National Library of Energy BETA

Sample records for hydro facilities indiana

  1. EIS-0429: Indiana Gasification, LLC, Industrial Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN...

  2. PINTEX Data: Numeric results from the Polarized Internal Target Experiments (PINTEX) at the Indiana University Cyclotron Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Meyer, H. O.

    The PINTEX group studied proton-proton and proton-deuteron scattering and reactions between 100 and 500 MeV at the Indiana University Cyclotron Facility (IUCF). More than a dozen experiments made use of electron-cooled polarized proton or deuteron beams, orbiting in the 'Indiana Cooler' storage ring, and of a polarized atomic-beam target of hydrogen or deuterium in the path of the stored beam. The collaboration involved researchers from several midwestern universities, as well as a number of European institutions. The PINTEX program ended when the Indiana Cooler was shut down in August 2002. The website contains links to some of the numerical results, descriptions of experiments, and a complete list of publications resulting from PINTEX.

  3. Utility Power Plant Construction (Indiana)

    Broader source: Energy.gov [DOE]

    This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

  4. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    SciTech Connect (OSTI)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6?×?10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  5. Indiana: Indiana’s Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Indiana.

  6. Pipeline Construction Guidelines (Indiana)

    Broader source: Energy.gov [DOE]

    The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

  7. Micro Hydro 1 Micro Hydro Power.

    E-Print Network [OSTI]

    Micro Hydro 1 Micro Hydro Power. Andrew Cannard, Andrew Gonzales, Candace Kaiser. Using recycled materials we will be building a Mini Micro hydro system. Using a rear bicycle tire for the turbine we and implementation of permanent micro hydro systems on campus. Renewable energy is a key aspect of any plan to make

  8. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    SciTech Connect (OSTI)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  9. Forestry Policies (Indiana)

    Broader source: Energy.gov [DOE]

    Indiana's forests are managed by the Department of Natural Resources, Division of Forestry. The Department issued in 2008 the State's Strategic Plan:...

  10. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  11. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  12. Grant Lights Up Indiana Tech Athletic Center

    Broader source: Energy.gov [DOE]

    The Indiana Institute of Technology, otherwise known as Indiana Tech, is committed to developing a fully sustainable campus.

  13. Indiana: Indiana's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Indiana.

  14. Brigham City Hydro Generation Project

    SciTech Connect (OSTI)

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and the U.S. Fish and Wildlife Services (USFWS) concurring with the National Environmental Policy Act of 1969 (NEPA) It was determined that Brigham City’s Upper Hydroelectric Power Plant upgrade would have no effect to federally listed or candidate species. However Brigham City has contributed a onetime lump sum towards Bonneville cutthroat trout conservation in the Northern Bonneville Geographic Management Unit with the intention to offset any impacts from the Upper Hydro Project needed to move forward with design and construction and is sufficient for NEPA compliance. No work was done in the river or river bank. During construction, the penstock was disconnected and water was diverted through and existing system around the powerhouse and back into the water system. The penstock, which is currently a 30-inch steel pipe, would be removed and replaced with a new section of 30-inch pipe. Brigham City worked with the DOE and was awarded a new modification and the permission to proceed with Phase III of our Hydro Project in Dec. 2013; with the exception to the modification of the award for the construction phase. Brigham City developed and issued a Request for Proposal for Engineer and Design vendor. Sunrise Engineering was selected for the Design and throughout the Construction Phase of the Upper Hydroelectric Power Plant. Brigham City conducted a Kickoff Meeting with Sunrise June 28, 2013 and received a Scope of Work Brigham City along with engineering firm sent out a RFP for Turbine, Generator and Equipment for Upper Hydro. We select Turbine/Generator Equipment from Canyon Industries located in Deming, WA. DOE awarded Brigham City a new modification and the permission to proceed with Phase III Construction of our Hydro Project. Brigham City Crews removed existing turbine/generator and old equipment alone with feeder wires coming into the building basically giving Caribou Construction an empty shell to begin demolition. Brigham City contracted with Caribou Construction from Jerome, Idaho for the Upper Power Plant construction. A kickoff meeting was June 24, 2014 and

  15. Indiana University Cognitive Science

    E-Print Network [OSTI]

    Indiana University

    Indiana University Cognitive Science Exploring the Science of Learning Representations Simulations patterns in plant growth better? In the Cognitive Science Program at IU, we explore educational practices) representations help students understand principles of science and transfer that knowledge to related topics

  16. HydroVision International

    Broader source: Energy.gov [DOE]

    The HydroVision International Conference and Exhibition offers attendees countless opportunities to network, share best practices, meet with product and service providers, and more.  Held over five...

  17. EIS-0166: Bangor Hydro-Electric Transmission Line, Maine

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy prepared this environmental impact statement while considering whether to authorize a Presidential permit for Bangor Hydro to construct a new electric transmission facility at the U.S. border with Canada.

  18. Indiana's Trenton limestone geology

    SciTech Connect (OSTI)

    Keith, B.D.

    1981-03-01

    The term Trenton limestone is the stratigraphic designation for a unit in northern Indiana composed of both limestone and dolomite. The Trenton is Middle Ordovician (Champlainian) in age and related clearly to the position of the Cincinnati arch. The limestone is thickest in northern Indiana and thins toward the southeast. Isopach maps of the Trenton limestone and the Maquoketa group above it indicate that the Cincinnati arch did not exist as a positive structural influence to sedimentation until after Ordovician time. Preliminary results of an ongoing study of the Trenton reservoir suggest that second and tertiary recovery there will be limited. Because of the low density of drilling on the Trenton's north flank, however, large areas remain virtually untested; more structural or stratigraphic traps similar to those of the Urbana field could exist. A better definition of the distribution of the dolomite facies will lead to a more accurate assessment of the Trenton's potential.

  19. Jamestown, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacility | Open(CTIJamesport,Indiana:

  20. INDIANA UNIVERSITY Adam W. Herbert

    E-Print Network [OSTI]

    Indiana University

    for the Indiana Genomics Initiative, our goal is to double research activity in the School of Medicine and signifi with the great strides we are making on the various aspects of the Indiana Genomics Initiative, creates critical of the nation's leaders in genomics research, our goal is to become one of the top five cancer centers

  1. PressurePressure Indiana Coal Characteristics

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

  2. EA-281 Manitoba Hydro | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-281 Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. EA-281 Manitoba Hydro More Documents & Publications EA-281-B Manitoba Hydro EA-281-A...

  3. EIS-0429: Department of Energy Loan Guarantee for Indiana Integrated Gasification Combined Cycle, Rockport, IN

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a coal-to-substitute natural gas facility proposed to be built in Rockport, IN by Indiana Gasification. The facility would utilize Illinois Basin coal. Other products would be marketable sulfuric acid, argon, and electric power. This project is inactive.

  4. Fuel alcohol opportunities for Indiana

    SciTech Connect (OSTI)

    Greenglass, Bert

    1980-08-01

    Prepared at the request of US Senator Birch Bayh, Chairman of the National Alcohol Fuels Commission, this study may be best utilized as a guidebook and resource manual to foster the development of a statewide fuel alcohol plan. It examines sectors in Indiana which will impact or be impacted upon by the fuel alcohol industry. The study describes fuel alcohol technologies that could be pertinent to Indiana and also looks closely at how such a fuel alcohol industry may affect the economic and policy development of the State. Finally, the study presents options for Indiana, taking into account the national context of the developing fuel alcohol industry which, unlike many others, will be highly decentralized and more under the control of the lifeblood of our society - the agricultural community.

  5. Town of Brooklyn, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities Biomass FacilityTown of Bostic,Indiana

  6. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  7. Indiana University Cognitive & Information Sciences

    E-Print Network [OSTI]

    Indiana University

    Indiana University Cognitive & Information Sciences Psychology Bldg., Bloomington, IN 47405 (812 evaluation information to determine student academic needs and report findings to the cognitive science) 855-4658; fax: (812) 855-1086 Internship Program Policy Statement OBJECTIVES The Cognitive Science

  8. Hydro unit commitment in hydro-thermal optimization

    SciTech Connect (OSTI)

    Li, C.; Hsu, E.; Svoboda, A.J.; Tseng, C.; Johnson, R.B. [Pacific Gas and Electric Co., San Francisco, CA (United States)

    1997-05-01

    In this paper the authors develop a model and technique for solving the combined hydro and thermal unit commitment problem, taking into full account the hydro unit dynamic constraints in achieving overall economy of power system operation. The combined hydrothermal unit commitment problem is solved by a decomposition and coordination approach. Thermal unit commitment is solved using a conventional Lagrangian relaxation technique. The hydro system is divided into watersheds, which are further broken down into reservoirs. The watersheds are optimized by Network Flow Programming (NFP). Priority-list-based Dynamic Programming is used to solve the Hydro Unit Commitment (HUC) problem at the reservoir level. A successive approximation method is used for updating the marginal water values (Lagrange multipliers) to improve the hydro unit commitment convergence, due to the large size and multiple couplings of water conservation constraints. The integration of the hydro unit commitment into the existing Hydro-Thermal Optimization (HTO) package greatly improves the quality of its solution in the PG and E power system.

  9. ,"Indiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Indiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Indiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  12. Indiana/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation...

  13. TRT meeting Oct 2002 Pauline Gagnon Indiana University Status of barrel acceptance tests

    E-Print Network [OSTI]

    Gagnon, Pauline

    154 Space has been emptied and cleaned Gas system being certified Four computers installed Status of facilities in building 154 Plans for near future First report from module 1.01 after Gagnon ­ Indiana University Plans for near future Finish installing/debugging leak, stringing

  14. Hydrologic Modeling with Arc Hydro Tools 1 Copyright 2007 ESRI. All rights reserved. Arc Hydro

    E-Print Network [OSTI]

    Slatton, Clint

    Hydrologic Modeling with Arc Hydro Tools 1 Copyright © 2007 ESRI. All rights reserved. Arc Hydro Arc Hydro: GIS in Water Resources Seminar/Workshop Gainesville, Florida ­ November 15, 2007 Christine Dartiguenave, ESRI inc. cdartiguenave@esri.com #12;Hydrologic Modeling with Arc Hydro Tools 2 2Arc Hydro

  15. A COMPARISON OF THE AQUATIC IMPACTS OF LARGE HYDRO AND SMALL HYDRO PROJECTS

    E-Print Network [OSTI]

    A COMPARISON OF THE AQUATIC IMPACTS OF LARGE HYDRO AND SMALL HYDRO PROJECTS by Lara A. Taylor, P Project: A Comparison of the Aquatic Impacts of Large Hydro and Small Hydro Projects Project No.: 501 of small hydro development in British Columbia has raised concerns surrounding the effects

  16. Warren County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village ofWaialua,Wallington,Solar CoFacilityIndiana: Energy

  17. Town of Warren, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformationTown of Warren, Indiana

  18. Midwest Hydro Users Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

  19. hydro | OpenEI Community

    Open Energy Info (EERE)

    hydro Home Water Power Forum Description: Forum for information related to the Water Power Gateway The Water Power Community Forum provides you with a way to engage with other...

  20. Ontario Hydro Motor Efficiency Study 

    E-Print Network [OSTI]

    Dautovich, D. R.

    1980-01-01

    Electric motors consume more than one-half of the electrical energy produced by Ontario Hydro. In the residential sector, the major motor load is for refrigerators and freezers while packaged equipment dominate the motor load in the commercial...

  1. Indiana Michigan Power Co (Indiana) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. Water Res.:01 -India:OpenVillage,JumpIndiana

  2. PP-54 Ontario Hydro Electric Power Commission | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-54 Ontario Hydro Electric Power Commission PP-54 Ontario Hydro Electric Power Commission Presidential Permit authorizing Ontario Hydro Electric Power Commission to construct,...

  3. Extreme hydro-meteorological events and their probabilities

    E-Print Network [OSTI]

    Beersma, Jules

    Extreme hydro-meteorological events and their probabilities Jules Beersma #12;Promotor: Prof. dr. A Onderzoekschool (BBOS) #12;Extreme hydro-meteorological events and their probabilities Extreme hydro

  4. Vectren Energy Delivery of Indiana (Electric)- Commercial New Construction Rebates (Indiana)

    Broader source: Energy.gov [DOE]

    Vectren Energy Delivery offers commercial customers in Indiana electric rebates for the installation of certain types of equipment in newly constructed buildings. Prescriptive and performance based...

  5. EA-281-A Manitoba Hydro | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-281-A Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. EA-281-A Manitoba Hydro More Documents & Publications EA-281 Manitoba Hydro EA-281-B...

  6. EA-281-B Manitoba Hydro | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-281-B Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. EA-281-B Manitoba Hydro More Documents & Publications EA-281 Manitoba Hydro EA-281-A...

  7. Invervar Hydro | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation, search Name: Invervar Hydro

  8. Hydro Research Program Seeking Graduate Student Applicants

    Broader source: Energy.gov [DOE]

    The Hydro Research Foundation is now accepting graduate student applications for its DOE-funded graduate student research program. The Hydro Research Awards Program is designed to spur innovation...

  9. Doctoral Defense "Thermal-hydro-mechanical model

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Thermal-hydro-mechanical model for freezing and thawing soils" Yao Zhang Date been implemented in a finite element system, with a thermal-hydro- mechanical framework being used

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells, Photovoltaics Alternate Energy Production, Cogeneration, and Small Hydro Facilities (Indiana) This legislation aims to encourage the development of alternative...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Category: Fuel Cells, Photovoltaics Alternate Energy Production, Cogeneration, and Small Hydro Facilities (Indiana) This legislation aims to encourage the development of...

  12. North West Hydro Resource Model Research to identify potential capacity and assist NW hydro power development

    E-Print Network [OSTI]

    Meju, Max

    North West Hydro Resource Model Research to identify potential capacity and assist NW hydro power University wide research, aims to develop a system to promote the exploitation of hydro power in North with regard to hydro schemes Reviewing and re-formulating ill defined requirements for environmental

  13. Prparation de votre examen stabilit hydro

    E-Print Network [OSTI]

    Hoepffner, Jérôme

    Préparation de votre examen stabilité hydro: - Relisez vos notes de cours - Refaites les exercices

  14. Appendix HYDRO: Hydrological Investigations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal Facility Agreement and Consent04A:E

  15. 4, 18791891, 2007 hydro-information

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HESSD 4, 1879­1891, 2007 WS for hydro-information systems J. Horak et al. Title Page Abstract for distributed and interoperable hydro-information systems J. Horak, A. Orlik, and J. Stromsky Institute (antonin.orlik.hgf@vsb.cz) 1879 #12;HESSD 4, 1879­1891, 2007 WS for hydro-information systems J. Horak et

  16. Quidi Vidi Lake Hydro Power Demonstration Project

    E-Print Network [OSTI]

    Bruneau, Steve

    Quidi Vidi Lake Hydro Power Demonstration Project Presented by Eugene G. Manning, B. Eng Candidate walking trail Comprised of a micro hydro generator a wind turbine and a solar array, metered and interpreted This presentation describes the preliminary work on the micro hydro component of the installation

  17. Indiana

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009 2010 2011 2012Foot) Year Jan2014

  18. PHNOMNES DITS HYDRO-LECTRIQUES ET HYDRO-MAGNTIQUES; THO-RMES FONDAMENTAUX ET LEUR CONSTATATION EXPRIMENTALE;

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PHÉNOMÈNES DITS HYDRO-ÉLECTRIQUES ET HYDRO-MAGNÉTIQUES; THÉO- RÈMES FONDAMENTAUX ET LEUR nouveaux phénomènes. Je les désignerai ainsi comme une hydro-électicité, un hydro-magnétisme, etc. Mais'idée, d'aimants au lieu d'hydro-aimants, de masses électriques au lieu de masses hydro-électriques, et

  19. A Fusion Test Facility for Inertial Fusion Presented by Stephen Obenschain

    E-Print Network [OSTI]

    in their optimization, and have to be developed in concert with their own purpose-built facilities. #12;HAPL= $25M advanced pellet designs that are resistant to hydro-instability · Use deep UV light and large burn #12) that to help hydro-stability. Maximum (linear) hydro-instability growth

  20. Pumped Hydro | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility District No 2Pumped Hydro Jump to:

  1. Risk-Based Strategies for Wind/Pumped-Hydro Coordination under Electricity Markets

    E-Print Network [OSTI]

    Boyer, Edmond

    be reduced by coupling the wind farm with energy storage facilities, thus constituting a virtual power plant1 Risk-Based Strategies for Wind/Pumped-Hydro Coordination under Electricity Markets Franck Bourry is able to minimize the imbalance penalty risks associated to wind power forecast uncertainty through

  2. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water...

  3. NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys

    E-Print Network [OSTI]

    NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys: Surf Clams and Ocean Quahogs December 19..................................................................................................................................... 1 NOAA Fisheries Hydro-dynamic Clam Dredge Survey Protocols

  4. PP-22 British Columbia Hydro and Power Authority, Amendment 1967...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-22 British Columbia Hydro and Power Authority, Amendment 1967 PP-22 British Columbia Hydro and Power Authority, Amendment 1967 Presidential permit authorizing British Columbia...

  5. Indiana Board of Licensure for Professional Geologists Update Contact Information

    E-Print Network [OSTI]

    Polly, David

    : ______________________________________________________ LPG #: ____________________ Mailing Address-mail it to the Licensing Coordinator at inblpg@indiana.edu. LPG # Name Employer Street Address, City, State, Zip Office

  6. Vectren Energy Delivery of Indiana (Electric)- Commercial New Construction Rebates

    Broader source: Energy.gov [DOE]

    Vectren Energy Delivery offers commercial customers in Indiana electric rebates for the installation of certain types of equipment in newly constructed buildings through its Energy Design Assist...

  7. ,"Indiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana...

  8. Indiana Manufacturing Institute Breaks Ground at Purdue University...

    Energy Savers [EERE]

    R. Byron Pipes, John Leighton Bray Distinguished Professor of Engineering; Victor Smith, Indiana Secretary of Commerce; Leah Jamieson, John A. Edwardson Dean of Engineering;...

