Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Offshore hydraulic fracturing technique  

SciTech Connect (OSTI)

This paper describes the frac-and-pack completion technique currently being used in the Gulf of Mexico, and elsewhere, for stimulation and sand control. The paper describes process applications and concerns that arise during implementation of the technique and discusses the completion procedure, treatment design, and execution.

Meese, C.A. (Marathon Oil Co., Houston, TX (United States)); Mullen, M.E. (Marathon Oil Co., Lafayette, LA (United States)); Barree, R.D. (Marathon Oil Co., Littleton, CO (United States))

1994-03-01T23:59:59.000Z

2

Hydraulic Fracturing (Vermont)  

Broader source: Energy.gov [DOE]

Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

3

Hydraulic fracturing-1  

SciTech Connect (OSTI)

This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

Not Available

1990-01-01T23:59:59.000Z

4

Suspensions in hydraulic fracturing  

SciTech Connect (OSTI)

Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

Shah, S.N. [Univ. of Oklahoma, Norman, OK (United States)

1996-12-31T23:59:59.000Z

5

Hydraulic fracturing in a naturally fractured reservoir  

SciTech Connect (OSTI)

Hydraulic fracturing of wells in naturally fractured reservoirs can differ dramatically from fracturing wells in conventional isotropic reservoirs. Fluid leakoff is the primary difference. In conventional reservoirs, fluid leakoff is controlled by reservoir matrix and fracture fluid parameters. The fluid leakoff rate in naturally fractured reservoirs is typically excessive and completely dominated by the natural fractures. This paper presents several field examples of a fracture stimulation program performed on the naturally fractured Devonia carbonate of West Texas. Qualitative pressure decline analysis and net treating pressure interpretation techniques were utilized to evaluate the existence of natural fractures in the Devonian Formation. Quantitative techniques were utilized to assess the importance of the natural fractures to the fracturing process. This paper demonstrates that bottomhole pressure monitoring of fracture stimulations has benefits over conducting minifrac treatments in naturally fractured reservoirs. Finally, the results of this evaluation were used to redesign fracture treatments to ensure maximum productivity and minimize costs.

Britt, L.K.; Hager, C.J.; Thompson, J.W.

1994-12-31T23:59:59.000Z

6

Numerical Modeling of Hydraulic Fracturing in Oil Sands  

E-Print Network [OSTI]

Hydraulic fracturing is a widely used and e cient technique for enhancing oil ... for analyzing hydraulic fracturing in rocks, are in general not satisfactory for oil ...

2008-11-16T23:59:59.000Z

7

Hydraulic Fracturing in Particulate Materials.  

E-Print Network [OSTI]

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has… (more)

Chang, Hong

2004-01-01T23:59:59.000Z

8

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

9

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

10

Hydraulic fracturing and shale gas extraction.  

E-Print Network [OSTI]

??In the past decade the technique of horizontal drilling and hydraulic fracturing has been improved so much that it has become a cost effective method… (more)

Klein, Michael

2012-01-01T23:59:59.000Z

11

Hydraulic Fracturing Simulation of Complex Fractures Growth in Naturally Fractured Shale Gas Reservoir  

Science Journals Connector (OSTI)

Hydraulic fracturing is regarded as one of the essential techniques for developing shale reservoirs at present. During fracturing, propagation of multi-fractures and complex fracture network is developed as re...

Wang Song; Zhao Jinzhou; Li Yongming

2014-10-01T23:59:59.000Z

12

Hydraulic Fracturing Poster | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydraulic Fracturing Poster Hydraulic Fracturing Poster Educational poster graphically displaying the key components of hydraulic fracturing. Teachers: If you would like hard...

13

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

14

NETL Releases Hydraulic Fracturing Study  

Broader source: Energy.gov [DOE]

The National Energy Technology Laboratory has released a technical report on the results of a limited field study that monitored a hydraulic fracturing operation in Greene County, PA.

15

Hydraulic fracture mechanism in unconsolidated formations.  

E-Print Network [OSTI]

??Most models developed for hydraulic fracturing in unconsolidated sands are based on Linear Elastic Fracture Mechanics (LEFM) and tensile fracture (Mode I fracture). However, in… (more)

Hosseini, Seyed Mehran

2012-01-01T23:59:59.000Z

16

Hydraulic Fracturing Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil & Gas » Shale Gas » Hydraulic Oil & Gas » Shale Gas » Hydraulic Fracturing Technology Hydraulic Fracturing Technology Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Hydraulic fracturing is a technique in which large volumes of water and sand, and small volumes of chemical additives are injected into low-permeability subsurface formations to increase oil or natural gas flow. The injection pressure of the pumped fluid creates fractures that enhance gas and fluid flow, and the sand or other coarse material holds the fractures open. Most of the injected fluid flows back to the wellbore and is pumped to the surface.

17

Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures  

E-Print Network [OSTI]

Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF...

Xue, Wenxu

2011-02-22T23:59:59.000Z

18

The Political History of Hydraulic Fracturing’s Expansion Across the West  

E-Print Network [OSTI]

Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.

Forbis, Robert E.

2014-01-01T23:59:59.000Z

19

Environmental Impacts of Hydraulic Fracturing  

Science Journals Connector (OSTI)

...their environmental impacts, which has been published...the hydrogeological impacts of oil and gas development...Chafin, 1994), not fracking. Watson and Bachu...Frontiers Ecology Environment. 2011. 9( 9): 503...R. Environmental Impacts of Hydraulic Fracturing...

Richard Jackson

20

Numerical simulation of hydraulic fracturing  

E-Print Network [OSTI]

NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Maj or Subj ect...: Petroleum Engineering NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Approved as to style and content by: S. A. Holditch (Chairman of Committee) D. D. Van Fleet (member) J. E. Russell (m be ) W. D. Von onten ( ead...

Warner, Joseph Barnes

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Simulation of Hydraulic Fractures and their Interactions with Natural Fractures  

E-Print Network [OSTI]

Modeling the stimulated reservoir volume during hydraulic fracturing is important to geothermal and petroleum reservoir stimulation. The interaction between a hydraulic fracture and pre-existing natural fractures exerts significant control...

Sesetty, Varahanaresh

2012-10-19T23:59:59.000Z

22

INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTH CAROLINA  

E-Print Network [OSTI]

Letters INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,12091 INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,transient data from a hydraulic fracturing experiment have

Narasimhan, T.N.

2014-01-01T23:59:59.000Z

23

Hydraulic Fracture Optimization with a Pseudo-3D Model in Multi-layered Lithology  

E-Print Network [OSTI]

Hydraulic Fracturing is a technique to accelerate production and enhance ultimate recovery of oil and gas while fracture geometry is an important aspect in hydraulic fracturing design and optimization. Systematic design procedures are available...

Yang, Mei

2011-10-21T23:59:59.000Z

24

A synergistic approach to optimizing hydraulic fracturing  

SciTech Connect (OSTI)

Combining measurement, simulation, and imaging technologies into an integrated program can help operators achieve the best hydraulic fracture treatment possible. Hydrocarbon production can be significantly increased when fractures are extended to the planned length, and fracturing fluid is retained within the zone of interest. Fractures that break out of zone increase the risk of excess water production with the hydrocarbon. Consequently, the ability to select suitable operational parameters for hydraulic fracturing is critical to job success. An evaluation of formation properties and potential barriers to hydraulic fracturing can be made with three-dimensional (3D) simulation to integrate data taken from wireline logs, waveform sonic logs, and microfrac measurements. In-situ stress orientation is determined by use of a downhole extensometer, oriented cores, anelastic strain recovery (ASR) measurements, and borehole imaging logs. Sidewall cores can be taken perpendicular to wellbore walls without distorting the borehole or the core taken; orientation of the cores can be determined with imaging logs run after coring. Natural fractures can be viewed with a downhole video camera lowered into the well on fiberoptic cable. Effectiveness of fracture treatments may be evaluated with various gamma ray logging techniques production logs comparing expected production to actual zonal contribution. Refined procedures that result from after-frac analysis can be used to plain field development for optimal reservoir drainage.

Kessler, C.; Venditto, J.; McMechan, D.; Edwards, P.

1994-12-31T23:59:59.000Z

25

Hydraulic Fracturing | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Fracturing Hydraulic Fracturing Jump to: navigation, search More info on OpenEI Oil and Gas Gateway Federal Environmental Statues Federal Oil and Gas Statutes Oil and Gas Companies United States Oil and Gas Boards International Oil and Gas Boards Other Information Fracking Regulations by State Wells by State Fracking Chemicals Groundwater Protection Related Reports A Perspective on Health and Natural Gas Operations: A Report for Denton City Council Just the Fracking Facts The Politics of 'Fracking': Regulating Natural Gas Drilling Practices in Colorado and Texas Addressing the Environmental Risks from Shale Gas Development Water Management Technologies Used by Marcellus Shale Gas Producers Methane contamination of drinking wateraccompanying gas-well drilling and hydraulic fracturing

26

Method for directional hydraulic fracturing  

DOE Patents [OSTI]

A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

1994-01-01T23:59:59.000Z

27

Hydraulic fracturing and geothermal energy development in Japan  

SciTech Connect (OSTI)

This paper is a review of research and development on geothermal energy extraction in Japan especially on hydraulic fracturing. First recent geothermal developments in Japan are outlined in Part I. An increase in the production rate of geothermal wells may be highly dependent on the geothermal well stimulation technology based on hydraulic fracturing. The hydraulic fracturing technique must be developed also for geothermal energy to be extracted from hot, dry rock masses. In Part II, the research on hydraulic fracturing and field application are reviewed.

Abe, H.; Suyama, J.; Takahashi, H.

1982-09-01T23:59:59.000Z

28

Hydraulic Fracturing in Michigan Integrated Assessment  

E-Print Network [OSTI]

Hydraulic Fracturing in Michigan Integrated Assessment #12;Agenda · Welcome and introduction and timeline · Panel presentation and discussion · Facilitated Q & A · Closing remarks #12;Hydraulic Fracturing · Leverages resources IA BENEFITS Benefits of Integrated Assessment #12;Key Points: · Hydraulic Fracturing (HF

Kamat, Vineet R.

29

Hydraulic Fracture: multiscale processes and moving  

E-Print Network [OSTI]

Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Mitchell (UBC) · Ed Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Scaling Fluid Proppant #12;6 An actual hydraulic fracture #12;7 HF experiment (Jeffrey et al CSIRO) #12;8 1D

Peirce, Anthony

30

Regulation of Hydraulic Fracturing in California  

E-Print Network [OSTI]

APRIL 2013 Regulation of Hydraulic Fracturing in California: A WAsteWAteR And WAteR QuAlity Pe | Regulation of Hydraulic Fracturing in California Wheeler Institute for Water Law & Policy Center for Law #12;Regulation of Hydraulic Fracturing in California | 3Berkeley law | wheeler InstItute for water law

Kammen, Daniel M.

31

Hydraulic Fracture: multiscale processes and moving  

E-Print Network [OSTI]

Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Mathematical models of hydraulic fracture · Scaling and special solutions for 1-2D models · Numerical modeling for 2-3D problems

Peirce, Anthony

32

Monitoring hydraulic fracture growth: Laboratory experiments  

SciTech Connect (OSTI)

The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

Groenenboom, J.; Dam, D.B. van

2000-04-01T23:59:59.000Z

33

Microseismic Tracer Particles for Hydraulic Fracturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Scientists at Los Alamos National Laboratory have developed a method by which microseismic events can be discriminated/detected that correspond to only the portion of the hydraulic fracture that contains the proppant material and can be expected to be conductive to the flow of oil and gas. July 3, 2013 Microseismic Tracer Particles for Hydraulic Fracturing Figure 1: A graph of ionic conductivity as a function of temperature for the anti-perovskite Li3OCl. Available for thumbnail of Feynman Center (505) 665-9090 Email Microseismic Tracer Particles for Hydraulic Fracturing Applications: Oil and gas production Geophysical exploration Benefits: Tracks the disposition of material in a hydraulic fracturing

34

Fracture Evolution Following a Hydraulic Stimulation within an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution...

35

Geomechanical review of hydraulic fracturing technology .  

E-Print Network [OSTI]

??Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been… (more)

Arop, Julius Bankong

2013-01-01T23:59:59.000Z

36

Acoustic Character Of Hydraulic Fractures In Granite  

E-Print Network [OSTI]

Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

Paillet, Frederick I.

1983-01-01T23:59:59.000Z

37

Advanced hydraulic fracturing methods to create in situ reactive barriers  

SciTech Connect (OSTI)

This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

Murdoch, L. [FRX Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States). Dept. of Geological Sciences; Siegrist, B.; Meiggs, T. [Oak Ridge National Lab., TN (United States)] [and others

1997-12-31T23:59:59.000Z

38

Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis  

E-Print Network [OSTI]

Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much...

Ahmed, Ibraheem 1987-

2012-11-30T23:59:59.000Z

39

Effects of non-Darcy flow on pressure buildup analysis of hydraulically fractured gas reservoirs  

E-Print Network [OSTI]

Conventional well-testing techniques are commonly used to evaluate pressure transient tests of hydraulically fractured wells to estimate values such as formation permeability, fracture length, and fracture conductivity. When non-Darcy flow occurs...

Alvarez Vera, Cesar

2012-06-07T23:59:59.000Z

40

Finite element modeling of hydraulic fracturing in 3D  

E-Print Network [OSTI]

Mar 22, 2013 ... Two examples of hydraulic fracturing are given. when the pressure buildup ... Hydraulic fracturing is the coupled dynamics of frac- ture and ?uid ...

2013-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Seismic Studies of a Massive Hydraulic Fracturing Experiment...  

Open Energy Info (EERE)

a Massive Hydraulic Fracturing Experiment Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Seismic Studies of a Massive Hydraulic Fracturing...

42

Fracture Evolution Following a Hydraulic Stimulation within an...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir DOE Geothermal Peer Review...

43

Studying Hydraulic Fracturing through Time-variant Seismic Anisotropy  

E-Print Network [OSTI]

Hydraulic fracturing is an important modern technique of exploiting natural gas and oil, in which a high-pressure liquid mixture is injected into a wellbore to create small fractures in order to release fluids such as natural gas and petroleum...

Liu, Qifan

2013-10-01T23:59:59.000Z

44

Acoustic-emission monitoring during hydraulic fracturing  

SciTech Connect (OSTI)

This paper reports that microseismic events or acoustic emissions associated with hydraulic fracturing are recorded with a borehole seismic tool in a deviated well during multirate injection, shut-in, and flowback. The event locations indicate that fracture orientation, length, and height are compatible with regional stress directions and estimates of the fracture size that are based on pressure decline.

Stewart, L. (Schlumberger-Doll Research (US)); Cassell, B.R. (Schlumberger Wireline Services (US)); Bol, G.M. (Nederlanse Aardolie Mij. B.V. (NL))

1992-06-01T23:59:59.000Z

45

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network [OSTI]

responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

Nelson, J.T.

2009-01-01T23:59:59.000Z

46

Testing sand used in hydraulic fracturing operations  

SciTech Connect (OSTI)

Recommended practices for testing sand used in hydraulic fracturing operations are outlined as developed by the Task Group on Evaluation of Hydraulic Fracturing Sand under the API Subcommittee on Evaluation of Well Completion Materials. The tests recommended were developed to improve the quality of frac sand delivered to the well site, and are for use in evaluating certain physical properties of sand used in hydraulic fracturing operations. The tests suggested enable users to compare physical characteristics of various sands and to select materials most useful for such applications. Parameters to be tested include turbidity, clay and soft particle content, crush resistance, and mineralogic analysis.

Not Available

1983-03-01T23:59:59.000Z

47

Reply to Davies: Hydraulic fracturing remains a possible mechanism for  

E-Print Network [OSTI]

LETTER Reply to Davies: Hydraulic fracturing remains a possible mechanism for observed methane mechanisms were leaky gas well casings and the possibility that hydraulic fracturing might generate new- knowledged the possibility of hydraulic fracturing playing a role. Is it possible that hydraulic fracturing

Jackson, Robert B.

48

Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture  

E-Print Network [OSTI]

reopening during hydraulic fracturing stress determinations.Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurement

Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

2000-01-01T23:59:59.000Z

49

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect (OSTI)

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

50

Hydraulic fractur ing--also called hy  

E-Print Network [OSTI]

Hydraulic fractur ing--also called hy drofracking or frack ing--is a process where large volumes) is an aquatic invasive spe cies listed on the USDA's federal noxious weeds list (http:// www.aphis.usda.gov/plant_health

Goodman, Robert M.

51

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network [OSTI]

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

52

Self-potential observations during hydraulic fracturing  

SciTech Connect (OSTI)

The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

Moore, Jeffrey R.; Glaser, Steven D.

