Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hydrogen, lithium, and lithium hydride production  

DOE Patents (OSTI)

A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

2014-03-25T23:59:59.000Z

2

Development of encapsulated lithium hydride thermal energy storage for space power systems  

SciTech Connect

Inclusion of thermal energy storage in a pulsed space power supply will reduce the mass of the heat rejection system. In this mode, waste heat generated during the brief high-power burst operation is placed in the thermal store; later, the heat in the store is dissipated to space via the radiator over the much longer nonoperational period of the orbit. Thus, the radiator required is of significantly smaller capacity. Scoping analysis indicates that use of lithium hydride as the thermal storage medium results in system mass reduction benefits for burst periods as long as 800 s. A candidate design for the thermal energy storage component utilizes lithium hydride encapsulated in either 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Key issues associated with the system design include phase-change induced stresses in the shell, lithium hydride and shell compatibility, lithium hydride dissociation and hydrogen loss from the system, void presence and movement associated with the melt-freeze process, and heat transfer limitations on obtaining the desired energy storage density. 58 refs., 40 figs., 11 tabs.

Morris, D.G.; Foote, J.P.; Olszewski, M.

1987-12-01T23:59:59.000Z

3

Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultrafast X-Ray Thomson Scattering  

SciTech Connect

We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

Kritcher, A. L. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Neumayer, P.; Doeppner, T.; Landen, O. L.; Glenzer, S. H. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Brown, C. R. D. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); AWE plc., Aldermaston, Reading, RG7 4PR (United Kingdom); Davis, P. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Falcone, R. W.; Lee, H. J. [Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Gericke, D. O.; Vorberger, J.; Wuensch, K. [CFSA, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Holst, B.; Redmer, R. [Universitaet Rostock, Institut fuer Physik, D-18051 Rostock (Germany); Morse, E. C. [Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Pelka, A.; Roth, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany)

2009-12-11T23:59:59.000Z

4

Hydride compositions  

DOE Patents (OSTI)

Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

Lee, Myung, W.

1994-01-01T23:59:59.000Z

5

Hydride compositions  

DOE Patents (OSTI)

A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

Lee, Myung W. (North Augusta, SC)

1995-01-01T23:59:59.000Z

6

Metal Hydrides - Science Needs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Grand Challenge Pre-Solicitation Meeting, June 19, 2003 1 Metal Hydrides - Science Needs TRADITIONAL METALLIC HYDRIDES: 1.5 to 2 wt.% H. Well studied. COMPLEX...

7

Metal Hydride Hydrogen Storage R and D  

Energy.gov (U.S. Department of Energy (DOE))

DOE's research on complex metal hydrides targets the development of advanced metal hydride materials including light-weight complex hydrides, destabilized binary hydrides, intermetallic hydrides,...

8

Metal Hydride Hydrogen Storage Research and Development  

Energy.gov (U.S. Department of Energy (DOE))

DOE's research on complex metal hydrides targets the development of advanced metal hydride materials including light-weight complex hydrides, destabilized binary hydrides, intermetallic hydrides,...

9

Recent advances in metal hydrides for clean energy applications  

SciTech Connect

Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

Ronnebro, Ewa; Majzoub, Eric H.

2013-06-01T23:59:59.000Z

10

Transition-Metal Hydrides  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition-Metal Hydride Electrochromics Transition-Metal Hydride Electrochromics A new type of electrochromic hydride material has interesting and unusual properties. Thin Ni-Mg films, for example, are mirror-like in appearance and have very low visible transmittance. On exposure to hydrogen gas or on reduction in alkaline electrolyte, the films become transparent. The transition is believed to result from formation of nickel magnesium hydride, Mg2NiH4. Switchable mirrors based on rare earth hydrides were discovered in 1996 at Vrije University in the Netherlands, Rare earth-magnesium alloy films were subsequently found to be superior to the pure lanthanides in maximum transparency and mirror-state reflectivity by Philips Laboratories. The newer transition-metal types which use less expensive and less reactive materials were discovered at LBNL. This has now become a very active area of study with a network of researchers.

11

Chemical Hydride Slurry for Hydrogen Production and Storage  

SciTech Connect

The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. ? During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

McClaine, Andrew W.

2008-09-30T23:59:59.000Z

12

Method for preparing porous metal hydride compacts  

DOE Patents (OSTI)

A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

1980-01-21T23:59:59.000Z

13

PNNL Chemical Hydride Capabilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Hydride Capabilities PNNL Chemical Hydride Capabilities Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

14

Manufacturing of Protected Lithium Electrodes for Advanced Lithium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries, April 2013 Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air,...

15

Hydride Rim Formation in Unirradiated Zircaloy  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this work is to develop the means of pre-hydriding unirradiated Zircaloy cladding such that a high concentration, or rim, of hydrides is formed at the cladding outside diameter.

16

Crack propagation in hydrided zircaloy-2  

Science Journals Connector (OSTI)

Transmission electron microscope observations of cracks in thin foils of Zircaloy—2 which contains hydride particles have shown that the fracture process is one of linking up satellite cracks in the hydride ph...

G. Östberg

1968-06-01T23:59:59.000Z

17

E-Print Network 3.0 - alkali metal hydrides Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Hf for selected alkali metal hydrides, alkaline earth metal hydrides, transition metal hydrides... of binary hydrides based on alkali metals, alkaline earth ... Source:...

18

Fracture Initiation Due to Hydrides in Zircaloy-2  

Science Journals Connector (OSTI)

In hydride-forming metals, the presence of hydrides can sometimes lead to brittle fracture. Zirconium is a hydride-forming metal that forms the basis of a number of alloys used in CANDUTM nuclear reactors. Under ...

M. P. Puls; B. W. Leitch; W. R. Wallace

1987-01-01T23:59:59.000Z

19

Complex Hydrides for Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrides for Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories G. J. Thomas Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles * The low volumetric density of gaseous fuels requires a storage method which densifies the fuel. - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels. * Storage methods result in additional weight and volume above that of the fuel. How do we achieve adequate stored energy in an efficient, safe and cost-effective system? G. J. Thomas However, the storage media must meet certain requirements: - reversible hydrogen uptake/release - lightweight - low cost - cyclic stability - rapid kinetic properties - equilibrium properties (P,T) consistent

20

Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions Brookhaven National Laboratory Contact BNL About This...

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities...

22

Recent developments in hydrogen storage applications based on metal hydrides  

Science Journals Connector (OSTI)

Metal hydrides have been commercialized for battery applications for more than 8 years. In case of storage applications, metal hydrides were extensively evaluated in combination with combustion engines. The relatively low gravimetric energy density of hydride tanks based on low temperature metal hydrides prevented the commercial use of that technology. Recently, lasting progress in the PEM fuel cell technology offers chances for metal hydride storage systems mainly for low power applications, but also for niche markets. The paper describes promising projects on metal hydride storage technology and gives an outlook about improvements of both the metal hydride alloy performance and the performance of metal hydride storage tanks.

V. Güther; A. Otto

1999-01-01T23:59:59.000Z

23

Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations. Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A...

24

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

of hydride fueled BWRs. Nuclear Engineering and Design, 239:Fueled PWR Cores. Nuclear Engineering and Design, 239:1489–Hydride Fueled LWRs. Nuclear Engineering and Design, 239:

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

25

Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface  

Science Journals Connector (OSTI)

The authors study the hydriding process on commercial nuclear fuelcladdings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings as well as the dissipated energy and the partial pressure of the desorbed H 2 from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t 1 ? 2 potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the ? - Zr H 1.5 phase. The measured H 2 desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

M. Díaz; A. González-González; J. S. Moya; B. Remartínez; S. Pérez; J. L. Sacedón

2009-01-01T23:59:59.000Z

26

Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation  

DOE Patents (OSTI)

An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

1990-04-10T23:59:59.000Z

27

Zirconium hydride containing explosive composition  

DOE Patents (OSTI)

An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

Walker, Franklin E. (18 Shadow Oak Rd., Danville, CA 94526); Wasley, Richard J. (4290 Colgate Way, Livermore, CA 94550)

1981-01-01T23:59:59.000Z

28

Wire Wrapped Hexagonal Pin Arrays for Hydride Fueled PWRs  

E-Print Network (OSTI)

This work contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT

Diller, Peter

29

Activated aluminum hydride hydrogen storage compositions and uses thereof  

SciTech Connect

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

2010-11-23T23:59:59.000Z

30

Hydrogen-storing hydride complexes  

DOE Patents (OSTI)

A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

Srinivasan, Sesha S. (Tampa, FL); Niemann, Michael U. (Venice, FL); Goswami, D. Yogi (Tampa, FL); Stefanakos, Elias K. (Tampa, FL)

2012-04-10T23:59:59.000Z

31

E-Print Network 3.0 - automated hydride generation-cryotrapping...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beds... Laboratories Hydride DevelopmentHydride Development for Hydrogen Storagefor Hydrogen Storage Karl Gross Sandia... using light-weight reversible hydrides The lack of a...

32

Liquid suspensions of reversible metal hydrides  

DOE Patents (OSTI)

The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

1983-12-08T23:59:59.000Z

33

Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for...

34

Lithium Insertion into Anatase Nanotubes  

Science Journals Connector (OSTI)

Lithium Insertion into Anatase Nanotubes ... Improving the Performance of Titania Nanotube Battery Materials by Surface Modification with Lithium Phosphate ...

V. Gentili; S. Brutti; L.J. Hardwick; A.R. Armstrong; S. Panero; P.G. Bruce

2012-11-01T23:59:59.000Z

35

Hydridable material for the negative electrode in a nickel-metal hydride storage battery  

SciTech Connect

A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

Knosp, Bernard (Neuilly-sur-Seine, FR); Bouet, Jacques (Paris, FR); Jordy, Christian (Dourdan, FR); Mimoun, Michel (Neuilly-sur-Marne, FR); Gicquel, Daniel (Lanorville, FR)

1997-01-01T23:59:59.000Z

36

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

Raistrick, I.D.; Poris, J.; Huggins, R.A.

1980-07-18T23:59:59.000Z

37

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1982-02-09T23:59:59.000Z

38

Encapsulated Metal Hydride for Hydrogen Separation  

E-Print Network (OSTI)

concentration feed stock, not for low concentration � Hydrogen economy will need hydrogen recovery from lowEncapsulated Metal Hydride for Hydrogen Separation (Formerly Separation Membrane Development) DOE Hydrogen Program 2003 Merit Review and Peer Evaluation L. Kit Heung, Jim Congdon Savannah River Technology

39

Ductility Evaluation of As-Hydrided and Hydride Reoriented Zircaloy-4 Cladding under Simulated Dry-Storage Condition  

SciTech Connect

Pre-storage drying-transfer operations and early stage storage expose cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to normal operation in-reactor and pool storage under these conditions. Radial hydrides could precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature. As a means of simulating this behavior, unirradiated hydrided Zircaloy-4 samples were fabricated by a gas charging method to levels that encompass the range of hydrogen concentrations observed in current used fuel. Mechanical testing was carried out by the ring compression test (RCT) method at various temperatures to evaluate the sample s ductility for both as-hydrided and post-hydride reorientation treated specimens. As-hydrided samples with higher hydrogen concentration (>800 ppm) resulted in lower strain before fracture and reduced maximum load. Increasing RCT temperatures resulted in increased ductility of the as-hydrided cladding. A systematic radial hydride treatment was conducted at various pressures and temperatures for the hydrided samples with H content around 200 ppm. Following the radial hydride treatment, RCTs on the hydride reoriented samples were conducted and exhibited lower ductility compared to as-hydrided samples.

Yan, Yong [ORNL] [ORNL; Plummer, Lee K [ORNL] [ORNL; Ray, Holly B [ORNL] [ORNL; Cook, Tyler S [ORNL] [ORNL; Bilheux, Hassina Z [ORNL] [ORNL

2014-01-01T23:59:59.000Z

40

Hydride embrittlement in ZIRCALOY-4 plate; Part 2: Interaction between the tensile stress and the hydride morphology  

SciTech Connect

The effect of an applied tensile stress on the hydrides morphology in ZIRCALOY-4 was studied. To this end, the residual stresses around the hydride caused by the hydride precipitation was first evaluated. Considering the disability to predict hydride transformation stresses by ordinary macroscopical mechanical calculation in previous studies, X-ray diffraction (XRD) profile analysis and transmission electron microscopy (TEM) observations were carried out to quantify the microstructural evolution in hydrided ZIRCALOY-4. The residual microstrains and microstresses in the matrix and around the hydride were thus estimated. The big discrepancy between the results and the existing studies were explained by the major self-accommodation of phase transformation deformation remaining inside the hydrides and the local plastic accommodation of ZIRCALOY-4. In order to study the stress effect on hydride orientation and to estimate the hydride orientation threshold stresses, hydrogen was introduced into the specimens under tensile stress. A quantitative technique was used to evaluate the susceptibility to perpendicular hydride formation under the influence of texture, residual stresses, and externally applied tensile stresses, following an improved approach that had been first developed by Sauthoff and then applied to Zr-H system by Puls. Both analytical and experimental results indicate that the threshold stress for producing perpendicular hydrides varies with the microstructural features, the yield strength, and the residual stresses.

Bai, J.B.; Prioul, C.; Francois, D. (Ecole Centrale Paris, Chatenay-Malabry (France)); Ji, N. (ENSAM, Paris (France)); Gilbon, D. (C.E.N. Saclay, Gif-sur-Yvette (France))

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Lithium Supply Grows  

Science Journals Connector (OSTI)

Military-requirements are of course classified, but there is general speculation that lithium is required for the thermonuclear reactions. ...

1955-11-21T23:59:59.000Z

42

Manufacturing of Protected Lithium Electrodes for Advanced Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries

43

Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation  

DOE Patents (OSTI)

An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.

Johnson, Jr., A. Burtron (Richland, WA); Levy, Ira S. (Kennewick, WA); Trimble, Dennis J. (Kennewick, WA); Lanning, Donald D. (Kennewick, WA); Gerber, Franna S. (Richland, WA)

1990-01-01T23:59:59.000Z

44

HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS  

SciTech Connect

The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation.

K. McCoy

2000-12-12T23:59:59.000Z

45

Dissipative hydride precipitates in superconducting niobium cavities  

SciTech Connect

We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

Romanenko, A.; Cooley, L.D.; /Fermilab; Ciovati, G.; / /Jefferson Lab; Wu, G.; /Argonne

2011-10-01T23:59:59.000Z

46

METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW  

SciTech Connect

Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

Bowman Jr, Robert C [ORNL] [ORNL; Yartys, Dr. Volodymyr A. [Institute for Energy Technology (IFE)] [Institute for Energy Technology (IFE); Lototskyy, Dr. Michael V [University of the Western Cape, South Africa] [University of the Western Cape, South Africa; Pollet, Dr. B.G. [University of the Western Cape, South Africa

2014-01-01T23:59:59.000Z

47

Proposed Virtual Center for Excellence for Metal Hydride Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virtual Center for Excellence for Metal Hydride Development Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

48

Mathematical modelling of a metal hydride hydrogen storage system.  

E-Print Network (OSTI)

??In order for metal hydride hydrogen storage systems to compete with existing energy storage technology, such as gasoline tanks and batteries, it is important to… (more)

MacDonald, Brendan David

2009-01-01T23:59:59.000Z

49

E-Print Network 3.0 - antimony hydrides Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and Sb(V) were the only hydride-forming species found... WATERS BY HYDRIDE GENERATION ATOMIC ABSORPTION SPECTROMETRY Water-Resources Investigations Report 03... Prior to the...

50

E-Print Network 3.0 - americium hydrides Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and complete processing... facility for hydride research 12;BNL Current Research in Hydrogen Storage Complex metal hydride ... Source: DOE Office of Energy Efficiency and...

51

LANL/PNNL Virtual Center for Chemical Hydrides and New Concepts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage...

52

E-Print Network 3.0 - argon hydrides Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Polytechnique, Centre de mathmatiques Collection: Mathematics 4 Complex Hydrides for Hydrogen Storage Darlene K. Slattery and Michael D. Hampton Summary: Complex Hydrides for...

53

Argonne, Western Lithium to develop lithium carbonate for multiple...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory as a step toward the commercialization of lithium carbonate from the Company's Kings Valley Lithium Project located in Humboldt County, Nevada, USA. Under the agreement,...

54

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

55

Nano-engineering of magnesium hydride for hydrogen storage  

Science Journals Connector (OSTI)

The destabilization of magnesium hydride (MgH"2) by solid-state reaction with Si in a nanoscale under vacuum was studied. The nanostructured Si films were deposited on the nanocrystalline MgH"2/Mg composite substrate by the pulsed laser deposition (PLD). ... Keywords: Destabilization, Magnesium hydride, Microstructure, Nano-engineering, Silicon

J. Bystrzycki; T. P?oci?ski; W. Zieli?ski; Z. Winiewski; M. Polanski; W. Mróz; Z. Bojar; K. J. Kurzd?owski

2009-04-01T23:59:59.000Z

56

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding). This UFD study examines the behavior and performance of unirradiated cladding and actual irradiated cladding through testing and simulation. Three capsules containing hydrogen-charged Zircaloy-4 cladding material have been placed in the High Flux Isotope Reactor (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of

57

Porous metal hydride composite and preparation and uses thereof  

DOE Patents (OSTI)

A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

Steyert, W.A.; Olsen, C.E.

1980-03-12T23:59:59.000Z

58

Porous metal hydride composite and preparation and uses thereof  

DOE Patents (OSTI)

A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

Steyert, William A. (Los Alamos, NM); Olsen, Clayton E. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

59

Metal hydride fuel storage and method thereof  

DOE Patents (OSTI)

An apparatus having a first substrate having (1) a cavity, (2) one or more resistive heaters, and (3) one or more coatings forming a diffusion barrier to hydrogen; a second substrate having (1) an outlet valve comprising a pressure relief structure and (2) one or more coatings forming a diffusion barrier to hydrogen, wherein said second substrate is coupled to said first substrate forming a sealed volume in said cavity; a metal hydride material contained within said cavity; and a gas distribution system formed by coupling a microfluidic interconnect to said pressure relief structure. Additional apparatuses and methods are also disclosed.

Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

2010-08-10T23:59:59.000Z

60

Pairing in dense lithium  

Science Journals Connector (OSTI)

... of valence electrons. Here we report the results of first-principles calculations, indicating that lithium, the band structure of which is largely free-electron-like at ordinary densities, does ... b.c.c.) becomes unstable to a pairing of the ions. Once paired, lithium possesses an even number of electrons per primitive cell which, although not sufficient, is ...

J. B. Neaton; N. W. Ashcroft

1999-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Cathode material for lithium batteries  

DOE Patents (OSTI)

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

62

American Lithium Energy Corp | Open Energy Information  

Open Energy Info (EERE)

Lithium Energy Corp Jump to: navigation, search Name: American Lithium Energy Corp Place: San Marcos, California Zip: 92069 Product: California-based developer of lithium ion...

63

Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets  

SciTech Connect

In a French pressurized water reactor (PWR), most of the structural parts of the fuel assembly consist of zirconium alloys (ZIRCALOY-2). The mechanical behavior of ZIRCALOY-4 sheets is investigated at room temperature. The effect of hydride precipitation on the mechanical behavior and on the rupture mechanism is also studied, in the range from 200 to 1,200 wt ppm hydrogen and for different stress triaxialities. It is shown that the material exhibits a strong anisotropy die to its pronounced texture, and that its mechanical properties depend on the strain rate. Hydride precipitation appears to have no effect on the anisotropy or on the strain-rate sensitivity, in the range from 10{sup {minus}4} to 10{sup {minus}2} s{sup {minus}1}. The main effect of hydrogen is the reduction of the ductility and of crack resistance. The ductile rupture mechanism is studied, focusing on the stage of damage nucleation by hydride fracture. Observations during scanning electron microscopy (SEM) in situ tests show that hydrides allow the transmission of slip, which occurs in ZIRCALOY-4 grains. Hydrides can also deform, together with surrounding zirconium matrix. Damage appears after a plastic-strain yield of about 14 to 25 pct. Fracture occurs first on intergranular hydrides. Fracture of transgranular hydrides is observed only prior to failure, for higher plastic strains.

Grange, M.; Besson, J.; Andrieu, E.

2000-03-01T23:59:59.000Z

64

Lithium metal oxide electrodes for lithium batteries  

DOE Patents (OSTI)

An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

2008-01-01T23:59:59.000Z

65

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

66

Process for production of a metal hydride  

DOE Patents (OSTI)

A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

2014-08-12T23:59:59.000Z

67

Novel Hydride Transfer Catalysis for Carbohydrate Conversions  

SciTech Connect

5-Hydroxymethylfurfural (HMF), an important versatile sugar derivative has been synthesized from glucose using catalytic amounts of CrCl2 in 1-ethyl-3-methylimidizolium chloride. Glycerol and glyceraldehyde were tested as sugar model compounds. Glycerol is unreactive and does not interfere with glucose conversion. Glyceraldehyde is reactive and does interfere with glucose conversion in competitive experiments. MnCl2 or FeCl2 catalyze dehydration of glyceraldehyde dimer to form compound I, a cyclic hemiacetal with an exocyclic double bond. Upon aqueous work-up I forms pyruvaldehyde. CrCl2 or VCl3 further catalyze a hydride transfer of I to form lactide. Upon aqueous work-up lactide is converted to lactic acid.

Holladay, John E.; Brown, Heather M.; Appel, Aaron M.; Zhang, Z. Conrad

2008-04-03T23:59:59.000Z

68

Steps to Commercialization: Nickel Metal Hydride Batteries | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries October 17, 2011 - 10:42am Addthis Steps to Commercialization: Nickel Metal Hydride Batteries Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How does it work? Through licensing and collaborative work, Energy Department-sponsored research can yield great economic benefits and help bring important new products to market. The Energy Department funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of supernovae. But this research is not only about furthering our understanding of the world around

69

Metal Hydride Chemical Heat Pumps for Industrial Use  

E-Print Network (OSTI)

Hydriding alloys are intermetallic absorbent compounds which have the remarkable quality of absorbing very large quantities of hydrogen gas per unit volume of metallic powder. The absorption and desorption of hydrogen are exothermic and endothermic...

Ally, M. R.; Rebello, W. J.; Rosso, M. J., Jr.

1984-01-01T23:59:59.000Z

70

High capacity stabilized complex hydrides for hydrogen storage  

DOE Patents (OSTI)

Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

2014-11-11T23:59:59.000Z

71

Delayed hydride cracking behavior for ZIRCALOY-2 tubing  

Science Journals Connector (OSTI)

The delayed hydride cracking (DHC) behavior for ZIRCALOY-2 tubing was characterized at temperatures ranging from 93 °C to 288 °C. Testing was performed on the three types of pressure tubes that were used in th...

F. H. Huang; W. J. Mills

1991-09-01T23:59:59.000Z

72

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

73

Development of a metal hydride electrode waste treatment process  

SciTech Connect

Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

1999-12-01T23:59:59.000Z

74

Development of the Low-Pressure Hydride/Dehydride Process  

SciTech Connect

The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

Rueben L. Gutierrez

2001-04-01T23:59:59.000Z

75

Lithium Ion Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium ion Battery Commercialization Lithium ion Battery Commercialization Johnson Controls-Saft Advanced Power Solutions, of Milwaukee, Wisconsin: Johnson Controls-Saft (JCS) will supply lithium-ion batteries to Mercedes for their S Class Hybrid to be introduced in October 2009. Technology developed with DOE support (the VL6P cell) will be used in the S Class battery. In May 2006, the Johnson Controls-Saft Joint Venture was awarded a 24 month $14.4 million contract by the DOE/USABC to develop a 40kW Li ion HEV battery system offering improved safety, low temperature performance, and cost. JCS has reported a 40% cost reduction of the 40kW system being developed in their DOE/USABC contract while maintaining performance. Lithium Ion Battery Material Commercialization Argonne National Laboratory has licensed cathode materials and associated processing

76

Solid-state lithium battery  

DOE Patents (OSTI)

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

77

OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES  

E-Print Network (OSTI)

Reaction of BH 3 :THF with magnesium hydride byproduct. A.It was also observed that magnesium hydride can partiallyACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES A dissertation

Clary, Jacob William

2012-01-01T23:59:59.000Z

78

LITHIUM LITERATURE REVIEW: LITHIUM'S PROPERTIES AND INTERACTIONS  

Office of Scientific and Technical Information (OSTI)

HEDL-TME 78-15 HEDL-TME 78-15 uc-20 LITHIUM LITERATURE REVIEW: LITHIUM'S PROPERTIES AND INTERACTIONS Hanf ord Engineering Development Laboratory -~ - - , . .. . D.W. Jeppson J.L. Ballif W.W. Yuan B.E. Chou - - - . - . - -- r - N O T l C E n ~ h u mpon w prepared as an account of work iponrored by the United States Government. Neither the Unitcd States nor the United Stater Department of Energy. nor any of their employees, nor any of then contractor^, subcontractors. or their employees, maker any warranty, cxprcu or Implied. or anumcs any legal liability or rcrponabllity for the accuracy. cornplctcncs or uvfulnes of any information. apparatus, product or p r o a s ditclorcd. or rcpments that its u s would not infringe pnvatcly owned nghts. April 1978 HANFORD ENGINEERING DEVELOPMENT LABORATORY

79

Influence of uranium hydride oxidation on uranium metal behaviour  

SciTech Connect

This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

2013-07-01T23:59:59.000Z

80

Synthesis and characterization of metal hydride/carbon aerogel composites for hydrogen storage  

Science Journals Connector (OSTI)

Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4), a complex metal hydride, and carbon aerogels (CAs), a light porous material connected by several spherical nanoparticles. ...

