National Library of Energy BETA

Sample records for hydro electric project

  1. ENVIRONMENTAL ASSESSMENT FOR Braddock Locks and Dam Hydro Electric Project

    Office of Environmental Management (EM)

    ASSESSMENT FOR Braddock Locks and Dam Hydro Electric Project (DOE/EA-2017) U.S. Department of Energy Office of Energy Efficiency and Renewable Energy October 2015 Environmental Assessment for Braddock Lock and Dam Hydro Electric Project (DOE/EA-2017) SUMMARY The Federal Energy Regulatory Commission (FERC) issued a notice of availability on June 13, 2014 for the Final Environmental Assessment for FERC Project No. 13739-002 - Braddock Locks and Dam Hydroelectric project. The FERC licensed project

  2. Huaiji County Huilian Hydro electric Group Company Limited |...

    Open Energy Info (EERE)

    Zip: 526400 Sector: Hydro Product: Hydro-electric project designer, constructor, and maintenance service provider. CLP Holding has 25% ownership of Huilian Hydro-electric....

  3. EA-2017: Braddock Locks and Dam Hydro Electric Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is proposing to authorize the expenditure of federal funding to Hydro Green Energy, LLC to fabricate, install, and operate one interchangeable Modular Bulb Turbine (MBT) which would be inserted in a Large Frame Module (LFM) at the existing Braddock Locks and Dam. The installation would be part of a larger project that would include the design and installation of seven MBTs to create a 5.2 megawatt, low head hydropower system at Braddock Locks and Dam. An Environmental Assessment (EA) previously prepared by the Federal Energy Regulatory Commission (FERC) has been adopted by DOE pursuant to the requirements of the National Environmental Policy Act (NEPA).

  4. EA-2017: Braddock Locks and Dam Hydro Electric Project | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Energy (DOE) is proposing to authorize the expenditure of federal funding to Hydro Green Energy, LLC to fabricate, install, and operate one interchangeable Modular Bulb Turbine...

  5. FCRPS Hydro Projects (generation/hydro)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydro Power FCRPS Hydro Projects FCRPS Information Kiosk Current Hydrological Info Fish Funding Agreement FCRPS Definitions Wind Power Monthly GSP BPA White Book Dry Year...

  6. Kootznoowoo Incorporated: 1+ MW Thayer Creek Hydro-electric Development Project

    Office of Environmental Management (EM)

    Presentation Kootznoowoo Incorporated 1+ MW Thayer Creek Hydro-electric Development Project Peter Naoroz General Manager Kootznoowoo, Inc. Final Design Grant No Construction Previous work done by HDR, Alaska Cost Reduction  Angoon Community Association  City of Angoon  Sealaska Corporation  Central Council of Tlingit and Haida Indian Tribes of Alaska  Inside Passage Electrical Cooperative  Our Neighboring Communities  Our First Nation Brothers and Sisters  DOE, USDA FS,

  7. Ascent Hydro Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ascent Hydro Projects Ltd Jump to: navigation, search Name: Ascent Hydro Projects Ltd. Place: Pune, Maharashtra, India Zip: 411007 Sector: Hydro Product: Pune-based small hydro...

  8. Hydro-electric generator

    SciTech Connect (OSTI)

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.

  9. V B Hydro Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydro Projects Ltd Jump to: navigation, search Name: V. B. Hydro Projects Ltd. Place: Pathankot, Punjab, India Zip: 145001 Sector: Hydro Product: Pathankot-based small hydro...

  10. Shri Shashi Hydro Electric Power P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shri Shashi Hydro Electric Power P Ltd Jump to: navigation, search Name: Shri Shashi Hydro Electric Power (P) Ltd. Place: Mandi, Himachal Pradesh, India Zip: 174401 Sector: Hydro...

  11. Yu County Hydro electric Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    County Hydro electric Power Co Ltd Jump to: navigation, search Name: Yu County Hydro-electric Power Co., Ltd. Place: Shaanxi Province, China Zip: 45100 Sector: Hydro Product:...

  12. Gowthami Hydro Electric Co P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydro Electric Co P Ltd Jump to: navigation, search Name: Gowthami Hydro Electric Co. (P) Ltd. Place: Secunderabad, Andhra Pradesh, India Zip: 500 003 Sector: Hydro Product:...

  13. Janapadu Hydro Power Project Pvt Ltd JHPPPL | Open Energy Information

    Open Energy Info (EERE)

    Janapadu Hydro Power Project Pvt Ltd JHPPPL Jump to: navigation, search Name: Janapadu Hydro Power Project Pvt. Ltd.(JHPPPL) Place: Andhra Pradesh, India Zip: 522005 Sector: Hydro...

  14. Reynolds Ceek Hydro Project

    Energy Savers [EERE]

    Reynolds Creek Hydroelectric Project Project Status October 28, 2010 By : Alvin Edenshaw, President Haida Corporation and Haida Energy, Inc. Haida Corporation  Located in Hydaburg on Prince of Wales Island in SE Alaska  Hydaburg population = 350 people (called Kaigani Haida)  Hydaburg is largest Haida Village in Alaska  Subsistence and Commercial Fishing Lifestyle  Substantial Timber Holdings  Hydaburg has Excellent School System October 28, 2009 2 Haida Energy, Inc.  Joint

  15. Luding County Tianding Hydro Electricity Development Co Ltd ...

    Open Energy Info (EERE)

    Luding County Tianding Hydro Electricity Development Co Ltd Jump to: navigation, search Name: Luding County Tianding Hydro Electricity Development Co. Ltd Place: Ganzi zhou,...

  16. Zhaojue County Zhuhe Hydro Electricity Development Co Ltd | Open...

    Open Energy Info (EERE)

    Zhaojue County Zhuhe Hydro Electricity Development Co Ltd Jump to: navigation, search Name: Zhaojue County Zhuhe Hydro Electricity Development Co. Ltd. Place: China Zip: 627850...

  17. Longsheng Gezu Autonomous County Xinglong Hydro electricity Co...

    Open Energy Info (EERE)

    Xinglong Hydro electricity Co Ltd Jump to: navigation, search Name: Longsheng Gezu Autonomous County Xinglong Hydro-electricity Co., Ltd. Place: Guilin, Guangxi Autonomous Region,...

  18. Guangdong Huaiji Xinlian Hydro electric Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Huaiji Xinlian Hydro electric Power Co Ltd Jump to: navigation, search Name: Guangdong Huaiji Xinlian Hydro-electric Power Co., Ltd. Place: Guangdong Province, China Zip: 526400...

  19. Wanyuan Baiyangxi Hydro electric Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Wanyuan Baiyangxi Hydro electric Power Development Co Ltd Jump to: navigation, search Name: Wanyuan Baiyangxi Hydro-electric Power Development Co., Ltd Place: Wanyuan, Sichuan...

  20. Xuan en Zhongneng Hydro electric Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xuan en Zhongneng Hydro electric Development Co Ltd Jump to: navigation, search Name: Xuan'en Zhongneng Hydro-electric Development Co., Ltd. Place: Enshi, Hubei Province, China...

  1. Pengshui Haitian Hydro electric Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Haitian Hydro electric Development Co Ltd Jump to: navigation, search Name: Pengshui Haitian Hydro-electric Development Co., Ltd. Place: Pengshui County, Chongqing Municipality,...

  2. Yunnan Hualian Maguan Hydro Electric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hualian Maguan Hydro Electric Co Ltd Jump to: navigation, search Name: Yunnan Hualian Maguan Hydro-Electric Co., Ltd. Place: Maguan County, Yunnan Province, China Zip: 663700...

  3. Laifeng Najitan Hydro electric Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Laifeng Najitan Hydro electric Development Co Ltd Jump to: navigation, search Name: Laifeng Najitan Hydro-electric Development Co., Ltd. Place: Hubei Province, China Zip: 445703...

  4. Hubei Yichang Tianyuan Hydro electric Development Co Ltd | Open...

    Open Energy Info (EERE)

    Tianyuan Hydro electric Development Co Ltd Jump to: navigation, search Name: Hubei Yichang Tianyuan Hydro-electric Development Co., Ltd. Place: Yichang, Hubei Province, China Zip:...

  5. Brigham City Hydro Generation Project

    SciTech Connect (OSTI)

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and the U.S. Fish and Wildlife Services (USFWS) concurring with the National Environmental Policy Act of 1969 (NEPA) It was determined that Brigham City’s Upper Hydroelectric Power Plant upgrade would have no effect to federally listed or candidate species. However Brigham City has contributed a onetime lump sum towards Bonneville cutthroat trout conservation in the Northern Bonneville Geographic Management Unit with the intention to offset any impacts from the Upper Hydro Project needed to move forward with design and construction and is sufficient for NEPA compliance. No work was done in the river or river bank. During construction, the penstock was disconnected and water was diverted through and existing system around the powerhouse and back into the water system. The penstock, which is currently a 30-inch steel pipe, would be removed and replaced with a new section of 30-inch pipe. Brigham City worked with the DOE and was awarded a new modification and the permission to proceed with Phase III of our Hydro Project in Dec. 2013; with the exception to the modification of the award for the construction phase. Brigham City developed and issued a Request for Proposal for Engineer and Design vendor. Sunrise Engineering was selected for the Design and throughout the Construction Phase of the Upper Hydroelectric Power Plant. Brigham City conducted a Kickoff Meeting with Sunrise June 28, 2013 and received a Scope of Work Brigham City along with engineering firm sent out a RFP for Turbine, Generator and Equipment for Upper Hydro. We select Turbine/Generator Equipment from Canyon Industries located in Deming, WA. DOE awarded Brigham City a new modification and the permission to proceed with Phase III Construction of our Hydro Project. Brigham City Crews removed existing turbine/generator and old equipment alone with feeder wires coming into the building basically giving Caribou Construction an empty shell to begin demolition. Brigham City contracted with Caribou Construction from Jerome, Idaho for the Upper Power Plant construction. A kickoff meeting was June 24, 2014 and demolition was immediately started on building. Because of a delivery delay of Turbine, Generator and Equipment from Canyon Brigham City had to request another extension for the final date of completion. DOE awarded modification (.007) to Brigham City with a new completion date of August 1, 2015. The Turbine has had a few adjustments to help with efficiency; but the Generator had a slight vibration when generator got hot so Canyon Industries had U S Motor’s that manufactured the generator come to check out the issue. The other Equipment seems to be running normal. Brigham City, Sunrise Engineering and Canyon Industries met to determine what the vibration in the generator was and how to solve the issue Us Motor’s found some welds that failed: they have been repaired. U S Motor’s delivered the repaired generator Feb. 17, 2015. Canyon Industries arranged for a crane to installed generator in Power Plant. U S Motor’s balanced and wired generator. Plant Operators put the generator back on line. Canyon Industries returned and gave their approval to keep Hydro online. After Hydro was put back into operations it kept going off line because of overheating issues. Canyon Industries returned and replaced sensors and adjusted them to the proper settings for normal operations. Brigham City added additional steel screens to windows to increase air flow in Power Plant Building. After construction phase of the Upper Hydro Plant some landscaping has been restored around the building additional gravel brought in and leveled out and the road that was cut through for conduits to run wires. A retaining wall was installed to protect penstock. The Upper Hydro Plant is complete and in full operations. The final reimbursement was submitted.

  6. Super Hydro Electric Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Electric Pvt Ltd Jump to: navigation, search Name: Super Hydro Electric Pvt. Ltd. Place: New Delhi, Delhi (NCT), India Zip: 1100024 Sector: Hydro Product: Delhi-based small hydro...

  7. PP-54 Ontario Hydro Electric Power Commission | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Ontario Hydro Electric Power Commission PP-54 Ontario Hydro Electric Power Commission Presidential Permit authorizing Ontario Hydro Electric Power Commission to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-54 Ontario Hydro Electric Power Commission More Documents & Publications PP-369 British Columbia Hydro and Power Authority PP-64 Basin Electric Power Cooperative PP-61 Minnkota Power Cooperative (MPC)

  8. Bangor Hydro-Electric Co | Open Energy Information

    Open Energy Info (EERE)

    Co Place: Maine Service Territory: Maine Phone Number: 1-800-499-6600 Website: bhe.com Twitter: @Bangor Facebook: https:www.facebook.compagesBangor-Hydro-Electric...

  9. MHK Technologies/The Ocean Hydro Electricity Generator Plant...

    Open Energy Info (EERE)

    The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The O H E...

  10. MHK Projects/Hydro Gen | Open Energy Information

    Open Energy Info (EERE)

    Hydro Gen < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5...

  11. EIS-0166: Bangor Hydro-Electric Transmission Line, Maine

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy prepared this environmental impact statement while considering whether to authorize a Presidential permit for Bangor Hydro to construct a new electric transmission facility at the U.S. border with Canada.

  12. Kingston Creek Hydro Project Powers 100 Households | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kingston Creek Hydro Project Powers 100 Households Kingston Creek Hydro Project Powers 100 Households August 21, 2013 - 12:00am Addthis Nevada-based contracting firm Nevada Controls, LLC used a low-interest loan from the Nevada State Office of Energy's Revolving Loan Fund to help construct a hydropower project in the small Nevada town of Kingston. The Kingston Creek Project-benefitting the Young Brothers Ranch-is a 175-kilowatt hydro generation plant on private land that takes advantage of an

  13. PP-89-1 Bangor Hydro-Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -1 Bangor Hydro-Electric Company PP-89-1 Bangor Hydro-Electric Company Presidental permit authorizing Bangor Hydro-Electric Company to construc, operate and maintain electric transmissions facilities at the U.S -Canada PDF icon PP-89-1 Bangor Hydro-Electric Company More Documents & Publications PP-89 Bangor-Electric Company EIS-0372: Draft Environmental Impact Statement EIS-0372: Notice of Intent to Prepare an Environmental Impact Statement and to Conduct Public Scoping Meetings and Notice

  14. Hoopa Valley Tribe - Small Hydro Project

    Office of Environmental Management (EM)

    Hydro Power Feasibility Study Hoopa Valley Tribe Curtis Miller cmiller@hoopa-nsn.gov (530)-625-5515 There are over 1200 miles of major streams within the Hoopa Valley Reservation many of which support Salmon, Steelhead and Rainbow trout. 50-60 inches of rainfall /year In the beginning In FY 2005 the Hoopa Tribal EPA received a grant from DOE to conduct a 2 year feasibility study for small scale hydropower on 7 major tributaries of the Reservation that flow into the Trinity River Concept of

  15. Kenya-Affecting Electricity Policy through a Community Micro...

    Open Energy Info (EERE)

    Affecting Electricity Policy through a Community Micro Hydro Project Jump to: navigation, search Name Kenya-Affecting Electricity Policy through a Community Micro Hydro Project...

  16. Georgia Green Power Electric Member Cooperative EMC | Open Energy...

    Open Energy Info (EERE)

    Sector: Hydro Product: A partnership of Georgian electricity cooperatives, which produces power by low-impact hydro projects and landfill gas-to-electricity projects and sells it...

  17. Modeling hydro power plants in deregulated electricity markets : integration and application of EMCAS and VALORAGUA.

    SciTech Connect (OSTI)

    Thimmapuram, P.; Veselka, T.; Koritarov, V.; Vilela, S.; Pereira, R.; Silva, R.

    2008-01-01

    In this paper, we present details of integrating an agent-based model, Electricity Market Complex Adaptive System (EMCAS) with a hydro-thermal coordination model, VALORAGUA. EMCAS provides a framework for simulating deregulated markets with flexible regulatory structure along with bidding strategies for supply offers and demand bids. VALORAGUA provides longer-term operation plans by optimizing hydro and thermal power plant operation for the entire year. In addition, EMCAS uses the price forecasts and weekly hydro schedules from VALORAGUA to provide intra-week hydro plant optimization for hourly supply offers. The integrated model is then applied to the Iberian electricity market which includes about 111 thermal plants and 38 hydro power plants. We then analyze the impact of hydro plant supply offers on the market prices and ways to minimize the Gencospsila exposure to price risk.

  18. Role of Pumped Storage Hydro Resources in Electricity Markets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... value pumped storage hydro plants in today's markets and ... storage systems are a small percentage of the total ... Rajat, D. (2000). "Operating Hydroelectric Plants and Pumped ...

  19. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    SciTech Connect (OSTI)

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  20. Earthquake design criteria for small hydro projects in the Philippines

    SciTech Connect (OSTI)

    Martin, P.P.; McCandless, D.H.; Asce, M.

    1995-12-31

    The definition of the seismic environment and seismic design criteria of more than twenty small hydro projects in the northern part of the island of Luzon in the Philippines took a special urgency on the wake of the Magnitude 7.7 earthquake that shook the island on July 17, 1990. The paper describes the approach followed to determine design shaking level criteria at each hydro site consistent with the seismic environment estimated at that same site. The approach consisted of three steps: (1) Seismicity: understanding the mechanisms and tectonic features susceptible to generate seismicity and estimating the associated seismicity levels, (2) Seismic Hazard: in the absence of an accurate historical record, using statistics to determine the expected level of ground shaking at a site during the operational 100-year design life of each Project, and (3) Criteria Selection: finally and most importantly, exercising judgment in estimating the final proposed level of shaking at each site. The resulting characteristics of estimated seismicity and seismic hazard and the proposed final earthquake design criteria are provided.

  1. A Comprehensive View of Global Potential for Hydro-generated Electricity

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect A Comprehensive View of Global Potential for Hydro-generated Electricity Citation Details In-Document Search Title: A Comprehensive View of Global Potential for Hydro-generated Electricity In this study, we assess global hydropower potential using runoff and stream flow data, along with turbine technology performance, cost assumptions, and environmental considerations. The results provide the first comprehensive quantification of global hydropower

  2. MHK Projects/OpenHydro Bay of Fundy Nova Scotia CA | Open Energy...

    Open Energy Info (EERE)

    Phase Phase 1 Project Details OpenHydro is working with Canadian utility Nova Scotia Power to create a tidal demonstration project in the Bay of Fundy. Following successful...

  3. EERE Success Story-Kingston Creek Hydro Project Powers 100 Households...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Kingston Creek Project-benefitting the Young Brothers Ranch-is a 175-kilowatt hydro generation plant on private land that takes advantage of an existing stream and power line. ...

  4. Dharmshala Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dharmshala Hydro Power Ltd Jump to: navigation, search Name: Dharmshala Hydro Power Ltd. Place: Hyderabad, India Sector: Hydro Product: Hyderabad-based small hydro project...

  5. Neora Hydro Ltd | Open Energy Information

    Open Energy Info (EERE)

    Neora Hydro Ltd Jump to: navigation, search Name: Neora Hydro Ltd. Place: Kolkata, West Bengal, India Sector: Hydro Product: Kolkata-based small hydro project developer....

  6. Invervar Hydro | Open Energy Information

    Open Energy Info (EERE)

    Invervar Hydro Jump to: navigation, search Name: Invervar Hydro Place: United Kingdom Product: Scottish private project developer. References: Invervar Hydro1 This article is a...

  7. Hydro | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Hydro Jump to: navigation, search Hydro or hydroelectric systems capture the energy in naturally flowing water and convert it to electricity. Related Links List...

  8. EIS-0141: Washington Water Power/B.C. Hydro Transmission Interconnection Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of constructing and operating a double-circuit 230-kilovolt electrical transmission line that would link the electrical systems of the Washington Water Power Company and the British Columbia Hydro and Power Authority.

  9. Gongqiao Electric Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Sichuan Province, China Zip: 638001 Sector: Hydro Product: China-based small hydro project developer. References: Gongqiao Electric Power Co., Ltd.1 This article is...

  10. EERE Success Story—Kingston Creek Hydro Project Powers 100 Households

    Broader source: Energy.gov [DOE]

    Hydropower project produces enough electricity to annually power nearly 100 typical American households.

  11. Micro Hydro Kinetic Turbines from Smart Hydro Power | Open Energy...

    Open Energy Info (EERE)

    Hydro Kinetic Turbines from Smart Hydro Power Jump to: navigation, search << Return to the MHK database homepage Tauchturbine.jpg Technology Profile Project(s) where this...

  12. Hydro Green Energy | Open Energy Information

    Open Energy Info (EERE)

    Green Energy Jump to: navigation, search Name: Hydro Green Energy Place: Houston, Texas Zip: 77056 Sector: Hydro Product: Hydro Green Energy is a project developer and integrator...

  13. Himalayan Hydro P Ltd | Open Energy Information

    Open Energy Info (EERE)

    P Ltd Jump to: navigation, search Name: Himalayan Hydro (P) Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500 033 Sector: Hydro Product: Hyderabad-based small hydro project...

  14. Developing an effective diving program for a hydro maintenance project

    SciTech Connect (OSTI)

    Stasch, E.

    1997-08-01

    A trash problem at the Fort Randall hydropower project threatened to affect operations and cause potential machinery damage. When traditional approaches to clean away the trash were judged unfeasible, US Army Corps of Engineers managers developed a combined mechanical cleanup and underwater diving program. A contractor successfully removed 500 tons of debris at a cost of about $302,000. The dive plan and problems experienced during the project are detailed in the article.

  15. Hydro-Kansas (HK) Research Project: Tests of a Physical Basis of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Self-Similarity in Peak Flows in the Whitewater Basin, Kansas Hydro-Kansas (HK) Research Project: Tests of a Physical Basis of Statistical Self-Similarity in Peak Flows in the Whitewater Basin, Kansas Gupta, Vijay University of Colorado Furey, Peter Colorado Research Associates Mantila, Ricardo University of Colorado Krajewski, Witold University of Iowa Kruger, Anton The University of Iowa Clayton, Jordan US Geological Survey and University of Iowa Category: Atmospheric State and

  16. EA-281 Manitoba Hydro | Department of Energy

    Energy Savers [EERE]

    Manitoba Hydro EA-281 Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. PDF icon EA-281 Manitoba Hydro More Documents & Publications EA-281-B

  17. Hydro Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation > Generation Hydro Power FCRPS Hydro Projects FCRPS Information Kiosk Current Hydrological Info Fish Funding Agreement FCRPS Definitions Wind Power Monthly GSP BPA White...

  18. EA-281-A Manitoba Hydro | Department of Energy

    Energy Savers [EERE]

    -A Manitoba Hydro EA-281-A Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. PDF icon EA-281-A Manitoba Hydro More Documents & Publications EA-281 Manitoba Hydro EA-281-B

  19. Employment Impacts of Geothermal Electric Projects (Technical...

    Office of Scientific and Technical Information (OSTI)

    Employment Impacts of Geothermal Electric Projects Citation Details In-Document Search Title: Employment Impacts of Geothermal Electric Projects You are accessing a document...

  20. KKK Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    KKK Hydro Power Ltd Jump to: navigation, search Name: KKK Hydro Power Ltd. Place: Faridabad, Haryana, India Zip: 121 003 Sector: Hydro Product: Faridabad-based small hydro project...

  1. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% − 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  2. Optimizing hourly hydro operations at the Salt Lake City Area Integrated Projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-10-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado River Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. The Hydro LP (Linear Program) model, which was developed by Argonne National Laboratory (ANL), was used to analyze a broad range of issues associated with many possible future operational restrictions at SLCA/IP power plants. With technical assistance from Western, the Hydro LP model was configured to simulate hourly power plant operations for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) operating reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation was simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue was computed.

  3. Florida Hydro Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Florida Hydro Inc Place: Palatka, Florida Zip: 32177 Sector: Hydro, Hydrogen Product: Develops electrical generation and hydrogen production devices. Coordinates:...

  4. EA-281-B Manitoba Hydro | Department of Energy

    Energy Savers [EERE]

    -B Manitoba Hydro EA-281-B Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. PDF icon EA-281-B Manitoba Hydro More Documents & Publications EA-281

  5. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-06-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue is computed.