2007-09-13T23:59:59.000Z

53

THE CONTEXT OF PUBLIC ACCEPTANCE OF HYDRAULIC FRACTURING: IS LOUISIANA UNIQUE?.  

E-Print Network [OSTI]

??Hydraulic fracturing has received increased attention over the past decade. The rapid adoption of this technique coupled with accurate directional horizontal drilling has unlocked several… (more)

White, Crawford

2012-01-01T23:59:59.000Z

54

Hydraulic fracturing and federalism : how regional needs should drive regulatory oversight, with Texas as case study.  

E-Print Network [OSTI]

??Hydraulic fracturing of shale has combined traditional oil and gas industry techniques to create significant new reserves in the United States. Poor science, incomplete media… (more)

Moorhead, Scott Adams

2012-01-01T23:59:59.000Z

55

Automatic hydraulic fracturing design for low permeability reservoirs using artificial intelligence.  

E-Print Network [OSTI]

??The hydraulic fracturing technique is one of the major developments in petroleum engineering in the last two decades. Today, nearly all the wells completed in… (more)

Popa, Sergui Andrei, 1970-

2004-01-01T23:59:59.000Z

56

Hydraulic fracturing in tight, fissured media  

SciTech Connect (OSTI)

Large volumes of natural gas are found in tight, fissured reservoirs. Hydraulic fracturing can enhance recovery, but many complications, such as pressure-sensitive or accelerated leakoff, damage, and complex fracturing, arise during treatment of such reservoirs. This paper reports that special procedures generally should be considered during breakdown and fracturing of these reservoirs. In addition, the use of alternative stimulation strategies may be beneficial.

Warpinski, N.R. (Sandia National Lab., Albuquerque, NM (US))

1991-02-01T23:59:59.000Z

57

Universal asymptotic umbrella for hydraulic fracture modeling  

E-Print Network [OSTI]

The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

Linkov, Aleksandr M

2014-01-01T23:59:59.000Z

58

HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN  

E-Print Network [OSTI]

u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSthe calculated stress. n HYDRAULIC FRACTURING EQUIPMENT AND

Doe, T.

2010-01-01T23:59:59.000Z

59

Coupling schemes for modeling hydraulic fracture propagation using the XFEM  

E-Print Network [OSTI]

Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy of hydraulic fractures in an elastic medium. With appropriate enrichment, the XFEM resolves the Neumann(h) accuracy. For hydraulic fracture problems with a lag separating the uid front from the fracture front, we

Peirce, Anthony

60

Hydraulic fracturing slurry transport in horizontal pipes  

SciTech Connect (OSTI)

Horizontal-well activity has increased throughout the industry in the past few years. To design a successful hydraulic fracturing treatment for horizontal wells, accurate information on the transport properties of slurry in horizontal pipe is required. Limited information exists that can be used to estimate critical deposition and resuspension velocities when proppants are transported in horizontal wells with non-Newtonian fracturing gels. This paper presents a study of transport properties of various hydraulic fracturing slurries in horizontal pipes. Flow data are gathered in three transparent horizontal pipes with different diameters. Linear and crosslinked fracturing gels were studied, and the effects of variables--e.g., pipe size; polymer-gelling-agent concentration; fluid rheological properties; crosslinking effects; proppant size, density, and concentrations; fluid density; and slurry pump rate--on critical deposition and resuspension velocities were investigated. Also, equations to estimate the critical deposition and resuspension velocities of fracturing gels are provided.

Shah, S.N.; Lord, D.L. (Halliburton Services (US))

1990-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Characterizing hydraulically fractured reservoirs using induced microearthquakes  

SciTech Connect (OSTI)

Hydraulic fracturing is a common method employed to increase the production of oil and gas fields. Recently, there has been increased interest in monitoring the microearthquakes induced by hydraulic fracturing as a means of obtaining data to characterize reservoir changeS induced by the injection. Two types of microearthquakes have been observed during hydraulic fracturing. Tensile events have been observed and modeled as the parting of the surfaces of a fracture. A majority of the events observed have been shear-slip events, where two sides of a fault plane slip parallel to each other but in opposite directions. The locations of the microearthquakes can be analyzed to determine regions where significant seismic energy was released, which presumably are regions where injected fluid penetrated into the rock along pre-existing fractures or zones of weakness. The spatial patterns in the locations can be analyzed to fine regions where events cluster along planes, which are interpreted to be the dominant fluid flow paths. Imaging methods can also be applied to the travel time and waveform data to obtain direct evidence for the locations of the fractures or fracture zones. 27 refs., 2 figs.

Fehler, M.

1991-01-01T23:59:59.000Z

62

Effectiveness of microseismic monitoring for optimizing hydraulic fracturing in California  

E-Print Network [OSTI]

Hydraulic fracturing has fundamentally changed the oil and gas industry in the past 10 years. Bakersfield, California provides a unique case study because steam injection, a type of hydraulic fracturing, has been used there ...

Alampi, Ann M

2014-01-01T23:59:59.000Z

63

Computer simulation of hydraulic fracturing in shales-influences on primary migration  

SciTech Connect (OSTI)

Hydraulic tension fractures in a shale layer during sedimentation are simulated by use of computer techniques. The depth at which fractures form is directly proportional to the hydraulic conductivity and tensile strength, and inversely proportional to the rate of sedimentation and thickness of the shale layer. Hydraulic fractures may form at depths of oil generation to facilitate primary migration. This paper describes an attempt to simulate the process of hydraulic fracturing during burial and compaction of a shale layer by use of an elementary model. One objective is to investigate the role of various factors in hydraulic tension fracturing of shales in a tectonically relaxed area. Another objective is to see whether hydraulic fractures form at depths of oil generation.

Ozkaya, I.

1984-05-01T23:59:59.000Z

64

HYDRAULIC STIMULATION OF NATURAL FRACTURES AS REVEALED BY INDUCED MICROEARTHQUAKES,  

E-Print Network [OSTI]

-1- HYDRAULIC STIMULATION OF NATURAL FRACTURES AS REVEALED BY INDUCED MICROEARTHQUAKES, CARTHAGE, December, 2001 Manuscript # 01066 LAUR# 01-1204 #12;Hydraulic Stimulation of Natural Fractures -2- ABSTRACT We have produced a high-resolution microseismic image of a hydraulic fracture stimulation

65

Modeling Turbulent Hydraulic Fracture Near a Free Surface  

E-Print Network [OSTI]

Modeling Turbulent Hydraulic Fracture Near a Free Surface Victor C. Tsai Seismological Laboratory consider a hydraulic fracture problem in which the crack grows parallel to a free surface, subject to fully components. ^· Non-dimensionalized ·. 1 Introduction Hydraulic fracture has been studied for many years

66

Role of seepage forces on hydraulic fracturing and failure patterns  

E-Print Network [OSTI]

Role of seepage forces on hydraulic fracturing and failure patterns Alexander Rozhko Thesis September 2007 #12;ii Role of seepage forces on hydraulic fracturing and failure patterns Abstract. The mechanical role of seepage forces on hydraulic fracturing and failure patterns was studied both

Paris-Sud XI, Université de

67

Modeling Turbulent Hydraulic Fracture Near a Free Surface  

E-Print Network [OSTI]

Modeling Turbulent Hydraulic Fracture Near a Free Surface Victor C. Tsai Seismological Laboratory consider a hydraulic fracture problem in which the crack grows parallel to a free surface, subject to fully components. wall Wall shear stress. ^· Non-dimensionalized ·. 1 Introduction Hydraulic fracture has been

68

A PKN Hydraulic Fracture Model Study and Formation Permeability Determination  

E-Print Network [OSTI]

Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional...

Xiang, Jing

2012-02-14T23:59:59.000Z

69

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks  

E-Print Network [OSTI]

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks Mingjie Chen Keywords: Hydraulic fracturing Fractal dimension Surrogate model Optimization Global sensitivity a b s t r a c t Hydraulic fracturing has been used widely to stimulate production of oil, natural gas

Lu, Zhiming

70

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network [OSTI]

New Model of Hydraulic Fracture With an Induced Low Velocityand L. R. Meyer, 1988. Fracture Detectin Using P- Wave andof a Vertical Hydraulic Fracture, Earth Sciences Division,

Nelson, J.T.

2009-01-01T23:59:59.000Z

71

Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations  

E-Print Network [OSTI]

Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

Zhang, Junjing

2014-07-10T23:59:59.000Z

72

Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions  

E-Print Network [OSTI]

Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions CSIRO CSS TCP Detournay (UMN) Eduard Siebrits (SLB) #12;2 Outline · Examples of hydraulic fractures · Governing equations well stimulation Fracturing Fluid Proppant #12;5 Quarries #12;6 Magma flow Tarkastad #12;7 Model EQ 1

Peirce, Anthony

73

Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions  

E-Print Network [OSTI]

Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions SANUM Conference (UMN) Eduard Siebrits (SLB) #12;2 Outline · Examples of hydraulic fractures · Governing equations well stimulation Fracturing Fluid Proppant #12;5 Quarries #12;6 Magma flow Tarkastad #12;7 Model EQ 1

Peirce, Anthony

74

692 E. SIEBRITS AND A. P. PEIRCE Most hydraulic fracturing simulators use a single value for Young's modulus and Poisson's  

E-Print Network [OSTI]

#12;692 E. SIEBRITS AND A. P. PEIRCE Most hydraulic fracturing simulators use a single value of the layered reservoir that are hydraulically fractured. Some simulators use various approximate techniques (e less accurate ones) can lead to signiÿcant errors in fracture width predic- tion in cases where elastic

Peirce, Anthony

75

Application of the directional hydraulic fracturing at Berezovskaya Mine  

SciTech Connect (OSTI)

The paper analyzes the experimental research of the directional hydraulic fracturing applied for weakening of rocks at Berezovskaya Mine (Kuznetsk Coal Basin) in 2005-2006.

Lekontsev, Y.M.; Sazhin, P.V. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute for Mining

2008-05-15T23:59:59.000Z

76

Experimental investigation of geomechanical aspects of hydraulic fracturing unconventional formations.  

E-Print Network [OSTI]

??Understanding the mechanisms that govern hydraulic fracturing applications in unconventional formations, such as gas-bearing shales, is of increasing interest to the petroleum upstream industry. Among… (more)

Alabbad, Emad Abbad

2014-01-01T23:59:59.000Z

77

An examination of state regulations of hydraulic fracturing.  

E-Print Network [OSTI]

??As hydraulic fracturing gains popularity in the energy industry, the state of Texas finds itself in a very advantageous position. With multiple regions which could… (more)

Perkins, Adam Reed

2014-01-01T23:59:59.000Z

78

Fracture Evolution Following a Hydraulic Stimulation within an...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Principal Investigator Peter Rose Energy and Geoscience Institute at the University of Utah Project...

79

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir  

Broader source: Energy.gov [DOE]

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir presentation at the April 2013 peer review meeting held in Denver, Colorado.

80

Hydraulic Fracture Monitoring: A Jonah Field Case Study  

E-Print Network [OSTI]

Hydraulic fracturing involves the injection of a fluid to fracture oil and gas reservoirs, and thus increase their permeability. The process creates numerous microseismic events, which can be used to monitor subsurface ...

Seher, T.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. This project will provide the first ever formal evaluation of fracture and fracture flow evolution in an EGS reservoir following a hydraulic stimulation.

82

Calibration of hydraulic and tracer tests in fractured media  

E-Print Network [OSTI]

Calibration of hydraulic and tracer tests in fractured media represented by a DFN Model L. D. Donado, X. Sanchez-Vila, E. Ruiz* & F. J. Elorza** * Enviros Spain S.L. ** UPM #12;Fractured Media Water flows through fractures (matrix basically impervious ­ though relevant to transport) Fractures at all

Politècnica de Catalunya, Universitat

83

On equivalence of thinning fluids used for hydraulic fracturing  

E-Print Network [OSTI]

The paper aims to answer the question: if and how non-Newtonian fluids may be compared in their mechanical action when used for hydraulic fracturing? By employing the modified formulation of the PKN problem we obtain its simple analytical solutions in the cases of perfectly plastic and Newtonian fluids. Since the results for shear thinning fluids are intermediate between those for these cases, the obtained equation for the fracture length suggests a criterion of the equivalence of various shear thinning fluids for the problem of hydraulic fractures. We assume fluids equivalent in their hydrofracturing action, when at a reference time they produce fractures of the same length. The equation for the fracture length translates the equivalence in terms of the hydraulic fracture length and treatment time into the equivalence in terms of the properties of a fracturing fluid (behavior and consistency indices). Analysis shows that the influence of the consistency and behavior indices on the fracture length, particle v...

Linkov, Alexander

2012-01-01T23:59:59.000Z

84

ANALYSIS OF GAS PRODUCTION FROM HYDRAULICALLY FRACTURED WELLS IN THE HAYNESVILLE SHALE USING SCALING METHODS  

E-Print Network [OSTI]

ANALYSIS OF GAS PRODUCTION FROM HYDRAULICALLY FRACTURED WELLS IN THE HAYNESVILLE SHALE USING. INTRODUCTION Before the advent of hydraulic fracturing technology and hor- izontal drilling, the Haynesville

Patzek, Tadeusz W.

85

E-Print Network 3.0 - asymmetric hydraulic fracture Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydraulic fracture Search Powered by Explorit Topic List Advanced Search Sample search results for: asymmetric hydraulic fracture Page: << < 1 2 3 4 5 > >> 1 Self-potential...

86

Application of microseismic technology to hydraulic fracture diagnostics: GRI/DOE Field Fracturing Multi-Sites Project  

SciTech Connect (OSTI)

The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment as well as surface facilities and equipment conducive to acquiring high-quality data. It is anticipated that the project`s research advancements will provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response. The M-Site Project is jointly sponsored by the Gas Research Institute (GRI) and the US Department of Energy (DOE). The site developed for M-Site hydraulic fracture experimentation is the former DOE Multiwell Experiment (MWX) site located near Rifle, Colorado. The MWX project drilled three closely-spaced wells (MWX-1, MWX-2 and MWX-3) which were the basis for extensive reservoir analyses and tight gas sand characterizations in the blanket and lenticular sandstone bodies of the Mesaverde Group. The research results and background knowledge gained from the MWX project are directly applicable to research in the current M-Site Project.

Wilmer, R. [CER Corp., Las Vegas, NV (United States); Warpinski, N.R. [Sandia National Laboratories (United States); Wright, T.B. [Resources Engineering Systems (United States); Branagan, P.T. [Branagan & Associates (United States); Fix, J.E. [Fix & Associates (United States)

1995-06-01T23:59:59.000Z

87

New fluids help increase effectiveness of hydraulic fracturing  

SciTech Connect (OSTI)

It is important to choose the most effective fluid for hydraulic fracturing a particular formation. Fracturing fluids are used to initiate formation parting, extend the fracture into the reservoir, and to transport and distribute proppant. This paper discusses the fundamental of fluid types, viscosifiers, and fluid rheology.

Ebinger, C.D.; Hunt, E.

1989-06-05T23:59:59.000Z

88

Stress measurements in rock salt using hydraulic fracturing  

SciTech Connect (OSTI)

Hydraulic fracturing was applied in horizontal drillholes in the Salado salt formation near Carlsbad, New Mexico. Testing took place approximately 650 m below surface in order to support the design of a Waste Isolation Pilot Plant (WIPP) for the disposal of radioactive waste from defense activities of the United States. Hydraulic fracturing was performed primarily to determine whether the virgin in situ stress state at the WIPP site is isotropic and whether the magnitudes of the the virgin in situ stresses correspond to the weight of the overburden. Beyond these limited objectives, measurements are being analyzed to evaluate the usefulness of hydraulic fracturing in salt formations in general. Such measurements are desirable to determine stresses induced by mining and to monitor time-dependent stress changes around underground excavations in salt masses. Hydraulic fracturing measurements are also relevant to the evaluation of allowable pressures before fracturing is induced in pressurized boreholes and storage caverns.

Wawersik, W.R.; Stone, C.M.

1986-01-01T23:59:59.000Z

89

Hydraulic fracturing technology: Technology evaluation report and application analysis report  

SciTech Connect (OSTI)

Two pilot-scale demonstrations of the hydraulic fracturing technology for enhancing the permeability of contaminated silty clays have been evaluated under the Superfund Innovative Technology Evaluation (SITE) Program. The hydraulic fracturing technology was demonstrated in 1991 and 1992 at a extraction site in Oak Brook, Illinois, and at a bioremediation site near Dayton, Ohio. The technology was jointly developed by the University of Cincinnati (UC) and the Risk Reduction Engineering Laboratory. Tests were also conducted at UC Center Hill Solid and Hazardous Waste Research (Center Hill) Facility by UC. These tests were conducted to determine the factors affecting soil vapor flow through sand-filled hydraulic fractures.