Kuen-Song Lin; Yao-Jen Mai; Su-Wei Chiu; Jing-How Yang; Sammy L. I. Chan

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage  

E-Print Network (OSTI)

Metal Hydrides for Hydrogen Storage by Steven James BarceloMetal Hydrides for Hydrogen Storage by Steven James BarceloCo-chair Efficient hydrogen storage is required for fuel

Barcelo, Steven James

2009-01-01T23:59:59.000Z

82

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate  

E-Print Network (OSTI)

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate David A. Scrymgeour and Venkatraman Gopalan Department of Materials Science, lithium niobate and lithium tantalate. The contributions to the domain- wall energy from polarization

Gopalan, Venkatraman

83

Opening of a Post Doctoral Position Complex hydrides for hydrogen storage applications  

E-Print Network (OSTI)

Opening of a Post Doctoral Position Complex hydrides for hydrogen storage applications on complex hydrides for hydrogen storage applications in connection with the « Fast, reliable and cost effective boron hydride based high capacity solid state hydrogen storage materials» project co

84

Princeton Plasma Physics Lab - Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

lithium Nearly everybody knows about lithium Nearly everybody knows about lithium - a light, silvery alkali metal - used in rechargeable batteries powering everything from laptops to hybrid cars. What may not be so well known is the fact that researchers hoping to harness the energy released in fusion reactions also have used lithium to coat the walls of donut-shaped tokamak reactors. Lithium, it turns out, may help the plasmas fueling fusion reactions to retain heat for longer periods of time. This could improve the chances of producing useful energy from fusion. en COLLOQUIUM: The Lithium Tokamak eXperiment (LTX) http://www.pppl.gov/events/colloquium-lithium-tokamak-experiment-ltx

85

Final Report for the DOE Metal Hydride Center of Excellence  

NLE Websites -- All DOE Office Websites (Extended Search)

SANDIA REPORT SANDIA REPORT SAND2012-0786 Unlimited Release Printed February 2012 Final Report for the DOE Metal Hydride Center of Excellence Lennie Klebanoff Director, Metal Hydride Center of Excellence Jay Keller Deputy Director, Metal Hydride Center of Excellence Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy

86

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01T23:59:59.000Z

87

14 - Hydrogen storage in hydride-forming materials  

Science Journals Connector (OSTI)

Abstract: Hydrogen storage technologies are playing a significant and critical role in the so-called ‘hydrogen economy’: they are used to buffer primary energy sources for time-delayed end-uses. The purpose of this chapter is to review the main hydrogen storage processes and materials, with a special emphasis on chemical storage (metal and chemical hydrides). First, the main hydrogen processes (physical, chemical, electrochemical, geological) are reviewed. Then, reversible hydrogen storage in hydride-forming metals and intermetallics is discussed. Basic principles (thermodynamic properties, sorption mechanisms, kinetics) are presented and the properties of the main materials are listed and compared. Irreversible hydrogen storage in the main classes of chemical hydrides is then described. In the last section, specifications for automotive and stationary applications are reviewed and discussed.

P. Millet

2014-01-01T23:59:59.000Z

88

Brittle fracture induced by hydrides in zircaloy-4  

SciTech Connect

Zircaloy-4 is used as a cladding material in the nuclear industry for fuel elements. Its mechanical properties can be drastically affected by the presence of hydrides, which form when hydrogen content exceeds the terminal solid solubility. This change often manifests itself as a reduction in ductility (elongation and reduction in area), coupled with the evolution of the fracture mode from ductile microvoid nucleation and coalescence to intergranular fracture. It has been found, at room temperature, that Zircaloy-4 undergoes a ductile to brittle transition when the hydrogen content (hydride volume fraction) in the specimen is higher than some critical value depending on the microstructure and the hydride morphology. Heat treatment of the material can shift the transition end point from 1050 ppm wt H for the stress-relieved state to 100-150 ppm wt H for the {beta} treated state, thus strongly suggesting that there may be some relationship between the microstructure (grain size and shape) and the ductile-brittle transition. It has also been reported that for the same hydriding condition, the hydrogen absorption rate is higher for the stress-relieved and recrystallized states and lower for the {beta} treated state. This phenomenon is very important for engineering applications because it is related to the determination of the safe life. Insufficient attention has been drawn to the quantitative evaluation and the modelization of the influence of the microstructure on the ductile-brittle transition in hydrided Zircaloy-4, though there has been some general research on the boundary structural effect on intergranular fracture. The present authors attempt to modelize this influence by an upper-limit model using the results of image analysis on the microstructures and tensile tests on hydrided sheet specimens.

Bai, J.B.; Francois, D.; Prioul, C. (Lab. MSS/MAT CNRS URA 850, Ecole Centrale Paris, 92295 Chatenay Malabry Cedex (FR)); Lansiart, S. (CEA/DTA/CEREM/DTM/SRMA, C.E. Saclay, 91191 Gif-sur-Yvette Cedex (FR))

1991-11-01T23:59:59.000Z

89

Photoelectron spectroscopy of boron aluminum hydride cluster anions  

SciTech Connect

Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup ?}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States)] [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)] [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

2014-04-28T23:59:59.000Z

90

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

Angell, C.A.; Liu, C.

1996-04-09T23:59:59.000Z

91

First-principles study on lithium amide for hydrogen storage  

Science Journals Connector (OSTI)

The fundamental properties of lithium amide LiNH2, which is fully hydrogenated phase of lithium nitride Li3N, have been investigated by the first-principles calculations using the ultrasoft pseudopotential method, including the structural, electronic, dielectric, and vibrational properties. The calculated structural parameters agree well with the experimental data except for hydrogen positions. The analyses for the electronic structure and the Born effective charge tensors indicate an ionic feature between Li+ and [NH2]?. The internal bonding of [NH2]? anions is primarily covalent. The internal N-H bending and stretching vibrations of [NH2]? anions yield ?-phonon modes around 1500 and 3400cm?1, respectively. These can be fairly reproduced by the molecular approximation, suggesting a strong internal bonding of [NH2]? anions. The heat of formation for the fully hydriding reaction of Li3N is predicted as ?85kJ?mol H2 which agrees well with the experimental value. Some discussions are also presented for the properties of Li3N.

Kazutoshi Miwa; Nobuko Ohba; Shin-ichi Towata; Yuko Nakamori; Shin-ichi Orimo

2005-05-20T23:59:59.000Z

92

Effect of radial hydrides on the axial and hoop mechanical properties of Zircaloy-4 cladding  

Science Journals Connector (OSTI)

The effect of radial hydrides on the mechanical properties of stress-relief annealed Zircaloy-4 cladding was studied. Specimens were firstly hydrided to different target hydrogen levels between 100 and 600 wt ppm and then thermally cycled in an autoclave under a constant hoop stress to form radial hydrides by a hydride reorientation process. The effect of radial hydrides on the axial properties of the cladding was insignificant. On the other hand, the cladding ductility measurements decreased as its radial hydride content increased when the specimen was tested in plane strain tension. A reference hydrogen concentration for radial hydrides in the cladding was defined for assessing the fuel cladding integrity based on a criterion of the tensile strength 600 MPa. The reference hydrogen concentration increased with the specimen (bulk) hydrogen concentration to a maximum of ?90 wt ppm at the bulk concentration ?300 wt ppm H and then decreased towards higher concentrations.

H.C. Chu; S.K. Wu; K.F. Chien; R.C. Kuo

2007-01-01T23:59:59.000Z

93

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

even with excess negative capacity, lithium can deposit ifdeposits lithium and reaches cutoff sooner. electrode excessexcess by 10%, an extension of about 0.4 mm is sufficient to prevent the onset of lithium

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

94

Process of forming a sol-gel/metal hydride composite  

DOE Patents (OSTI)

An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

Congdon, James W. (Aiken, SC)

2009-03-17T23:59:59.000Z

95

HYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES  

E-Print Network (OSTI)

, Michael D. HamptonDarlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FLFL Solar Energy Center, U. of Central FL #12;Objective · Identify a hydrogen storage system that meets the DOEHYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES Darlene K. Slattery

96

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

97

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

98

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

99

EERE Partner Testimonials - Phil Roberts, California Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Phil Roberts, California Lithium Battery (CalBattery) EERE Partner Testimonials - Phil Roberts, California Lithium Battery (CalBattery) Addthis Text Version The words "Office of...

100

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

102

Lithium-based electrochromic mirrors  

E-Print Network (OSTI)

LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson*with pure antimony films. Electrochromic cycling speed andand silver. INTRODUCTION Electrochromic devices that exhibit

Richardson, Thomas J.; Slack, Jonathan L.

2003-01-01T23:59:59.000Z

103

Microstructural study by XRD profile analysis and TEM observations on hydrided recrystallized Zircaloy-4  

SciTech Connect

Zircaloy-4, used as cladding tube material in the nuclear reactors, may become brittle due to the precipitation of hydrides. During hydride formation, the anisotropic misfit strains between hydrides and the hexagonal-close-packed zirconium matrix results in a preferred orientation of the hydride platelets in the anisotropic stress field caused by non-relieved fabrication residual stresses and misfit stresses. To understand the mechanism of rupture and to predict the threshold stresses for hydride stress orientation, it is necessary to study the residual stresses, especially the microstrain caused by crystalline lattice misfit, in a hydrided specimen. The X-ray diffraction profile analysis is very sensitive to all the microstructure evolution in metallic materials. It is a non-destructive and voluminal technique compared with transmission electron microscope observation. The XRD peak broadening can be related closely with the microstrain in case of hydrided Zircaloy-4, because the hydride formation creates in general a great number of dislocations which contributes especially to the diminution of coherent domain size and to the increase of microstrain. To calibrate the internal microstrain due to precipitation effect of hydrided specimens, XRD profile analysis has also been realized on the non-hydrided specimens deformed by uniaxial tension. In this paper the authors restrict to analyzing the results about the recrystallized state, because more informations about the anisotropic elasticity, plasticity, thermal expansion, neutron diffraction measurement and the crystallographic texture results are available.

Bai, J.B. (Lab. MSS/MAT, CNRS URA 850, Ecole Centrale Paris, 92295 Chatenay Malabry Cedex (FR)); Gilbon, D. (LM3, CNRS URA 1219, ENSAM, 151 Bd. de l'Hopital, 75013 Paris (FR)); Lebrun, J.L. (CEA/DTA/CEREM/DTM/SRMA, C.E. Saclay, 91191 Gif-sur-Yvette Cedex (FR))

1992-02-01T23:59:59.000Z

104

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Overview  

Science Journals Connector (OSTI)

The need to increase the specific energy and energy density of secondary batteries has become more urgent as a result of the recent rapid development of new applications, such as electric vehicles (EVs), load leveling, and various types of portable equipments, including cellular phones, personal computers, camcorders, and digital cameras. Among various types of secondary batteries, rechargeable lithium-ion batteries have been used in a wide variety of portable equipments due to their high energy density. Many researchers have contributed to develop lithium-ion batteries, and their contributions are reviewed from historical aspects onward, including the researches in primary battery with metal lithium anode, and secondary battery with metal lithium negative electrode. Researches of new materials are still very active to develop new lithium-ion batteries with higher performances. The researches of positive and negative electrode active materials and electrolytes are also reviewed historically.

J. Yamaki

2009-01-01T23:59:59.000Z

105

Chapter 16 - Lithium Battery Energy Storage: State of the Art Including Lithium–Air and Lithium–Sulfur Systems  

Science Journals Connector (OSTI)

Abstract Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E0 = ?3.045 V), provides very high energy and power densities in batteries. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) have conquered the markets for portable consumer electronics and, recently, for electric vehicles. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. As lithium metal reacts violently with water and can thus cause ignition, modern lithium-ion batteries use carbon negative electrodes and lithium metal oxide positive electrodes. Rechargeable lithium-ion batteries should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This chapter covers all aspects of lithium battery chemistry that are pertinent to electrochemical energy storage for renewable sources and grid balancing.

Peter Kurzweil

2015-01-01T23:59:59.000Z

106

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

SciTech Connect

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

107

Hydriding and dehydriding characteristics of LiBH{sub 4} and transition metals-added magnesium hydride  

SciTech Connect

Graphical abstract: Hydriding reaction curves under 12 bar H{sub 2}, and dehydriding reaction curves under 1.0 bar H{sub 2}, at 593 K at the 1st cycle for MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti and MgH{sub 2}. Highlights: ? Addition of Ni, LiBH{sub 4}, and Ti to MgH{sub 2} to increase reaction rates. ? Sample preparation by reactive mechanical grinding. ? At n = 2, the sample absorbed 4.05 wt% H for 60 min at 593 K under 12 bar H{sub 2}. ? Analysis of rate-controlling step for dehydriding of the sample at n = 3. - Abstract: In this study, MgH{sub 2} was used as a starting material instead of Mg. Ni, Ti, and LiBH{sub 4} with a high hydrogen-storage capacity of 18.4 wt% were added. A sample with a composition of MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti was prepared by reactive mechanical grinding. The activation of MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti was completed after the first hydriding–dehydrding cycle. The hydriding rate decreases as the temperature increases due to the decrease in the driving force for the hydriding reaction. At the 1st cycle, the sample desorbs 1.45 wt% H for 10 min, 2.54 wt% H for 20 min, 3.13 wt% H for 30 min, and 3.40 wt% H for 60 min at 593 K under 1.0 bar H{sub 2}. At the 2nd cycle, the sample absorbs 3.84 wt% H for 5 min, 3.96 wt% H for 10 min, and 4.05 wt% H for 60 min at 593 K under 12 bar H{sub 2}. MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti after reactive mechanical grinding contained MgH{sub 2}, Mg, Ni, TiH{sub 1.924}, and MgO phases. The reactive mechanical grinding of Mg with Ni, LiBH{sub 4}, and Ti is considered to create defects on the surface and in the interior of Mg (to facilitate nucleation), and to reduce the particle size of Mg (to shorten diffusion distances of hydrogen atoms). The formation of Mg{sub 2}Ni during hydriding–dehydriding cycling increases the hydriding and dehydriding rates of the sample.

Song, Myoung Youp, E-mail: songmy@jbnu.ac.kr [Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 561-756 (Korea, Republic of); Kwak, Young Jun; Lee, Seong Ho [Department of Materials Engineering, Graduate School, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 561-756 (Korea, Republic of); Park, Hye Ryoung [Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbongdong, Bukgu, Gwangju, 500-757 (Korea, Republic of)

2013-07-15T23:59:59.000Z

108

Preparation and X-Ray diffraction studies of curium hydrides  

SciTech Connect

Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a/sub 0/ = 0.3769(8) nm and c/sub 0/ = 0.6732(12) nm. These products are considere to be CmH/sub 3//sup -//sub 8/ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a/sub 0/ = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH /SUB 2-x/ (B.M. Bansal and D. Damien. Inorg. Nucl. Chem. Lett. 6 603, 1970). The present results established a continuation of typical heavy trivalent lanthanidelike behavior of the transuranium actinide-hydrogen systems through curium.

Gibson, J.K.; Maire, R.G.

1985-10-01T23:59:59.000Z

109

Behavior and rupture of hydrided Zircaloy-4 tubes and sheets  

SciTech Connect

Zirconium alloys are used as structural parts in the nuclear fuel assembly. The mechanical behavior and rupture mechanisms of ZIRCALOY-4 guide tubes and sheet containing 150 to 1,200 wt ppm hydrogen have been investigated at room temperature. Sheets were notched to study the influence of geometrical defects on rupture. It is shown that hydrides strengthened the material, as maximum stresses sustained by the material are increased with increasing hydrogen contents. On the other hand, ductility is reduced. The material also exhibits a strong anisotropy due to its pronounced texture. Metallographic examinations have shown that damage by hydride cracking is a continuous process that starts after the onset of necking. Notches reduce ductility. A modified Gurson-Tvergaard model was used to represent the material behavior and rupture. Numerical simulation using the finite element method demonstrates the strong influence of plastic anisotropy on the behavior of structures and rupture modes.

Prat, F.; Besson, J. [Ecole des Mines de Paris, Evry (France); Grange, M. [Framatome Nuclear Fuel, Lyon (France); Andrieu, E. [ENSCT, Toulouse (France). Lab. Materiaux

1998-06-01T23:59:59.000Z

110

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E°=–3.045 V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

111

Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis  

E-Print Network (OSTI)

A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized "gas" is outlined, too.

Tomas Roubicek; Giuseppe Tomassetti

2013-09-12T23:59:59.000Z

112

Lithium niobate explosion monitor  

DOE Patents (OSTI)

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

1990-01-09T23:59:59.000Z

113

Lithium niobate explosion monitor  

DOE Patents (OSTI)

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

114

Electrochromically switched, gas-reservoir metal hydride devices with  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromically switched, gas-reservoir metal hydride devices with Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Title Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Publication Type Journal Article LBNL Report Number LBNL-1089E Year of Publication 2008 Authors Anders, André, Jonathan L. Slack, and Thomas J. Richardson Journal Thin Solid Films Volume 1 Date Published 08/2003 Call Number LBNL-1089E Abstract Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have been investigated. In contrast to conventional electrochromic approaches, hydrogen is stored (at low concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination of a solid state ion storage layer simplifies the layer stack, enhances overall transmission, and reduces cost. The cyclic switching properties were demonstrated and system durability improved with the incorporation a thin Zr barrier layer between the MnNiMg layer and the Pd catalyst. Addition of 9% silver to the palladium catalyst further improved system durability. About 100 full cycles have been demonstrated before devices slow considerably. Degradation of device performance appears to be related to Pd catalyst mobility, rather than delamination or metal layer oxidation issues originally presumed likely to present significant challenges.

115

Diffusional exchange of isotopes in a metal hydride sphere.  

SciTech Connect

This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

2011-04-01T23:59:59.000Z

116

Electrical Properties of Hydrides and Deuterides of Zirconium  

Science Journals Connector (OSTI)

Electrical properties of hydrides and deuterides of zirconium have been investigated between 1.1 and 410°K. The metallic nature of these materials is evident in the fact that for compositions approaching ZrH2, the hydride is a better conductor than is high-purity zirconium. Above ?150°K the electrical resistivity exhibits an interesting upturn, which arises from scattering from the optical-model lattice vibrations. Excellent fits to the ideal-resistivity data are obtained with a simple additive combination of Grüneisen and Howarth-Sondheimer functions for the respective acoustical- and optical-mode scattering contributions. The corresponding acoustical- and optical-mode characteristic temperatures are in good accord with expectations based on earlier inelastic neutron scattering data. Moreover, the optical-mode characteristic temperature exhibits the expected hydride-deuteride isotope shift of 2. The observed Hall coefficients are large in magnitude (much greater than for pure Zr), and indicate majority hole conduction for the fcc ? phase and majority electron conduction for the face-centered tetragonal ? phase. The thermoelectric power also changes from positive to negative with increasing hydrogen concentration in the range ZrH1.5-ZrH2.

P. W. Bickel and T. G. Berlincourt

1970-12-15T23:59:59.000Z

117

E-Print Network 3.0 - arsenic hydrides Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

(2002) 1080-703902.50 Summary: for arsenic species using hydride generation and atomic absorption spectroscopy. The detec- tion limit for As... by ASP Estimation of...

118

LANL/PNNL Virtual Center for Chemical Hydrides and New Concepts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage * Thermodynamics * Kinetics * Recycle * WeightVolume Capacity * Durability Investigate...

119

E-Print Network 3.0 - annulus metal hydride Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Metal hydride applications span a wide variety of tech nologies eg energy conversion... chemical compressors and hydrogen storage A knowledge of heat and...

120

Thermodynamics of metal hydrides for hydrogen storage applications using first principles calculations.  

E-Print Network (OSTI)

??Metal hydrides are promising candidates for H2 storage, but high stability and poor kinetics are the important challenges which have to be solved for vehicular… (more)

Kim, Ki Chul

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Influence of an oxide layer on the hydride embrittlement in Zircaloy-4  

SciTech Connect

Hydrid embrittlement of zirconium and its alloy has been studied extensively. The common techniques used to hydride the specimens are electro-chemical and gaseous ones. During this operation, especially for cases of long duration, an oxide layer would form on the surface of specimens. The present paper reports on some evidence for the influence of this layer on the hydride embrittlement in Zircaloy-4. Tensile tests with or without this layer were performed on hydrided specimens. Metallographic and fractographic analyses were carried out in order to examine the fracture nature of this layer. An analysis based on the fracture mechanics was also proposed.

Bai, J.B. (Ecole Centrale de Paris, Chatenay Malabry (France). Lab. MSS/MAT)

1993-09-01T23:59:59.000Z

122

Lattice Dynamics of Dense Lithium  

Science Journals Connector (OSTI)

We report low-frequency high-resolution Raman spectroscopy and ab-initio calculations on dense lithium from 40 to 200 GPa at low temperatures. Our experimental results reveal rich first-order Raman activity in the metallic and semiconducting phases of lithium. The computed Raman frequencies are in excellent agreement with the measurements. Free energy calculations provide a quantitative description and physical explanation of the experimental phase diagram only when vibrational effect are correctly treated. The study underlines the importance of zero-point energy in determining the phase stability of compressed lithium.

F. A. Gorelli; S. F. Elatresh; C. L. Guillaume; M. Marqués; G. J. Ackland; M. Santoro; S. A. Bonev; E. Gregoryanz

2012-01-30T23:59:59.000Z

123

Lithium System Operation Dan Lev and David Stein  

E-Print Network (OSTI)

Lithium System Operation Dan Lev and David Stein March 1, 2011 (or Lithium tank for dummies) 1 #12 for Ordering . . . . . . . . . . . . . . . . . 51 9 Lithium Handling 52 9.1 Glove Box for Ordering . . . . . . . . . . . . . . . . . 57 9.2 Lithium Cleaning

124

Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices  

SciTech Connect

An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

2014-11-18T23:59:59.000Z

125

Hydride blisters Formation, Characterization and Effect on the Fracture of Zircaloy-4 Cladding Tubes Under Reactivity Initiated  

E-Print Network (OSTI)

failure in 1983[2], when an axial crack developed in a CANDU pressure tube following an array of hydride

126

Y-12 lithium-6 production  

NLE Websites -- All DOE Office Websites (Extended Search)

fusion materials on August 12, 1953. The explosion was quickly determined to be a thermonuclear-like test and was also believed to contain lithium. Y-12 chemists and engineers...

127

Air breathing lithium power cells  

DOE Patents (OSTI)

A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

Farmer, Joseph C.

2014-07-15T23:59:59.000Z

128

Solid-State Gadolinium-Magnesium Hydride Optical Switch R. Armitage  

E-Print Network (OSTI)

-state electrochromic device. With positive polarization of the hydride electrode, the visible reflectance approaches 35 and reflecting states. Keywords: gadolinium-magnesium; electrochromic hydride; optical switching device. 2 #12;A conventional electrochromics5 . Optical switching has also been demonstrated by varying the H content

129

Hydrogen storage material and process using graphite additive with metal-doped complex hydrides  

DOE Patents (OSTI)

A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

Zidan, Ragaiy (Aiken, SC); Ritter, James A. (Lexington, SC); Ebner, Armin D. (Lexington, SC); Wang, Jun (Columbia, SC); Holland, Charles E. (Cayce, SC)

2008-06-10T23:59:59.000Z

130

Hydride precipitation and its influence on mechanical properties of notched and unnotched Zircaloy-4 plates  

Science Journals Connector (OSTI)

The hydride formation and its influence on the mechanical performance of hydrided Zircaloy-4 plates containing different hydrogen contents were studied at room temperature. For the unnotched plate samples with the hydrogen contents ranging from 25 to 850 wt. ppm, the hydrides exerted an insignificant effect on the tensile strength, while the ductility was severely degraded with increasing hydrogen content. The fracture mode and degree of embrittlement were strongly related to the hydrogen content. When the hydrogen content reached a level of 850 wt. ppm, the plate exhibited negligible ductility, resulting in almost completely brittle behavior. For the hydrided notched plate, the tensile stress concentration associated with the notch tip facilitated the hydride accumulation at the region near the notch tip and the premature crack propagation through the hydride fracture during hydriding. The final brittle through-thickness failure for this notched sample was mainly attributed to the formation of a continuous hydride network on the thickness section and the obtained very high hydrogen concentration (estimated to be 1965 wt. ppm).

Zhiyang Wang; Ulf Garbe; Huijun Li; Robert P. Harrison; Karl Toppler; Andrew J. Studer; Tim Palmer; Guillaume Planchenault

2013-01-01T23:59:59.000Z

131

Lithium Technology Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Corporation Jump to: navigation, search Name Lithium Technology Corporation Place Plymouth Meeting, Pennsylvania Zip PA 19462 Sector Vehicles Product Pennsylvania-based lithium secondary battery company manufacturing rechargeable batteries for plug-in and hybrid vehicles and for custom military and industrial applications. References Lithium Technology Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Lithium Technology Corporation is a company located in Plymouth Meeting, Pennsylvania . References ↑ "Lithium Technology Corporation" Retrieved from "http://en.openei.org/w/index.php?title=Lithium_Technology_Corporation&oldid=348412"

132

Hydride-phase formation and its influence on fatigue crack propagationbehavior in a Zircaloy-4 alloy  

SciTech Connect

The hydride-phase formation and its influence on the fatigue behavior of a Zircaloy-4 alloy charged with hydrogen gas are investigated. First, the microstructure and fatigue crack propagation rate of the alloy in the as-received condition are studied. Second, the formation and homogeneous distribution of delta zirconium hydride ( -ZrH2) in the bulk, and its effect on the fatigue crack propagation rate are presented. The results show that in the presence of hydrides the zirconium alloy exhibits reduced toughness and enhanced crack growth rates. Finally, the influence of a pre-existing fatigue crack in the specimen and the subsequent hydride formation were investigated. The residual lattice strain profile around the fatigue crack tip was measured using neutron diffraction. The combined effects of residual strains and hydride precipitation on the fatigue behavior are discussed.

Garlea, Elena [University of Tennessee, Knoxville (UTK); Choo, H. [University of Tennessee, Knoxville (UTK); Wang, G Y [University of Tennessee, Knoxville (UTK); Liaw, Peter K [University of Tennessee, Knoxville (UTK); Clausen, B [Los Alamos National Laboratory (LANL); Brown, D. W. [Los Alamos National Laboratory (LANL); Park, Jae-Sung [University of Tennessee, Knoxville (UTK); Rack, P. D. [University of Tennessee, Knoxville (UTK); Kenik, Edward A [ORNL

2010-01-01T23:59:59.000Z

133

Getting metal-hydrides to do what you want them to  

SciTech Connect

With the discovery of AB/sub 5/ compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi/sub 5/ + H/sub 2/ is used as example. Use of AB/sub 5/ hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV/sub 2/) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures. (DLC)

Gruen, D.M.