  6. Waukesha Electric Systems Smart Grid Demonstration Project |...

    Open Energy Info (EERE)

    transformer, lower power consumption through reduction of losses, and increase the reliability of the electrical grid. References ARRA Smart Grid Demonstration Projects...

  7. FCRPS Definitions (hydro/fcrps)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Reclamation (USBR). Portion of Cost Allocated to Power The cost allocated to the power generating portion of hydro projects. Flood control, navigation, and irrigation are...

  8. Hydro and geothermal electricity as an alternative for industrial petroleum consumption in Costa Rica

    SciTech Connect (OSTI)

    Mendis, M.; Park, W.; Sabadell, A.; Talib, A.

    1982-04-01

    This report assesses the potential for substitution of electricity for petroleum in the industrial/agro-industrial sector of Costa Rica. The study includes a preliminary estimate of the process energy needs in this sector, a survey of the principal petroleum consuming industries in Costa Rica, an assessment of the electrical technologies appropriate for substitution, and an analysis of the cost trade offs of alternative fuels and technologies. The report summarizes the total substitution potential both by technical feasibility and by cost effectiveness under varying fuel price scenarios and identifies major institutional constraints to the introduction of electric based technologies. Recommendations to the Government of Costa Rica are presented. The key to the success of a Costa Rican program for substitution of electricity for petroleum in industry rests in energy pricing policy. The report shows that if Costa Rica Bunker C prices are increased to compare equitably with Caribbean Bunker C prices, and increase at 3 percent per annum relative to a special industrial electricity rate structure, the entire substitution program, including both industrial and national electric investment, would be cost effective. The definition of these pricing structures and their potential impacts need to be assessed in depth.

  9. Tehri Hydro Development Corporation Limited | Open Energy Information

    Open Energy Info (EERE)

    Solar, Wind energy Product: Focused on hydro projects; diversifying into solar and wind power. References: Tehri Hydro Development Corporation Limited1 This article is a stub....

  10. Dhauladhar Hydro System Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sector: Hydro Product: Himachal-based developer of small hydro projects. Coordinates: 23.25149, 87.522408 Show Map Loading map... "minzoom":false,"mappingservice":"googlema...

  11. Cosmos Hydro Power Ltd CHPL | Open Energy Information

    Open Energy Info (EERE)

    Ltd CHPL Jump to: navigation, search Name: Cosmos Hydro Power Ltd. (CHPL) Place: New Delhi, Delhi (NCT), India Zip: 110060 Sector: Hydro Product: Delhi-based small hydro project...

  12. A Comprehensive View of Global Potential for Hydro-generated Electricity

    SciTech Connect (OSTI)

    Zhou, Yuyu; Hejazi, Mohamad I.; Smith, Steven J.; Edmonds, James A.; Li, Hongyi; Clarke, Leon E.; Calvin, Katherine V.; Thomson, Allison M.

    2015-09-01

    In this study, we assess global hydropower potential using runoff and stream flow data, along with turbine technology performance, cost assumptions, and environmental considerations. The results provide the first comprehensive quantification of global hydropower potential including gross, technical, economic, and exploitable estimates. Total global potential of gross, technical, economic, and exploitable hydropower are estimated to be approximately 128, 39, 32, and 27 petawatt hours per year, respectively. The economic and exploitable potential of hydropower are calculated at less than 9 cents/kWh. We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region. Globally, hydropower can potentially supply about 1.5 times the total electricity demand in 2005. Estimated hydropower resources in a number of countries are sufficient to accommodate their demand for electricity in 2005, e.g., Brazil (5.6 times), Russia (4.6 times), and Canada (3.5 times). A sensitivity analysis indicates that hydropower estimates are not highly sensitive to five key parameters: design flow (varying by -2% to +1% at less than 9 cents/kWh), cost and financing options (by -7% to +6%), turbine efficiency (by -10% to +10%), stream flow (by -10% to +10%), and fixed charge rate (by -6% to 5%). This sensitivity analysis emphasizes the reliable role of hydropower for future energy systems, when compared to other renewable energy resources with larger uncertainty in their future potentials.

  13. Himalaya Hydro Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    project developer expanding into biomass and wind and planning to raise a fund to invest in a pipeline of identified projects. References: Himalaya Hydro Pvt Ltd1 This...

  14. Medium Duty Electric Vehicle Demonstration Project

    SciTech Connect (OSTI)

    Mackie, Robin J. D.

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEVs) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEVs that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  15. Status of Tampa Electric Company IGCC Project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1992-01-01

    Tampa Electric Company will utilize Integrated Gasification Combined Cycle technology for its new Polk Power Station Unit [number sign]1. The project is partially funded under the Department of Energy Clean Coal Technology Program Round III. This paper describes the technology to be used, process details, demonstration of a new hot gas clean-up system, and the schedule, leading to commercial operation in July 1996.

  16. Status of Tampa Electric Company IGCC Project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1992-10-01

    Tampa Electric Company will utilize Integrated Gasification Combined Cycle technology for its new Polk Power Station Unit {number_sign}1. The project is partially funded under the Department of Energy Clean Coal Technology Program Round III. This paper describes the technology to be used, process details, demonstration of a new hot gas clean-up system, and the schedule, leading to commercial operation in July 1996.

  17. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect (OSTI)

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

  18. Table 15. Total Electricity Sales, Projected vs. Actual Projected

    Gasoline and Diesel Fuel Update (EIA)

    Total Electricity Sales, Projected vs. Actual Projected (billion kilowatt-hours) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2843 2891 2928 2962 3004 3039 3071 3112 3148 3185 3228 3263 3298 3332 3371 3406 3433 3469 AEO 1995 2951 2967 2983 3026 3058 3085 3108 3134 3166 3204 3248 3285 3321 3357 3396 3433 3475 AEO 1996 2973 2998 3039 3074 3106 3137 3173 3215 3262 3317 3363 3409 3454 3505 3553 3604 3660 3722 3775 AEO 1997 3075

  19. Lighting and Electrical Team Leadership and Project Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting and Electrical Team Leadership and Project Delivery - 2014 BTO Peer Review Project Objective The partners involved in the Lighting Energy Efficiency in Parking (LEEP) ...

  20. Category:Smart Grid Projects - Electric Distributions Systems...

    Open Energy Info (EERE)

    Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C...

  1. US Recovery Act Smart Grid Projects - Electric Distributions...

    Open Energy Info (EERE)

    York New York 136,170,899 272,341,798 New Jersey El Paso Electric Smart Grid Project El Paso Texas 1,014,414 2,085,095 New Mexico Hawaii Electric Co. Inc. Smart Grid Project Oahu...

  2. TEP Power Partners Project [Tucson Electric Power

    SciTech Connect (OSTI)

    2013-11-19

    The Arizona Governors Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  3. Workforce Training for the Electric Power Sector: Map of Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Map of Projects Workforce Training for the Electric Power Sector: Map of Projects Map showing the number of projects awarded in each State through the Workforce Training for the Electric Power Sector grants under the American Recovery and Reinvestment Act. PDF icon Workforce Training for the Electric Power Sector: Map of Projects More Documents & Publications Smart Grid Investment Grants: Map of Projects Developing and Enhancing Workforce Training Programs: Number of

  4. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (EV) charging technologies. It included development of potential solutions for DC fast chargers (DCFC) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The projects period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the City) and Aker Wade Power Technologies, LLC (Aker Wade) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (GHG) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the projects Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  5. PP-22 British Columbia Hydro and Power Authority, Amendment 1967 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydro and Power Authority, Amendment 1967 PP-22 British Columbia Hydro and Power Authority, Amendment 1967 Presidential permit authorizing British Columbia Hydro and Power Authority to construct, operate, and maintain electric transmision facilities at the U.S-Canadian border. PDF icon PP-22 British Columbia Hydro and Power Authority More Documents & Publications PP-22 British Columbia Electric Company, Limited, Amendment 1957 PP-22 British Columbia Electric Company,

  6. Hydro Alternative Energy | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Jump to: navigation, search Name: Hydro Alternative Energy Place: Boca Raton, Florida Zip: 33486 Sector: Ocean Product: Marine project developer focusing on...

  7. Ambient Hydro Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydro Ltd develops small Hydroelectric projects. It also offers a range of technical and financial consultancy services. Coordinates: 51.431505, -2.187229 Show Map Loading...

  8. Western Electricity Coordinating Council Smart Grid Project ...

    Open Energy Info (EERE)

    your syntax: * Display map References ARRA Smart Grid Investment Grants1 Western Electricity Award2 Western Electricity Coordinating Council, located in Salt Lake City, Utah,...

  9. Tampa Electric Company Polk Power Station IGCC Project -- Project status

    SciTech Connect (OSTI)

    Berry, T.E.

    1998-12-31

    The Tampa Electric Company Polk Power Station is a nominal 25 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located southeast of Tampa in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station uses oxygen-blown, entrained-flow coal gasification technology licensed from Texaco Development Corporation in conjunction with a General Electric combined cycle with an advanced combustion turbine. This IGCC configuration demonstrates significant reductions of SO{sub 2} and NOx emissions when compared to existing and future conventional coal-fired power plants. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. It was placed into commercial operation on September 30, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. The presentation features an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Tests of four alternate feedstocks were conducted, and the resulting performance is compared to that achieved on their base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility throughout 1997. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  10. Tampa Electric Company, Polk Power Station IGCC Project: Project Status

    SciTech Connect (OSTI)

    Berry, T.E.; Shelnut, C.A.; McDaniel, J.E.

    1999-07-01

    Over the last ten years, Tampa Electric Company (TEC) has taken the Polk Power Station from a concept to a reality. The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station achieved first fire of the gasification system on schedule in mid-July, 1996. It was placed in commercial operation on September 30, 1996. Since start-up in July, 1996, significant advances have occurred in the design and operation of the entire IGCC train. This presentation will feature an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Several different coal feedstocks have been tested and the resulting performance will be compared to that achieved on the base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  11. Lighting and Electrical Team Leadership and Project Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting and Electrical Team Leadership and Project Delivery 2014 Building Technologies ... million sq ft of high efficiency parking lighting by February 2014 2. LEEP: 300 million sq ...

  12. Employment Impacts of Geothermal Electric Projects Entingh, Daniel...

    Office of Scientific and Technical Information (OSTI)

    Employment Impacts of Geothermal Electric Projects Entingh, Daniel J. 15 GEOTHERMAL ENERGY; 24 POWER TRANSMISSION AND DISTRIBUTION; CAPITAL; CONSTRUCTION; EMPLOYMENT; EXPLORATION;...

  13. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  14. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

  15. Tampa Electric Company Polk Power Station IGCC project: Project status

    SciTech Connect (OSTI)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  16. Korea Hydro and Nuclear Power Company, Ltd Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Korea Hydro and Nuclear Power Co., Ltd. (KHNP), a large electric company based in the Republic of Korea, operates 20 nuclear power plants and has 8 more planned or under construction. The Korean government has given KHNP responsibility for permanent disposal of nuclear waste. The company has turned to Sandia' s Defense Waste Management Programs in Carlsbad, NM to lead an educational project for its staff on repository sciences based on Sandia's well- known expertise in the field. Sandia has

  17. Lighting and Electrical Team Leadership and Project Delivery - 2014 BTO

    Energy Savers [EERE]

    Peer Review | Department of Energy Lighting and Electrical Team Leadership and Project Delivery - 2014 BTO Peer Review Lighting and Electrical Team Leadership and Project Delivery - 2014 BTO Peer Review Project Objective The partners involved in the Lighting Energy Efficiency in Parking (LEEP) campaign, along with private and public entities, advocate for and install energy-efficient lighting in public parking lots to foster significant reductions in participants' energy consumption. The

  18. North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity June 17, 2014 - 2:58pm Addthis Blaise Energy Inc. is using a Renewable Energy Market Development grant, funded by EERE, to demonstrate the commercial viability of its Flare Gas Micro-turbine. The microturbine pilot project places generators at oil production well sites to transform wellhead flare gas into high-quality,

  19. Hydro | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Hydro (Redirected from Hydropower) Jump to: navigation, search Hydro or hydroelectric systems capture the energy in naturally flowing water and convert it to...

  20. World Energy Projection System Plus Model Documentation: World Electricity Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  1. Project Title: Small Scale Electrical Power Generation from Heat

    Office of Scientific and Technical Information (OSTI)

    Co-Produced in Geothermal Fluids: Mining Operation (Technical Report) | SciTech Connect Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation Citation Details In-Document Search Title: Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I

  2. PROJECT PROFILE: General Electric - GE Global Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy PROJECT PROFILE: General Electric - GE Global Research PROJECT PROFILE: General Electric - GE Global Research Funding Opportunity: CSP: APOLLO SunShot Subprogram: CSP Location: Niskayuna, NY Amount Awarded: $3,800,000 Awardee Cost Share: $1,841,054 GE Global Research Logo.png GE Global Research and Southwest Research Institute will develop an optimal compression system for a modular supercritical carbon dioxide (sCO2) power block operation in highly transient CSP tower applications.

  3. PP-369 British Columbia Hydro and Power Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 British Columbia Hydro and Power Authority PP-369 British Columbia Hydro and Power Authority Presidential Permit authorizing British Columbia and Power Authority to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-369 BC Hydro.pdf More Documents & Publications Application for Presidential Permit OE Docket No. PP-369 British Columbia Transmission Corporation and British Columbia Hydro and Power Authority PP-54 Ontario Hydro Electric

  4. EA-1777: Lincoln Electric's Wind Energy Project in Euclid, OH

    Broader source: Energy.gov [DOE]

    Lincoln Electric proposes to construct and operate a 2.5 MW single turbine wind energy project at Lincoln Electric’s World Headquarters facility located at 22800 Saint Clair Avenue, Euclid, Ohio. The wind turbine would provide 2.5 MW of renewable energy to fulfill up to ten percent (10%) of the Lincoln Electric Headquarters’ annual electricity demand and help to reduce greenhouse gas emissions.

  5. MHK Technologies/HydroVenturi | Open Energy Information

    Open Energy Info (EERE)

    and eventually enable HydroVenturi to generate electricity at costs competitive with fossil fuels with low recurring maintenance or fuel costs Technology Dimensions Device...

  6. Turnbull Hydro LLC | Open Energy Information

    Open Energy Info (EERE)

    Turnbull Hydro LLC Jump to: navigation, search Name: Turnbull Hydro LLC Place: Montana Sector: Hydro Product: Montana-based small hydro developer. References: Turnbull Hydro LLC1...

  7. Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Comments from Karen Brand

    Broader source: Energy.gov [DOE]

    Application from Soule Hydro to construct, operate and maintain electric transmission facilities at the U.S. - Canada border.

  8. AVTA: ARRA EV Project Electric Grid Impact Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following report describes lessons learned about the impact on the electrical grid from the EV Project. The EV Project partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  9. Okeelanta Cogeneration Project: Electricity and steam from sugar cane

    SciTech Connect (OSTI)

    Schaberg, D.

    1994-12-31

    The Okeelanta Cogeneration Project is a Bagasse- and wood chip-fired cogeneration project with a net electrical output of approximately 70MW, located at the Okeelanta Corporation`s sugar mill in South Bay, Florida. The Project is comprised of three stoker type boilers each capable of producing 440,000 lbs/hr of steam at 1455 psia, 955F, and a single extraction/condensing steam turbine with a gross output of 75 MW. The electrical output will be sold to Florida Power and Light under the terms of an executed power purchase agreement and delivered at 138kV.

  10. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect (OSTI)

    Swalnick, Natalia

    2013-06-30

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  11. Manitoba Hydro | Open Energy Information

    Open Energy Info (EERE)

    Hydro Jump to: navigation, search Name: Manitoba Hydro Place: Winnipeg, Manitoba, Canada Zip: R3M 3T1 Sector: Hydro Product: Manitoba Hydro is the province's major energy...

  12. PROJECT PROFILE: Electric Power Research Institute (SHINES) | Department of

    Energy Savers [EERE]

    Energy Electric Power Research Institute (SHINES) PROJECT PROFILE: Electric Power Research Institute (SHINES) Title: Beneficial Integration of Energy Storage and Load Management with Photovoltaics epri-logo.jpg Funding Opportunity: Sustainable and Holistic Integration of Energy Storage and Solar PV SunShot Subprogram: Systems Integration Location: Knoxville, Tennessee Partners: FirstEnergy, NYPA, Con Edison, Southern Company, Gulf Power, Case Western Reserve University, Queens College of the

  13. PROJECT PROFILE: Hawaiian Electric Company (SHINES) | Department of Energy

    Energy Savers [EERE]

    Hawaiian Electric Company (SHINES) PROJECT PROFILE: Hawaiian Electric Company (SHINES) Title: Integrating System to Edge-of-Network Architecture and Management for SHINES (SEAMS) Technologies on High Penetration Grids Funding Opportunity: Sustainable and Holistic Integration of Energy Storage and Solar PV SunShot Subprogram: Systems Integration Location: Honolulu, Hawaii Partners: Siemens, Alstom, DNV GL , AWS Truepower, Referentia Systems, Apparent, and Stem Amount Awarded: $2,437,500 Awardee

  14. Multiproject baselines for evaluation of electric power projects

    SciTech Connect (OSTI)

    Sathaye, Jayant; Murtishaw, Scott; Price, Lynn; Lefranc, Maurice; Roy, Joyashree; Winkler, Harald; Spalding-Fecher, Randall

    2003-03-12

    Calculating greenhouse gas emissions reductions from climate change mitigation projects requires construction of a baseline that sets emissions levels that would have occurred without the project. This paper describes a standardized multiproject methodology for setting baselines, represented by the emissions rate (kg C/kWh), for electric power projects. A standardized methodology would reduce the transaction costs of projects. The most challenging aspect of setting multiproject emissions rates is determining the vintage and types of plants to include in the baseline and the stringency of the emissions rates to be considered, in order to balance the desire to encourage no- or low-carbon projects while maintaining environmental integrity. The criteria for selecting power plants to include in the baseline depend on characteristics of both the project and the electricity grid it serves. Two case studies illustrate the application of these concepts to the electric power grids in eastern India and South Africa. We use hypothetical, but realistic, climate change projects in each country to illustrate the use of the multiproject methodology, and note the further research required to fully understand the implications of the various choices in constructing and using these baselines.

  15. Wanapum Dam Advanced Hydro Turbine Upgrade Project: Part 2 - Evaluation of Fish Passage Test Results Using Computational Fluid Dynamics

    SciTech Connect (OSTI)

    Dresser, Thomas J.; Dotson, Curtis L.; Fisher, Richard K.; Graf, Michael J.; Richmond, Marshall C.; Rakowski, Cynthia L.; Carlson, Thomas J.; Mathur, Dilip; Heisey, Paul G.

    2007-10-10

    This paper, the second part of a 2 part paper, discusses the use of Computational Fluid Dynamics (CFD) to gain further insight into the results of fish release testing conducted to evaluate the modifications made to upgrade Unit 8 at Wanapum Dam. Part 1 discusses the testing procedures and fish passage survival. Grant PUD is working with Voith Siemens Hydro (VSH) and the Pacific Northwest National Laboratory (PNNL) of DOE and Normandeau Associates in this evaluation. VSH has prepared the geometry for the CFD analysis corresponding to the four operating conditions tested with Unit 9, and the 5 operating conditions tested with Unit 8. Both VSH and PNNL have conducting CFD simulations of the turbine intakes, stay vanes, wicket gates, turbine blades and draft tube of the units. Primary objectives of the analyses were: determine estimates of where the inserted fish passed the turbine components determine the characteristics of the flow field along the paths calculated for pressure, velocity gradients and acceleration associated with fish sized bodies determine the velocity gradients at the structures where fish to structure interaction is predicted. correlate the estimated fish location of passage with observed injuries correlate the calculated pressure and acceleration with the information recorded with the sensor fish utilize the results of the analysis to further interpret the results of the testing. This paper discusses the results of the CFD analyses made to assist the interpretation of the fish test results.

  16. U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-10-21

    This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

  17. Comments of New England Electric Transmission Corporation on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New England Electric Transmission Corporation, New England Hydro-Transmission Electric Company, Inc. and New England Hydro-Transmission Corporation and New England Power Company. ...

  18. Solar electric thermal hydronic (SETH) product development project

    SciTech Connect (OSTI)

    Stickney, B.L.; Sindelar, A.

    2000-10-01

    Positive Energy, Inc. received a second Technology Maturation and Commercialization Project Subcontract during the 1999 round of awards. This Subcontract is for the purpose of further aiding Positive Energy, Inc. in preparing its Solar Electric Thermal Hydronic (SETH) control and distribution package for market introduction. All items of this subcontracted project have been successfully completed. This Project Report contains a summary of the progress made during the SETH Development Project (the Project) over the duration of the 1999 Subcontract. It includes a description of the effort performed and the results obtained in the pursuit of intellectual property protection and development of product documentation for the end users. This report also summarizes additional efforts taken by and for the SETH project outside of the Subcontract. It presents a chronology of activities over the duration of the Subcontract, and includes a few selected sample copies of documents offered as evidence of their success.

  19. PROJECT PROFILE: Electric Power Research Institute (PREDICTS 2)

    Broader source: Energy.gov [DOE]

    As a part of their PREDICTS2 award, researchers at the Electric Power Research Institute (EPRI) will do a comparative study of photovoltaic (PV) panels in order to maximize PV plant energy production and profitability. This project was announced on September 16, 2015 at the Solar Power International conference.

  20. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,6.799,6.7999,6.9,6.9,6.9,6.9,7,7,7.1,7.1,7.2,7.2,7.2,7.3,7.3,7.4,7.5,7.6 "AEO

  1. Table 15. Total Electricity Sales, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual" "Projected" " (billion kilowatt-hours)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2843,2891,2928,2962,3004,3039,3071,3112,3148,3185,3228,3263,3298,3332,3371,3406,3433,3469 "AEO 1995",,2951,2967,2983,3026,3058,3085,3108,3134,3166,3204,3248,3285,3321,3357,3396,3433,3475 "AEO

  2. Manihamsa Power Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Godavari, Andhra Pradesh, India Sector: Hydro Product: East Godavari District-based small hydro project developer. References: Manihamsa Power Projects Ltd.1 This article is a...

  3. SKJ Power Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Andhra Pradesh, India Zip: 500 009 Sector: Hydro Product: Secunderabad-based small hydro project developer. References: SKJ Power Projects Ltd.1 This article is a stub....

  4. Performance assessment of the PNM Prosperity electricity storage project :

    SciTech Connect (OSTI)

    Roberson, Dakota; Ellison, James F.; Bhatnagar, Dhruv; Schoenwald, David A.

    2014-05-01

    The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shifting system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.

  5. Lac Courte Oreilles Hydro Dam Assessment

    SciTech Connect (OSTI)

    Weaver, Jason; Meyers, Amy

    2014-12-31

    The main objective of this project was to investigate upgrading the existing hydro power generating system at the Winter Dam. The tribe would like to produce more energy and receive a fair market power purchase agreement so the dam is no longer a drain on our budget but a contributor to our economy. We contracted Kiser Hydro, LLC Engineering for this project and received an engineering report that includes options for producing more energy with cost effective upgrades to the existing turbines. Included in this project was a negotiation of energy price sales negotiations.