  9. ,"Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  10. EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5DepartmentStatementConduct Scoping Meetings

  11. Energy Incentive Programs, Indiana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona Energy Incentive Programs,GeorgiaIndiana Energy

  12. Roseland, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklinRohm andNewIndiana: Energy Resources

  13. Southport, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to: navigation, searchSouthport, Indiana: Energy

  14. Lawrence, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy ResourcesProjectMississippi: Energy ResourcesSouthIndiana:

  15. HEITSCH, R OMISCH --HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems in Power Generation

    E-Print Network [OSTI]

    Römisch, Werner

    HEITSCH, R ¨OMISCH -- HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems that owns a hydro-thermal generation sys- tem and trades on the power market often lead to complex stochas- tic optimization problems. We present a new approach to solving stochastic hydro-storage subproblems

  16. Hydro - Power and peril ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydro - Power and peril ... Fish and the dams that provide about 7 percent of the nation's electricity may have a more symbiotic relationship because of work being performed by a...

  17. THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Seminario del Grupo de Hidrologìa Subterrànea - UPC, Barcelona #12;INTRODUCTION Enhanced geothermal systems Geothermal gradient ~ 33 °C/Km Hydraulic stimulation enhances fracture permeability (energyTHERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL RESERVOIR STIMULATIONRESERVOIR STIMULATION Silvia

  18. Superfund at work: Hazardous waste cleanup efforts nationwide, Winter 1994 (Seymour recycling site profile, Seymour, Indiana)

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    Leaking barrels of chemicals reacted and erupted into spontaneous fires and explosions at the Seymour Recycling Corporation in the 1970s. The poorly managed and overburdened hazardous waste storage and incineration facility polluted soil and ground water with solvents, acids, and heavy metals. With help from the Indiana Department of Environmental Management (IDEM) and the City of Seymour, cooperative efforts lead to an effective remediation of the site including: an immediate removal of drums, tanks and soil; a comprehensive ground water treatment system and extension of the municipal water supply to affected residents; and use of two innovative technologies, bioremediation and soil vapor extraction.

  19. Crabapples Resistant to Apple Scab and Japanese Beetle in Indiana

    E-Print Network [OSTI]

    Pittendrigh, Barry

    Crabapples Resistant to Apple Scab and Japanese Beetle in Indiana Cliff Sadof, Department pests, apple scab and Japanese beetle, have also given this plant a reputation of being prone to insect and disease problems. Both these pests are widely distributed in Indiana. Apple scab is a fungal disease

  20. Peirce Edition Project Indiana University School of Liberal Arts

    E-Print Network [OSTI]

    Zhou, Yaoqi

    substantives; regularizing and normalizing texts; maintaining the Project's #12;2 editorial guide as policies1 Peirce Edition Project Indiana University School of Liberal Arts Indianapolis, Indiana Asst./Assoc. Textual Editor Longer Job Description Background The Peirce Edition Project (http

  1. Indiana Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    including runoff and NPS pollution and wastewater treatment (septic systems). Information transferIndiana Water Resources Research Center Annual Technical Report FY 2003 Introduction Efforts at the Indiana Water Resources Research Center (IWRRC) over FY 2003 have focused on water quality issues

  2. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    Using Self-Sustained Hydro- Gasification." [0011] In aprocess, using a steam hydro-gasification reactor (SHR) thepyrolysis and hydro-gasification in a single step. This

  3. Save Energy Now Indiana | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2ProgramAreaLaboratory |Industries |Indiana The

  4. Decatur, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi: Energy ResourcesUtilities JumpIndiana:

  5. Lakeville, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources Jump to:Village,Open EnergyLakeville, Indiana:

  6. Indianapolis, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimenMaking Energy Efficiency RealIndiana Michigan Power

  7. Williamsport, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,WhatUtilityRateNamingHelperVirginia: EnergyIndiana:

  8. Berne, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County,Benton,BerksWisconsin: EnergyBerne, Indiana:

  9. Central Indiana Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo EnergyOhio: EnergyFalls,Indiana Ethanol

  10. Government of Indiana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGoogle lends supportIndiana Jump to:

  11. Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |source HistorypubIndiana/Wind

  12. Indianapolis, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |source HistorypubIndiana/WindIndianapolis

  13. Liberty, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds JumpOxiranchem Inc JumpIndiana: Energy Resources

  14. Martinsville, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios TowardsInformationMarietta,7) WindMartinsville, Indiana:

  15. Akron, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAir Quality JumpAkhiok, Alaska:Indiana: Energy

  16. Alamo, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamo Heights, Texas: EnergyIndiana: Energy

  17. Albany, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamoCalifornia: Energy ResourcesIndiana:

  18. Anderson, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump to:HempsteadtemporalAnalyticalIndiana: Energy

  19. Auburn, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOilAtmautluakIndiana: Energy

  20. Duke Energy Indiana Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDouble Oak, Texas:DuPontDuke Energy Indiana

  1. Categorical Exclusion Determinations: Indiana | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectric powerMeasures to reduce|Indiana. DOCUMENTS AVAILABLE

  2. Lac Courte Oreilles Hydro Dam Assessment

    SciTech Connect (OSTI)

    Weaver, Jason; Meyers, Amy

    2014-12-31

    The main objective of this project was to investigate upgrading the existing hydro power generating system at the Winter Dam. The tribe would like to produce more energy and receive a fair market power purchase agreement so the dam is no longer a drain on our budget but a contributor to our economy. We contracted Kiser Hydro, LLC Engineering for this project and received an engineering report that includes options for producing more energy with cost effective upgrades to the existing turbines. Included in this project was a negotiation of energy price sales negotiations.

  3. Transcending the Hydro-Illogical Building a Texas Hydrologic

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Transcending the Hydro-Illogical Cycle Building a Texas Hydrologic Information System TX-HIS #12;Q to couple streamflow models to GCMs · We need to break the hydro-illogical cycle and plan for the delivery

  4. | JANUARY/FEBRUARY 2014 | Hydro INTERNATIONAL22 symbols and features used on a

    E-Print Network [OSTI]

    New Hampshire, University of

    | JANUARY/FEBRUARY 2014 | Hydro INTERNATIONAL22 symbols and features used on a nautical chart #12;Hydro INT

  5. Coupled hydro-mechanical processes in crytalline rock and in induratedand plastic clays: A comparative discussion

    E-Print Network [OSTI]

    Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

    2008-01-01

    at Grimsel. In Coupled Thermo-Hydro- Mechanical-ChemicalCOUPLED HYDRO-MECHANICAL PROCESSES IN CRYTALLINE ROCK AND IN

  6. Valuation of the Indiana Toll Road and Chicago Skyway privatizations

    E-Print Network [OSTI]

    Chaudary, Faiza A. (Faiza Arshad)

    2010-01-01

    This thesis analyzes the economics and financing of the recent purchases of the Indiana Toll Road and Chicago Skyway. Similar privatizations have been occurring around the world, but the economic motive for such transactions ...

  7. Radiological Final Status Survey of the Hammond Depot, Hammond, Indiana

    SciTech Connect (OSTI)

    T.J. Vitkus

    2008-04-07

    ORISE conducted extensive scoping, characterization, and final status surveys of land areas and structures at the DNSC’s Hammond Depot located in Hammond, Indiana in multiple phases during 2005, 2006 and 2007.

  8. Southeastern Indiana REMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    To be eligible for a Southeastern Indiana REMC 2015 rebate, all homeowners must: - Complete a rebate request form - Provide proof of purchase for equipment - Sign consent form - Participate i...

  9. INDIANA UNIVERSITYPURDUE UNIVERSITY FORT WAYNE INFORMATION TECHNOLOGY SERVICES

    E-Print Network [OSTI]

    Hamburger, Peter

    INDIANA UNIVERSITY­PURDUE UNIVERSITY FORT WAYNE INFORMATION TECHNOLOGY SERVICES Retiree & Emeritus's Authentication and Authorization policy: http://www.purdue.edu/policies/information-technology/viib1.html 1.2. Ethical Guidelines for IPFW Information Technology Users http

  10. Indiana Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    with the legislative study committees of the Indiana House of Representatives. In the last year we have supported as faring in the Deer Creek area is based in animal production. The IWRRC has been active with the Purdue

  11. Forestry Commission Wales Guidance on rental levels for Hydro Power

    E-Print Network [OSTI]

    initiated a process to facilitate the development of small- scale hydro-electricity schemes on land ownedForestry Commission Wales Guidance on rental levels for Hydro Power Guidance on rental levels for hydro power projects Tel: 02920 475961 Email: hydrowales@forestry.gsi.gov.uk Version 1.0 Mike Pitcher 17

  12. NOAA Technical Memorandum NWS HYDRO 46 A CLIMATIC ANALYSIS

    E-Print Network [OSTI]

    NOAA Technical Memorandum NWS HYDRO 46 A CLIMATIC ANALYSIS OF OROGRAPHIC PRECIPITATION OVER THE BIGHydrology (HYDRO) ofthe National Weather Service (NWS) develops procedures for making river and water supply, and conducts pertinent research and development NOAA Teclmical Memorandums in the NWS HYDRO series facilitate

  13. November 20th, 2013November 20 , 2013 BC Hydro Today

    E-Print Network [OSTI]

    November 20th, 2013November 20 , 2013 DRAFT 1 #12; BC Hydro Today FY 2013 IPPs in BC BC; BC Hydro serves 95 percent of the population in British Columbia1Columbia Load are split evenly (IPPs are d t t ith BC h d )3under contract with BC hydro)3 Limited transfer capability into BC from

  14. Fraser River Hydro and Fisheries Research Project fonds

    E-Print Network [OSTI]

    Handy, Todd C.

    Fraser River Hydro and Fisheries Research Project fonds Revised by Erwin Wodarczak (1998 Fraser River Hydro and Fisheries Research Project fonds. ­ 19561961. 13 cm of textual records. Administrative History The Fraser River Hydro and Fisheries Research Project was established in 1956, financed

  15. NOAA Technical Memorandum NWS HYDRO 45 RELATIONSHIP BETWEEN

    E-Print Network [OSTI]

    NOAA Technical Memorandum NWS HYDRO 45 RELATIONSHIP BETWEEN STORM AND ANTECEDENT PRECIPITATION OVER TECHNICAL MEMORANDUMS National Weather Service. Office of Hydrology Series The Office of Hydrology (HYDRO and development. NOAA Technical Memorandums in the NWS HYDRO series facilitate prompt distribution of scientific

  16. NUMERICAL MODELING OF LOW FREQUENCY HYDRO-ACOUSTIC WAVES

    E-Print Network [OSTI]

    Kirby, James T.

    NUMERICAL MODELING OF LOW FREQUENCY HYDRO-ACOUSTIC WAVES GENERATED BY SUBMARINE TSUNAMIGENIC#al to increase the reliability of the system · Can we use precursors of tsunami? Hydro numerical models applicable on an oceanic scale #12;Index · Introduc#on on hydro

  17. Interconnected hydro-thermal systems Models, methods, and applications

    E-Print Network [OSTI]

    Interconnected hydro-thermal systems Models, methods, and applications Magnus Hindsberger Kgs. Lyngby 2003 IMM-PHD-2003-112 Interconnected hydro-thermalsystems #12;Technical University of Denmark 45882673 reception@imm.dtu.dk www.imm.dtu.dk IMM-PHD-2003-112 ISSN 0909-3192 #12;Interconnected hydro

  18. Hydro, Solar, Wind The Future of Renewable Energy

    E-Print Network [OSTI]

    Lavaei, Javad

    Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical the turbine speed constant. The available hydro power is calculated using the height difference between source has become popular and has many immediate benefits to communities that opt to build a hydro

  19. Stochastic Co-optimization for Hydro-Electric Power Generation

    E-Print Network [OSTI]

    1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

  20. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 and pumped-storage hydro units is developed. For its compu- tational solution two di erent decompo- sition-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

  1. Atomic scale mixing for inertial confinement fusion associated hydro instabilities

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    Atomic scale mixing for inertial confinement fusion associated hydro instabilities J. Melvina, , P Alamos, NM 87545, USA Abstract Hydro instabilities have been identified as a potential cause- able. We find numerical convergence for this important quantity, in a purely hydro study, with only

  2. Warrick County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana: EnergyWarrick County, Indiana:

  3. Energy for Cleaner Transportation Hydro-Quebec

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Energy for Cleaner Transportation K. Zaghib Hydro-Quebec Varennes, Quebec, Canada J. Prakash Illinois Institute of Technology Naperville, Illinois, USA R. D. McConnell National Renewable Energy in the United States of America #12;iii Preface Energy for Cleaner Transportation This symposium covered

  4. 3-D hydro + cascade model at RHIC

    E-Print Network [OSTI]

    Chiho Nonaka; Steffen A. Bass

    2005-11-07

    We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

  5. Indiana University School of Library and Information Science S604/S764 : Information Networks

    E-Print Network [OSTI]

    Indiana University

    Indiana University School of Library and Information Science S604/S764. But what is a network? What types of networks exist? Why are they interesting of Library and Information Science, Indiana University, on November 11, 1996

  6. Analysis of seismic waves generated by surface blasting at Indiana coal mines

    E-Print Network [OSTI]

    Polly, David

    Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent implications for understanding different seismic sources, earthquake structures in Indiana, and wave

  7. Utility Generation and Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

  8. Health-hazard evaluation report HETA 90-223-2211, Thomson Consumer Electronics, Marion, Indiana

    SciTech Connect (OSTI)

    Lenhart, S.W.; Driscoll, R.

    1992-05-01

    In response to a request from the Corporate Medical Consultant to Thomson Consumer Electronics (SIC-3673), Marion, Indiana, a study was undertaken of an illness outbreak in workers at the facility. There were about 1900 workers at the facility, which produced television picture tubes. Production occurred over three shifts, 6 days a week. Charcoal tube sampling indicated the presence of acetone (67641) n-amyl-acetate (628637), n-butyl-acetate (123864), isoamyl-acetate (123922), toluene (108883), 1,1,1-trichloroethane (71556), and trichloroethylene (79016). No contaminants were detected in the bag samples of air collected from the in/house compressed air system. One or more symptoms were reported by 593 (82%) of the workers. Those most commonly reported included headache (68%), sore throat (53%), fatigue (51%), eye irritation (50%), itchy skin (47%), irritated nose (45%), dizziness (45%), unusual taste in mouth (45%), unusual smell (41%) and cough. The authors conclude that symptoms were consistent with stress related health complaints in occupational settings. Concentrations of chemicals measured in the facility would not be expected to produce the effects seen in the outbreak. The authors recommend that trichloroethylene degreasing units be replaced with equipment which uses a less toxic degreasing agent. The facility should hire a full time industrial hygienist.

  9. Centro di Ricerca Il Direttore del Centro di Ricerca Hydro-Eco

    E-Print Network [OSTI]

    Di Pillo, Gianni

    Centro di Ricerca HYDRO-ECO HYDRO-ECO . Il Direttore del Centro di Ricerca Hydro-Eco Visto il D Vista la Delibera del Consiglio del Centro Hydro-Eco del 15/9/2010 Vista la Delibera del Senato Ricerca Hydro-Eco è così composta: Rosario Cantelli Angelo Chianese Paolo De Filippis Stefania Panero

  10. A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...

    Open Energy Info (EERE)

    A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  11. Training and Research on Probabilistic Hydro-Thermo-Mechanical...

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Citation Details In-Document Search...

  12. Robust optimization based self scheduling of hydro-thermal Genco ...

    E-Print Network [OSTI]

    Dec 29, 2013 ... Abstract: This paper proposes a robust optimization model for optimal self scheduling of a hydro-thermal generating company. The proposed ...

  13. North American Hydro | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: EnergyReservoir |Solkraft AS Jump to:CoatingHydro

  14. Cauvery Hydro Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to: navigation,Cauvery Hydro Energy Ltd Jump to:

  15. Jiuquan Sanyuan Hydro Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuari Silicon Material Co Ltd

  16. KKK Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuari Silicon MaterialJunco NovoNewhlerKCPKGB

  17. The Small Hydro Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstitute Jump to:andEnergyThe PowerHydro

  18. Property:HydroInfo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7Website JumpHeatSource Jump to:HydroInfo Jump

  19. Property:HydroSystem | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7Website JumpHeatSource Jump to:HydroInfo

  20. Ascent Hydro Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformation Ascension Parish,Ascent Hydro

  1. Ambient Hydro Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergy Information AmanaAmatitlanAmberley,Hydro

  2. PP-89-1 Bangor Hydro-Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-89-1 Bangor Hydro-Electric Company PP-89-1 Bangor Hydro-Electric Company Presidental permit authorizing Bangor Hydro-Electric Company to construc, operate and maintain electric...

  3. Thermo-hydro-chemical Predictive analysis for the drift-scale predictive heater test,

    E-Print Network [OSTI]

    Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John; Simmons, Ardyth

    1998-01-01

    Characterization Project Thermo-Hydro-Chemical Predictive90-1116 Berkeley, C A 94720 Thermo-Hydro-Chemical PredictiveVersion 1.0 Thermo-Hydro-Chemical Predictive Analysis for

  4. Biological interactions and hydro-climatic forcing of Atlantic menhaden stock

    E-Print Network [OSTI]

    Hilderbrand, Robert H.

