. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01T23:59:59.000Z

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  9. Proposition de sujet de Thse de Doctorat Caractrisation multi chelle des proprits hydro-go-physiques des

    E-Print Network [OSTI]

    Naud Frédéric

    Proposition de sujet de Thèse de Doctorat Caractérisation multi échelle des propriétés hydro structurales et ainsi développer des méthodologies d'acquisition hydro-géo-physique en ce milieu complexe

  10. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15T23:59:59.000Z

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  11. High Pressure Hydrogen Materials Compatibility of Piezoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

  12. Hydrogen Permeation Resistant Coatings

    SciTech Connect (OSTI)

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15T23:59:59.000Z

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  13. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22T23:59:59.000Z

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  14. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01T23:59:59.000Z

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  15. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    SciTech Connect (OSTI)

    Gordon, John

    2012-09-30T23:59:59.000Z

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  16. Hydro-climatology: Variability and Change (Proceedings of symposium J-H02 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 344, 2011).

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hydro-climatology: Variability and Change (Proceedings of symposium J-H02 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 344, 2011). Copyright © 2011 IAHS Press 195 How could hydro , L. COLLET2 , S. ARDOIN-BARDIN3 & P. ROUCOU4 1 CNRS, 2 UM2, 3 IRD ­ UMR HydroSciences Montpellier

  17. Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte region case study Hydrology and Earth System Sciences, 9(4), 457466 (2005) EGU

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte region case study 457 Hydrology and Earth System Sciences, 9(4), 457466 (2005) © EGU Operational hydro forecasting system in the context of the Piemonte Regions hydro-meteorological operational alert procedure

  18. Eco-Hydro-Climate Science/Engineering in SESE Definition: An emerging frontier in Earth system science is the interaction of ecological,

    E-Print Network [OSTI]

    Rhoads, James

    Eco-Hydro-Climate Science/Engineering in SESE Definition: An emerging frontier in Earth system that are `retooled' to treat the coupled eco-hydro-climate system. Arid and semiarid regions (deserts) are a fruitful Southwest is thus an ideal laboratory for eco-hydro-climate studies and provides several case studies

  19. A FULLY COUPLED THERMO-HYDRO MECHANICAL ANALYSIS OF THE IMPACT OF TEMPERATURE AND HUMIDITY VARIATION ON THE STATE OF HISTORICAL STONE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A FULLY COUPLED THERMO-HYDRO MECHANICAL ANALYSIS OF THE IMPACT OF TEMPERATURE AND HUMIDITY Keywords: Thermo-hydro-mechanical coupling, modelling, inverse problem, tuffeau, monument, in situ measures initiation and growth due to the variation of climate conditions; thermo-hydro-mechanical incompatibility

  20. Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru)

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Toward hydro-social modeling: Merging human variables and the social sciences with climate mountain range, this paper provides a holistic hydro-social framework that identifies five major human of watershed dynamics. This hydro-social framework has wide- spread implications for hydrological modeling

  1. Virtues of simple hydro-economic optimization: Baja California, Mexico J. Medellin-Azuara a,*, L.G. Mendoza-Espinosa b

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Virtues of simple hydro-economic optimization: Baja California, Mexico J. Medelli´n-Azuara a,*, L in revised form 1 May 2009 Accepted 22 May 2009 Available online 26 June 2009 Keywords: Hydro-economic models simple hydro-economic optimization to investigate a wide range of regional water system management

  2. Long-term evaluation of the Hydro-Thermodynamic Soil-Vegetation Scheme's frozen ground/permafrost component using observations at

    E-Print Network [OSTI]

    Moelders, Nicole

    Long-term evaluation of the Hydro-Thermodynamic Soil-Vegetation Scheme's frozen ground/permafrost component of the hydro-thermodynamic soil-vegetation scheme (HTSVS) was evaluated by means of permafrost computational time. Citation: Mo¨lders, N., and V. E. Romanovsky (2006), Long-term evaluation of the Hydro

  3. Hydrogen Delivery - Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

  4. Hydrogen Industrial Trucks

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  5. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15T23:59:59.000Z

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  6. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16T23:59:59.000Z

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  7. Hydrogen Storage Related Links

    Broader source: Energy.gov [DOE]

    The following resources provide details about DOE-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links.