  6. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

  7. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,50159,0,"A",1295,,,96,37615,0,0,1469,6,01179,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,,,96,37615,0,0,1469,6,01179,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,50159,0,"A",1295,,,96,7659,0,0,1472,6,01179,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,,50159,0,"A",1295,,,96,29175,0,0,1474,6,01179,"WAT","HY" 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT

  8. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,50159,0,"A",1296,,,97,26317,0,0,1469,6,01179,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    6,,,97,26317,0,0,1469,6,01179,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,50159,0,"A",1296,,,97,7697,0,0,1472,6,01179,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,,50159,0,"A",1296,,,97,29281,0,0,1474,6,01179,"WAT","HY" 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT

  9. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,50159,0,"A",1297,,,1998,24626,0,0,1469,6,01179,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,,,1998,24626,0,0,1469,6,01179,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,50159,0,"A",1297,,,1998,7615,0,0,1472,6,01179,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,,50159,0,"A",1297,,,1998,30036,0,0,1474,6,01179,"WAT","HY" 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT

  10. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,50159,0,"A",98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,50159,0,"A",98,,,1999,0,0,1e+15,1472,6,01179,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,,50159,0,"A",98,,,1999,0,0,1e+15,1474,6,01179,"WAT","HY" 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT

  11. Electrical vehicles impacts on the grids (Smart Grid Project...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  12. Tampa Electric Company`s Polk Power Station IGCC project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-12-31

    Tampa Electric Company (TEC) is in the construction phase of its new Polk Power Station Unit No. 1. This unique project incorporates the use of Integrated Gasification Combined Cycle (IGCC) technology for electric power production. The project is being partially funded by the US Department of Energy (DOE), as part of the Clean Coal Technology Program. This will help to demonstrate this state-of-the-art technology, providing utilities with the ability to use a wide range of coals in an efficient, environmentally superior manner. During the summer of 1994, TEC began site development at the new Polk Power Station. Since that time, most of the Site work has been completed, and erection and installation of the power plant equipment is well underway. This is the first time that IGCC technology will be installed at a new unit at a greenfield site. This is a major endeavor for TEC in that Polk Unit No. 1 is a major addition to the existing generating capacity and it involves the demonstration of technology new to utility power generation. As a part of the Cooperative Agreement with the DOE, TEC will also be demonstrating the use of a new Hot Gas Clean-Up System which has a potential for greater IGCC efficiency.

  13. Sichuan Gongga Electric Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Chengdu City, Sichuan Province, China Zip: 610015 Sector: Hydro Product: Chinese developer of small hydro plants. References: Sichuan Gongga Electric Power Co.,...

  14. Category:Smart Grid Projects - Electric Transmission Systems...

    Open Energy Info (EERE)

    Carolinas, LLC Smart Grid Project E Entergy Services, Inc. Smart Grid Project I ISO New England, Incorporated Smart Grid Project M Midwest Energy Inc. Smart Grid Project...

  15. HydroVision International

    Broader source: Energy.gov [DOE]

    The HydroVision International Conference and Exhibition offers attendees countless opportunities to network, share best practices, meet with product and service providers, and more.  Held over five...

  16. Dharamshala Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dharamshala Hydro Power Ltd Jump to: navigation, search Name: Dharamshala Hydro Power Ltd Place: New Delhi, Delhi (NCT), India Zip: 110008 Sector: Hydro Product: Delhi-based...

  17. Bhilangana Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Bhilangana Hydro Power Ltd Jump to: navigation, search Name: Bhilangana Hydro Power Ltd. Place: Noida, Uttar Pradesh, India Zip: 201301 Sector: Hydro Product: Noida-based small...

  18. North American Hydro | Open Energy Information

    Open Energy Info (EERE)

    Hydro Jump to: navigation, search Name: North American Hydro Place: Schofield, Wisconsin Zip: 54476 Sector: Hydro Product: Focused on developing, upgrading, owning, and operating...

  19. Advanced Hydro Solutions | Open Energy Information

    Open Energy Info (EERE)

    Hydro Solutions Jump to: navigation, search Name: Advanced Hydro Solutions Place: Fairlawn, Ohio Zip: 44333 Sector: Hydro Product: Ohio-based company seeking to develop...

  20. Cauvery Hydro Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Cauvery Hydro Energy Ltd Jump to: navigation, search Name: Cauvery Hydro Energy Ltd. Place: Bangalore, Karnataka, India Zip: 560080 Sector: Hydro Product: Bangalore based small...

  1. Quantifying Fl Value of Hydro in Transmission Grid | Department of Energy

    Energy Savers [EERE]

    Quantifying Fl Value of Hydro in Transmission Grid Quantifying Fl Value of Hydro in Transmission Grid Quantifying Fl Value of Hydro in Transmission Grid Office presentation icon 72_hydro_grid_services_epri_key.ppt More Documents & Publications Enviro effects of hydrokinetic turbines on fish Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value

  2. Table 14a. Average Electricity Prices, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  3. MHK Projects/San Onofre Oweg Electricity Farm | Open Energy Informatio...

    Open Energy Info (EERE)

    Onofre Oweg Electricity Farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  4. Final Report - Wind and Hydro Energy Feasibility Study - June 2011

    SciTech Connect (OSTI)

    Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

    2011-06-17

    This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

  5. Ayyappa Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ayyappa Hydro Power Ltd Jump to: navigation, search Name: Ayyappa Hydro Power Ltd. Place: Kolkata, West Bengal, India Zip: 700 017 Sector: Hydro Product: Kolkata-based small hydro...

  6. Gehra Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gehra Hydro Power Ltd Jump to: navigation, search Name: Gehra Hydro Power Ltd. Place: New Delhi, Delhi (NCT), India Zip: 110008 Sector: Hydro Product: Delhi-based small hydro...

  7. Jiuquan Sanyuan Hydro Power | Open Energy Information

    Open Energy Info (EERE)

    Hydro Power Jump to: navigation, search Name: Jiuquan Sanyuan Hydro Power Place: China Sector: Hydro Product: Developer of 26.55MW Gansu hydro plant in China. References: Jiuquan...

  8. HydroGen | Open Energy Information

    Open Energy Info (EERE)

    HydroGen Jump to: navigation, search Logo: HydroGen Name: HydroGen Address: Head Office, 9 GreenMeadows Place: Cardiff, Wales Country: United Kingdom Sector: Hydro, Hydrogen,...

  9. Tampa electric company - IGCC project. Quarterly report, January 1, 1996--March 31, 1996

    SciTech Connect (OSTI)

    1998-02-01

    This quarterly report consists of materials presented at a recent review of the project. The project is an IGCC project being conducted by Tampa Electric Company. The report describes the status of the facility construction, components, operations staff training, and discusses aspects of the project which may impact the final scheduled completion.

  10. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  11. San Diego Gas and Electric Company Smart Grid Project | Open...

    Open Energy Info (EERE)

    system covering up to 90% of the utility's customers. The project aims to enhance reliability and reduce outage durations and operations and maintenance costs. The project...

  12. HydroPulse Drilling

    SciTech Connect (OSTI)

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  13. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  14. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect (OSTI)

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  15. Hawaii Electric Co. Inc. Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    Reliability and Power Quality Reduced Operating and Maintenance Costs Reduced Electricity Costs for Customers Reduced Truck Fleet Fuel Usage Reduced Greenhouse Gas and...

  16. Madison Gas and Electric Company Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    installation of advanced metering infrastructure (AMI), deployment of a new distribution management system, and installation of electric vehicle charging stations. These...

  17. NSTAR Electric Company Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    Indicators Equipment Condition Monitors Targeted Benefits Improved Electric Service Reliability and Power Quality Reduced Costs from Equipment Failures, Distribution, and Line...

  18. Black Hills/Colorado Electric Utility Co. Smart Grid Project...

    Open Energy Info (EERE)

    Thermostats Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability Reduced Ancillary Service Cost Reduced Truck Fleet Fuel Usage Reduced Greenhouse...

  19. Lakeland Electric Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    for Customers Reduced Operating and Maintenance Costs Improved Electric Service Reliability Reduced Costs from Distribution Line Losses Reduced Truck Fleet Fuel Usage Reduced...

  20. Rappahannock Electric Cooperative Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    for Customers Reduced Operating and Maintenance Costs Increased Electric Service Reliability and Power Quality Reduced Costs from Equipment Failures, Line Losses, and Theft...

  1. Talquin Electric Cooperative, Inc. Smart Grid Project | Open...

    Open Energy Info (EERE)

    also installs automated distribution grid equipment expected to: (1) enhance the reliability and quality of electric delivery, and (2) reduce operations and maintenance...

  2. Thirumala Hydro Power P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Thirumala Hydro Power P Ltd Jump to: navigation, search Name: Thirumala Hydro Power (P) Ltd. Place: Guntur, Andhra Pradesh, India Sector: Hydro Product: Guntur-based small hydro...

  3. Amogha Power Projects Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Bangalore, Karnataka, India Zip: 560011 Sector: Hydro Product: Bangalor-based small hydro project developer. Coordinates: 12.97092, 77.60482 Show Map Loading map......

  4. Assam Power Project Development Co Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pvt. Ltd. Place: Guwahati, Assam, India Zip: 781001 Sector: Hydro Product: Guwahati-based joint venture firm set up to promote small hydro projects in Assam. Coordinates:...

  5. ARPA-E Project Takes an Innovative Approach to the Electrical Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Project Takes an Innovative Approach to the Electrical Grid ARPA-E Project Takes an Innovative Approach to the Electrical Grid September 10, 2014 - 4:38pm Addthis With support from ARPA-E, AutoGrid Systems developed software to monitor the flow of power through the electric grid and help utilities better meet real-time electricity demands. | Graphic courtesy of AutoGrids. With support from ARPA-E, AutoGrid Systems developed software to monitor the flow of power through

  6. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect (OSTI)

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  7. Application for Presidential Permit OE Docket No. PP-387 Soule Hydro:

    Energy Savers [EERE]

    Comments from Alaska Energy Authority | Department of Energy Energy Authority Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Comments from Alaska Energy Authority Application from Soule Hydro to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon Comments from Alaska Energy Authority 08-29-13.pdf More Documents & Publications Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Comments from City

  8. Application for Presidential Permit OE Docket No. PP-387 Soule Hydro:

    Energy Savers [EERE]

    Comments from City of Saxman, Alaska | Department of Energy City of Saxman, Alaska Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Comments from City of Saxman, Alaska Application from Soule Hydro to construct, operate and maintain electric transmission facilities at the U.S.- Canada Border. PDF icon Soule River - Letter from City of Saxman, Alaska.pdf More Documents & Publications Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Comments from

  9. Application for Presidential Permit OE Docket No. PP-387 Soule Hydro:

    Energy Savers [EERE]

    Comments from Dept. of Agriculture | Department of Energy Dept. of Agriculture Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Comments from Dept. of Agriculture Application from Soule Hydro to construct, operate and maintain electric transmission facilities at the U.S. - Canada border. PDF icon Comments from Dept of Agriculture 08-28-13.pdf More Documents & Publications Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Notice of Intervention by

  10. Application for Presidential Permit OE Docket No. PP-387 Soule Hydro:

    Energy Savers [EERE]

    Comments from Senator Lisa Murkowski | Department of Energy Senator Lisa Murkowski Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Comments from Senator Lisa Murkowski Application from Soule Hydro to construct, operate and maintain electric transmission facilities at the U.S. - Canada border. PDF icon Sen Murkowski Letter.pdf More Documents & Publications Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Comments from City of Saxman, Alaska

  11. Application for Presidential Permit OE Docket No. PP-387 Soule Hydro:

    Energy Savers [EERE]

    Notice of Intervention by Department of Agriculture | Department of Energy Hydro: Notice of Intervention by Department of Agriculture Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Notice of Intervention by Department of Agriculture Application from Soule Hydro to construct, operate and maintain electric transmission facilities at the U.S. - Canada border. PDF icon Notice of Intervention from Dept of Agriculture.pdf More Documents & Publications Application for

  12. Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2010-11-08

    This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

  13. NSTAR Electric & Gas Corporation Smart Grid Demonstration Project...

    Open Energy Info (EERE)

    Project which is based in Westwood, Massachusetts. Overview Develop and implement a Smart Grid pilot program that will examine technologies to leverage existing automated...

  14. Mongolia Renewable Energy and Rural Electricity Access Project...

    Open Energy Info (EERE)

    legislation for grid-connected renewable energy systems; and (a) support for project management, monitoring and evaluation, and assistance in the institutional development of...

  15. Municipal Electric Authority of Georgia Smart Grid Project |...

    Open Energy Info (EERE)

    This project aims to reduce operating and maintenance costs, while improving the reliability of the transmission and distribution assets owned and operated by MEAG. The...

  16. NSTAR Electric & Gas Corporation Smart Grid Demonstration Project...

    Open Energy Info (EERE)

    on low voltage (secondary) networks in downtown Boston to improve grid reliability and safety. The project will provide additional visibility for operators, which...

  17. Charging Infrastructure for Electric Vehicles (Smart Grid Project...

    Open Energy Info (EERE)

    level and remote onoff functionality. A onestopshop charging offer was tested on the market and further developed within the project. An internal development plan for charging...

  18. US Recovery Act Smart Grid Projects - Electric Transmission Systems...

    Open Energy Info (EERE)

    "icon":"","group":"","inlineLabel":"","visitedicon":"","text":"Project" title"ISO New England, Incorporated Smart...

  19. Aiken Electric Cooperative Inc | Open Energy Information

    Open Energy Info (EERE)

    Aiken Electric Cooperative Inc Place: Aiken, South Carolina Zip: 29802 Sector: Hydro, Hydrogen, Renewable Energy Product: A utility that provides electricity from renewable sources...

  20. 43 U.S.C. 485h New Projects; Sale of Water and Electric Power...

    Open Energy Info (EERE)

    43 U.S.C. 485h New Projects; Sale of Water and Electric Power Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

  1. A Guide to the Lessons Learned from the Clean Cities Community Electric Vehicle Readiness Projects

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Guide to the Lessons Learned from the Clean Cities Community Electric Vehicle Readiness Projects January 2014 ACKNOWLEDGEMENTS This guide summarizes and synthesizes the work of a series of projects carried out by the Clean Cities Community Readiness and Planning for Plug-In Electric Vehicles and Charging Infrastructure awardee organizations and partnering local Clean Cities coalitions. A full list of these organizations can be found in Appendix I of this report. On behalf of the U.S. Department

  2. HydroChina Corporation | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100011 Sector: Hydro, Wind energy Product: Beijing-based firm focused on hydro and wind power development. References: HydroChina Corporation1 This article is a...

  3. Norsk Hydro ASA | Open Energy Information

    Open Energy Info (EERE)

    Norsk Hydro ASA Jump to: navigation, search Name: Norsk Hydro ASA Place: Oslo, Norway Zip: NO-0283 Sector: Hydro, Renewable Energy, Solar Product: Oslo-based energy and aluminium...

  4. Steele-Waseca Cooperative Electric- The Sunna Project

    Broader source: Energy.gov [DOE]

    The Sunna Project allows any member to suscribe to the solar community program. The subscription includes the allocation of energy produced by their subscriped panel(s) to offset  their monthly...

  5. PROJECT PROFILE: Solar Electric Power Association (Solar Market Pathways)

    Broader source: Energy.gov [DOE]

    The Solar Electric Power Association (SEPA) and its partners are researching the intersection of community solar business models and consumer demographics to develop standardized program designs. By producing a range of more standardized, streamlined and cost-effective business models that can be easily localized across the country, SEPA will spark the growth of community solar programs.

  6. Village Hydro Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Hydro Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Village Hydro Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus...

  7. Aquaphile sarl Hydro Gen | Open Energy Information

    Open Energy Info (EERE)

    Aquaphile sarl Hydro Gen Jump to: navigation, search Name: Aquaphile sarl Hydro Gen Address: 210 Le Vrennic Place: Landda Zip: 29870 Region: France Sector: Marine and Hydrokinetic...

  8. Beck Mickle Hydro Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mickle Hydro Ltd Jump to: navigation, search Name: Beck Mickle Hydro Ltd. Place: Lancashire, England, United Kingdom Zip: LA4 4AY Product: Development of a technology, which...

  9. Belij Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Belij Hydro Power Ltd Jump to: navigation, search Name: Belij Hydro Power Ltd Place: New Delhi, Delhi (NCT), India Zip: 110008 Product: Private investorproject developer which has...

  10. Geo Hydro Supply | Open Energy Information

    Open Energy Info (EERE)

    Hydro Supply Jump to: navigation, search Name: Geo Hydro Supply Address: 997 State Route 93 NW Place: Sugarcreek, Ohio Zip: 44681 Sector: Geothermal energy Phone Number:...

  11. Voith Hydro Wavegen Limited | Open Energy Information

    Open Energy Info (EERE)

    Voith Hydro Wavegen Limited Jump to: navigation, search Name: Voith Hydro Wavegen Limited Region: United Kingdom Sector: Marine and Hydrokinetic Website: www.wavegen.co.uk This...

  12. The Small Hydro Company | Open Energy Information

    Open Energy Info (EERE)

    Hydro Company Jump to: navigation, search Name: The Small Hydro Company Place: Oxfordshire, United Kingdom Product: Privately-held owner, developer and operator of assets....

  13. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  14. "Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected"

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  15. Yacyreta hydroelectric project contract signed

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    On June 26, 1987 the $270 million contract for the supply of 20 large hydraulic turbines for the Yacyreta Hydroelectric Project was signed by the Entidad Binacional Yacyreta, (a binational agency created by the governments of Argentina and Paraguay for the development of Yacyreta), and by Voith Hydro, Inc., of York, Pennsylvania, and Canadian General Electric of Montreal, Canada. Under the terms of the contract, 9 turbine units will be supplied by Voith Hydro, Inc. from its York, Pennsylvania plant, 4 units by Canadian General Electric of Montreal, and 7 units by Metanac, a consortium of Argentine manufacturers, who will utilize technology and technical assistance from Voith and CGE. The Yacyreta Project is being built on the Parana River on the border between Argentina and Paraguay. Construction at the site commenced in late 1983. Voith's portion of this contrast represents approximately $130 million dollars worth of business for its York, Pennsylvania facility.

  16. Tampa Electric Company -- IGCC Project. Quarterly report, July--September 1995

    SciTech Connect (OSTI)

    1995-10-01

    This is the quarterly report for 1995 of the Tampa Electric Company integrated gasification combined-cycle project at Polk Power Station. As of the end of the third quarter of 1995, engineering is essentially complete; construction is about 50% complete. The project is on schedule for the Target Project Completion Date of September 15, 1996. The work force at the site now stands at 1,300 people. Recently the project was recognized for reaching 1 million man-hours without a lost time injury. The report discusses engineering issues, project management issues, construction issues, and accomplishments of each.

  17. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,50159,0,"A",98,,,1999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,1469,6,01179,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    98,,,1999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,0,0,99999999,1469,6,01179,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC

  18. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicle Workplace Charging 2  Vertically integrated Vermont utility  We serve  260,000 Customers  202 towns covering 7,500 square miles of service territory  We operate  32 Hydro Plants  6 Peaking Plants  12 Solar Projects  2 Wind Farms  2 100KW Wind Turbines  1 Joint-Owned Biomass Plant (McNeil)  We maintain  976 miles of transmission lines  11,273 miles of distribution lines  185 substations  Started in 2010 with Prius HyMotion

  19. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  20. Midwest Hydro Users Group Meeting

    Broader source: Energy.gov [DOE]

    The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

  1. Pumped Hydro | Open Energy Information

    Open Energy Info (EERE)

    Introduction caption:Pumped Storage diagram at TVA's Racoon mountain Pumped Hydro is an energy storage technique where water is used as a medium in order to store energy. During...

  2. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  3. University of Strathclyde Dpt of Electric Electrical Engineering...

    Open Energy Info (EERE)

    Hydro, Hydrogen Product: Univ of Strathclyde is working on several research projects for fuel cell technology and hydrogen production. Coordinates: 55.857809, -4.242511 Show...

  4. Vindhyachal Hydro Power Ltd VHPL | Open Energy Information

    Open Energy Info (EERE)

    Vindhyachal Hydro Power Ltd VHPL Jump to: navigation, search Name: Vindhyachal Hydro Power Ltd. (VHPL) Place: Mumbai, Maharashtra, India Zip: 400001 Sector: Hydro Product:...

  5. Yushan Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yushan Hydro Power Development Co Ltd Jump to: navigation, search Name: Yushan Hydro Power Development Co. Ltd. Place: Chongqing, Jiangsu Province, China Zip: 405800 Sector: Hydro...

  6. Fengning Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fengning Hydro Power Development Co Ltd Jump to: navigation, search Name: Fengning Hydro Power Development Co., Ltd. Place: Guizhou Province, China Sector: Hydro Product:...

  7. Madkini Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Madkini Hydro Power Pvt Ltd Jump to: navigation, search Name: Madkini Hydro Power Pvt Ltd. Place: Dehradun, Uttaranchal, India Zip: 248006 Sector: Hydro Product: Dehradun-based...

  8. Vijayalakshmi Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vijayalakshmi Hydro Power Pvt Ltd Jump to: navigation, search Name: Vijayalakshmi Hydro Power Pvt. Ltd. Place: Bangalore, Karnataka, India Zip: 560 001 Sector: Hydro Product:...

  9. Longchuan Minhong Hydro power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Minhong Hydro power Co Ltd Jump to: navigation, search Name: Longchuan Minhong Hydro power Co. Ltd Place: Yunnan Province, China Zip: 678700 Sector: Hydro Product: China-based...

  10. Gunsola Hydro Power Generation Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gunsola Hydro Power Generation Pvt Ltd Jump to: navigation, search Name: Gunsola Hydro Power Generation Pvt Ltd Place: Dehradun, Uttaranchal, India Sector: Hydro Product:...

  11. Jinxiu Guangneng Hydro Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guangneng Hydro Power Company Ltd Jump to: navigation, search Name: Jinxiu Guangneng Hydro Power Company Ltd. Place: Guangxi Autonomous Region, China Zip: 530022 Sector: Hydro...

  12. Fujian Jinzaoqiao Hydro Power Limited Corporation | Open Energy...

    Open Energy Info (EERE)

    Jinzaoqiao Hydro Power Limited Corporation Jump to: navigation, search Name: Fujian Jinzaoqiao Hydro Power Limited Corporation Place: Ningde, Fujian Province, China Sector: Hydro...

  13. Zhangping Huakou Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhangping Huakou Hydro Power Co Ltd Jump to: navigation, search Name: Zhangping Huakou Hydro Power Co Ltd Place: Zhangping, Fujian Province, China Sector: Hydro Product:...

  14. Him Kailash Hydro Power P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Him Kailash Hydro Power P Ltd Jump to: navigation, search Name: Him Kailash Hydro Power (P) Ltd. Place: West Godavari District, Andhra Pradesh, India Zip: 434101 Sector: Hydro...

  15. Shizong Heier Hydro power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shizong Heier Hydro power Development Co Ltd Jump to: navigation, search Name: Shizong Heier Hydro power Development Co.Ltd Place: Yunnan Province, China Sector: Hydro Product:...

  16. Jiangxi Jiangwan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiangwan Hydro Power Co Ltd Jump to: navigation, search Name: Jiangxi Jiangwan Hydro Power Co., Ltd. Place: Shangrao, China Zip: 344000 Sector: Hydro Product: China-based small...

  17. Guizhou Sanhe Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydro Power Development Co Ltd Jump to: navigation, search Name: Guizhou Sanhe Hydro Power Development Co.Ltd. Place: Guiyang, Guizhou Province, China Zip: 550002 Sector: Hydro...

  18. Libo Lidu Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lidu Hydro Power Development Co Ltd Jump to: navigation, search Name: Libo Lidu Hydro Power Development Co.Ltd. Place: Guizhou Province, China Zip: 558400 Sector: Hydro Product:...

  19. Antu County Hengxin Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Antu County Hengxin Hydro Power Development Co Ltd Jump to: navigation, search Name: Antu County Hengxin Hydro Power Development Co., Ltd Place: China Zip: 133609 Sector: Hydro...

  20. Qingyuan Longjing Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Longjing Hydro Power Development Co Ltd Jump to: navigation, search Name: Qingyuan Longjing Hydro Power Development Co. Ltd. Place: Lishui City, China Zip: 323800 Sector: Hydro...