    Biological interactions and hydro-climatic forcing of Atlantic menhaden stock recruitment NOAA and Chesapeake Bay Program in: ·· Evaluating roles of biological interactions and hydroEvaluating roles of biological interactions and hydro--climaticclimatic forcing onforcing on forage

  5. Optimierung eines hydro-thermischen Kraftwerks-systems unter Ungewi heit

    E-Print Network [OSTI]

    Römisch, Werner

    Optimierung eines hydro-thermischen Kraftwerks- systems unter Ungewi heit Dr. rer. nat. N. Growe Arbeit beschreiben wir ein stochastisches Modell fur den ko- stenoptimalen Einsatz eines hydro ein, entwickeln ein Losungsverfahren und validieren dies am Beispiel des hydro

  6. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    OPERATION OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BEDMaterial Using Self-Sustained Hydro- Gasification." [0011]the process, using a steam hydro-gasification reactor (SHR)

  7. Indiana Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Institutes for Water Resources at the federal level. Research Program Basic Information Title: Fiscal Year established a strong foundation and infrastructure for continuing to adapt modern information technologies: Jeff R. Wright Publication 1. None. #12;Fiscal Year 2000 Annual Institute Program for Indiana: Program

  8. Indiana University Department of Information and Library Science

    E-Print Network [OSTI]

    Indiana University

    Indiana University Department of Information and Library Science School of Informatics of Philosophy in Information Science -- Students matriculating after 5 May 2010 11 Course Requirements for Doctor of Philosophy in Information Science -- Students matriculating before 5 May 2010 12 Coursework 13

  9. Curriculum Support Maps for the Study of Indiana Coal

    E-Print Network [OSTI]

    Polly, David

    Curriculum Support Maps for the Study of Indiana Coal By Walt Gray Targeted Age: High SchoolMap to create geographic information systems (GIS) maps to demonstrate the distribution of coal mines within comprehension of the data presented to them. It is expected that students have studied the process of coal

  10. CONSIDER BEEKEEPING IN INDIANA Bill Fischang, Professor of Entomology

    E-Print Network [OSTI]

    Pittendrigh, Barry

    CONSIDER BEEKEEPING IN INDIANA Bill Fischang, Professor of Entomology drone queen worker. A colony is comprised of three distinct forms of adult bees; workers, queen and drones. Workers. The large, lumbering drones are produced in a colony only during the warm months. Drones are males whose

  11. Indiana Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    in the treatment of non-point source pollution. In addition to the purposes for which they were originallyIndiana Water Resources Research Center Annual Technical Report FY 2002 Introduction Research Program #12;Water Quality Management and Improvement in the Urban Setting Basic Information Title: Water

  12. Assimilating GRACE, hydrology and hydro-meteorology datasets for estimating

    E-Print Network [OSTI]

    Stuttgart, Universität

    1 Assimilating GRACE, hydrology and hydro-meteorology datasets for estimating monthly water storage from grace (M/t) #12;Datasets for assimilation: Geodesy 7 Power-law of the time-variable gravity field [mm/month] #12;Datasets for assimilation: Hydro-meteorology 9 Evapotranspiration (ETa) from era

  13. Managing the risks of operating a hydro playground

    SciTech Connect (OSTI)

    Bachman, G.D.; Blackburn, P.C. (Van Ness, Feldman Curtis, Washington, DC (United States))

    1992-04-01

    An integral part of most hydro projects is some recreational opportunity for the public. As a result, plant owners need to be aware of and manage their exposure to recreational liability. This article discusses liability and the measures that hydro plant owners can take to reduce their risk.

  14. MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES E. Ortego, A. Dazin, G. Caignaert, F. Colas, O. Coutier-Delgosha Abstract: Modelling of a hydro-pneumatic energy storage system is the main demand response strategy. 1 Introduction Energy storage is one of the most exciting solutions considered

  15. GE Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd...

    Open Energy Info (EERE)

    Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd Kvaerner Hangfa Jump to: navigation, search Name: GE Hydro Asia Co Ltd (formerly Kvaerner Power Equipment Co., Ltd...

  16. Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger Vehicle

    E-Print Network [OSTI]

    Li, Perry Y.

    Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger of Minnesota, Minneapolis, USA ABSTRACT Hydro-mechanical transmission (HMT) based hybrid hydraulic vehicle

  17. Advanced Manufacturing and Engineering Equipment at the University of Southern Indiana

    SciTech Connect (OSTI)

    Mitchell, Zane Windsor; Gordon, Scott Allen

    2014-08-04

    Department of Energy grant DE-SC0005231was awarded to the University of Southern Indiana for the purchase of Advanced Manufacturing and Engineering equipment.

  18. Non-equilibrium steady state in the hydro regime

    E-Print Network [OSTI]

    Pourhasan, Razieh

    2015-01-01

    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P = P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.

  19. Non-equilibrium steady state in the hydro regime

    E-Print Network [OSTI]

    Razieh Pourhasan

    2015-11-20

    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P = P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.

  20. Non-equilibrium steady state in the hydro regime

    E-Print Network [OSTI]

    Razieh Pourhasan

    2015-09-03

    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P = P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.

  1. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    applications including coal gasification, fer- tilizers fromin hydro-gasification reactions, such as coal and biomass,

  2. Formation of Hydro-acoustic Waves in Weakly Compressible Fluid Interacting with Viscous Weakly Compressible Seabed

    E-Print Network [OSTI]

    Kirby, James T.

    Formation of Hydro-acoustic Waves in Weakly Compressible Fluid Interacting with Viscous Weakly@udel.edu, giorgio.bellotti@uniroma3.it 1. Objective Enhancement of Tsunami Early Warning Systems (TEWS) Hydro/s) [2]. Study of the characteristics of hydro-acoustic waves generated by sudden sea bottom motion

  3. Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals

    E-Print Network [OSTI]

    Stuttgart, Universität

    1 Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals M. J and Hydro-meteorology Hydrology GRACE Hydro-meteorology RQ dt dS dt dMdS RETP . dt AH a #12;3 GRACE, times based signals #12;12 CCA on catchments based ­ GRACE and hydro-meteorology T GDGDGD T VUQ dt d

  4. White County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland: EnergyWexfordSouthValleyCity,Indiana: Energy

  5. Whitley County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:Meadow Lake, NewWhitesideIndiana: Energy Resources

  6. Warren Park, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana: Energy Resources Jump to:

  7. Washington County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana:Open

  8. Sullivan County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the Entire Country |Illinois:Indiana: Energy

  9. Hamilton County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERCInformationVirginia:HamblenIndiana: Energy

  10. Henry County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation,NavigationIndiana: Energy Resources Jump to:

  11. Rush County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan:Roxbury,Rush County, Indiana: Energy Resources Jump

  12. Scott County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheuco InternationalScott County, Arkansas: EnergyIndiana:

  13. Southern Indiana Gas & Elec Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to: navigation, search Name: Southern Indiana Gas

  14. Spencer County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to: navigation,SouthwoodJumpSpencer County, Indiana:

  15. Marshall County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois: EnergyWisconsin: Energy ResourcesIndiana: Energy

  16. Martin County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois: EnergyWisconsin:MarshfieldIndiana: Energy

  17. Randolph County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing Corp JumpRamRandolphIndiana: Energy

  18. Bartholomew County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation Bartholomew County, Indiana ASHRAE

  19. City of Hagerstown, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurchFontanelle, Iowa (UtilityHagerstown, Indiana (Utility

  20. Indiana Board of Licensure for Professional Geologists Application to take the Association of State Boards of Geology (ASBOG) Exam

    E-Print Network [OSTI]

    Polly, David

    15, 2015 the Indiana Geological Survey and LPG Program WILL NO LONGER PROCESS payments received by email, voicemail or fax. We kindly request you make payments online at http://igs.indiana.edu/LPG

  1. INDIANA UNIVERSITY GEO-PALEOANTHROPOLOGY FIELD COURSE IN TANZANIA G349/549 2015 APPLICATION FOR ADMISSION

    E-Print Network [OSTI]

    Polly, David

    INDIANA UNIVERSITY GEO-PALEOANTHROPOLOGY FIELD COURSE IN TANZANIA G349/549 2015 APPLICATION OF GEOLOGICAL SCIENCES INDIANA UNIVERSITY TANZANIA FIELD COURSE 1001 E. 10 th ST. BLOOMINGTON, IN 47405 USA #12;

  2. Superfund Record of Decision (EPA Region 5): Seymour Recycling Corporation site, Seymour, Indiana (second remedial action), September 1987. Final report

    SciTech Connect (OSTI)

    Not Available

    1987-09-30

    The Seymour Recycling Corporation (SRC) site, encompassing a fourteen-acre area, is approximately two miles southwest of Seymour, Indiana. SRC and its corporate predecessor, Seymour Manufacturing Company, processed, stored, and incinerated chemical wastes at the site from about 1970 to early 1980. The facility was closed when SRC failed to comply with a 1978 agreement with the State of Indiana to cease receiving wastes and to institute better waste-management practices. In 1980, several thousand drums were removed from the site by two potentially responsible parties (PRPs). In 1981, the U.S. EPA removed chemicals from tanks at the site and disposed of those wastes offsite. A 1982 Consent Decree with potential PRPs resulted in the removal, between December 1982 and January 1984, of approximately 50,000 drums, 100 storage tanks and the first foot of contaminated soil from about 75 percent of the site's surface. A Record of Decision, signed in September 1986, evaluated the stabilization of the ground water plume emanating from the site and selected the implementation of a plume stabilization system to extract, treat and discharge ground water to a waste water treatment plant.

  3. Rye Patch geothermal development, hydro-chemistry of thermal...

    Open Energy Info (EERE)

    Rye Patch geothermal development, hydro-chemistry of thermal water applied to resource definition Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Rye...

  4. Final Report - Wind and Hydro Energy Feasibility Study - June 2011

    SciTech Connect (OSTI)

    Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

    2011-06-17

    This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

  5. Gandhigiri in the Infosphere: A Novel Approach to Information Ethics VAIBHAV GARG, Indiana University

    E-Print Network [OSTI]

    Camp, L. Jean

    of information ethics is critical at a point when the number of information and communication technology (ICT0 Gandhigiri in the Infosphere: A Novel Approach to Information Ethics VAIBHAV GARG, Indiana University L. JEAN CAMP, Indiana University The interpretation of the terms `information' and `ethics

  6. THE HISTORY OF HUMAN DISTURBANCE IN FOREST ECOSYSTEMS OF SOUTHERN INDIANA

    E-Print Network [OSTI]

    conditions and influenced the frequency and intensity of disturbances, such as fire. The interplay THE HISTORY OF HUMAN DISTURBANCE IN FOREST ECOSYSTEMS OF SOUTHERN INDIANA Michael A. Jenkins1 Abstract.--The forests of southern Indiana have been shaped and defined by anthropogenic disturbance

  7. Evolving Einstein's Field Equations with Matter: The ``Hydro without Hydro'' Test

    E-Print Network [OSTI]

    Thomas W. Baumgarte; Scott A. Hughes; Stuart L. Shapiro

    1999-02-09

    We include matter sources in Einstein's field equations and show that our recently proposed 3+1 evolution scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravitational waveforms from strong-field sources dominated by longitudinal fields, like binary neutron stars: approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be evolved without having to re-solve the hydrodynamical equations (``hydro without hydro'').

  8. Assess the key physics that underpins high-hydro coupling-efficiency in NDCX-II experiments and high-gain heavy ion direct drive target designs using proven hydro codes like HYDRA

    E-Print Network [OSTI]

    Barnard, J. J.

    2010-01-01

    physics that underpins high-hydro coupling-efficiency in N Dtarget designs using proven hydro codes like H Y D R A . byF E targets, we have studied hydro and implosion efficiency

  9. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  10. Wayne County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensourceCentre Jump to:Wayland HotIndiana: Energy

  11. Wells County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to:Search YourIndiana: Energy Resources Jump

  12. Wabash County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village of Wellington,FL97-11 SEPAStorageWWTPCounty, Indiana:

  13. Howard County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville,Advanced ResearchHow canIndiana: Energy

  14. Greene County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon:CorpGreenburgh, New York:Georgia:Indiana:

  15. Harrison County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts: EnergySoftware IncHarmon,Tennessee:NewIndiana: Energy

  16. DeKalb County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota:DaylightingDeFrees FlumeIndiana:

  17. Decatur County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi: Energy Resources JumpDean,Indiana: Energy

  18. Fayette County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal Power StationIndiana: Energy Resources Jump to:

  19. Indiana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High Energy PhysicsScienceIndiana Regions National

  20. Indiana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High Energy PhysicsScienceIndiana Regions

  1. Shelby County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low EmissionTianhongKansas: EnergyShelby County,Indiana: Energy

  2. Meridian Hills, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump1.2619821°,Energy Information| OpenHills, Indiana:

  3. Montgomery County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation Montana Watershed1802095°, -82.5185837° ShowIndiana:

  4. Madison County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHKKemblaSolarMacoupinEnergyIdaho:Indiana:

  5. LaGrange County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville,LEDSGP/activitiesPlata Electric Assn,LaGrange County, Indiana:

  6. Indian Village, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. Water Res.:01 -India:OpenVillage, Indiana:

  7. Pike County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open EnergyPhoenicia,Creek, Ohio: EnergyGeorgia:Indiana:

  8. Pulaski County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility District No 2 JumpIndiana: Energy

  9. Putnam County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility District NoPutnam County,Indiana: Energy

  10. Noble County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: Energy ResourcesNiigataNiobraraNiteNobleIndiana:

  11. Parke County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View NewParatek Microwave IncParke County, Indiana: Energy

  12. Indiana Michigan Power Co (Michigan) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimenMaking Energy Efficiency RealIndiana Michigan Power Co

  13. South Bend, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin Jump to:SolkarSector ProgrammesREEEPBend, Indiana:

  14. Town of Brookston, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation PolicyTinnaBraman, Oklahoma (Utility Company)Indiana

  15. Town of Crane, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation PolicyTinnaBraman, OklahomaTown of Crane, Indiana

  16. Town of Ferdinand, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation PolicyTinnaBraman, OklahomaTown ofTownEstesIndiana

  17. Carroll County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:Fund forCarnegieIndiana: Energy Resources Jump

  18. Crawford County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama: Energy ResourcesVirginia:Georgia: EnergyIndiana:

  19. City of Williamsport, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to: navigation,Vineland, NewCity of Weimar,OhioIndiana

  20. Clay County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York:Clay County, Florida: EnergyIndiana: Energy

  1. Fort Wayne, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures JumpIndiana: Energy Resources Jump to:

  2. Indiana/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |source HistorypubIndiana/Wind Resources/Full

  3. Adams County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)dataSuccessfulAdairsville, Georgia:Indiana: Energy

  4. City of Jasper, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCuba City, WisconsinHartford,Jasper, Indiana (Utility

  5. City of Washington, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker,Georgia (Utility Company) Jump to:Indiana

  6. Indiana College Provides Training for Green Jobs | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation StandardsEnergy In2008 |of2013ReserveTribalIndiana

  7. Community Environmental Response Facilitation Act (CERFA) report, Fort Benjamin Harrison, Indiana. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Fort Benjamin Harrison (FBH) has been investigated by Arthur D. Little, Inc. under the Community Environmental Response Facilitation Act (CERFA). FBH is located 12 miles northeast of downtown Indianapolis, Indiana. The installation's mission includes administrative and training activities. The objective of CERFA is to expeditiously identify real property offering the greatest opportunity for immediate reuse and redevelopment. This investigation included interviews, visual inspections, and review of existing documents, regulatory records, data bases, and title documents. This information was used to divide the installation into four categories of parcels. CERFA parcels approximately 1,825 acres of the facility have no history of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) regulated hazardous substance or petroleum product release, disposal, or storage. CERFA parcels with qualifiers approximately 78 acres had no evidence of such release, disposal, or storage, but contained non-CERCLA hazards, such as asbestos or radon. CERFA disqualified parcels for approximately 399 acres of the investigated areas there is a history of release, disposal, or storage for one year or more of CERCLA-regulated hazardous substances or petroleum products; and CERFA excluded parcels approximately 201 acres have an existing mandate for retention by the federal government or have already been designated for transfer.

  8. Economic Impacts from Indiana's First 1,000 Megawatts of Wind Power

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Hauser, R.

    2014-08-01

    The magnitude of Indiana's available wind resource indicates that the development of wind power infrastructure has the potential to support millions of dollars of economic activity in the state. The Jobs and Economic Development Impact (JEDI) models, developed by the National Renewable Energy Laboratory, are tools used to estimate some of the economic impacts of energy projects at the state level. JEDI calculates results in the form of jobs, earnings, and economic output in three categories: project development and onsite labor, local revenue and supply chain, and induced impacts. According to this analysis, the first 1,000 MW of wind power development in Indiana (projects built between 2008 and 2011): supported employment totaling more than 4,400 full-time-equivalent jobs in Indiana during the construction periods; supports approximately 260 ongoing Indiana jobs; supported nearly $570 million in economic activity for Indiana during the construction periods; supported and continues to support nearly $40 million in annual Indiana economic activity during the operating periods; generates more than $8 million in annual property taxes; generates nearly $4 million annually in income for Indiana landowners who lease their land for wind energy projects.

  9. True Polar Wander: linking Deep and Shallow Geodynamics to Hydro-and Bio-Spheric Hypotheses

    E-Print Network [OSTI]

    True Polar Wander: linking Deep and Shallow Geodynamics to Hydro- and Bio-Spheric Hypotheses T. D on the bulk solid Earth over longer tirnescales 565 #12;566 Linking Deep and Shallow Geodynamics to Hydro

  10. Portland Company to Receive $1.3 Million to Improve Hydro Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies September 15, 2009 -...

  11. The SegHidro Experience: Using the Grid to Empower a Hydro-Meteorological Scientific Network

    E-Print Network [OSTI]

    Cirne, Walfredo

    The SegHidro Experience: Using the Grid to Empower a Hydro- Meteorological Scientific Network This paper describes our experience with SegHidro, a project that empowers hydro-meteorological researchers

  12. Hydro INTERNATIONAL | OCTOBER 2015 | 21 Figure 1: Bechevin Bay Inlet System.

    E-Print Network [OSTI]

    New Hampshire, University of

    Hydro INTERNATIONAL | OCTOBER 2015 | 21 FEATURE | Figure 1: Bechevin Bay Inlet System. Bechevin Bay, the derived bathymetry was limited to very shallow depths because of the sediment #12;| OCTOBER 2015 | Hydro

  13. Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation System

    E-Print Network [OSTI]

    Tarboton, David

    Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation Old Main Hill, Logan, UT, 84322-8200, USA Abstract: In this work, we used the Regional Hydro

  14. HESSD '98 17 Safety concerns at Ontario Hydro: The need for safety

    E-Print Network [OSTI]

    Lee, John D.

    HESSD '98 17 Safety concerns at Ontario Hydro: The need for safety management through incident of complex socio-technical systems Ontario Hydro -- one of the largest electrical utilities in North America

  15. Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay

    E-Print Network [OSTI]

    Gruner, Daniel S.

    Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay. The consequences for both the hydrology and 41 #12;42 HYDRO-ECOLOGIC RESPONSES TO LAND USE IN SMALL URBANIZING

  16. US Hydro 2011 Tampa, FL April 2528, 2011 1 On the Horizon

    E-Print Network [OSTI]

    New Hampshire, University of

    US Hydro 2011 Tampa, FL April 2528, 2011 1 On the Horizon: Better Bottom Detection for areas the eelgrass canopy and seafloor. #12;US Hydro 2011 Tampa, FL April 2528, 2011 2 Figure 1: Bottom detections

  17. Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual-to-decadal time scales

    E-Print Network [OSTI]

    Dippner, Joachim W.

    Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual Available online 3 March 2006 Abstract An examination of a wide spectrum of hydro

  18. ROOT LOCUS TECHNIQUE 323 7.6.1 Hydro Power Plant Experiment

    E-Print Network [OSTI]

    Gajic, Zoran

    ROOT LOCUS TECHNIQUE 323 7.6.1 Hydro Power Plant Experiment The design of a static controller for a real hydro power plant is considered in Skatariâ?? c and Gajiâ?? c (1992). The hydro power plant is treated variables of this hydro power plant are represented by x T = [1` 1! 1u f 1/ d 1/ q 1/ f 1/D 1/Q ] where 1

  19. ISIS Facility: Facility Design Challenges

    E-Print Network [OSTI]

    McDonald, Kirk

    ISIS Facility: Facility Design Challenges Matt Fletcher Head, Design Division ISIS Department, FNAL #12;ISIS -- neutrons Diamond -- X-rays #12;#12;· Lifetime · Reliable Operation · Flexibility

  20. 14 IEEE power & energy magazine july/august 2008 THE CONTRIBUTION OF HYDRO-

    E-Print Network [OSTI]

    Dixon, Juan

    14 IEEE power & energy magazine july/august 2008 T THE CONTRIBUTION OF HYDRO- power to modern%, with these differences reflecting respective economic devel- opment. Hydro contributes 17% of the total world electricity hand, the interna- tional antidam lobby demands that major hydro developments be stopped altogether

  1. Climate Change in Scotland: Impact on Mini-Hydro G.P. Harrison

    E-Print Network [OSTI]

    Harrison, Gareth

    be generated from wind, wave, biomass or small- or mini-hydro plant. Production from these resources some 300 MW is small hydro potential capable of producing energy at less than 7p/kWh (Garrad Hassan, 2001). Although many of the better sites for small and mini-hydro have already been developed

  2. Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate Ludovic Cassan1 Abstract: The article describes the hydraulic functioning of a mixed water level control hydro- mechanical of the model to reproduce the functioning of this complex hydro-mechanical system. CE database Subject headings

  3. A Study of the Hydro-Mechanical Behaviour of Compacted Crushed Argillite

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A Study of the Hydro-Mechanical Behaviour of Compacted Crushed Argillite C.S. Tang a, b , A and the microstruc- ture on the hydro-mechanical behaviour of the compacted crushed argillite have been in a strong effect of the grain size distribution on the hydro-mechanical behaviour and thus the close link

  4. Revue. Volume X n x/anne, pages 1 X Comportement thermo-hydro-mcanique

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Revue. Volume X ­ n° x/année, pages 1 à X Comportement thermo-hydro-mécanique (THM) d'un ouvrage en'évaluer les risques de la dégradation de la pierre dues aux couplages thermo-hydro-mécaniques qui conduisent à'année 2008 par une station météo aérienne située proche du château. Les analyses couplées thermo-hydro

  5. Hydro-Mechanical Loading and Compressibility of Fibrous Media for Resin Infusion Processes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Hydro-Mechanical Loading and Compressibility of Fibrous Media for Resin Infusion Processes P processes where hydro-mechanical coupling takes place depends on the validity of compressibility and permeability models. In this work, the computer code initially used to simulate the effect of coupled hydro

  6. A lattice-based query system for assessing the quality of hydro-ecosystems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A lattice-based query system for assessing the quality of hydro-ecosystems Agn`es Braud1 Cristina used for building a hierarchy of site pro- files which are annotated by hydro in the project. This paper presents an application of Galois lattices to the hydro-ecological domain, focussing

  7. Dimensionnement et gestion d'un systme de stockage thermique par hydro-accumulation : application la

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Dimensionnement et gestion d'un système de stockage thermique par hydro-accumulation : application de stockage thermique de type hydro-accumulation destiné à une chaufferie collective multi, mix-énergétique, stockage thermique, hydro-accumulation, dimensionnement optimal, gestion, graphe d

  8. Mod`ele Elements Finis d'un Pli Vocal Artificiel avec Couplage Hydro-elastique

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mod`ele El´ements Finis d'un Pli Vocal Artificiel avec Couplage Hydro-´elastique N. Hermanta , F formulation variationnelle du couplage hydro-élastique. Un premier calcul hyper-élastique simule le gonflement dans l'analyse modale des vibrations de petite amplitude du système hydro-élastique, permettant ainsi

  9. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs

    E-Print Network [OSTI]

    Victoria, University of

    Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management savings over time. As BC Hydro increases its DSM initiatives to meet the Clean Energy Act objective

  10. HYDRO-MECHANICAL UPSCALING OF A FRACTURED ROCKMASS USING A 3D NUMERICAL APPROACH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HYDRO-MECHANICAL UPSCALING OF A FRACTURED ROCKMASS USING A 3D NUMERICAL APPROACH Thoraval Alain & VERIFICATIONS A new upscaling method has been proposed by INERIS to determine the equivalent hydro mechanical network; 3DEC [Itasca Consulting Group, 1994; Damjanac, 1994] to make the hydro-mechanical computations. 2

  11. NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER

    E-Print Network [OSTI]

    NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER DEERFIELD RIVER The Office of Hydrology (HYDRO) of the National Weather Service (NWS) develops procedures for making river agencies, and conducts pertinent research and development. NOAA Technical Memorandums in the NWS HYDRO

  12. PHNOMNES DITS HYDRO-LECTRIQUES ET HYDROMAGNTIQUES; PAR M. C.-A. BJERKNES (1),

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    509 PHÉNOMÈNES DITS HYDRO-ÉLECTRIQUES ET HYDROMAGNÉTIQUES; PAR M. C.-A. BJERKNES (1), Professeur à corps hydro- électrisés s'attirent ou se repoussent, suivant que leurs vibrations sont concordantes ou- minuent en même temps). Un hydro-aimant, formé ou bien d'une splzère oscillante ou de deux pulsateurs

  13. An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage Edgardo D hydro station with pumping capacity. Economic profits and better operational features can be obtained of hydro storage used and the market characteristics and several options are compared in this study

  14. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOROF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOR F Iis fed into a hydro-gasifier reactor. One such process was

  15. Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries

    E-Print Network [OSTI]

    MacDonald, Mark

    Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries the con- trolled use of hybrid flow battery, thermal and hydro power plant system, to support wind power on range of thermal and hydro power plant reaction times. This work suggests that power and energy

  16. To: NW Hydro Association From: Dick Wanderscheid, Angus Duncan and Todd Reeve

    E-Print Network [OSTI]

    Memo To: NW Hydro Association From: Dick Wanderscheid, Angus Duncan and Todd Reeve Re: The Bonneville Environmental Foundation's comments on the draft hydro potential study BEF staff completed to address the larger, conceptual picture of the hydro potential in the region. In particular, we attempted

  17. Paper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive

    E-Print Network [OSTI]

    Van de Ven, James D.

    Paper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive Train with Independent Wheel of a passenger car. The developed hydro-mechanical drive train enables independent control of the torque at each for the Center for Compact and Efficient Fluid Power at the University of Minnesota. The hydro-mechanical hybrid

  18. Hydro-acoustic Wave Generation During the Tohoku-oki 2011 Earthquake A. Abdolali1

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Hydro-acoustic Wave Generation During the Tohoku-oki 2011 Earthquake A. Abdolali1 , James T. Kirby1 and hydro-acoustic wave fields, generated by the 2011 Tohoku-oki tsunamigenic event using a numerical model in deep water revealed the role of underlying layer on the formation of hydro- acoustic waves and carrying

  19. LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Submitted by

    E-Print Network [OSTI]

    Anderson, Charles W.

    THESIS LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Submitted by Tumenjargal Sukh 2012 All Rights Reserved #12;ABSTRACT LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Air the degree of change of Mongolian water resources. We find that herders' local knowledge of hydro

  20. Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new numerical scheme

    E-Print Network [OSTI]

    Moelders, Nicole

    ii Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new.S. Fairbanks, Alaska August 2005 #12;iii Abstract The Hydro-Thermodynamic Soil-Vegetation Scheme (HTSVS........................................................................................................................... 24 Evaluation of snow depth and soil temperatures predicted by the Hydro- Thermodynamic Soil

  1. Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS)

    E-Print Network [OSTI]

    Moelders, Nicole

    Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS) Pamela Spier, University of Alaska, Fairbanks, AK Abstract This paper presents an evaluation of the Hydro. Introduction and Motivation The Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS, Kramm et al. 1996, Mölders

  2. Author's personal copy Opportunities and barriers to pumped-hydro energy storage in the United States

    E-Print Network [OSTI]

    Jackson, Robert B.

    Author's personal copy Opportunities and barriers to pumped-hydro energy storage in the United available commercially for grid-tied electricity storage, pumped- hydro energy storage (PHES) and compressed resources, where energy storage becomes more and more important. Pumped-hydro energy storage (PHES

  3. ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE

    E-Print Network [OSTI]

    Li, Perry Y.

    ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE Teck Ping, Sim@me.umn.edu ABSTRACT This paper gives the dynamic analysis of a hydro- mechanical transmission (HMT) drive train passenger vehicle with a hydro-mechanical transmission (HMT) drive train with regeneration and indepen- dent

  4. PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM

    E-Print Network [OSTI]

    Römisch, Werner

    PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed hydro units. The variable ut i 2 f0;1g; i = 1;:::;I;t = 1;:::;T indicates whether the thermal unit i

  5. Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706

    E-Print Network [OSTI]

    Toussaint, Renaud

    Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706 PARTICIPANT ORGANIZATION NAME: CNRS Synthetic 2nd year report Related with Work Package............ HYDRO-THERMAL FLOW in the influence of a realistic geometry of the fracture on its hydro-thermal response. Several studies have

  6. POWER MANAGEMENT IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY BY LAGRANGIAN

    E-Print Network [OSTI]

    Römisch, Werner

    POWER MANAGEMENT IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY BY LAGRANGIAN RELAXATION NICOLE GR power in a hydro-thermal system under uncertainty in load, inflow to reservoirs and prices for fuel to successive decom- position into single thermal and hydro unit subproblems that are solved by dynamic

  7. Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2

    E-Print Network [OSTI]

    Kirby, James T.

    Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2 , James T of Civil Engineering, University of Roma Tre Low-frequency hydro-acoustic waves are precursors of tsunamis. Detection of hydro-acoustic waves generated due to the water column compression triggered by sudden seabed

  8. Hierarchical Control Strategy for a Hybrid Hydro-mechanical Transmission (HMT) Power-Train

    E-Print Network [OSTI]

    Li, Perry Y.

    Hierarchical Control Strategy for a Hybrid Hydro-mechanical Transmission (HMT) Power-Train Kai Loon a Hydro-mechanical Transmission (HMT) or power-split archi- tecture is being developed as a testbed within hybrid powertrain has a hydro- mechanical transmission (HMT) or power-split architecture. This combines

  9. Estimating runoff using hydro-geodetic approaches; assessment and comparison M. J. Tourian1

    E-Print Network [OSTI]

    Stuttgart, Universität

    Estimating runoff using hydro-geodetic approaches; assessment and comparison M. J. Tourian1 , C- drological balance equation, hydro-meteorological balance equation, least squares prediction using change from GRACE hydro-meteorological balance equation (Ratm) Ratm = - · Q - dM dt . · Q refers

  10. Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks

    E-Print Network [OSTI]

    California at Berkeley, University of

    1 Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks Stephen Dawson instances of point-to-point traffic. We present Hydro, a hybrid routing protocol that combines local agility. Evaluations across testbeds and deployments demonstrate the performance and functionality of Hydro across

  11. Constraints on the lake volume required for hydro-fracture through ice sheets

    E-Print Network [OSTI]

    Skemer, Philip

    Constraints on the lake volume required for hydro-fracture through ice sheets M. J. Krawczynski,1 M April 2009; published 16 May 2009. [1] Water-filled cracks are an effective mechanism to drive hydro to rapidly drive hydro-fractures through 1­1.5 km of subfreezing ice. This represents $98% of the meltwater

  12. Indiana: the history and archaeology of an early Great Lakes propeller 

    E-Print Network [OSTI]

    Robinson, David Stewart

    1999-01-01

    The early Great Lakes propeller Indiana was built as a combination passenger- and freight- carrying steam vessel in 1848 at Vermilion, Ohio by itinerant Lake Erie shipbuilder Joseph M. Keating. Over the span of its ten-year ...

  13. An SAIC Report Prepared for The Indiana Center for Coal Technology

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    ....................................................................................................................... 15 1.6.2 Implement advanced clean coal technologies for production of energy products ........ 15 An SAIC Report Prepared for The Indiana Center for Coal Technology Research Center for Coal Technology Research Submitted by: Science Applications International Corporation

  14. EA-0965: Cancer Research Center Indiana University School of Medicine, Argonne, Illinois

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of the proposal to construct and equip the proposed Cancer Research Center (CRC), which would be located on the Indianapolis campus of the Indiana...

  15. Low Infrastructure Hydro-Electric Power Generation Team Trevor Doney, Tyler Hogenson, Ginny Llewellyn, Dean Simmonds, Aaron Wernerehl

    E-Print Network [OSTI]

    van den Berg, Jur

    PowerPail Low Infrastructure Hydro-Electric Power Generation Team Trevor Doney, Tyler Hogenson near potential hydro-electric power generation sources. There are several disadvantages to hydro Pipe PowerPail http://mrenergy.co.in/run-of-river-hydro.html #12;

  16. Old Harbor Scammon Bay Hydro Feasibility

    SciTech Connect (OSTI)

    Brent Petrie

    2007-06-27

    The grantee, Alaska Village Electric Cooperative (AVEC), is a non-profit member owned rural electric generation and distribution cooperative. The proposed Project is located near the community of Old Harbor, Alaska. Old Harbor is on the southeastern coast of Kodiak Island, approximately 70 miles southwest of the City of Kodiak and 320 miles southwest of Anchorage. In 1998 sufficient information had been developed to apply for a license to construct the project and the cost was estimated to be $2,445,000 for a 500 KW project on Lagoon Creek. Major features of the project included an eight-foot high diversion dam on Mountain Creek, a desander box, a 9,800-foot long penstock to the powerhouse on Lagoon Creek, and a 5,500-foot long access road. It was also anticipated that the project could provide an additional source of water to Old Harbor. The report details the history and lessons learned in designing and permiting the proposed hydroelectric facility.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  19. Hydro-kinetic approach to relativistic heavy ion collisions

    E-Print Network [OSTI]

    Akkelin, S V; Karpenko, Iu A; Sinyukov, Yu M

    2008-01-01

    We develop a combined hydro-kinetic approach which incorporates hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support ...

  20. HydroNEXT Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., A High Pressure Company

  1. GRANULAR MICROBIAL HABITATS BUILT FROM IRON SULFIDES: ALTERNATIVE MICROBIAL LIFESTYLES? J. Schieber, Department of Geological Sciences, Indiana University, Bloomington, Indiana 47405,

    E-Print Network [OSTI]

    Schieber, Juergen

    @indiana.edu. Introduction: Concentrically zoned pyrite grains of sand to pebble size occur in shallow marine sandstones surface sediment. Cross-bedding and ripples in these sandstones indicate an energetic envi- ronment samples are from the lower Siyeh Formation, interbedded sandstones and carbona- ceous shales that were

  2. Hazardous waste cleanup and enforcement problems: Indiana. Hearing before a Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Seventh Congress, Second Session, June 1, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Seymour, Indiana was the scene of a one-day hearing on the Seymour Recycling facility, which was closed in 1980 because of improper handling of chemical wastes. Citizen concern centers on the fact that the Environmental Protection Agency (EPA) provided funds to study and plan a cleanup program, but no Superfund money was provided to carry out the plan to remove the threat of ground water contamination. Testifying at the hearing were 13 witnesses from the Seymour area and the EPA. The EPA response was that the problem rests with the state and local failure to match federal funds. (DCK)

  3. Groundwater recharge from Long Lake, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Isiorho, S.A.; Beeching, F.M. (Indiana Univ., Fort Wayne, IN (United States). Geosciences Dept.); Whitman, R.L.; Stewart, P.M. (National Park Services, Porter, IN (United States). Indiana Dunes National Lakeshore); Gentleman, M.A.

    1992-01-01

    Long Lake, located between Lake Michigan and the Dune-complexes of Indiana Dunes, was formed during Pleistocene and Holocene epochs. The lake is currently being studied to understand the detailed hydrology. One of the objective of the study is to understand the hydrologic relationship between the lake and a water treatment holding pond to the northeast. Understanding the water movement between the two bodies of water, if any, would be very important in the management and protection of nature preserves in the area. Seepage measurement and minipiezometric tests indicate groundwater recharge from Long Lake. The groundwater recharge rate is approximately 1.40 to 22.28 x 10[sup [minus]4] m/day. An estimate of the amount of recharge of 7.0 x 10[sup 6] m[sup 3]/y may be significant in terms of groundwater recharge of the upper aquifer system of the Dunes area. The water chemistry of the two bodies of water appears to be similar, however, the pH of the holding pond is slightly alkaline (8.5) while that of Long Lake is less alkaline (7.7). There appears to be no direct contact between the two bodies of water (separated by approximately six meters of clay rich sediment). The geology of the area indicates a surficial aquifer underlying Long Lake. The lake should be regarded as a recharge area and should be protected from pollutants as the degradation of the lake would contaminate the underlying aquifer.

  4. BC Hydro Brings Energy Savings to Low-Income Families in Canada...

    Broader source: Energy.gov (indexed) [DOE]

    the impact of rising electricity costs in Canada. ECAP provides qualified low-income BC Hydro residential account holders with a free home energy assessment; installation of...