  8. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    CO 2 emissions & energy consumption International Partnership for the Hydrogen Economy Norway An IPHE Vision: "... consumers will have the practical option of purchasing a...

  9. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  10. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08T23:59:59.000Z

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  11. Solar cell structure incorporating a novel single crystal silicon material

    DOE Patents [OSTI]

    Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

    1983-01-01T23:59:59.000Z

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  12. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  13. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  14. Hydrogen Energy Technology Geoff Dutton

    E-Print Network [OSTI]

    Watson, Andrew

    Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems OverallHydrogen Energy Technology Geoff Dutton April 2002 Tyndall Centre for Climate Change Research Tyndall°Centre for Climate Change Research Working Paper 17 #12;Hydrogen Energy Technology Dr Geoff Dutton

  15. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29T23:59:59.000Z

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  16. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

    1980-08-12T23:59:59.000Z

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  17. Northwest Hydro Operators Regional Forum (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2AprilBigtoDepartment of »

  18. Nagarjuna Hydro Energy Pvt Ltd NHEPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/AmesNS Solar05 JumpNYSEG

  19. Sunan Longchanghe Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL ElecStrategicStoriesSunJoi Solar

  20. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  1. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16T23:59:59.000Z

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  2. Solar Rights

    Broader source: Energy.gov [DOE]

    According to state law, effective July 1, 2008, community associations in Virginia generally may not prohibit a homeowner from installing or using a solar energy collection device on their property...

  3. Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation

    Broader source: Energy.gov [DOE]

    Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

  4. An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of hydro storage used and the market characteristics and several options are compared in this study is the down regulation price in the electricity market paid to put in operation reserves to decrease generation at interval i; downreg ip^ is the down regulation price forecasted at period i during the intraday

  5. Hydro-Mechanical Loading and Compressibility of Fibrous Media for Resin Infusion Processes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Hydro-Mechanical Loading and Compressibility of Fibrous Media for Resin Infusion Processes P investigating the compressibility behaviour of composite preform with a view of modelling resin infusion Infusion The need for manufacturing large composite parts in the aeronautic industry is ever increasing

  6. EIS-0141: Washington Water Power/B.C. Hydro Transmission Interconnection Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of constructing and operating a double-circuit 230-kilovolt electrical transmission line that would link the electrical systems of the Washington Water Power Company and the British Columbia Hydro and Power Authority.

  7. Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks

    E-Print Network [OSTI]

    California at Berkeley, University of

    1 Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks Stephen Dawson-based traffic, or optimize for point-to-point traffic in a homogeneous network. As these networks become more by the resource constraints of low-power and lossy networks (L2Ns). Our design leverages the predominantly two

  8. A model for dynamic chance constraints in hydro power reservoir management

    E-Print Network [OSTI]

    Römisch, Werner

    A model for dynamic chance constraints in hydro power reservoir management L. Andrieu , R. Henrion In this paper, a model for (joint) dynamic chance constraints is proposed and ap- plied to an optimization for two and three stages. 1 Introduction A conventional optimization problem under chance constraints

  9. Hydro International Corals and Water Column Study for Gulf Oil Spill Response

    E-Print Network [OSTI]

    Belogay, Eugene A.

    of NOAA's response to the Deepwater Horizon/BP oil spill. "This is a major catastrophe," said Nelson of Mexico to gather baseline data against which to measure change if oil from the Deepwater Horizon spillHydro International Corals and Water Column Study for Gulf Oil Spill Response 14/07/2010 A science

  10. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  11. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03T23:59:59.000Z

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  12. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

  13. Hydrogen Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Analysis Hydrogen Analysis Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of...