  1. Ningshan Luotuoya Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ningshan Luotuoya Hydro Power Co Ltd Jump to: navigation, search Name: Ningshan Luotuoya Hydro Power Co. Ltd., Place: Ankang, Shaanxi Province, China Zip: 711600 Sector: Hydro...

  2. Leshan Kaiyuan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Leshan Kaiyuan Hydro Power Co., Ltd. Place: Leshan, Sichuan Province, China Zip: 614000 Sector: Hydro Product: Sichuan-based small hydro...

  3. Macaohe Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Macaohe Hydro Power Development Co Ltd Jump to: navigation, search Name: Macaohe Hydro Power Development Co., Ltd. Place: Tongren, Guizhou Province, China Sector: Hydro Product:...

  4. Zhongjing Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhongjing Hydro Power Development Co Ltd Jump to: navigation, search Name: Zhongjing Hydro Power Development Co., Ltd. Place: Guizhou Province, China Sector: Hydro Product:...

  5. Guizhou Anshun Sanchawan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Anshun Sanchawan Hydro Power Co Ltd Jump to: navigation, search Name: Guizhou Anshun Sanchawan Hydro Power Co., Ltd. Place: Anshun, Guizhou Province, China Sector: Hydro Product:...

  6. Shimen Zhangjiadu Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhangjiadu Hydro Power Co Ltd Jump to: navigation, search Name: Shimen Zhangjiadu Hydro Power Co. Ltd. Place: Changde City, Hunan Province, China Zip: 415000 Sector: Hydro Product:...

  7. Jiangshan Jinlong hydro power development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jiangshan Jinlong hydro power development Co Ltd Jump to: navigation, search Name: Jiangshan Jinlong hydro power development Co. Ltd. Place: Jiangshan, China Sector: Hydro Product:...

  8. Sunan Longchanghe Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sunan Longchanghe Hydro Power Co Ltd Jump to: navigation, search Name: Sunan Longchanghe Hydro Power Co., Ltd Place: Zhangye, Gansu Province, China Zip: 620721 Sector: Hydro...

  9. Kapil Mohan Associates Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kapil Mohan Associates Hydro Power Pvt Ltd Jump to: navigation, search Name: Kapil Mohan & Associates Hydro Power Pvt. Ltd. Place: Chandigarh, Chandigarh, India Sector: Hydro...

  10. Qingyang Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Qingyang Hydro Power Development Co Ltd Jump to: navigation, search Name: Qingyang Hydro Power Development Co. Ltd. Place: Lishui City, China Zip: 323800 Sector: Hydro Product:...

  11. Sichuan Xingchen Hydro Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xingchen Hydro Investment Co Ltd Jump to: navigation, search Name: Sichuan Xingchen Hydro Investment Co., Ltd. Place: Mianyang, Sichuan Province, China Zip: 617067 Sector: Hydro...

  12. Sichuan Tianquan Xiacun Hydro Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xiacun Hydro Generation Co Ltd Jump to: navigation, search Name: Sichuan Tianquan Xiacun Hydro Generation Co. Ltd Place: Ya'an, Sichuan Province, China Zip: 625500 Sector: Hydro...

  13. Voith Hydro Ocean Current Technologies | Open Energy Information

    Open Energy Info (EERE)

    Ocean Current Technologies Jump to: navigation, search Name: Voith Hydro Ocean Current Technologies Place: Germany Sector: Hydro Product: Germany-based JV between Voith Hydro and...

  14. Paschim Hydro Energy Pvt Ltd PHEPL | Open Energy Information

    Open Energy Info (EERE)

    Paschim Hydro Energy Pvt Ltd PHEPL Jump to: navigation, search Name: Paschim Hydro Energy Pvt. Ltd. (PHEPL) Place: Hyderabad, Andhra Pradesh, India Zip: 500034 Sector: Hydro...

  15. Nagarjuna Hydro Energy Pvt Ltd NHEPL | Open Energy Information

    Open Energy Info (EERE)

    Hydro Energy Pvt Ltd NHEPL Jump to: navigation, search Name: Nagarjuna Hydro Energy Pvt. Ltd. (NHEPL) Place: Hyderabad, Andhra Pradesh, India Sector: Hydro Product: Hyderabad-based...

  16. Yingjiang Xiangbai Electricity Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xiangbai Electricity Co Ltd Jump to: navigation, search Name: Yingjiang Xiangbai Electricity Co., Ltd Place: Yingjiang County, Yunnan Province, China Zip: 679300 Sector: Hydro...

  17. Fugong Guoyuan Electricity Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Guoyuan Electricity Development Co Ltd Jump to: navigation, search Name: Fugong Guoyuan Electricity Development Co., Ltd. Place: Yunnan Province, China Zip: 673400 Sector: Hydro...

  18. Jilin Province Local Water Electricity Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Water Electricity Co Ltd Jump to: navigation, search Name: Jilin Province Local Water & Electricity Co.,Ltd Place: Changchun, Jilin Province, China Zip: 130022 Sector: Hydro...

  19. Mabian Huaqiang Electricity Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huaqiang Electricity Power Co Ltd Jump to: navigation, search Name: Mabian Huaqiang Electricity Power Co.,Ltd. Place: Leshan, Sichuan Province, China Zip: 614600 Sector: Hydro...

  20. Yangbi Puping Electric Power Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Puping Electric Power Generation Co Ltd Jump to: navigation, search Name: Yangbi Puping Electric Power Generation Co., Ltd Place: Yunnan Province, China Zip: 672500 Sector: Hydro...

  1. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

  2. EIS-0150: Salt Lake City Area Integrated Projects Electric Power Marketing

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration prepared this environmental impact statement to analyze the environmental impacts of its proposal to establish the level of its commitment (sales) of long- term firm electrical capacity and energy from the Salt Lake City Area Integrated Projects hydroelectric power plants.

  3. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  4. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  5. AD Hydro Power Ltd ADHPL | Open Energy Information

    Open Energy Info (EERE)

    AD Hydro Power Ltd ADHPL Jump to: navigation, search Name: AD Hydro Power Ltd. (ADHPL) Place: Noida, Uttar Pradesh, India Zip: 201301 Sector: Hydro Product: Noida-based small hydro...

  6. Wind-electric icemaking project: Analysis and dynamometer testing. Volume 1

    SciTech Connect (OSTI)

    Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

    1998-07-01

    The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

  7. Hydro Research Program Seeking Graduate Student Applicants

    Broader source: Energy.gov [DOE]

    The Hydro Research Foundation is now accepting graduate student applications for its DOE-funded graduate student research program. The Hydro Research Awards Program is designed to spur innovation...

  8. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,0,1290,,,91,4505,0,0,1899,0,0,4695,0,0,5669,0,0,3009,0,0,1255,0,0,470,0,0,688,0,0,1871,0,0,3685,0,0,1586,0,0,1912,0,0,1469,6,50159,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    0,,,91,4505,0,0,1899,0,0,4695,0,0,5669,0,0,3009,0,0,1255,0,0,470,0,0,688,0,0,1871,0,0,3685,0,0,1586,0,0,1912,0,0,1469,6,50159,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,0,1290,,,91,814,0,0,503,0,0,997,0,0,256,0,0,723,0,0,831,0,0,195,0,0,560,0,0,573,0,0,920,0,0,896,0,0,969,0,0,1472,6,50159,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC

  9. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,0,1291,,,92,4023,0,0,3405,0,0,2670,0,0,3071,0,0,2241,0,0,1428,0,0,1933,0,0,1081,0,0,997,0,0,772,0,0,1267,0,0,1125,0,0,1469,6,50159,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    1,,,92,4023,0,0,3405,0,0,2670,0,0,3071,0,0,2241,0,0,1428,0,0,1933,0,0,1081,0,0,997,0,0,772,0,0,1267,0,0,1125,0,0,1469,6,50159,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,0,1291,,,92,1014,0,0,761,0,0,995,0,0,415,0,0,844,0,0,601,0,0,734,0,0,647,0,0,471,0,0,640,0,0,836,0,0,667,0,0,1472,6,50159,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC

  10. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,0,1292,,,93,1485,0,0,1892,0,0,3025,0,0,4801,0,0,2779,0,0,1417,0,0,590,0,0,465,0,0,499,0,0,568,0,0,1087,0,0,5484,0,0,1469,6,50159,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    2,,,93,1485,0,0,1892,0,0,3025,0,0,4801,0,0,2779,0,0,1417,0,0,590,0,0,465,0,0,499,0,0,568,0,0,1087,0,0,5484,0,0,1469,6,50159,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,0,1292,,,93,318,0,0,192,0,0,482,0,0,346,0,0,784,0,0,749,0,0,286,0,0,161,0,0,250,0,0,818,0,0,1057,0,0,722,0,0,1472,6,50159,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC

  11. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,50159,0,"A",1295,,,96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,37615,0,0,1469,6,01179,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,,,96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,37615,0,0,1469,6,01179,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,50159,0,"A",1295,,,96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7659,0,0,1472,6,01179,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC

  12. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,50159,0,"A",1296,,,97,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,26317,0,0,1469,6,01179,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    6,,,97,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,26317,0,0,1469,6,01179,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,50159,0,"A",1296,,,97,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7697,0,0,1472,6,01179,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC

  13. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,50159,0,"A",1297,,,98,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1469,6,01179,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,,,98,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1469,6,01179,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,50159,0,"A",1297,,,98,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1472,6,01179,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC

  14. Hydro Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Services Product: Micro hydropower company. Provides technical services such as feasibility studies, mechanicalcivilelectical design. References: Hydro Generation Ltd1...

  15. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    SciTech Connect (OSTI)

    Mindy Kirkpatrick

    2012-05-01

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

  16. NREL Teams Up on Three ARPA-E Projects to Optimize Electric Vehicle Battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management and Controls - News Releases | NREL Teams Up on Three ARPA-E Projects to Optimize Electric Vehicle Battery Management and Controls January 16, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has joined DOE and research partners in launching the Advanced Management and Protection of Energy Storage Devices (AMPED) program with a kick-off meeting in San Francisco. Over the next three years, NREL engineers will work with teams led by Utah State

  17. Application for Presidential Permit OE Docket No. PP-387 Soule Hydro:

    Energy Savers [EERE]

    Comments from Alaska State Legislature, Peggy Wilson | Department of Energy Alaska State Legislature, Peggy Wilson Application for Presidential Permit OE Docket No. PP-387 Soule Hydro: Comments from Alaska State Legislature, Peggy Wilson Application from Soule Hydro to construct, operate and maintain electric transmission facilities at the U.S. - Canada border. PDF icon Rep. Peggy Wilson, Alaska State Legislature.pdf More Documents & Publications Application for Presidential Permit OE

  18. MHK Projects/Marenergie | Open Energy Information

    Open Energy Info (EERE)

    Hydrohelix Energies Project Technology *MHK TechnologiesHydro Helix Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  19. Astha Projects India Ltd | Open Energy Information

    Open Energy Info (EERE)

    Astha Projects India Ltd Jump to: navigation, search Name: Astha Projects (India) Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500034 Sector: Hydro Product: Hyderabad-based...

  20. MHK Projects/Akwanga Nigeria SHP | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 4 Project Phase Date 20140425 Project Details Smart Hydro Power is installing thirteen additional kinetic water turbines in Nigeria. The...

  1. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect (OSTI)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  2. Designs and applications for floating-hydro power systems in small streams

    SciTech Connect (OSTI)

    Rehder, J.B.

    1983-01-01

    The project focuses on an appropriate technology for small-scale hydro power: floating waterwheels and turbines. For background, relic and existing systems such as early floating mills, traditional Amish waterwheels, and micro-hydro systems are examined. In the design phase of the project, new designs for Floating Hydro Power Systems include: an analysis of floatation materials and systems; a floating undershot waterwheel design; a floating cylinder (fiberglass storage tank) design; a submerged tube design; and a design for a floating platform with submerged propellers. Finally, in the applications phase, stream flow data from East Tennessee streams are used in a discussion of the potential applications of floating hydro power systems in small streams.

  3. Microsoft PowerPoint - NERC Reliability Standards and Mandatory Compliance Presentation to Hydro-Power Conference - June 2007.p

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERC Reliability NERC Reliability Standards and Standards and Mandatory Compliance Mandatory Compliance Hydro Hydro - - Power Conference Power Conference June 13, 2007 June 13, 2007 Stan Mason Stan Mason 2 EPACT 2005 EPACT 2005 Congress approved the related legislation Congress approved the related legislation in August 2005 in August 2005 It required creation of an Electric It required creation of an Electric Reliability Organization (ERO) to be Reliability Organization (ERO) to be approved by

  4. [Tampa Electric Company IGCC project]. Final public design report; Technical progress report

    SciTech Connect (OSTI)

    1996-07-01

    This final Public Design Report (PDR) provides completed design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the operating parameters and benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. Pending development of technically and commercially viable sorbent for the Hot Gas Cleanup System, the HGCU also is demonstrated. The report is organized under the following sections: design basis description; plant descriptions; plant systems; project costs and schedule; heat and material balances; general arrangement drawings; equipment list; and miscellaneous drawings.

  5. TidGen Power System Commercialization Project

    SciTech Connect (OSTI)

    Sauer, Christopher R.; McEntee, Jarlath

    2013-12-30

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

  6. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  7. Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    Gasoline and Diesel Fuel Update (EIA)

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 2.44 2.48 2.57 2.66 2.70 2.79 2.84 2.92 3.04 3.16 3.25 3.36 3.51 3.60 3.77 3.91 3.97 4.08 AEO 1995 1993 2.39 2.48 2.42 2.45 2.45 2.53 2.59 2.78 2.91 3.10 3.24 3.38 3.47 3.53 3.61 3.68

  8. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  9. "Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected"

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,2.44,2.48,2.57,2.66,2.7,2.79,2.84,2.92,3.04,3.16,3.25,3.36,3.51,3.6,3.77,3.91,3.97,4.08 "AEO

  10. HydroVolts | Open Energy Information

    Open Energy Info (EERE)

    Hydro Product: Aims to develop renewable energy from canals, waterways, streams, and ocean currents Website: www.hydrovolts.com Coordinates: 47.645778, -122.3257532 Show...

  11. First Hydro Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: First Hydro Company Place: Flintshire, England, United Kingdom Zip: CH5 3XJ Sector: Renewable Energy Product: Flintshire-based renewable...

  12. Vortex Hydro Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Energy LLC Jump to: navigation, search Name: Vortex Hydro Energy LLC Address: 4870 West Clark Rd Suite 108 Place: Ypsilanti Zip: 48197 Region: United States Sector: Marine and...

  13. MHK Technologies/HydroCoil Turbine | Open Energy Information

    Open Energy Info (EERE)

    HydroCoil Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroCoil Turbine.jpg Technology Profile Primary Organization HydroCoil...

  14. Ledong Xinyuan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ledong Xinyuan Hydro Power Co Ltd Jump to: navigation, search Name: Ledong Xinyuan Hydro Power Co. Ltd Place: Hainan Province, China Zip: 572500 Sector: Hydro Product: China-based...

  15. Hul Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hul Hydro Power Pvt Ltd Jump to: navigation, search Name: Hul Hydro Power Pvt. Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500004 Sector: Hydro Product: Hyderabad-based small...

  16. Huichang Bai exia Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huichang Bai exia Hydro Power Co Ltd Jump to: navigation, search Name: Huichang Bai'exia Hydro Power Co., Ltd Place: Jiangxi Province, China Zip: 342600 Sector: Hydro Product:...

  17. Puer Xianmei Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Puer Xianmei Hydro Power Co Ltd Jump to: navigation, search Name: Puer Xianmei Hydro Power Co., Ltd. Place: Yunnan Province, China Zip: 665108 Sector: Hydro Product: Yunnan-based...

  18. Siri Ram Syal Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Siri Ram Syal Hydro Power Pvt Ltd Jump to: navigation, search Name: Siri Ram Syal Hydro Power Pvt Ltd Place: New Delhi, Delhi (NCT), India Zip: 110070 Sector: Hydro Product:...

  19. Birahi Ganga Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    Birahi Ganga Hydro Power Ltd Jump to: navigation, search Name: Birahi Ganga Hydro Power Ltd. Place: New Delhi, Delhi (NCT), India Zip: 110019 Sector: Hydro Product: Delhi-based...

  20. Chamoli Hydro Power P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Chamoli Hydro Power P Ltd Jump to: navigation, search Name: Chamoli Hydro Power (P) Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500 033 Sector: Hydro Product: Hyderabad-based...

  1. MHK Technologies/HydroGen 10 | Open Energy Information

    Open Energy Info (EERE)

    HydroGen 10 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroGen 10.jpg Technology Profile Primary Organization HydroGen Aquaphile sarl...

  2. SBA Hydro Systems Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    SBA Hydro Systems Pvt Ltd Jump to: navigation, search Name: SBA Hydro Systems Pvt. Ltd. Place: New Delhi, Delhi (NCT), India Zip: 110019 Sector: Hydro Product: Delhi-based...

  3. Usaka Hydro Powers Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Usaka Hydro Powers Pvt Ltd Jump to: navigation, search Name: Usaka Hydro Powers Pvt. Ltd. Place: Anand Parvat, Delhi (NCT), India Zip: 110005 Sector: Hydro Product: Delhi-based...

  4. Comments of Lawrence J. Reilly Chairman, Vermont Electric Power...

    Broader source: Energy.gov (indexed) [DOE]

    nation's first statewide "transmission only" company in order to create and maintain an interconnected electric transmission grid capable of sharing access to clean hydro power. ...

  5. Anhui Kangyuan Electric Power Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Electric Power Group Co Ltd Place: Hefei, Anhui Province, China Zip: 230061 Sector: Hydro Product: A regional power generation company engaged in hydropower development in...

  6. Hydro trash rack rake built by Riegel Textile (Engineering Materials)

    SciTech Connect (OSTI)

    Rinehart, B.N.

    1981-11-05

    The Fries, Virginia plant of the Riegel Textile Corporation of Ware Shoals, South Carolina, found it necessary to install a trash rack rake for proper operation of their hydro plant. They put the job out for bid, but when they received bids above budget they decided to build their own rack rake. Mr. Sanford Byrd, plant engineer, put together a design that included use of standard off-the-shelf items and readily available structural steel components. The rake was built by the Fries maintenance personnel for only $50,000. The unit operates hydraulically and runs on a set of tracks placed on the intake canal wall. This unit can be adapted to most low-head hydro projects. The information furnished in this package will allow you to build your own trash rack rake.

  7. PP-369 British Columbia Hydro and Power Authority | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-369 British Columbia Hydro and Power Authority PP-369 British Columbia Hydro and Power Authority Presidential Permit authorizing British Columbia and Power Authority to...

  8. Pacific Hydro Brazil formerly SES Solu es de Energias Sustent...

    Open Energy Info (EERE)

    Hydro Brazil formerly SES Solu es de Energias Sustent veis Jump to: navigation, search Name: Pacific Hydro Brazil (formerly SES - Solues de Energias Sustentveis) Place:...

  9. Zhushan County Yuyuan Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhushan County Yuyuan Hydro Power Development Co Ltd Jump to: navigation, search Name: Zhushan County Yuyuan Hydro Power Development Co. Ltd Place: Zhushan county, Hubei Province,...

  10. Langao County Guangming Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    County Guangming Hydro Power Development Co Ltd Jump to: navigation, search Name: Langao County Guangming Hydro Power Development Co., Ltd. Place: Ankang, Shaanxi Province, China...

  11. Jinxiu Yao Autonomous County Jinsheng Hydro Power Co Ltd | Open...

    Open Energy Info (EERE)

    Jinxiu Yao Autonomous County Jinsheng Hydro Power Co Ltd Jump to: navigation, search Name: Jinxiu Yao Autonomous County Jinsheng Hydro Power Co., Ltd. Place: Laibin, Guangxi...

  12. Guizhou Zhenning Yuefeng Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Zhenning Yuefeng Hydro Power Development Co Ltd Jump to: navigation, search Name: Guizhou Zhenning Yuefeng Hydro Power Development Co.Ltd. Place: Anshun, Guizhou Province, China...

  13. Diebu Lazikou Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lazikou Hydro Power Development Co Ltd Jump to: navigation, search Name: Diebu Lazikou Hydro Power Development Co., Ltd Place: Gannan Tibetan Autonomous Prefecture, Gansu Province,...

  14. Chishui Zhongshui Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Chishui Zhongshui Hydro Power Development Co Ltd Jump to: navigation, search Name: Chishui Zhongshui Hydro Power Development Co.Ltd. Place: Zunyi City, Guizhou Province, China Zip:...

  15. Department of Hydro Power Development | Open Energy Information

    Open Energy Info (EERE)

    Development Jump to: navigation, search Name: Department of Hydro Power Development Place: Itanagar, Arunachal Pradesh, India Zip: 791 110 Sector: Hydro Product: Itanagar-based...

  16. Jichuan Taiyang River Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jichuan Taiyang River Hydro Power Development Co Ltd Jump to: navigation, search Name: Jichuan Taiyang River Hydro Power Development Co., Ltd. Place: Sichuan Province, China Zip:...

  17. Neijiang Tiangongtang Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Neijiang Tiangongtang Hydro Power Development Co Ltd Jump to: navigation, search Name: Neijiang Tiangongtang Hydro Power Development Co., Ltd Place: Neijiang, Sichuan Province,...

  18. Lushui County Quanyi Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Quanyi Hydro Power Development Co Ltd Jump to: navigation, search Name: Lushui County Quanyi Hydro Power Development Co., Ltd Place: Yunnan Province, China Zip: 673100 Sector:...

  19. Longyuan Hydro Power Development in Congjiang County Co Ltd ...

    Open Energy Info (EERE)

    Hydro Power Development in Congjiang County Co Ltd Jump to: navigation, search Name: Longyuan Hydro Power Development in Congjiang County Co.Ltd. Place: Guizhou Province, China...

  20. Yunnan Daoyao County Duodi River Hydro Power Development Co Ltd...

    Open Energy Info (EERE)

    Daoyao County Duodi River Hydro Power Development Co Ltd Jump to: navigation, search Name: Yunnan Daoyao County Duodi River Hydro Power Development Co., Ltd. Place: Yunnan...

  1. Guizhou Qiannan Zhongshui Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Qiannan Zhongshui Hydro Power Development Co Ltd Jump to: navigation, search Name: Guizhou Qiannan Zhongshui Hydro Power Development Co.Ltd. Place: Duyun City, Guizhou Province,...

  2. Zhaidong Hydro Power Plant in Benxi County | Open Energy Information

    Open Energy Info (EERE)

    Zhaidong Hydro Power Plant in Benxi County Jump to: navigation, search Name: Zhaidong Hydro Power Plant in Benxi County Place: Benxi City, Liaoning Province, China Zip: 117100...

  3. Tongdao Yaolaitan Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Tongdao Yaolaitan Hydro Power Development Co Ltd Jump to: navigation, search Name: Tongdao Yaolaitan Hydro Power Development Co. Ltd Place: Huaihua, Hunan Province, China Zip:...

  4. Jianyuan Hydro Power Development in Jianhe County Co Ltd | Open...

    Open Energy Info (EERE)

    Jianyuan Hydro Power Development in Jianhe County Co Ltd Jump to: navigation, search Name: Jianyuan Hydro Power Development in Jianhe County Co Ltd Place: Kaili, China Zip: 556000...

  5. Orissa Hydro Power Corporation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Orissa Hydro Power Corporation Ltd Jump to: navigation, search Name: Orissa Hydro Power Corporation Ltd. Place: Bhubaneswar, Orissa, India Zip: 751002 Product: Bhubaneswar-based...

  6. Gansu Diantou Tao River Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    River Hydro Power Development Co Ltd Jump to: navigation, search Name: Gansu Diantou Tao River Hydro Power Development Co. Ltd. Place: Lanzhou, Gansu Province, China Zip: 730030...