Banerjee, P.

1993-08-01T23:59:59.000Z

90

Seismic monitoring of the growth of a hydraulic fracture zone at Fenton Hill, New Mexico  

SciTech Connect (OSTI)

The hydraulic fracturing technique is an important method for enhancing hydrocarbon recovery, geothermal energy extraction, and solid waste disposal. Determination of the geometry and growth process of a hydraulic fracture zone is important for monitoring and assessing subsurface fractures. A relative-source-location approach, based on a waveform correlation and a grid search method, has been developed to estimate relative hypocenter locations for a cluster of 157 microearthquakes induced by hydraulic fracturing at the Los Alamos Hot Dry Rock (HDR) geothermal site. Among the 157 events, 147 microearthquakes occurred in a tight cluster with a dimension of 40 m, roughly defining a vertical hydraulic fracture zone with an orientation of N40{degree}W. The length, height, and width of the hydraulic fracture zone are estimated to be 40, 35, and 5 m, respectively. Analysis of the spatial-temporal pattern of the induced microearthquakes reveals that the fracture zone grew significantly, averaging 0.2m/ minute in a two-hour period toward the northwest along the fracture zone strike.

Li, Y.; Cheng, C.H.; Toksoez, M.N. [Massachusetts Inst. of Tech., Cambridge, MA (United States)] [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1998-01-01T23:59:59.000Z

91

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network [OSTI]

INVESTIGATION OF THE EFFECT OF GEL RESIDUE ON HYDRAULIC FRACTURE CONDUCTIVITY USING DYNAMIC FRACTURE CONDUCTIVITY TEST A Thesis by FIVMAN MARPAUNG Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2007 Major Subject: Petroleum Engineering INVESTIGATION OF THE EFFECT OF GEL RESIDUE ON HYDRAULIC FRACTURE CONDUCTIVITY USING DYNAMIC FRACTURE CONDUCTIVITY TEST A...

Marpaung, Fivman

2008-10-10T23:59:59.000Z

92

Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells  

E-Print Network [OSTI]

EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS A Thesis IAN MARIE BERTHELOT Submitted to the Office of Graduate Studies of Texas AdtM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Petroleum Engineering EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS by JAN MARIE BERTIIELOT Appmved...

Berthelot, Jan Marie

2012-06-07T23:59:59.000Z

93

Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting,  

Broader source: Energy.gov (indexed) [DOE]

Hydraulic Fracturing Data Collection Tools Improve Environmental Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection April 18, 2013 - 12:03pm Addthis Washington, DC -Two data collection tools specifically developed for hydraulic fracturing are available to help regulatory agencies monitor drilling and completion operations and enhance environmental protection. Developed with support from the U.S. Department of Energy's Office of Fossil Energy (FE), the Risk Based Data Management System (RBDMS) and FracFocus chemical disclosure registry provide a way for industry professionals, regulatory agencies and the general public to more easily access information on oil and natural gas activities. These reporting and

94

Tilmeter hydraulic fracture imaging enhancement project: Progress repeort  

SciTech Connect (OSTI)

Over half of all oil & gas production wells drilled in the United States depend upon hydraulic fracturing to sustain or enhance production. However, there is no existing technology that allows detailed near-surface imaging of these hydraulically-driven fractures at depths greater than about 5000 feet. To image hydraulic fractures in the 8000`-10,000` depth range, we are currently redesigning tiltmeter tools in order to deploy the instruments deeper to escape the cultural/natural surface noise that often masks the hydrofrac signal. With nearly noise-free data, we should be in a better position to separate the earth-tide signal from the tiltmeter signal and investigate fine-scale hydraulic fracturing processes.

Castillo, D.A. [Lawrence Livermore National Lab., CA (United States); Wright, C.A.; Conant, R.A. [and others

1995-12-31T23:59:59.000Z

95

1112323-danimer-abstract-hydraulic-fractures | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

have significant impact on the industry as the NFT process could be applicable on 40% of hydraulic fracturing treatments in the U.S. The process is applicable on wells that...

96

Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting,  

Broader source: Energy.gov (indexed) [DOE]

Hydraulic Fracturing Data Collection Tools Improve Environmental Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection April 18, 2013 - 12:03pm Addthis Washington, DC -Two data collection tools specifically developed for hydraulic fracturing are available to help regulatory agencies monitor drilling and completion operations and enhance environmental protection. Developed with support from the U.S. Department of Energy's Office of Fossil Energy (FE), the Risk Based Data Management System (RBDMS) and FracFocus chemical disclosure registry provide a way for industry professionals, regulatory agencies and the general public to more easily access information on oil and natural gas activities. These reporting and

97

Sizing of a hot dry rock reservoir from a hydraulic fracturing experiment  

SciTech Connect (OSTI)

Hot dry rock (HDR) reservoirs do not lend themselves to the standard methods of reservoir sizing developed in the petroleum industry such as the buildup/drawdown test. In a HDR reservoir the reservoir is created by the injection of fluid. This process of hydraulic fracturing of the reservoir rock usually involves injection of a large volume (5 million gallons) at high rates (40BPM). A methodology is presented for sizing the HDR reservoir created during the hydraulic fracturing process. The reservoir created during a recent fracturing experiment is sized using the techniques presented. This reservoir is then investigated for commercial potential by simulation of long term power production. 5 refs., 7 figs.

Zyvoloski, G.

1985-01-01T23:59:59.000Z

98

Low permeability gas reservoir production using large hydraulic fractures  

E-Print Network [OSTI]

LOVT PERMEABILITY GAS RESERVOIR PRODUCTION USING LARGE HYDRAULIC FRACTURES A Thesis by STEPHEN ALLEN HOLDITCH Approved as to style and content by: ( airman of Committee) (Head of Department) (Me er) (Member) (Membe r) (Member) (Member...) August 1970 111 ABSTRACT Low Permeability Gas Reservoir Production Using Large Hydraulic Fractures. (August 1970) Stephen Allen Holditch, B. S. , Texas ARM University Directed by: Dr, R. A. Morse There has been relatively little work published...

Holditch, Stephen A

2012-06-07T23:59:59.000Z

99

An investigation of productivity increases from hydraulic fracturing treatments  

E-Print Network [OSTI]

AN INVESTIGATION OF PRODUCTIVITY INCREASES FROM HYDRAULIC FRACTURING TREATMENTS A Thesis b7 Robert Joe Boriskie Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August, 1963 Major Subject: Petroleum Engineering AN INVESTIGATION OF PRODUCTIVITY INCREASES FROM HYDRAULIC FRACTURING TREATMENTS A Thesis Robert Joe Boriskie Approved as to style and content by: Chairman of Committee...

Boriskie, Robert Joe

2012-06-07T23:59:59.000Z

100

Stochastic Modeling of a Fracture Network in a Hydraulically Fractured Shale-Gas Reservoir  

E-Print Network [OSTI]

of the hydraulic fracture patterns created during the well stimulation process. This work introduces a novel approach to model the hydraulic fractures in a shale reservoir using a stochastic method called random-walk. We see this approach as a beginning step...

Mhiri, Adnene

2014-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Influence of Vertical Location on Hydraulic Fracture Conductivity in the Fayetteville Shale  

E-Print Network [OSTI]

Hydraulic fracturing is the primary stimulation method within low permeability reservoirs, in particular shale reservoirs. Hydraulic fracturing provides a means for making shale reservoirs commercially viable by inducing and propping fracture...

Briggs, Kathryn

2014-05-05T23:59:59.000Z

102

Fracture opening/propagation behavior and their significance on pressure-time records during hydraulic fracturing  

SciTech Connect (OSTI)

Hydraulic fracturing with constant fluid injection rate was numerically modeled for a pair of rectangular longitudinal fractures intersecting a wellbore in an impermeable rock mass, and numerical calculations have been performed to investigate the relations among the form of pressure-time curves, fracture opening/propagation behavior and permeability of the mechanically closed fractures. The results have shown that both permeability of the fractures and fluid injection rate significantly influence the form of the pressure-time relations on the early stage of fracture opening. Furthermore it has been shown that wellbore pressure during fracture propagation is affected by the pre-existing fracture length.

Takashi Kojima; Yasuhiko Nakagawa; Koji Matsuki; Toshiyuki Hashida

1992-01-01T23:59:59.000Z

103

Specific Methods for the Evaluation of Hydraulic Properties in Fractured Hard-rock J.C. Marchala,*  

E-Print Network [OSTI]

1 Specific Methods for the Evaluation of Hydraulic Properties in Fractured Hard-rock Aquifers J, marechal@ngri.res.in Abstract: Blocs underlined by fractures networks mainly compose hard-rock aquifers. The complexity of flows through fractures makes inadequate the use of classical techniques for the interpretation

Paris-Sud XI, Université de

104

Fully coupled fluid flow and geomechanics in the study of hydraulic fracturing and post-fracture production.  

E-Print Network [OSTI]

??This work addresses the poroelastic effect on the processes involved in hydraulic fracturing and post-fracture production using a finite element based fully coupled poroelastic model… (more)

Aghighi, Mohammad Ali

2007-01-01T23:59:59.000Z

105

Prediction of effects of hydraulic fracturing using reservoir and well flow simulation  

SciTech Connect (OSTI)

This paper presents a method to predict and evaluate effects of hydraulic fracturing jobs by using reservoir and well flow numerical simulation. The concept of the method i5 that steam production rate at the operating well head pressure is predicted with different fracture conditions which would be attained by the hydraulic fracturing jobs. Then, the effects of the hydraulic fracturing is evaluated by comparing the predicted steam production rate and that before the hydraulic fracturing. This course of analysis will suggest how large fracture should be created by the fracturing job to attain large enough increase in steam production at the operating condition and the best scheme of the hydraulic fracturing job.

Mineyuki Hanano; Tayuki Kondo

1992-01-01T23:59:59.000Z

106

An implicit level set method for modeling hydraulically driven fractures Anthony Peirce a,*, Emmanuel Detournay b  

E-Print Network [OSTI]

An implicit level set method for modeling hydraulically driven fractures Anthony Peirce a the relevant tip asymptotics in hydraulic fracture simulators is critical for the accuracy and stability for a propagating hydraulic fracture. A number of char- acteristics of the governing equations for hydraulic

Peirce, Anthony

107

2006 GeoX Conference, pages 1 to 6 Characterisation of hydraulic fractures in  

E-Print Network [OSTI]

2006 GeoX Conference, pages 1 to 6 Characterisation of hydraulic fractures in limestones using X, France Jacques.Desrues@hmg.inpg.fr ABSTRACT: Hydraulic tension fractures were produced in porous, hydraulic fracture, permeability tensor MOTS-CLÃ?S: microtomographie, fracturation hydraulique, tenseur de

108

Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems  

E-Print Network [OSTI]

Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems Finite Ele- ment Method (XFEM) for modeling hydraulic fractures (HF), two classes of boundary value energy, is not suitable for modeling hydraulic fractures in which the uid and the fracture fronts

Peirce, Anthony

109

Hydraulic fracturing experiments in the Great Northern Coal seam  

SciTech Connect (OSTI)

Two field-scale hydraulic fracturing experiments were performed in vertical boreholes on the lease of Munmorah Colliery located south of Newcastle, NSW. The treatments fractured the 3-meter thick, 220-meter deep Great Northern coal seam and were designed to provide a direct comparison between a borate-crosslinked gel and a water treatment. The fracture geometries were mapped during mining of the coal seam. Geologic mapping disclosed a well-defined coal face cleat and systematic full-seam joints perpendicular to bedding and trending NW. The vertical hydraulic fractures extended along the joint and face cleat direction. Evidence that an early slurry stage of fine mesh proppant acted to block off one of two competing parallel fractures was found at one of the mineback sites.

Jeffrey, R.G.; Weber, C.R.; Vlahovic, W.; Enever, J.R.

1994-12-31T23:59:59.000Z

110

Using seismic tomography to characterize fracture systems induced by hydraulic fracturing  

SciTech Connect (OSTI)

Microearthquakes induced by hydraulic fracturing have been studied by many investigators to characterize fracture systems created by the fracturing process and to better understand the locations of energy resources in the earth`s subsurface. The pattern of the locations often contains a great deal of information about the fracture system stimulated during the hydraulic fracturing. Seismic tomography has found applications in many areas for characterizing the subsurface of the earth. It is well known that fractures in rock influence both the P and S velocities of the rock. The influence of the fractures is a function of the geometry of the fractures, the apertures and number of fractures, and the presence of fluids in the fractures. In addition, the temporal evolution of the created fracture system can be inferred from the temporal changes in seismic velocity and the pattern of microearthquake locations. Seismic tomography has been used to infer the spatial location of a fracture system in a reservoir that was created by hydraulic fracturing.

Fehler, M.; Rutledge, J.

1995-01-01T23:59:59.000Z

111

Interference Fracturing: Non-Uniform Distributions of Perforation Clusters that Promote Simultaneous Growth of Multiple Hydraulic Fractures  

E-Print Network [OSTI]

Simultaneous Growth of Multiple Hydraulic Fractures A.P. Peirce, University of British Columbia and A.P. Bunger in horizontal well stimulation is the generation of hydraulic fractures (HFs) from all perforation clusters shadowing" that refers to suppression of some hydraulic fractures by the compressive stresses exerted

Peirce, Anthony

112

DOE's Shale Gas and Hydraulic Fracturing Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Shale Gas and Hydraulic Fracturing Research Shale Gas and Hydraulic Fracturing Research DOE's Shale Gas and Hydraulic Fracturing Research April 26, 2013 - 11:05am Addthis Statement of Guido DeHoratiis Acting Deputy Assistant Secretary for Oil and Natural Gas before the House Committee on Science, Space, and Technology Subcommittees on Energy and Environment. I want to thank the Chairs, Ranking Members and Members of the Subcommittees for inviting me to appear before you today to discuss the critical role that the Department of Energy's Office of Fossil Energy, in collaboration with the Department of the Interior (DOI) and the Environmental Protection Agency (EPA), is playing to improve the safety and environmental performance of developing our Nation's unconventional oil and natural gas (UOG) resources.

113

The importance of in-situ-stress profiles in hydraulic-fracturing applications  

SciTech Connect (OSTI)

In-situ stresses define the local forces acting on lithologic layers in the subsurface. Knowledge of these stresses is important in drilling, wellbore-stability, and, especially, hydraulic-fracturing applications. The measurement of in-situ stress is not straightforward and, therefore, often goes unmeasured. As such, one often assumes values of in-situ stress or estimate in-situ stresses from logging parameters. This article illustrates the importance of in-situ-stress estimates as they relate to hydraulic fracturing and outlines several techniques for estimating in-situ-stress magnitudes.

Hopkins, C.W. [S.A. Holditch and Associates, Inc., Houston, TX (United States). Houston Div.

1997-09-01T23:59:59.000Z

114

INTERPRETATION OF HYDRAULIC FRACTURING PRESSURE IN LOW-PERMEABILITY GAS RESERVOIRS.  

E-Print Network [OSTI]

??Hydraulic fracturing has been used in most oil and gas wells to increase production by creating fractures that extend from the wellbore into the formation.… (more)

Kim, Gun Ho

2010-01-01T23:59:59.000Z

115

Investigation of post hydraulic fracturing well cleanup physics in the Cana Woodford shale.  

E-Print Network [OSTI]

??Hydraulic fracturing was first carried out in the 1940s and has gained popularity in current development of unconventional resources. Flowing back the fracturing fluids is… (more)

Lu, Rong

2014-01-01T23:59:59.000Z

116

Observations of long period earthquakes accompanying hydraulic fracturing  

SciTech Connect (OSTI)

Waveforms of most seismic events accompanying hydraulic fracturing have been reported to contain clear P and S waves and have fault plane solutions consistent with shear displacement across a fault. This observation is surprising since classical hydraulic fracturing theory predicts the creation of a tensile opening of a cavity in response to fluid pressure. Very small long period events, similar to long period earthquakes observed at volcanoes, were found to occur during four hydraulic fracturing experiments carried out at Fenton Hill, New Mexico. Since the long period earthquakes occur in the same region as the shear type events, it is concluded that the unusual character of the long period earthquake waveforms is due to a source effect and not a path effect. The occurrence of long period earthquakes during hydraulic fracturing could indicate tensile fracturing. Many waveforms of these events are identical, which implies that these events represent repeated activation of a given source. A proposed source for these long period events is the sudden opening of a channel that connects two cracks filled with fluid at different pressures. The sizes of the two cracks differ, which causes two or more peaks to appear in the spectra, each peak being associated with one physical dimension of each crack. From the frequencies at which spectral peaks occur, crack lengths are estimated to be between 3 and 20m.