  14. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    It appears to us that hydrogen is a highly promising option06—16 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

  15. Hydrogen Delivery- Current Technology

    Broader source: Energy.gov [DOE]

    Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

  16. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  17. August 2006 Hydrogen Program

    E-Print Network [OSTI]

    after the date of enactment of this Act, the Secretary shall submit to Congress a report evaluating's primary transportation fuel from petroleum, which is increasingly imported, to hydrogen, which can the energy, environmental and economic benefits of a hydrogen economy. The goals and milestones

  18. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  19. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16T23:59:59.000Z

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  20. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  1. Innovative solar thermochemical water splitting.

    SciTech Connect (OSTI)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  2. Sandia National Laboratories: Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Infrastructure Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and...

  3. Hydrogen Storage Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and technology pathways are impacted by their analyses. These technical teams include Fuel Cells, Fuel Pathway Integration, Hydrogen Delivery, Hydrogen Production, Materials,...

  4. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

  5. Hydrogen Delivery Infrastructure Option Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop...

  6. Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice

    E-Print Network [OSTI]

    Weijun Zheng; David Jewitt; Ralf I. Kaiser

    2005-11-18T23:59:59.000Z

    Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of this processing, we have conducted a systematic laboratory study of the irradiation of crystalline water ice in an ultrahigh vacuum setup by energetic electrons holding a linear energy transfer of 4.3 +/- 0.1 keV mm-1. The irradiated samples were monitored during the experiment both on line and in situ via mass spectrometry (gas phase) and Fourier transform infrared spectroscopy (solid state). We observed the production of hydrogen and oxygen, both molecular and atomic, and of hydrogen peroxide. The likely reaction mechanisms responsible for these species are discussed. Additional formation routes were derived from the sublimation profiles of molecular hydrogen (90-140 K), molecular oxygen (147 -151 K) and hydrogen peroxide (170 K). We also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building blocks to yield hydrogen peroxide at low temperatures (12 K) and via a diffusion-controlled mechanism in the warming up phase of the irradiated sample.

  7. CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN

    E-Print Network [OSTI]

    -constrained world. Long-run simulations were created using CIMS, a hybrid energy-economy model supply submodel was built to simulate economies of scale in infrastructure. Capital costs, technology such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel

  8. Rocket borne solar eclipse experiment to measure the temperature structure of the solar corona via lyman-. cap alpha. line profile observations

    SciTech Connect (OSTI)

    Argo, H.V.

    1981-01-01T23:59:59.000Z

    A rocket borne experiment to measure the temperature structure of the inner solar corona via the doppler broadening of the resonance hydrogen Lyman-..cap alpha.. (lambda1216A) radiation scattered by ambient neutral hydrogen atoms was attempted during the 16 Feb 1980 solar eclipse. Two Nike-Black Brant V sounding rockets carrying instrumented payloads were launched into the path of the advancing eclipse umbra from the San Marco satellite launch platform 3 miles off the east coast of Kenya.

  9. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    for Reno, Nevada . . . . . (Q) Solar Data for China Lake/using Nominal Solar Profiles China Lake/Inyokern ANGLE OFStations - China Lake, Edwards Monthly Latitude: Jan SOLAR

  10. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01T23:59:59.000Z

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  11. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    Figure 6.3: Birds-eye view of solar array deployment siteBirds-eye 7. Birds-eye view of of solar solar array array

  12. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  13. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    for Daily Solar Radiation Data. Proceedings of the 1977from total horizontal radiation data, they both suffer froma. SOLAR RADIATION Solar radiation data provide a measure of

  14. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    2.1.2 European Solar Radiation Atlas (ESRA)for supplementing solar radiation network data,” FinalEstimating incident solar radiation at the surface from geo-

  15. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  16. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

  17. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Solar Energy Laboratory 1303 Engineering Research Building UniversitySolar Energy Laboratory 1303 Engineering Research laboratory UniversitySolar Energy Group, Energy and Lawrence Berkeley Laboratory University

  18. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01T23:59:59.000Z

    Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish them

  19. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar Molten Salt Test Loop Commissioning On October 10, 2012, in Concentrating Solar Power, EC, Energy, News, News & Events, Renewable Energy, Solar The Molten Salt Test Loop...