1981-01-01T23:59:59.000Z

134

Stress-induced reorientation of hydrides and mechanical properties of Zircaloy-4 cladding tubes  

Science Journals Connector (OSTI)

Stress-induced reorientation of hydrides and its effect on the stress–strain response of Zircaloy-4 cladding tubes were investigated. The reorientation of hydrides along the radial direction was most pronounced if the tube was cooled from 300 to 200 °C under circumferential loading. Reorientation occurred much less frequently at either higher (cooled from 400 to 300 °C) or lower (cooled from 200 to 100 °C) temperature range. The population of radial hydrides in R43H7 (which was cooled from 400 to 300 °C and maintained at 300 °C for 7 h) increased drastically during annealing at 300 °C, suggesting time dependent stress-aided dissolution of circumferential hydrides and reprecipitation of radial hydrides. The drastic decrease of the strength and the complete loss of the ductility were observed in R32AC and R43H7.

S.I. Hong; K.W. Lee

2005-01-01T23:59:59.000Z

135

Designation of Sites for Remedial Action - Metal Hydrides, Beverly,  

Office of Legacy Management (LM)

T: T: Designation of Sites for Remedial Action - Metal Hydrides, Beverly, MA; Bridgeport Brass, Adrian, MI and Seymour, Chicago, IL CT; National Guard Armory, 0: Joe LaGrone, Manager Oak Ridge Operations Office Based on the attached radiological survey data (Attachments 1 through 3) and an appropriate authority review, the following properties are being authorized for remedial action. It should be noted that the attached survey data are for designation purposes only and that Bechtel National, Inc. (BNI) should conduct appropriate comprehensive characterization studies to determine the extent'and magnitude of contamination on properties. Site Location Priority Former Bridgeport Brass Co. (General Motors) Adrian, MI Low Former Bridgeport Brass Co.

136

Electrochemical process and production of novel complex hydrides  

DOE Patents (OSTI)

A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

Zidan, Ragaiy

2013-06-25T23:59:59.000Z

137

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications  

SciTech Connect

Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

2012-04-16T23:59:59.000Z

138

Deprotonative metallation of ferrocenes using mixed lithium-zinc and lithium-cadmium combinations  

E-Print Network (OSTI)

). It is pertinent to mention that lithium bases were previously used to deprotonate the acetal 3, albeit at lower1 Deprotonative metallation of ferrocenes using mixed lithium-zinc and lithium-cadmium combinations on the web Xth XXXXXXXXX 200X DOI: 10.1039/b000000x A mixed lithium-cadmium amide and a combination

Boyer, Edmond

139

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

140

Synthesis, characterization and reactivity of several rhenium hydride complexes. A study of the role of metal hydrides in organometallic reactions  

SciTech Connect

The mechanistic role of transition metal hydrides in organometallic reactions has been studied using several low valent, electron rich rhenium complexes. The reaction ReH[sub 7](PPh[sub 3])[sub 2] with indene has been found to yield products that are [eta][sup 5]-C[sub 9]H[sub 7]ReH[sub 2](PPh[sub 3])[sub 2] and ([eta][sup 5]-C[sub 9]H[sub 11])ReH[sub 2](PPh[sub 3])[sub 2], respectively. The mechanism proposed for the formation of these two products consists of several metal to ring hydride migrations, and the activation parameters for one of the migrations have been obtained. Hydride migrations are prevalent in the subsequent chemistry of ([eta][sup 5]-C[sub 9]H[sub 11])ReH[sub 2](PPh[sub 3])[sub 2], as well as in the similar complex ([eta][sup 4]-C[sub 9]H[sub 12])ReH[sub 3](PPh[sub 3])[sub 2]. The complex ([eta][sup 4]-C[sub 4]H[sub 5]S)ReH[sub 2](PPh[sub 3])[sub 2] has been synthesized and structurally characterized in an attempt to model the interaction of thiophene with a metal hydride surface which is presumably present during typical hydrodesulfurization conditions. The thermolysis of ([eta][sup 4]-C[sub 4]H[sub 5]S)ReH[sub 2](PPh[sub 3])[sub 2] in the presence of PMe[sub 3] has been found to yield free tetrahydrothiophene and the cyclometallated Re(PMe[sub 3])[sub 4](PPH[sub 2]C[sub 6]H[sub 4]), while photolysis with excess PMe[sub 3] yields a mixture of organometallic products in which the thiophene ligand has undergone C-S bond cleavage. Products have been identified that contain an S-bound 1-butene-1-thiolate ligand, an [eta][sup 3]-allyl bound 1-butene-1-thiolate ligand, an ethylthioketene ligand and an S-bound 1-butanethiolate ligand, all of which represent the first such homogeneous transformations of thiophene. The photochemical ligand exchange reactions and the observed H/D exchange catalysis (between a deuterated solvent and a protio substrate) of CpReH[sub 2](PPh[sub 3])[sub 2] have been studied in detail.

Rosini, G.P.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

142

Multi-layered, chemically bonded lithium-ion and lithium/air batteries  

SciTech Connect

Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

2014-05-13T23:59:59.000Z

143

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

144

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

145

Method of generating hydrogen-storing hydride complexes  

DOE Patents (OSTI)

A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

Srinivasan, Sesha S; Niemann, Michael U; Goswami, D. Yogi; Stefanakos, Elias K

2013-05-14T23:59:59.000Z

146

ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS  

SciTech Connect

The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

2011-07-18T23:59:59.000Z

147

Gas phase contributions to topochemical hydride reduction reactions  

SciTech Connect

Alkali and alkali earth hydrides have been used as solid state reductants recently to yield many interesting new oxygen-deficient transition metal oxides. These reactions have tacitly been assumed to be a solid phase reaction between the reductant and parent oxide. We have conducted a number of experiments with physical separation between the reductant and oxides, and find that in some cases reduction proceeds even when the reagents are physically separated, implying reactions with in-situ generated H{sub 2} and, to a lesser extent, getter mechanisms. Our findings change our understanding of these topochemical reactions, and should enhance the synthesis of additional new oxides and nanostructures. - Graphical abstract: Topochemical reductions with hydrides: Solid state or gas phase reaction? Display Omitted - Highlights: • SrFeO{sub 2} and LaNiO{sub 2} were prepared by topochemical reduction of oxides. • Separating the reducing agent (CaH{sub 2}, Mg metal) from the oxide still results in reduction. • Such topochemical reactions can occur in the gas phase.

Kobayashi, Yoji [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Li, Zhaofei [Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Hirai, Kei [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tassel, Cédric [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302 (Japan); Loyer, François [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Institut des Sciences Chimiques de Rennes, UMR 6226 Université de Rennes 1-CNRS, équipe CSM, Bât. 10B, Campus de Beaulieu, 263, Avenue du Général Leclerc, 35042 Rennes Cedex (France); Ichikawa, Noriya [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Abe, Naoyuki [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Yamamoto, Takafumi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Shimakawa, Yuichi [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); and others

2013-11-15T23:59:59.000Z

148

Solid composite electrolytes for lithium batteries  

DOE Patents (OSTI)

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

149

Anode materials for lithium-ion batteries  

DOE Patents (OSTI)

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

150

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

kg/m3) ! ef excess capacity of lithium foil ! rcn density ofU I read * ef ! excess capacity of lithium foil read * rcn !lx,f6.3,' ef, excess capacity of lithium foil' &/lx,f6.1,'

Doyle, C.M.

2010-01-01T23:59:59.000Z

151

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents (OSTI)

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

152

Significant influence of insufficient lithium on electrochemical performance of lithium-rich layered oxide cathodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract With an aim to broaden the understanding of the factors that govern electrochemical performance of lithium-rich layered oxide, the influences of insufficient lithium on reversible capacity, cyclic stability and rate capability of the oxide as cathode of lithium ion battery are investigated in this study. Various concentrations of lithium precursor are introduced to synthesize a target composition Li[Li0.13Ni0.30Ni0.57]O2, and the resulting products are characterized with inductively coupled plasma spectrum, scanning electron microscope, X-ray diffraction, Raman spectroscopy, and electrochemical measurements. The results indicate that the lithium content in the resulting oxide decreases with reducing the concentration of lithium precursor from 10wt%-excess lithium to stoichiometric lithium, due to insufficient compensation for lithium volatilization during synthesis process at high temperature. However, all these oxides still exhibit typically structural and electrochemical characteristics of lithium-rich layered oxides. Interestingly, with decreasing the Li content in the oxide, its reversible capacity increases due to relatively higher content of active transition-metal ions, while the cyclic stability degrades severely because of structural instability induced by higher content of Mn3+ ions and deeper lithium extraction.

Xingde Xiang; Weishan Li

2014-01-01T23:59:59.000Z

153

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

154

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments (OSTI)

Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

Dudney, N. J.; Bates, J. B.; Lubben, D.

1995-06-00T23:59:59.000Z

155

Imaging Lithium Air Electrodes | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Imaging Reveals Lithium Distribution in Lithium-Air Electrodes Neutron Imaging Reveals Lithium Distribution in Lithium-Air Electrodes Agatha Bardoel - January 01, 2013 Image produced by neutron-computed tomography. The next step in revolutionizing electric vehicle capacity Research Contacts: Hassina Bilheux, Jagjit Nanda, and S. Pannala Using neutron-computed tomography, researchers at the CG-1D neutron imaging instrument at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) have successfully mapped the three-dimensional spatial distribution of lithium products in electrochemically discharged lithium-air cathodes. Lithium-air chemistry promises very high-energy density that, if successful, would revolutionize the world of electric vehicles by extending their range to 500 miles or more. The high-energy density comes from

156

Solid solution lithium alloy cermet anodes  

DOE Patents (OSTI)

A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

Richardson, Thomas J.

2013-07-09T23:59:59.000Z

157

Hydride embrittlement in ZIRCALOY-4 plate; Part 1: Influence of microstructure on the hydride embrittlement in ZIRCALOY-4 at 20[degree]C and 350[degree]C  

SciTech Connect

The hydride embrittlement in ZIRCALOY-4 was studied at room temperature and 350 C. Sheet tensile specimens of two fabrication routes in the stress-relieved, recrystallized, and [beta]-treated states were hydrided with or without tensile stress. It was found generally that the effect on strength of increasing hydrogen content was not important. However, for the tensile tests at room temperature, there is a ductile-brittle transition when the hydrogen content is higher than a certain threshold. The prior thermomechanical treatment shifts this transition considerably. In situ scanning electron microscopy (SEM) tests, fractography, and fracture profile observations were carried out to determine the fracture micromechanisms and the microscopic processes. At 20 C, the fracture surfaces are characterized by voids and secondary cracks for low and medium hydrogen contents and by intergranular cracks and decohesion through the continuous hydride network for high hydrogen contents. This phenomenon disappears at 350 C, and the hydrogen seems to exert no more influence on the fracture micromechanism even for very high hydrogen contents (up to 1,500 wt ppm). A full-coverage model is proposed to estimate the critical hydrogen content that makes ZIRCALOY-4 totally brittle. The effect of microstructure on hydride embrittlement in different metallurgical states is thus explained according to the modeling. Special attention is devoted to relating the micromechanisms and the modeling in order to propose the possible measures needed to limit the hydride embrittlement effect.

Bai, J.B.; Prioul, C.; Francois, D. (Ecole Centrale Paris, Chatenay-Malabry (France))

1994-06-01T23:59:59.000Z

158

Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Simulation of Hydride Precipitation in Zr-Based Used Fuel for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities The report demonstrates a meso-scale, microstructural evolution model for simulation of zirconium hydride precipitation in the cladding of used fuels during long-term dry-storage. While the Zr-based claddings (regarded as a barrier for containment of radioactive fission products and fuel) are manufactured free of any hydrogen, they absorb hydrogen during service in the reactor. The amount of hydrogen that the cladding picks up is primarily a function of the exact chemistry and microstructure of the claddings and reactor operating conditions, time-temperature history, and

159

E-Print Network 3.0 - aluminium hydrides Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicine 26 KV-tOOJHfe Metallurgy Department Summary: .3. Developaent of a Hydride Based Fuel Cell 32 4.4. Materials Research for Fuel Cell Application .. 33 4.5. Thin... . The...

160

Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors  

Science Journals Connector (OSTI)

Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen

Xiumei Guo; Shumao Wang; Xiaopeng Liu; Zhinian Li; Fang Lü; Jing Mi; Lei Hao…

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Safe Use of Sodium Hydride on Scale: The Process Development of a Chloropyrimidine Displacement  

Science Journals Connector (OSTI)

The Safe Use of Sodium Hydride on Scale: The Process Development of a Chloropyrimidine Displacement ... Global Pharmaceutical Commercialization, Merck Manufacturing Division, Rahway, New Jersey, 07065 ... This article is part of the Safety of Chemical Processes 11 special issue. ...

Jamie M. McCabe Dunn; Alicia Duran-Capece; Brendan Meehan; James Ulis; Tetsuo Iwama; Guy Gloor; George Wong; Evan Bekos

2011-09-30T23:59:59.000Z

162

Structure of the novel ternary hydrides Li4Tt2D (Tt = Si and Ge)  

Science Journals Connector (OSTI)

The crystal structures of novel Li4Tt2D (Tt = Si and Ge) ternary hydrides were solved using neutron powder diffraction data. All hydrogen atoms were found to occupy Li6-octahedral interstices.

Wu, H.

2007-01-15T23:59:59.000Z

163

Formation and Characterization of Hydride Blisters in Zircaloy-4 Cladding Tubes  

E-Print Network (OSTI)

in a CANDU Zircaloy-2 pressure tube along an array of hydride blisters on the external surface is the material that replaced Zircaloy-2 alloy for pressure tubes in the CANDU reactors. In all these studies

Paris-Sud XI, Université de

164

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 – 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

165

Photogeneration of Hydride Donors and Their Use Toward CO2 Reduction  

SciTech Connect

Despite substantial effort, no one has succeeded in efficiently producing methanol from CO2 using homogeneous photocatalytic systems. We are pursuing reaction schemes based on a sequence of hydride-ion transfers to carry out stepwise reduction of CO2 to methanol. We are using hydride-ion transfer from photoproduced C-H bonds in metal complexes with bio-inspired ligands (i.e., NADH-like ligands) that are known to store one proton and two electrons.

Fujita,E.; Muckerman, J.T.; Polyansky, D.E.

2009-06-07T23:59:59.000Z

166

First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities  

SciTech Connect

Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

2013-09-01T23:59:59.000Z

167

\\{WS8e4\\} - EFFECT OF HYDRIDES ON THE MECHANICAL PROPERTIES OF ZIRCALOY-4  

Science Journals Connector (OSTI)

ABSTRACT In order to better understand the embrittlement of Zircaloy-4 by hydrides and the ductile-brittle transition on this alloy, Zircaloy-4 sheet tensile specimens in the stress-relieved, recrystallized and ? treated states were hydrided (10 to 1500 ppm wt H) and then tested at two temperatures (20°C, 350°C). Metallographic and fractographic analyses were carried out to determine the fracture micro-mechanisms. The results showed that, at 20°C, Zircaloy-4 undergoes a significant ductile to brittle transition for high hydrogen contents. Heat treatment shifts this transition (to zero elongation) considerably, from 1050 ppm wt H for the stress-relieved state to less than 250 ppm wt H for the ? treated state. However, at 350°C, Zircaloy-4 remains ductile up to hydrogen content higher than 1100 ppm wt. At 20°C, the fracture surfaces are characterized by voids and secondary cracks for low and medium hydrogen contents, and by intergranular crack and decohesion through the continuous hydride network for high hydrogen content. A model based on image analysis and hydride embrittlement micro-mechanism observations is used to calculate the upper-limit hydrogen content which makes Zircaloy-4 totally brittle. The difference between the mechanical behaviors of stress-relieved and recrystallized states is also explained. KEYWORDS Zircaloy-4, hydride embrittlement, ductile-brittle transition, cracked-hydride voids.

J.B. BAI; C. PRIOUL; D. FRANÇOIS

1992-01-01T23:59:59.000Z

168

Fracture of Hydrided Zircaloy-4 Sheet under Through-Thickness Crack Growth Conditions  

SciTech Connect

The failure of thin-wall components such as fuel cladding may be caused by crack initiation on the component surface and subsequent crack growth through its thickness. This study has determined the fracture toughness of hydrided cold-worked stress relieved Zircaloy-4 sheet subject to through-thickness crack growth at 25 deg. C. The experimental approach utilizes a novel procedure in which a narrow linear strip of brittle hydride blister across the specimen width creates a well-defined pre-crack upon initial loading. The subsequent crack growth resistance is then characterized by four-point bending of the specimen and an elastic-plastic fracture mechanics analysis. At room temperature, the through-thickness fracture toughness (K{sub Q}) is sensitive to the orientation of the hydride platelets, and K{sub Q} {approx_equal} 25 MPavm for crack growth through a mixed in-plane/out-of-plane hydride field. In contrast, K{sub Q} is much higher ({approx_equal} 75 MPavm) when the hydride platelets are oriented predominantly in the plane of the sheet (and therefore normal to both the crack plane and the crack growth direction). The implication of these fracture toughness values to the fracture strain behavior of hydrided Zircaloy-4 under through-thickness crack growth conditions is illustrated. (authors)

Raynaud, P.A.; Koss, D.A. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Motta, A.T. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Chan, K.S. [Southwest Research Institute, San Antonio, TX 78238 (United States)

2007-07-01T23:59:59.000Z

169

Development of a lithium hydride powered hydrogen generator for use in long life, low power PEM fuel cell power supplies  

E-Print Network (OSTI)

This thesis studies a hybrid PEM fuel cell system for use in low power, long life sensor networks. PEM fuel cells offer high efficiency and environmental friendliness but have not been widely adopted due to cost, reliability, ...

Strawser, Daniel DeWitt

2012-01-01T23:59:59.000Z

170

Synthesis and structural properties of lithium titanium oxide powder  

Science Journals Connector (OSTI)

Recently, lithium titanium oxide material has gained renewed interest in electrodes for lithium ion rechargeable batteries. We investigated the influence of excess Li on the structural characteristics of lithium ...

Soo Ho Kim; Kwang Hoon Lee; Baek Seok Seong…

2006-11-01T23:59:59.000Z

171

High purity lithium iron phosphate/carbon composites prepared by using secondary lithium source  

Science Journals Connector (OSTI)

Abstract Various lithium salts including lithium carbonate, lithium hydroxide, lithium acetate and lithium citrate were used as secondary lithium sources for the synthesis of lithium iron phosphate/carbon composites with cheap iron sources in the form of Fe and FePO4. Samples were characterized by X-ray diffraction, scanning electron microscopy, cyclic voltammetry and constant-current charge–discharge tests. The results showed that lithium carbonate derived product generated a high purity LiFePO4 phase with high tap densities. Furthermore, satisfactory electrochemical performance with an initial discharge capacity of 146.1 mAh g? 1 at 0.5 C rate and good capacity retention of 95.2% after 50 cycles were achieved.

Jinhan Yao; Xiaohui Wang; Pinjie Zhang; Jianbo Wang; Jian Xie; Kondo-Francois Aguey-Zinsou; Chun'An Ma; Lianbang Wang

2013-01-01T23:59:59.000Z

172

Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.  

SciTech Connect

Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

2010-01-01T23:59:59.000Z

173

Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity  

SciTech Connect

The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ? 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ? 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150°C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4)2*2NH3 compound was found to increase with the inclusion of NH3 groups in the inner-Mg coordination

Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

2008-02-18T23:59:59.000Z

174

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents (OSTI)

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

175

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents (OSTI)

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

176

Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy  

SciTech Connect

This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride ?-ZrH1.5 precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. In this work, a model to numerically simulate hydride precipitation at the microstructural scale, in a wide variety of Zr-based claddings, under dry-storage conditions is being developed. It will be used to aid in the evaluation of the mechanical integrity of used fuel rods during dry storage and transportation by providing the structural conditions from the microstructural scale to the continuum scale to engineering component scale models to predict if the used fuel rods will perform without failure under normal and off-normal conditions. The microstructure, especially, the hydride structure is thought to be a primary determinant of cladding failure, thus this component of UFD’s storage and transportation analysis program is critical. The model development, application and validation of the model are documented and the limitations of the current model are discussed. The model has been shown to simulate hydride precipitation in Zircaloy-4 cladding with correct morphology, thermodynamics and kinetics. An unexpected insight obtained from simulations hydride formation in Zircaloy-4 is that small (sub-micron) precipitates need to order themselves to form the larger hydrides typically described as radially-reoriented precipitates. A limitation of this model is that it does not currently solve the stress state that forms dynamically in the precipitate or matrix surrounding the precipitate. A method to overcome the limitations is suggested and described in detail. The necessary experiments to provide key materials physics and to validate the model are also recommended.

Veena Tikare; Philippe Weck; Peter Schultz; Blythe Clark; John Mitchell; Michael Glazoff; Eric Homer

2014-10-01T23:59:59.000Z

177

Polymers For Advanced Lithium Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

178

Polymers For Advanced Lithium Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

179

Vehicle Technologies Office Merit Review 2014: High Energy Lithium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

180

Additives and Cathode Materials for High-Energy Lithium Sulfur...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

182

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes 2012 DOE Hydrogen...

183

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

184

Interface Modifications by Anion Acceptors for High Energy Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Abstract: Li-rich, Mn-rich...

185

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

186

Exploring the interaction between lithium ion and defective graphene...  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies. Exploring the interaction between lithium ion and defective...

187

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2013 DOE...

188

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

189

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

190

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

191

New lithium-based ionic liquid electrolytes that resist salt...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

192

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrostatic Shield Mechanism . Abstract: Lithium metal batteries are called the “holy grail” of energy storage systems. However, lithium dendrite growth in these...

193

Effects of Carbonate Solvents and Lithium Salts on Morphology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency of Lithium Electrode. Abstract: The application of lithium (Li) metal anode in rechargeable batteries is hindered by Li dendrite growth during Li deposition and...

194

High-capacity hydrogen storage in lithium and sodium amidoboranes...  

NLE Websites -- All DOE Office Websites (Extended Search)

capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

195

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

196

Ternary compound electrode for lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

1980-07-30T23:59:59.000Z

197

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

198

LITHIUM-BASED ELECTROCHROMIC MIRRORS  

NLE Websites -- All DOE Office Websites (Extended Search)

870 870 rd Presented at the 203 Meeting of the Electrochemical Society, April 28-30, 2003 in Paris, France and published in the Proceedings. Lithium-Based Electrochromic Mirrors Thomas J. Richardson and Jonathan L. Slack Lawrence Berkeley National Laboratory April 2003 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson* and Jonathan L. Slack Building Technologies Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA

199

Dynamic modeling and simulation of hydrogen supply capacity from a metal hydride tank  

Science Journals Connector (OSTI)

Abstract The current study presents a modeling of a LaNi5 metal hydride-based hydrogen storage tank to simulate and control the dynamic processes of hydrogen discharge from a metal hydride tank in various operating conditions. The metal hydride takes a partial volume in the tank and, therefore, hydrogen discharge through the exit of the tank was driven by two factors; one factor is compressibility of pressurized gaseous hydrogen in the tank, i.e. the pressure difference between the interior and the exit of the tank makes hydrogen released. The other factor is desorption of hydrogen from the metal hydride, which is subsequently released through the tank exit. The duration of a supposed full load supply is evaluated, which depends on the initial tank pressure, the circulation water temperature, and the metal hydride volume fraction in the tank. In the high pressure regime, the duration of full load supply is increased with increasing circulation water temperature while, in the low pressure regime where the initial amount of hydrogen absorbed in the metal hydride varies sensitively with the metal hydride temperature, the duration of full load supply is increased and then decreased with increasing circulation water temperature. PID control logic was implemented in the hydrogen supply system to simulate a representative scenario of hydrogen consumption demand for a fuel cell system. The demanded hydrogen consumption rate was controlled adequately by manipulating the discharge valve of the tank at a circulation water temperature not less than a certain limit, which is increased with an increase in the tank exit pressure.

Ju-Hyeong Cho; Sang-Seok Yu; Man-Young Kim; Sang-Gyu Kang; Young-Duk Lee; Kook-Young Ahn; Hyun-Jin Ji

2013-01-01T23:59:59.000Z

200

Electrolytes for lithium ion batteries  

SciTech Connect

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lithium batteries for pulse power  

SciTech Connect

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

202

X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films Title X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films Publication Type Journal Article LBNL Report Number LBNL-50574 Year of Publication 2002 Authors Richardson, Thomas J., Baker Farangis, Jonathan L. Slack, Ponnusamy Nachimuthu, Rupert C. C. Perera, Nobumichi Tamura, and Michael D. Rubin Journal Journal of Alloys and Compounds Volume 356-357 Start Page 204 Pagination 204-207 Date Published 08/2003 Keywords A. hydrogen storage materials, NEXAFS, thin film s; C. EXAFS, x-ray diffraction Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large changes in both reflectance and transmittance on exposure to hydrogen gas. Changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption spectroscopy. Mg K-edge and Ni, Co, and Ti L-edge spectra reflect both reversible and irreversible changes in the metal environments. A significant shift in the nickel L absorption edge shows it to be an active participant in hydride formation. The effect on cobalt and titanium is much less dramatic, suggesting that these metals act primarily as catalysts for formation of magnesium hydride.

203

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

204

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

205

Discovery of pre-galactic lithium  

Science Journals Connector (OSTI)

... so these combined in nuclear reactions to make deuterium, helium-3, helium-4 and lithium-7, production of heavier elements being aborted by the absence of stable nuclei at ... other hand, is totally destroyed in matter cycled through stars, and helium-3 and lithium-7 can be both created and destroyed, so that the net effect of stellar ...

Bernard Pagel

1982-06-10T23:59:59.000Z

206

URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS  

E-Print Network (OSTI)

atmosphere to reduce sample oxidation .................................................................................................. 13 12 Aluminum oxide crucible located at the bottom of the hydride-dehydride rig. ... 14 13 Furnace and furnace... at 60 minutes, 5psig, 250?C hydride, 325?C dehydride ................................................................................................... 30 27 Rotary kiln designed at ORNL for use in voloxidation...

Sames, William

2011-08-08T23:59:59.000Z

207

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

calculation method and provide insights for the next step research of advanced additives. 5 Pristine Lithium uptake Lithium removal Lithium anodes - Instantaneous...