  5. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    SciTech Connect (OSTI)

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  6. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  8. Pion correlations in hydro-inspired models with resonances

    E-Print Network [OSTI]

    W. Florkowski; W. Broniowski; A. Kisiel; J. Pluta

    2006-09-19

    The effects of the freeze-out hypersurface and resonance decays on the pion correlation functions in relativistic heavy-ion collisions are studied with help of the hydro-inspired models with single freeze-out. The heavy-ion Monte-Carlo generator THERMINATOR is used to generate hadronic events describing production of particles from a thermalized and expanding source. We find that the short-lived resonances increase the pionic HBT radii by about 1 fm. We also find that the pion HBT data from RHIC are fully compatible with the single freeze-out scenario provided a special choice of the freeze-out hypersurface is made.

  9. OpenHydro Group Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.InformationImprovements Oil and Gas JumpOpenHydro Group

  10. Northwest Hydro Operators Regional Forum (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThreeFebruaryMuseum LobbyThousandNorthern NewHydro Power

  11. Dhauladhar Hydro System Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergie Jump to:Dhauladhar Hydro

  12. Diebu Lazikou Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergie JumpDiebuLazikou Hydro

  13. City of Hart Hydro, Michigan (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth, IowaGraettinger,Harlan, Iowa (UtilityHydro, Michigan

  14. Birahi Ganga Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence Jump to: navigation, searchBirahi Ganga Hydro Power

  15. AD Hydro Power Ltd ADHPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo NewYanbu,Information onAD Hydro Power Ltd ADHPL

  16. Macaohe Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, search Name: Lyon-LincolnShichuangMacaohe Hydro Power

  17. Nagarjuna Hydro Energy Pvt Ltd NHEPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFE BateriasInternationalNTTEA-030-07-05NaWoTecHydro

  18. Paschim Hydro Energy Pvt Ltd PHEPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 ofAltos del Voltoya SA JumpPaschim Hydro

  19. Qingyang Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvTHuapengYulongQingyang Hydro

  20. Gowthami Hydro Electric Co P Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydro Electric Co P Ltd Jump to: navigation,

  1. Guangdong Huaiji Xinlian Hydro electric Power Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydroLegalAltoOlhoInformation Huaiji

  2. Guizhou Sanhe Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd JumpGuanh esInformationHydro Power

  3. Guizhou Yuefeng Hydro Power Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd JumpGuanhYuefeng Hydro Power

  4. Guizhou Zhenning Yuefeng Hydro Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd JumpGuanhYuefeng Hydro

  5. Hul Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring Tool JumpHuaningXinda BioPower CoHul Hydro

  6. Janapadu Hydro Power Project Pvt Ltd JHPPPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,JumpIAEA EnergyOxy CoalJanapadu

  7. Jiangshan Jinlong hydro power development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,JumpIAEAPvtJianJianqiao

  8. Jiangxi Jiangwan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar TechnologyAvon New EnergyJiangwan

  9. Jiangxi Province Ruijin City Liujinba Hydro Development Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar TechnologyAvon NewEnergy

  10. Jichuan Taiyang River Hydro Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun SolarLongjiangJiaozuo

  11. Jinxiu Guangneng Hydro Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:HuilunWaterInformation

  12. Kapil Mohan Associates Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuari SiliconEnergy

  13. Laifeng Najitan Hydro electric Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado: Energy Resources JumpLaidlaw

  14. Langao County Guangming Hydro Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado: EnergyLamartineEnergyInformation

  15. Ledong Xinyuan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado:EnergyLaorLaunchLeaLeawood,Ledong

  16. SBA Hydro Systems Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon Development | OpenGmbH JumpSBA Hydro Systems

  17. Shimen Zhangjiadu Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology Co LtdOhio:Zhangjiadu Hydro Power Co Ltd Jump to:

  18. Shizong Heier Hydro power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology Co LtdOhio:Zhangjiadu HydroShiv ShaktiShizong

  19. Sichuan Tianquan Qieshan Hydro Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower CoTianhe PowerQieshan Hydro

  20. Sichuan Xingchen Hydro Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower CoTianheXingchen Hydro

  1. V B Hydro Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility Rates API Version 2(RECP) inHydro

  2. HydroCoil Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergyHyEnergyHydroCoil Power Inc

  3. HydroGen Aquaphile sarl | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergyHyEnergyHydroCoil Power

  4. HydroGen Corporation formerly Chiste Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergyHyEnergyHydroCoil

  5. MHK Projects/Hydro Gen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon CoveHydro Gen < MHK

  6. Zhongda Sanchuan Hydro Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuanWindey WindZhongda Sanchuan Hydro Development

  7. Zhongjing Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuanWindey WindZhongda Sanchuan HydroZhongjing

  8. Cancer Research Center Indiana University School of Medicine

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Department of Energy (DOE) proposes to authorize the Indiana School of Medicine to proceed with the detailed design, construction and equipping of the proposed Cancer Research Center (CRC). A grant was executed with the University on April 21, 1992. A four-story building with basement would be constructed on the proposed site over a 24-month period. The proposed project would bring together, in one building, three existing hematology/oncology basic research programs, with improved cost-effectiveness through the sharing of common resources. The proposed site is currently covered with asphaltic pavement and is used as a campus parking lot. The surrounding area is developed campus, characterized by buildings, walkways, with minimal lawns and plantings. The proposed site has no history of prior structures and no evidence of potential sources of prior contamination of the soil. Environmental impacts of construction would be limited to minor increases in traffic, and the typical noises associated with standard building construction. The proposed CRC project operation would involve the use radionuclides and various hazardous materials in conducting clinical studies. Storage, removal and disposal of hazardous wastes would be managed under existing University programs that comply with federal and state requirements. Radiological safety programs would be governed by Nuclear Regulatory Commission (NRC) license and applicable Environmental Protection Agency (EPA) regulations. There are no other NEPA reviews currently active which are in relationship to this proposed site. The proposed project is part of a Medical Campus master plan and is consistent with applicable local zoning and land use requirements.

  9. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage

    SciTech Connect (OSTI)

    Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.; Stephenson, John R.; Pflugrath, Brett D.; Welch, Abigail E.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

    2012-02-01

    A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to the incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.

  10. Town of Advance, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities Biomass Facility Jump

  11. Town of Chalmers, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities Biomass FacilityTown of

  12. Hydro-kinetic approach to relativistic heavy ion collisions

    E-Print Network [OSTI]

    S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

    2008-08-28

    We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

  13. Earthquake design criteria for small hydro projects in the Philippines

    SciTech Connect (OSTI)

    Martin, P.P.; McCandless, D.H.; Asce, M.

    1995-12-31

    The definition of the seismic environment and seismic design criteria of more than twenty small hydro projects in the northern part of the island of Luzon in the Philippines took a special urgency on the wake of the Magnitude 7.7 earthquake that shook the island on July 17, 1990. The paper describes the approach followed to determine design shaking level criteria at each hydro site consistent with the seismic environment estimated at that same site. The approach consisted of three steps: (1) Seismicity: understanding the mechanisms and tectonic features susceptible to generate seismicity and estimating the associated seismicity levels, (2) Seismic Hazard: in the absence of an accurate historical record, using statistics to determine the expected level of ground shaking at a site during the operational 100-year design life of each Project, and (3) Criteria Selection: finally and most importantly, exercising judgment in estimating the final proposed level of shaking at each site. The resulting characteristics of estimated seismicity and seismic hazard and the proposed final earthquake design criteria are provided.

  14. MOMENT-FREQUENCY DISTRIBUTION USED AS A CONSTRAINT FOR HYDRO-MECHANICAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MOMENT-FREQUENCY DISTRIBUTION USED AS A CONSTRAINT FOR HYDRO-MECHANICAL MODELLING IN FRACTURE fractured rocks for EGS purposes is accompanied by microseismicity. From our numerical hydro are partly liberated and the resulting small sliding movements give rise to low frequency stress waves

  15. TOUR HYDROS.CH -Duba Hong-Kong-Singapore-Monaco-Brazil USA Records & conferences

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    ;· · · · 10 #12;· · · 11 #12;12 #12;13 #12;14 #12;15 #12;16 #12;VOILES DE SAINT- TROPEZ TOUR HYDROS.CH - Dubaï19-23 July 2016 Energy Efficiency Global Forum Washington May, 12-13 TOUR HYDROS.CH ­ Records

  16. Proposition de sujet de Thse de Doctorat Caractrisation multi chelle des proprits hydro-go-physiques des

    E-Print Network [OSTI]

    Naud Frédéric

    Proposition de sujet de Thèse de Doctorat Caractérisation multi échelle des propriétés hydro structurales et ainsi développer des méthodologies d'acquisition hydro-géo-physique en ce milieu complexe

  17. Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms

    E-Print Network [OSTI]

    Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro

  18. Formulaire de demande de bourse institutionnelle d'Hydro-Qubec Bourse de recrutement* OU Bourse de persvrance**

    E-Print Network [OSTI]

    Vellend, Mark

    Annexe B Formulaire de demande de bourse institutionnelle d'Hydro-Québec Bourse de recrutement* OU'étudiant : Montant de la bourse institutionnelle d'Hydro-Québec : 5 000 $ Montant de l

  19. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Academy of Sciences, Hefei, Anhui, P.R. China The Engineering Design of ARC: A Compact, High Field, Fusion Nuclear Science Facility and Demonstration Power Plant B. N....

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  1. Facility Name Facility Name Facility FacilityType Owner Developer...

    Open Energy Info (EERE)

    FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi...

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  5. Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V

    SciTech Connect (OSTI)

    Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

    1993-08-01

    Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

  6. DOES DAYLIGHT SAVING TIME SAVE ENERGY? EVIDENCE FROM A NATURAL EXPERIMENT IN INDIANA

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    DOES DAYLIGHT SAVING TIME SAVE ENERGY? EVIDENCE FROM A NATURAL EXPERIMENT IN INDIANA Matthew J to estimate the effect of daylight saving time (DST) on residential electricity consumption. Our main finding prompted temporary changes, when the Emergency Daylight Saving Time Energy Conservation Act of 1973 imposed

  7. School of Library and Information Science, Indiana University Bloomington Comparing Classification Systems using Facets

    E-Print Network [OSTI]

    Priss, Uta

    Uta Priss School of Library and Information Science, Indiana University Bloomington Comparing concept analysis and are used as 'ground' on which the underlying conceptual facets of a classification retrieval systems. #12;2. Methodology: Formal Concept Analysis and Facets Formal concept analysis (Ganter

  8. Lattice-based Information Retrieval School of Library and Information Science, Indiana University Bloomington,

    E-Print Network [OSTI]

    Priss, Uta

    Lattice-based Information Retrieval Uta Priss School of Library and Information Science, Indiana system, FaIR, that incorporates a graph- ical representation of a faceted thesaurus. It shows how Boolean called formal concept analysis (Ganter & Wille, 1999) but has not yet been widely applied to information

  9. Faceted Information Representation School of Library and Information Science, Indiana University Bloomington,

    E-Print Network [OSTI]

    Priss, Uta

    Faceted Information Representation Uta Priss School of Library and Information Science, Indiana the complete spectrum of every aspect of a population or topic in a "facet analysis". For example analysis (FCA) [3] and fields in relational databases. In each case, the notion of facets or whatever

  10. National Computational Infrastructure for Lattice Gauge Theory SciDAC-2 Closeout Report Indiana University Component

    SciTech Connect (OSTI)

    Gottlieb, Steven Arthur [Indiana University; DeTar, Carleton [University of Utah; Tousaint, Doug [University of Arizona

    2014-07-24

    This is the closeout report for the Indiana University portion of the National Computational Infrastructure for Lattice Gauge Theory project supported by the United States Department of Energy under the SciDAC program. It includes information about activities at Indian University, the University of Arizona, and the University of Utah, as those three universities coordinated their activities.

  11. Judy Loven, Animal Damage Managament Specialist Bats are among Indiana's most interesting and unique

    E-Print Network [OSTI]

    Pittendrigh, Barry

    chance of someone contacting a rabid bat, although the great majority of house-infesting bats in Indiana in caves, hollow trees and other natural shelters. A few species, however, commonly roost and breed within During the first warm days of spring, the brown bats leave their overwintering sites and enter structures

  12. SEDIMENT BUDGET ON THE INDIANA SHORE AT BURNS HARBOR, LAKE MICHIGAN

    E-Print Network [OSTI]

    US Army Corps of Engineers

    1 SEDIMENT BUDGET ON THE INDIANA SHORE AT BURNS HARBOR, LAKE MICHIGAN ANDREW MORANG1 , ASHLEY E.F.Bucaro@usace.army.mil Abstract: Net sediment transport in the littoral cell extending from Michigan City Harbor, IN, to Burns than most published previous estimates. The volume of sediment now bypassing the lakeward end

  13. Center for Data and Search Informatics School of Informatics Indiana University

    E-Print Network [OSTI]

    Plale, Beth

    Center for Data and Search Informatics School of Informatics Indiana University Research. Success in the area includes the recent funding of the PTI Data to Insight Center by the Lilly Foundation - People who work where the research is carried out ­ or, in the case of data center personnel, in close

  14. Big Data Use Cases and Requirements GEOFFREY FOX, Indiana University, School of Informatics and Computing

    E-Print Network [OSTI]

    Big Data Use Cases and Requirements GEOFFREY FOX, Indiana University, School of Informatics and Computing Co-Chair, Use Cases & Requirements Subgroup, NIST Big Data Public Working Group WO CHANG, National Institute of Standards and Technologies Co-Chair, NIST Big Data Public Working Group Abstract We formed

  15. Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production

    E-Print Network [OSTI]

    Cooperative Development Center has recently sponsored a study in wood residue for wood pellet production or wood waste biomass · Map Indiana's wood waste for each potential bioenergy supply chain · Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

  16. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  17. Associated Faculty Bidney, Martin P., Professor, PhD, 1971, Indiana

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    113 Associated Faculty Bidney, Martin P., Professor, PhD, 1971, Indiana University: 19th-century English literature, Russian literature, Blake. (1969) Coates, Carrol F., Professor, PhD, 1964, Yale), comparative literature. (1963) Okpewho, Isidore, Professor, PhD, 1976, University of Denver: Classics, African

  18. Alessi, James G. Physicist PHD 1979 Univ. of Pittsburgh Bai, Mei Physicist PHD 1999 Indiana Univ.

    E-Print Network [OSTI]

    Homes, Christopher C.

    DEGREE YEAR Alessi, James G. Physicist PHD 1979 Univ. of Pittsburgh Bai, Mei Physicist PHD 1999 Indiana Univ. Beavis, Dana Physicist PHD 1980 Univ. of California Riverside Beebe, Edward N. Physicist PHD 1990 Cornell Univ. Beebe-Wang, Joanne J. Physicist PHD 1994 Stockholm Univ. Belomestnykh, Sergey A

  19. TRT meeting Feb 03 Pauline Gagnon Indiana University 1 Acceptance tests for barrel modules

    E-Print Network [OSTI]

    Gagnon, Pauline

    tension 90% 80% 100% stringing 80% 100% not tested HV checks 100% 20% not done HV conditioning in design 20% not done gain mapping designed 100% not done #12;TRT meeting ­ Feb 03 Pauline Gagnon ­ Indiana Circulate ventilation through 3 modules: type 1,2 3 Active gas in series through 2 modules of the same type

  20. Congrs SHF : Environnement et Hydro-lectricit , Lyon,6 & 7 octobre 2010 Pigay, Aelbrecht, Beal RESTAURATION MORPHO-DYNAMIQUE ET

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Congrès SHF : « Environnement et Hydro-électricité », Lyon,6 & 7 octobre 2010 ­Piégay, Aelbrecht pour la protection contre les crues et la navigation, puis après la construction de barrages hydro deux projets est de définir un plan de restauration hydro-morphologique et écologique conduisant à la

  1. Hydro-economic models: Concepts, design, applications, and future prospects Julien J. Harou a,*, Manuel Pulido-Velazquez b

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Review Hydro-economic models: Concepts, design, applications, and future prospects Julien J. Harou of Frank Ward, Associate Editor Keywords: Hydro-economic models Integrated water resource management (IWRM and space will increasingly motivate efforts to address water scarcity and reduce water conflicts. Hydro

  2. Laboratory Hydro-mechanical Characterisation of Boom Clay at Essen and Mol Y. F. Deng1, 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Laboratory Hydro-mechanical Characterisation of Boom Clay at Essen and Mol Y. F. Deng1, 2 , A. M. In the present work, the hydro-mechanical behaviour of Boom clay samples from the borehole Essen-1 at a depth and hydro-mechanical behaviour of Boom clay from Essen at 227-m, 240-m and 248-m depths are similar

  3. A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir

    E-Print Network [OSTI]

    Boyer, Edmond

    A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR of New South Wales, Sydney 2052, Australia. Abstract The constitutive thermo-hydro-mechanical equations is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo-hydro

  4. Phenomene couple thermo-hydro-mecanique des roches fracturees: Recents developpements des methodes de modelisation et tests de validation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    95-54 Phenomene couple thermo-hydro-mecanique des roches fracturees: Recents developpements des methodes de modelisation et tests de validation Coupled thermo-hydro-mechanical phenomena in fractured fracture.La deuxiemequestion concemela modelisation des phenomenes couples thenno-hydro-mecaniques. L

  5. February 16-18, 2011 / Biel (Bienne), Switzerland Comparison between accelerated thermo-hydro aged wood and naturally

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    February 16-18, 2011 / Biel (Bienne), Switzerland Comparison between accelerated thermo-hydro aged Bois 3 DEISTAF ­ University of Florence, Italy Key words: accelerated aging, micro-mechanics, thermo-hydro]. It has been observed that similar degradation can be found in thermo-hydro (TH) treated wood [4]. The aim

  6. Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model and Computations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model In this paper we present the development of the macroscopic model describing the hydro-mechanical coupling) In this paper we present the macroscopic model describing the hydro-mechanical behaviour of such class

  7. La dynamique de communication entre Hydro-Qubec et les Innus dans le cadre du projet de la Romaine

    E-Print Network [OSTI]

    La dynamique de communication entre Hydro-Québec et les Innus dans le cadre du projet de la Romaine Fortin, 2014 #12;#12;iii Résumé Le mémoire porte sur la dynamique de communication entre Hydro-Québec et, composées dInnus et de représentants dHydro-Québec, et dont le rôle est de gérer les fonds. De plus, le

  8. Do phreatomagmatic eruptions at Ubehebe Crater (Death Valley, California) relate to a wetter than present hydro-climate?