Bame, D.; Fehler, M.

1986-02-01T23:59:59.000Z

117

Experimental verification of dimensional analysis for hydraulic fracturing  

SciTech Connect (OSTI)

The authors have derived model laws that relate experimental parameters of a physical model of hydraulic fracture propagation to the prototype parameters. Correct representation of elastic deformation, fluid friction, crack propagation, and fluid leakoff forms the basis of the scaling laws. For tests at in-situ stress, high fluid viscosity and low fracture toughness are required. Tests on cement blocks agreed with the scale laws based on elastic behavior.

Pater, C.J. de; Weijers, L. (Delft Univ. of Technology (Netherlands)); Cleary, M.P.; Quinn, T.S. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Barr, D.T.; Johnson, D.E. (Resources Engineering Systems, Inc., Cambridge, MA (United States))

1994-11-01T23:59:59.000Z

118

The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs  

E-Print Network [OSTI]

Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

Kamenov, Anton

2013-04-11T23:59:59.000Z

119

Massive Hydraulic Fracture of Fenton Hill HDR Well EE-3 | Open...  

Open Energy Info (EERE)

Massive Hydraulic Fracture of Fenton Hill HDR Well EE-3 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Massive Hydraulic Fracture of Fenton Hill HDR...

120

Failure of a gas well to respond to a foam hydraulic fracturing treatment  

SciTech Connect (OSTI)

Well No. 1 (not the real name of the well) is not producing gas at maximum capacity following a foam hydraulic fracturing treatment performed upon completion of the well in 1987. The failure of the stimulation treatment, which has affected other wells throughout the field, was due to a combination of three factors: (1) downward fracture growth and proppant settling during injection (2) embedment due to a high pressure drawdown in the wellbore during flowback procedures, and (3) poor cleanup of the fracture fluid due to high capillary pressures. The following are recommendations to help improve future fracturing treatments throughout the field: (1) Fracture at lower treating pressures; (2) Improve perforating techniques; (3) Change flowback procedures; and (4) Evaluate using N{sub 2} as a fracture fluid.

Rauscher, B.D.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

), md 0.15 Porosity (g102), fraction 0.1 Water Saturation (S w ), fraction 0.16 Initial Pressure (p i ), psi 3,900 Injection Pressure (p inj ), psi 3,910 Dewpoint Pressure (p d ), psi 3,500 Temperature (T), o F 200 Total Compressibility (c g... simulation ..........................13 3.4 Permeability reduction normal to fracture face .........................................14 3.5 Quarter model for 80 acre drainage area....................................................15 3.6 Fracture face...

Adeyeye, Adedeji Ayoola

2004-09-30T23:59:59.000Z

122

On the moving boundary conditions for a hydraulic fracture Emmanuel Detournay a,b,  

E-Print Network [OSTI]

On the moving boundary conditions for a hydraulic fracture Emmanuel Detournay a,b, , Anthony Peirce 2014 Keywords: Hydraulic fractures Speed equation Ill-posedness a b s t r a c t This paper re-examines the boundary conditions at the moving front of a hydraulic fracture when the fluid front has coalesced

Peirce, Anthony

123

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011  

E-Print Network [OSTI]

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011 of Hydraulic Fracturing in the Shale Plays (2010). Tudor Pickering Holt & Co with Reservoir Research Partners, with a thoughtful discussion Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

Manning, Sturt

124

Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy, Anthony Peirce  

E-Print Network [OSTI]

Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy August 2012 Accepted 18 August 2012 Available online 15 September 2012 Keywords: XFEM Hydraulic fractures and the Dirichlet to Neumann (DN) map with Oðh� accuracy. For hydraulic fracture problems with a lag separating

Peirce, Anthony

125

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011  

E-Print Network [OSTI]

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011 of Hydraulic Fracturing in the Shale Plays (2010). Tudor Pickering Holt & Co with Reservoir Research Partners, with a thoughtful discussion Draft Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water

126

Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model  

E-Print Network [OSTI]

Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model-off dominated. We demonstrate the ability of our cohesive zone model in simulating the hydraulic fracture in all these propagation regimes. Keywords: Hydraulic fracture, Cohesive zone model, Finite element analysis, Hydro

Paris-Sud XI, Université de

127

A model for turbulent hydraulic fracture and application to crack propagation at glacier beds  

E-Print Network [OSTI]

Click Here for Full Article A model for turbulent hydraulic fracture and application to crack suggest that fluidinduced hydraulic fracture of an ice sheet from its bed sometimes occurs quickly. Citation: Tsai, V. C., and J. R. Rice (2010), A model for turbulent hydraulic fracture and application

128

International Journal of Rock Mechanics & Mining Sciences 44 (2007) 739757 Computer simulation of hydraulic fractures  

E-Print Network [OSTI]

of hydraulic fractures J. Adachia , E. Siebritsb , A. Peircec,Ã?, J. Desrochesd a Schlumberger Data of hydraulic fracturing models for use in the petroleum and other industries. We discuss scaling laws and the propagation regimes that control the growth of hydraulic fractures from the laboratory to the field scale. We

Peirce, Anthony

129

A Hybrid, Neuro-Genetic Approach to Hydraulic Fracture Treatment Design and Optimization  

E-Print Network [OSTI]

SPE 36602 A Hybrid, Neuro-Genetic Approach to Hydraulic Fracture Treatment Design and Optimization and novel methodology for optimal design of hydraulic fracture treatments in a gas storage field. What makes very little (almost none) reservoir data availability. Lack of engineering data for hydraulic fracture

Mohaghegh, Shahab

130

Review article Induced seismicity and hydraulic fracturing for the recovery of  

E-Print Network [OSTI]

Review article Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons Richard mining (M 1.0e5.2); (h) geothermal operations (M 1.0e4.6) and (i) hydraulic fracturing for recovery seismicity occurs due to a reduction in effective stress on fault planes. Hydraulic fracturing operations can

Foulger, G. R.

131

Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J.T. Rutledge  

E-Print Network [OSTI]

Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J three hydraulic fracture operations in the Cotton Valley gas field of East Texas. Two 48-level, 3 a consortia of operators and service companies conducted an extensive hydraulic fracture imaging demonstration

132

Self-similar solutions for a fractional thin film equation governing hydraulic fractures  

E-Print Network [OSTI]

Self-similar solutions for a fractional thin film equation governing hydraulic fractures C. Imbert equation governing hydraulic fractures are constructed. One of the boundary con- ditions, which accounts, 35R11, 35C06 Keywords: Hydraulic fractures, higher order equation, thin films, fractional Laplacian

Boyer, Edmond

133

New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations  

E-Print Network [OSTI]

New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF

Jackson, Robert B.

134

Water Use for Hydraulic Fracturing: A Texas Sized Problem?  

E-Print Network [OSTI]

The state of Texas could face a 2.7 trillion gallon shortfall of water by 2060. Hydraulic fracturing (HF) requires large amounts of water for each well. Tax incentives should be offered to companies that substitute brackish groundwater for fresh...

LeClere, David

135

Imaging Hydraulic Fractures: Source Location Uncertainty Analysis At The UPRC Carthage Test Site  

E-Print Network [OSTI]

Hydraulic fracturing is a useful tool for enhancing gas and oil production. High-resolution seismic imaging of the fracture geometry and fracture growth process is the key in determining optimal spacing and location of ...

Li, Yingping

1996-01-01T23:59:59.000Z

136

Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells  

E-Print Network [OSTI]

fracture complexity, that may have been opened or reopened during the hydraulic fracturing operation. The main objective of this work is to investigate the role of fracture complexity in resolving the apparent SSV discrepancy and to illustrate whether...

Apiwathanasorn, Sippakorn

2012-10-19T23:59:59.000Z

137

How intense quality control improves hydraulic fracturing  

SciTech Connect (OSTI)

Not unlike the subject of Forced Closure, Intense Quality Control is probably misnamed. What actually is discussed in this article is pilot testing of the fracturing fluids actually pumped at in-situ conditions of temperature and shear. Presented here is development of the need for onsite testing, equipment used, shear and viscosity curves from several jobs showing what went wrong that would otherwise not have been known, and a discussion of borate gel fluids.

Ely, J.W. [Ely and Associates, Inc., Houston, TX (United States)

1996-11-01T23:59:59.000Z

138

On modeling hydraulic fracture in proper variables: stiffness, accuracy, sensitivity  

E-Print Network [OSTI]

The problem of hydraulic fracture propagation is considered by using its recently suggested modified formulation in terms of the particle velocity, the opening in the proper degree, appropriate spatial coordinates and $\\varepsilon$-regularization. We show that the formulation may serve for significant increasing the efficiency of numerical tracing the fracture propagation. Its advantages are illustrated by re-visiting the Nordgren problem. It is shown that the modified formulation facilitates (i) possibility to have various stiffness of differential equations resulting after spatial discretization, (ii) obtaining highly accurate and stable numerical results with moderate computational effort, and (iii) sensitivity analysis. The exposition is extensively illustrated by numerical examples.

Mishuris, Gennady; Linkov, Alexander

2012-01-01T23:59:59.000Z

139

In situ bioremediation of petroleum in tight soils using hydraulic fracturing  

SciTech Connect (OSTI)

This case study evaluated the effectiveness of in situ bioremediation of petroleum hydrocarbons in tight soils. The study area was contaminated with cutting oil from historic releases from underground piping, probably dating back to the 1940`s. Previous site assessment work indicated that the only chemicals of concern were total petroleum hydrocarbons (TPH). Two fracture sets (stacks) were installed at different locations to evaluate this in situ bioremediation technique under passive and active conditions. Several injection wells were drilled at both locations to provide entry for hydraulic fracturing equipment. A series of circular, horizontal fractures 40 to 50 feet in diameter were created at different depths, based on the vertical extent of contamination at the site. The injection wells were screened across the contaminated interval which effectively created underground bioreactors. Soils were sampled and analyzed for total petroleum hydrocarbons on five separate occasions over the nine-month study. Initial average soil concentrations of total petroleum hydrocarbons of 5,700 mg/kg were reduced to 475 mg/kg within nine months of hydraulic fracturing. The analytical results indicate an average reduction in TPH at the sample locations of 92 percent over the nine-month study period. This project demonstrates that in situ bioremediation using hydraulic fracturing has significant potential as a treatment technology for petroleum contaminated soils.

Stavnes, S. [Environmental Protection Agency, Denver, CO (United States); Yorke, C.A. [Foremost Solutions, Inc., Golden, CO (United States); Thompson, L. [Pintail Systems, Inc., Aurora, CO (United States)

1996-12-31T23:59:59.000Z

140

Measuring well hydraulic connectivity in fractured bedrock using periodic slug tests  

Science Journals Connector (OSTI)

Summary Periodic hydraulic experiments were conducted in a five-spot well cluster completed in a single bedding plane fracture. Tests were performed by using a winch-operated slug (submerged solid cylinder) to create a periodic head disturbance in one well and observing the phase shift and attenuation of the head response in the remaining wells. Transmissivity (T) and storativity (S) were inverted independently from head response. Inverted T decreased and S increased with oscillation period. Estimated S was more variable among well pairs than T, suggesting S may be a better estimator of hydraulic connectivity among closely spaced wells. These estimates highlighted a zone of poor hydraulic connection that was not identified by a constant rate test conducted in the same wells. Periodic slug tests appear to be a practical and effective technique for establishing local scale spatial variability in hydraulic parameters.

Eric Guiltinan; Matthew W. Becker

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2013 8, 2013 Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection Washington, D.C. -Two data collection tools specifically developed for hydraulic fracturing are available to help regulatory agencies monitor drilling and completion operations and enhance environmental protection. Developed with support from the U.S. Department of Energy's Office of Fossil Energy (FE), the Risk Based Data Management System (RBDMS) and FracFocus chemical disclosure registry (http://fracfocus.org/) provide a way for industry professionals, regulatory agencies and the general public to more easily access information on oil and natural gas activities. These reporting and data collection tools have been developed by the Groundwater Protection Council (GWPC) and various states.

142

Mathematical modeling of hydraulic fracturing in coal seams  

SciTech Connect (OSTI)

Hydraulic fracturing of coal seam is considered as a process of development of discontinuities in rock mass elements due to change in hydrogeomechanical situation on filtration of fluid under pressure. Failure is associated with excess of the effective stresses over the rock tension strength. The problem on filtration and failure of massif is solved by the finite-element method using the procedure of fictitious nodal forces.

Olovyanny, A.G. [All Russian Science Research Institute for Mine Surveying, St. Petersburg (Russian Federation)

2005-02-01T23:59:59.000Z

143

Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells  

E-Print Network [OSTI]

This thesis presents and develops efficient and effective methodologies for optimal hydraulic fracture design and fracture performance evaluation. These methods incorporate algorithms that simultaneously optimize all of the treatment parameters...

Wang, Wenxin

2006-04-12T23:59:59.000Z

144

Horizontal well will be employed in hydraulic fracturing research  

SciTech Connect (OSTI)

This paper reports on 10-well research site, planned to enable more controlled experiments for better definition of hydraulic fracturing. One of the 10 wells will be a near-horizontal well that will monitor microseismic events along its length. The Gas Research Institute (GR) has begun evaluating a low-permeability, gas-bearing sandstone as the target stratum for experiments to be conducted at its hydraulic fracture test site (HFTS). During a 4-year period, GRI will use the HFTS as a field laboratory to conduct multi-disciplinary research projects to assess the mechanics of hydraulic fracturing. As a result of a screening process the Davis sandstone in the Ft. Worth basin has emerged as the tight gas sand which best fits the selected criteria established by GRI and its contractors, GRI says. The Ft. Worth basin is located approximately 50 miles northwest of Ft. Worth. GRI is planning a research well to fully characterize the Davis prior to making a final decision on the location of the HFTS. If data from the research well indicate the Davis sand does not adequately meet selection criteria, other candidates identified in the screening process will be investigated.

Not Available

1991-05-20T23:59:59.000Z

145

Borehole deviation surveys are necessary for hydraulic fracture monitoring Leo Eisner, Schlumberger Cambridge Research, Petr Bulant, Charles University in Prague, Jol H. Le Calvez*,  

E-Print Network [OSTI]

Borehole deviation surveys are necessary for hydraulic fracture monitoring Leo Eisner, Schlumberger Not performing accurate borehole deviation surveys for hydraulic fracture monitoring (HFM) and neglecting fracture parameters. Introduction Recently a large number of hydraulic fracture treatments have been

Cerveny, Vlastislav

146

Implicit level set schemes for modeling hydraulic fractures using the Elizaveta Gordeliy, Anthony Peirce  

E-Print Network [OSTI]

Implicit level set schemes for modeling hydraulic fractures using the XFEM Elizaveta Gordeliy Copyright Ã? 2013 Published by Elsevier B.V. All rights reserved. 1. Introduction Hydraulic fractures (HF form 13 July 2013 Accepted 27 July 2013 Available online 20 August 2013 Keywords: XFEM Hydraulic

Peirce, Anthony

147

Simulations of pressure fluctuations and acoustic emission in hydraulic fracturing  

SciTech Connect (OSTI)

We consider a two-dimensional lattice model to describe the opening of a crack in hydraulic fracturing. In particular, we consider that the material only breaks under tension and the fluid has no pressure drop inside the crack. For the case in which the material is completely homogeneous (no disorder), we present results for pressure and elastic energy as a function of time and compare our findings with some analytic results from continuum fracture mechanics. Then we investigate fracture processes in strongly heterogeneous cohesive environments. We determine the cumulative probability distribution for breaking events of a given energetical magnitude (acoustic emission). Further, we estimate the probability distribution of emission free time intervals. Finally, we determine the fractal dimension(s) of the cracks.

Tzschichholz, F.; Herrmann, H.J. [Division of Physics and Mechanics, School of Technology, Aristotele University of Thessaloniki, 54006 Thessaloniki (Greece)] [Division of Physics and Mechanics, School of Technology, Aristotele University of Thessaloniki, 54006 Thessaloniki (Greece); [HLRZ, Kernforschungsanlage Juelich, Postfach 1913, 5170 Juelich (Germany); [P.M.M.H. (CNRS, URA 857), Ecole Superieuree de Physique et de Chimie Industrielle de la Ville de Paris, 10 rue Vauquelin, 75231 Paris Cedex 05 (France)

1995-03-01T23:59:59.000Z

148

Asymptotic Analysis of Cross-Hole Hydraulic Tests in Fractured Granite  

E-Print Network [OSTI]

Asymptotic Analysis of Cross-Hole Hydraulic Tests in Fractured Granite by Walter A. Illman1 hydraulic conductivity and specific storage. Introduction Well test analyses in porous and fractured for the interpretation of three-dimensional pneumatic well tests conducted in porous or fractured geologic media, which

Daniels, Jeffrey J.