208

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network (OSTI)

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

209

Aliovalent titanium substitution in layered mixed Li Ni-Mn-Co oxides for lithium battery applications  

E-Print Network (OSTI)

indicates that some of the excess lithium is indeed presentneither the presence of excess lithium on 3b sites nor ansamples not containing excess lithium. To minimize kinetic

Kam, Kinson

2011-01-01T23:59:59.000Z

210

How should findings on antisuicidal effects of lithium be integrated into practical treatment decisions?  

Science Journals Connector (OSTI)

Beyond its prophylactic efficacy lithium has demonstrated possibly specific antisuicidal effects. Lithium significantly reduces the high excess mortality of patients with affective disorders. Appropriate lithium ...

Prof.Dr.med. B. Müller-Oerlinghausen

2003-06-01T23:59:59.000Z

211

E-Print Network 3.0 - au-implanted lithium niobate Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

lithium niobate crystals Summary: O-doped lithium niobate crystals C. L. Sonesa Optoelectronics Research Centre, University of Southampton... lithium niobate crystals induced by...

212

Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.  

SciTech Connect

We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom (Savannah River National Labs, Aiken, SC)

2012-01-01T23:59:59.000Z

213

Doubly Excited States in Lithium  

Science Journals Connector (OSTI)

Doubly and triply excited states of lithium are considered in an effort to identify the energy levels responsible for the several narrow lines present in the optical spectrum of that element which are not classifiable in the normal singly excited spectra of that atom. Since most of these states are coupled to continuum states through the electrostatic interaction of the electrons and will thus have extremely short lifetimes, a majority of the multiply excited states can be excluded from consideration in identifying these narrow lines. The observed narrow spectral lines can be plasuibly identified on the basis of screening-theory estimates of the energies.

J. D. Garcia and J. E. Mack

1965-05-17T23:59:59.000Z

214

Method and composition in which metal hydride particles are embedded in a silica network  

DOE Patents (OSTI)

A silica embedded metal hydride composition and a method for making such a composition. The composition is made via the following process: A quantity of fumed silica is blended with water to make a paste. After adding metal hydride particles, the paste is dried to form a solid. According to one embodiment of the invention, the solid is ground into granules for use of the product in hydrogen storage. Alternatively, the paste can be molded into plates or cylinders and then dried for use of the product as a hydrogen filter. Where mechanical strength is required, the paste can be impregnated in a porous substrate or wire network.

Heung, Leung K. (Aiken, SC)

1999-01-01T23:59:59.000Z

215

A rapid method for the determination of lithium transference numbers  

SciTech Connect

Lithium ion-conducting polymer electrolytes are of increasing interest for use in lithium-polymer batteries. Lithium transference numbers, the net fraction of current carried by lithium in a cell, are key figures of merit for potential lithium battery electrolytes. The authors describe the Electrophoretic NMR (ENMR) method for the determination of lithium ion transference numbers (T{sub Li}). The work presented is a proof-of-concept of the application of the ENMR method to lithium ion transference measurements for several different lithium salts in gelled electrolytes. The NMR method allows accurate determination of T{sub Li} values, as indicated by the similarity of T{sub Li} in the gelled electrolytes to those in aqueous electrolyte solutions at low salt concentration. Based on calculated tradeoffs of various experimental parameters, they also discuss some conclusions concerning the range of applicability of the method to other electrolytes with lower lithium mobility.

Zawodzinski, T.A. Jr.; Dai, H.; Sanderson, S.; Davey, J.; Uribe, F. [Los Alamos National Lab., NM (United States). Electronics Materials and Device Research Group

1997-05-01T23:59:59.000Z

216

A Material Change: Bringing Lithium Production Back to America | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Material Change: Bringing Lithium Production Back to America A Material Change: Bringing Lithium Production Back to America A Material Change: Bringing Lithium Production Back to America June 29, 2012 - 5:34pm Addthis The Rockwood Lithium manufacturing facility in Kings Mountain, North Carolina. | Photo courtesy of Rockwood Lithium. The Rockwood Lithium manufacturing facility in Kings Mountain, North Carolina. | Photo courtesy of Rockwood Lithium. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Between 1980 and 2009, the global demand for lithium has tripled. This metal is a key material in a number of growing industries -- including advanced vehicle batteries and consumer electronics. But more specifically, lithium-ion batteries are a vital component in electric vehicles and other rechargeable batteries for consumer electronics, and are used to produce

217

Lithium-cation conductivity and crystal structure of lithium diphosphate  

SciTech Connect

The electrical conductivity of lithium diphosphate Li{sub 4}P{sub 2}O{sub 7} has been measured and jump-like increasing of ionic conductivity at 913 K has been found. The crystal structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction at 300–1050 K. At 913 K low temperature triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one, space group P2{sub 1}/n, a=8.8261(4) Å, b=5.2028(4) Å, c=13.3119(2) Å, ?=104.372(6)°. The migration maps of Li{sup +} cations based on experimental data implemented into program package TOPOS have been explored. It was found that lithium cations in both low- and high temperature forms of Li{sub 4}P{sub 2}O{sub 7} migrate in three dimensions. Cross sections of the migrations channels extend as the temperature rises, but at the phase transition point have a sharp growth showing a strong “crystal structure – ion conductivity” correlation. -- Graphical abstract: Crystal structure of Li{sub 4}P{sub 2}O{sub 7} at 950 K. Red balls represent oxygen atoms; black lines show Li{sup +} ion migration channels in the layers perpendicular to [001] direction. Highlights: • Structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction. • At 913 K triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one. • The migration maps of Li{sup +} implemented into program package TOPOS have been explored. • Cross sections of the migrations channels at the phase transition have a sharp growth.

Voronin, V.I., E-mail: voronin@imp.uran.ru [Institute of Metal Physics Urals Branch RAS, S.Kovalevskoy Street 18, 620041 Ekaterinburg (Russian Federation); Sherstobitova, E.A. [Institute of Metal Physics Urals Branch RAS, S.Kovalevskoy Street 18, 620041 Ekaterinburg (Russian Federation); Blatov, V.A., E-mail: blatov@samsu.ru [Samara Center for Theoretical Materials Science (SCTMS), Samara State University, Ac.Pavlov Street 1, 443011 Samara (Russian Federation); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shekhtman, G.Sh., E-mail: shekhtman@ihte.uran.ru [Institute of High Temperature Electrochemistry Urals Branch RAS, Akademicheskaya 20, 620990 Ekaterinburg (Russian Federation)

2014-03-15T23:59:59.000Z

218

The Saft Lithium — Silver Chromate Battery Performances of the LI 210 Type  

Science Journals Connector (OSTI)

After being involved in lithium power sources research since 1964, SAFT perfected in 1970 a new couple: lithium...

G. Lehmann; M. Broussely; P. Lenfant

1978-01-01T23:59:59.000Z

219

The influence of hydride blisters on the fracture of Zircaloy-4 O.N. Pierron a  

E-Print Network (OSTI)

.elsevier.com/locate/jnucmat Journal of Nuclear Materials 322 (2003) 21­35 #12;hydrogen embrittlement [15]. Such an effect becomes, and radiation damage [1]. As the cladding undergoes oxidation with the associated hydrogen pickup, the total amount of hydrogen increases, and hydride precipitates form pref- erentially near the outer (cooler

Motta, Arthur T.

220

Analytical assessment of the thermal behavior of nickel-metal hydride batteries  

E-Print Network (OSTI)

Analytical assessment of the thermal behavior of nickel-metal hydride batteries Peyman Taheri in batteries with orthotropic thermal conductivities, where the heat generation is due to irreversible of the battery thermal behavior with modest numerical effort. The accuracy of the proposed model is tested

Bahrami, Majid

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Analytical assessment of the thermal behavior of nickelemetal hydride batteries during fast charging  

E-Print Network (OSTI)

Analytical assessment of the thermal behavior of nickelemetal hydride batteries during fast to investigate transient thermal behavior of NiMH batteries. The thermal model uses integral transformation 2013 Available online 25 June 2013 Keywords: Battery thermal management Battery thermal model Fast

Bahrami, Majid

222

Influence of additives on the thermal behavior of nickel/metal hydride battery  

Science Journals Connector (OSTI)

This study discusses the thermal behavior of the 6.5 Ah cylinder Ni/MH hydride battery with 0.5 wt% ytterbium oxide (...2O3...) in nickel electrode and 1.0 wt% super absorbent polymer (SAP) in hydrogen-storage al...

Kai Yang; Jin Jing An; Shi Chen

2010-12-01T23:59:59.000Z

223

X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films  

E-Print Network (OSTI)

X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardsona@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic

224

Project Profile: Low-Cost Metal Hydride Thermal Energy Storage System  

Energy.gov (U.S. Department of Energy (DOE))

The Savannah River National Laboratory (SRNL), under the National Laboratory R&D competitive funding opportunity, is collaborating with Curtin University (CU) to evaluate new metal hydride materials for thermal energy storage (TES) that meet the SunShot cost and performance targets for TES systems.

225

Observations of proton beam enhancement due to erbium hydride on gold foil targets  

SciTech Connect

Recent theoretical work suggests that the conversion efficiency from laser to protons in laser irradiated thin foil experiments increases if the atomic mass of nonhydrogen atoms on the foil rear surface increases. Experiments were performed at the Lawrence Livermore National Laboratory Jupiter Laser Facility to observe the effect of thin foils coated with erbium hydride on the conversion efficiency from laser to protons. Gold foils with and without the rear surface coated with ErH{sub 3} were irradiated using the ultrashort pulse, 40 TW Callisto laser. An argon-ion etching system was used to remove naturally occurring nanometer thick surface layer contaminants from the hydride. With the etcher, gold with ErH{sub 3} showed a 25% increase in the conversion efficiency to protons above 3.4 MeV relative to contaminants, where C{sup +4} and H{sup +} were the dominant ion species. No difference in the ion signal was observed without first cleaning the hydrides. Simulations using the hybrid PIC code, LSP, revealed that the increase due to erbium hydride versus contaminants is 37% for protons above 3 MeV.

Offermann, D. T.; Van Woerkom, L. D. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Freeman, R. R. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Department of Applied Science, University of California Davis, Livermore, California 94550 (United States); Foord, M. E.; Hey, D.; Key, M. H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Ping, Y.; Sanchez, J. J.; Shen, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bartal, T.; Beg, F. N. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Espada, L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Chen, C. D. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2009-09-15T23:59:59.000Z

226

First Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides  

SciTech Connect

Complex metal hydrides are believed to be one of the most promising materials for developing hydrogen storage systems that can operate under desirable conditions. At the same time, these are also a class of materials that exhibit intriguing properties. We have used state-of-the-art computational techniques to study the fundamental properties of these materials.

Chou, Mei-Yin

2014-09-29T23:59:59.000Z

227

Complex Hydrides for Hydrogen Storage Darlene K. Slattery and Michael D. Hampton  

E-Print Network (OSTI)

at a temperature of less than 100 o C in order to be compatible with fuel cells and must have an installed hydrogen have reported the discovery of a number of catalysts that improve the reversing of the hydrogen release the hydrogenation/dehydrogenation of sodium aluminum hydride. Mechanical incorporation of the catalyst

228

Evaluation of Protected Metal Hydride Slurries in a H2 Mini-  

E-Print Network (OSTI)

Evaluation of Protected Metal Hydride Slurries in a H2 Mini- Grid TIAX, LLC Acorn Park Cambridge_MERIT_REVIEW_MAY2003 2 Introduction Hydrogen Mini-Grid Concept Distributed FCPS utilizing a H2 Mini-Grid can provide waste heat can be used for hot water or space heating in buildings (i.e. "cogen") Distributed FCPS

229

Categorical Exclusion 4497: Lithium Wet Chemistry Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8/2012 07:36 8/2012 07:36 8655749041 ENVIRONMENTAL COMPL U.S. Department of Energy Categorical Exclusion Detennination Form Proposed Action Tills: Lithium W@t Chemistry Project (4597) Program or Fi~ld Oftke: Y-12 Site Office L&cationfs) (CiWLCount:r/State): Oak Ridge, Anderson County; Tennessee Proposed Action Description: PAGE 03/04 r: :;: :: !: s .a : brnl, i ~ y. : $ ~-rtl~il : t·:~::;J The proposed action is to develop a small lithium wet chemistry operation for the following purposes: (1) to capture wet chemistry operations, (2) to provide processing path for Lithium materials such as machine dust, (3) to provide lithium based materials, and (4) to produce the littlium hydroxide needed to support production. CategQrj~l Exclusion(s) Applied

230

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

231

Argonne Transportation - Lithium Battery Technology Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

232

Towards Safer Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Safer Lithium-Ion Batteries Towards Safer Lithium-Ion Batteries Speaker(s): Guoying Chen Date: October 25, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan Safety problems associated with rechargeable lithium batteries are now well recognized. Recent spectacular fires involving cell phones, laptops, and (here at LBNL) AA cells have made the news. These events are generally caused by overcharging and subsequent development of internal shorts. Before these batteries can be used in vehicle applications, improvement in cell safety is a must. We have been active in the area of lithium battery safety for many years. For example, a versatile, inexpensive overcharge protection approach developed in our laboratory, uses an electroactive polymer to act as a reversible, self-actuating, low resistance internal

233

Rotation, inflation, and lithium in the Pleiades  

E-Print Network (OSTI)

The rapidly rotating cool dwarfs of the Pleiades are rich in lithium relative to their slowly rotating counterparts. Motivated by observations of inflated radii in young, active stars, and by calculations showing that radius inflation inhibits pre-main sequence (pre-MS) Li destruction, we test whether this pattern could arise from a connection between stellar rotation rate and radius inflation on the pre-MS. We demonstrate that pre-MS radius inflation can efficiently suppress lithium destruction by rotationally induced mixing, and that the net effect of inflation and rotational mixing is a pattern where rotation correlates with lithium abundance for $M_{*} {\\rm M}_{\\odot}$, similar to the empirical trend in the Pleiades. Next, we adopt different prescriptions for the dependence of inflation on rotation, and compare their predictions to the Pleiades lithium/rotation pattern. A connection between rotation and radius inflation naturally and generically reproduces the important qualitative features of this patte...

Somers, Garrett

2014-01-01T23:59:59.000Z

234

Layered electrodes for lithium cells and batteries  

DOE Patents (OSTI)

Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

Johnson, Christopher S. (Naperville, IL); Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Kahaian, Arthur J. (Chicago, IL); Kim, Jeom-Soo (Naperville, IL)

2008-04-15T23:59:59.000Z

235

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

2.8 V vs. lithium suggests Tafel kinetics, but the bend in? a gives the slope of the Tafel region, k eff affects itsincreases, the slope of the Tafel region remains constant,

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

236

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

237

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

238

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

239

Design and simulation of lithium rechargeable batteries  

SciTech Connect

Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

Doyle, C.M.

1995-08-01T23:59:59.000Z

240

Predissociation dynamics of lithium iodide  

E-Print Network (OSTI)

The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li+ and LiI+ ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V=650(20) reciprocal cm. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

Schmidt, H; Stienkemeier, F; Bogomolov, A S; Baklanov, A V; Reich, D M; Skomorowski, W; Koch, C P; Mudrich, M

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electrode for a lithium cell  

DOE Patents (OSTI)

This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Dees, Dennis W. (Downers Grove, IL)

2008-10-14T23:59:59.000Z

242

Glass for sealing lithium cells  

DOE Patents (OSTI)

Glass compositions resistant to corrosion by lithium cell electrolyte and having an expansion coefficient of 45 to 85 x 10/sup -70/C/sup -1/ have been made with SiO/sub 2/, 25 to 55% by weight; B/sub 2/O/sub 3/, 5 to 12%; Al/sub 2/O/sub 3/, 12 to 35%; CaO, 5 to 15%; MgO, 5 to 15%; SrO, 0 to 10%; and La/sub 2/O/sub 3/, 0 to 5%. Preferred compositions within that range contain 3 to 8% SrO and 0.5 to 2.5% La/sub 2/O/sub 3/.

Leedecke, C.J.

1981-08-28T23:59:59.000Z

243

Reducing Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine  

NLE Websites -- All DOE Office Websites (Extended Search)

Foreign Lithium Dependence through Co-Production of Lithium from Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine Kerry Klein 1 , Linda Gaines 2 1 New West Technologies LLC, Washington, DC, USA 2 Center for Transportation Research, Argonne National Laboratory, Argonne, IL, USA KEYWORDS Mineral extraction, zinc, silica, strategic metals, Imperial Valley, lithium ion batteries, electric- drive vehicles, battery recycling ABSTRACT Following a 2009 investment of $32.9 billion in renewable energy and energy efficiency research through the American Recovery and Reinvestment Act, President Obama in his January 2011 State of the Union address promised deployment of one million electric vehicles by 2015 and 80% clean energy by 2035. The United States seems poised to usher in its bright energy future,

244

Sorption of lithium from a geothermal brine by pelletized mixed aluminum-lithium hydrous oxides  

SciTech Connect

An inorganic ion exchanger was evaluated by the Bureau of Mines for recovering lithium from geothermal brines. The ion exchanger or sorbent was mixed hydrous oxide of aluminum and lithium that had been dried at 100 C. The dried precipitate was pelletized with a sodium silicate binder to improve flow rates in sorption tests. The sorbent was loaded to 2 mg Li/g of pellets and sorption from the solution was independent of the concentrations of Ca, Fe, Mn, and Zn. Manganese and zinc were sorbed by the pellets but did not suppress lithium sorption. Lithium was desorbed with water, but none of the washing solutions investigated removed entrained brine without stripping lithium. The complex nature of the sorption mechanisms is discussed.

Schultze, L.E.; Bauer, D.J.

1985-01-01T23:59:59.000Z

245

Molecular Structures of Polymer/Sulfur Composites for Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life. Molecular Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long...

246

Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous...  

NLE Websites -- All DOE Office Websites (Extended Search)

Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes . Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes . Abstract: In this paper,...

247

Promises and Challenges of Lithium- and Manganese-Rich Transition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide...

248

Development of Large Format Lithium Ion Cells with Higher Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

249

Mitigating Performance Degradation of High-Energy Lithium-Ion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Mitigating Performance Degradation of High-Energy Lithium-Ion Cells 2013 DOE Hydrogen and Fuel Cells Program and...

250

Two Studies Reveal Details of Lithium-Battery Function  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply...

251

Shell Model for Atomistic Simulation of Lithium Diffusion in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed MnTi Oxides. Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed MnTi Oxides. Abstract: Mixed...

252

Microplasticity and fatigue of some magnesium-lithium alloys  

Science Journals Connector (OSTI)

Cyclic stress-strain curves have been obtained for a series of magnesium-lithium alloys with lithium contents up to 12. 5wt%. The ... hardening exponents for stresses leading to failure in excess of 104...cycles ...

R. E. Lee; W. J. D. Jones

1974-03-01T23:59:59.000Z

253

Lithium-ion batteries having conformal solid electrolyte layers  

DOE Patents (OSTI)

Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

Kim, Gi-Heon; Jung, Yoon Seok

2014-05-27T23:59:59.000Z

254

Nature of Bridging Bonds in Lithium and Potassium Acetate Dimers  

Science Journals Connector (OSTI)

The structures of lithium and potassium acetates were studied by the RHF/6-31G*...3COOLi)2 and (CH3COOK)2 are electrostatic in nature. The bridging lithium bond is intermediate between hydrogen and ionic, ... of ...

I. A. Panteleev; S. G. Semenov; D. N. Glebovskii

255

Loading of emulsions stacks with aqueous solutions of lithium acetate  

Science Journals Connector (OSTI)

It has been shown that thick pellicles can be loaded with lithium acetate solutions still maintaining all the desirable geometrical ... purpose of the method, that of introducing lithium atoms in the emulsion, th...

D. H. Davis; R. Levi Setti; M. Raymund; G. Tomasini

1962-11-01T23:59:59.000Z

256

Lithium carbide is prospective material for breeder of fusion reactor  

Science Journals Connector (OSTI)

It is shown that lithium carbide is a prospective material for breeder of fusion reactor. The lithium carbide equivalent dose rate reaches...?5...Sv/h) one minute after the irradiation with fusion reactor neutron...

M. V. Alenina; V. P. Kolotov; Yu. M. Platov

2014-03-01T23:59:59.000Z

257

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

258

Methods for making lithium vanadium oxide electrode materials  

DOE Patents (OSTI)

A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

Schutts, Scott M. (Menomonie, WI); Kinney, Robert J. (Woodbury, MN)

2000-01-01T23:59:59.000Z

259

Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures  

Science Journals Connector (OSTI)

The capturing process for carbon dioxide over porous solid adsorbents such as ... resonance (NMR), and surface area. The capturing of carbon dioxide over lithium silicate, lithium aluminate, ... as exposure time,...

P. V. Korake; A. G. Gaikwad

2011-06-01T23:59:59.000Z

260

Use of Lithium Hexafluoroisopropoxide as a Mild Base for  

E-Print Network (OSTI)

Use of Lithium Hexafluoroisopropoxide as a Mild Base for Horner-Wadsworth-Emmons Olefination The weak base lithium 1,1,1,3,3,3-hexafluoroisopropoxide (LiHFI) is shown to be highly effective of base-sensitive substrates, leading to the discovery that lithium 1,1,1,3,3,3-hexafluoroisopropoxide (Li

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network (OSTI)

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

262

Proposal on Lithium Wall Experiment (LWX) on PBXM 1  

E-Print Network (OSTI)

Proposal on Lithium Wall Experiment (LWX) on PBX­M 1 Leonid E. Zakharov, Princeton University; OUTLINE 1. Mini­conference on Lithium walls and low recycling regime. 2. PBX­M Capabilities. 3. Motivation "Lithium covered walls and low recycling regimes in toka­ maks". APS meeting, October 23­27, 2000, Quebec

Zakharov, Leonid E.

263

Mechanism of Acylation of Lithium Phenylacetylide with a Weinreb Amide  

E-Print Network (OSTI)

with the excess lithium acetylide and a 1:3 (alkox- ide-rich) mixed tetramer. The stabilities of the mixedMechanism of Acylation of Lithium Phenylacetylide with a Weinreb Amide Bo Qu and David B. CollumVersity, Ithaca, New York 14853-1301 dbc6@cornell.edu ReceiVed June 14, 2006 Additions of lithium phenylacetylide

Collum, David B.

264

Lithium Ion Batteries DOI: 10.1002/anie.201103163  

E-Print Network (OSTI)

Lithium Ion Batteries DOI: 10.1002/anie.201103163 LiMn1Ã?xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh- Rate-Performance Lithium Ion Batteries** Hailiang Wang, Yuan Yang, Yongye Liang, Li-Feng Cui cathode materials for rechargeable lithium ion batteries (LIBs) owing to their high capacity, excellent

Cui, Yi

265

Mechanical Properties of Lithium-Ion Battery Separator Materials  

E-Print Network (OSTI)

Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials Science and Engineering 2013, Virginia Tech John Cannarella PhD. Candidate Mechanical and Aerospace and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

Petta, Jason

266

Lithium intercalated graphite : experimental Compton profile for stage one  

E-Print Network (OSTI)

L-301 Lithium intercalated graphite : experimental Compton profile for stage one G. Loupias, J différence des profils Compton est compatible avec un transfert total de l'électron de conduction du lithium électronique due à l'insertion. Abstract. 2014 Electron momentum distribution of the first stage lithium

Paris-Sud XI, Université de

267

Lithium Niobate Devices in Switching and Multiplexing [and Discussion  

Science Journals Connector (OSTI)

28 September 1989 research-article Lithium Niobate Devices in Switching and Multiplexing...Thylen Integrated-optics devices in lithium niobate have reached a significant maturity...in fibre-optic transmission systems, lithium niobate devices currently offer the only...

1989-01-01T23:59:59.000Z

268

LITHIUM--2002 46.1 By Joyce A. Ober  

E-Print Network (OSTI)

recycling operation in Trail, British Columbia, Canada. Another ToxCo subsidiary, Ozark Fluorine Specialties, the concentration of the brine increases through solar evaporation to 6,000 ppm lithium. When the lithium chloride carbonate production. Australia, Canada, and Zimbabwe were important sources of lithium concentrates

269

Evaporated Lithium Surface Coatings in NSTX  

SciTech Connect

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges: (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density. (C) 2009 Elsevier B.V. All rights reserved

Kugel, H. W. [Princeton Plasma Physics Laboratory (PPPL); Mansfield, D. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Allain, J. P. [Purdue University; Gates, D. [Princeton Plasma Physics Laboratory (PPPL); Gerhardt, S. P. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Menard, J. [Princeton Plasma Physics Laboratory (PPPL); Mueller, D. [Princeton Plasma Physics Laboratory (PPPL); Ono, M. [Princeton Plasma Physics Laboratory (PPPL); Paul, S. [Princeton Plasma Physics Laboratory (PPPL); Raman, R. [University of Washington, Seattle; Roquemore, A. L. [Princeton Plasma Physics Laboratory (PPPL); Ross, P. W. [Princeton Plasma Physics Laboratory (PPPL); Sabbagh, S. A. [Columbia University; Schneider, H. [Princeton Plasma Physics Laboratory (PPPL); Skinner, C. H. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. [Lawrence Livermore National Laboratory (LLNL); Stevenson, T. [Princeton Plasma Physics Laboratory (PPPL); Timberlake, J. [Princeton Plasma Physics Laboratory (PPPL); Wampler, W. R. [Sandia National Laboratories (SNL); Wilgen, John B [ORNL; Zakharov, L. E. [Princeton Plasma Physics Laboratory (PPPL)

2009-01-01T23:59:59.000Z

270

Evaporated Lithium Surface Coatings in NSTX  

SciTech Connect

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: 1) plasma density reduction as a result of lithium deposition; 2) suppression of ELMs; 3) improvement of energy confinement in a low-triangularity shape; 4) improvement in plasma performance for standard, high-triangularity discharges; 5) reduction of the required HeGDC time between discharges; 6) increased pedestal electron and ion temperature; 7) reduced SOL plasma density; and 8) reduced edge neutral density.