    E-Print Network [OSTI]

    Christie-Blick, Nicholas

    present hydro-climate? Peri Sasnett,1,2 Brent M. Goehring,1,2,3 Nicholas Christie-Blick,1,2 and Joerg M the idea that volcanism may relate to a wetter than present hydro-climate. Twelve of the fifteen ages that eruptive timing relates to a wetter hydro-climate. Instead, the presence of a relatively shallow modern

  9. Town of Coatesville, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities Biomass FacilityTown ofTown of

  10. Hazardous-waste cleanup and enforcement problems: Indiana. Hearing before the Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Seventh Congress, Second Session, June 1, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Thirteen witnesses representing the private and public sectors testified at a Seymour, Indiana hearing on hazardous materials at the Seymour Recycling facility and efforts to clean up the site. The facility began operations in 1968, and was closed down in February of 1980; the Environmental Protection Agency (EPA) had discovered during 1978 that the company was not disposing of its chemical wastes properly. Local concerns focused on why the EPA efforts slowed noticeably in the spring of 1981 and whether the site qualifies for superfund financing. Spokesmen from EPA argued that the slowdown was due to inaction at the state level, but state representatives countered that the problem was a lack of state funds to match federal funding. Other witnesses pursued health and safety issues and the efforts Seymour citizens have made to gain relief. (DCK)

  11. EA-2017: Braddock Locks and Dam Hydro Electric Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is proposing to authorize the expenditure of federal funding to Hydro Green Energy, LLC to fabricate, install, and operate one interchangeable Modular Bulb Turbine (MBT) which would be inserted in a Large Frame Module (LFM) at the existing Braddock Locks and Dam. The installation would be part of a larger project that would include the design and installation of seven MBTs to create a 5.2 megawatt, low head hydropower system at Braddock Locks and Dam. An Environmental Assessment (EA) previously prepared by the Federal Energy Regulatory Commission (FERC) has been adopted by DOE pursuant to the requirements of the National Environmental Policy Act (NEPA).

  12. Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

  13. Design of a hydro-electric plant on the Mattawamkeag River

    E-Print Network [OSTI]

    Hazen, Daniel Francis

    1915-01-01

    stream_size 74828 stream_content_type text/plain stream_name hazen_1915_3424074.pdf.txt stream_source_info hazen_1915_3424074.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 DESIGN of a HYDRO... Engineering. June 5, 1915. DESIGN of a HYDRO-ELECTRIC PLANT on the MATTAWAMKBAG RIVER PREFACE This thesis•contains all the preliminary work necessary to show the feasibility of the construction and operation of a hydro-electric plant on the Mattawamkeag...

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  16. Town of Jamestown, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities Biomass

  17. Town of Straughn, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformation Sharpsburg,

  18. Facility Operations and Maintenance Facilities Management

    E-Print Network [OSTI]

    Capogna, Luca

    Facility Operations and Maintenance Facilities Management D101 Facilities Management R -575/affirmative action institution. 354 3 373 4 373A,B,C,D 4 Alm8/31/12 #12;Facility Operations and Maintenance, B 5 1409 5 1403 5 1403 A, B 4 1408 3 1408 A,B,C 3 1610 3 #12;Facility Operations and Maintenance

  19. A Geological and Hydro-Geochemical Study of the Animas Geothermal...

    Open Energy Info (EERE)

    A Geological and Hydro-Geochemical Study of the Animas Geothermal Area, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  20. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  1. Thermo-hydro-mechanical Analysis of Fractures and Wellbores in Petroleum/Geothermal Reservoirs 

    E-Print Network [OSTI]

    Safariforoshani, Mohammadreza

    2013-08-09

    The thesis considers three-dimensional analyses of fractures and wellbores in low-permeability petroleum/geothermal reservoirs, with a special emphasis on the role of coupled thermo-hydro-mechanical processes. Thermoporoelastic ...

  2. BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006) 

    E-Print Network [OSTI]

    Willis, P.; Wallace, K.

    2005-01-01

    BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000...

  3. Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray

    E-Print Network [OSTI]

    Hook, Andrew L.

    Atomic force microscopy has been applied to an acrylate polymer microarray to achieve a full topographic characterisation. This process discovered a small number of hydro-responsive materials created from monomers with ...

  4. Diagenetic features of Trenton Limestone in northern Indiana: petrographic evidence for Late (Mesogenetic) Dolostone

    SciTech Connect (OSTI)

    Fara, D.R.

    1986-08-01

    Three conventional cores of the entire Trenton section were examined in detail by in-depth visual description, analysis of more than 250 thin sections, scanning electron microscopy, and x-ray diffraction. The cores are located in the northern half of Indiana where they span the major dolostone pinch-out that is the trap for the prolific Trenton oil and gas field. The Trenton Limestone is completely dolomitized in northern Indiana. Dolostone abundance decreases to the south where the dolostone is restricted to the upper few feet of the formation. Two major types of dolostone are recognized. The top 5-20 ft of the Trenton cores consists of medium crystalline nonporous xenotopic ferroan dolostone. Mesogenetic dewatering of the overlying Maquoketa shale is the proposed dolomitizing mechanisms for this ferroan dolostone cap. Below the ferroan dolostone cap in northern Indiana is coarsely crystalline dolostone, which consists of thin intercalated subfacies of porous idiotopic and nonporous xenotopic dolostone. This is the dominant dolostone type and is the reservoir in the Trenton field. The coarsely crystalline dolostone postdates the ferroan dolostone cap, chert nodule formation, and initial pressure solution. Therefore, this dolostone is considered to have formed relatively late in the diagenetic history of the Trenton under mesogenetic conditions. In the northernmost core, nearly all of the secondary dolomitic porosity is plugged by poikilotopic gypsum and minor amounts of calcite and celestite. Other diagenetic features observed in Trenton are also discussed, including silicification, ferroan calcite cement, upper Trenton contact formation, hardgrounds, and pressure solution.

  5. Town of Kingsford Heights, Indiana (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities BiomassInformation Town of Kingsford

  6. Town of New Carlisle, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities BiomassInformationTown of New

  7. Town of Pittsboro, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy Facilities BiomassInformationTown ofTown of

  8. Town of South Whitley, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformation Sharpsburg, NorthSouth

  9. Jasper County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois: Energy

  10. Jay County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois:SouthLLCJavaJaxJay

  11. Boone County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass FacilityBluegrass RidgeBonnevilleBoondocks

  12. Hydro-Gravitational-Dynamics of Planets and Dark Energy

    E-Print Network [OSTI]

    Gibson, Carl H

    2008-01-01

    Self-gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and frag-ments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC on 0.03 Mpc galaxy accretion disks. Star deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates p...

  13. Ontario hydro integrated programs for plant design and construction

    SciTech Connect (OSTI)

    Oreskovich, J.P.; Somerville, R.L.

    1987-01-01

    Integrated programs for plant design and construction (IPPDC) is a 5-yr program at Ontario Hydro to optimize engineering and construction productivity through better use of computer technology. The proportion of computer programs operating with data derived from an integrated common data base is very low. IPPDC, on the other hand, is greatly concerned with this common data base. The goals of the IPPDC include improvement of the information flow for a project, minimization of site-discovered interferences, and compression of the entire project life cycle through the intelligent use of computer technology. This program focuses on the development of an integrated data base for plant design software systems to service a multi discipline engineering environment as required by a large-scale megaproject. To achieve the goals of IPPDC, there are three basic elements of computer technology that must be in place before a totally integrated data base system can be achieved: (1) data management; (2) networking; and (3) three-dimensional modeling.

  14. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  15. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules PrintNIF About BlogFacilities

  16. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture |GE PutsgovSitesMobile Facility AMF

  17. Hydro-Gravitational-Dynamics of Planets and Dark Energy

    E-Print Network [OSTI]

    Carl H. Gibson; Rudolph E. Schild

    2008-08-24

    Self-gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and frag-ments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC on 0.03 Mpc galaxy accretion disks. Star deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates produce white dwarfs that evaporate surrounding gas planets by spin-radiation to form planetary nebulae before Supernova Ia events, dimming some events to give systematic distance errors misinterpreted as the dark energy hypothesis and overestimates of the universe age. Failures of standard LCDM cosmological models reflect not only obsolete Jeans 1902 fluid mechanical assumptions, but also failures of standard turbulence models that claim the cascade of turbulent kinetic energy is from large scales to small. Because turbulence is always driven at all scales by inertial-vortex forces the turbulence cascade is always from small scales to large.

  18. Effects of coal fly-ash disposal on water quality in and around the Indiana Dunes National Lakeshore, Indiana. Water-resources investigations (final)

    SciTech Connect (OSTI)

    Hardy, M.A.

    1981-04-01

    Dissolved constituents in seepage from fly-ash settling ponds bordering part of the Indiana Dunes National Lakeshore (the Lakeshore) have increased trace elements, and gross alpha and gross beta radioactivity in ground water and surface water downgradient from the settling ponds. Data suggest that concentrations of some dissolved trace elements may be greater beneath interdunal pond 2 than in the pond. The soil system downgradient from the settling ponds seems to have affected the concentrations of dissolved ions in the settling-pond seepage. Calcium concentrations were greater in ground water downgradient from the settling ponds than in the ponds. Where organic material was present downgradient from the settling ponds, concentrations of arsenic, fluoride, molybdenum, potassium, sulfate, and strontium were greater in the ground water than in the ponds. In contrast, the concentrations of cadmium, copper, nickel, aluminum, cobalt, lead, and zinc were less.

  19. Landfill impacts on aquatic plant communities and tissue metal levels at Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Stewart, P.M. [National Biological Service, Porter, IN (United States). Lake Michigan Ecological Station; Scribailo, R.W. [Purdue Univ.North Central, Westville, IN (United States). Section of Biology and Chemistry

    1995-12-31

    One important environmental issue facing Northwest Indiana and park management at Indiana Dunes National Lakeshore (INOU) is the contamination of water, sediment and biota by persistent toxic substances. Aquatic plant communities were used to evaluate the water/organismal quality of the Grand Calumet Lagoons and two dunal ponds (pannes) at Gary, Indiana, which are partially located in the Miller Woods Unit of INDU. The lagoon is divided into several areas, the USX Lagoon is located between sections of a large industrial landfill (steel slag and other material). The Marquette Lagoon is located further away from the landfill and tends to be upgradient from the landfill. The West Panne (WP) is located next to the landfill, while the East Panne (EP) is separated from the landfill and the WP by a high dune ridge. Plant populations shift toward fewer submergent aquatics, with a higher abundance of tolerant taxa in the western section of the USX Lagoon. These differences are supported by cluster analysis. Heavy metals in root tissue of Scirpus americanus and other plant species from the pannes were significantly higher than those found in shoots. Shoot tissue metal levels in plants collected from the lagoons were higher than root tissue metal levels. The WP site has the most elevated tissue metal levels for most metals assayed, while the EP site shows similar contaminant levels. The plant distributions observed and tissue metal concentrations measured suggest that INDU`s aquatic plant community has been affected by the industrial landfill and that there exists a hydrological connection between the ponds.

  20. Development of HydroImage, A User Friendly Hydrogeophysical Characterization Software

    SciTech Connect (OSTI)

    Mok, Chin Man; Hubbard, Susan; Chen, Jinsong; Suribhatla, Raghu; Kaback, Dawn Samara

    2014-01-29

    HydroImage, user friendly software that utilizes high-resolution geophysical data for estimating hydrogeological parameters in subsurface strate, was developed under this grant. HydroImage runs on a personal computer platform to promote broad use by hydrogeologists to further understanding of subsurface processes that govern contaminant fate, transport, and remediation. The unique software provides estimates of hydrogeological properties over continuous volumes of the subsurface, whereas previous approaches only allow estimation of point locations. thus, this unique tool can be used to significantly enhance site conceptual models and improve design and operation of remediation systems. The HydroImage technical approach uses statistical models to integrate geophysical data with borehole geological data and hydrological measurements to produce hydrogeological parameter estimates as 2-D or 3-D images.

  1. Bartholomew County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation Bartholomew County, Indiana ASHRAE 169-2006

  2. BIG RU N INDIANA LAKESHORE RUN E LUMBER CIT Y WARSAW JOHNST

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101 (Million Short6RU N INDIANA LAKESHORE RUN

  3. BIG RU N INDIANA LAKESHORE RUN E LUMBER CIT Y WARSAW JOHNST

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101 (Million Short6RU N INDIANA LAKESHORE

  4. BIG RU N INDIANA LAKESHORE RUN E LUMBER CIT Y WARSAW JOHNST

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101 (Million Short6RU N INDIANA

  5. Protective Embolization of the Gastroduodenal Artery with a One-HydroCoil Technique in Radioembolization Procedures

    SciTech Connect (OSTI)

    Lopez-Benitez, R.; Hallscheidt, P.; Kratochwil, C.; Ernst, C.; Kara, L.; Rusch, O.; Vock, P.; Kettenbach, J.

    2013-02-15

    Protective occlusion of the gastroduodenal artery (GDA) is required to avoid severe adverse effects and complications in radioembolization procedures. Because of the expandable features of HydroCoils, our goal was to occlude the GDA with only one HydroCoil to provide particle reflux protection. Twenty-three subjects with unresectable liver tumors, who were scheduled for protective occlusion of the GDA before radioembolization therapy, were included. The primary end point was to achieve a proximal occlusion of the GDA with only one detachable HydroCoil. Evaluated parameters were duration of deployment, and early (during the intervention) and late (7-21 days) occlusion rates of GDA. Secondary end points included complete duration of the intervention, amount of contrast medium used, fluoroscopy rates, and adverse effects. In all cases, the GDA was successfully occluded with only one HydroCoil. The selected diameter/length range was 4/10 mm in 2 patients, 4/15 mm in 6 patients, and 4/20 mm in 15 patients. HydroCoils were implanted, on average, 3.75 mm from the origin of the GDA (range 1.5-6.8 mm), with an average deployment time of 2:47 (median 2:42, range 2:30-3:07) min. In 21 (91%) of 23 patients, a complete occlusion of the GDA was achieved during the first 30 min after the coil implantation; however, in all patients, a late occlusion of the GDA was present after 6 to 29 days. No clinical or technical complications were reported. We demonstrated that occlusion of the GDA with a single HydroCoil is a safe procedure and successfully prevents extrahepatic embolization before radioembolization.

  6. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  7. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect (OSTI)

    Milbrandt, A.; Mann, M.

    2009-02-01

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  8. HydroVenturi Ltd previously RV Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergyHyEnergyHydroCoilHydroVenturi

  9. Hydro-Pac Inc., A High Pressure Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., A High Pressure Company Hydro-Pac

  10. Ris Energy Report 5 Hydro, ocean and geothermal 4 This chapter gives an overview of the development of

    E-Print Network [OSTI]

    ), the UsA (306 TWh) and Norway (106 TWh). Large hydro remains one of the lowest-cost power tech- nologies restricted further growth in many countries. Large hydro supplied 16% of global electricity in 2004, down project on the west coast of south korea. Electricity will be generated by the seawater flowing into sihwa

  11. | November 2008 | Hydro iNterNatioNal14 Processing bathymetry and backscatter from four different multibeam echosounder systems for US

    E-Print Network [OSTI]

    New Hampshire, University of

    | November 2008 | Hydro iNterNatioNal14 Processing bathymetry and backscatter from four different margin and Gu lf of Alaska. #12;Hydro iNterNatioNal | November 2008 | 15 reference copies for the data

  12. Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas

    E-Print Network [OSTI]

    Dixon, Juan

    Abstract- Coal and hydro will be the main sources of electric energy in Chile for the near future and the environmental dilemma faced by the country, where both coal and hydro produce some kind of impact. The role

  13. Ecosystem level assessment of the Grand Calumet Lagoons, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Stewart, P.M. [National Biological Service, Porter, IN (United States)

    1995-12-31

    The Grand Calumet Lagoons make up the eastern section of the Grand Calumet River (GCR), Indiana Harbor and Ship Canal and nearshore Lake Michigan Area of Concern (AOC). The GCR AOC is the only one of the 42 Great Lakes Areas of Concern identified by the International Joint Commission with all 14 designated uses classified as impaired. Included within the boundaries of the Indiana Dunes National Lakeshore (INDU), is the central section of the Grand Calumet Lagoons. A number of biotic and abiotic factors were tested to determine the effects of an industrial landfill that borders the lagoons to assess the potential impact on park resources. Analysis included water quality testing, assessments of macroinvertebrate, fish, algae and aquatic plant communities and contaminant concentrations in water, sediment and plant and fish tissue. Surface water testing found very few contaminants, but significantly higher nutrient levels were found in the water column closest to the landfill. Macroinvertebrate, aquatic plant and fish communities all showed significant impairment in relationship to their proximity to the landfill. Aquatic plant growth habit became limited next to the landfill with certain growth habits disappearing entirely. Aquatic plants collected close to the landfill had high concentrations of several heavy metals in their stems and shoots. Using the index of biotic integrity (IBI), fish community assessment indicated impairment in the areas adjacent to the landfill. Sediments tested at one site had over 12% polycyclic aromatic hydrocarbons (PAH) and carp (Cyprinus carpio) collected from this site had whole fish tissue concentrations over 1 mg/kg PAH.

  14. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    SciTech Connect (OSTI)

    Caruthers, James; Dietz, J.; Pelter, Libby; Chen, Jie; Roberson, Glen; McGinn, Paul; Kizhanipuram, Vinodegopal

    2013-01-31

    The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college student electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.

  15. J. Fluid Mech. (2015), vol. 766, R1, doi:10.1017/jfm.2015.37 Depth-integrated equation for hydro-acoustic

    E-Print Network [OSTI]

    Kirby, James T.