  7. Qingyuan County Xiankeng Hydro Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Xiankeng Hydro Power Development Co Ltd Jump to: navigation, search Name: Qingyuan County Xiankeng Hydro Power Development Co. Ltd. Place: Lishui City, China Zip: 323800 Sector:...

  8. Ningyuan County Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Development Co Ltd Jump to: navigation, search Name: Ningyuan County Hydro Power Development Co., Ltd. Place: Yongzhou, Hunan Province, China Zip: 425600 Sector: Hydro Product:...

  9. Chongqing City Chengkou County Mingda Hydro Power Development...

    Open Energy Info (EERE)

    Chengkou County Mingda Hydro Power Development Co Ltd Jump to: navigation, search Name: Chongqing City Chengkou County Mingda Hydro Power Development Co., Ltd Place: Chongqing,...

  10. Lingshui Ruida Hydro Power Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lingshui Ruida Hydro Power Investment Co Ltd Jump to: navigation, search Name: Lingshui Ruida Hydro Power Investment Co. Ltd. Place: Hainan Province, China Zip: 527400 Sector:...

  11. Sichuan Provincial Hydro Power Investment Operation Group Co...

    Open Energy Info (EERE)

    Hydro Power Investment Operation Group Co ltd Jump to: navigation, search Name: Sichuan Provincial Hydro Power Investment & Operation (Group) Co. ltd Place: Chengdu City, Sichuan...

  12. Guizhou Yuefeng Hydro Power Investment Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Yuefeng Hydro Power Investment Co Ltd Jump to: navigation, search Name: Guizhou Yuefeng Hydro Power Investment Co Ltd Place: Guiyang City, Guizhou Province, China Zip: 550018...

  13. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water ...

  14. Yang County Kafang Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    County Kafang Hydro Power Development Co Ltd Jump to: navigation, search Name: Yang County Kafang Hydro Power Development Co. Ltd. Place: Hanzhong, Shaanxi Province, China Zip:...

  15. HydroGen Corporation formerly Chiste Corp | Open Energy Information

    Open Energy Info (EERE)

    HydroGen Corporation formerly Chiste Corp Jump to: navigation, search Name: HydroGen Corporation (formerly Chiste Corp) Place: Jefferson Hills, Pennsylvania Zip: 15025 Sector:...

  16. Renewable Energy Resources Inc formerly Internal Hydro International...

    Open Energy Info (EERE)

    Inc formerly Internal Hydro International Inc Jump to: navigation, search Name: Renewable Energy Resources Inc (formerly Internal Hydro International Inc) Place: Tampa, Florida...

  17. Statoil formerly StatoilHydro | Open Energy Information

    Open Energy Info (EERE)

    Stavanger, Norway Zip: N-4035 Sector: Hydro, Renewable Energy Product: Norway-based oil and gas company. StatoilHydro(tm)s New Energy business unit involves renewable...

  18. Gansu Zhongyuan Water Conservancy and Hydro Power Plant Development...

    Open Energy Info (EERE)

    Water Conservancy and Hydro Power Plant Development Co Ltd Jump to: navigation, search Name: Gansu Zhongyuan Water Conservancy and Hydro Power Plant Development Co. Ltd. Place:...

  19. Smart Hydro Power GmbH | Open Energy Information

    Open Energy Info (EERE)

    Smart Hydro Power GmbH Address: Alte Traubinger Str. 17 Place: Garatshausen Country: Germany Zip: 82340 Sector: Marine and Hydrokinetic Product: Micro Hydro Kinetic Turbine...

  20. Sichuan Minjiang Electrolyte Management Hydro Power Co Ltd |...

    Open Energy Info (EERE)

    Electrolyte Management Hydro Power Co Ltd Jump to: navigation, search Name: Sichuan Minjiang Electrolyte Management Hydro Power Co., Ltd. Place: Mianyang, Sichuan Province, China...

  1. Jiangxi Province Ruijin City Liujinba Hydro Development Co Ltd...

    Open Energy Info (EERE)

    Ruijin City Liujinba Hydro Development Co Ltd Jump to: navigation, search Name: Jiangxi Province Ruijin City Liujinba Hydro Development Co,. Ltd. Place: Ruijin city, Jiangxi...

  2. Zhongda Sanchuan Hydro Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhongda Sanchuan Hydro Development Co Ltd Jump to: navigation, search Name: Zhongda Sanchuan Hydro Development Co Ltd Place: Hangzhou, Zhejiang Province, China Zip: 310052 Sector:...

  3. Quzhou Tadi Hydro Complex Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Quzhou Tadi Hydro Complex Development Co Ltd Jump to: navigation, search Name: Quzhou Tadi Hydro Complex Development Co., Ltd. Place: Quzhou, Zhejiang Province, China Zip: 324022...

  4. Sichuan Tianquan Qieshan Hydro Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Qieshan Hydro Generation Co Ltd Jump to: navigation, search Name: Sichuan Tianquan Qieshan Hydro Generation Co.,Ltd. Place: Ya(tm)an, Sichuan Province, China Zip: 625500...

  5. Zhejiang Longyou Xiaoxitan Hydro Complex Development Co Ltd ...

    Open Energy Info (EERE)

    Longyou Xiaoxitan Hydro Complex Development Co Ltd Jump to: navigation, search Name: Zhejiang Longyou Xiaoxitan Hydro Complex Development Co., Ltd Place: Quzhou, Zhejiang Province,...

  6. Lichuan City Yujiang River Valley Hydro Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lichuan City Yujiang River Valley Hydro Co Ltd Jump to: navigation, search Name: Lichuan City Yujiang River Valley Hydro Co., Ltd. Place: Hubei Province, China Zip: 445400 Sector:...

  7. MHK Projects/Alaska 24 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 0 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  8. MHK Projects/Alaska 33 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 0 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  9. MHK Projects/Alaska 7 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 0 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  10. MHK Projects/Alaska 31 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 0 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  11. MHK Projects/Alaska 28 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 0 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  12. MHK Projects/South Korea | Open Energy Information

    Open Energy Info (EERE)

    Hydro Power Generation Project Technology *MHK TechnologieshyTide Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  13. MHK Projects/Alaska 1 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 0 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  14. MHK Projects/Alaska 13 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase ? Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  15. MHK Projects/Alaska 17 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 0 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  16. MHK Projects/Sadap Indonesia SHP | Open Energy Information

    Open Energy Info (EERE)

    Hydro Power GmbH Project Technology *MHK TechnologiesSHP Duofloat Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  17. Virender Dogra Power Projects P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Virender Dogra Power Projects P Ltd Jump to: navigation, search Name: Virender Dogra Power Projects (P) Ltd. Place: Pathankot, Punjab, India Zip: 145001 Sector: Hydro Product:...

  18. Georgia-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    Projects Jump to: navigation, search Name Georgia-World Bank Climate Projects AgencyCompany Organization World Bank Focus Area Renewable Energy, Hydro Topics Background analysis...

  19. Tampa Electric Company IGCC Project. Quarterly report, April 1 - June 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    Tampa Electric Company continued efforts to complete construction and start-up of the Polk Power Station, Unit {number_sign}1 which will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. From an overall standpoint, the Project continues to track well. The completion of construction system turnovers to Start-up is encouraging. Start-up will accept responsibility of the plant until turnover to operations. The major focus continues to be on the production of first Syngas, scheduled for July 17. All construction, engineering, and start-up activities are in support of Syngas production. Key activities toward this goal include final checkout and startup of remaining gasification systems, completion of punch list items required for first syngas, finalization of operating procedures, preparation of site and area access control plans, site- wide safety training, and other Process Safety management (PSM) requirements.

  20. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

  1. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 1, Summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams) are influenced by Western`s power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Western`s firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action altemative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  2. [Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996

    SciTech Connect (OSTI)

    1997-12-31

    Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.

  3. Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014)

    Broader source: Energy.gov [DOE]

    This report provides the results of six SGIG projects to help individual utilities determine how long existing electric distribution infrastructure will remain sufficient to accommodate demand growth from electric vehicles, and when and what type of capacity upgrades or additions may be needed. The report also examines when consumers want to recharge vehicles, and to what extent pricing and incentives can encourage consumers to charge during off-peak periods.

  4. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  5. Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    Gasoline and Diesel Fuel Update (EIA)

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.49 2.60 2.76 2.93 3.05 3.24 3.39 3.60 3.86 4.15 4.40 4.70 5.08 5.39 5.85 6.27 6.59 7.01 AEO 1995 2.44 2.61 2.61 2.70 2.78 2.95 3.11 3.44 3.72 4.10 4.43 4.78 5.07 5.33 5.64 5.95 6.23 AEO 1996 2.08 2.19 2.20 2.39 2.47 2.54 2.64 2.74 2.84 2.95 3.09

  6. Humboldt County RESCO Project | Open Energy Information

    Open Energy Info (EERE)

    using renewable energy. Environmental Aspects 1% PV 4% Small Hydro 8% Wave 15% Wind 20% Natural Gas 50% Biomass Related Tools JEDI References "Humboldt County RESCO Project"...

  7. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Thousands of Megawatthours and 2006 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.)

  8. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Megawatts and 2008 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.)

  9. MHK Projects/Lock and Dam No 2 Hydroelectric Project | Open Energy...

    Open Energy Info (EERE)

    Capacity (MW) 0 Number of Devices Deployed 2 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys <<...

  10. Assessing the Hydro Dam at Lac Courte Oreilles

    Office of Environmental Management (EM)

    "Assessing the Hydro Dam at Lac Courte Oreilles" Lac Courte Oreilles Band of Lake Superior Ojibwe Leslie Isham, Director, LCO Energy Project Assistant Director, LCO Public Works 9796N Cty. Hwy K Hayward, WI 54843 About Lac Courte Oreilles (LCO) * Located in upper Northwest Wisconsin * Land base is about 76,000 acres * 7,275 members * Adopted Kyoto Protocol in 2005 * Land Use Comprehensive Plan adopted in 2006 * 2008 DOE First Steps Grant Awarded LCO Tribal Mission We, the Anishinaabeg,

  11. Fujian Shun Chang Yangkou Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Chang Yangkou Hydro Power Co Ltd Jump to: navigation, search Name: Fujian Shun Chang Yangkou Hydro Power Co., Ltd. Place: Fujian Province, China Zip: 353200 Sector: Hydro Product:...

  12. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  13. A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?

    SciTech Connect (OSTI)

    John Smart

    2013-01-01

    A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

  14. Old Harbor Scammon Bay Hydro Feasibility

    SciTech Connect (OSTI)

    Brent Petrie

    2007-06-27

    The grantee, Alaska Village Electric Cooperative (AVEC), is a non-profit member owned rural electric generation and distribution cooperative. The proposed Project is located near the community of Old Harbor, Alaska. Old Harbor is on the southeastern coast of Kodiak Island, approximately 70 miles southwest of the City of Kodiak and 320 miles southwest of Anchorage. In 1998 sufficient information had been developed to apply for a license to construct the project and the cost was estimated to be $2,445,000 for a 500 KW project on Lagoon Creek. Major features of the project included an eight-foot high diversion dam on Mountain Creek, a desander box, a 9,800-foot long penstock to the powerhouse on Lagoon Creek, and a 5,500-foot long access road. It was also anticipated that the project could provide an additional source of water to Old Harbor. The report details the history and lessons learned in designing and permiting the proposed hydroelectric facility.

  15. Kansai Electric Power Co KEPCO | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Kansai Electric Power Co (KEPCO) Place: Osaka-shi, Osaka, Japan Zip: 530-8270 Sector: Hydro, Hydrogen Product: Kansai Electric Power is a major...

  16. Comments of New England Electric Transmission Corporation on Proposed Open

    Office of Environmental Management (EM)

    Access Requirement for International Electric Transmission Facilities | Department of Energy New England Electric Transmission Corporation on Proposed Open Access Requirement for International Electric Transmission Facilities Comments of New England Electric Transmission Corporation on Proposed Open Access Requirement for International Electric Transmission Facilities Motion to intervene out of time and comments of New England Electric Transmission Corporation, New England Hydro-Transmission

  17. Audit of Electrical System Construction Projects at the Nevada Operations Office, WR-B-97-01

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ELECTRICAL SYSTEM CONSTRUCTION PROJECTS AT THE NEVADA OPERATIONS OFFICE The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost-effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov Department of

  18. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  19. Snohomish PUD see OpenHydro | Open Energy Information

    Open Energy Info (EERE)

    PUD see OpenHydro Jump to: navigation, search Name: Snohomish PUD see OpenHydro Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  20. City of Hart Hydro, Michigan (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Hydro, Michigan (Utility Company) Jump to: navigation, search Name: City of Hart Hydro Place: Michigan Phone Number: (231)-873-5367 Website: www.ci.hart.mi.usservices.htm Outage...

  1. HydroGen Aquaphile sarl | Open Energy Information

    Open Energy Info (EERE)

    Aquaphile sarl Jump to: navigation, search Name: HydroGen Aquaphile sarl Region: France Sector: Marine and Hydrokinetic Website: www.hydro-gen.fr This company is listed in the...

  2. New England Hydro-Trans Corp | Open Energy Information

    Open Energy Info (EERE)

    Hydro-Trans Corp Jump to: navigation, search Name: New England Hydro-Trans Corp Place: New Hampshire Phone Number: 1.800.661.3805 Website: www.transcanada.comindex.html Twitter:...

  3. New England Hydro-Tran Elec Co | Open Energy Information

    Open Energy Info (EERE)

    New England Hydro-Tran Elec Co Jump to: navigation, search Name: New England Hydro-Tran Elec Co Place: Massachusetts Phone Number: 860 729 9767 Website: www.nehydropower.com...

  4. NPS Fact Sheet: Hydro-Related Roles, Interests, Activities |...

    Open Energy Info (EERE)

    Fact Sheet: Hydro-Related Roles, Interests, Activities Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: NPS Fact Sheet: Hydro-Related Roles, Interests,...

  5. HydroNEXT Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HydroNEXT Fact Sheet HydroNEXT Fact Sheet Through its HydroNEXT initiative, the U.S. Department of Energy (DOE) invests in the development of innovative technologies that dramatically change the way we think about hydropower by lowering cost, improving performance, and promoting environmental stewardship of hydropower development. HydroNEXT is pursuing a comprehensive technology research, development, demonstration, and deployment strategy across three resource classes to increase the

  6. MHK Projects/Akwanga Nigeria SHP | Open Energy Information

    Open Energy Info (EERE)

    25 Project Details Smart Hydro Power is installing thirteen additional kinetic water turbines in Nigeria. The installation of these thirteen new turbines is planned for the first...

  7. MHK Projects/Alaska 36 | Open Energy Information

    Open Energy Info (EERE)

    of Devices Deployed 100 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  8. MHK Projects/Alaska 18 | Open Energy Information

    Open Energy Info (EERE)

    of Devices Deployed 100 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  9. EIS-0011: New Melones 230-kV Electrical Transmission Line, Central Valley Project, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration prepared this statement to evaluate the environmental impacts of proposed development of an electrical transmission system for the New Melones Power Plant.

  10. Project Startup: Evaluating the Performance of Frito Lays Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in-service performance of 10 medium-duty Smith Newton electric vehicles (EVs) and 10 ... With zero tailpipe emissions and a top speed of 55 mph, the Smith Newton EV has a range of ...

  11. Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-11-01

    The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

  12. LANL hydro test update(u)

    SciTech Connect (OSTI)

    Aragon, Ezekiel D

    2011-01-06

    Briefings presenting W78 programmatic activities for FY11 and the status and plan for associated Hydro 3617, is included wherewith in support of the NNSA W78 Program Review Meeting scheduled for January 11 thru 13, 2011, at the Savannah River Plant, SC.

  13. Project Reports for Hoopa Valley Tribe - 2006 Project | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2003 Project Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A

  14. Electric and Magnetic Fields (EMF) RAPID Engineering Program, Project 7: Development of Field Exposure Models

    SciTech Connect (OSTI)

    Bracken, T.D.; Rankin, R.F.; Wiley, J.A.

    1999-05-01

    The purpose of this project was to develop a conceptual model for estimating magnetic field (EMF) personal exposure (PE) of individuals or groups and construct a working model using existing data.

  15. Project Milestone. Analysis of Range Extension Techniques for Battery Electric Vehicles

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Pesaran, Ahmad

    2013-07-01

    This report documents completion of the July 2013 milestone as part of NRELs Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy. The objective was to perform analysis on range extension techniques for battery electric vehicles (BEVs). This work represents a significant advancement over previous thru-life BEV analyses using NRELs Battery Ownership Model, FastSim,* and DRIVE.* Herein, the ability of different charging infrastructure to increase achievable travel of BEVs in response to real-world, year-long travel histories is assessed. Effects of battery and cabin thermal response to local climate, battery degradation, and vehicle auxiliary loads are captured. The results reveal the conditions under which different public infrastructure options are most effective, and encourage continued study of fast charging and electric roadway scenarios.

  16. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

  17. EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

  18. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2010" ,"Next Update: October 2010" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2010 " ,"(Megawatts and 2008 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  19. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  20. How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?

    SciTech Connect (OSTI)

    John Smart

    2014-05-01

    This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

  1. Results from the OECD report on international projections of electricity generating costs

    SciTech Connect (OSTI)

    Paffenbarger, J.A.; Bertel, E.

    1998-07-01

    The International Energy Agency and Nuclear Energy Agency of the OECD have periodically undertaken a joint study on electricity generating costs in OECD Member countries and selected non-Member countries. This paper presents key results from the 1998 update of this study. Experts from 19 countries drawn from electric utility companies and government provided data on capital costs, operating and maintenance costs, and fuel costs from which levelized electricity generating costs (US cents/kWh) for baseload power plants were estimated in each country using a common set of economic assumptions. Light water nuclear power plants, pulverized coal plants, and natural gas-fired combined cycle gas turbines were the principal options evaluated. five and 10% discount rates, 40-year operating lifetime, and 75% annual load factor were the base assumptions, with sensitivity analyses on operating lifetime and load factor. Fuel costs and fuel escalation were provided individually by country, with a sensitivity case to evaluate costs assuming no real fuel price escalation over plant lifetimes. Of the three principal fuel/technology options, none is predominantly the cheapest option for all economic assumptions. However, fossil-fueled options are generally estimated to be the least expensive option. The study confirms that gas-fired combined cycles have improved their economic performance in most countries in recent years and are strong competitors to nuclear and coal-fired plants. Eleven out of the 18 countries with two or more options show gas-fired plants to be the cheapest option at 10% discount rate. Coal remains a strong competitor to gas when lower discount rates are used. Nuclear is the least expensive at both 5 and 10% discount rate in only two countries. Generally, with gas prices above 5 US$/GJ, nuclear plants constructed at overnight capital costs below 1 650 $/kWe have the potential to be competitive only at lower discount rates.

  2. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect (OSTI)

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  3. Project W-320 acceptance test report for AY-farm electrical distribution

    SciTech Connect (OSTI)

    Bevins, R.R.

    1998-04-02

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the AY-Farm Electrical Distribution System functions as required by the design criteria. This test is divided into three parts to support the planned construction schedule; Section 8 tests Mini-Power Pane AY102-PPI and the EES; Section 9 tests the SSS support systems; Section 10 tests the SSS and the Multi-Pak Group Control Panel. This test does not include the operation of end-use components (loads) supplied from the distribution system. Tests of the end-use components (loads) will be performed by other W-320 ATPs.

  4. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  5. Project Startup: Evaluating the Performance of Frito Lay's Electric Delivery Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of 10 medium-duty Smith Newton electric vehicles (EVs) and 10 comparable conventional diesel vehicles operated by Frito Lay North America in the Seattle, Washington, area. Launched in late 2013, the on-road portion of this 12-month evaluation focuses on collecting and analyzing vehicle performance data, such as fuel economy and maintenance costs, to better understand how to optimize the use of such vehicles in a large-scale commercial operation. In addition to the on-road portion of this evaluation, NREL is analyzing charging data to support total cost of ownership estimations and investigations into smart charging opportunities. NREL is also performing a battery life degradation analysis to quantify battery pack health, track battery performance over time, and determine how various drive cycles and battery charging protocols impact battery life.

  6. Vortex Hydro Energy Develops Transformational Technology to Harness Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Water Currents | Department of Energy Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents April 10, 2013 - 12:00am Addthis EERE is funding Vortex Hydro Energy to commercialize the Vortex Induced Vibration Aquatic Clean Energy (VIVACE) converter, which is a University of Michigan-patented marine and hydrokinetic energy device designed to harness the

  7. EERE Success Story-Vortex Hydro Energy Develops Transformational

    Office of Environmental Management (EM)

    Technology to Harness Energy from Water Currents | Department of Energy Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents EERE Success Story-Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents April 10, 2013 - 12:00am Addthis EERE is funding Vortex Hydro Energy to commercialize the Vortex Induced Vibration Aquatic Clean Energy (VIVACE) converter, which is a University of Michigan-patented marine and

  8. Tampa Electric Company - DOE IGCC project. Quarterly report, July 1 - September 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The third quarter of 1996 has resulted in the completion of over five (5) years of extensive project development, design, construction and start-up of the 250 MW Polk Power Station Unit {number_sign}1 IGCC Project. the combined cycle performance test was completed on June 18, 1996. This test demonstrated that on distillate fuel, the combined cycle achieved a net output of 222,299 KW with a net heat rate of 6,868 BTU/KW. This is about 3.86% and 2.76% better than the guaranteed values of 214,040 KW and 7,063 BTU/KW respectively. During the third quarter of 1996, the combustion turbine was run on syngas two (2) different times for a combined total of about seven hours. Attachment {number_sign}4 shows graphically the transfer from oil to syngas. Emission levels were generally acceptable even though no specific emissions tuning was completed by GE and the emissions monitoring equipment was not yet completely operational.

  9. Training and Research on Probabilistic Hydro-Thermo-Mechanical...

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide ... Citation Details In-Document Search Title: Training and Research on Probabilistic ...

  10. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  11. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 4, Appendixes B-D

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  12. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 3, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  13. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  14. PP-118 Hill County Electric Cooperative Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Hill County Electric Cooperative Inc PP-118 Hill County Electric Cooperative Inc Presidential permit authorizing Hill County Electric Cooperative Inc to construct, operate, and maintain electric transmission facilities at the U.S-Canada border. PDF icon PP-118 Hill County Electric Cooperative Inc More Documents & Publications EA-118 Hill County Electric Cooperative, Inc. PP-11-2 Fraser Papers Inc PP-89-1 Bangor Hydro-Electric Company

  15. Small Hydropower Research and Development Technology Project

    SciTech Connect (OSTI)

    Blackmore, Mo

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  16. Andritz Hydro Inepar do Brasil S A AHI | Open Energy Information

    Open Energy Info (EERE)

    Andritz Hydro Inepar do Brasil S A AHI Jump to: navigation, search Name: Andritz Hydro Inepar do Brasil SA (AHI) Place: Barueri, Sao Paulo, Brazil Zip: 06454-040 Sector: Hydro...

  17. O:\ELECTRIC\DETROIT\PP-230-2_ord.PDF

    Energy Savers [EERE]

    On April 1, 1999, Ontario Hydro, the provincial utility of Canada's Province of Ontario, by operation of Canadian law, transferred all of its ownership and management interests in the interconnection facilities at the Michigan-Ontario border to a successor corporation, the Ontario Hydro Services Company ("OHSC"). OHSC is now known as "Hydro One". 2 The authority to grant Presidential permits for the construction, operation, maintenance, or connection of electric transmission

  18. HydroChina ZhongNan Engineering Corp | Open Energy Information

    Open Energy Info (EERE)

    ZhongNan Engineering Corp Jump to: navigation, search Name: HydroChina ZhongNan Engineering Corp Place: Hunan Province, China Sector: Hydro, Wind energy Product: Hunan...