  20. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Data for San Vicente Reservoir (l) Solar Data for BarrettDiego Monthly Solar Data, Barrett Reservoir Latitude: Janmonth. (L) SOLAR DATA FOR BARRETT RESERVOIR Nearby Climate

  1. Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment

    DOE Patents [OSTI]

    Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

    1982-01-01T23:59:59.000Z

    A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.

  2. Hydrogen Contamination Detector Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector Workshop Hydrogen Contamination

  3. Hydrogen Delivery Scenario Analysis Model (HDSAM)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector Workshop HydrogenScenario Analysis

  4. Hydrogen Production Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detectorof Energy LeakHydrogen Production

  5. Hydrogen Production Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detectorof Energy LeakHydrogen

  6. Hydrogen Production: Coal Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detectorof EnergyCoal Gasification Hydrogen

  7. Hydrogen Storage Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrent Technology » Hydrogen Storage

  8. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01T23:59:59.000Z

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  9. La dynamique de communication entre Hydro-Qubec et les Innus dans le cadre du projet de la Romaine

    E-Print Network [OSTI]

    La dynamique de communication entre Hydro-Québec et les Innus dans le cadre du projet de la Romaine Fortin, 2014 #12;#12;iii Résumé Le mémoire porte sur la dynamique de communication entre Hydro-Québec et, composées dInnus et de représentants dHydro-Québec, et dont le rôle est de gérer les fonds. De plus, le

  10. Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films

    E-Print Network [OSTI]

    Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

  11. BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    efforts were undertaken · Conversion took place during a period of less regulation on pipeline activityBP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines

  12. FINE-GRAINED NANOCRYSTALLINE SILICON P-LAYER FOR HIGH OPEN CIRCUIT VOLTAGE A-SI:H SOLAR CELLS

    E-Print Network [OSTI]

    Deng, Xunming

    FINE-GRAINED NANOCRYSTALLINE SILICON P-LAYER FOR HIGH OPEN CIRCUIT VOLTAGE A-SI:H SOLAR CELLS of Michigan, Ann Arbor, MI 48109, USA ABSTRACT Hydrogenated amorphous silicon (a-Si:H) single- junction solar). It is found that the p-layer that leads to high Voc a-Si:H solar cells is a mixed-phase material that contains

  13. NREL's Hydrogen Program

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful element—hydrogen—to power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

  14. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T. (Livermore, CA)

    1981-01-01T23:59:59.000Z

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  15. California Solar Initiative- Solar Thermal Program

    Broader source: Energy.gov [DOE]

    Originally restricted to just solar water heaters, the prorgam was expanded by CPUC Decision 13-02-018 in February 2013 to include other solar thermal technologies, including solar process heatin...

  16. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    analysis of hydrogen infrastructure development strategiesalso presented. Keywords: Hydrogen Infrastructure, Renewableof a Tasmanian hydrogen infrastructure is performed

  17. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Biomass Geothermal Small Hydro Solar Wind Statewide CA-N CA-with a relatively small hydro resource require additionaldairy Photovoltaic Parabolic Small hydro Wind Hydro 1 Steam

  18. Slide07 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Energies Topic Records Hydrogen 285,213 Solar or Photovoltaic 182,392 Biomass, biofuels, bioenergy 81,931 Wind 46,083 Hydro 35,846 Geothermal 34,920 Synthetic Fuels 29,538...

  19. NREL: Learning - Solar Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure TheSolar EnergyHydrogen

  20. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2 Solar Background Document 2Solar