    2015-01-01

    J. Fluid Mech. (2015), vol. 766, R1, doi:10.1017/jfm.2015.37 Depth-integrated equation for hydro-integrated equation for the mechanics of generation, propagation and dissipation of low-frequency hydro-acoustic waves the role of bottom dissipation on hydro-acoustic wave generation and propagation. Key words: compressible

  16. Virtues of simple hydro-economic optimization: Baja California, Mexico J. Medellin-Azuara a,*, L.G. Mendoza-Espinosa b

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Virtues of simple hydro-economic optimization: Baja California, Mexico J. Medelli´n-Azuara a,*, L in revised form 1 May 2009 Accepted 22 May 2009 Available online 26 June 2009 Keywords: Hydro-economic models simple hydro-economic optimization to investigate a wide range of regional water system management

  17. Hydro-climatology: Variability and Change (Proceedings of symposium J-H02 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 344, 2011).

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hydro-climatology: Variability and Change (Proceedings of symposium J-H02 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 344, 2011). Copyright © 2011 IAHS Press 195 How could hydro , L. COLLET2 , S. ARDOIN-BARDIN3 & P. ROUCOU4 1 CNRS, 2 UM2, 3 IRD ­ UMR HydroSciences Montpellier

  18. A FULLY COUPLED THERMO-HYDRO MECHANICAL ANALYSIS OF THE IMPACT OF TEMPERATURE AND HUMIDITY VARIATION ON THE STATE OF HISTORICAL STONE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A FULLY COUPLED THERMO-HYDRO MECHANICAL ANALYSIS OF THE IMPACT OF TEMPERATURE AND HUMIDITY Keywords: Thermo-hydro-mechanical coupling, modelling, inverse problem, tuffeau, monument, in situ measures initiation and growth due to the variation of climate conditions; thermo-hydro-mechanical incompatibility

  19. IEEE Transaction on Power Apparatus and Systems, Vol. PAS-103, No. 12, December 1984 EFFICIENT LARGE-SCALE HYDRO SYSTEM SCHEDULING WITH FORCED SPILL CONDITIONS

    E-Print Network [OSTI]

    Gross, George

    LARGE-SCALE HYDRO SYSTEM SCHEDULING WITH FORCED SPILL CONDITIONS Yoshiro Ikura George Gross Systems framework for the formulation and solution of large-scale hydro system scheduling problems (h.s.s.p.). We. INTRODUCTION The efficient utilization of hydro resources is of paramount importance in the planning

  20. Thesis proposal CSF Brazil 2014 Modelling of ecological services for the rivers quality from the hydro-morphological unit to the

    E-Print Network [OSTI]

    Bordenave, Charles

    the hydro-morphological unit to the scale of a watershed. Thesis supervisor: Sabine Sauvage E-mail address will consist of improving hydro-agro-environmental models that are used all over the world (the SWAT model-purification processes involved in Carbon and Nitrate transfer by integrating controlling factors such as hydro

  1. Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru)

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Toward hydro-social modeling: Merging human variables and the social sciences with climate mountain range, this paper provides a holistic hydro-social framework that identifies five major human of watershed dynamics. This hydro-social framework has wide- spread implications for hydrological modeling

  2. Eco-Hydro-Climate Science/Engineering in SESE Definition: An emerging frontier in Earth system science is the interaction of ecological,

    E-Print Network [OSTI]

    Rhoads, James

    Eco-Hydro-Climate Science/Engineering in SESE Definition: An emerging frontier in Earth system that are `retooled' to treat the coupled eco-hydro-climate system. Arid and semiarid regions (deserts) are a fruitful Southwest is thus an ideal laboratory for eco-hydro-climate studies and provides several case studies

  3. Long-term evaluation of the Hydro-Thermodynamic Soil-Vegetation Scheme's frozen ground/permafrost component using observations at

    E-Print Network [OSTI]

    Moelders, Nicole

    Long-term evaluation of the Hydro-Thermodynamic Soil-Vegetation Scheme's frozen ground/permafrost component of the hydro-thermodynamic soil-vegetation scheme (HTSVS) was evaluated by means of permafrost computational time. Citation: Mo¨lders, N., and V. E. Romanovsky (2006), Long-term evaluation of the Hydro

  4. Increased Ischemic Cardiac Deaths in Central Indiana in Summer Months Compared to Winter Months Shannon Cook1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    of death in the United States for several decades. Despite sustained declines in the mortality rates fromIncreased Ischemic Cardiac Deaths in Central Indiana in Summer Months Compared to Winter Months that the risk increases even in warm climates. Analyzing death certificates in seven regions with different

  5. Geophysical investigations of the Western Ohio-Indiana region. Final report, October 1986--September 1992: Volume 10

    SciTech Connect (OSTI)

    Ruff, L.; LaForge, R.; Thorson, R.; Wagner, T.; Goudaen, F. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Geological Sciences

    1994-01-01

    Earthquake activity in the Western Ohio-Indiana region has been monitored with a seismograph network consisting of nine stations located in west-central Ohio and four stations located in Indiana. Six local and regional earthquakes have been recorded from October 1990 to September 1992 with magnitudes ranging from 0.6 to 5.0. A total of 36 local and regional earthquakes have been recorded in the past 6-year period (October 1986 to September 1992). Overall a total of 78 local and regional earthquakes have been recorded since the network went into operation in 1977. There was a peak in seismicity in 1986, including the July 12, 1986 St. Marys` event (mb=4.5), followed by an anomalously low level of seismicity for about 2 years. The most unusual feature of the seismicity in the past.year is the occurrence of three earthquakes in Indiana. The locations of the felt earthquakes are scattered across central Indiana; an area that had been aseismic. Analysis of arrival time data accumulated over the past 14 years shows that the Anna region crustal structure is ``slower`` than the average mid-continent crustal structure. This implies that the proposed Keewenawan rift in the Anna region has a different structure than that of other Keewenawan rifts in the mid-continent.

  6. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  7. Hydro-geologic Investigation of the Fresh Water lens in a Small Rock Principle Investigators

    E-Print Network [OSTI]

    Rhode Island, University of

    Hydro-geologic Investigation of the Fresh Water lens in a Small Rock Principle Investigators Daniel W. Urish #12;Abstract Rose Island is a small rock island located in Narragansett Bay, Rhode Island Island is a small 18.5 acre rock island located in Narragansett Bay, Rhode Island (Fig. 1

  8. Policies to Promote Non-Hydro Renewable Energy in the United States and Selected Countries

    Reports and Publications (EIA)

    2005-01-01

    This article examines policies designed to encourage the development of non-hydro renewable energy in four countries - Germany, Denmark, the Netherlands, and Japan - and compares the policies enacted in each of these countries to policies that were used in the United States between 1970 and 2003.

  9. Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

  10. EIS-0141: Washington Water Power/B.C. Hydro Transmission Interconnection Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of constructing and operating a double-circuit 230-kilovolt electrical transmission line that would link the electrical systems of the Washington Water Power Company and the British Columbia Hydro and Power Authority.

  11. What does it take to create a clean energy future for Washington? Solar, Wind, Hydro

    E-Print Network [OSTI]

    Hochberg, Michael

    Flexible Solar Film Atomic Force Microscope Materials Science Molecule Polymers Nanostructured Solar Cells Solar, Wind, Hydro A Complete Energy System Home and Commercial Generation Demand Response 10-10 m 10 established the Clean Energy Institute to support science & engineering research that sustains Washington

  12. Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation of Real

    E-Print Network [OSTI]

    Harrison, Gareth

    . This will be contrasted in energy terms with the increase in dispatch available by operating more flexibly within extensions of the transmission network, mini- hydro schemes are often at the end of long open-ended radial of Real Power Export Aristides E. Kiprakis and A. Robin Wallace Institute for Energy Systems, University

  13. Energy and helicity preserving schemes for hydro-and magnetohydro-dynamics flows with symmetry

    E-Print Network [OSTI]

    Liu, Jian-Guo

    Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry, the scheme preserves both energy and he- licity identities numerically. This is achieved by recasting singularity for axisymmetric flows. The exact conservation of energy and helicity has effectively eliminated

  14. Pool boilup analysis using the TRANSIT-HYDRO code with improved vapor/liquid drag models. [LMFBR

    SciTech Connect (OSTI)

    Wigeland, R.A.; Graff, D.L.

    1984-01-01

    The TRANSIT-HYDRO computer code is being developed to provide a tool for assessing the consequences of transition phase events in a hypothetical core disruptive accident in an LMFBR. The TRANSIT-HYDRO code incorporates detailed geometric modeling on a subassembly-by-subassembly basis and detailed modeling of reactor material behavior and thermal and hydrodynamic phenomena. The purpose of this summary is to demonstrate the validity of the improved vapor/liquid momentum exchange models in the TRANSIT-HYDRO code for a prototypic experiment and describe some implications for transition phase scenarios.

  15. Organic geochemistry and correlation of Paleozoic source rocks and Trenton crude oils, Indiana

    SciTech Connect (OSTI)

    Guthrie, J. )

    1989-08-01

    Shale samples from four cores of the New Albany and Antrim Shales (Devonian) and from six cores of the Maquoketa Group (Ordovician), representing a broad geographic area of Indiana, have been analyzed for total organic carbon, total sulfur, pyrolysis yield (Rock-Eval), bitumen content, and illite crystallinity data. These data indicate that the New Albany, Antrim, and Maquoketa shales contain a sufficient quantity and quality of organic matter to be good petroleum source rocks. Bitumen ratios, Rock-Eval yields, gas chromatography of saturated hydrocarbons, and illite crystallinity data show that the Maquoketa shales have reached a higher level of thermal maturity than the New Albany and Antrim shales. The level of thermal maturity of the Maquoketa shales suggested a maximum burial depth considerably greater than the present depth.

  16. Treatment of contaminated waste-site runoff at the Seymour Recycling Site, Seymour, Indiana

    SciTech Connect (OSTI)

    Traver, R.P.

    1985-01-01

    The Environmental Emergency Response Unit (EERU) is the U.S. Environmental Protection Agency's (EPA) hazardous-material-spill response and control organization for situations where the use of complex cleanup equipment and techniques are required. EERU is engaged in the shakedown and field demonstration of protypical equipment and techniques developed under the direction and sponsorship of EPA's Hazardous Waste Engineering Research Laboratory (HWERL). In March 1983, EERU was requested by the EPA Region V On-Scene-Coordinator to provide an on-site water-treatment system at the Seymour Recycling Site, Seymour, Indiana, the largest uncontrolled waste site in the state. The system was to be on-site and operational by April 1983. A few of the limiting factors in choosing a system were speed of mobilization, plus short-term and intermittent use.

  17. Health assessment for Seymour Recycling Corporation, Seymour, Indiana, Region 5. CERCLIS No. IND040313017. Final report

    SciTech Connect (OSTI)

    Not Available

    1987-04-02

    The Seymour Recycling Corporation site (number 57 on the National Priorities List) is located approximately two miles southwest of Seymour, Indiana. From the very early 1970s to 1980, the site was operated as a processing center for waste chemicals. Distillation was the major method of product reclamation with as many as 11 columns operating simultaneously. Overall environmental monitoring has identified more than 70 contaminants on-site within soil and aquifer samples. The shallow and deep aquifers exhibit both on-site and off-site contamination. The existence of the surface clay cap and fencing to restrict access has removed direct contact as an exposure route for remaining on-site contaminants. The existence of the surface cap should also be preventing contaminant-laden dust from moving off-site.

  18. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  19. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  20. PROC. U.S. HYDRO. CONF., NEW ORLEANS, LA, 2628 MARCH, 2013 1 Distribution-Free, Variable Resolution Depth

    E-Print Network [OSTI]

    New Hampshire, University of

    PROC. U.S. HYDRO. CONF., NEW ORLEANS, LA, 26­28 MARCH, 2013 1 Distribution-Free, Variable to assess the results of the algorithm, typically on the small subset of data that really needs attention

  1. Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydro Models

    E-Print Network [OSTI]

    E. Baron; S. Bongard; David Branch; Peter H. Hauschildt

    2006-03-03

    We have performed detailed NLTE spectral synthesis modeling of 2 types of 1-D hydro models: the very highly parameterized deflagration model W7, and two delayed detonation models. We find that overall both models do about equally well at fitting well observed SNe Ia near to maximum light. However, the Si II 6150 feature of W7 is systematically too fast, whereas for the delayed detonation models it is also somewhat too fast, but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II 6150 line near maximum light and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydro model to fit the spectra of observed SNe Ia near maximum light.

  2. Facilities | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

  3. Hydro+Cascade, Flow, the Equation of State, Predictions and Data

    E-Print Network [OSTI]

    Teaney, D; Shuryak, E V

    2002-01-01

    A Hydro+Cascade model has been used to describe radial and elliptic flow at the SPS and successfully predicted the radial and elliptic flow measured by the both STAR and PHENIX collaborations . Furthermore, a combined description of the radial and elliptic flow for different particle species, restricts the Equation of State(EoS) and points towards an EoS with a phase transition to the Quark Gluon Plasma(QGP) .

  4. Quantifying Barotrauma Risk to Juvenile Fish during Hydro-turbine Passage

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Serkowski, John A.; Ebner, Laurie L.; Sick, Mirjam; Brown, Richard S.; Carlson, Thomas J.

    2014-03-15

    We introduce a method for hydro turbine biological performance assessment (BioPA) to bridge the gap between field and laboratory studies on fish injury and turbine engineering design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed hydro turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism (stressor) and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, engineers and biologists can identify the more-promising designs and operating conditions to minimize hydraulic conditions hazardous to passing fish. In this paper, the BioPA method is applied to estimate barotrauma induced mortal injury rates for Chinook salmon exposed to rapid pressure changes in Kaplan-type hydro turbines. Following the description of the general method, application of the BioPA to estimate the probability of mortal injury from exposure to rapid decompression is illustrated using a Kaplan hydro turbine at the John Day Dam on the Columbia River in the Pacific Northwest region of the USA. The estimated rates of mortal injury increased from 0.3% to 1.7% as discharge through the turbine increased from 334 to 564 m3/s for fish assumed to be acclimated to a depth of 5 m. The majority of pressure nadirs occurred immediately below the runner blades, with the lowest values in the gap at the blade tips and just below the leading edge of the blades. Such information can help engineers focus on problem areas when designing new turbine runners to be more fish-friendly than existing units.

  5. Turbulent Flow Effects on the Biological Performance of Hydro-Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-08-25

    The hydro-turbine industry uses Computational Fluid Dynamics (CFD) tools to predict the flow conditions as part of the design process for new and rehabilitated turbine units. Typically the hydraulic design process uses steady-state simulations based on Reynolds-Averaged Navier-Stokes (RANS) formulations for turbulence modeling because these methods are computationally efficient and work well to predict averaged hydraulic performance, e.g. power output, efficiency, etc. However, in view of the increasing emphasis on environmental concerns, such as fish passage, the consideration of the biological performance of hydro-turbines is also required in addition to hydraulic performance. This leads to the need to assess whether more realistic simulations of the turbine hydraulic environment ?those that resolve unsteady turbulent eddies not captured in steady-state RANS computations? are needed to better predict the occurrence and extent of extreme flow conditions that could be important in the evaluation of fish injury and mortality risks. In the present work, we conduct unsteady, eddy-resolving CFD simulations on a Kaplan hydro-turbine at a normal operational discharge. The goal is to quantify the impact of turbulence conditions on both the hydraulic and biological performance of the unit. In order to achieve a high resolution of the incoming turbulent flow, Detached Eddy Simulation (DES) turbulence model is used. These transient simulations are compared to RANS simulations to evaluate whether extreme hydraulic conditions are better captured with advanced eddy-resolving turbulence modeling techniques. The transient simulations of key quantities such as pressure and hydraulic shear flow that arise near the various components (e.g. wicket gates, stay vanes, runner blades) are then further analyzed to evaluate their impact on the statistics for the lowest absolute pressure (nadir pressures) and for the frequency of collisions that are known to cause mortal injury in fish passing through hydro-turbines.

  6. Buda-Lund hydro model and the elliptic flow at RHIC

    E-Print Network [OSTI]

    M. Csanad; T. Csorgo; B. Lorstad

    2004-02-12

    The ellipsoidally symmetric Buda-Lund hydrodynamic model describes naturally the transverse momentum and the pseudorapidity dependence of the elliptic flow in Au+Au collisions at $\\sqrt{s_{NN}} = 130$ and 200 GeV. The result confirms the indication of quark deconfinement in Au+Au collisions at RHIC, obtained from Buda-Lund hydro model fits to combined spectra and HBT radii of BRAHMS, PHOBOS, PHENIX and STAR.

  7. Better building: LEEDing new facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

  8. Computing Facilities Orientation

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Computing Facilities Orientation September, 2014 #12;Introductions Jason Simpson ­ Manager Computing Facilities Use Policy The Computing facilities are a shared resource for all Bren MESM students Respect the work environment of other students Protect the computer equipment and resources provided You

  9. GEOLOGIC CHARACTERIZATION AND CARBON STORAGE RESOURCE ESTIMATES FOR THE KNOX GROUP, ILLINOIS BASIN, ILLINOIS, INDIANA, AND KENTUCKY

    SciTech Connect (OSTI)

    Harris, David; Ellett, Kevin; Rupp, John; Leetaru, Hannes

    2014-09-30

    Research documented in this report includes (1) refinement and standardization of regional stratigraphy across the 3-state study area in Illinois, Indiana, and Kentucky, (2) detailed core description and sedimentological interpretion of Knox cores from five wells in western Kentucky, and (3) a detailed calculation of carbon storage volumetrics for the Knox using three different methodologies. Seven regional cross sections document Knox formation distribution and thickness. Uniform stratigraphic nomenclature for all three states helps to resolve state-to-state differences that previously made it difficult to evaluate the Knox on a basin-wide scale. Correlations have also refined the interpretation of an important sandstone reservoir interval in southern Indiana and western Kentucky. This sandstone, a CO2 injection zone in the KGS 1 Blan well, is correlated with the New Richmond Sandstone of Illinois. This sandstone is over 350 ft (107 m) thick in parts of southern Indiana. It has excellent porosity and permeability at sufficient depths, and provides an additional sequestration target in the Knox. The New Richmond sandstone interval has higher predictability than vuggy and fractured carbonates, and will be easier to model and monitor CO2 movement after injection.