  19. Sri Sai Krishna Hydro Energies Pvt Ltd SSK | Open Energy Information

    Open Energy Info (EERE)

    Krishna Hydro Energies Pvt Ltd SSK Jump to: navigation, search Name: Sri Sai Krishna Hydro Energies Pvt. Ltd. (SSK) Place: Hyderabad, Andhra Pradesh, India Zip: 500 033 Sector:...

  20. Ontario hydro integrated programs for plant design and construction

    SciTech Connect (OSTI)

    Oreskovich, J.P.; Somerville, R.L.

    1987-01-01

    Integrated programs for plant design and construction (IPPDC) is a 5-yr program at Ontario Hydro to optimize engineering and construction productivity through better use of computer technology. The proportion of computer programs operating with data derived from an integrated common data base is very low. IPPDC, on the other hand, is greatly concerned with this common data base. The goals of the IPPDC include improvement of the information flow for a project, minimization of site-discovered interferences, and compression of the entire project life cycle through the intelligent use of computer technology. This program focuses on the development of an integrated data base for plant design software systems to service a multi discipline engineering environment as required by a large-scale megaproject. To achieve the goals of IPPDC, there are three basic elements of computer technology that must be in place before a totally integrated data base system can be achieved: (1) data management; (2) networking; and (3) three-dimensional modeling.

  1. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  2. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    6" ,"Released: February 7, 2008" ,"Next Update: October 2008" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  3. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    7" ,"Released: February 2009" ,"Next Update: October 2009" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2009 " ,"(Megawatts and 2007 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  4. Projecting

    U.S. Energy Information Administration (EIA) Indexed Site

    Projecting the scale of the pipeline network for CO2-EOR and its implications for CCS ... for CO 2 -EOR and CO 2 transportation for CCS assuming a carbon price are discussed. ...

  5. Quantifying the Operational Benefits of Conventional and Advanced Pumped Storage Hydro on Reliability and Efficiency: Preprint

    SciTech Connect (OSTI)

    Krad, I.; Ela, E.; Koritarov, V.

    2014-07-01

    Pumped storage hydro (PSH) plants have significant potential to provide reliability and efficiency benefits in future electric power systems with high penetrations of variable generation. New PSH technologies, such as adjustable-speed PSH, have been introduced that can also present further benefits. This paper demonstrates and quantifies some of the reliability and efficiency benefits afforded by PSH plants by utilizing the Flexible Energy Scheduling Tool for the Integration of Variable generation (FESTIV), an integrated power system operations tool that evaluates both reliability and production costs.

  6. Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors - Experiences from Six Smart Grid Investment Grant Projects

    Office of Environmental Management (EM)

    December 2014 Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors Page i U.S. Department of Energy |December 2014 Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors Page ii Table of Contents Executive Summary ......................................................................................................................... iii 1. Introduction

  7. Hydro-FAST Axial Flow Simulation Code Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing a S uite o f N umerical M odeling Tools f or S imula8ng A xial---Flow M HK T urbines Contributors Michael L awson Levi Kilcher Marco M asciola DOE M HK W orkshop Broomfield, C O July 9 th - 1 0 th NATIONAL RENEWABLE ENERGY LABORATORY 2 Presenta8on o verview Introduction and objective Development strategy Summary of work to date * HydroTurbSim (turbulence) * MAP (mooring) * HydroFAST (hydro-servo-elastic) Path forward Aquantis Verdant NATIONAL RENEWABLE ENERGY LABORATORY What p hysical

  8. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  9. Choosing an uninterruptible power supply for a hydro plant

    SciTech Connect (OSTI)

    Clemen, D.M.

    1994-06-01

    Uninterruptible power systems maintain electric power to the plant computer and other essential equipment in hydropower plants when the main power supplies fail. Project owners and engineers can ensure they obtain a reliable system by carefully analyzing plant needs and writing precise specifications.

  10. GE Partners on Microgrid Project | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... to include resources like 3 megawatts (MW) of combined heat & power generators, 2MW of solar photovoltaic, 2MW of energy storage and 900kW or more of hydro-electric generation. ...

  11. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect (OSTI)

    2012-12-31

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  12. Electric utility applications of hydrogen energy storage systems

    SciTech Connect (OSTI)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  13. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    NSTAR Electric Gas Corporation Smart Grid Demonstration Project NSTAR Electric Gas Corporation Smart Grid Demonstration Project Westwood Massachusetts National Rural...

  14. Training and Research on Probabilistic Hydro-Thermo-Mechanical...

    Office of Scientific and Technical Information (OSTI)

    models of the subsurface to forecast CO2 behavior and transport; optimize site operational ... GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random ...

  15. Rye Patch geothermal development, hydro-chemistry of thermal...

    Open Energy Info (EERE)

    Patch geothermal development, hydro-chemistry of thermal water applied to resource definition Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Rye Patch...

  16. Hydro Review: Computational Tools to Assess Turbine Biological Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Hydro Review: Computational Tools to Assess Turbine Biological Performance Hydro Review: Computational Tools to Assess Turbine Biological Performance This review covers the BioPA method used to analyze the biological performance of proposed designs to help ensure the safety of fish passing through the turbines at the Priest Rapids Dam in Grant County, Washington. PDF icon Computational Tools to Assess Turbine Biological Performance More Documents & Publications

  17. HydroNEXT Workshop Public Meeting | Department of Energy

    Energy Savers [EERE]

    HydroNEXT Workshop Public Meeting HydroNEXT Workshop Public Meeting April 27, 2016 1:00PM to 5:00PM EDT The Wind and Water Power Technologies Office within the U.S. Department of Energy (DOE) recently released a Request for Information to identify the challenges and opportunities faced by the pumped storage hydropower industry. DOE is now announcing two additional opportunities to obtain individual stakeholder insight into the technical and market challenges and potential pathways to facilitate

  18. El Paso Electric Company Diablo Substation to the US-Mexico border 115kV transmission line project. Final Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This Environmental Assessment documents the analysis of alternative corridors for development and operation of a proposed 115 kilovolt transmission line using private lands and transporting power to the US-Mexico international border. The project will require (1) an amendment to El Paso Electric Company`s existing export authorization to transfer power across this border, and (2) a Presidential Permit for construction of the transmission line. The project would be located in Dona Ana county in southern New Mexico, approximately five miles west of El Paso, Texas. The alternative corridors, specific locations within those corridors, and structure types are identified and analyzed in the environmental studies.

  19. Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint

    Broader source: Energy.gov [DOE]

    To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010

  20. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect (OSTI)

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  1. Microsoft PowerPoint - Vicksburg District Federal Power Projects Branson Conf. 6-2-10 .pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vicksburg District Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit #1 ll Rotor Installation Blakely Mountain Rewind Unit #2 l l Coil Removal Blakely Mountain Rewind Unit #2 l Pole Key Design Blakely Mountain Rewind Unit #2 i l i h l d Removing Pole Key With Sledge Hammer Blakely Rewind Unit #2 Bigger Hammer & Operator Blakely Mountain Rewind Unit #2 l h Removing Rotor Poles With A Saw

  2. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  3. Geothermal Electricity Technology Evaluation Model (GETEM) Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

  4. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    SciTech Connect (OSTI)

    Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

    2009-11-01

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  5. Debt extension on small project yields real savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70 MW Idaho Falls Bulb Turbine Project, nameplate capacity 27 MW DworshakClearwater Small Hydro Power, nameplate capacity 5.4 MW Rocky Brook of Mason PUD No. 1, nameplate...

  6. Tidal Electric | Open Energy Information

    Open Energy Info (EERE)

    Tidal Electric Place: London, Greater London, United Kingdom Zip: SW19 8UY Product: Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates:...

  7. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet), Vehicle Technologies Program (VTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part of its commitment to reducing fuel use and emissions, the United Parcel Service (UPS) operates more than 2,500 natural gas, propane, electric, and hybrid-electric vehicles worldwide. The company uses these advanced vehicles as a "rolling laboratory" to learn how such technologies can best serve its large delivery fleet. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has a long history of helping UPS determine the impact of hybrid technology on fuel

  8. Portland Company to Receive $1.3 Million to Improve Hydro Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies September 15, 2009 -...

  9. Xiang Ge Li La Xian Mai Di He Hydro Power Development Co Ltd...

    Open Energy Info (EERE)

    Xiang Ge Li La Xian Mai Di He Hydro Power Development Co Ltd Jump to: navigation, search Name: Xiang Ge Li La Xian Mai Di He Hydro Power Development Co., Ltd. Place: Yunnan...

  10. BC Hydro Brings Energy Savings to Low-Income Families in Canada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BC Hydro Brings Energy Savings to Low-Income Families in Canada BC Hydro Brings Energy Savings to Low-Income Families in Canada The number of British Columbia, Canada, households ...

  11. Sichuan Ya an City Qingyuan Hydro energy Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Qingyuan Hydro energy Co Ltd Jump to: navigation, search Name: Sichuan Ya'an City Qingyuan Hydro energy Co., Ltd. Place: Ya(tm)an, Sichuan Province, China Zip: 625000 Sector:...

  12. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  13. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

    2005-11-30

    BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

  14. BC Hydro Brings Energy Savings to Low-Income Families in Canada |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BC Hydro Brings Energy Savings to Low-Income Families in Canada BC Hydro Brings Energy Savings to Low-Income Families in Canada The number of British Columbia, Canada, households eligible for Better Buildings Residential Network member BC Hydro's Energy Conservation Assistance Program (ECAP) just doubled. British Columbia Energy Minister Bill Bennett recently announced an increase in the low-income qualification cutoff for BC Hydro's free home energy-saving kits and

  15. PP-20-1 Eastern Maine Electric Cooperative Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20-1 Eastern Maine Electric Cooperative Inc PP-20-1 Eastern Maine Electric Cooperative Inc Presidential permit authorizing Eastern Maine Electric Cooperative Inc to construct, operate and maintain electric transmision facilities at the U.S-Canadian border. PDF icon PP-20-1 Eastern Maine Electric Cooperative Inc More Documents & Publications PP-18 Glacier Electric Cooperative, Inc PP-22 British Columbia Hydro and Power Authority, Amendment 1967 PP-230-3

  16. All Selected Projects

    Energy Savers [EERE]

    Selected Projects Oct 23, 2009 (rev. Dec. 14, 2010) 99 Projects SMART GRID INVESTMENT GRANTS Type Advanced Metering Infrastructure Customer Systems Electric Systems Distribution...

  17. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.) ","RFC","SERC","SPP","ERCOT","WECC (U.S.) "

  18. Project Evaluation Models

    Energy Savers [EERE]

    Project Evaluation Models Ian Baring-Gould Alaska Native Village Energy Development Workshop April 30, 2014 2 Why do we need options analysis? 3 There are many different energy resources Which ones are available in Alaska? 4 photovoltaics fuel cells wind turbines batteries diesels microturbines small hydro small modular biomass grid connection ...and many energy conversion technologies 5 ...which have different operating requirements, advantages, disadvantages, costs, etc. Diesel generators Wind

  19. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2011 Actual, 2012-2016 Projected megawatts ...

  20. Electricity Transmission, A Primer

    Office of Environmental Management (EM)

    Transmission A Primer National Council on Electricity Policy National Council on Electricity Policy i Electricity Transmission A Primer By Matthew H. Brown, National Conference of State Legislatures Richard P. Sedano, The Regulatory Assistance Project National Council on Electric Policy The National Council on Electricity Policy is a joint venture among the National Conference of State Legislatures (NCSL), the National Association of Regulatory Utility Commissioners (NARUC) and the National

  1. Evaluation of the feasibility and viability of modular pumped storage hydro (m-PSH) in the United States

    SciTech Connect (OSTI)

    Witt, Adam M.; Hadjerioua, Boualem; Martinez, Rocio; Bishop, Norm

    2015-09-01

    The viability of modular pumped storage hydro (m-PSH) is examined in detail through the conceptual design, cost scoping, and economic analysis of three case studies. Modular PSH refers to both the compactness of the project design and the proposed nature of product fabrication and performance. A modular project is assumed to consist of pre-fabricated standardized components and equipment, tested and assembled into modules before arrival on site. This technology strategy could enable m-PSH projects to deploy with less substantial civil construction and equipment component costs. The concept of m-PSH is technically feasible using currently available conventional pumping and turbine equipment, and may offer a path to reducing the project development cycle from inception to commissioning.

  2. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  3. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  4. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  5. EIS-0169: Yakima River Basin Fisheries Project

    Broader source: Energy.gov [DOE]

    This EIS assesses the potential impacts of the Bangor Hydro-electric Tranmission Line and associated infrastructure, including adding an alternative acclimation site, water rights issues and discussion of irrigation water availability, adding more information on recreation impacts, and clarifying agency roles and responsibilities.

  6. Wind & Hydro Energy Feasibility Study for the Yurok Tribe

    Energy Savers [EERE]

    Wind & Hydro Energy Feasibility Study for the Yurok Tribe DOE Tribal Energy Program Review Meeting Award #DE-FG36-07GO17078 October 27, 2010 Presented By: Austin Nova, Yurok Tribe Jim Zoellick, Schatz Energy Research Center Background/Location Located in Yurok northwest Reservation corner of Straddles the California lower stem of the Klamath River, 2 miles wide and 44 miles long) Background * Largest Indian Tribe in California * Traditional livelihood on the Yurok Reservation is based upon

  7. Career Map: Electrical Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Engineer Career Map: Electrical Engineer Two electrical engineers inspect the electrical components to a turbine. Electrical Engineer Position Title Electrical Engineer Alternate Title(s) Electronics Engineer, Project Engineer, Power Systems, Transmission Engineer Education & Training Level Advanced, bachelor's required, prefer graduate degree Education & Training Level Description Electrical engineers must have a bachelor's degree. Employers also value practical experience,

  8. Strategic Energy Planning, Project Development and the Importance of Champions

    Energy Savers [EERE]

    Roger Taylor Group Manager State, Local & Tribal Initiatives November 18, 2009 Strategic Energy Planning, Project Development and the Importance of Champions Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation for Our Energy Future Power Direct Use PV - Remote Homes Direct Use Buildings Stock Watering Big Wind Small Wind Small Hydro Biomass Heat, Power & Fuels Diesel Hybrids Power Direct Use PV - Remote Homes CS Power & Heat

  9. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  10. O:\ELECTRIC\EA-181.ORD

    Energy Savers [EERE]

    1 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On April 27, 1998, H.Q. Energy Services (U.S.) Inc. (HQUS) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Mexico as a power marketer. HQUS is a wholly-owned indirect subsidiary of Hydro- Quebec, the provincial electric

  11. Concept for Management of the Future Electricity System (Smart...

    Open Energy Info (EERE)

    Concept for Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System...

  12. GE Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd...

    Open Energy Info (EERE)

    Kvaerner Power Equipment Co Ltd Kvaerner Hangfa Jump to: navigation, search Name: GE Hydro Asia Co Ltd (formerly Kvaerner Power Equipment Co., Ltd (Kvaerner Hangfa)) Place:...

  13. MHK ISDB/Instruments/AXYS HydroLevel Buoy | Open Energy Information

    Open Energy Info (EERE)

    AXYS HydroLevel Buoy < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  14. Talquin Electric Cooperative Inc | Open Energy Information

    Open Energy Info (EERE)

    32351 Product: Florida-based energy service provider. Talquin Electric are involved in a smart metering project in the city. References: Talquin Electric Cooperative Inc.1 This...

  15. Granger Electric Company | Open Energy Information

    Open Energy Info (EERE)

    Granger Electric Company Jump to: navigation, search Name: Granger Electric Company Place: Lansing, Michigan Zip: 48906-1044 Product: Michigan-based landfill gas-to-energy project...

  16. S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM CALENDAR YEAR 2013 INCENTIVE PAYMENTS Payee (Applicant) Hydro Facility Albany Engineering Corporation (AEC) Mechanicville Hydroelectric Project Albany Engineering Corporation (AEC) Stuyvesant Falls Hydroelectric Project Barton (VT) Village, Inc., Electric Department Barton Hydro Bell Mountain Hydro LLC Bell Mountain Hydro Facility Bowersock Mills & Power Company Expanded Kansas River Hydropower Project-North Powerhouse

  17. Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Projects

  18. MHK Projects/Luangwa Zambia Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesUnderwater Electric Kite Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  19. MHK Projects/Chitokoloki Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesUnderwater Electric Kite Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  20. MHK Projects/Coal Creek Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesUnderwater Electric Kite Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  1. MHK Projects/Oyster 800 Project | Open Energy Information

    Open Energy Info (EERE)

    4 Project Details Operational testing of Oyster 800 commenced in June 2012 when the machine produced first electrical power to the grid. Project Installed Capacity (MW) 1...

  2. Ontario Hydro -- Recent advances in fossil environmental management and control

    SciTech Connect (OSTI)

    Seckington, B.R.

    1997-12-31

    This paper provides a brief overview of various recent environmental activities within the Fossil Business Unit of Ontario Hydro, specifically those related to air emissions and acid rain. This includes: (1) an overview of involvement with current and anticipated Federal and Ontario Provincial regulatory positions and directions; (2) a brief synopsis of environmental installations of FGD at Lambton GS and Low NO{sub x} burners at Lambton and Nanticoke; (3) development of market mechanisms; and (4) R and D activities related to impact assessment and control technology.

  3. The hydro nuclear services dry active waste processing system

    SciTech Connect (OSTI)

    Bunker, A.S.

    1985-04-01

    There is a real need for a dry active waste processing system that can separate clean trash and recoverable items from radwaste safely and efficiently. This paper reports that Hydro Nuclear Services has produced just such a system and is marketing it as a DAW Segregation/Volume Reduction Process. The system is a unique, semi-automated package of sensitive monitoring instruments of volume reduction equipment that separates clean trash from contaminated and recoverable items in the waste stream and prepares the clean trash for unrestricted release. What makes the HNS system truly unique is its end product - clean trash.

  4. ARRA Electrification Projects

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    U.S. Department of Energy funded multiple electrification projects through the American Recovery and Reinvestment Act to accelerate the deployment of electric drive vehicles and charging equipment. These included Clean Cities electric drive projects and transportation electrification projects. Use the interactive map above to learn more about the plan and status of the various projects. The U.S. Department of Energy funded multiple electrification projects through the American Recovery and

  5. HTS Cable Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cable Projects HTS Cable Projects Fact sheet describing what is being done to modernize electricity transmission and distribution HTS Cable Projects More Documents & Publications...

  6. HTS Cable Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTS Cable Projects HTS Cable Projects Fact sheet describing what is being done to modernize electricity transmission and distribution PDF icon HTS Cable Projects More Documents &...

  7. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-Es BEEST Project, short for Batteries for Electrical Energy Storage in Transportation, could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  8. Department of Energy Announces 12 New Projects to Accelerate Technologies that Improve the Efficiency and Reliability of the U.S. Electric Grid

    Broader source: Energy.gov [DOE]

    ARPA-E Awards $33 Million to Fund Innovative Technologies for Real-time Management of the Electric Grid

  9. Navajo Electrification Demonstraiton Project

    SciTech Connect (OSTI)

    Larry Ahasteen, Project Manager

    2006-07-17

    This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.

  10. Step 3: Project Refinement

    Energy Savers [EERE]

    3: Project Refinement 2 1 Potential 3 Refinement 4 Implementation 5 Operations & Maintenance 2 Options 3 Refinement 1/28/2016 2 3 FUNDING AND FINANCING OPTIONS Project Ownership Financing structure is highly dependent on size of the project and the capital available for a given project: * Tribe owns the project (cash purchase or debt) * Tribe hosts the project and buys the electricity (power purchase agreement) * Tribe partners with private sector and co-owns the project (uncertainties about

  11. Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. PDF icon Richmond EV Initiative More Documents & Publications EV Community Readiness projects: South Florida Regional Planning Council; Virginia Department of Mines, Minerals

  12. MHK Technologies/Open HydroTurbine | Open Energy Information

    Open Energy Info (EERE)

    CrestEnergy Project(s) where this technology is utilized *MHK ProjectsPaimpol Brehat tidal farm Technology Resource Click here CurrentTidal Technology Description See Open...

  13. Development of a coupled thermo-hydro-mechanical model in discontinuous media for carbon sequestration

    SciTech Connect (OSTI)

    Fang, Yilin; Nguyen, Ba Nghiep; Carroll, Kenneth C.; Xu, Zhijie; Yabusaki, Steven B.; Scheibe, Timothy D.; Bonneville, Alain

    2013-09-12

    Geomechanical alteration of porous media is generally ignored for most shallow subsurface applications, whereas CO2 injection, migration, and trapping in deep saline aquifers will be controlled by coupled multifluid flow, energy transfer, and geomechanical processes. The accurate assessment of the risks associated with potential leakage of injected CO2 and the design of effective injection systems requires that we represent these coupled processes within numerical simulators. The objectives of this study were to develop a coupled thermal-hydro-mechanical model into a single software, and to examine the coupling of thermal, hydrological, and geomechanical processes for simulation of CO2 injection into the subsurface for carbon sequestration. A numerical model is developed to couple nonisothermal multiphase hydrological and geomechanical processes for prediction of multiple interconnected processes for carbon sequestration in deep saline aquifers. The geomechanics model was based on Rigid Body-Spring Model (RBSM), one of the discrete methods to model discontinuous rock system. Poissons effect that was often ignored by RBSM was considered in the model. The simulation of large-scale and long-term coupled processes in carbon capture and storage projects requires large memory and computational performance. Global Array Toolkit was used to build the model to permit the high performance simulations of the coupled processes. The model was used to simulate a case study with several scenarios to demonstrate the impacts of considering coupled processes and Poissons effect for the prediction of CO2 sequestration.

  14. EIS-0129: New England/Hydro-Quebec 450 kV Transmission Line Interconnection- Phase II

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration issued this EIS to explore the impacts of amending Presidential Permit PP-76 to allow the Vermont Electrical Company to operate at power levels above those stipulated in the permit and to build additional transmission facilities to distribute the increased power. Phase I of this project is detailed in EIS-0103.

  15. 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...999,0,0,99999999,6194,8,17718,"NG","ST" 74,48,1,2,9,132,45,"SOUTHWESTERN PUB SERV CO","MOORE CTY",0,"NAT GAS",52748,0,"M",1299,,3,2000,-84,0,99999999,-63,0,99999999,-67,0,99999999,...

  16. 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...7558,74842,1e+15,6194,8,17718,"NG","ST" 74,48,1,2,9,132,45,"SOUTHWESTERN PUB SERV CO","MOORE CTY",0,"NAT GAS",52748,0,"M",1299,,3,2000,52260,734667,1e+15,3483,8,17718,"NG","ST" ...

  17. Hammerfest Strom UK co owned by StatoilHydro | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Hammerfest Strom UK co owned by StatoilHydro Address: The Innovation Centre 1 Ainslie Road Hillington Business Park Place: Glasgow Zip: G52 4RU Region:...

  18. A Geological and Hydro-Geochemical Study of the Animas Geothermal...

    Open Energy Info (EERE)

    Hydro-Geochemical Study of the Animas Geothermal Area, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Geological...

  19. HydroVenturi Ltd previously RV Power Company Ltd | Open Energy...

    Open Energy Info (EERE)

    RV Power Company Ltd Jump to: navigation, search Name: HydroVenturi Ltd (previously RV Power Company Ltd) Place: London, Greater London, United Kingdom Zip: SW7 1NA Sector:...

  20. EFlex (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    with mobilization of private customers' flexible energy consumption, especially from electric cars, electric heating and heat pumps. References "EU Smart Grid Projects...