149

Page 1 of 5 Narrative Description of Hydraulic Fracturing Draft Regulations  

E-Print Network [OSTI]

Page 1 of 5 Narrative Description of Hydraulic Fracturing Draft Regulations The Department of Conservation has released a discussion draft of hydraulic fracturing (HF) regulations. This narrative attempts formation (i.e., higher than the strata's "fracture pressure"). In HF, a fluid with #12;Page 2 of 5

150

METHOD DEVELOPMENT FOR DETERMINING THE HYDRAULIC CONDUCTIVITY OF FRACTURED POROUS MEDIA  

SciTech Connect (OSTI)

Plausible, but unvalidated, theoretical model constructs for unsaturated hydraulic conductivity of fractured porous media are currently used in Performance Assessment (PA) modeling for cracked saltstone and concrete (Flach 2011). The Nuclear Regulatory Commission (NRC) has expressed concern about the lack of model support for these assumed Moisture Characteristic Curves (MCC) data, as noted in Requests for Additional Information (RAIs) PA-8 and SP-4 (Savannah River Remediation, LLC, 2011). The objective of this task was to advance PA model support by developing an experimental method for determining the hydraulic conductivity of fractured cementitious materials under unsaturated conditions, and to demonstrate the technique on fractured saltstone samples. The task was requested through Task Technical Request (TTR) HLW-SSF-TTR-2012-0016 and conducted in accordance with Task Technical & Quality Assurance Plan (TTQAP) SRNL-TR-2012-00090. Preliminary method development previously conducted by Kohn et al. (2012) identified transient outflow extraction as the most promising method for characterizing the unsaturated properties of fractured porous media. While the research conducted by Kohn et al. (2012) focused on fractured media analogs such as stacked glass slides, the current task focused directly on fractured saltstone. For this task, four sample types with differing fracture geometries were considered: 1) intact saltstone, 2) intact saltstone with a single saw cut, smooth surface fracture, 3) micro-fractured saltstone (induced by oven drying), and 4) micro-fractured saltstone with a single, fully-penetrating, rough-surface fracture. Each sample type was tested initially for saturated hydraulic conductivity following method ASTM D 5084 using a flexible wall permeameter. Samples were subsequently tested using the transient outflow extraction method to determine cumulative outflow as a function of time and applied pressure. Of the four sample types tested, two yielded datasets suitable for analysis (sample types 3 and 4). The intact saltstone sample (sample type 1) did not yield any measureable outflow over the pressure range of the outflow test (0-1000 cm H{sub 2}O). This was expected because the estimated air entry pressure for intact saltstone is on the order of 100,000 cm H{sub 2}O (Dixon et al., 2009). The intact saltstone sample with a single saw cut smooth surface fracture (sample type 2) did not produce useable data because the fracture completely drained at less than 10 cm H{sub 2}O applied pressure. The cumulative outflow data from sample types 3 and 4 were analyzed using an inverse solution of the Richard’s equation for water flow in variably saturated porous media. This technique was implemented using the computer code Hydrus-1D (Šim?nek et al., 2008) and the resulting output included the van Genuchten-Mualem water retention and relative permeability parameters and predicted saturated hydraulic conductivity (Van Genuchten, 1980; Van Genuchten et al., 1991). Estimations of relative permeability and saturated conductivity are possible because the transient response of the sample to pressure changes is recorded during the multi-step outflow extraction test. Characteristic curves were developed for sample types 3 and 4 based on the results of the transient outflow method and compared to that of intact saltstone previously reported by Dixon et al. (2009). The overall results of this study indicate that the outflow extraction method is suitable for measuring the hydraulic properties of micro-fractured porous media. The resulting cumulative outflow data can be analyzed using the computer code Hydrus-1D to generate the van Genuchten curve fitting parameters that adequately describe fracture drainage. The resulting characteristic curves are consistent with blended characteristic curves that combine the behaviors of low pressure drainage associated with fracture flow with high pressure drainage from the bulk saltstone matrix.

Dixon, K.

2013-09-30T23:59:59.000Z

151

Application of a 3D hydraulic-fracturing simulator for design of acid-fracturing treatments  

SciTech Connect (OSTI)

Field experience during 1989--90 shows that application of a 3D hydraulic-fracturing simulator increases success of acid-fracturing well treatments. Fracture extension can be limited to the oil-bearing pay, maximum lateral extension can be realized within the height constraint, and acid/rock contact time can be increased by a factor of between 3 and 30. Oil-production response can be improved over other stimulation designs while water-production response can be limited. These methods have been applied in mature waterfloods of the Permian Basin and Cedar Creek anticline.

Morgenthaler, L.N. (Shell Development Co., Houston, TX (United States))

1994-02-01T23:59:59.000Z

152

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network [OSTI]

The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant...

Marpaung, Fivman

2009-05-15T23:59:59.000Z

153

Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing  

SciTech Connect (OSTI)

Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, have to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.

Shah, S.; Zhoi, Y.X.; Bailey, M.; Hernandez, J. [University of Oklahoma, Norman, OK (United States)

2009-08-15T23:59:59.000Z

154

Fracking frames: A framing analysis and comparative study of hydraulic fracturing coverage in American newspapers.  

E-Print Network [OSTI]

??Science is generally prone to controversy as technical decisions often become politically influenced. Hydraulic fracturing is currently a controversial topic in the media and is… (more)

Lawson, Cara Raeschelle

2014-01-01T23:59:59.000Z

155

Low Alloy Steel Susceptibility to Stress Corrosion Cracking in Hydraulic Fracturing Environment.  

E-Print Network [OSTI]

??The pipelines used for hydraulic fracturing (aka. "fracking") are often operating at a pressure above 10000psi and thus are highly susceptible to Stress Corrosion Cracking… (more)

Anyanwu, Ezechukwu John

2014-01-01T23:59:59.000Z

156

A Case Study - Hydraulic Fracturing Geography: The case of the Eagle Ford Shale, TX, USA.  

E-Print Network [OSTI]

??The use of horizontal drilling in conjunction with hydraulic fracturing has increased the ability of producers to extract natural gas and oil from previously non-viable… (more)

Wenzel, Cortney

2012-01-01T23:59:59.000Z

157

Laboratory Investigations on the Geochemical Response of Groundwater-sediment Environment to Hydraulic Fracturing Fluids.  

E-Print Network [OSTI]

??The extraction of energy resources from unconventional reservoirs using improved horizontal drilling and hydraulic fracturing technologies is expected to play an important role in serving… (more)

Liu, Shuai

2013-01-01T23:59:59.000Z

158

A decision-analytic approach to predict state regulation of hydraulic fracturing  

E-Print Network [OSTI]

Background: The development of horizontal drilling and hydraulic fracturing methods has dramatically increased the potential for the extraction of previously unrecoverable natural gas. Nonetheless, the potential risks and ...

Linkov, Igor

159

Predicting hydraulic tensile fracture spacing in strata-bound systems$ C.I. McDermott n  

E-Print Network [OSTI]

Predicting hydraulic tensile fracture spacing in strata-bound systems$ C.I. McDermott n , K June 2013 Available online 15 July 2013 Keywords: Hydraulic fracturing Fracture spacing CO2 analogue that hydraulic fracturing can be expected in the lower layers of a caprock after a relatively short period

Haszeldine, Stuart

160

A New Analytical Method to Quantify Residual Fluid Cleanup in Hydraulic Fractures  

E-Print Network [OSTI]

A number of factors contribute to reduce the production benefits from hydraulic fracturing, including inefficient fluid design, poor proppant selection and or, the inability of fracture fluid to degrade and flow back after treatment. Undegraded...

Zarrin, Tahira

2014-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation  

E-Print Network [OSTI]

approaches is by drilling horizontal wells and hydraulically fracturing the formation. Once the formation is fractured, different flow patterns will occur. The dominant flow regime observed in the shale gas formation is the linear flow or the transient...

Almarzooq, Anas Mohammadali S.

2012-02-14T23:59:59.000Z

162

Development, setup and testing of a dynamic hydraulic fracture conductivity apparatus  

E-Print Network [OSTI]

One of the most critical parameters in the success of a hydraulic fracturing treatment is to have sufficiently high fracture conductivity. Unbroken polymers can cause permeability impairment in the proppant pack and/or in the matrix along...

Pongthunya, Potcharaporn

2009-06-02T23:59:59.000Z

163

Hydraulic fracturing: A proven N.O.R.M. disposal method  

SciTech Connect (OSTI)

Since the discovery that many drill cuttings, scales, sludges, and platings contain elevated amounts of naturally occurring radioactive material (NORM), many companies and regulating authorities have discussed the merits of various disposal methods. This paper covers a process that disposes of NORM and provides isolation of the material from the environment. Disposal of NORM slurry through fracturing an existing depleted sandstone requires careful analysis to optimize a safe and effective design. A radioactivity assay was performed on the NORM before and after slurrification to determine activity concentrations. Tests were conducted on the NORM to proved parameters for the fracture design. The process consists of slurrying the material and keeping the particles suspended in solution until time for well injection. Well injection takes the form of hydraulic fracturing with the material into a deplete zone in the reservoir. Fracturing with the NORM was preceded with a Mini-Frac as a safety precaution to confirm downhole parameters. In conclusion, the philosophy of the process is to take the NORM generated through the exploration and production of oil and gas and place it back into the reservoir from which it came through hydraulic fracturing. This technique is one that helps protect the environment from the possible hazards associated with mismanaged NORM.

Young, S.C. [Halliburton Energy Services, New Orleans, LA (United States); Chambers, D.G. [Halliburton Energy Services, Lafayette, LA (United States); Woods, S.E.; Abernathy, S.E. [Halliburton Energy Services, Duncan, OK (United States)

1995-10-01T23:59:59.000Z

164

The evolution of an applied hydraulic fracture project, Frontier Formation Moxa Arch, Wyoming  

SciTech Connect (OSTI)

This paper demonstrates a methodical approach in the implementation of current hydraulic fracturing technologies. Specific examples illustrating the evolution of a consistent reservoir/hydraulic fracturing interpretation are presented in a case history of three GRI-Industry Technology Transfer wells. Detailed modeling of these project wells provided an overall reservoir and hydraulic fracture description that was consistent with respect to all observations. Based on identification of the fracturing mechanisms occurring, the second and third project wells show the capabilities of real-time diagnostics in the implementation of hydraulic fracture treatments. By optimizing the pad volume and fluid integrity to avoid premature screenouts, significant cost savings and improved proppant placement were achieved. The production and pressure build-up response in the first project well verifies the overall interpretation of the reservoir/hydraulic fracture model and provides the basis for eliminating the use of moderate strength/higher cost proppant over sand in low permeability/higher closure stress environments.

Harkrider, J.D.; Aud, W.W.; Cipolla, C.L.; Hansen, J.T.

1994-12-31T23:59:59.000Z

165

Laboratory-scale study of hydraulic fracturing in heterogeneous media for enhanced geothermal systems and general well stimulation.  

E-Print Network [OSTI]

??The primary objectives of this research were to experiment with hydraulic fracturing in the laboratory to gain additional understanding of the fracturing process in unconventional… (more)

Frash, Luke P.

2014-01-01T23:59:59.000Z

166

Hydraulics of horizontal wells in fractured shallow aquifer systems Eungyu Parka,*, Hongbin Zhanb  

E-Print Network [OSTI]

Hydraulics of horizontal wells in fractured shallow aquifer systems Eungyu Parka,*, Hongbin Zhanb Accepted 1 May 2003 Abstract An analysis of groundwater hydraulic head in the vicinity of a horizontal well in fractured or porous aquifers considering confined, leaky confined, and water-table aquifer boundary

Zhan, Hongbin

167

Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements  

E-Print Network [OSTI]

Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic, France Abstract Hydromechanical coupled processes in a shallow fractured carbonate reservoir rock were of hydraulic loading/unloading of a water reservoir in which fluid flow occurs mainly inside a heterogeneous

Paris-Sud XI, Université de

168

Solution of hydraulic fracture problem accounting for lag  

E-Print Network [OSTI]

The paper presents a method for solving hydraulic fracture problems accounting for the lag. The method consists in matching the outer (basic) solution neglecting the lag, with the inner (auxiliary) solution of the derived 1D integral equation with conditions, accounting for the lag and asymptotic behavior of the opening and the net-pressure. The method refers to practically important cases, when the influence of the local perturbation, caused by the lag, becomes insignificant at a distance, where the leading plane-state asymptotics near the fracture front is still applicable. The universal asymptotics are used for finding the matching constants of the basic (outer) solution and for formulation of matching condition for the solution of inner (auxiliary) problem. The method is illustrated by the solution of the Spence and Sharp plane-strain problem for a fracture propagating symmetrically from the inlet, where a Newtonian fluid is pumped at a constant rate. It is stated that the method developed for deep fractu...

Linkov, Alexander M

2014-01-01T23:59:59.000Z

169

Coordinated studies in support of hydraulic fracturing of coalbed methane. Final report, July 1990-May 1995  

SciTech Connect (OSTI)

The primary objective of this project is to provide laboratory data that is pertinent to designing hydraulic fracturing treatments for coalbed methane. Coal fluid interactions studies, fracture conductivity, fluid leak-off through cleats, rheology, and proppant transport are designed to respresent Black Warrior and San Juan treatments. A second objective is to apply the information learned in laboratory testing to actual hydraulic fracturing treatments in order to improve results. A final objective is to review methods currently used to catalog well performance following hydraulic fracturing for the purpose of placing the data in a useable database that can be accessed by users to determine the success of various treatment scenarios.

Penny, G.S.; Conway, M.W.

1996-02-01T23:59:59.000Z

170

Analysis of Best Hydraulic Fracturing Practices in the Golden Trend Fields of Oklahoma Shahab D. Mohaghegh, West Virginia University  

E-Print Network [OSTI]

Analysis of Best Hydraulic Fracturing Practices in the Golden Trend Fields of Oklahoma Shahab D of optimized hydraulic fracturing procedure. Detail stimulation data from more than 230 wells in the Golden of hydraulic fractures. Therefore, it is highly recommended that the clastic and carbonate formations

Mohaghegh, Shahab

171

A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in  

E-Print Network [OSTI]

and Hydraulic Fracturing in the United States Avner Vengosh,*, Robert B. Jackson,, Nathaniel Warner,§ Thomas H: The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations

Jackson, Robert B.

172

Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core  

E-Print Network [OSTI]

Determination of stress state in deep subsea formation by combination of hydraulic fracturing January 2013. [1] In situ test of hydraulic fracturing (HF) provides the only way to observe in situ of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core

173

Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers  

E-Print Network [OSTI]

Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth in revised form 13 February 2010 Accepted 10 March 2010 Keywords: Hydraulic fracture P3D Symmetric stress-called ``pseudo three-dimensional'' (P3D) model for a hydraulic fracture with equilibrium height growth across two

Peirce, Anthony

174

In Situ Characterization of a Single Fracture Hydromechanical Behavior from Hydraulic Pulse Tests coupled to Simultaneous Pressure Normal  

E-Print Network [OSTI]

In Situ Characterization of a Single Fracture Hydromechanical Behavior from Hydraulic Pulse Tests of the other surrounding fractures of the network. 1 INTRODUCTION Hydraulic pulse injection testing in single borehole has previously been applied to determine hydraulic properties of rock fractures, including

Vallée, Martin

175

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Vibrational modes of hydraulic fractures: Inference1  

E-Print Network [OSTI]

:53am D R A F T #12;X - 2 LIPOVSKY AND DUNHAM: RESONANCE OF HYDRAULIC FRACTURES Abstract. Oscillatory seismic signals arising from resonant vibrations of4 hydraulic fractures are observed in many geologic of hydraulic fracture events. We present a25 D R A F T May 14, 2014, 1:53am D R A F T #12;LIPOVSKY AND DUNHAM

Dunham, Eric M.