  10. Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans

    E-Print Network [OSTI]

    Barbose, Galen

    2008-01-01

    geothermal, small hydro, and biomass contracts). Alsofor existing small hydro facilities and a contract with PPM

  11. DOE Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    periods 122015 Facility Mgmt 2009 http:www.hanford.govpage.cfmDOEORPContracts Marc McCusker 509-376-2760 Susan E. Bechtol 509-376-3388 Strategic Petroleum Reserve FE Dyn...

  12. UNIVERSITY OF WASHINGTON FINANCE & FACILITIES

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital, 2013 #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE · 3.15-mile

  13. Advanced Materials Facilities & Capabilites | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Building Battery Processing Facility Battery and Capacitor Test Facility Nuclear Analytical Chemistry and Isotopics Laboratories Manufacturing Manufacturing Demonstration...

  14. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  15. Poultry Facility Biosecurity 

    E-Print Network [OSTI]

    Carey, John B.; Prochaska, J. Fred; Jeffrey, Joan S.

    2005-12-21

    . When teamed with disinfection and sanitation pro - cedures, biosecurity practices can eradicate or reduce pathogens to noninfectious levels. Such preventive measures as vaccination and sero- logic monitoring also help ensure good f_lock health... economically, reducing production over the life of the facility without overt signs of disease. Once contaminated with pathogens, poultry facilities are extremely diff_icult and expensive to clean, sanitize and disinfect. Facility location and design...

  16. ARM Mobile Facilities

    SciTech Connect (OSTI)

    Orr, Brad; Coulter, Rich

    2010-12-13

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  17. ARM Mobile Facilities

    ScienceCinema (OSTI)

    Orr, Brad; Coulter, Rich

    2014-09-15

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  18. Presented by FACILITIES MANAGEMENT

    E-Print Network [OSTI]

    Meyers, Steven D.

    Presented by FACILITIES MANAGEMENT TRANSFORMING USF'S TAMPA CAMPUS SUMMER 2011 #12; WELCOME Facili:es Management #12; Facili:es Management #12; NEW CONSTRUCTION Facili

  19. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  20. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

    2005-11-30

    BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

  1. Texas Facilities Commission's Facility Management Strategic Plan 

    E-Print Network [OSTI]

    Ramirez, J. A.

    2009-01-01

    stream_source_info ESL-IC-09-11-12.pdf.txt stream_content_type text/plain stream_size 4735 Content-Encoding ISO-8859-1 stream_name ESL-IC-09-11-12.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Texas Facilities... Commission?s Facility Management Strategic Plan Jorge A. Ramirez Deputy Executive Director Building Operations & Plant Management ESL-IC-09-11-12 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17...

  2. Quantifying the Operational Benefits of Conventional and Advanced Pumped Storage Hydro on Reliability and Efficiency: Preprint

    SciTech Connect (OSTI)

    Krad, I.; Ela, E.; Koritarov, V.

    2014-07-01

    Pumped storage hydro (PSH) plants have significant potential to provide reliability and efficiency benefits in future electric power systems with high penetrations of variable generation. New PSH technologies, such as adjustable-speed PSH, have been introduced that can also present further benefits. This paper demonstrates and quantifies some of the reliability and efficiency benefits afforded by PSH plants by utilizing the Flexible Energy Scheduling Tool for the Integration of Variable generation (FESTIV), an integrated power system operations tool that evaluates both reliability and production costs.

  3. The centrality dependence of v2/epsilon: the ideal hydro limit and eta/s

    E-Print Network [OSTI]

    Masui, H; Snellings, R; Tang, A

    2009-01-01

    The large elliptic flow observed at RHIC is considered to be evidence for almost perfect liquid behavior of the strongly coupled quark-gluon plasma produced in the collisions. In these proceedings we present a two parameter fit for the centrality dependence of the elliptic flow scaled by the spatial eccentricity. We show by comparing to viscous hydrodynamical calculations that these two parameters are in good approximation proportional to the shear viscosity over entropy ratio and the ideal hydro limit of the ratio v2/epsilon.

  4. The centrality dependence of v2/epsilon: the ideal hydro limit and eta/s

    E-Print Network [OSTI]

    H. Masui; J-Y. Ollitrault; R. Snellings; A. Tang

    2009-09-25

    The large elliptic flow observed at RHIC is considered to be evidence for almost perfect liquid behavior of the strongly coupled quark-gluon plasma produced in the collisions. In these proceedings we present a two parameter fit for the centrality dependence of the elliptic flow scaled by the spatial eccentricity. We show by comparing to viscous hydrodynamical calculations that these two parameters are in good approximation proportional to the shear viscosity over entropy ratio and the ideal hydro limit of the ratio v2/epsilon.

  5. Analysis of closed-pool boilup using the TRANSIT-HYDRO code. [LMFBR

    SciTech Connect (OSTI)

    Graff, D.L.

    1983-01-04

    The benign termination of the transition phase of a hypothetical LMFBR accident rests on the avoidance of highly energetic recriticalities prior to escape of bottled molten core materials from the active core region. In scenarios where molten fuel is trapped due to axial blockages, the maintenance of subcritical configurations until radial flow paths develop requires stable boil-up of the molten fuel/steel mixture. This paper describes the analysis of an experiment investigating the behavior of closed boiling pools using the two-fluid hydrodynamics module of TRANSIT-HYDRO, a deterministic transition-phase analysis code.

  6. Jianyuan Hydro Power Development in Jianhe County Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun SolarLongjiang

  7. Jinxiu Yao Autonomous County Jinsheng Hydro Power Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:HuilunWaterInformationInformation

  8. MINERAL FACILITIES MAPPING PROJECT

    E-Print Network [OSTI]

    Gilbes, Fernando

    Questionnaires. Update the data that pertaining to MIT's contacts worldwide. #12;BOJNOURD CEMENT PLANT Location a database using the Structural Table of Mineral Industry, which includes the location of main mineral The mineral facilities database included: Type of facility: Mine (open pit, underground) Plant ( refineries

  9. Geophysical InversionFacility

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils · Geophysical Proveouts · Geonics EM63 Data · First model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility

  10. Nanotechnology User Facility for

    E-Print Network [OSTI]

    A National Nanotechnology User Facility for Industry Academia Government #12;In the NanoFab, you measurement and fabrication methods in response to national nanotechnology needs. www.nist.gov/cnst Robert) is the Department of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access

  11. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  12. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Accelerator Science and Technology Centre Daresbury Science)1235 445808 www.stfc.ac.uk/astec Head office, Science and Technology Facilities Council, Polaris House, North Newton Group, La Palma: Joint Astronomy Centre, Hawaii. ASTeC Science Highlights 2009 - 2010 Science

  13. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  14. Facility deactivation and demolition

    SciTech Connect (OSTI)

    Cormier, S.L.; Adamowski, S.J.

    1994-12-31

    Today an improperly closed facility can be a liability to its owner, both financially and environmentally. A facility deactivation program must be planned and implemented to decrease liabilities, minimize operating costs, seek to reuse or sell processes or equipment, and ultimately aid in the sale and/or reuse of the facility and property whether or not the building(s) are demolished. These programs should be characterized within the deactivation plan incorporating the following major categories: Utility Usage; Environmental Decontamination; Ongoing Facility Management; Property Management/Real Estate Issues. This paper will outline the many facets of the facility deactivation and demolition programs implemented across the country for clients in the chemical, automotive, transportation, electronic, pharmaceutical, power, natural gas and petroleum industries. Specific emphasis will be placed on sampling and analysis plans, specification preparation, equipment and technologies utilized, ``how clean is clean`` discussions and regulatory guidelines applicable to these issues.

  15. Hydro overview

    E-Print Network [OSTI]

    Ollitrault, Jean-Yves

    2014-01-01

    We review recent progress in applying relativistic hydrodynamics to the modeling of heavy-ion collisions at RHIC and LHC, with emphasis on anisotropic flow and flow fluctuations.

  16. Hydro overview

    E-Print Network [OSTI]

    Jean-Yves Ollitrault; Fernando G. Gardim

    2012-10-31

    We review recent progress in applying relativistic hydrodynamics to the modeling of heavy-ion collisions at RHIC and LHC, with emphasis on anisotropic flow and flow fluctuations.

  17. A genetic algorithm for solving the unit commitment problem of a hydro-thermal power system

    SciTech Connect (OSTI)

    Rudolf, A.; Bayrleithner, R.

    1999-11-01

    The paper presents a two layer approach to solve the unit commitment problem of a hydro-thermal power system. The first layer uses a genetic algorithm (GA) to decide the on/off status of the units. The second layer uses a non-linear programming formulation solved by a Lagrangian relaxation to perform the economic dispatch while meeting all plant and system constraints. In order to deal effectively with the constraints of the problem and prune the search space of the GA in advance, the difficult minimum up/down-time constraints of thermal generation units and the turbine/pump operating constraint of storage power stations are embedded in the binary strings that are coded to represent the on/off-states of the generating units. The other constraints are handled by integrating penalty costs into the fitness function. In order to save execution time, the economic dispatch is only performed if the given unit commitment schedule is able to meet the load balance, energy, and begin/end level constraints. The proposed solution approach was tested on a real scaled hydro-thermal power system over a period of a day in half-hour time-steps for different GA-parameters. The simulation results reveal that the features of easy implementation, convergence within an acceptable execution time, and highly optimal solution in solving the unit commitment problem can be achieved.

  18. Conservation Laws for Coupled Hydro-mechanical Processes in Unsaturated Porous Media: Theory and Implementation

    SciTech Connect (OSTI)

    Borja, R I; White, J A

    2010-02-19

    We develop conservation laws for coupled hydro-mechanical processes in unsaturated porous media using three-phase continuum mixture theory. From the first law of thermodynamics, we identify energy-conjugate variables for constitutive modeling at macroscopic scale. Energy conjugate expressions identified relate a certain measure of effective stress to the deformation of the solid matrix, the degree of saturation to the matrix suction, the pressure in each constituent phase to the corresponding intrinsic volume change of this phase, and the seepage forces to the corresponding pressure gradients. We then develop strong and weak forms of boundary-value problems relevant for 3D finite element modeling of coupled hydro-mechanical processes in unsaturated porous media. The paper highlights a 3D numerical example illustrating the advances in the solution of large-scale coupled finite element systems, as well as the challenges in developing more predictive tools satisfying the basic conservation laws and the observed constitutive responses for unsaturated porous materials.

  19. A Conceptual Approach to Two-Scale Constitutive Modelling For Hydro-Mechanical Coupling

    E-Print Network [OSTI]

    Giang D. Nguyen; Abbas El-Zein; Terry Bennett

    2014-06-05

    Large scale modelling of fluid flow coupled with solid failure in geothermal reservoirs or hydrocarbon extraction from reservoir rocks usually involves behaviours at two scales: lower scale of the inelastic localization zone, and larger scale of the bulk continuum where elastic behaviour can be reasonably assumed. The hydraulic conductivities corresponding to the mechanical properties at these two scales are different. In the bulk elastic host rock, the hydraulic conductivity does not vary much with the deformation, while it significantly changes in the lower scale of the localization zone due to inelastic deformation. Increase of permeability due to fracture and/or dilation, or reduction of permeability due to material compaction can take place inside this zone. The challenge is to predict the evolution of hydraulic conductivities coupled with the mechanical behaviour of the material in all stages of the deformation process. In the early stage of diffuse deformation, the permeability of the material can be reasonably assumed to be homogenous over the whole Representative Volume Element (RVE) However, localized failure results in distinctly different conductivities in different parts of the RVE. This paper establishes a general framework and corresponding field equations to describe the hydro-mechanical coupling in both diffuse and localized stages of deformation in rocks. In particular, embedding the lower scale hydro-mechanical behaviour of the localization zone inside an elastic bulk, together with their corresponding effective sizes, helps effectively deal with scaling issues in large-scale modelling. Preliminary results are presented which demonstrate the promising features of this new approach.

  20. BETHE-Hydro: An Arbitrary Lagrangian-Eulerian Multi-dimensional Hydrodynamics Code for Astrophysical Simulations

    E-Print Network [OSTI]

    Jeremiah W. Murphy; Adam Burrows

    2008-07-09

    In this paper, we describe a new hydrodynamics code for 1D and 2D astrophysical simulations, BETHE-hydro, that uses time-dependent, arbitrary, unstructured grids. The core of the hydrodynamics algorithm is an arbitrary Lagrangian-Eulerian (ALE) approach, in which the gradient and divergence operators are made compatible using the support-operator method. We present 1D and 2D gravity solvers that are finite differenced using the support-operator technique, and the resulting system of linear equations are solved using the tridiagonal method for 1D simulations and an iterative multigrid-preconditioned conjugate-gradient method for 2D simulations. Rotational terms are included for 2D calculations using cylindrical coordinates. We document an incompatibility between a subcell pressure algorithm to suppress hourglass motions and the subcell remapping algorithm and present a modified subcell pressure scheme that avoids this problem. Strengths of this code include a straightforward structure, enabling simple inclusion of additional physics packages, the ability to use a general equation of state, and most importantly, the ability to solve self-gravitating hydrodynamic flows on time-dependent, arbitrary grids. In what follows, we describe in detail the numerical techniques employed and, with a large suite of tests, demonstrate that BETHE-hydro finds accurate solutions with 2$^{nd}$-order convergence.

  1. Air-pollution injury on Pinus strobus in Indiana Dunes National Lakeshore - 1985 survey results. Final report

    SciTech Connect (OSTI)

    Sanchini, P.J.

    1986-10-01

    Visible symptoms of ozone injury were observed on 100% of the Eastern white pine trees (Pinus strobus) sampled in 1985 from permanent pine plots at Indiana Dunes National Lakeshore. Average injury was low and affected about 5% of the needle surface. Only 6% of the trees sampled had more than 10% injury. Fleck injury was the most common ozone symptom encountered, followed by tipburn and chlorotic mottle. Significant variation among plots existed in total ozone injury, chlorotic mottle, tipburn, and needle length. Symptoms of other injury types were observed on 9% of the needle surfaces of sampled trees.

  2. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  3. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  4. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Industrial facilities seeking...

  5. Honda: North American Manufacturing Facilities | Department of...

    Office of Environmental Management (EM)

    Honda: North American Manufacturing Facilities Honda: North American Manufacturing Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents &...

  6. Sandia Energy - About the Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility About the FacilityTara Camacho-Lopez2015-05-11T19:38:37+00:00 Test-Bed Wind Turbines Allow Facility Flexibility While Providing Reliable Data in Many Regimes SWiFT will...

  7. TRITIUM EXTRACTION FACILITY ALARA

    SciTech Connect (OSTI)

    Joye, BROTHERTON

    2005-04-19

    The primary mission of the Tritium Extraction Facility (TEF) is to extract tritium from tritium producing burnable absorber rods (TPBARs) that have been irradiated in a commercial light water reactor and to deliver tritium-containing gas to the Savannah River Site Facility 233-H. The tritium extraction segment provides the capability to deliver three (3) kilograms per year to the nation's nuclear weapons stockpile. The TEF includes processes, equipment and facilities capable of production-scale extraction of tritium while minimizing personnel radiation exposure, environmental releases, and waste generation.

  8. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  9. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  10. Pollution Control Facilities (South Carolina)

    Broader source: Energy.gov [DOE]

    For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

  11. Listing of Defense Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Mound Facility Fernald Environmental Management Project Site Pantex Plant Rocky Flats Environmental Technology Site, including the Oxnard Facility Savannah River Site Los...

  12. Facility Modernization Report

    SciTech Connect (OSTI)

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  13. Liquidity facilities and signaling

    E-Print Network [OSTI]

    Arregui, Nicolás

    2010-01-01

    This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

  14. User Facilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prior to granting access to a user facility. User Office User Program Manager Laura Morris Edwards 865.574.2966 Email User Office User Office User Program Manager Laura Morris...

  15. Photovoltaic Research Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  16. Facilities Management Mike Johnson

    E-Print Network [OSTI]

    Capogna, Luca

    , Design & Construction Services Bob Beeler Director, Facility Operations & Maintenance / Environmental Health & Safety Ron Edwards Director, Utility Operations & Maintenance Scott Turley Director, Business & Distribution Utility Plant Operations Water Treatment Zone C Utility Maintenance (HEAT) Power Distribution

  17. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  18. Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell for the Painter Greenhouses must be generated through Shane Merrell. Keep doors locked at all times. Repairs

  19. Shallow ground-water flow, water levels, and quality of water, 1980-84, Cowles Unit, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Cohen, D.A.; Shedlock, R.J.

    1986-01-01

    The Cowles Unit of Indiana Dunes National Lakeshore in Porter County, northwest Indiana, contains a broad dune-beach complex along the southern shoreline of Lake Michigan and a large wetland, called the Great Marsh, that occupies the lowland between the shoreline dunes and an older dune-beach complex farther inland. Water levels and water quality in the surficial aquifer were monitored from 1977 to 1984 near settling ponds on adjacent industrial property at the western end of the Cowles Unit. Since 1980, when the settling pond bottoms were sealed, these intradunal lowlands contained standing water only during periods of high snowmelt or rainfall. Water level declines following the cessation of seepage ranged from 6 feet at the eastern-most settling pond to nearly 14 feet at the western-most pond. No general pattern of water table decline was observed in the Great Marsh or in the shoreline dune complex at distances > 3,000 ft east or north of the settling ponds. Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground-water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow groundwater in areas unaffected by settling pond seepage. 11 refs., 10 figs., 1 tab.

  20. Optimal electricity system planning in a large hydro jurisdiction: Will British Columbia soon become a major importer of electricity?

    E-Print Network [OSTI]

    Pedersen, Tom

    or part of 14 western states in the USA and a small portion of North Mexico. Electricity trade withinOptimal electricity system planning in a large hydro jurisdiction: Will British Columbia soon become a major importer of electricity? Behdad Kiani a,b,n , Andrew Rowe a , Peter Wild a , Lawrence Pitt