  1. Table 8.11c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Electricity-Only Plants 9<//td> 1989 296,541,828 77,966,348 119,304,288 364,000 494,176,464 98,160,610 18,094,424 73,579,794

  2. Table 8.2c Electricity Net Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.2b; Thousand Kilowatthours)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electricity Net Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.2b; Thousand Kilowatthours) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage 5 Renewable Energy Other 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 6 Biomass Geo- thermal Solar/ PV 9 Wind Total Wood 7 Waste 8 Electricity-Only Plants 11<//td> 1989 1553997999 158,347,542 266,917,576 – 1,979,263,117 529,354,717 [6]

  3. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,1179,"0A",1294,,,95,2941,0,0,3518,0,0,4870,0,0,1732,0,0,3252,0,0,2193,0,0,134,0,0,447,0,0,465,0,0,538,0,0,4295,0,0,3601,0,0,1469,6,50159,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    NAD_UTIL","FILLER","EFFDATE","STATUS","MULTIST","YEAR","GEN01","CON01","STK01","GEN02","CON02","STK02","GEN03","CON03","STK03","GEN04","CON04","STK04","GEN05","CON05","STK05","GEN06","CON06","STK06","GEN07","CON07","STK07","GEN08","CON08","STK08","GEN09","CON09","STK09","GEN10","CON10","STK10","GEN11","CON11","STK11","GEN12","CON12","STK12","PCODE","NERC","UTILCODE","FUELDESC","PMDESC" 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,1179,"0A",1294,,,95,2941,0,0,3518,0,0,4870,0,0,1732,0,0,3252,0,0,2193,0,0,134,0,0,447,0,0,465,0,0,538,0,0,4295,0,0,3601,0,0,1469,6,50159,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,1179,"0A",1294,,,95,772,0,0,858,0,0,1012,0,0,727,0,0,1061,0,0,917,0,0,385,0,0,118,0,0,0,0,0,657,0,0,905,0,0,820,0,0,1472,6,50159,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,,1179,"0A",1294,,,95,2116,0,0,1715,0,0,1459,0,0,1821,0,0,1946,0,0,2134,0,0,2157,0,0,1797,0,0,1745,0,0,1829,0,0,2224,0,0,2386,0,0,1474,6,50159,"WAT","HY" 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT OIL",1179,"0A",1294,,,95,0,0,553,181,307,419,0,0,593,31,55,538,66,120,418,219,399,383,324,598,481,313,579,614,97,178,575,1,2,573,0,0,608,98,171,611,1474,6,50159,"FO2","IC" 11,23,1,1,,19,35,"BANGOR HYDRO ELECTRIC CO","MILFORD",0,,1179,"0A",1294,,,95,3843,0,0,3348,0,0,4177,0,0,3759,0,0,4855,0,0,4740,0,0,2971,0,0,2432,0,0,1786,0,0,1561,0,0,3510,0,0,4606,0,0,1475,6,50159,"WAT","HY" 11,23,1,1,,19,45,"BANGOR HYDRO ELECTRIC CO","ORONO",0,,1179,"0A",1294,,,95,895,0,0,836,0,0,966,0,0,576,0,0,624,0,0,736,0,0,684,0,0,464,0,0,408,0,0,616,0,0,849,0,0,896,0,0,1476,6,50159,"WAT","HY" 11,23,1,1,,19,55,"BANGOR HYDRO ELECTRIC CO","STILLWATER",0,,1179,"0A",1294,,,95,1191,0,0,844,0,0,939,0,0,1021,0,0,1114,0,0,1181,0,0,1170,0,0,878,0,0,818,0,0,880,0,0,923,0,0,950,0,0,1478,6,50159,"WAT","HY" 11,23,1,1,,19,60,"BANGOR HYDRO ELECTRIC CO","VEAZIE A",0,,1179,"0A",1294,,,95,4314,0,0,3855,0,0,5043,0,0,5153,0,0,6053,0,0,5342,0,0,3542,0,0,2651,0,0,2281,0,0,3932,0,0,5128,0,0,3842,0,0,1479,6,50159,"WAT","HY" 11,23,1,1,,19,62,"BANGOR HYDRO ELECTRIC CO","VEAZIE B",0,,1179,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7199,6,50159,"WAT","HY" 11,23,1,3,2,19,68,"BANGOR HYDRO ELECTRIC CO","BAR HARBOR",0,"LIGHT OIL",1179,"0A",1294,,,95,42,73,538,379,659,574,0,0,574,73,128,446,69,125,512,225,420,440,312,579,556,449,813,455,32,60,586,49,89,497,6,10,487,152,264,571,1466,6,50159,"FO2","IC" 11,23,1,3,2,19,75,"BANGOR HYDRO ELECTRIC CO","EASTPORT",0,"LIGHT OIL",1179,"0A",1294,,,95,39,70,576,80,139,412,0,0,586,10,18,557,32,58,494,111,204,464,172,317,495,182,334,509,19,36,472,0,0,470,15,29,429,67,117,460,1468,6,50159,"FO2","IC" 11,23,1,1,,37,5,"CENTRAL MAINE POWER CO","ANDROSCOG 3",0,,3266,"0M",1294,,,95,2536,0,0,2573,0,0,2732,0,0,2703,0,0,2639,0,0,2235,0,0,2379,0,0,2201,0,0,1657,0,0,2352,0,0,2282,0,0,2805,0,0,1480,6,50491,"WAT","HY" 11,23,1,1,,37,10,"CENTRAL MAINE POWER CO","BAR MILLS",0,,3266,"0M",1294,,,95,2420,0,0,1389,0,0,2414,0,0,2364,0,0,2584,0,0,1195,0,0,623,0,0,586,0,0,293,0,0,1310,0,0,2401,0,0,2056,0,0,1481,6,50491,"WAT","HY" 11,23,1,1,,37,20,"CENTRAL MAINE POWER CO","BONNY EAGLE",0,,3266,"0M",1294,,,95,6041,0,0,3654,0,0,5858,0,0,5255,0,0,4575,0,0,2217,0,0,1233,0,0,1084,0,0,592,0,0,3323,0,0,7098,0,0,4100,0,0,1482,6,50491,"WAT","HY" 11,23,1,1,,37,40,"CENTRAL MAINE POWER CO","CATARACT",0,,3266,"0M",1294,,,95,5330,0,0,4194,0,0,4953,0,0,4656,0,0,4888,0,0,5331,0,0,818,0,0,662,0,0,102,0,0,2232,0,0,5064,0,0,4090,0,0,1486,6,50491,"WAT","HY" 11,23,1,1,,37,42,"CENTRAL MAINE POWER CO","CONTINENTAL",0,,3266,"0M",1294,,,95,-14,0,0,-15,0,0,322,0,0,72,0,0,147,0,0,12,0,0,3,0,0,13,0,0,15,0,0,109,0,0,555,0,0,-18,0,0,1487,6,50491,"WAT","HY" 11,23,1,1,,37,50,"CENTRAL MAINE POWER CO","DEER RIP 1",0,,3266,"0M",1294,,,95,2694,0,0,2434,0,0,4080,0,0,3776,0,0,4034,0,0,2023,0,0,686,0,0,215,0,0,83,0,0,1916,0,0,3984,0,0,3453,0,0,1488,6,50491,"WAT","HY" 11,23,1,1,,37,60,"CENTRAL MAINE POWER CO","FT HALIFAX",0,,3266,"0M",1294,,,95,959,0,0,424,0,0,1026,0,0,961,0,0,925,0,0,526,0,0,51,0,0,5,0,0,155,0,0,380,0,0,977,0,0,659,0,0,1490,6,50491,"WAT","HY" 11,23,1,1,,37,75,"CENTRAL MAINE POWER CO","GULF ISLAND",0,,3266,"0M",1294,,,95,10764,0,0,9131,0,0,13512,0,0,13282,0,0,13485,0,0,8299,0,0,5537,0,0,4070,0,0,2892,0,0,9130,0,0,15549,0,0,11464,0,0,1491,6,50491,"WAT","HY" 11,23,1,1,,37,80,"CENTRAL MAINE POWER CO","HARRIS",0,,3266,"0M",1294,,,95,14325,0,0,24479,0,0,22937,0,0,6538,0,0,5448,0,0,21283,0,0,13285,0,0,11928,0,0,12813,0,0,10770,0,0,19708,0,0,26783,0,0,1492,6,50491,"WAT","HY" 11,23,1,1,,37,85,"CENTRAL MAINE POWER CO","HIRAM",0,,3266,"0M",1294,,,95,5791,0,0,3447,0,0,5873,0,0,6762,0,0,6516,0,0,2778,0,0,1397,0,0,1182,0,0,155,0,0,2992,0,0,7160,0,0,4285,0,0,1493,6,50491,"WAT","HY" 11,23,1,1,,37,90,"CENTRAL MAINE POWER CO","MESALONSK 2",0,,3266,"0M",1294,,,95,1280,0,0,585,0,0,1625,0,0,606,0,0,869,0,0,350,0,0,2,0,0,-1,0,0,9,0,0,710,0,0,1668,0,0,745,0,0,1497,6,50491,"WAT","HY" 11,23,1,1,,37,95,"CENTRAL MAINE POWER CO","MESALONSK 3",0,,3266,"0M",1294,,,95,753,0,0,330,0,0,977,0,0,349,0,0,507,0,0,180,0,0,0,0,0,-6,0,0,0,0,0,414,0,0,1038,0,0,416,0,0,1498,6,50491,"WAT","HY" 11,23,1,1,,37,100,"CENTRAL MAINE POWER CO","MESALONSK 4",0,,3266,"0M",1294,,,95,405,0,0,183,0,0,451,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1499,6,50491,"WAT","HY" 11,23,1,1,,37,105,"CENTRAL MAINE POWER CO","MESALONSK 5",0,,3266,"0M",1294,,,95,699,0,0,292,0,0,0,0,0,378,0,0,0,0,0,203,0,0,13,0,0,9,0,0,4,0,0,408,0,0,923,0,0,390,0,0,1500,6,50491,"WAT","HY" 11,23,1,1,,37,110,"CENTRAL MAINE POWER CO","NO GORHAM",0,,3266,"0M",1294,,,95,1215,0,0,963,0,0,842,0,0,520,0,0,455,0,0,503,0,0,595,0,0,604,0,0,413,0,0,340,0,0,740,0,0,1180,0,0,1501,6,50491,"WAT","HY" 11,23,1,1,,37,125,"CENTRAL MAINE POWER CO","SHAWMUT",0,,3266,"0M",1294,,,95,5226,0,0,5495,0,0,6547,0,0,5776,0,0,5295,0,0,4910,0,0,3475,0,0,2346,0,0,2571,0,0,3529,0,0,4803,0,0,6066,0,0,1504,6,50491,"WAT","HY" 11,23,1,1,,37,130,"CENTRAL MAINE POWER CO","SKELTON",0,,3266,"0M",1294,,,95,13276,0,0,8614,0,0,12134,0,0,11304,0,0,11550,0,0,5199,0,0,2833,0,0,2610,0,0,687,0,0,6731,0,0,13037,0,0,9456,0,0,1505,6,50491,"WAT","HY" 11,23,1,1,,37,145,"CENTRAL MAINE POWER CO","WEST BUXTON",0,,3266,"0M",1294,,,95,4424,0,0,2556,0,0,4381,0,0,3723,0,0,3292,0,0,1602,0,0,798,0,0,745,0,0,418,0,0,1944,0,0,4334,0,0,3045,0,0,1508,6,50491,"WAT","HY" 11,23,1,1,,37,150,"CENTRAL MAINE POWER CO","WESTON",0,,3266,"0M",1294,,,95,8095,0,0,8443,0,0,9513,0,0,8520,0,0,7843,0,0,7850,0,0,5819,0,0,4618,0,0,4257,0,0,5361,0,0,7925,0,0,9347,0,0,1509,6,50491,"WAT","HY" 11,23,1,1,,37,155,"CENTRAL MAINE POWER CO","WILLIAMS",0,,3266,"0M",1294,,,95,9171,0,0,9162,0,0,10255,0,0,6585,0,0,7543,0,0,8658,0,0,6098,0,0,5593,0,0,5308,0,0,5891,0,0,8857,0,0,10646,0,0,1510,6,50491,"WAT","HY" 11,23,1,1,,37,160,"CENTRAL MAINE POWER CO","WYMAN HYDRO",0,,3266,"0M",1294,,,95,30298,0,0,37016,0,0,38382,0,0,18735,0,0,24745,0,0,31774,0,0,20433,0,0,17564,0,0,16353,0,0,19735,0,0,40234,0,0,38504,0,0,1511,6,50491,"WAT","HY" 11,23,1,4,2,37,175,"CENTRAL MAINE POWER CO","CAPE",0,"LIGHT OIL",3266,"0M",1294,,,95,40,282,7937,40,336,7601,-57,44,7557,-40,24,7533,5,162,7371,38,208,7316,611,1872,6581,497,1571,5887,-24,32,5855,-32,27,5828,-45,25,5803,-25,145,5552,1484,6,50491,"FO2","GT" 11,23,1,2,2,37,200,"CENTRAL MAINE POWER CO","WYMAN STEAM",0,"LIGHT OIL",3266,"0M",1294,,,95,707,1587,1149,810,1542,1579,117,264,1534,980,1825,1680,366,883,1468,854,1640,1807,783,1460,2327,653,1307,1677,115,266,1410,20,76,1335,486,1282,2039,604,1177,2212,1507,6,50491,"FO2","ST" 11,23,1,2,3,37,200,"CENTRAL MAINE POWER CO","WYMAN STEAM",0,"HEAVY OIL",3266,"0M",1294,,,95,47051,97029,319010,122493,214459,275338,22777,47240,228098,127804,222606,207728,22560,50003,278752,79660,140051,253816,153893,263859,173676,74046,134076,202289,16596,35140,288543,3258,10955,197963,18538,44437,353526,107031,192190,308382,1507,6,50491,"FO6","ST" 11,23,1,3,2,37,204,"CENTRAL MAINE POWER CO","ISLESBORO",0,"LIGHT OIL",3266,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1494,6,50491,"FO2","IC" 11,23,1,3,2,37,206,"CENTRAL MAINE POWER CO","PEAK IS",0,"LIGHT OIL",3266,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1502,6,50491,"FO2","IC" 11,23,1,1,,37,210,"CENTRAL MAINE POWER CO","BRUNSWICK",0,,3266,"0M",1294,,,95,7964,0,0,6898,0,0,11266,0,0,10237,0,0,10095,0,0,6009,0,0,3698,0,0,2974,0,0,2429,0,0,6541,0,0,12216,0,0,8541,0,0,1483,6,50491,"WAT","HY" 11,23,1,1,,37,215,"CENTRAL MAINE POWER CO","W CHANNEL",0,,3266,"0M",1294,,,95,0,0,0,-33,0,0,-20,0,0,-22,0,0,-1,0,0,-1,0,0,-1,0,0,-21,0,0,-1,0,0,19,0,0,-11,0,0,-22,0,0,695,6,50491,"WAT","HY" 11,23,1,1,,37,220,"CENTRAL MAINE POWER CO","BATES UPPER",0,,3266,"0M",1294,,,95,-41,0,0,-34,0,0,610,0,0,144,0,0,273,0,0,15,0,0,1,0,0,15,0,0,18,0,0,217,0,0,4223,0,0,-30,0,0,7044,6,50491,"WAT","HY" 11,23,1,1,,37,225,"CENTRAL MAINE POWER CO","BATES LOWER",0,,3266,"0M",1294,"S",,95,-17,0,0,-16,0,0,-8,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-3,0,0,-17,0,0,7045,6,50491,"WAT","HY" 11,23,1,1,,37,235,"CENTRAL MAINE POWER CO","ANDRO LOWER",0,,3266,"0M",1294,,,95,23,0,0,-11,0,0,21,0,0,-2,0,0,12,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,5,0,0,38,0,0,-14,0,0,7047,6,50491,"WAT","HY" 11,23,1,1,,37,240,"CENTRAL MAINE POWER CO","HILL MILL",0,,3266,"0M",1294,,,95,-3,0,0,-2,0,0,183,0,0,-6,0,0,60,0,0,2,0,0,1,0,0,0,0,0,1,0,0,105,0,0,467,0,0,-6,0,0,7048,6,50491,"WAT","HY" 11,23,1,1,,37,245,"CENTRAL MAINE POWER CO","C E MONTY",0,,3266,"0M",1294,,,95,11840,0,0,10124,0,0,14280,0,0,13297,0,0,13808,0,0,8324,0,0,5496,0,0,4271,0,0,3199,0,0,9333,0,0,15686,0,0,12247,0,0,805,6,50491,"WAT","HY" 11,23,1,1,,37,250,"CENTRAL MAINE POWER CO","SMELT HILL",0,,3266,"0M",294,"A",,95,0,0,0,400,0,0,352,0,0,239,0,0,180,0,0,162,0,0,191,0,0,178,0,0,-608,0,0,766,0,0,224,0,0,283,0,0,7514,6,50491,"WAT","HY" 11,23,1,2,"B",37,255,"CENTRAL MAINE POWER CO","AROOSTOOK V",0,"WOOD",3266,"0M",294,"A",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,165,0,0,134,0,0,0,0,0,0,0,0,7513,6,50491,"WD","ST" 11,23,1,1,,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,,11522,"0M",1294,,,95,454,0,0,469,0,0,519,0,0,451,0,0,454,0,0,410,0,0,48,0,0,1,0,0,-2,0,0,178,0,0,536,0,0,504,0,0,1513,6,51747,"WAT","HY" 11,23,1,2,3,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,"HEAVY OIL",11522,"0M",1294,,,95,343,903,9375,592,1410,7984,-32,0,8005,-29,0,7995,-26,6,8015,-27,4,8057,-26,0,8067,222,644,7448,-28,0,7396,-29,0,7390,857,1841,5557,2237,4973,2370,1513,6,51747,"FO6","ST" 11,23,1,3,2,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,"LIGHT OIL",11522,"0M",1294,,,95,50,251,1746,5,143,1693,-65,0,1583,78,225,1932,-18,17,1865,-9,6,1829,38,115,1683,233,500,1802,86,210,1776,-6,65,2071,-56,28,1948,244,599,2098,1513,6,51747,"FO2","IC" 11,23,1,1,,94,10,"MAINE PUBLIC SERVICE CO","SQUA PAN",0,,11522,"0M",1294,,,95,115,0,0,363,0,0,152,0,0,-10,0,0,-7,0,0,-3,0,0,-3,0,0,-4,0,0,-6,0,0,-7,0,0,3,0,0,223,0,0,1516,6,51747,"WAT","HY" 11,23,1,3,2,94,23,"MAINE PUBLIC SERVICE CO","FLOS INN",0,"LIGHT OIL",11522,"0M",1294,,,95,27,115,314,19,82,232,-29,0,232,19,79,373,-23,2,371,-16,0,371,13,80,290,124,284,232,74,135,323,-3,51,272,-25,8,264,217,451,388,1514,6,51747,"FO2","IC" 11,23,1,3,2,94,25,"MAINE PUBLIC SERVICE CO","HOULTON",0,"LIGHT OIL",11522,"0M",1294,,,95,6,28,13,-8,1,12,-8,2,10,-8,0,10,-6,0,10,-3,0,10,-2,0,10,-3,0,10,-3,0,10,-4,0,11,-4,2,8,14,34,6,1515,6,51747,"FO2","IC" 11,23,1,2,1,97,1,"MAINE YANKEE ATOMIC PWR C","MAIN YANKEE",0,"NUCLEAR",11525,"0M",1294,,,95,197577,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1517,6,51748,"UR","ST" 11,23,1,3,2,116,10,"PUB SERV CO OF NEW HAMP","SWANS FALLS",0,"LIGHT OIL",15472,"0M",1294,"R",180,95,-7,0,2,-7,0,2,-6,0,2,-3,0,2,-2,0,2,-1,0,2,-1,0,2,-1,0,2,-1,0,2,-1,0,2,-3,0,2,0,0,0,1518,6,52411,"FO2","IC" 11,23,5,1,,525,1,"LEWISTON (CITY OF)","ANDRO UPPER",0,,10963,"0A",1294,,,95,296,0,0,378,0,0,310,0,0,424,0,0,264,0,0,390,0,0,256,0,0,258,0,0,304,0,0,270,0,0,342,0,0,324,0,0,7046,6,54168,"WAT","HY" 11,23,5,1,,566,1,"MADISON (CITY OF)","NORRIDGEWCK",0,,11477,"0A",1294,,,95,306,0,0,241,0,0,261,0,0,291,0,0,379,0,0,277,0,0,75,0,0,0,0,0,26,0,0,121,0,0,197,0,0,224,0,0,6701,6,51737,"WAT","HY" 11,23,8,3,2,835,5,"EASTERN MAINE ELEC COOP","PORTABLE",0,"LIGHT OIL",5609,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6366,6,50848,"FO2","IC" 11,23,8,3,2,940,1,"SWANS ISLAND ELEC COOP","MINTURN",0,"LIGHT OIL",18368,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1550,6,52863,"FO2","IC" 12,33,1,1,,106,5,"NEW ENGLAND POWER CO","COMERFORD",0,,13433,"0M",1294,,90,95,34273,0,0,19125,0,0,43429,0,0,11874,0,0,22700,0,0,13853,0,0,5565,0,0,11061,0,0,5412,0,0,30636,0,0,45527,0,0,18948,0,0,2349,6,52007,"WAT","HY" 12,33,1,1,,106,10,"NEW ENGLAND POWER CO","MCINDOES",0,,13433,"0M",1294,,90,95,4420,0,0,3434,0,0,6350,0,0,3330,0,0,4648,0,0,2664,0,0,1453,0,0,2497,0,0,1353,0,0,4755,0,0,7050,0,0,3740,0,0,6483,6,52007,"WAT","HY" 12,33,1,1,,106,13,"NEW ENGLAND POWER CO","S C MOORE",0,,13433,"0M",1294,,90,95,29434,0,0,15866,0,0,34014,0,0,9521,0,0,19359,0,0,12124,0,0,4787,0,0,9805,0,0,4357,0,0,27013,0,0,40020,0,0,16551,0,0,2351,6,52007,"WAT","HY" 12,33,1,1,,106,15,"NEW ENGLAND POWER CO","VERNON",0,,13433,"0M",1294,,90,95,7120,0,0,5523,0,0,9186,0,0,7993,0,0,7582,0,0,3197,0,0,1355,0,0,2525,0,0,19,0,0,5912,0,0,9702,0,0,7342,0,0,2352,6,52007,"WAT","HY" 12,33,1,1,,106,20,"NEW ENGLAND POWER CO","WILDER",0,,13433,"0M",1294,,90,95,1974,0,0,3326,0,0,18722,0,0,7773,0,0,8911,0,0,4713,0,0,4047,0,0,5176,0,0,2849,0,0,9330,0,0,12667,0,0,7471,0,0,2353,6,52007,"WAT","HY" 12,33,1,2,1,123,1,"PUB SERV CO OF NEW HAMP","SEABROOK",0,"NUCLEAR",15472,"0M",1294,,180,95,857441,0,0,778373,0,0,863021,0,0,832472,0,0,865152,0,0,495425,0,0,690261,0,0,805711,0,0,800410,0,0,828658,0,0,60958,0,0,501494,0,0,6115,6,52411,"UR","ST" 12,33,1,1,,123,4,"PUB SERV CO OF NEW HAMP","AMOSKEAG",0,,15472,"0M",1294,,180,95,10690,0,0,7028,0,0,11425,0,0,749,0,0,15769,0,0,4245,0,0,2251,0,0,3257,0,0,434,0,0,5760,0,0,11044,0,0,6264,0,0,2354,6,52411,"WAT","HY" 12,33,1,1,,123,6,"PUB SERV CO OF NEW HAMP","AYERS IS",0,,15472,"0M",1294,,180,95,3909,0,0,2249,0,0,4743,0,0,3555,0,0,4487,0,0,1520,0,0,1448,0,0,1727,0,0,380,0,0,3303,0,0,5711,0,0,2632,0,0,2355,6,52411,"WAT","HY" 12,33,1,1,,123,16,"PUB SERV CO OF NEW HAMP","EASTMAN FLS",0,,15472,"0M",1294,,180,95,2843,0,0,1293,0,0,2781,0,0,2587,0,0,2725,0,0,1214,0,0,1763,0,0,10079,0,0,-9794,0,0,1729,0,0,3266,0,0,1701,0,0,2356,6,52411,"WAT","HY" 12,33,1,1,,123,20,"PUB SERV CO OF NEW HAMP","GARVIN FLS",0,,15472,"0M",1294,,180,95,5209,0,0,3143,0,0,5693,0,0,4388,0,0,3956,0,0,2019,0,0,755,0,0,1667,0,0,350,0,0,3233,0,0,6336,0,0,3913,0,0,2357,6,52411,"WAT","HY" 12,33,1,1,,123,22,"PUB SERV CO OF NEW HAMP","GORHAM",0,,15472,"0M",1294,,180,95,989,0,0,1031,0,0,1249,0,0,885,0,0,1193,0,0,756,0,0,568,0,0,530,0,0,580,0,0,864,0,0,1116,0,0,1202,0,0,2358,6,52411,"WAT","HY" 12,33,1,1,,123,28,"PUB SERV CO OF NEW HAMP","HOOKSETT",0,,15472,"0M",1294,,180,95,787,0,0,865,0,0,912,0,0,1164,0,0,1141,0,0,791,0,0,156,0,0,317,0,0,43,0,0,751,0,0,952,0,0,776,0,0,2359,6,52411,"WAT","HY" 12,33,1,1,,123,30,"PUB SERV CO OF NEW HAMP","JACKMAN",0,,15472,"0M",1294,,180,95,1997,0,0,535,0,0,1239,0,0,236,0,0,557,0,0,305,0,0,191,0,0,722,0,0,-8,0,0,1339,0,0,2326,0,0,864,0,0,2360,6,52411,"WAT","HY" 12,33,1,1,,123,50,"PUB SERV CO OF NEW HAMP","SMITH STA",0,,15472,"0M",1294,,180,95,8143,0,0,9737,0,0,11648,0,0,6108,0,0,8349,0,0,6172,0,0,4454,0,0,4871,0,0,3742,0,0,6861,0,0,10860,0,0,10308,0,0,2368,6,52411,"WAT","HY" 12,33,1,4,2,123,57,"PUB SERV CO OF NEW HAMP","LOST NATION",0,"LIGHT OIL",15472,"0M",1294,,180,95,-15,0,2159,79,306,1853,-15,0,1853,-12,0,1853,42,125,1728,50,140,1587,209,595,1527,275,828,1235,-11,0,1235,-11,0,1235,-10,0,1235,111,338,1076,2362,6,52411,"FO2","GT" 12,33,1,2,2,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"LIGHT OIL",15472,"0M",1294,,180,95,27,45,275,16,29,156,22,38,180,23,38,218,0,0,0,29,52,151,6,14,205,30,55,180,52,96,222,62,108,185,57,96,176,20,35,176,2364,6,52411,"FO2","ST" 12,33,1,2,6,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"BIT COAL",15472,"0M",1294,,180,95,266403,101539,253077,274308,103830,266334,256612,98157,263978,216443,80934,278945,76504,17154,315133,246563,95683,297713,281671,111493,247571,263463,95839,235114,181335,71786,264069,207269,81066,275589,253852,96425,269715,287608,108204,247069,2364,6,52411,"BIT","ST" 12,33,1,4,2,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"LIGHT OIL",15472,"0M",1294,,180,95,-47,0,3032,411,1048,3032,-21,0,1984,-18,0,1984,112,282,1702,122,334,1367,613,1576,1494,582,1554,2033,-14,0,2033,-11,20,2013,-20,0,2013,242,603,1411,2364,6,52411,"FO2","GT" 12,33,1,2,3,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"HEAVY OIL",15472,"0M",1294,,180,95,1350,2702,31413,820,1554,92325,2073,4352,187620,1454,2823,184796,1826,3479,189663,2478,4626,184835,4062,7903,176932,2011,4193,53637,1321,2911,170000,1885,4329,165671,5233,10859,154812,3538,6785,118334,2367,6,52411,"FO6","ST" 12,33,1,2,6,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"BIT COAL",15472,"0M",1294,,180,95,53534,27148,87087,68779,32692,50318,47008,24972,52027,65230,33724,53967,55312,27020,32185,49976,24400,75043,55074,26887,62380,30313,18396,42154,18241,9931,51974,16092,9642,54786,30357,16856,90418,65541,32424,72200,2367,6,52411,"BIT","ST" 12,33,1,4,2,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"LIGHT OIL",15472,"0M",1294,,180,95,-13,0,804,95,260,723,-12,0,723,-9,0,723,57,118,604,-7,0,604,90,262,723,242,963,714,-7,0,714,0,0,714,-9,0,714,120,301,794,2367,6,52411,"FO2","GT" 12,33,1,4,9,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"NAT GAS",15472,"0M",1294,,180,95,19,240,0,12,140,0,24,310,0,25,300,0,22,264,0,17,210,0,219,2700,0,121,2803,0,14,190,0,15,220,0,24,320,0,22,260,0,2367,6,52411,"NG","GT" 12,33,1,4,2,123,70,"PUB SERV CO OF NEW HAMP","WHITE LAKE",0,"LIGHT OIL",15472,"0M",1294,,180,95,-17,0,2383,97,350,2033,-14,4,2029,-7,0,2029,48,94,1935,136,341,1595,147,405,1763,357,924,1410,-3,0,1410,-3,0,1410,-13,0,1410,-6,129,1281,2369,6,52411,"FO2","GT" 12,33,1,2,2,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"LIGHT OIL",15472,"0M",1294,,180,95,2141,4247,1577,1729,3274,1766,1111,2327,1824,1584,4149,1209,1580,3072,1209,1589,3168,1640,1162,2239,1856,1703,3313,1598,1134,2258,1388,173,817,1751,1894,3703,1630,507,3096,1651,8002,6,52411,"FO2","ST" 12,33,1,2,3,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"HEAVY OIL",15472,"0M",1294,,180,95,73391,138116,328850,119485,206586,321529,32827,62816,434361,89003,159420,245596,100291,177704,321055,73382,134661,317462,125529,216497,100965,57182,118647,2305699,45699,82009,405756,1560,6611,399144,100544,177099,222046,136392,231245,388270,8002,6,52411,"FO6","ST" 12,33,1,2,9,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"NAT GAS",15472,"0M",1294,,180,95,1463,17053,0,0,0,0,0,0,0,0,0,0,35353,394385,0,45744,527451,0,57696,624462,0,48968,544320,0,10747,122302,0,57,1545,0,742,8312,0,0,0,0,8002,6,52411,"NG","ST" 13,50,1,1,,22,2,"CENTRAL VT PUB SERV CORP","ARNOLD FLS",0,,3292,"0A",1294,,350,95,112,0,0,27,0,0,168,0,0,290,0,0,100,0,0,18,0,0,33,0,0,37,0,0,17,0,0,172,0,0,245,0,0,135,0,0,3707,6,50503,"WAT","HY" 13,50,1,1,,22,10,"CENTRAL VT PUB SERV CORP","CAVENDISH",0,,3292,"0A",1294,,350,95,534,0,0,309,0,0,847,0,0,607,0,0,267,0,0,83,0,0,0,0,0,134,0,0,-3,0,0,391,0,0,928,0,0,383,0,0,3710,6,50503,"WAT","HY" 13,50,1,1,,22,11,"CENTRAL VT PUB SERV CORP","CLARKS FLS",0,,3292,"0A",1294,,350,95,1404,0,0,1026,0,0,1689,0,0,1865,0,0,1729,0,0,855,0,0,596,0,0,1076,0,0,567,0,0,1648,0,0,1970,0,0,1412,0,0,3711,6,50503,"WAT","HY" 13,50,1,1,,22,15,"CENTRAL VT PUB SERV CORP","FAIRFAX",0,,3292,"0A",1294,,350,95,1873,0,0,1589,0,0,2321,0,0,2516,0,0,2499,0,0,1241,0,0,878,0,0,1432,0,0,744,0,0,2114,0,0,2573,0,0,2233,0,0,3712,6,50503,"WAT","HY" 13,50,1,1,,22,16,"CENTRAL VT PUB SERV CORP","GAGE",0,,3292,"0A",1294,,350,95,221,0,0,24,0,0,244,0,0,307,0,0,290,0,0,73,0,0,85,0,0,38,0,0,48,0,0,305,0,0,523,0,0,226,0,0,3713,6,50503,"WAT","HY" 13,50,1,1,,22,18,"CENTRAL VT PUB SERV CORP","GLEN",0,,3292,"0A",1294,,350,95,1041,0,0,605,0,0,731,0,0,367,0,0,238,0,0,98,0,0,83,0,0,323,0,0,183,0,0,629,0,0,1307,0,0,401,0,0,3714,6,50503,"WAT","HY" 13,50,1,1,,22,22,"CENTRAL VT PUB SERV CORP","LW MIDLEBRY",0,,3292,"0A",1294,,350,95,725,0,0,534,0,0,1054,0,0,920,0,0,550,0,0,286,0,0,79,0,0,150,0,0,104,0,0,524,0,0,1220,0,0,492,0,0,3716,6,50503,"WAT","HY" 13,50,1,1,,22,26,"CENTRAL VT PUB SERV CORP","MILTON",0,,3292,"0A",1294,,350,95,3538,0,0,2446,0,0,4215,0,0,4336,0,0,3864,0,0,1806,0,0,1204,0,0,2514,0,0,1210,0,0,4046,0,0,4879,0,0,3192,0,0,3717,6,50503,"WAT","HY" 13,50,1,1,,22,28,"CENTRAL VT PUB SERV CORP","PASSUMPSIC",0,,3292,"0A",1294,,350,95,315,0,0,97,0,0,378,0,0,435,0,0,415,0,0,90,0,0,51,0,0,150,0,0,94,0,0,370,0,0,434,0,0,44,0,0,3718,6,50503,"WAT","HY" 13,50,1,1,,22,30,"CENTRAL VT PUB SERV CORP","PATCH",0,,3292,"0A",1294,,350,95,107,0,0,58,0,0,59,0,0,21,0,0,7,0,0,5,0,0,5,0,0,28,0,0,7,0,0,42,0,0,158,0,0,30,0,0,3719,6,50503,"WAT","HY" 13,50,1,1,,22,34,"CENTRAL VT PUB SERV CORP","PIERCE MLS",0,,3292,"0A",1294,,350,95,113,0,0,81,0,0,121,0,0,180,0,0,161,0,0,59,0,0,47,0,0,47,0,0,17,0,0,102,0,0,181,0,0,116,0,0,3721,6,50503,"WAT","HY" 13,50,1,1,,22,36,"CENTRAL VT PUB SERV CORP","PITTSFORD",0,,3292,"0A",1294,,350,95,1275,0,0,941,0,0,158,0,0,47,0,0,-2,0,0,9,0,0,0,0,0,489,0,0,354,0,0,726,0,0,1999,0,0,679,0,0,3722,6,50503,"WAT","HY" 13,50,1,1,,22,38,"CENTRAL VT PUB SERV CORP","SALISBURY",0,,3292,"0A",1294,,350,95,325,0,0,210,0,0,191,0,0,62,0,0,141,0,0,65,0,0,25,0,0,72,0,0,111,0,0,88,0,0,-6,0,0,303,0,0,3724,6,50503,"WAT","HY" 13,50,1,1,,22,40,"CENTRAL VT PUB SERV CORP","SILVER LAKE",0,,3292,"0A",1294,,350,95,800,0,0,508,0,0,722,0,0,405,0,0,402,0,0,227,0,0,103,0,0,275,0,0,84,0,0,500,0,0,973,0,0,535,0,0,3725,6,50503,"WAT","HY" 13,50,1,1,,22,41,"CENTRAL VT PUB SERV CORP","TAFTSVILLE",0,,3292,"0A",1294,,350,95,150,0,0,135,0,0,208,0,0,200,0,0,119,0,0,12,0,0,0,0,0,17,0,0,-1,0,0,55,0,0,175,0,0,162,0,0,3727,6,50503,"WAT","HY" 13,50,1,1,,22,44,"CENTRAL VT PUB SERV CORP","WEYBRIDGE",0,,3292,"0A",1294,,350,95,1391,0,0,616,0,0,1819,0,0,1459,0,0,991,0,0,370,0,0,156,0,0,354,0,0,167,0,0,1042,0,0,2031,0,0,856,0,0,3728,6,50503,"WAT","HY" 13,50,1,1,,22,45,"CENTRAL VT PUB SERV CORP","PETERSON",0,,3292,"0A",1294,,350,95,2522,0,0,1281,0,0,3601,0,0,3092,0,0,2335,0,0,1090,0,0,702,0,0,1605,0,0,681,0,0,2814,0,0,4021,0,0,1742,0,0,3720,6,50503,"WAT","HY" 13,50,1,4,2,22,48,"CENTRAL VT PUB SERV CORP","RUTLAND",0,"LIGHT OIL",3292,"0A",1294,,350,95,13,125,4525,45,327,4198,40,218,3979,19,143,3836,20,127,3709,101,381,3328,272,898,2430,277,932,1498,34,167,3475,-8,46,3429,32,195,3234,152,651,2583,3723,6,50503,"FO2","GT" 13,50,1,4,2,22,49,"CENTRAL VT PUB SERV CORP","ASCUTNEY",0,"LIGHT OIL",3292,"0A",1294,,350,95,27,136,2572,77,326,2246,69,300,1946,18,96,1851,8,65,1786,41,144,1641,268,895,2175,226,765,1409,-1,38,3277,-15,0,3277,-3,71,3206,88,353,2853,3708,6,50503,"FO2","GT" 13,50,1,3,2,22,60,"CENTRAL VT PUB SERV CORP","ST ALBANS",0,"LIGHT OIL",3292,"0A",1294,,350,95,-14,0,89,5,38,214,-11,4,210,-10,5,205,7,17,188,21,40,148,72,149,234,59,123,111,-1,2,110,-3,0,110,-6,0,108,9,42,236,3726,6,50503,"FO2","IC" 13,50,1,1,,22,65,"CENTRAL VT PUB SERV CORP","SMITH",0,,3292,"0A",1294,,350,95,361,0,0,154,0,0,495,0,0,658,0,0,519,0,0,163,0,0,121,0,0,123,0,0,72,0,0,258,0,0,692,0,0,170,0,0,3709,6,50503,"WAT","HY" 13,50,1,1,,22,70,"CENTRAL VT PUB SERV CORP","EAST BARNET",0,,3292,"0A",1294,,350,95,595,0,0,399,0,0,900,0,0,1046,0,0,922,0,0,325,0,0,322,0,0,358,0,0,203,0,0,790,0,0,1148,0,0,702,0,0,788,6,50503,"WAT","HY" 13,50,1,1,,24,5,"CITIZENS UTILITIES CO","CHARLESTON",0,,3611,"0A",1294,,,95,339,0,0,244,0,0,393,0,0,445,0,0,409,0,0,252,0,0,154,0,0,192,0,0,90,0,0,382,0,0,461,0,0,314,0,0,3729,6,50560,"WAT","HY" 13,50,1,1,,24,10,"CITIZENS UTILITIES CO","NEWPORT",0,,3611,"0A",1294,,,95,1625,0,0,946,0,0,1961,0,0,1655,0,0,1645,0,0,917,0,0,474,0,0,1107,0,0,331,0,0,1614,0,0,2652,0,0,1235,0,0,3731,6,50560,"WAT","HY" 13,50,1,3,2,24,15,"CITIZENS UTILITIES CO","NEWPORT DSL",0,"LIGHT OIL",3611,"0A",1294,,,95,0,0,377,16,33,290,0,0,259,0,0,229,0,0,206,0,0,206,0,0,206,7,12,194,8,16,177,0,0,177,0,0,137,0,0,85,3730,6,50560,"FO2","IC" 13,50,1,1,,24,20,"CITIZENS UTILITIES CO","TROY",0,,3611,"0A",1294,,,95,150,0,0,72,0,0,150,0,0,267,0,0,209,0,0,71,0,0,28,0,0,30,0,0,3,0,0,74,0,0,244,0,0,128,0,0,3733,6,50560,"WAT","HY" 13,50,1,1,,47,10,"GREEN MOUNTAIN POWER CORP","ESSEX 19",0,,7601,"0M",1294,,,95,2888,0,0,2870,0,0,4338,0,0,3931,0,0,3261,0,0,980,0,0,333,0,0,1531,0,0,936,0,0,2161,0,0,3540,0,0,2964,0,0,3737,6,51169,"WAT","HY" 13,50,1,3,2,47,10,"GREEN MOUNTAIN POWER CORP","ESSEX 19",0,"LIGHT OIL",7601,"0M",1294,,,95,0,0,311,11,27,284,1,1,283,0,0,283,7,16,267,28,61,385,45,85,300,33,65,235,9,19,394,0,0,394,0,0,394,12,25,369,3737,6,51169,"FO2","IC" 13,50,1,1,,47,15,"GREEN MOUNTAIN POWER CORP","GORGE NO 18",0,,7601,"0M",1294,,,95,901,0,0,986,0,0,1573,0,0,1661,0,0,1125,0,0,122,0,0,113,0,0,692,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6475,6,51169,"WAT","HY" 13,50,1,1,,47,20,"GREEN MOUNTAIN POWER CORP","MARSHFIELD6",0,,7601,"0M",1294,,,95,891,0,0,1188,0,0,245,0,0,107,0,0,0,0,0,3,0,0,2,0,0,54,0,0,53,0,0,604,0,0,1300,0,0,430,0,0,3739,6,51169,"WAT","HY" 13,50,1,1,,47,25,"GREEN MOUNTAIN POWER CORP","MIDDLESEX 2",0,,7601,"0M",1294,,,95,1134,0,0,848,0,0,1580,0,0,1697,0,0,1156,0,0,150,0,0,111,0,0,717,0,0,45,0,0,1158,0,0,2061,0,0,1133,0,0,3740,6,51169,"WAT","HY" 13,50,1,1,,47,40,"GREEN MOUNTAIN POWER CORP","VERGENNES 9",0,,7601,"0M",1294,,,95,972,0,0,799,0,0,1171,0,0,1224,0,0,968,0,0,441,0,0,247,0,0,499,0,0,318,0,0,590,0,0,1307,0,0,899,0,0,6519,6,51169,"WAT","HY" 13,50,1,3,2,47,40,"GREEN MOUNTAIN POWER CORP","VERGENNES 9",0,"LIGHT OIL",7601,"0M",1294,,,95,15,27,282,68,118,164,15,24,319,5,8,311,4,25,465,108,264,200,174,319,417,163,302,294,20,35,437,3,2,436,2,4,432,35,62,370,6519,6,51169,"FO2","IC" 13,50,1,1,,47,53,"GREEN MOUNTAIN POWER CORP","WATRBRY 22",0,,7601,"0M",1294,,,95,2101,0,0,2029,0,0,1441,0,0,318,0,0,823,0,0,444,0,0,464,0,0,1190,0,0,485,0,0,2251,0,0,2609,0,0,1566,0,0,6520,6,51169,"WAT","HY" 13,50,1,1,,47,55,"GREEN MOUNTAIN POWER CORP","W DANVIL 15",0,,7601,"0M",1294,,,95,445,0,0,146,0,0,507,0,0,509,0,0,301,0,0,77,0,0,87,0,0,220,0,0,103,0,0,544,0,0,661,0,0,151,0,0,3743,6,51169,"WAT","HY" 13,50,1,4,2,47,58,"GREEN MOUNTAIN