176

August 22, 2012 (v. 5) Summary of Studies Related to Hydraulic Fracturing Conducted by USGS Water Science Centers  

E-Print Network [OSTI]

August 22, 2012 (v. 5) Summary of Studies Related to Hydraulic Fracturing Conducted by USGS Water and hydraulic fracturing on groundwater and surface-water quantity and quality and ecosystems. "On ­ Maps related to oil and gas production and hydraulic fracturing are included in the USGS Fact Sheet

177

Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: Insights from a frequency domain analysis  

E-Print Network [OSTI]

Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: Insights from investigate the hydraulic response to recharge of a fractured aquifer, using a frequency domain approach scaling of hydraulic response to recharge in fractured aquifers: Insights from a frequency domain analysis

Paris-Sud XI, Université de

178

Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers  

E-Print Network [OSTI]

Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth t This paper deals with the so-called ``pseudo three-dimensional'' (P3D) model for a hydraulic fracture of the length, height, and aperture of the hydraulic fracture, in contrast to the numerical formulations adopted

Peirce, Anthony

179

Development of a Neutron Diffraction Based Experiemental Capability for Investigating Hydraulic Fracturing for EGS-like Conditions  

SciTech Connect (OSTI)

Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had both the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture and map the associated internal strain states of the sample. This will hopefully enable a more precise mapping of the rock material failure envelope, facilitate a more refined understanding of the mechanism of hydraulically induced rock fracture, particularly in crystalline rocks, and serve as a platform for validating and improving fracture simulation codes. The elements of the research program and preliminary strain mapping results of a Sierra White granite sample subjected only to compressive loading will be discussed in this paper.

Polsky, Yarom [ORNL] [ORNL; Anovitz, Lawrence {Larry} M [ORNL; An, Ke [ORNL] [ORNL; Carmichael, Justin R [ORNL] [ORNL; Bingham, Philip R [ORNL] [ORNL; Dessieux Jr, Luc Lucius [ORNL] [ORNL

2013-01-01T23:59:59.000Z

180

Advanced hydraulic fracturing methods to create in situ reactive barriers  

SciTech Connect (OSTI)

Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

Murdoch, L. [FRx Inc., Cincinnati, OH (United States); [Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fractured: Experts examine the contentious issue of hydraulic fracturing water use  

E-Print Network [OSTI]

shale rock, releasing oil and gas from the rock. Combined with the use of horizontal drilling, fracturing has unlocked large deposits of oil and gas and opened up new oil and gas #30;elds in areas around the country. #31;e majority of hydraulic... years. ?Now what we have found in the last #30;ve or #28;#25; years is that source rocks are still loaded with oil and gas,? he said. Source rocks are usually organic-rich shales in which petroleum forms. ?#31;e energy industry has never had...

Wythe, Kathy

2013-01-01T23:59:59.000Z

182

Orientation of hydraulic fractures in SALT under hydrostatic and non-hydrostatic stresses  

SciTech Connect (OSTI)

A series of laboratory experiments were performed to determine the influence of deviatoric in situ stress on the form and orientation of hydraulic fractures in salt. The principal hydraulic fracturing tests were run on prismatic blocks confined in a polyaxial loading frame using flatjacks. The vertical stress and the minimum horizontal stress were 10.3 MPa for all tests. The maximum horizontal stress was varied form 10.3 MPa to 15.5 MPa to provide a range of horizontal stress ratios from 1.0 (hydrostatic) to 1.5. The fracturing oil contained a fluorescent dye that marked the fracture traces for mapping after the samples were split. At high stress ratios (1.5) the hydraulic fractures formed as two distinct traces emanating from opposite sides of the borehole in the maximum horizontal stress direction. At progressively lower stress ratios the orientations of the fractures varied about the maximum stress direction, and the fracture traces tended to branch. At stress ratios below between 1.10 and 1.13 the fracture no longer appeared to have an orientation controlled by the in situ stress directions. The results indicate that the form of the hydraulic fracture reflects whether or not the stresses are nearly hydrostatic. Fracture form can be determined by mapping dyed hydraulic fractures underground. The fractures should be made in portions of an underground facility that are to be excavated, and the fractures should be mapped as the excavation proceeds through the area of fracturing. 2 refs., 13 figs., 2 tabs.

Doe, T.W.; Boyce, G.M.; Andrews, R.

1987-06-01T23:59:59.000Z

183

Hydraulic interactions between fractures and bedding planes in a carbonate aquifer studied by means of experimentally induced water-table fluctuations (Coaraze  

E-Print Network [OSTI]

1 Hydraulic interactions between fractures and bedding planes in a carbonate aquifer studied. Keywords: Karst, hydrogeochemistry, fractured rocks, hydraulic properties, France insu-00376151,version1 high and low permeability regions are controlled by the hydraulic head gradient. Past studies have

Boyer, Edmond

184

Imaging hydraulic fractures in a geothermal reservoir Bruce R. Julian,1,2  

E-Print Network [OSTI]

,2 Gillian R. Foulger,3 Francis C. Monastero,4 and Steven Bjornstad5 Received 30 September 2009; revised 11, B. R., G. R. Foulger, F. C. Monastero, and S. Bjornstad (2010), Imaging hydraulic fractures

Foulger, G. R.

185

A decision-analytic approach to predict state regulation of hydraulic fracturing  

Science Journals Connector (OSTI)

Horizontal drilling and high-volume hydraulic fracturing, collectively known as ‘fracking,’ opened up the possibility for new ... the globe. While not a novel technology, fracking has taken off in the USA and...1

Igor Linkov; Benjamin Trump; David Jin; Marcin Mazurczak…

2014-08-01T23:59:59.000Z

186

Stochastic Programming Approach to Hydraulic Fracture Design for the Lower Tertiary Gulf of Mexico  

E-Print Network [OSTI]

In this work, we present methodologies for optimization of hydraulic fracturing design under uncertainty specifically with reference to the thick and anisotropic reservoirs in the Lower Tertiary Gulf of Mexico. In this analysis we apply a stochastic...

Podhoretz, Seth

2013-07-27T23:59:59.000Z

187

Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

Ma, Xiaodan

2013-12-10T23:59:59.000Z

188

Risk assessment of groundwater contamination from hydraulic fracturing fluid spills in Pennsylvania  

E-Print Network [OSTI]

Fast-paced growth in natural gas production in the Marcellus Shale has fueled intense debate over the risk of groundwater contamination from hydraulic fracturing and the shale gas extraction process at large. While several ...

Fletcher, Sarah Marie

2012-01-01T23:59:59.000Z

189

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.

Laue, M.L.

1999-11-01T23:59:59.000Z

190

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low energy deposits at the distal end of a protruding turbidite complex through use of hydraulically fractured horizontal of high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than conventional vertical wells while maintaining vertical communication between thin interbedded layers and the well bore.

Mike L. Laue

1998-05-29T23:59:59.000Z

191

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a propagating turbidite complex through the use of hydraulically-fractured horizontal or high-angle wells. The combination of a horizontal or high-angled well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thininterbedded layers and the well bore.

Mike L. Laue

1997-05-08T23:59:59.000Z

192

Computer simulation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing  

E-Print Network [OSTI]

The paper presents results of numerical experiments performed to evaluate the effective viscosity of a fluid-proppant mixture, used in hydraulic fracturing. The results, obtained by two complimenting methods (the particle dynamics and the smoothed particle hydrodynamics), coincide to the accuracy of standard deviation. They provide an analytical equation for the dependence of effective viscosity on the proppant concentration, needed for numerical simulation of the hydraulic fracture propagation.

Kuzkin, Vitaly A; Linkov, Aleksandr M

2013-01-01T23:59:59.000Z

193

The impact of gravity segregation on multiphase non-Darcy flow in hydraulically fractured gas wells  

E-Print Network [OSTI]

THE IMPACT OF GRAVITY SEGREGATION ON MULTIPHASE NON-DARCY FLOW IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by MARK DICKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2008 Major Subject: Petroleum Engineering THE IMPACT OF GRAVITY SEGREGATION ON MULTIPHASE NON-DARCY FLOW IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by MARK DICKINS...

Dickins, Mark Ian

2008-10-10T23:59:59.000Z

194

Characterisation of hydraulic fractures in limestones using X-ray microtomography  

E-Print Network [OSTI]

Hydraulic tension fractures were produced in porous limestones using a specially designed hydraulic cell. The 3D geometry of the samples was imaged using X-ray computed microtomography before and after fracturation. Using these data, it was possible to estimate the permeability tensor of the core samples, extract the path of the rupture and compare it to the heterogeneities initially present in the rock.

Renard, Francois; Desrues, Jacques; Plougonven, Erwan; Ougier-Simonin, Audrey

2006-01-01T23:59:59.000Z

195

A qualitative analysis of non-Darcy flow effects in hydraulically fractured gas wells  

E-Print Network [OSTI]

A QUALITATIVE ANALYSIS OF NON-DARCY FLOW EFFECTS IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by JOANNE CAROL HRESKO Submitted to the Graduate College of Texas A 5 M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1985 Major Subject: Petroleum Engineering A QUALITATIVE ANALYSIS OF NON-DARCY FLOW EFFECTS IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by JOANNE CAROL HRESKO Approved as to style and content by: W. J. Lee (Chairman...

Hresko, Joanne Carol

2012-06-07T23:59:59.000Z

196

Fracture Evolution Following a Hydraulic Stimulation within an...  

Broader source: Energy.gov (indexed) [DOE]

define the subsurface system of fractures and mapping of fluid flow. * limited fracture detection capability * lack of high-temperature monitoring tools and sensors *...

197

Submitted to WRR 1 Use of hydraulic tests at different scales to characterize fracture network properties in  

E-Print Network [OSTI]

Submitted to WRR 1 Use of hydraulic tests at different scales to characterize fracture network, hydraulic conductivity, fracture, anisotropy 1. INTRODUCTION Hard rocks and their associated aquifers occur properties in the weathered-fractured layer of a hard rock aquifer J.C. Maréchala,b* , B. Dewandela , K

Boyer, Edmond

198

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, January 1993-April 1994  

SciTech Connect (OSTI)

The production of natural gas from coal typically requires stimulation in the form of hydraulic fracturing and, more recently, cavity completions. The results of hydraulic fracturing treatments have ranged from extremely successful to less than satisfactory. The purpose of this work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated. The leakoff and proppant transport of fluids with breaker has been investigated and recommendations have been made for breaker application to minimize damage potential in coal. A data base called COAL`S has been created in Paradox (trademark) for Windows to catalogue coalbed methane activities in the Black Warrior and San Juan Basins.

Penny, G.S.; Conway, M.W.

1994-08-01T23:59:59.000Z

199

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, November 1991-December 1992  

SciTech Connect (OSTI)

The purpose of the work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated.

Not Available

1993-04-01T23:59:59.000Z

200

ECONOMIC RECOVERY OF OIL TRAPPED AT FAN MARGINS USING HIGH ANGLE WELLS AND MULTIPLE HYDRAULIC FRACTURES  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well.

Mike L. Laue

1998-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Seismic imaging of hydraullically-stimulated fractures: A numerical study of the effect of the source mechanism  

E-Print Network [OSTI]

We present a numerical study of seismic imaging of hydraulically stimulated fractures using a single source from an adjacent fracturing-process. The source is either a point force generated from the perforation of the ...

Shabelansky, Andrey Hanan

2012-01-01T23:59:59.000Z

202

Numerical Modeling of Hydraulic Fracture Propagation Using Thermo-hydro-mechanical Analysis with Brittle Damage Model by Finite Element Method  

E-Print Network [OSTI]

Better understanding and control of crack growth direction during hydraulic fracturing are essential for enhancing productivity of geothermal and petroleum reservoirs. Structural analysis of fracture propagation and impact on fluid flow is a...

Min, Kyoung

2013-07-16T23:59:59.000Z

203

Test plan: Hydraulic fracturing and hydrologic tests in Marker Beds 139 and 140  

SciTech Connect (OSTI)

Combined hydraulic fracturing and hydrological measurements in this test plan are designed to evaluate the potential influence of fracture formation in anhydrite Marker Beds 139 and 140 on gas pressure in and gas flow from the disposal rooms in the Waste Isolation Pilot Plant with time. The tests have the further purpose of providing comparisons of permeabilities of anhydrite interbeds in an undisturbed (virgin) state and after fracture development and/or opening and dilation of preexisting partially healed fractures. Three sets of combined hydraulic fracturing and hydrological measurements are planned. A set of trial measurements is expected to last four to six weeks. The duration of each subsequent experiment is anticipated to be six to eight weeks.

Wawersik, W.R.; Beauheim, R.L.

1991-03-01T23:59:59.000Z

204

Hydraulic fracturing in a sedimentary geothermal reservoir: Results and implications  

Science Journals Connector (OSTI)

Field experiments in a geothermal research well were conducted to enhance the inflow performance of a clastic sedimentary reservoir section. Due to depths exceeding 4050 m, bottom hole temperatures exceeding 140 °C, and open hole section (dual zone), technically demanding and somewhat unprecedented conditions had to be managed. The fracturing operations were successful. Fractures were created in two isolated borehole intervals and the inflow behaviour of the reservoir was decisively enhanced. The effective pressures applied for fracture initiation and propagation were only slightly above in situ pore pressures. Nevertheless, the stimulation ratio predicted by fracture performance modelling could not be achieved. Multiple reasons could be identified that account for the mismatch. An insufficient fracture tie-back, as well as chemical and mechanical processes during closure, led to reduced fracture conductivities and therefore diminished productivity. The insights gained are the basis for further fracture design concepts at the given and geologic comparable sites.

B. Legarth; E. Huenges; G. Zimmermann

2005-01-01T23:59:59.000Z

205

ECONOMIC RECOVERY OF OIL TRAPPED AT FAN MARGINS USING HIGH ANGLE WELLS AND MULTIPLE HYDRAULIC FRACTURES  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The long radius, near horizontal well was drilled during the first quarter of 1996. Well conditions resulted in the 7 in. production liner sticking approximately 900 ft off bottom. Therefore, a 5 in. production liner was necessary to case this portion of the target formation. Swept-out sand intervals and a poor cement bond behind the 5 in. liner precluded two of the three originally planned hydraulic fracture treatments. As a result, all pay intervals behind the 5 in. liner were perforated and stimulated with a non-acid reactive fluid. Following a short production period, the remaining pay intervals in the well (behind the 7 in. liner) were perforated. The well was returned to production to observe production trends and pressure behavior and assess the need to stimulate the new perforations.

Mike L. Laue

2001-09-28T23:59:59.000Z

206

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

Mike L. Laue

1997-05-30T23:59:59.000Z

207

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, June 1990-October 1991  

SciTech Connect (OSTI)

The production of natural gas coal typically requires stimulation in the form of hydraulic fracturing. The results of hydraulic fracturing treatments have ranged from highly successful to less than satisfactory. The approach in the work has been to experimentally evaluate parameters that pertain to coal fluid interactions during hydraulic fracturing and post-frac production and then apply the findings to the selection of fracturing fluids and treatment design. Evaluated parameters include leakoff through cleats, pressure drops through cleated slots with slurries, proppant transport, conductivity, and coal matrix damage due to fracturing fluids. Some conclusions from the work include (1) 100 mesh sand alone can control leakoff through cleats; (2) coal faces alone do not increase pressure drop through fractures with slurries; (3) restrictions approaching 2 proppant diameters are required to see pressure increases; (4) borate fluid pH's of 9.5 are required for transport; (5) mixed proppant conductivities of 100 mesh and 16/30 can be 50% lower than the larger proppant; (6) guar based fracturing fluids can cause up to 90% permeability damage to the coal matrix; (7) HEC containing foams provide the best cleanup in the laboratory (only 10 to 30% damage and have shown excellent results in field trials); and (8) expanded use of COMPAS is recommended to document field results.

Penny, G.S.; Conway, M.W.

1992-04-01T23:59:59.000Z

208

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectivensss of exploiting thin-layered, low energy deposits at the distal margin of a propagating turbinite complex through u se of hydraulically fractgured horizontal of high-angle wells. TGhe combinaton of a horizontal or high-angle weoo and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.

Mike L. Laue

1998-02-05T23:59:59.000Z

209

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network [OSTI]

Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds A "Thumper Truck" #12;Rigging Up #12;Drilling · The Drill String ­ Diesel Powered ­ Drilling Bit ­ Drilling

Jiang, Huiqiang

210

Discussion of comparison study of hydraulic fracturing models -- Test case: GRI Staged Field Experiment No. 3  

SciTech Connect (OSTI)

This paper provides comments to a companion journal paper on predictive modeling of hydraulic fracturing patterns (N.R. Warpinski et. al., 1994). The former paper was designed to compare various modeling methods to demonstrate the most accurate methods under various geologic constraints. The comments of this paper are centered around potential deficiencies in the former authors paper which include: limited actual comparisons offered between models, the issues of matching predictive data with that from related field operations was lacking or undocumented, and the relevance/impact of accurate modeling on the overall hydraulic fracturing cost and production.

Cleary, M.P.