Kugel, H. W.; Mansfield, D.; Maingi, R.; Bel, M. G.; Bell, R. E.; Allain, J. P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

2009-04-09T23:59:59.000Z

271

Evaporated lithium surface coatings in NSTX.  

SciTech Connect

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges; (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density.

Zakharov, L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gates, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Menard, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Maingi, R. (Oak Ridge National Laboratory, Oak Ridge, TN); Schneider, H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mueller, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wampler, William R.; Roquemore, A. L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kallman, Jeffrey K. (Princeton Plasma Physics Laboratory, Princeton, NJ); Sabbagh, S. (Columbia University, New York, NY); LeBlanc, B. (Princeton Plasma Physics Laboratory, Princeton, NJ); Raman, R. (University of Washington, Seattle, WA); Ono, M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wilgren, J. (Oak Ridge National Laboratory, Oak Ridge, TN); Allain, J.P. (Purdue University, West Lafayette, IN); Timberlake, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Stevenson, T. (Princeton Plasma Physics Laboratory, Princeton, NJ); Ross, P. W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Majeski, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kugel, Henry W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Skinner, C. H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gerhardt, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Paul, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Bell, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaye, S. M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaita, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Soukhanovskii, V. (Lawrence Livermore National Laboratory, Livermore, CA); Bell, Michael G. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mansfield, D. (Princeton Plasma Physics Laboratory, Princeton, NJ)

2008-08-01T23:59:59.000Z

272

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

273

Aluminum Hydride - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jason Graetz (Primary Contact), James Wegrzyn Brookhaven National Laboratory (BNL) Building 815 Upton, NY 11973 Phone: (631) 344-3242 Email: graetz@bnl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop onboard vehicle storage systems using aluminum hydride that meets all of DOE's targets for proton exchange membrane fuel cell vehicles. Produce aluminum hydride material with a hydrogen * storage capacity greater than 9.7% gravimetric (kg-H 2 /kg) and 0.13 kg-H 2 /L volumetric. Develop practical and economical processes for *

274

Pressure Acceleration of Hydride Formation on a Cobalt(I) Macrocycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Acceleration of Hydride Formation via Pressure Acceleration of Hydride Formation via Proton Binding to a Cobalt(I) Macrocycle Etsuko Fujita, James F. Wishart, and Rudi van Eldik Inorg. Chem. 41, 1579-1583 (2002) [Find paper at ACS Publications] Abstract: The effect of pressure on proton binding to the racemic isomer of the cobalt(I) macrocycle, CoL+ (L = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene), has been studied for a series of proton donors using pulse radiolysis techniques. The second-order rate constants for the reaction of CoL+ with proton donors decrease with increasing pKa of the donor acid, consistent with a reaction occurring via proton transfer. Whereas the corresponding volumes of activation (DVý) are rather small and negative for all acids (proton donors) with pKa values below 8.5, significantly larger negative

275

Magnetic moment of atomic lithium  

Science Journals Connector (OSTI)

Bound-state relativistic contributions to the gJ factor of ground-state atomic lithium are calculated and compared with the experimental value gJ(Li)ge=1-(8.9±0.4)×10-6, where ge is the free-electron g factor. This comparison is taken as the basis for judging the accuracy of several different Li wave functions taken from the literature. Most of these wave functions give agreement with the experimental value within the experimental uncertainty. A more precise experimental measurement would be desirable in order to provide a more stringent test. A wave function of the restricted Hartree-Fock type, however, leads to a value which is in disagreement with the experimental value. This is attributed to the inability of the restricted Hartree-Fock function to account for the exchange polarization of the 1s2 core electrons; the latter are found to contribute about -1.2 × 10-6 to gJ(Li)ge, or about 13% of the total relativistic correction. In addition to the dominant relativistic corrections of order ?2, radiative corrections (order ?3), and nuclear-mass corrections (order ?2mM) are also calculated. An isotopic shift gJ(Li6)gJ(Li7)=1+3.0×10-11 is predicted. The experimental measurements for Li are not yet precise enough to test these higher-order corrections.

Roger A. Hegstrom

1975-02-01T23:59:59.000Z

276

A New Method for Quantitative Marking of Deposited Lithium via Chemical Treatment on Graphite Anodes in Lithium-Ion Cells  

E-Print Network (OSTI)

A New Method for Quantitative Marking of Deposited Lithium via Chemical Treatment on Graphite Anodes in Lithium-Ion Cells Yvonne Krämer*[a] , Claudia Birkenmaier[b] , Julian Feinauer[a,c] , Andreas*[e] and Thomas Schleid[f] Abstract: A novel approach for the marking of deposited lithium on graphite anodes from

Schmidt, Volker

277

OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES  

SciTech Connect

Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

2011-07-14T23:59:59.000Z

278

Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage  

SciTech Connect

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

2012-02-01T23:59:59.000Z

279

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOE Patents (OSTI)

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01T23:59:59.000Z

280

Lithium-based Technologies | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-based Technologies Lithium-based Technologies Lithium-based Technologies Y-12's 60 years of rich lithium operational history and expertise make it the clear choice for deployment of new lithium-based technologies and capabilities. There is no other U.S. site, government or commercial, that comes close to the breadth of Y-12's lithium expertise and capabilities. The Y-12 National Security Complex supplies lithium, in unclassified forms, to customers worldwide through the DOE Office of Science, Isotope Business Office. Historically, the typical order of 6Li was only gram quantities used in research and development. However, over the past three years demand has increased steadily with typical orders of around 10-20 kg each. Such increase in demand is a direct result of the use of

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Lithium Surface Coatings for Improved Plasma Performance in NSTX  

SciTech Connect

NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

2008-02-19T23:59:59.000Z

282

Draft of M2 Report on Integration of the Hybrid Hydride Model into INL’s MBM Framework for Review  

SciTech Connect

This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models (Homer et al., 2013; Tikare and Schultz, 2012). The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

Tikare, Veena; Weck, Philippe F.; Schultz, Peter A.; Clark, Blythe; Michael Glazoff; Eric Homer

2014-07-01T23:59:59.000Z

283

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

SciTech Connect

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

284

Lithium pellet production (LiPP): A device for the production of small spheres of lithium  

SciTech Connect

With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of {Delta}P= 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D= 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted.

Fiflis, P.; Andrucyzk, D.; McGuire, M.; Curreli, D.; Ruzic, D. N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Roquemore, A. L. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

2013-06-15T23:59:59.000Z

285

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode  

Science Journals Connector (OSTI)

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode ... To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development. ... A full Li-ion battery (Figure 4a) is obtained by coupling the Cu-supported graphene nanoflake anode with a lithium iron phosphate, LiFePO4, that is, a cathode commonly used in commercial batteries. ...

Jusef Hassoun; Francesco Bonaccorso; Marco Agostini; Marco Angelucci; Maria Grazia Betti; Roberto Cingolani; Mauro Gemmi; Carlo Mariani; Stefania Panero; Vittorio Pellegrini; Bruno Scrosati

2014-07-15T23:59:59.000Z

286

Muon Spin Relaxation Studies of Lithium Nitridometallate Battery Materials: Muon Trapping and Lithium Ion Diffusion  

Science Journals Connector (OSTI)

Muon Spin Relaxation Studies of Lithium Nitridometallate Battery Materials: Muon Trapping and Lithium Ion Diffusion ... The muons themselves are quasi-static, most probably located in a 4h site between the [Li2N] plane and the Li(1)/Ni layer. ... The initial fall in ? results from an increase in muon hopping as the temperature is raised, while the subsequent rise originates from an increasing proportion of trapped and therefore static muons. ...

Andrew S. Powell; James S. Lord; Duncan H. Gregory; Jeremy J. Titman

2009-10-27T23:59:59.000Z

287

Lithium: Will Short Supply Constrain Energy Technologies?  

Science Journals Connector (OSTI)

...developments have improved the storage capacity and lifetime...century. Utility electric storage-a projected 1000 units...parts per million are pumped to the surface, concentrated...area currently being pumped. Kunasz says that the...recovering lithium from seawater, although few geologists...

ALLEN L. HAMMOND

1976-03-12T23:59:59.000Z

288

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

289

Rechargeable thin-film lithium batteries  

SciTech Connect

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01T23:59:59.000Z

290

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments (OSTI)

Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

1993-11-00T23:59:59.000Z

291

NSTX plasma response to lithium coated divertor  

SciTech Connect

NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma-facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, < 0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed. (C) 2010 Elsevier B.V. All rights reserved.

Kugel, H. W. [Princeton Plasma Physics Laboratory (PPPL); Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Allain, J. P. [Purdue University; Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Ding, S. [Academia Sinica, Institute of Plasma Physics, Hefei, China; Gerhardt, S. P. [Princeton Plasma Physics Laboratory (PPPL); Jaworski, M. A. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. M. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Maqueda, R. J. [Princeton Plasma Physics Laboratory (PPPL); Mansfield, D.K. [Princeton Plasma Physics Laboratory (PPPL); Mueller, D. [Princeton Plasma Physics Laboratory (PPPL); Nygren, R. E. [Sandia National Laboratories (SNL); Paul, S. F. [Princeton Plasma Physics Laboratory (PPPL); Raman, R [University of Washington, Seattle; Roquemore, A. L. [Princeton Plasma Physics Laboratory (PPPL); Sabbagh, S. A. [Columbia University; Schneider, H. [Princeton Plasma Physics Laboratory (PPPL); Skinner, C. H. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL); Taylor, C. N. [Purdue University; Timberlake, J. [Princeton Plasma Physics Laboratory (PPPL); Wampler, W. R. [Sandia National Laboratories (SNL); Zakharov, L. E. [Princeton Plasma Physics Laboratory (PPPL); Zweben, S. J. [Princeton Plasma Physics Laboratory (PPPL)

2011-01-01T23:59:59.000Z

292

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

293

Implications of NSTX Lithium Results for Magnetic Fusion Research  

SciTech Connect

Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ~ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

M. Ono, M.G. Bell, R.E. Bell, R. Kaita, H.W. Kugel, B.P. LeBlanc, J.M. Canik, S. Diem, S.P.. Gerhardt, J. Hosea, S. Kaye, D. Mansfield, R. Maingi, J. Menard, S. F. Paul, R. Raman, S.A. Sabbagh, C.H. Skinner, V. Soukhanovskii, G. Taylor, and the NSTX Research Team

2010-01-14T23:59:59.000Z

294

An automated hydride generation-cryogenic trapping-ICP-MS system for measuring inorganic and methylated Ge, Sb and As species  

E-Print Network (OSTI)

An automated hydride generation-cryogenic trapping-ICP-MS system for measuring inorganic of both flow injection and batch hydride generation and couples it to an automated cryogenic trapping unit with detection by ICP-MS. The Teflon cryogenic trap was packed with 10 cm of SE-30 5% Chromosorb W-HP 80­100 mesh

Canberra, University of

295

ReaxFFMgH Reactive Force Field for Magnesium Hydride Systems Sam Cheung, Wei-Qiao Deng, Adri C. T. van Duin, and William A. Goddard III*  

E-Print Network (OSTI)

ReaxFFMgH Reactive Force Field for Magnesium Hydride Systems Sam Cheung, Wei-Qiao Deng, Adri C. TFFMgH) for magnesium and magnesium hydride systems. The parameters for this force field were derived from fitting to quantum chemical (QM) data on magnesium clusters and on the equations of states for condensed phases

van Duin, Adri

296

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network (OSTI)

Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

Chen, Guoying

2010-01-01T23:59:59.000Z

297

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

Linden, D. , Handbook of Batteries. 2nd ed. 1995, New York:rechargeable lithium batteries. Nature, 2001. 414(6861): p.of rechargeable lithium batteries, I. Lithium manganese

Wilcox, James D.

2010-01-01T23:59:59.000Z

298

SURFACE RECONSTRUCTION AND CHEMICAL EVOLUTION OF STOICHIOMETRIC LAYERED CATHODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

CATHODE MATERIALS FOR LITHIUM-ION BATTERIES Feng Lin, 1*As shown in Figure 2, in lithium-metal half-cells, capacitypredominantly occurs along the lithium diffusion channels,

Lin, Feng

2014-01-01T23:59:59.000Z

299

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents (OSTI)

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

300

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

around 3.5 M. A slight excess of lithium (5%) was used tothat there is a slight excess of lithium in materials withto the formation of a lithium excess surface material (Li 1+

Wilcox, James D.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates  

Science Journals Connector (OSTI)

Flexible graphene-based lithium ion batteries with ultrafast charge and...and flexible lithium ion battery made from graphene foam, a three-dimensional...and flexible lithium ion battery made from graphene foam, a three-dimensional...

Na Li; Zongping Chen; Wencai Ren; Feng Li; Hui-Ming Cheng

2012-01-01T23:59:59.000Z

302

Stress fields in hollow core–shell spherical electrodes of lithium ion batteries  

Science Journals Connector (OSTI)

...core-shell spherical electrodes of lithium ion batteries Yingjie Liu 1 Pengyu Lv...System, Department of Mechanics and Engineering Science, College of Engineering...structure design of electrodes of lithium ion batteries. lithium ion battery...

2014-01-01T23:59:59.000Z

303

Polymers with Tailored Electronic Structure for High Capacity Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymers with Tailored Electronic Structure for High Capacity Lithium Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes Title Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes Publication Type Journal Article Year of Publication 2011 Authors Liu, Gao, Shidi Xun, Nenad Vukmirovic, Xiangyun Song, Paul Olalde-Velasco, Honghe Zheng, Vince S. Battaglia, Linwang Wang, and Wanli Yang Journal Advanced Materials Volume 23 Start Page 4679 Issue 40 Pagination 4679 - 4683 Date Published 10/2011 Keywords binders, conducting polymers, density funcational theory, lithium batteries, X-ray spectroscopy Abstract A conductive polymer is developed for solving the long-standing volume change issue in lithium battery electrodes. A combination of synthesis, spectroscopy and simulation techniques tailors the electronic structure of the polymer to enable in situ lithium doping. Composite anodes based on this polymer and commercial Si particles exhibit 2100 mAh g-1 in Si after 650 cycles without any conductive additive.

304

Lithium In Tufas Of The Great Basin- Exploration Implications For  

Open Energy Info (EERE)

In Tufas Of The Great Basin- Exploration Implications For In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Lithium In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Details Activities (8) Areas (4) Regions (0) Abstract: Lithium/magnesium, lithium/sodium, and to a lesser extent, potassium/magnesium ratios in calcium carbonate tufa columns provide a fingerprint for distinguishing tufa columns formed from thermal spring waters versus those formed from non-thermal spring waters. These ratios form the basis of the Mg/Li, Na/Li, and K/Mg fluid geothermometers commonly used in geothermal exploration, which are based on the fact that at elevated temperatures, due to mineral-fluid equilibria, lithium

305

Synthesis of lithium intercalation materials for rechargeable battery  

Science Journals Connector (OSTI)

Lithium-based oxides (LiMOx, where M=Ni, Co, Mn) are attractive for electrode materials, because they are capable of reversibly intercalating lithium ions for rechargeable battery without altering the main unit. We developed a novel solution-based route for the synthesis of these lithium intercalation oxides, using acetates or oxides as precursors for lithium, manganese, nickel, and cobalt, respectively with proper organic solvents. The evolution of crystal structure of these materials was analyzed by X-ray diffraction. Further analysis of LiMn2O4 samples were carried out using impedance spectroscopy and Raman spectroscopy. These studies indicate that this synthetic route, without using expensive alkoxides of sol–gel process, produces high-quality lithium-based oxides useful for cathode in lithium-ion rechargeable battery.

S. Nieto-Ramos; M.S. Tomar

2001-01-01T23:59:59.000Z

306

Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermodynamic guidelines for the prediction of hydrogen Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures Hydrogen Storage & Nanoscale Modeling Group Ford Motor Company Don Siegel dsiegel2@ford.com Phys. Rev. B 76, 134102 (2007) 1 Acknowledgements C. Wolverton V. Ozolins Computation Northwestern UCLA J. Yang A. Sudik Experiments Ford Ford 2 Computational Methodology * Atomistic computer simulations based on quantum mechanics (Density Functional Theory) * First-principles approach: - Only empirical input are crystal structure and fundamental physical constants - VASP code - PAW potentials - PW91 GGA - Temperature-dependent thermodynamic contributions evaluated within harmonic approximation * "Direct method" for construction of dynamical matrix

307

Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper  

DOE Patents (OSTI)

An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

1982-08-10T23:59:59.000Z

308

Positron binding to alkali-metal hydrides: The role of molecular vibrations  

SciTech Connect

The bound vibrational levels for J=0 have been computed for the series of alkali-metal hydride molecules from LiH to RbH, including NaH and KH. For all four molecules the corresponding potential-energy curves have been obtained for each isolated species and for its positron-bound complex (e{sup +}XH). It is found that the calculated positron affinity values strongly depend on the molecular vibrational state for which they are obtained and invariably increase as the molecular vibrational energy content increases. The consequences of our findings on the likelihood of possibly detecting such weakly bound species are briefly discussed.

Gianturco, Franco A.; Franz, Jan; Buenker, Robert J.; Liebermann, Heinz-Peter; Pichl, Lukas; Rost, Jan-Michael; Tachikawa, Masanori; Kimura, Mineo [Department of Chemistry and INFM, University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome (Italy); Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universitaet Wuppertal, Gaussstrasse 20, D-42119 Wuppertal (Germany); Max Planck Institute for the Physics of Complex Systems, Noethnitzer St. 38, D-01187 Dresden (Germany); Graduate School of Science, Yokohama-city University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan); Graduate School of Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

2006-02-15T23:59:59.000Z

309

E-Print Network 3.0 - accumulateurs au lithium Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

au lithium Search Powered by Explorit Topic List Advanced Search Sample search results for: accumulateurs au lithium Page: << < 1 2 3 4 5 > >> 1 ACCUMULATEUR LECTRIQUE...

310

Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries 2011 DOE...

311

Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries...

312

Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries ... Lithium battery; cathode; polymer; graphene; nanocomposite ...

Zhiping Song; Terrence Xu; Mikhail L. Gordin; Ying-Bing Jiang; In-Tae Bae; Qiangfeng Xiao; Hui Zhan; Jun Liu; Donghai Wang

2012-03-26T23:59:59.000Z

313

Insights into the morphological changes undergone by the anode in the lithium sulphur battery system.  

E-Print Network (OSTI)

?? In this thesis, the morphological changes of the anode surface in lithium sulphur cell, during early cycling, were simulated using symmetrical lithium electrode cells… (more)

Yalamanchili, Anurag

2014-01-01T23:59:59.000Z

314

Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure...  

NLE Websites -- All DOE Office Websites (Extended Search)

with Self-Aligned Nanorod Structure. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Abstract: Suppressing lithium (Li) dendrite growth is one of the most...

315

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

2 H 3 O 2 Li·2H 2 O (lithium acetate, Sigma Aldrich), and HThe iron nitrate and lithium acetate were combined with the

Wilcox, James D.

2010-01-01T23:59:59.000Z

316

Lithium: Measurement of Young's Modulus and Yield Strength  

SciTech Connect

The Lithium Collection Lens is used for anti-proton collection. In analyzing the structural behavior during operation, various material properties of lithium are often needed. properties such as density, coefficient of thermal expansion, thermal conductivity, specific heat, compressability, etc.; are well known. However, to the authors knowledge there is only one published source for Young's Modulus. This paper reviews the results from the testing of Young's Modulus and the yield strength of lithium at room temperature.

Ryan P Schultz

2002-11-07T23:59:59.000Z

317

Theory of Hydride-Proton Transfer (HPT) Carbonyl Reduction by [Os(III)(tpy)(Cl)(NH=CHCH3)(NSAr)  

SciTech Connect

Quantum mechanical analysis reveals that carbonyl reduction of aldehydes and ketones by the imine-based reductant cis-[Os{sup III}(tpy)(Cl)(NH?CHCH{sub 3})(NSAr)] (2), which is accessible by reduction of the analogous nitrile, occurs by hydride-proton transfer (HPT) involving both the imine and sulfilimido ligands. In carbonyl reduction, water or alcohol is necessary to significantly lower the barrier for proton shuttling between ligands. The ?N(H)SAr group activates the carbonyl group through hydrogen bonding while the ?NC(H)CH{sub 3} ligand delivers the hydride.

Ess, Daniel H.; Schauer, Cynthia; Meyer, Thomas J.

2010-01-01T23:59:59.000Z

318

Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries  

Science Journals Connector (OSTI)

Lithium titanate is synthesized from titanium isopropoxide and lithium acetate solution under hydrothermal environment and calcinations. Introducing acidized carbon black during synthesis can produce mesoporous Li4Ti5O12. The crystalline structure and morphological observation of the as-synthesized mesoporous Li4Ti5O12 are characterized by X-ray diffraction (XRD) and scanning electron microscopy, respectively. The mesoporous structure can be directly observed through BEI images of the cross-section sample. Besides, N2 adsorption/desorption isotherm also displays a hysteresis loop, implying the beneficial evidence of mesoporous structure. The pore size distribution of mesoporous lithium titanate evaluated by BJH model is narrow, and the average size of voids is around 4 nm. It is demonstrated that the electrochemical performance is significantly improved by the mesoporous structure. The mesoporous lithium titanate exhibits a stable capacity of 140 mAhg?1 at 0.5 C. Besides, the reversible capacity at 30 C remains over half of that at 0.5 C. The superior C-rate performance is associated with the mesoporous structure, facilitating lithium transportation ability during cycling.

Yu-Sheng Lin; Jenq-Gong Duh

2011-01-01T23:59:59.000Z

319

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network (OSTI)

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

320

Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Advanced Materials Find More Like This Return to Search LithiumSulfur Batteries Based on Doped Mesoporous Carbon Oak Ridge National Laboratory Contact ORNL About...

322

Lithium Ion Electrode Production NDE and QC Considerations |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

QC Considerations Lithium Ion Electrode Production NDE and QC Considerations Review of Oak Ridge process and QC activities by David Wood, Oak Ridge National Laboratory, at the...

323

Sulfur-Graphene Oxide Nanocomposite Cathodes for Lithium/Sulfur...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Find More Like This Return to Search Sulfur-Graphene Oxide Nanocomposite Cathodes for LithiumSulfur Cells Lawrence Berkeley National...

324

Fact #603: December 28, 2009 Where Does Lithium Come From? |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

share of lithium reserves and production by country including Chile, China, Australia, Russia, Argentina, U.S. and Bolivia. For more detailed information, see the table below....

325

Physically based Impedance Modelling of Lithium-Ion Cells.  

E-Print Network (OSTI)

??In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then,… (more)

Illig, Jörg

2014-01-01T23:59:59.000Z

326

Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo...  

NLE Websites -- All DOE Office Websites (Extended Search)

Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods P. Ganesh,* , Jeongnim Kim, Changwon...

327

JCESR: Moving Beyond Lithium-Ion | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

JCESR: Moving Beyond Lithium-Ion Share Topic Energy Energy usage Energy storage Batteries Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive...

328

Overcoming Processing Cost Barriers of High-Performance Lithium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

methods - Tailored Aqueous Colloids for Lithium-Ion Electrodes (TACLE) B.L. Armstrong et al., U.S. Patent Application No. 13651,270. - Surface charge measurement,...

329

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

lithium titanate oxide in the negative electrode indicate cycle life in excesslithium titanate oxide in the negative electrode indicate cycle life in excess

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

330

High capacity nanostructured electrode materials for lithium-ion batteries.  

E-Print Network (OSTI)

??The lithium-ion battery is currently the most widely used electrochemical storage system on the market, with applications ranging from portable electronics to electric vehicles, to… (more)

Seng, Kuok H

2013-01-01T23:59:59.000Z

331

Expanded North Carolina Lithium Facility Opens, Boosting U.S...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

plug-in hybrids and other advanced clean energy technologies grows worldwide, rare earth elements and other critical materials, including lithium, are facing increasing global...

332

California: Geothermal Plant to Help Meet High Lithium Demand...  

Energy Savers (EERE)

technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines. Simbol has the potential to power 300,000-600,000 electric vehicles per...

333

California Geothermal Power Plant to Help Meet High Lithium Demand...  

Energy Savers (EERE)

brines in California. Batteries from Brine California: Geothermal Plant to Help Meet High Lithium Demand Mineral Recovery Creates Revenue Stream for Geothermal Energy Development...

334

Overcoming Processing Cost Barriers of High-Performance Lithium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cost Barriers of High-Performance Lithium-Ion Battery Electrodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

335

Development of Large Format Lithium Ion Cells with Higher Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overall Project Goal: To research, develop and demonstrate large format lithium ion cells with energy density > 500 WhL Barriers addressed: - Low energy density - Cost -...

336

Sandia National Laboratories: lithium-ion-based solid electrolyte...  

NLE Websites -- All DOE Office Websites (Extended Search)

lithium-ion-based solid electrolyte battery Sandia Labs, Front Edge Technology, Inc., Pacific Northwest National Lab, Univ. of California-Los Angeles: Micro Power Source On March...

337

Development of Electrolytes for Lithium-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battaglia & J. Kerr (LBNL) * M. Payne (Novolyte) * F. Puglia & B. Ravdel (Yardney) * G. Smith & O. Borodin (U. Utah) 3 3 Develop novel electrolytes for lithium ion batteries that...

338

Fundamental Studies of Lithium-Sulfur Cell Chemistry  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Studies of Lithium-Sulfur Cell Chemistry PI: Nitash Balsara LBNL June 17, 2014 Project ID ESS224 This presentation does not contain any proprietary, confidential, or otherwise...

339

Batteries - Beyond Lithium Ion Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

340

Manganese oxide composite electrodes for lithium batteries  

DOE Patents (OSTI)

An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Li, Naichao (Croton on Hudson, NY)

2007-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Manganese oxide composite electrodes for lithium batteries  

DOE Patents (OSTI)

An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

Johnson, Christopher S. (Naperville, IL); Kang, Sun-Ho (Naperville, IL); Thackeray, Michael M. (Naperville, IL)

2009-12-22T23:59:59.000Z

342

Expanding argon plasma interacting with lithium surface  

Science Journals Connector (OSTI)

Abstract In this thesis, the interaction between Ar Plasma and lithium is studied by Langmuir probe and Spectrometer. We have studied the effects of the applied discharge current, the gas flow rate, the magnetic field on emission spectrum, electron temperature and electron density. The experimental results show that spectrum intensity, electron temperature and electron density all increase with the increasing discharge current, gas flow rate or magnetic field when the other experimental conditions were fixed, and it is also found that the intensity of Li-670.78 nm increases slowly at first and then increases rapidly, at last, it tends to be stable figure at the beginning of experiment. What is more, spectrum of lithium (670.78 nm) is also detected at the first diagnostic window (viewing window).