  4. Portland Company to Receive $1.3 Million to Improve Hydro Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies September 15, 2009 - 12:00am Addthis Washington, DC - US Energy Secretary Steven Chu today awarded more than $1.3 million to Ocean Renewable Power Company in Portland, Maine to improve the efficiency, flexibility, and environmental performance of hydroelectric energy. The investment will further the

  5. Hydro-Pac Inc., A High Pressure Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydro-Pac Inc., A High Pressure Company Hydro-Pac Inc., A High Pressure Company This presentation was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_6_siefert.pdf More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Haskel/BuTech/PPI Hydrogen Transmission and Distribution Workshop

  6. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of

    Office of Scientific and Technical Information (OSTI)

    Carbon Dioxide Geological Sequestration in Fractured Porous Rocks (Technical Report) | SciTech Connect Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Citation Details In-Document Search Title: Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Colorado School of Mines conducted research and training in the

  7. EERE Success Story-Two Colorado-Based Electric Cooperatives Selected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Huerfano River Wind project; Photo courtesy of San Isabel Electric Association , Inc. Huerfano River Wind project; Photo courtesy of San Isabel Electric Association , Inc. ...

  8. Biomass Gas Electric LLC BG E | Open Energy Information

    Open Energy Info (EERE)

    Gas Electric LLC BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer...

  9. Advanced Materials and Devices for Stationary Electrical Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (e.g., the distributed grid and electric vehicles), and the projected increase in renewable energy sources. Advanced Materials and Devices for Stationary Electrical Energy...

  10. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10 educational and workforce ...

  11. Punjab State Electricity Board PSEB | Open Energy Information

    Open Energy Info (EERE)

    State Electricity Board PSEB Jump to: navigation, search Name: Punjab State Electricity Board (PSEB) Place: Punjab, India Product: Goverment owned, power project developers and...

  12. 2013 Annual Planning Summary for the Office of Electricity Delivery...

    Energy Savers [EERE]

    Electricity Delivery and Energy Reliability 2013 Annual Planning Summary for the Office of Electricity Delivery and Energy Reliability The ongoing and projected Environmental...

  13. Wessington Springs Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  14. Rural Cooperative Geothermal Development Electric & Agriculture |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rural Cooperative Geothermal Development Electric & Agriculture Rural Cooperative Geothermal Development Electric & Agriculture DOE 2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects PDF icon low_silveria_rural_electric_coop.pdf More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy Conversion Equipment for Low Temperature

  15. Jayme da Costa | Open Energy Information

    Open Energy Info (EERE)

    energy Product: Electrical goods manufacturer that is developing and building wind, solar and hydro projects in Portugal and wind projects in Spain. Coordinates: 40.875332,...

  16. Hydrothermal Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Projects Hydrothermal Projects Hydrothermal Projects Geothermal electricity production has grown steadily, tapping a reliable, nearly inexhaustible reserve of hydrothermal systems where fluid, heat, and permeability intersect naturally in the subsurface. The United States Geological Survey estimates that 30 GW of hydrothermal resources lie beneath the surface--ten times the current installed capacity. Hydrothermal Projects Projects Database Program Links What is Play Fairway

  17. Electricity Advisory Committee

    Office of Environmental Management (EM)

    3 Membership Roster Effective Date: December 15, 2013 Richard Cowart Regulatory Assistance Project Sonny Popowsky Pennsylvania Consumer Advocate (Ret.) William Ball Southern Company Linda Blair ITC Holdings Corporation Anjan Bose Washington State University Merwin Brown California Institute for Energy and Environment Paul Centolella The Analysis Group Carlos Coe Millennium Energy Robert Curry Jr. CurryEnergy Clark Gellings Electric Power Research Institute Michael Heyeck American Electric Power

  18. Electricity Advisory Committee

    Office of Environmental Management (EM)

    July 1, 2015 Electricity Advisory Committee 2015 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate VICE CHAIR John Adams Electric Reliability Council of Texas Ake Almgren Orkas Energy Endurance Inc. William Ball Southern Company Anjan Bose Washington State University Marilyn Brown Georgia Institute of Technology Merwin Brown California Institute for Energy and Environment Paula Carmody Maryland People's Council Paul Centolella

  19. Hydropower Projects

    SciTech Connect (OSTI)

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  20. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2013-06-25

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.