1994-02-01T23:59:59.000Z

211

Determination of the length and compass orientation of hydraulic fractures by pulse testing  

E-Print Network [OSTI]

S3HAIDVHi OIlflVHOAH i0 NOIlVIN3IHO SSVHWOO QNV HlBN31 3Wl iO NOIlVNIWH3l30 DETERMINATION OF THE LENGTH AND COMPASS ORIENTATION OF HYDRAULIC FRACTURES BY PULSE TESTING A Thesis by MADAN MOHAN MANOHAR Approved as to Style and Content by: Wi... liam J. Lee (Ch ai rman of Commi t tee ) Le a M. Je Member) Richard A. Morse (Member) D. Yon Gonten ( d of Department) December 1984 ABSTRACT Determination of the Length and Compass Drientat1on of Hydraulic Fractures by Pulse Testing...

Manohar, Madan Mohan

2012-06-07T23:59:59.000Z

212

Numerical techniques for coupled neutronic/thermal-hydraulic reactor calculations  

SciTech Connect (OSTI)

The solution of coupled neutronic/thermal-hydraulic nuclear reactor calculations is achieved through an iterative procedure that treats the components of the calculations in a relatively decoupled fashion. This entails an alternation between the neutronic and thermal-hydraulic components of the calculation while using the most recent estimates of the neutron cross sections, as determined by the thermal-hydraulic feedback relationships. Although this decoupled approach is typically convergent, it has been demonstrated that the rate of convergence is quite inconsistent. As a result of these limitations, an effort has been directed toward the development of numerical techniques that more closely approximate a truly coupled solution.

Betts, C.M.; Kulas, M.M.; Klein, A.C. [Oregon State Univ., Corvallis, OR (United States)] [and others

1995-12-31T23:59:59.000Z

213

Dynamic fluid loss in hydraulic fracturing under realistic shear conditions in high-permeability rocks  

SciTech Connect (OSTI)

A study of the dynamic fluid loss of hydraulic fracturing fluids under realistic shear conditions is presented. During a hydraulic fracturing treatment, a polymeric solution is pumped under pressure down the well to create and propagate a fracture. Part of the fluid leaks into the rock formation, leaving a skin layer of polymer or polymer filter cake, at the rock surface or in the pore space. This study focuses on the effects of shear rate and permeability on dynamic fluid-loss behavior of crosslinked and linear fracturing gels. Previous studies of dynamic fluid loss have mainly been with low-permeability cores and constant shear rates. Here, the effect of shear history and fluid-loss additive on the dynamic leakoff of high-permeability cores is examined.

Navarrete, R.C.; Cawiezel, K.E.; Constien, V.G. [Dowell Schlumberger, Tulsa, OK (United States)

1996-08-01T23:59:59.000Z

214

Hydraulic-fracture growth in dipping anisotropic strata as viewed through the surface deformation field  

SciTech Connect (OSTI)

In 1983 and 1984 Oak Rdige National Laboratory conducted a series of precision ground deformation measurements before, during, and after the generation of several large hydraulic fractures in a dipping member of the Cambrian Conasauga Shale. Each fracture was produced by the injection of approximately 500,000 L of slurry on a single day. Injection depth was 300 m. Leveling surveys were run several days before and several days after the injections. An array of eight high-precision borehole tiltmeters monitored ground deformations continuously for a period of several weeks. Analysis of the leveling and the tilt measurements revealed surface uplifts as great as 25 mm and tilts of tens of microradians during each injection. Furthermore, partial recovery (subsidence) of the ground took place during the days following an injection, accompanied by shifts in the position of maximum resultant uplift. Interpretation of the tilt measurements is consistent with stable widening and extension of hydraulic fractures with subhorizontal orientations. Comparison of the measured tilt patterns with fracture orientations established from logging of observation wells suggests that shearing parallel to the fracture planes accompanied fracture dilation. This interpretation is supported by measured tilts and ground uplifts that were as much as 100 percent greater than those expected from fracture dilation alone. Models of elastically anisotropic overburden rock do not explain the measured tilt patterns in the absence of shear stresses in the fracture planes. This work represents the first large-scale hydraulic-fracturing experiment in which the possible effects of material anisotropy and fracture-parallel shears have been measured and interpreted.

Holzhausen, G.R.; Haase, C.S.; Stow, S.H.; Gazonas, G.

1985-01-01T23:59:59.000Z

215

Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program  

SciTech Connect (OSTI)

Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

Not Available

1981-06-01T23:59:59.000Z

216

Use of Silica-Encapsulated Pseudomonas sp. Strain NCIB 9816-4 in Biodegradation of Novel Hydrocarbon Ring Structures Found in Hydraulic Fracturing Waters  

Science Journals Connector (OSTI)

...hydrocarbons in hydraulic fracturing (fracking) wastewaters consist of fused, isolated...against the extremes of salinity present in fracking wastewaters. These studies demonstrate...water used in hydraulic fracturing, or fracking, operations are controversial and have...

Kelly G. Aukema; Lisa Kasinkas; Alptekin Aksan; Lawrence P. Wackett

2014-06-06T23:59:59.000Z

217

Transient and Pseudosteady-State Productivity of Hydraulically Fractured Well  

E-Print Network [OSTI]

Numerical simulation method is used in this work to solve the problem of transient and pseudosteady-state flow of fluid in a rectangular reservoir with impermeable boundaries. Development and validation of the numerical solution for various well-fracture...

Lumban Gaol, Ardhi

2012-10-19T23:59:59.000Z

218

The evolution of hydraulic fracturing in the Almond formation  

SciTech Connect (OSTI)

This study draws from a database of over 600 wells to evaluate reservoir, production and treatment characteristics in the low-permeability, naturally-fractured Almond formation. Treatment-induced damage can be significant; damage mechanisms are discussed and ways are shown to mitigate these problems. An effective fracture stimulation design combines proppant scheduling of the late 1970`s with fluid and gel-breaker systems of today.

Cramer, D.D.

1995-12-31T23:59:59.000Z

219

A Hermite cubic collocation scheme for plane strain hydraulic fractures Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2  

E-Print Network [OSTI]

A Hermite cubic collocation scheme for plane strain hydraulic fractures A. Peirce Department Accepted 13 February 2010 Available online 4 March 2010 Keywords: Hydraulic fractures Integro the propagation of a hydraulic fracture in a state of plane strain. Special blended cubic Hermite-power­law basis

Peirce, Anthony

220

Identification of Successful Practices in Hydraulic Fracturing Using Intelligent Data Mining Tools; Application to the Codell Formation in the DJ Basin  

E-Print Network [OSTI]

SPE 77597 Identification of Successful Practices in Hydraulic Fracturing Using Intelligent Data to identify successful practices in hydraulic fracturing. The Codell formation is a low permeability sandstone candidate selection and identify successful practices. Hydraulic fracturing is an economic way of increasing

Mohaghegh, Shahab

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford in extracting gas from these low-permeability rocks is hydraulic fracture. This involves injecting large of water and gas during hydraulic fracturing and subsequent gas recovery. This is essential in order

Henderson, Gideon

222

A Hermite cubic collocation scheme for plane strain hydraulic fractures Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2  

E-Print Network [OSTI]

A Hermite cubic collocation scheme for plane strain hydraulic fractures A. Peirce Department Accepted 13 February 2010 Available online xxxx Keywords: Hydraulic fractures Integro-partial differential of a hydraulic fracture in a state of plane strain. Special blended cubic Hermite-power­law basis functions

Peirce, Anthony

223

A comparison of microseismicity induced by gel-proppant-and water-injected hydraulic fractures, Carthage Cotton Valley gas field, East Texas  

E-Print Network [OSTI]

A comparison of microseismicity induced by gel-proppant- and water-injected hydraulic fractures induced during a series of hydraulic fracture completions within the Cotton Valley formation of East Texas a series of hydraulic fracture imaging tests in the Carthage Cotton Valley gas field of East Texas (Walker

224

Hydraulic fracturing tests in anhydrite interbeds in the WIPP, Marker Beds 139 and 140  

SciTech Connect (OSTI)

Hydraulic fracturing tests were integrated with hydrologic tests to estimate the conditions under which gas pressure in the disposal rooms in the Waste Isolation Pilot Plant, Carlsbad, NM (WIPP) will initiate and advance fracturing in nearby anhydrite interbeds. The measurements were made in two marker beds in the Salado formation, MB139 and MB140, to explore the consequences of existing excavations for the extrapolation of results to undisturbed ground. The interpretation of these measurements is based on the pressure-time records in two injection boreholes and several nearby hydrologic observation holes. Data interpretations were aided by post-test borehole video surveys of fracture traces that were made visible by ultraviolet illumination of fluorescent dye in the hydraulic fracturing fluid. The conclusions of this report relate to the upper- and lower-bound gas pressures in the WIPP, the paths of hydraulically and gas-driven fractures in MB139 and MB140, the stress states in MB139 and MB140, and the probable in situ stress states in these interbeds in undisturbed ground far away from the WIPP.

Wawersik, W.R., Carlson, L.W., Henfling, J.A., Borns, D.J., Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Howard, C.L. [RE/SPEC Inc., Albuquerque, NM (United States); Roberts, R.M., [INTERA Inc., Albuquerque, NM (United States)

1997-05-01T23:59:59.000Z

225

Mechanisms and impact of damage resulting from hydraulic fracturing. Topical report, May 1995-July 1996  

SciTech Connect (OSTI)

This topical report documents the mechanisms of formation damage following hydraulic fracturing and their impact upon gas well productivity. The categories of damage reviewed include absolute or matrix permeability damage, relative permeability alterations, the damage of natural fracture permeability mechanisms and proppant conductivity impairment. Case studies are reviewed in which attempts are made to mitigate each of the damage types. Industry surveys have been conducted to determine the perceptions of the industry on the topic of formation damage following hydraulic fracturing and to identify key formations in which formation damage is a problem. From this information, technical hurdles and new technology needs are identified and estimates are made of the benefits of developing and applying minimum formation damage technology.

Penny, G.S.; Conway, M.W.; Almond, S.W.; Himes, R.; Nick, K.E.

1996-08-01T23:59:59.000Z

226

Evaluation of selective vs. point-source perforating for hydraulic fracturing  

SciTech Connect (OSTI)

This paper is a case history comparing and evaluating the effects of fracturing the Reef Ridge Diatomite formation in the Midway-Sunset Field, Kern County, California, using {open_quotes}select-fire{close_quotes} and {open_quotes}point-source{close_quotes} perforating completions. A description of the reservoir, production history, and fracturing techniques used leading up to this study is presented. Fracturing treatment analysis and production history matching were used to evaluate the reservoir and fracturing parameters for both completion types. The work showed that single fractures were created with the point-source (PS) completions, and multiple fractures resulted from many of the select-fire (SF) completions. A good correlation was developed between productivity and the product of formation permeability, net fracture height, bottomhole pressure, and propped fracture length. Results supported the continued development of 10 wells using the PS concept with a more efficient treatment design, resulting in substantial cost savings.

Underwood, P.J.; Kerley, L.

1996-12-31T23:59:59.000Z

227

The Research on Dynamic Rules of Crack Extension during Hydraulic Fracturing for Oil Shale In-Situ Exploitation  

Science Journals Connector (OSTI)

It is a tough problem of low permeability for in-situ exploiting oil shale, while improving low permeability by hydraulic fracturing can generate permeable belts, and this is vital importance for oil exploitation. According to the layer property of oil shale, making full use of cohesive element to simulate, it established mathematical models for hydraulic fracturing and its fracturing rules, then conducted 3D numerical simulation. We can get: the shape of fractures is oval, and fractures extend along different directions are different, due to anisotropic property of oil shale and geostatic stress influenced, shown as from fig.9 to fig.10; the leak-off flow rate of fracturing fluid rises, reduces, and tends to a fixed value shown in fig.11; fracture opening is dependant on the volume and injection velocity of fluid injection and the rules of damage evolution and fracturing opening refer to fig.5, fig.6 and fig.13.

Keming Sun; Jian Tan; Di Wu

2012-01-01T23:59:59.000Z

228

Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation  

SciTech Connect (OSTI)

Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed. Methodology for coupling the DEM model with continuum flow and heat transport models will also be discussed.

Shouchun Deng; Robert Podgorney; Hai Huang

2011-02-01T23:59:59.000Z

229

Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction  

SciTech Connect (OSTI)

Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

2013-11-19T23:59:59.000Z

230

Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network  

SciTech Connect (OSTI)

Performing hydraulic fractures on gas storage wells to improve their deliverability is a common practice in the eastern part of the United States. Most of the fields in this part of the country being used for storage are old. Reservoir characteristic data necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce for these old fields. This paper introduces a new methodology by which parameters that influence the response of gas storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data. Control and manipulation of these parameters, once identified correctly, could enhance the outcome of frac jobs in gas storage fields. The study was conducted on a gas storage field in the Clinton formation of Northeastern Ohio. It was found that well performance indicators prior to a hydraulic fracture play an important role in how good the well will respond to a new frac job. Several other important factors were also identified.

McVey, D.S.; Mohaghegh, S.; Aminian, K.

1994-12-31T23:59:59.000Z

231

Downhole microseismic monitoring of hydraulic fracturing: a full-waveform approach for complete moment tensor inversion and stress estimation  

E-Print Network [OSTI]

Downhole microseismics has gained in popularity in recent years as a way to characterize hydraulic fracturing sources and to estimate in-situ stress state. Conventional approaches only utilize part of the information ...

Song, Fuxian

2010-01-01T23:59:59.000Z

232

A nonlocal model for fluid-structure interaction with applications in hydraulic fracturing  

E-Print Network [OSTI]

Modeling important engineering problems related to flow-induced damage (in the context of hydraulic fracturing among others) depends critically on characterizing the interaction of porous media and interstitial fluid flow. This work presents a new formulation for incorporating the effects of pore pressure in a nonlocal representation of solid mechanics. The result is a framework for modeling fluid-structure interaction problems with the discontinuity capturing advantages of an integral based formulation. A number of numerical examples are used to show that the proposed formulation can be applied to measure the effect of leak-off during hydraulic fracturing as well as modeling consolidation of fluid saturated rock and surface subsidence caused by fluid extraction from a geologic reservoir. The formulation incorporates the effect of pore pressure in the constitutive description of the porous material in a way that is appropriate for nonlinear materials, easily implemented in existing codes, straightforward in i...

Turner, Daniel Z

2012-01-01T23:59:59.000Z

233

Results of a 1995 hydraulic fracturing survey and a comparison of 1995 and 1990 industry practices  

SciTech Connect (OSTI)

This paper presents the results of a hydraulic fracturing survey conducted in 1995 on behalf of the Gas Research institute (GRI). The purpose of the survey was to determine the types of formations that are normally fracture treated; gather data on the fracture treatments that are normally pumped; determine the level of data collection being conducted in the field; determine the level of data analysis being conducted in the office and the field; solicit opinions on the level of technology required to obtain an accurate analysis for fracture treatments; solicit opinions of the limitations of current technology; determine what costs operators could justify to analyze fracture treatment data and obtain ideas on new areas of research. Data gathered in the survey included respondents company size (major, large/small independent, service company or consultant), geographical area of operation, well depths and permeabilities, fracture treatment size, proppant type and volume, level of detail in data gathering, fracture treatment design and real-time analysis. The 1995 data were compared to a similar survey conducted in 1990 by GRI to determine technology trends.

Carter, R.H.; Holditch, S.A.; Wolhart, S.L.

1996-12-31T23:59:59.000Z

234

Rock mechanics issues and research needs in the disposal of wastes in hydraulic fractures  

SciTech Connect (OSTI)

The proposed rock mechanics studies outlined in this document are designed to answer the basic questions concerning hydraulic fracturing for waste disposal. These questions are: (1) how can containment be assured for Oak Ridge or other sites; and (2) what is the capacity of a site. The suggested rock mechanics program consists of four major tasks: (1) numerical modeling, (2) laboratory testing, (3) field testing, and (4) monitoring. These tasks are described.

Doe, T.W.; McClain, W.C.

1984-07-01T23:59:59.000Z

235

Determination of formation permeability using back-pressure test data from hydraulically-fractured, low-permeability gas wells  

E-Print Network [OSTI]

DETERMINATION OF FORMATION PERMEABILITY USING BACX-PRESSURE TEST DATA FROM HYDRAULICALLY-FRACTURED, LOW-PERMEABILITY GAS WELLS A Thesis JOHN PAUL KRAWTZ Submitted to the Graduate College of Texas AsJ4 University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1984 Major subject: petroleum Engineering DETERMINATION OF FORMATION PERMEABILITY USING BACK-PRESSURE TEST DATA FROM HYDRAULICALLY-FRACTURED, LOW-PERMEABILITY GAS WELLS A Thesis JOHN PAUL KRAWTZ...