X. Cao; S. Chen; W. Zhang; X. Xue; M. Lu; C. Wang; J. Wang; F. Gou; D. Yang; Ou Wei

2014-01-01T23:59:59.000Z

343

High-discharge-rate lithium ion battery  

DOE Patents (OSTI)

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

344

High expansion, lithium corrosion resistant sealing glasses  

DOE Patents (OSTI)

Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

Brow, Richard K. (Albuquerque, NM); Watkins, Randall D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

345

Lithium-Polysulfide Flow Battery Demonstration  

SciTech Connect

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-06-30T23:59:59.000Z

346

Deuterium Retention in NSTX with Lithium Conditioning  

SciTech Connect

High (approximate to 90%) deuterium retention was observed in NSTX gas balance measurements both with- and without lithiumization of the carbon plasma-facing components. The gas retained in ohmic discharges was measured by comparing the vessel pressure rise after a discharge to that of a gas-only pulse with the pumping valves closed. For neutral beam heated discharges the gas input and gas pumped by the NB cryopanels were tracked. The discharges were followed by outgassing of deuterium that reduced the retention. The relationship between retention and surface chemistry was explored with a new plasma-material interface probe connected to an in vacuo surface science station that exposed four material samples to the plasma. XPS and TDS analysis demonstrated that binding of D atoms in graphite is fundamentally changed by lithium - in particular atoms are weakly bonded in regions near lithium atoms bound to either oxygen or the carbon matrix. This is in contrast to the strong ionic bonding that occurs between D and pure Li. (C) 2010 Elsevier B.V. All rights reserved.

Skinner, C. H. [Princeton Plasma Physics Laboratory (PPPL); Allain, J. P. [Purdue University; Blanchard, W. [Princeton Plasma Physics Laboratory (PPPL); Kugel, H. W. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Roquemore, L. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL); Taylor, C. N. [Purdue University

2011-01-01T23:59:59.000Z

347

Nondestructive Evaluation on Hydrided LWR Fuel Cladding by Small Angle Incoherent Neutron Scattering of Hydrogen  

SciTech Connect

A non-destructive neutron scattering method was developed to precisely measure the uptake of total hydrogen in nuclear grade Ziraloy-4 cladding. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and H gas. By controlling the initial H gas pressure in the vessel and the temperature profile, target H concentrations from tens of ppm to a few thousands of wppm have been successfully achieved. Following H charging, the H content of the hydrided specimens was measured using the vacuum hot extraction method (VHE), by which the samples with desired H concentration were selected for the neutron study. Small angle neutron incoherent scattering (SANIS) were performed in the High Flux Isotope Reactor at Oak Ridge national Laboratory (ORNL). Our study indicates that a very small amount ( 20 ppm) H in commercial Zr cladding can be measured very accurately in minutes for a wide range of H concentration by a nondestructive method. The H distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor, which is determined by calibration process with direct chemical analysis method on the specimen. This scale factor can be used for future test with unknown H concentration, thus provide a nondestructive method for absolute H concentration determination.

Yan, Yong [ORNL; Qian, Shuo [ORNL; Littrell, Ken [ORNL; Parish, Chad M [ORNL; Bell, Gary L [ORNL; Plummer, Lee K [ORNL

2013-01-01T23:59:59.000Z

348

Hydride-dehydride module within ARIES (Advanced Recovery and Integrated Extraction System)  

SciTech Connect

One of the many requirements placed on the DOE is the reduction of the nuclear stockpile through dismantlement programs. The DOE Office of Fissile Materials Disposition (OFMD) has been tasked with the disposition of excess plutonium and other fissile materials. On the list of items containing excess fissile materials are nuclear weapon cores, pits. The Advanced Recovery and integrated Extraction System (ARIES) at Los Alamos National Laboratory is the pit disassembly and conversion demonstration line that is being used to gather data to support the design of the full scale pit disassembly and conversion facility. The Hydride Dehydride recycle system is an important element to this program, because it provides these dismantlement programs with a technology for removing plutonium from nuclear weapons without producing large amounts of waste compared to historical processes used in the DOE complex. The Hydride Dehydride recycle process can separate plutonium from other weapons components resulting in an unclassified plutonium metal button. After separation, this button can be stored in long term storage containers or processed to produce plutonium oxide, which will be used by either of the plutonium disposition options, mixed oxide fuel burning in a nuclear reactor or immobilization. Once placed into long term storage containers, either the plutonium metal or plutonium oxide can be inspected by bilateral or international agencies to invoke transparency of the plutonium.

Flamm, B.F.; Isom, G.M.; Nelson, T.O.

1998-12-31T23:59:59.000Z

349

Mechanical Behavior Studies of Depleted Uranium in the Presence of Hydrides  

SciTech Connect

This project addresses critical issues related to aging in the presence of hydrides (UH{sub 3}) in DU and the subsequent effect on mechanical behavior. Rolled DU specimens with three different hydrogen concentrations and the as-rolled condition were studied. The texture measurements indicate that the hydrogen charging is affecting the initial as-rolled DU microstructure/texture. The macroscopic mechanical behavior suggests the existence of a threshold between the 0 wpmm H and 0.3 wppm H conditions. A VPSC simulation of the macroscopic strain-stress behavior, when taking into account only a texture effect, shows no agreement with the experiment. This suggests that the macroscopic mechanical behavior observed is indeed due to the presence of hydrogen/hydrides in the DU bulk. From the lattice strain variation it can be concluded that the hydrogen is affecting the magnitude and/or the nature of CRSS. The metallography indicates the specimens that underwent the hydrogen charging process, developed large grains and twinning, which were enhanced by the presence of hydrogen. Further studies using electron microscopy and modeling will be conducted to learn about the deformation mechanisms responsible for the observed behavior.

Garlea, E.; Morrell, J. S.; Bridges, R. L.; Powell, G. L.; Brown, d. W.; Sisneros, T. A.; Tome, C. N.; Vogel, S. C.

2011-02-14T23:59:59.000Z

350

Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone  

SciTech Connect

Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

2013-09-15T23:59:59.000Z

351

OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES  

E-Print Network (OSTI)

aryl bromides and H 2 BN(iPr) 2 Scheme 2.7. Hydroboration oftransfer hydride to BH 2 -N(iPr) 2 Scheme 2.10. Conversionchloride with BH 2 -N(iPr) 2 Scheme 3; Aqueous quench of p-

Clary, Jacob William

2012-01-01T23:59:59.000Z

352

Verification and Validation Strategy for Implementation of Hybrid Potts-Phase Field Hydride Modeling Capability in MBM  

SciTech Connect

The Used Fuel Disposition (UFD) program has initiated a project to develop a hydride formation modeling tool using a hybrid Potts­phase field approach. The Potts model is incorporated in the SPPARKS code from Sandia National Laboratories. The phase field model is provided through MARMOT from Idaho National Laboratory.

Jason D. Hales; Veena Tikare

2014-04-01T23:59:59.000Z

353

Combustion Processes in the Zr-Co-H2 System and Synthesis of Hydrides of Intermetallic Compounds  

Science Journals Connector (OSTI)

The researches on Zr2Co, ZrCo, ZrCo2 synthesis and hydriding in a self-propagating hightemperature synthesis — SHS mode are carried out. In IMC — hydrogen systems low temperature (350–500°C) and high temperature ...

H. G. Hakobyan; S. K. Dolukhanyan

2002-01-01T23:59:59.000Z

354

Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles  

Science Journals Connector (OSTI)

Infrastructure and transport requirements, though often generic, were always included. ... vehicles (PHEV), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector; however, meaningful GHG emissions redns. ... storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and elec. ...

Guillaume Majeau-Bettez; Troy R. Hawkins; Anders Hammer Strømman

2011-04-20T23:59:59.000Z

355

Ab-initio study of optical response properties of nonstoichiometric lithium-hydride and sodium-fluoride clusters with one- and two-excess electrons  

Science Journals Connector (OSTI)

Structural and optical response properties of Li n H n-m and NanF n-m (n = 2-6, m = 1, 2) clusters containin...

V. Bona?i?-Koutecký; J. Pittner; J. Koutecký

1997-03-01T23:59:59.000Z

356

Characterization of Lithium Stearate: Processing Aid for Filled Elastomers  

SciTech Connect

This topical report presents work completed to characterize lithium stearate so a replacement supplier could be identified. Lithium stearate from Alfa Aesar and Chemtura was obtained and characterized along with the current material from Witco. Multiple methods were used to characterize the materials including Karl Fischer, FT-IR, differential scanning calorimetry, and thermogravimetric analysis.

E. Eastwood; C. Densmore

2007-02-05T23:59:59.000Z

357

Materials Challenges and Opportunities of Lithium Ion Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for lithium ion batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium–sulfur (Li–S) batteries with a high theoretical energy density of ?2500 Wh kg–1 are considered as one promising rechargeable battery chemistry for next-generation energy storage. ...

Arumugam Manthiram

2011-01-10T23:59:59.000Z

358

Sol–gel synthesis of sodium and lithium based materials  

Science Journals Connector (OSTI)

Sodium and lithium cobaltates are important materials for thermoelectric and ... the sol–gel synthesis of sodium- and lithium-based materials by using acetate precursors. The produced Na2/3CoO2, Li(Ni1/3Mn1/3Co1/...

Sandra Hildebrandt; Andreas Eva…

2012-09-01T23:59:59.000Z

359

Lithium treatment reduces morphine self-administration in addict rats  

Science Journals Connector (OSTI)

... Lithium also has been shown to interact with morphine: it can sometimes reduce morphine-induced ... mice7'8 and potentiate morphine analgesia in rats9. We have therefore investigated the possibility that lithium may affect the amount of voluntary ingestion of morphine by addict rats.

MICHAL TOMKIEWICZ; HANNAH STEINBERG

1974-11-15T23:59:59.000Z

360

Lithium Lorentz Force Accelerator Thruster (LiLFA)  

E-Print Network (OSTI)

Lithium Lorentz Force Accelerator Thruster (LiLFA) Adam Coulon Princeton University Electric originally came from the MAI (Moscow Aviation Institute) Russia · Many Princeton graduate students have #12;LiLFA Thruster · Lithium vapor ionizes in the electric field · A current evolves in the plasma

Petta, Jason

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Two Studies Reveal Details of Lithium-Battery Function  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

362

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

363

China Lithium Energy Electric Vehicle Investment Group CLEEVIG | Open  

Open Energy Info (EERE)

Investment Group CLEEVIG Investment Group CLEEVIG Jump to: navigation, search Name China Lithium Energy Electric Vehicle Investment Group (CLEEVIG) Place Beijing, China Zip 100101 Product Beijing-based investment company with a focus on Electric Vehicle R&D. References China Lithium Energy Electric Vehicle Investment Group (CLEEVIG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Lithium Energy Electric Vehicle Investment Group (CLEEVIG) is a company located in Beijing, China . References ↑ "[ China Lithium Energy Electric Vehicle Investment Group (CLEEVIG)]" Retrieved from "http://en.openei.org/w/index.php?title=China_Lithium_Energy_Electric_Vehicle_Investment_Group_CLEEVIG&oldid=343507

364

Two Studies Reveal Details of Lithium-Battery Function  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

365

Liquid Lithium WindowlessLiquid Lithium Windowless Targets for High Power  

E-Print Network (OSTI)

the accelerator beam line · No solid confinement structure · In vacuum ­ It's possible due to Li's low vapor/s in vacuum. #12;Why Liquid Lithium? Low Z ( = 3 )---good from nuclear considerations Large working temp compatible with accelerator vacuum (10-4 Pa or 10-6 Torr). 1000 ( ) Local peak temperature can be much

McDonald, Kirk

366

Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates  

E-Print Network (OSTI)

Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural method for lithium isotope ratio (7 Li/6 Li) determinations with low total lithium consumption ( lithium from all matrix elements using small volume resin (2 ml/3.4 meq AG 50W-X8) and low volume elution

Weston, Ken

367

17 Years of Lithium Brown Dwarfs 10/21/12Ringberg Brown Dwarfs 1  

E-Print Network (OSTI)

17 Years of Lithium Brown Dwarfs 10/21/12Ringberg Brown Dwarfs 1 #12;The Keck Search for Lithium 10/21/12Ringberg Brown Dwarfs 2 Lithium was not seen in objects which should have been comfortably into the brown "lithium dating". This adjustment in age meant that the inferred mass of PPl 15 rose to near the substellar

Joergens, Viki

368

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network (OSTI)

years, Saft has been developing a range of lithium ion cells and batteries to cover the full spectrum. To follow such a characteristic, electrochemical impedance spectroscopy (EIS) measurements on Saft lithium or several cells. II. OVERVIEW OF EXPERIMENT A. Used lithium-ion cells The cells used are lithium-ion Saft

Boyer, Edmond

369

Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in EC:EMC/1.2M LiPF6 Electrolyte  

E-Print Network (OSTI)

of synthetic lithium ethylene dicarbonate. Figure 3.structure of lithium ethylene dicarbonate (A) and dimer (B).of: a. ) synthetic lithium ethylene dicarbonate; b. ) EC

Zhuang, Guorong V.; Xu, Kang; Yang, Hui; Jow, T. Richard; Ross Jr., Philip N.

2005-01-01T23:59:59.000Z

370

Thermal Property Measurements and Enthalpy Calculation of the Lithium Bromide+Lithium Iodide+1,3-Propanediol+Water System  

Science Journals Connector (OSTI)

The lithium bromide+lithium iodide+1,3-propanediol+water [LiBr/LiI mole ratio=4 and (LiBr+LiI)/HO(CH2)3...OH mass ratio=4] solution is being considered as a potential working fluid for an absorption chiller. Heat...

J.-S. Kim; H.-S. Lee; H. Lee

2000-11-01T23:59:59.000Z

371

The impact of lithium wall coatings on NSTX discharges and the engineering of the Lithium Tokamak eXperiment (LTX)  

SciTech Connect

Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both L- and H-mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500-600 degrees C to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to Operate at reactor-relevant temperatures. The engineering of LTX will be discussed. (c) 2010 Elsevier B.V. All rights reserved.

Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Kugel, H. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Avasarala, S. [Princeton Plasma Physics Laboratory (PPPL); Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Berzak, L. [Princeton Plasma Physics Laboratory (PPPL); Beiersdorfer, P. [Lawrence Livermore National Laboratory (LLNL); Gerhardt, S. P. [Princeton Plasma Physics Laboratory (PPPL); Gransted, E. [Princeton Plasma Physics Laboratory (PPPL); Gray, T. [Princeton Plasma Physics Laboratory (PPPL); Jacobson, C. [Princeton Plasma Physics Laboratory (PPPL); Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. [Princeton Plasma Physics Laboratory (PPPL); Kozub, T. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Lepson, J. [Lawrence Livermore National Laboratory (LLNL); Lundberg, D. P. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Mansfield, D. [Princeton Plasma Physics Laboratory (PPPL); Paul, S. F. [Princeton Plasma Physics Laboratory (PPPL); Pereverzev, G. V. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Schneider, H. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. [Lawrence Livermore National Laboratory (LLNL); Strickler, T. [Princeton Plasma Physics Laboratory (PPPL); Stotler, D. [Princeton Plasma Physics Laboratory (PPPL); Timberlake, J. [Princeton Plasma Physics Laboratory (PPPL); Zakharov, L. E. [Princeton Plasma Physics Laboratory (PPPL)

2010-01-01T23:59:59.000Z

372

Surface modifications for carbon lithium intercalation anodes  

DOE Patents (OSTI)

A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.

Tran, Tri D. (Livermore, CA); Kinoshita, Kimio (Cupertino, CA)

2000-01-01T23:59:59.000Z

373

X-RAY ABSORPTION SPECTROSCOPY OF TRANSITION METAL-MAGNESIUM HYDRIDE FILMS  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy of Transition Metal-Magnesium Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardson a, *, B. Farangis a , J. L. Slack a , P. Nachimuthu b , R. Pereira b , N. Tamura b , and M. Rubin a a Environmental Energy Technologies Division, b Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California 94720, USA *Corresponding author, E-mail address: tjrichardson@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large changes in both reflectance and transmittance on exposure to hydrogen gas. Changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption

374

Quantum Simulation of Helium Hydride in a Solid-State Spin Register  

E-Print Network (OSTI)

\\emph{Ab initio} computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH$^+$. Moreover, we report an energy uncertainty (given our model basis) of the order of $10^{-14}$ Hartree, which is ten orders of magnitude below desired chemical precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides several important steps towards a fully scalable solid state implementation of a quantum chemistry simulator.

Ya Wang; Florian Dolde; Jacob Biamonte; Ryan Babbush; Ville Bergholm; Sen Yang; Ingmar Jakobi; Philipp Neumann; Alán Aspuru-Guzik; James D. Whitfield; Jörg Wrachtrup

2014-05-12T23:59:59.000Z

375

FeP precipitates in hydride?vapor phase epitaxially grown InP:Fe  

Science Journals Connector (OSTI)

Fe?doped InP was grown by hydride?vapor phase epitaxy.Doping levels up to 8×1018 cm?3 were determined by secondary ion mass spectrometry. Additionally performed photoluminescence measurements revealed a homogeneous distribution of electrically active Fe atoms. From microstructural investigations by analytical transmission electron microscopy spherical?shaped precipitates were detected in plan?view samples. These precipitates with diameters up to 13 nm are homogeneously arranged in the epilayer. For conglomerates of precipitates a distinct enrichment with Fe and P was measured by a comparative energy dispersive x?ray analysis. The lattice plane distances of the precipitates were deduced from the electron diffraction patterns and from high?resolution electron micrographs. A comparison with calculated values for different Fe–P alloys indicates that the precipitates consist mainly of orthorhombic FeP.

M. Luysberg; R. Göbel; H. Janning

1994-01-01T23:59:59.000Z

376

RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride  

DOE Patents (OSTI)

A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

Jeffery, F.R.; Shanks, H.R.

1980-08-26T23:59:59.000Z

377

Startup and Operation of a Metal Hydride Based Isotope Separation Process  

SciTech Connect

Production scale separation of tritium from other hydrogen isotopes at the Savannah River Site (SRS) in Aiken, SC, has been accomplished by several methods. These methods include thermal diffusion (1957--1986), fractional absorption (1964--1968), and cryogenic distillation (1967-present). Most recently, the Thermal Cycling Absorption Process (TCAP), a metal hydride based hydrogen isotope separation system, began production in the Replacement Tritium Facility (RTF) on April 9, 1994. TCAP has been in development at the Savannah River Technology Center since 1980. The production startup of this semi-continuous gas chromatographic separation process is a significant accomplishment for the Savannah River Site and was achieved after years of design, development, and testing.

Scogin, J.H.; Poore, A.S.

1995-02-27T23:59:59.000Z

378

Prediction of a multicenter-bonded solid boron hydride for hydrogen storage  

Science Journals Connector (OSTI)

A layered solid boron hydride structure (B2H2) consisting of a hexagonal boron network and bridge hydrogen which has a gravimetric capacity of 8wt% hydrogen is predicted. The structural, electronic, and dynamical properties of the proposed structure are investigated using first-principles electronic structure methods. The absence of soft phonon modes confirms the dynamical stability of the proposed structure. Charging the structure significantly softens hydrogen related phonon modes. Boron modes, in contrast, are either hardened or not significantly affected by electron doping. Furthermore, self-doping the structure considerably reduces the energy barrier against hydrogen release. These results suggest that electrochemical charging or self-doping mechanisms may facilitate hydrogen release while the underlying boron network remains intact for subsequent rehydrogenation.

Tesfaye A. Abtew; Bi-ching Shih; Pratibha Dev; Vincent H. Crespi; Peihong Zhang

2011-03-07T23:59:59.000Z

379

LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells  

DOE Patents (OSTI)

An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

1999-03-30T23:59:59.000Z

380

Production of Hydrogen by Electrocatalysis: Making the H-H Bond by Combining Protons and Hydrides  

SciTech Connect

Generation of hydrogen by reduction of two protons by two electrons can be catalysed by molecular electrocatalysts. Determination of the thermodynamic driving force for elimination of H2 from molecular complexes is important for the rational design of molecular electrocatalysts, and allows the design of metal complexes of abundant, inexpensive metals rather than precious metals (“Cheap Metals for Noble Tasks”). The rate of H2 evolution can be dramatically accelerated by incorporating pendant amines into diphosphine ligands. These pendant amines in the second coordination sphere function as protons relays, accelerating intramolecular and intermolecular proton transfer reactions. The thermodynamics of hydride transfer from metal hydrides and the acidity of protonated pendant amines (pKa of N-H) contribute to the thermodynamics of elimination of H2; both of the hydricity and acidity can be systematically varied by changing the substituents on the ligands. A series of Ni(II) electrocatalysts with pendant amines have been developed. In addition to the thermochemical considerations, the catalytic rate is strongly influenced by the ability to deliver protons to the correct location of the pendant amine. Protonation of the amine endo to the metal leads to the N-H being positioned appropriately to favor rapid heterocoupling with the M-H. Designing ligands that include proton relays that are properly positioned and thermodynamically tuned is a key principle for molecular electrocatalysts for H2 production as well as for other multi-proton, multi-electron reactions important for energy conversions. The research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for DOE.

Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.

2014-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lithium-Ion Battery Teacher Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Ion Battery Teacher Workshop Lithium Ion Battery Teacher Workshop 2012 2 2 screw eyes 2 No. 14 rubber bands 2 alligator clips 1 plastic gear font 2 steel axles 4 nylon spacers 2 Pitsco GT-R Wheels 2 Pitsco GT-F Wheels 2 balsa wood sheets 1 No. 280 motor Also: Parts List 3 Tools Required 1. Soldering iron 2. Hobby knife or coping saw 3. Glue gun 4. Needlenose pliers 5. 2 C-clamps 6. Ruler 4 1. Using a No. 2 pencil, draw Line A down the center of a balsa sheet. Making the Chassis 5 2. Turn over the balsa sheet and draw Line B ¾ of an inch from one end of the sheet. Making the Chassis 6 3. Draw a 5/8" x ½" notch from 1" from the top of the sheet. Making the Chassis 7 4. Draw Line C 2 ½" from the other end of the same sheet of balsa. Making the Chassis 8 5. Using a sharp utility knife or a coping saw, cut

382

Novel carbonaceous materials for lithium secondary batteries  

SciTech Connect

Carbonaceous materials have been synthesized using pillared clays (PILCs) as templates. The PILC was loaded with organic materials such as pyrene in the liquid and vapor phase, styrene in the vapor phase, trioxane, ethylene and propylene. The samples were then pyrolyzed at 700 C in an inert atmosphere, followed by dissolution of the inorganic template by conventional demineralization methods. X-ray powder diffraction of the carbons showed broad d{sub 002} peaks in the diffraction pattern, indicative of a disordered or turbostratic system. N{sub 2} BET surface areas of the carbonaceous materials range from 10 to 100 m{sup 2}/g. There is some microporosity (r < 1 nm) in the highest surface area carbons. Most of the surface area, however, comes from a mixture of micro and mesopores with radii of 2--5 nm. Electrochemical studies were performed on these carbons. Button cells were fabricated with capacity- limiting carbon pellets electrodes as the cathode a/nd metallic lithium foil as the anode. Large reversible capacities (up to 850 mAh/g) were achieved for most of the samples. The irreversible capacity loss was less than 180 mAh/g after the first cycle, suggesting that these types of carbon materials are very stable to lithium insertion and de-insertion reactions.

Sandi, G.; Winans, R.E.; Carrado, K.A.; Johnson, C.S.

1997-07-01T23:59:59.000Z

383

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and  

E-Print Network (OSTI)

%; primary aluminum production, 6%; continuous casting, 4%; rubber and thermoplastics, 4%; pharmaceuticals, 294 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production resources, reported production and value of production were withheld from publication to avoid disclosing

384

Chemical Shuttle Additives in Lithium Ion Batteries  

SciTech Connect

The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

Patterson, Mary

2013-03-31T23:59:59.000Z

385

Can mirror matter solve the the cosmological lithium problem?  

SciTech Connect

The abundance of lithium-7 confronts cosmology with a long lasting inconsistency between the predictions of standard Big Bang Nucleosynthesis with the baryonic density determined from the Cosmic Microwave Background observations on the one hand, and the spectroscopic determination of the lithium-7 abundance on the other hand. We investigated the influence of the existence of a mirror world, focusing on models in which mirror neutrons can oscillate into ordinary neutrons. Such a mechanism allows for an effective late time neutron injection, which induces an increase of the destruction of beryllium-7and thus a lower final lithium-7 abundance.

Coc, Alain [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Université Paris Sud 11, UMR 8609, Bâtiment 104, 91405 Orsay Campus (France); Uzan, Jean-Philippe; Vangioni, Elisabeth [Institut d'Astrophysique de Paris, UMR-7095 du CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France and Sorbonne Universités, Institut Lagrange de Paris, 98 bis bd Arago, 75014 Paris (France)

2014-05-02T23:59:59.000Z

386

PROGRESS IN DESIGNING A MUON COOLING RING WITH LITHIUM LENSES.  

SciTech Connect

We discuss particle tracking simulations in a storage ring with lithium lens inserts designed for the six-dimensional phase space cooling of muons by the ionization cooling. The ring design contains one or more lithium lens absorbers for transverse cooling that transmit the beam with very small beta-function values, in addition to liquid-hydrogen wedge-shaped absorbers in dispersive locations for longitudinal cooling. Such a ring could comprise the final component of a cooling system for use in a muon collider. The beam matching between dipole-quadrupole lattices and the lithium lenses is of particular interest.

FUKUI,Y.CLINE,D.B.GARREN,A.A.KIRK,H.G.

2004-03-03T23:59:59.000Z

387

Lithium As Plasma Facing Component for Magnetic Fusion Research  

SciTech Connect

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

388

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

None

2010-08-01T23:59:59.000Z

389

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and  

E-Print Network (OSTI)

and greases and in the production of synthetic rubber. Salient Statistics--United States: 1992 1993 1994 199598 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production worldwide. The value of domestic lithium production was estimated to be about $115 million in 1996. Two

390

(Data in metric tons of contained lithium, unless noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and  

E-Print Network (OSTI)

and greases and synthetic rubber production. Salient Statistics--United States: 1991 1992 1993 1994 1995e96 LITHIUM (Data in metric tons of contained lithium, unless noted) Domestic Production and Use. The value of domestic lithium production was estimated to be about $115 million in 1995. Two companies

391

PHYSICAL REVIEW B 84, 205446 (2011) First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery  

E-Print Network (OSTI)

motivation in seeking batteries with higher specific energies and higher energy den- sities. Metal-air of lithium peroxide in the lithium-air battery Yifei Mo, Shyue Ping Ong, and Gerbrand Ceder* Department) The lithium-air chemistry is an interesting candidate for the next-generation batteries with high specific

Ceder, Gerbrand

392

Materials Go/No-Go Decisions Made Within the Department of Energy Metal Hydride Center of Excellence  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Go/No-Go Decisions Made Within Materials Go/No-Go Decisions Made Within the Department of Energy Metal Hydride Center of Excellence (MHCoE) In fulfillment of the end of Fiscal Year 2007 Project Milestone on Materials Down-selection Lennie Klebanoff, Director Sandia National Laboratories Livermore, CA 94551 September/October 2007 1 Acknowledgements The author wishes to acknowledge the contributions of all Principal Investigators within the Metal Hydride Center of Excellence (MHCoE) to the work summarized herein. Their names and affiliations are listed below. Especially significant contributions to this document were made by Dr. Ewa Ronnebro (SNL), Dr. John Vajo (HRL), Prof. Zak Fang (U. Utah), Dr. Robert Bowman Jr. (JPL), Prof. David Sholl (CMU) and Prof. Craig Jensen (U. Hawaii). The author thanks Dr.

393

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network (OSTI)

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

Widom, A; Larsen, L

2012-01-01T23:59:59.000Z

394

Study of integrated metal hydrides heat pump and cascade utilization of liquefied natural gas cold energy recovery system  

Science Journals Connector (OSTI)

The traditional cold energy utilization of the liquefied natural gas system needs a higher temperature heat source to improve exergy efficiency, which barricades the application of the common low quality thermal energy. The adoption of a metal hydride heat pump system powered by low quality energy could provide the necessary high temperature heat and reduce the overall energy consumption. Thus, an LNG cold energy recovery system integrating metal hydride heat pump was proposed, and the exergy analysis method was applied to study the case. The performance of the proposed integration system was evaluated. Moreover, some key factors were also theoretically investigated about their influences on the system performance. According to the results of the analysis, some optimization directions of the integrated system were also pointed out.

Xiangyu Meng; Feifei Bai; Fusheng Yang; Zewei Bao; Zaoxiao Zhang

2010-01-01T23:59:59.000Z

395

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network (OSTI)

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

A. Widom; Y. N. Srivastava; L. Larsen

2012-10-17T23:59:59.000Z

396

Effects on the positive electrode of the corrosion of AB{sub 5} alloys in nickel-metal-hydride batteries  

SciTech Connect

Effects of corrosion of MmNi{sub 4.3{minus}x}Mn{sub 0.3}Al{sub 0.4}Co{sub x} alloys (where Mm = Ce 50%, La 30%, Nd 15%, Pr 5%) are evaluated in nickel-metal-hydride (Ni-MH) cells. Particularly, it is shown how Al released by the corroded alloys pollutes the positive electrode, which endures a loss of charging efficiency, due to the formation of a hydrotalcite-like phase stabilized with Al. Furthermore, since Al is eluted from the hydride electrode and is completely trapped in the positive active material, the titration of this element in the positive electrode is a powerful technique for quantification of the corrosion of AB{sub 5} alloys in Ni-MH cells.

Bernard, P. [SAFT, Marcoussis (France). Research Dept.

1998-02-01T23:59:59.000Z

397

Comparison of H-Mode Plasmas Diverted to Solid and Liquid Lithium Surfaces  

SciTech Connect

Experiments were conducted with a Liquid Lithium Divertor (LLD) in NSTX. Among the goals was to use lithium recoating to sustain deuterium (D) retention by a static liquid lithium surface, approximating the ability of flowing liquid lithium to maintain chemical reactivity. Lithium evaporators were used to deposit lithium on the LLD surface. Improvements in plasma edge conditions were similar to those with lithiated graphite plasma-facing components (PFCs), including an increase in confinement over discharges without lithiumcoated PFCs and ELM reduction during H-modes. With the outer strike point on the LLD, the D retention in the LLD was about the same as that for solid lithium coatings on graphite, or about two times that achieved without lithium PFC coatings. There were also indications of contamination of the LLD surface, possibly due erosion and redeposition of carbon from PFCs. Flowing lithium may thus be needed for chemically active PFCs during long-pulse operation.

R. Kaita, et. al.

2012-07-20T23:59:59.000Z

398

Lithium and magnetic fields in giants. HD 232862 : a magnetic and lithium-rich giant star  

E-Print Network (OSTI)

We report the detection of an unusually high lithium content in HD 232862, a field giant classified as a G8II star, and hosting a magnetic field. With the spectropolarimeters ESPaDOnS at CFHT and NARVAL at TBL, we have collected high resolution and high signal-to-noise spectra of three giants : HD 232862, KU Peg and HD 21018. From spectral synthesis we have inferred stellar parameters and measured lithium abundances that we have compared to predictions from evolutionary models. We have also analysed Stokes V signatures, looking for a magnetic field on these giants. HD 232862, presents a very high abundance of lithium (ALi = 2.45 +/- 0.25 dex), far in excess of the theoretically value expected at this spectral type and for this luminosity class (i.e, G8II). The evolutionary stage of HD 232862 has been precised, and it suggests a mass in the lower part of the [1.0 Msun ; 3.5 Msun ] mass interval, likely 1.5 to 2.0 solar mass, at the bottom of the Red Giant Branch. Besides, a time variable Stokes V signature has...

Lèbre, A; Nascimento, J D do; Konstantinova-Antova, R; Kolev, D; Aurière, M; De Laverny, P; De Medeiros, J R

2009-01-01T23:59:59.000Z

399

Performance and Characterization of Lithium-Ion Type Polymer Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance and Characterization of Lithium-Ion Type Polymer Batteries Performance and Characterization of Lithium-Ion Type Polymer Batteries Speaker(s): Myung D. Cho Date: January 18, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Frank McLarnon A new process for the preparation of lithium-polymer batteries with crosslinked gel-polymer electrolyte will be introduced. The new process employs a thermal crosslinking method rather than cell lamination, and is termed "lithium ion type polymer battery (ITPB)". This thermal crosslinking process has many advantages over the standard lamination method, such as fusing the polymer into the electrodes and better adhesion between the electrolyte and electrodes. The new method results in improved high-temperature stability and a simpler process, as well as the improved

400

Students race lithium ion battery powered cars in Pantex competition |  

NLE Websites -- All DOE Office Websites (Extended Search)

race lithium ion battery powered cars in Pantex competition | race lithium ion battery powered cars in Pantex competition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Students race lithium ion battery powered cars ... Students race lithium ion battery powered cars in Pantex competition Posted By Greg Cunningham, Pantex Public Affairs

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lithium Ion Electrode Production NDE and QC Considerations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Presentation name New Directions in Lithium Ion Electrode In-Line NDE * Low-cost IR laser thickness measurement (can be done in multiple point scans across the web or an entire...

402

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are...  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge December 02, 2014 Measured and calculated rate-performance of a Si thin-film (70...

403

Hierarchically Porous Graphene as a Lithium–Air Battery Electrode  

Science Journals Connector (OSTI)

The lithium–air battery is one of the most promising technologies among various electrochemical energy storage systems. We demonstrate that a novel air electrode consisting of an unusual hierarchical arrangement of functionalized graphene sheets (with no ...

Jie Xiao; Donghai Mei; Xiaolin Li; Wu Xu; Deyu Wang; Gordon L. Graff; Wendy D. Bennett; Zimin Nie; Laxmikant V. Saraf; Ilhan A. Aksay; Jun Liu; Ji-Guang Zhang

2011-10-10T23:59:59.000Z

404

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

405

Thermo-mechanical Behavior of Lithium-ion Battery Electrodes  

E-Print Network (OSTI)

Developing electric vehicles is widely considered as a direct approach to resolve the energy and environmental challenges faced by the human race. As one of the most promising power solutions to electric cars, the lithium ion battery is expected...

An, Kai

2013-11-25T23:59:59.000Z

406

Generation of thermonuclear energy by fusing hydrogen and lithium atoms  

Science Journals Connector (OSTI)

A method of designing a thermonuclear reactor based on the modified Cockroft-Walton accelerator, where the lithium-proton fusion was first observed, is considered. It...15 W/cm2...to the cathode are determined. T...

V. E. Tyrsa; L. P. Burtseva

2003-07-01T23:59:59.000Z

407

Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion...  

NLE Websites -- All DOE Office Websites (Extended Search)

(1) A194-A200 (2014). (1,716 KB) Technology Marketing Summary Berkeley Lab researchers led by Gao Liu have developed an improved lithium ion battery electrolyte containing a...

408

Development of Electrolytes for Lithium-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.75V(LNMO) 5.30V(LNMO) Similar surface species are observed on Pt to metal oxide, polyethylene carbonate and lithium fluorophosphates The metal oxide does not appear to catalyze...

409

Helium Pumping Wall for a Liquid Lithium Tokamak Richard Majeski...  

NLE Websites -- All DOE Office Websites (Extended Search)

Helium Pumping Wall for a Liquid Lithium Tokamak Richard Majeski This invention is designed to be a subsystem of a device, a tokamak with walls or plasma facing components of...

410

Manufacturability Study and Scale-Up for Large Format Lithium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

contributions out of over 40 in FY1314 * Selected publications 1. J. Li, B.L. Armstrong, J. Kiggans, C. Daniel, and D.L. Wood, "Lithium Ion Cell Performance Enhancement...

411

Advances in 3-Volt Lithium Batteries for Electronic Applications  

Science Journals Connector (OSTI)

Significant improvements have been made in recent years in the performance, reliability and operating temperature range of 3-volt primary lithium cell systems. Because of their excellent characteristics, especially their long life, they are not only ...

R. A. Langan; V. Z. Leger; G. R. Tucholski

1985-08-01T23:59:59.000Z

412

Lithium/antiepileptic drugs/naproxen/aripiprazole/memantine interaction  

Science Journals Connector (OSTI)

A 61-year-old man developed cognition disorders during concomitant use of lithium, valproate semisodium, gabapentin, naproxen, aripiprazole and memantine [duration of treatment to reaction onset not clearly state...

2008-05-01T23:59:59.000Z

413

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

414

Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications  

E-Print Network (OSTI)

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

Hu, Qichao

415

Improvement in Plasma Performance with Lithium Coatings in NSTX  

SciTech Connect

Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFCOs) have been demonstrated on many fusion devices, including TFTR, [1] T-11M, [2] and FT-U. [3] Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. [4] The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

Kaita, R; Ahn, J -W; Allain, J P; Bell, M G; Bell, R; Boedo, J; Bush, C; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Stotler, D; Timberlake, J; Wampler, W R; Wilgen, J B

2008-09-12T23:59:59.000Z

416

Improvement in Plasma Performance with Lithium Coatings in NSTX  

SciTech Connect

Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFC's) have been demonstrated on many fusion devices, including TFTR, T-11M, and FT-U. Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

Kaita, R

2009-02-17T23:59:59.000Z

417

Process for manufacturing a lithium alloy electrochemical cell  

DOE Patents (OSTI)

A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

Bennett, William R. (North Olmstead, OH)

1992-10-13T23:59:59.000Z

418

Graphene-Based Composite Anodes for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Graphene has emerged as a novel, highly promising ... . As an anode material for lithium-ion batteries, it was shown that it cannot be ... cycling that leads to the failure of the batteries. To resolve this probl...

Nathalie Lavoie; Fabrice M. Courtel…

2013-01-01T23:59:59.000Z

419

The application of graphene in lithium ion battery electrode materials  

Science Journals Connector (OSTI)

Graphene is composed of a single atomic layer ... concept, structure, properties, preparation methods of graphene and its application in lithium ion batteries. A continuous 3D conductive network formed by graphene

Jiping Zhu; Rui Duan; Sheng Zhang; Nan Jiang; Yangyang Zhang; Jie Zhu

2014-10-01T23:59:59.000Z

420

Hyperfine Studies of Lithium Vapor using Saturated Absorption Spectroscopy  

E-Print Network (OSTI)

the frequency of a laser with respect to an atomic spectral feature.[20] As such, saturated absorptionHyperfine Studies of Lithium Vapor using Saturated Absorption Spectroscopy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Broadening Mechanisms . . . . . . . . . . . . . . . . . . . . . 15 3.4 Saturated Absorption

Cronin, Alex D.

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Challenges and Prospects of Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

422

Thermal Behavior and Modeling of Lithium-Ion Cuboid Battery  

Science Journals Connector (OSTI)

Thermal behaviour and model are important items should be considered when designing a battery pack cooling system. Lithium-ion battery thermal behaviour and modelling method are investigated in this paper. The te...

Hongjie Wu; Shifei Yuan

2013-01-01T23:59:59.000Z

423

Rechargeable lithium battery energy storage systems for vehicular applications.  

E-Print Network (OSTI)

??Batteries are used on-board vehicles for broadly two applications – starting-lighting-ignition (SLI) and vehicle traction. This thesis examines the suitability of the rechargeable lithium battery… (more)

HURIA, TARUN

2012-01-01T23:59:59.000Z

424

An improved lithium acetate method for yeast transformation  

Science Journals Connector (OSTI)

We have studied the effect on Saccharomyces cerevisiae...transformation frequency of varying several parameters of the lithium acetate-mediated transformation protocol first reported by Ito et al. (1983 a). We fo...

Stewart D. Finlayson; Christine Fleming; David R. Berry…

425

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network (OSTI)

A new cathode material for batteries of high energy density.high-energy cathode for rechargeable lithium batteries. Advanced Materialsmaterials are promising cathodes, as they can provide high power and high energy,

Zhu, Jianxin

2014-01-01T23:59:59.000Z

426

Development of Large Format Lithium Ion Cells with Higher Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cells Program Review ES-127 Development of Large Format Lithium Ion Cells with Higher Energy Density Erin O'Driscoll (PI) Han Wu (Presenter) Dow Kokam May 13,...

427

Lithium Source For High Performance Li-ion Cells | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Cells Lithium Source For High Performance Li-ion Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

428

Realization of Bose-Einstein condensation with Lithium-7 atoms  

E-Print Network (OSTI)

This thesis presents our work on developing and improving the techniques of trapping and cooling an ultra-cold cloud of Lithium-7 atoms and the realization of the Bose- Einstein condensate as a first step to study quantum ...

Yu, Yichao

2014-01-01T23:59:59.000Z

429

Lithium-rich stars in the Sloan Digital Sky Survey  

E-Print Network (OSTI)

We report the discovery of 23 lithium-rich post-main-sequence stars, identified from moderate-resolution SDSS spectroscopy and confirmed with high-resolution spectra taken at the Hobby-Eberly Telescope. These new Li-rich stars cover a broad range in mass and evolutionary phase, including bright giants and post-AGB stars. The process responsible for preserving or producing excess lithium in a small fraction of evolved stars remains unclear.

Martell, Sarah L

2012-01-01T23:59:59.000Z

430

Lithium Methyl Carbonate as a Reaction Product of Metallic Lithiumand Dimethyl Carbonate  

SciTech Connect

To improve the understanding of passive film formation on metallic lithium in organic electrolyte, we synthesized and characterized lithium methyl carbonate (LiOCO{sub 2}CH{sub 3}), a prototypical component of the film. The chemical structure of this compound was characterized with Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR), and its thermal stability and decomposition pathway was studied by thermo-gravimetric analysis (TGA). The FTIR spectrum of chemically synthesized compound enabled us to resolve multiple products in the passive film on lithium in dimethyl carbonate (DMC). Lithium methyl carbonate is only one of the components, the others being lithium oxalate and lithium methoxide.

Zhuang, Guorong V.; Yang, Hui; Ross Jr., Philip N.; Xu, Kang; Jow, T. Richard

2005-10-16T23:59:59.000Z

431

Recycling of Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

432

Recent Liquid Lithium Limiter Experiments in CDX-U  

SciTech Connect

Recent experiments in the Current Drive eXperiment-Upgrade (CDX-U) provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R=34 cm, a=22 cm, B{sub toroidal} = 2 kG, I{sub P} =100 kA, T{sub e}(0) {approx} 100 eV, n{sub e}(0) {approx} 5 x 10{sup 19} m{sup -3}) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium pool limiter with an area of 2000 cm{sup 2} (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium pool limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium limited discharges are consistent with Z{sub effective} < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced.

R. Majeski; S. Jardin; R. Kaita; T. Gray; P. Marfuta; J. Spaleta; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; V. Soukhanovskii; R. Maingi; M. Finkenthal; D. Stutman; D. Rodgers; S. Angelini

2005-05-03T23:59:59.000Z

433

Liquid Lithium Limiter Experiments in CDX-U  

SciTech Connect

Recent experiments in the Current Drive Experiment-Upgrade provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R = 34 cm, a = 22 cm, B{sub toroidal} = 2 kG, I{sub P} = 100 kA, T{sub e}(0) = 100 eV, n{sub e}(0) {approx} 5 x 10{sup 19} m{sup -3}) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium tray limiter with an area of 2000 cm{sup 2} (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium-limited discharges are consistent with Z{sub effective} < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced.

R. Majeski; S. Jardin; R. Kaita; T. Gray; P. Marfuta; J. Spaleta; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; V. Soukhanovskii; R. Maingi; M. Finkenthal; D. Stutman; D. Rodgers

2004-10-28T23:59:59.000Z

434

Application of lithium in molten-salt reduction processes.  

SciTech Connect

Metallothermic reductions have been extensively studied in the field of extractive metallurgy. At Argonne National Laboratory (ANL), we have developed a molten-salt based reduction process using lithium. This process was originally developed to reduce actinide oxides present in spent nuclear fuel. Preliminary thermodynamic considerations indicate that this process has the potential to be adapted for the extraction of other metals. The reduction is carried out at 650 C in a molten-salt (LiCl) medium. Lithium oxide (Li{sub 2}O), produced during the reduction of the actinide oxides, dissolves in the molten salt. At the end of the reduction step, the lithium is regenerated from the salt by an electrowinning process. The lithium and the salt from the electrowinning are then reused for reduction of the next batch of oxide fuel. The process cycle has been successfully demonstrated on an engineering scale in a specially designed pyroprocessing facility. This paper discusses the applicability of lithium in molten-salt reduction processes with specific reference to our process. Results are presented from our work on actinide oxides to highlight the role of lithium and its effect on process variables in these molten-salt based reduction processes.

Gourishankar, K. V.

1998-11-11T23:59:59.000Z

435

N-Doped Graphene–VO2(B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery  

Science Journals Connector (OSTI)

N-Doped Graphene–VO2(B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery ... Graphene-based electrode materials for rechargeable lithium batteries ...

C. Nethravathi; Catherine R. Rajamathi; Michael Rajamathi; Ujjal K. Gautam; Xi Wang; Dmitri Golberg; Yoshio Bando

2013-03-13T23:59:59.000Z

436

Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride power  

SciTech Connect

A parametric rate-equation model is described which depicts the time dependent behavior of the isotopic exchange process occurring between the solid and gas phases in gaseous hydrogen (deuterium) flows through packed-powder palladium deuteride (hydride) beds. The exchange mechanism is assumed to be rate-limited by processes taking place on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with recent experimental measurements of isotope exchange in the ..beta..-phase hydrogen/palladium system and, using a literature value of ..cap alpha.. = 2.4, a good description of the experimental data is obtained for p approx. 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of ..cap alpha.. values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

Melius, C F; Foltz, G W

1987-01-01T23:59:59.000Z

437

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications  

SciTech Connect

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

2011-10-05T23:59:59.000Z

438

Methodology of Materials Discovery in Complex Metal Hydrides Using Experimental and Computational Tools  

SciTech Connect

We present a review of the experimental and theoretical methods used in the discovery of new metal-hydrogen materials systems for hydrogen storage applications. Rather than a comprehensive review of all new materials and methods used in the metal hydride community, we focus on a specific subset of successful methods utilizing theoretical crystal structure prediction methods, computational approaches for screening large numbers of compound classes, and medium-throughput experimental methods for the preparation of such materials. Monte Carlo techniques paired with a simplified empirical Hamiltonian provide crystal structure candidates that are refined using Density Functional Theory. First-principle methods using high-quality structural candidates are further screened for an estimate of reaction energetics, decomposition enthalpies, and determination of reaction pathways. Experimental synthesis utilizes a compacted-pellet sintering technique under high-pressure hydrogen at elevated temperatures. Crystal structure determination follows from a combination of Rietveld refinements of diffraction patterns and first-principles computation of total energies and dynamical stability of competing structures. The methods presented within are general and applicable to a wide class of materials for energy storage.

Majzoub, Eric H.; Ronnebro, Ewa

2012-02-22T23:59:59.000Z

439

Hydride vapor phase epitaxy and characterization of high-quality ScN epilayers  

SciTech Connect

The heteroepitaxial growth of ScN films was investigated on various substrates by hydride vapor phase epitaxy (HVPE). Single crystalline mirror-like ScN(100) and ScN(110) layers were successfully deposited on r- and m-plane sapphire substrates, respectively. Homogeneous stoichiometric films (N/Sc ratio 1.01?±?0.10) up to 40??m in thickness were deposited. Their mosaicity drastically improved with increasing the film thickness. The band gap was determined by optical methods to be 2.06?eV. Impurity concentrations including H, C, O, Si, and Cl were investigated through energy dispersive X-ray spectrometry and secondary ion mass spectrometry. As a result, it was found that the presence of impurities was efficiently suppressed in comparison with that of HVPE-grown ScN films reported in the past, which was possible thanks to the home-designed corrosion-free HVPE reactor. Room-temperature Hall measurements indicated that the residual free electron concentrations ranged between 10{sup 18}–10{sup 20}?cm{sup ?3}, which was markedly lower than the reported values. The carrier mobility increased monotonically with the decreasing in carrier concentration, achieving the largest value ever reported, 284?cm{sup 2}?V{sup ?1}?s{sup ?1} at n?=?3.7?×?10{sup 18}?cm{sup ?3}.

Oshima, Yuichi, E-mail: OSHIMA.Yuichi@nims.go.jp; Víllora, Encarnación G.; Shimamura, Kiyoshi [Environment and Energy Materials Research Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2014-04-21T23:59:59.000Z

440

Mixing effect of metal oxides on negative electrode reactions in the nickel-hydride battery  

SciTech Connect

Negative electrodes for use in nickel-hydride batteries were prepared from MmNi[sub 3.6]Mn[sub 0.4]Al[sub 0.3]Co[sub 0.7] (Mm = misch metal with the composition of 24.87% La, 52.56% Ce, 5.57% Pr, 16.86% Nd, and 0.14% Sm) alloy being mixed with RuO[sub 2] or Co[sub 3]O[sub 4] powder. Then the hydrogen evolution reactions at the electrodes were investigated by measuring the potential decay immediately after the interruption of an applied cathodic current. The reactions were found to proceed by the Volmer-Tafel mechanism. The total overvoltage ([eta]) was divided into two components ([eta][sub 1] and [eta][sub 2]) corresponding to the Tafel and Volmer reactions. The exchange current densities of the elementary reactions, i[sub 0V] and i[sub 0T], were then evaluated by extrapolating the Tafel lines for [eta][sub 1] and [eta][sub 2]. The Volmer reaction is much more accelerated by surface modification with RuO[sub 2] or Co[sub 3]O[sub 4] powder than the Tafel reaction, which results in the enrichment of adsorbed hydrogen, leading to higher charging efficiency.

Iwakura, Chiaki; Matsuoka, Masao; Kohno, Tatsuoki (Univ. of Osaka Prefecture (Japan). Dept. of Applied Chemistry)

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Controlled Nucleation and Growth Process of Li2S2/Li2S in Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nucleation and Growth Process of Li2S2Li2S in Lithium-Sulfur Batteries. Controlled Nucleation and Growth Process of Li2S2Li2S in Lithium-Sulfur Batteries. Abstract:...

442

Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application  

Science Journals Connector (OSTI)

Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application ... Fabrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries ...

Arava Leela Mohana Reddy; Anchal Srivastava; Sanketh R. Gowda; Hemtej Gullapalli; Madan Dubey; Pulickel M. Ajayan

2010-10-08T23:59:59.000Z

443

Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries  

E-Print Network (OSTI)

Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes ...

Oh, Dahyun

444

Design of Safer High-Energy Density Materials for Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Safer High-Energy Density Materials for Lithium-Ion Cells Design of Safer High-Energy Density Materials for Lithium-Ion Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

445

LITHIUM ISOTOPIC COMPOSITION OF CHONDRITIC METEORITES. W. F. McDonough1 , P. B. Tomascak1  

E-Print Network (OSTI)

LITHIUM ISOTOPIC COMPOSITION OF CHONDRITIC METEORITES. W. F. McDonough1 , F- Z. Teng1 , P. B processes involving aqueous fluids, given the potential solubility of lithium [1]. In this respect, Li

Mcdonough, William F.

446

Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials  

DOE Patents (OSTI)

Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

2014-02-04T23:59:59.000Z

447

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory 2013 DOE Hydrogen...

448

Thermal behaviors of electrolytes in lithium-ion batteries determined by differential scanning calorimeter  

Science Journals Connector (OSTI)

Lithium-ion batteries have been widely used in daily electric ... occurred from time to time. Lithium-ion batteries composed of various electrolytes (containing organic solvents ... to meet safety requirements of...

Yu-Yun Sun; Tsai-Ying Hsieh; Yih-Shing Duh…

2014-06-01T23:59:59.000Z

449

E-Print Network 3.0 - aluminum-lithium alloys processed Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

aluminum-lithium alloys, there is a precipitation of metastable, coherent, L1... and fracture toughness of aluminum-lithium alloys can be improved by the addition of zirconium...

450

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

A new cathode material for batteries of high energy density.art positive electrode materials for high-energy lithium ionwhen exploring new materials for high-energy lithium ion

Wilcox, James D.

2010-01-01T23:59:59.000Z

451

E-Print Network 3.0 - all-solid-state lithium secondary Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

SOC and SOH of Lithium-ion Cells A. Zenati1,* , Ph. Desprez1 , H. Razik2 and S. Rael3 1 SAFT... at analyzing lithium-ion batteries performances with aging, for different state of...

452

Columbia University Environmental Health and Safety The Safe Use of  

E-Print Network (OSTI)

aluminum Metallic hydrides, such as sodium hydride, potassium hydride, lithium aluminum hydride and some boranes. Finely divided metals, such as: aluminum, lithium, magnesium, titanium, zinc, zirconium, sodium of reagents. Mineral oil bubblers must be employed at all times to release excess pressure from reagent

Jia, Songtao

453

Study of the Secondary Benefits of the ZEV Mandate  

E-Print Network (OSTI)

metal hydride and lithium batteries -- Electrochemical capacitors (ultracapacitors) -- Pulse power batteries -- Improved lead-acid batteries -- Zinc-air batteries --

Burke, Andrew; Kurani, Ken; Kenney, E.J.

2000-01-01T23:59:59.000Z

454

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

455

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network (OSTI)

lithium batteries. Because the stoichiometric spinel LiMn204 exhibits significant capacity fading during charge/discharge cycling, excess

Chen, Guoying

2010-01-01T23:59:59.000Z

456

Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes  

Science Journals Connector (OSTI)

Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes ... Despite rapidly growing interest in the application of graphene in lithium ion batteries, the interaction of the graphene with lithium ions and electrolyte species during electrochemical cycling is not fully understood. ...

Bin Wang; Xianglong Li; Xianfeng Zhang; Bin Luo; Meihua Jin; Minghui Liang; Shadi A. Dayeh; S. T. Picraux; Linjie Zhi

2013-01-02T23:59:59.000Z

457

EXPERIMENTAL MEASUREMENTS OF THE INTERFACE THERMAL CONDUCTANCE OF A LITHIUM METATITANATE PEBBLE BED  

E-Print Network (OSTI)

, CA 90095 aliabousena@engineering.ucla.edu The thermal properties of the lithium ceramics pebble beds will help to create a reliable database of the thermal properties of the lithium ceramics pebble beds. I heat is transferred from the hot lithium ceramic pebble beds to the coolant. The thermal properties

Abdou, Mohamed

458

Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: A case study  

E-Print Network (OSTI)

Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites-zone metamorphism far removed from the pluton to partially melted rocks adjacent to the pluton. Lithium on the aureole scale. Published by Elsevier B.V. Keywords: Lithium; Isotope fractionation; Metamorphic

Mcdonough, William F.

459

Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Ushikubo a,  

E-Print Network (OSTI)

Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Hills lithium weathering continental crust Hadean In situ Li analyses of 4348 to 3362 Ma detrital of REEs. The Jack Hills zircons also have fractionated lithium isotope ratios (7 Li=-19 to+13) about five

Mcdonough, William F.

460

Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina  

E-Print Network (OSTI)

Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from in revised form 6 July 2004 Abstract The lithium concentration and isotopic composition of two saprolites the behavior of lithium isotopes during continental weathering. Both saprolites show a general trend

Rudnick, Roberta L.

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Lithium in cool stellar atmospheres: Big bang nucleosynthesis and extrasolar planets  

E-Print Network (OSTI)

Lithium in cool stellar atmospheres: Big bang nucleosynthesis and extrasolar planets Matthias Steffen and Elisabetta Caffau Sternphysik In metal-poor stellar atmospheres, the Lithium line at 6707 Ã?-NLTE, respectively. The accurate spectroscopic determination of the Lithium abundance and in particular the 6Li/7Li

462

Lithium isotopic composition and concentration of the deep continental crust Fang-Zhen Teng a,  

E-Print Network (OSTI)

Lithium isotopic composition and concentration of the deep continental crust Fang-Zhen Teng a April 2008 Accepted 5 June 2008 Editor: B. Bourdon Keywords: Lithium Isotope fractionation Deep. Lithium concentrations of granulite xenoliths also vary widely (0.5 to 21 ppm) and are, on average, lower

Mcdonough, William F.

463

Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota  

E-Print Network (OSTI)

Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota Fang compositions may reflect Li isotopic fractionation resulting from extensive crystal-melt fractionation. Lithium fractionation in the near­surface environment of > 60 (Tomascak, 2004). Lithium isotopic fractionation has been

Rudnick, Roberta L.

464

Lithium diffusion mechanisms in layered intercalation compounds A. Van der Ven*  

E-Print Network (OSTI)

Lithium diffusion mechanisms in layered intercalation compounds A. Van der Ven* , G. Ceder; accepted 28 December 2000 Abstract We investigate the mechanisms of lithium diffusion in layered intercalation compounds from ®rst-principles. We focus on LixCoO2 and ®nd that lithium diffusion

Ceder, Gerbrand

465

Reply: Lithium and Increased Cortical Gray Matter--More Tissue or More Water?  

E-Print Network (OSTI)

Reply: Lithium and Increased Cortical Gray Matter--More Tissue or More Water? To the Editor: W e cortices, in lithium-treated patients with bipolar disorder, relative to healthy control subjects (1). Dr patients. Although lithium's effects on body water homeostasis (2) are important to consider, the absence

Thompson, Paul

466

Abstract: The deproto-metalation reactions of pyrimidine and pyrazine were regioselectively carried out using lithium  

E-Print Network (OSTI)

carried out using lithium tri(2,2,6,6-tetramethylpiperidino)cadmate in tetrahydrofuran at room temperature instead of 1/3). Key words: Metalations, Cadmium, Lithium, Heterocycles, Iodine. Procedure 1 25 mmol scale metalation of aromatic rings, and various strong bases such as alkylli- thiums and lithium dialkylamides have

Boyer, Edmond

467

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents (OSTI)

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

Hobson, D.O.

1998-01-06T23:59:59.000Z

468

Local Electromechanical Response at a Single Ferroelectric Domain Wall in Lithium Niobate  

E-Print Network (OSTI)

-antisites (which are excess Nb atoms at Li locations), and lithium vacancies denoted by Li. The defect equilibriumLocal Electromechanical Response at a Single Ferroelectric Domain Wall in Lithium Niobate DAVID A electromechanical response across a single ferroelectric domain wall in congruent lithium niobate at room

Gopalan, Venkatraman

469

Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes  

Science Journals Connector (OSTI)

...system) and a photograph of the battery used to power a green LED...electrode in a lithium-ion battery using lithium metal foil as...nanowires as a lithium-ion battery cathode was evaluated (Fig...expected to bind favorably to the graphene surface via {pi}-stacking...

Yun Jung Lee; Hyunjung Yi; Woo-Jae Kim; Kisuk Kang; Dong Soo Yun; Michael S. Strano; Gerbrand Ceder; Angela M. Belcher

2009-05-22T23:59:59.000Z

470

Understanding structural defects in lithium-rich layered oxide cathodes Karalee A. Jarvis,a  

E-Print Network (OSTI)

the required amounts of lithium, manganese, and nickel acetates were added to this solution. The molar ratioUnderstanding structural defects in lithium-rich layered oxide cathodes Karalee A. Jarvis, Accepted 31st March 2012 DOI: 10.1039/c2jm30575e Planar defects in lithium-rich layered oxides were

Ferreira, Paulo J.

471

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network (OSTI)

several years SAFT has developed a range of lithium ion cells and batteries to cover the full spectrum. To follow such a characteristic, electrochemical impedance spectroscopy (EIS) measurements on SAFT lithium-ion cells The cells used are lithium-ion SAFT power cells: VL30P which outputs a nominal capacity of 30 Ah

Paris-Sud XI, Université de

472

Molecular Structure and Stability of Dissolved Lithium Polysulfide Species  

SciTech Connect

Ability to predict the solubility and stability of lithium polysulfide is vital in realizing longer lasting lithium-sulfur batteries. Herein we report a combined computational and experimental spectroscopic analysis to understand the dissolution mechanism of lithium polysulfide species in an aprotic solvent medium. Multinuclear NMR and sulfur K-edge X-ray absorption (XAS) analysis reveals that the lithium exchange between polysulfide species and solvent molecule constitutes the first step in the dissolution process. Lithium exchange leads to de-lithiated polysulfide ions which subsequently forms highly reactive free radicals through disproportion reaction. The energy required for the disproportion and possible dimer formation reactions of the polysulfide species are analyzed using density functional theory (DFT) calculations. We validate our calculations with variable temperature electron spin resonance (ESR) measurements. Based on these findings, we discuss approaches to optimize the electrolyte in order to control the polysulfide solubility. The energy required for the disproportion and possible dimer formation reactions of the polysulfide species are analyzed using density functional theory (DFT) calculations. We validate our calculations with variable temperature electron spin resonance (ESR) measurements. Based on these findings, we discuss approaches to optimize the electrolyte in order to control the polysulfide solubility.

Vijayakumar, M.; Govind, Niranjan; Walter, Eric D.; Burton, Sarah D.; Shukla, Anil K.; Devaraj, Arun; Xiao, Jie; Liu, Jun; Wang, Chong M.; Karim, Ayman M.; Thevuthasan, Suntharampillai

2014-03-24T23:59:59.000Z

473

Recent advances in lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithium–sulfur (Li–S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg?1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li–S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li–S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li–S cells, but also we cover some of our proposals for engineering of Li–S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li–S batteries in the near future.

Lin Chen; Leon L. Shaw

2014-01-01T23:59:59.000Z

474

A resolution of the cosmic Lithium problem  

E-Print Network (OSTI)

In 1982, Monique and Francois Spite discovered that the 7Li abundance in the atmosphere of old metal-poor dwarf stars in the galactic halo was independent of metallicity and temperature. Since then, 7Li abundance in the Universe has become a subject of intrigue, because there is less of it in Population II dwarf stars (by a factor of 3) than standard big bang nucleosynthesis predicts. Here we show how quark-novae (QNe) occurring in the wake of Pop. III stars, can elegantly produce an A(Li) ~ 2.2 Lithium plateau in Pop. II (low-mass) stars formed in the pristine cloud swept up by the mixed SN+QN ejecta. We also find an increase in the scatter as well as an eventual drop in A(Li) below the Spite plateau values for very low metallicity ([Fe/H] < -3) in excellent agreement with observations. We propose a solution to the discrepancy between the Big Bang Nucleosynthesis 7Li abundance and the Spite plateau and list some implications and predictions of our model.

Rachid Ouyed

2014-02-20T23:59:59.000Z

475

Lithium bromide chiller technology in gas processing  

SciTech Connect

Lithium Bromide (LiBr) Absorption Chillers have been in use for more than half a century, mainly in the commercial air conditioning industry. The Gas Research Institute and EnMark Natural Gas Company co-funded a field test to determine the viability of this commercial air conditioning technology in the gas industry. In 1991, a 10 MMCFC natural gas conditioning plant was constructed in Sherman, Texas. The plant was designed to use a standard, off-the-shelf chiller from Trane with a modified control scheme to maintain tight operating temperature parameters. The main objective was to obtain a 40 F dewpoint natural gas stream to meet pipeline sales specifications. Various testing performed over the past three years has proven that the chiller can be operated economically and on a continuous basis in an oilfield environment with minimal operation and maintenance costs. This paper will discuss how a LiBr absorption chiller operates, how the conditioning plant performed during testing, and what potential applications are available for LiBr chiller technology.

Huey, M.A.; Leppin, D.

1995-12-31T23:59:59.000Z

476

Nitrosamines as Environmental Carcinogens: II. Evidence for the Presence of Nitrosamines in Tobacco Smoke Condensate  

Science Journals Connector (OSTI)

...A). The yield was 2.0 gm. Lithium Aluminum Hydride Redv@ctiimof...to a suspension of 1.0 gm of lithium aluminum hydride in 15 ml of absolute...water were added to decom pose the excess lithium aluminum hydride. Finally, the...

W. J. Serfontein and P. Hurter

1966-04-01T23:59:59.000Z

477

A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.  

SciTech Connect

Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

2013-03-01T23:59:59.000Z

478

ABAA - 6th International Conference on Advanced Lithium Batteries for  

NLE Websites -- All DOE Office Websites (Extended Search)

Greetings! Greetings! Khalil Amine Chairman Khalil Amine Dear Colleagues, Welcome to the website of the 6th International Conference on Advanced Lithium Batteries for Automotive Applications (ABAA6). As Chairman of the ABAA Conference Organizing Committee, it is my great pleasure to cordially invite you to attend ABAA6. Every year, the ABAA Conference Organizing Committee hosts distinguished speakers from all over the world in the field of lithium battery research and development with a focus on automotive applications. ABAA6's primary goal is to provide attendees from both academia and industry an opportunity to meet and exchange information on advances in lithium battery research with the aim of enabling the electrification of vehicles. This year, the conference will focus on:

479

hybrid electric vehicle and lithium polymer nev testing  

NLE Websites -- All DOE Office Websites (Extended Search)

P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing James Edward Francfort Advanced Vehicle Testing Activity Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID. 83415-3830 james.francfort@inl.gov Abstract: The U.S. Department of Energy's Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery. Keywords: hybrid; neighborhood; electric; battery; fuel;

480

Overcharge Protection for the New Generation of Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Overcharge Protection for the New Generation of Lithium Batteries Overcharge Protection for the New Generation of Lithium Batteries Speaker(s): Thomas Richardson Date: January 18, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney Lithium batteries supplied with cellular telephones and other personal electronic devices provide unprecedented power and capacities in very small formats. They are able to deliver such high performance because they incorporate highly reactive materials in both the positive and negative electrodes, resulting in individual cell potentials of nearly 4 V. Exposure to high temperatures or abusive treatment including overcharging can cause catastrophic failure of these batteries, resulting in gas venting, fire, or even explosion. Mechanical and electronic safety devices are employed to

Note: This page contains sample records for the topic "hydride lithium polymer47" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Lithium ion batteries with titania/graphene anodes  

DOE Patents (OSTI)

Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

2013-05-28T23:59:59.000Z

482

Structural analysis of lithium-excess lithium manganate cathode materials by 7Li magic-angle spinning nuclear magnetic resonance spectroscopy  

Science Journals Connector (OSTI)

The local structures of lithium-excess lithium manganese spinel oxides were studied by high-resolution solid-state 7Li magic-angle spinning (MAS) NMR spectroscopy. Two resonance lines at ?500 and ?555 ppm were observed for the spinels in 7Li MAS NMR spectra. Spinel stability tests in which spinel powder was stored in electrolyte solution were performed to analyze the changes in the lithium local structure after manganese dissolution. After the spinel stability test, the intensity of the resonance at ?500 ppm decreased, whereas new resonance line at 0 ppm was observed. The lithium content of the 0 ppm peak increases with the storage time in electrolyte. SEM and chemical analysis suggested a surface coating of non-spinel lithium compounds, the presence of defects on particles surface and fluorine incorporation into the aged spinel. In addition, about 60–70% of lithium remains in the spinel framework after the storage.

Hideyuki Oka; Senshi Kasahara; Tadashi Okada; Eiichi Iwata; Masaki Okada; Takayuki Shoji; Hiroshi Ohki; Tsutomu Okuda

2001-01-01T23:59:59.000Z

483

A Car–Parrinello and path integral molecular dynamics study of the intramolecular lithium bond in the lithium 2-pyridyl- N -oxide acetate  

Science Journals Connector (OSTI)

Lithium bonding in lithium 2-pyridyl- N -oxide acetate has been investigated using classic Car–Parrinello molecular dynamics (CPMD) and the path integral approach [path integrals molecular dynamics (PIMD)]. The simulations have been performed in 300 K. Structures energies and lithium trajectories have been determined. The CPMD results show that the lithium atom is generally equidistant between heavy atoms in the ( O ? Li ? O ) bridge. Applying quantum effects through the PIMD leads to similar conclusion. The theoretical lithium 2-pyridyl- N -oxide acetate infrared spectrum has also been determined using the CPMD calculations. This shows very good agreement with available experimental results and reproduces well the broad low-frequency band observed experimentally. In order to gain deeper understanding of the nature of the lithium bonding topological analysis of the electron localization function has been applied.

Piotr Durlak; Zdzis?aw Latajka; S?awomir Berski

2009-01-01T23:59:59.000Z

484

First-principles study of graphene-lithium structures for battery applications  

Science Journals Connector (OSTI)

In order to identify the best and most promising graphene-lithium structures for battery applications we performed a systematic study of different multilayer graphene-lithium structures using first-principles density-functional theory. The most promising structure identified is a few layer compound which contains a single graphene layer and four lithium layers. In this structure lithium density is six times higher than that of intercalated graphite and high lithium density observed in recent experiments can be due to this structure. In addition we show that electron density distribution around the positive Li ions is very important to design new advanced materials for battery applications.

Alper Buldum; Gulcin Tetiker

2013-01-01T23:59:59.000Z

485

Lithium Isotope Analyses of Inorganic Constituents from the Murchison Meteorite  

Science Journals Connector (OSTI)

Aqueous processes were important modifiers of solid matter during the early stages of solar system history. Lithium isotopes are sensitive indicators of such solid-liquid interactions because 7Li passes preferentially into solution and 6Li remains behind in the solid phase. Lithium isotope ratios of inorganic phases in the Murchison meteorite reveal that the value for the whole rock is simply the average of individual components with widely different isotopic compositions. 7Li content increases from chondrules to phyllosilicate-rich matrices to carbonates, as would be expected from the relative duration each component has spent during aqueous alteration on the parent asteroid.

Mark A. Sephton; Rachael H. James; Philip A. Bland

2004-01-01T23:59:59.000Z

486

LA SPECTROSCOPIE DE PERTE D'ÉNERGIE DES ÉLECTRONS APPLIQUÉE AUX BATTERIES AU LITHIUM : EXPÉRIENCES ET SIMULATIONS AU SEUIL K DU LITHIUM.  

E-Print Network (OSTI)

??Ce travail combine études expérimentales et théoriques au seuil K du lithium dans le but de permettre une meilleure compréhension des propriétés des matériaux pour… (more)

Mauchamp, V.

2006-01-01T23:59:59.000Z

487

Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone  

Science Journals Connector (OSTI)

Abstract The small fuel cell is being researched as an alternative power source to the Li-ion battery in mobile phone. In this paper, a direct hydrogen fuel cell system which powers a mobile phone without a supplementary battery is compactly integrated below 25 ml volume at the backside of the phone. The system consists of a small (8 ml) metal hydride hydrogen storage tank with 4 L hydrogen storage or an energy density of ?640 W h/L, a thin air-breathing planar polymer electrolyte membrane fuel cell (PEMFC) stack (13.44 cm2 × 3 mm for a volumetric power density of 335 W/L), miniature pressure regulator, and a high efficiency DC–DC voltage converting circuitry. The hydrogen storage tank is packed with the AB5 type metal hydride alloy. The eight-cell air-breathing planar stack (8 ml) is very thin (3 mm) due to a thin flexible printed circuit board current collectors as well as a unique riveting assembly and is capable of a robust performance of 2.68 W (200 mW/cm2). A miniature pressure regulator is compact with fluidic and electrical connections within 4 ml. A miniature DC–DC voltage converter operates at an overall efficiency of 90%. Consequently, the estimated energy density of a fully integrated fuel cell system is 205 W h/L (70.5 W h/kg).

Sung Han Kim; Craig M. Miesse; Hee Bum Lee; Ik Whang Chang; Yong Sheen Hwang; Jae Hyuk Jang; Suk Won Cha

2014-01-01T23:59:59.000Z

488

Molybdenum nitride/nitrogen-doped graphene hybrid material for lithium storage in lithium ion batteries  

Science Journals Connector (OSTI)

Abstract Molybdenum nitride and nitrogen-doped graphene nanosheets (MoN/GNS) hybrid materials are synthesized by a simple hydrothermal method combined with a heat treatment at 800 °C under an ammonia atmosphere. It is found by scanning and transmission electron microscopy that MoN nanoparticles ranging from 20 to 40 nm in diameter are homogeneously anchored to GNS. The electrochemical performance of MoN/GNS as a possible anode material for Li-ion batteries is investigated. Galvanostatic charge/discharge experiments reveal that the hybrid materials exhibit an enhanced lithium storage capacity and excellent rate capacity as a result of its efficient electronic and ionic mixed conducting network. The electrochemical results demonstrate that the weight ratio of GNS and MoN had significant effect on the electrochemical performance.

Botao Zhang; Guanglei Cui; Kejun Zhang; Lixue Zhang; Pengxian Han; Shanmu Dong

2014-01-01T23:59:59.000Z

489

Model based design of an automotive-scale, metal hydride hydrogen storage system.  

SciTech Connect

Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage system using the complex metal hydride sodium alanate. Over the 6 year project, the team tackled the primary barriers associated with storage and delivery of hydrogen including mass, volume, efficiency and cost. The result was the hydrogen storage demonstration system design. The key technologies developed for this hydrogen storage system include optimal heat exchange designs, thermal properties enhancement, a unique catalytic hydrogen burner and energy efficient control schemes. The prototype system designed, built, and operated to demonstrate these technologies consists of four identical hydrogen storage modules with a total hydrogen capacity of 3 kg. Each module consists of twelve stainless steel tubes that contain the enhanced sodium alanate. The tubes are arranged in a staggered, 4 x 3 array and enclosed by a steel shell to form a shell and tube heat exchanger. Temperature control during hydrogen absorption and desorption is accomplished by circulating a heat transfer fluid through each module shell. For desorption, heat is provided by the catalytic oxidation of hydrogen within a high efficiency, compact heat exchanger. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to the circulating heat transfer fluid. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. An overview of the hydrogen storage system will be given, and examples of these models and simulation results will be described and related to component design. In addition, comparisons of demonstration system experimental results to model predictions will be reported.

Johnson, Terry Alan; Kanouff, Michael P.; Jorgensen, Scott W. (General Motors R& D); Dedrick, Daniel E.; Evans, Gregory Herbert

2010-11-01T23:59:59.000Z

490

Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides  

SciTech Connect

An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

Leon-Escamilla, E.A.

1996-10-17T23:59:59.000Z

491

California Geothermal Power Plant to Help Meet High Lithium Demand  

Energy.gov (U.S. Department of Energy (DOE))

Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

492

Non-aqueous electrolyte for lithium-ion battery  

DOE Patents (OSTI)

The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

2014-04-15T23:59:59.000Z

493

Performance Projections For The Lithium Tokamak Experiment (LTX)  

SciTech Connect

Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized.

Majeski, R.; Berzak, L.; Gray, T.; Kaita, R.; Kozub, T.; Levinton, F.; D.P. Lundberg,,; Manickam, J.; Pereverzev, G. V.; Snieckus, K.; Soukhanovskii, V.; Spaleta, J.; Stotler, D.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.

2009-06-17T23:59:59.000Z

494

Novel carbonaceous materials used as anodes in lithium ion cells  

SciTech Connect

The objective of this work is to synthesize disordered carbons used as anodes in lithium ion batteries, where the porosity and surface area are controlled. Both parameters are critical since the irreversible capacity obtained in the first cycle seems to be associated with the surface area (an exfoliation mechanism occurs in which the exposed surface area continues to increase).

Sandi, G.; Winans, R.E.; Carrado, K.A.

1997-09-01T23:59:59.000Z

495

Phosphorous Computer Modeling of Crystalline Electrolytes: Lithium Thiophosphates and Phosphates  

E-Print Network (OSTI)

-search algorithm · Minimum-energy migration paths were determined via the construction of a weighted graph Results: Abstract Recently, lithium thiophosphate materials suitable for usage as solid electrolytes with PAW functionals generated using atompaw, and used in pwscf and abinit) · Formation energies

Holzwarth, Natalie

496

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network (OSTI)

lithium ion batteries. Materials Science & Engineering R-Ion Batteries by Jianxin Zhu Doctor of Philosophy, Graduate Program in Materials Science and EngineeringIon Batteries A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering

Zhu, Jianxin

2014-01-01T23:59:59.000Z

497

Synthesis and electrochemical characterisation of electrospun lithium titanate ultrafine fibres  

Science Journals Connector (OSTI)

Lithium acetate dihydrate (>99.0 %, Sigma-Aldrich ... %, Sigma-Aldrich) were used for the synthesis of Li4Ti5O12. PVP (Aldrich, M w = 3.6 × 105) was used as the base polymer for the electrospinn...

C. P. Sandhya; Bibin John; C. Gouri

2013-09-01T23:59:59.000Z

498

Issue and challenges facing rechargeable thin film lithium batteries  

Science Journals Connector (OSTI)

New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5–6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development.

Arun Patil; Vaishali Patil; Dong Wook Shin; Ji-Won Choi; Dong-Soo Paik; Seok-Jin Yoon

2008-01-01T23:59:59.000Z

499

High power density self-cooled lithium-vanadium blanket.  

SciTech Connect

A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

Gohar, Y.; Majumdar, S.; Smith, D.

1999-07-01T23:59:59.000Z

500

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Title Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Publication Type Journal Article Year of Publication 2012 Authors Ridgway, Paul L., Honghe Zheng, A. F. Bello, Xiangyun Song, Shidi Xun, Jin Chong, and Vincent S. Battaglia Journal Journal of The Electrochemical Society Volume 159 Issue 5 Pagination A520 Date Published 2012 ISSN 00134651 Abstract Battery grade graphite products from major suppliers to the battery industry were evaluated in 2325 coin cells with lithium counter electrodes. First and ongoing cycle efficiency, total and reversible capacity, cycle life and discharge rate performance were measured to compare these anode materials. We then ranked the graphites using a formula which incorporates these performance measures to estimate the cost of the overall system, relative to the cost of a system using MCMB. This analysis indicates that replacing MCMB with CCP-G8 (Conoco Phillips) would add little to no cost, whereas each of the other graphites would lead to a more costly system. Therefore we chose CCP-G8 as the new baseline graphite for the BATT program.