Krawtz, John Paul

2012-06-07T23:59:59.000Z

236

Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network  

SciTech Connect (OSTI)

Performing hydraulic fractures on gas storage wells to improve their deliverability is a common practice in the eastern part of the US. Most fields used for storage in this region are old, and the reservoir characteristic data necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce. This paper introduces a new method by which parameters that influence the response of gas storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data. Control and manipulation of these parameters, once identified correctly, could enhance the outcome of frac jobs in gas storage fields. The authors conducted the study on a gas storage field in the Clinton formation of northeastern Ohio. They found that well-performance indicators before a hydraulic fracture play an important role in how good the well will respond to a new frac job. They also identified several other important factors. The identification of controlling parameters serves as a foundation for improved frac job design in the fields where adequate engineering data are not available. Another application of this type of study could be the enhancement of selection criteria among the candidate wells for hydraulic fracturing. To achieve the objective of this study, the authors designed, trained, and applied an artificial neural network. The paper will discuss the results of the incorporation of this new technology in hydraulic fracture design and evaluation.

McVey, D.S. [East Ohio Gas Co., North Canton, OH (United States); Mohaghegh, S.; Aminian, K.; Ameri, S. [West Virginia Univ., Morgantown, WV (United States)

1996-04-01T23:59:59.000Z

237

Edit paper Methods for Large Scale Hydraulic Fracture Monitoring  

E-Print Network [OSTI]

In this paper we propose computationally efficient and robust methods for estimating the moment tensor and location of micro-seismic event(s) for large search volumes. Our contribution is two-fold. First, we propose a novel joint-complexity measure, namely the sum of nuclear norms which while imposing sparsity on the number of fractures (locations) over a large spatial volume, also captures the rank-1 nature of the induced wavefield pattern. This wavefield pattern is modeled as the outer-product of the source signature with the amplitude pattern across the receivers from a seismic source. A rank-1 factorization of the estimated wavefield pattern at each location can therefore be used to estimate the seismic moment tensor using the knowledge of the array geometry. In contrast to existing work this approach allows us to drop any other assumption on the source signature. Second, we exploit the recently proposed first-order incremental projection algorithms for a fast and efficient implementation of the resulting...

Ely, Gregory

2013-01-01T23:59:59.000Z

238

Laboratory data in support of hydraulically fracturing EGSP OH Well No. 3. Final report  

SciTech Connect (OSTI)

Geologic and geophysical interpretations of data from the EGSP OH Well No. 3 show that an organically lean shale has a gradual transition with depth to an organically rich shale and that two layers (bound each shale formation. The laboratory test program was designed to understand the containment and productivity of a hydraulic fracture induced in this well to enhance gas production from the shale. The porosity in the formations of interest, including the upper barrier, the lower barrier, and the organic shales, varied from 6 to 10 percent. The porosity of each formation averaged about 8%. Densities and ultrasonic velocities were used to evaluate dynamic moduli. Over the tested intervals moduli consistently increased with depth. This indicates the possibility of upward migration of an induced fracture. Perforations, therefore, should be limited to the lower portion of the pay sand and it is also advisable to use low injection rates. Of the four fracturing fluids tested, the two code-named Dow II and Hal I caused, respectively, the least amount of matrix permeability damage to the organically lean and organically rich shales. However, the damage caused by the other fracturing fluids were not severe enough to cause any significant permanent reduction in well productivity. The fracture conductivity tests under the influence of fracturing fluids indicated that Hal I and Dow I caused, respectively, the least amount of multilayered fracture conductivity damage to the organically lean and organically rich samples. For monolayer fracture conductivities Dow I caused least damage to the organically lean shale. With the exception of Dow III all other fluids showed good results in the monolayer tests for organically rich shales. In the situation where both the lean and the rich shales are to be fractured together, the use of either Hal I or Dow I is indicated.

Ahmed, U.; Swartz, G.C.; Scnatz, J.F.

1980-12-01T23:59:59.000Z

239

Seepage forces, important factors in the formation of horizontal hydraulic1 fractures and bedding-parallel fibrous veins ("beef" and "cone-in-cone")2  

E-Print Network [OSTI]

1 Seepage forces, important factors in the formation of horizontal hydraulic1 fractures and bedding24 may lead, either to tensile hydraulic fracturing, or to dilatant shear failure. We suggest that25 Terzaghi's concepts, leads to the conclusion that, for the18 fractures to be horizontal, either the rock

Paris-Sud XI, Université de

240

Implementation of the Ensemble Kalman Filter in the Characterization of Hydraulic Fractures in Shale Gas Reservoirs by Integrating Downhole Temperature Sensing Technology  

E-Print Network [OSTI]

Multi-stage hydraulic fracturing in horizontal wells has demonstrated successful results for developing unconventional low-permeability oil and gas reservoirs. Despite being vastly implemented by different operators across North America, hydraulic...

Moreno, Jose A

2014-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Performance of hydraulic fracturing and matrix acidizing in horizontal wellbores -- Offshore Qatar  

SciTech Connect (OSTI)

Considerable debate in the Middle East has centered upon what was previously felt to be two separate methods of enhancing revenues and daily production; hydraulic fracturing and horizontal drilling. In an effort to maximize return on investment, these two issues have been successfully combined in other areas of the world. In order to establish the suitability of this technology in this area, two horizontal wells with over 3,050m (10,000ft) of lateral section were drilled into the Cretaceous Kharaib formation, overlying the North Field, Offshore Qatar. A massive stimulation program was performed in order to evaluate the most feasible stimulation method from both a technical and economical perspective for further field development considerations.Three propped hydraulic fracturing treatments were performed using 183, 500kg (403, 700lb) of 20/40 mesh sand, and seventeen acid matrix treatments placing over 3,217,250l (850,000gals) of HCL into the lateral sections of both wells. This paper describes the performance, operation and logistical support required to complete this offshore operation with join a minimal time frame. The use of a mobile offshore jack-up platform, whereby a land based fracturing spread was placed onto the deck of a converted drilling rig is described.

Edwards, M.G.R.; Pongratz, R.

1995-11-01T23:59:59.000Z

242

Use of a speed equation for numerical simulation of hydraulic fractures  

E-Print Network [OSTI]

The paper treats the propagation of a hydraulically driven crack. We explicitly write the local speed equation, which facilitates using the theory of propagating interfaces. It is shown that when neglecting the lag between the liquid front and the crack tip, the lubrication PDE yields that a solution satisfies the speed equation identically. This implies that for zero or small lag, the boundary value problem appears ill-posed when solved numerically. We suggest e - regularization, which consists in employing the speed equation together with a prescribed BC on the front to obtain a new BC formulated at a small distance behind the front rather than on the front itself. It is shown that - regularization provides accurate and stable results with reasonable time expense. It is also shown that the speed equation gives a key to proper choice of unknown functions when solving a hydraulic fracture problem numerically.

Linkov, Alexander M

2011-01-01T23:59:59.000Z

243

Biocides in Hydraulic Fracturing Fluids: A Critical Review of Their Usage, Mobility, Degradation, and Toxicity  

Science Journals Connector (OSTI)

To enable assessment of the potential environmental and health impacts of the biocides used in hydraulic fracturing fluids, we review their relevant pathways of environmental contamination, environmental mobility, stability and chemical behavior in a variety of natural environments, and toxicity. ... In Fracking’s Wake: New Rules Are Needed to Protect Our Health and Environment From Contaminated Wastewater, NRDC Document D:12-05-A; Natural Resources Defense Council (NDRC): New York, 2012; pp 1– 113. ... Henderson, N. D. Environmental Impact and Toxic Effects of DDAC; Environmental Protection Division, BC Ministry of Environment, Lands and Parks: Victoria, British Columbia, Canada, 1992. ...

Genevieve A. Kahrilas; Jens Blotevogel; Philip S. Stewart; Thomas Borch

2014-11-26T23:59:59.000Z

244

Robust Hydraulic Fracture Monitoring (HFM) of Multiple Time Overlapping Events Using a Generalized Discrete Radon Transform  

E-Print Network [OSTI]

In this work we propose a novel algorithm for multiple-event localization for Hydraulic Fracture Monitoring (HFM) through the exploitation of the sparsity of the observed seismic signal when represented in a basis consisting of space time propagators. We provide explicit construction of these propagators using a forward model for wave propagation which depends non-linearly on the problem parameters - the unknown source location and mechanism of fracture, time and extent of event, and the locations of the receivers. Under fairly general assumptions and an appropriate discretization of these parameters we first build an over-complete dictionary of generalized Radon propagators and assume that the data is well represented as a linear superposition of these propagators. Exploiting this structure we propose sparsity penalized algorithms and workflow for super-resolution extraction of time overlapping multiple seismic events from single well data.

Ely, Gregory

2013-01-01T23:59:59.000Z

245

On a 2D hydro-mechanical lattice approach for modelling hydraulic fracture  

E-Print Network [OSTI]

A 2D lattice approach to describe hydraulic fracturing is presented. The interaction of fluid pressure and mechanical response is described by Biot's theory. The lattice model is applied to the analysis of a thick-walled cylinder, for which an analytical solution for the elastic response is derived. The numerical results obtained with the lattice model agree well with the analytical solution. Furthermore, the coupled lattice approach is applied to the fracture analysis of the thick-walled cylinder. It is shown that the proposed lattice approach provides results that are independent of the mesh size. Moreover, a strong geometrical size effect on nominal strength is observed which lies between analytically derived lower and upper bounds. This size effect decreases with increasing Biot's coefficient.

Grassl, Peter; Gallipoli, Domenico; Wheeler, Simon J

2014-01-01T23:59:59.000Z

246

The influence of fluid properties on the success of hydraulic fracturing operations  

SciTech Connect (OSTI)

Hydroxypropylguar based fluids are the most commonly used fluids for hydraulic fracturing. Through the addition of borate ions the polymer present in the fluid can crosslink to form a high viscosity gel. Prior to placement in the fracture the fluid is required to have a low viscosity to minimize friction losses in the tubular goods. A high viscosity fluid is required in the fracture for several reasons, primarily to suspend the proppant and to minimize fluid loss into the formation. This paper describes a new method which can be used to model the gelation reaction of crosslinking fluids. By modeling the dynamic properties of the fluid it is possible to predict the physical state of the fluid at any time during a fracturing treatment. Small amplitude oscillatory measurements are applied to fluid samples in a cone-and-plate geometry. The change in the dynamic properties with time can be fitted to a simple model which can then be used to determine the gel time for the fluid. Methods used to distinguish between the liquid and gel state are also discussed.

Power, D.J.; Boger, D.V. [Univ. of Melbourne, Victoria (Australia); Paterson, L.

1994-12-31T23:59:59.000Z

247

On-Line Fault Detection and Compensation of Hydraulic Driven Machines Using Modelling Techniques  

E-Print Network [OSTI]

On-Line Fault Detection and Compensation of Hydraulic Driven Machines Using Modelling Techniques C purpose of hydraulic driven machines as well as for the compensation of incipient faults where applicable: Modelling, Simulation, Hydraulic motors, Fault detection, Fault Compensation 1. Introduction Model

Thawonmas, Ruck

248

Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas  

SciTech Connect (OSTI)

Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, ?-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W.; Vidic, Radisav D; Gregory, Kelvin B.

2013-12-01T23:59:59.000Z

249

Development of reservoir simulator for hydraulically fractured gas wells in noncontinuous lenticular reservoirs  

SciTech Connect (OSTI)

A mathematical model is presented which forms the basis for a reservoir simulator that can be used to assist in the interpretation and prediction of the performance of hydraulically fractured gas wells completed in the western tight sands area. The model represents a first step in developing a reservoir simulator that can be used as an exploration tool and to analyze proposed gas well tests and future production trends in noncontinuous sand lense formations which are representative of the tight gas sands located in the Rocky Mountain gas provinces. The model developed consists of the necessary mathematical equations to simulate both reservoir and well performance under a variety of operating conditions. The equations developed are general in that they consider the following effects: (1) three-dimensional flow in the reservoir and one-dimensional flow in the fracture; (2) non-Darcy flow in the reservoir and fracture; (3) wellbore and fracture storage; (4) formation damage on the fracture face; (5) frictional pressure drop in the production string; (6) noncontinuous sand lenses; and (7) Klinkenberg effect. As a start toward the development of the final version of the desired reservoir simulator, a two-dimensional simulator was secured, placed on the computer, and debugged, and some test cases were run to ensure its validity. Using this simulator as a starting point, changes to reflect the effects of items 3 and 6 were made since it was believed these were the more important effects to consider at this stage of development. The development of an operational two-dimensional gas reservoir simulator was completed. Further work will be required to extend the simulator to three dimensions and incorporate all the changes reflected in items 1 to 6.

Evans, R.D.; Carroll, H.B. Jr.

1980-10-01T23:59:59.000Z

250

Effect of shear rate on the activity of enzymes used in hydraulic fracture cleanup of tight unconventional reservoirs  

Science Journals Connector (OSTI)

Injection of polymeric solutions in order to propagate a fracture and carry proppants to keep the fracture open is a common practice in hydraulic fracturing of ultra-tight formations. Polymeric fluids open and extend the already existing network of fractures. Considering the low permeability of the formation, small width of the micro-fractures, and the importance of fracture cleanup during the production phase, using breakers is recommended to degrade the more concentrated polymeric fluid and increase the conductivity of the fractures. Enzymes are typically used successfully as breakers for fracturing fluids. In this study, the effect of high shear rates on the activity of enzymes was studied. Enzyme activity decreased at increasing shear rates. However, this activity reduction is reversible. This proves insignificant damage to the enzyme structure due to shear effects. This will assure the activity of the enzymes after reaching the fracture and the more efficient cleanup of the fracture(s). [Received: 31 July 2013; Accepted: 26 January 2014].

Chris Ouyang; Reza Barati

2014-01-01T23:59:59.000Z

251

Rock-Fluid Chemistry Impacts on Shale Hydraulic Fracture and Microfracture Growth  

E-Print Network [OSTI]

fracturing fluids, to achieve improved fracture performance and higher recovery of natural gas from shale reservoirs....

Aderibigbe, Aderonke

2012-07-16T23:59:59.000Z

252

Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress.  

SciTech Connect (OSTI)

We have conducted five hydraulic fracturing stress measurement campaigns in Korea, involving 13 test holes ranging in depth from 30 to 250 m, at locations from North Seoul to the southern coast of the peninsula. The measurements reveal consistent crustal stress magnitudes and directions that suggest persistence throughout western and southern Korea. The maximum horizontal stress {sigma}{sub H} is oriented between ENE-WSW and E-W, in accord with plate movement and deformation, and with directions indicated by both focal mechanism solutions from earthquakes inland and offshore as well as borehole breakouts in mainland China close to its eastern coast. With respect to magnitudes, the vertical stress is the overall minimum stress at all tested locations, suggesting a thrust faulting regime within the relatively shallow depths reached by our tests. Typically, such a stress regime becomes one favoring strike-slip at greater depths, as is also indicated by the focal mechanism solutions around Korea.

Haimson, Bezalel Cecil (University of Wisconsin, Madison, WI); Lee, Moo Yul; Song, I. (Ruhr-University Bochum, Bochum, Germany)

2003-07-01T23:59:59.000Z

253

Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine  

E-Print Network [OSTI]

injection and hydraulic fracturing stress measurements inlevel measured with hydraulic fracturing (reproduced from

Rutqvist, J.

2011-01-01T23:59:59.000Z

254

Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems  

E-Print Network [OSTI]

exchange process. Hydraulic fracturing, or hydrofracking, ismore detail below. Hydraulic fracturing, or hydrofracking,

Cotte, F.P.

2012-01-01T23:59:59.000Z

255

Method for obtaining gelled hydrocarbon compositions, the compositions according to said method and their application in the hydraulic fracturing of underground formations  

SciTech Connect (OSTI)

The invention relates to a method for obtaining gelled hydrocarbon compositions, and their application in the hydraulic fracturing of rocks. The gelling method according to the invention uses as an activator a partially neutralized aluminum acid salt.

Daccord, G.; Lemanczyk, R.; Vercaemer, C.

1985-03-26T23:59:59.000Z

256

Polyelectrolyte Complex Nanoparticles for Protection and Delayed Release of Enzymes in Alkaline pH and at Elevated Temperature during Hydraulic Fracturing of Oil Wells  

E-Print Network [OSTI]

Polyethylenimine-dextran sulfate polyelectrolyte complexes (PEC) were used to entrap two enzymes used to degrade polymer gels following hydraulic fracturing of oil wells in order to obtain delayed release and to protect the enzyme from harsh...

Barati Ghahfarokhi, Reza; Johnson, Stephen J.; McCool, Stan; Green, Don W.; Willhite, G. Paul; Liang, Jenn-Tai

2012-01-01T23:59:59.000Z

257

Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells  

E-Print Network [OSTI]

Hydraulic fracturing has recently been the completion of choice for most tight gas bearing formations. It has proven successful to produce these formations in a commercial manner. However, some considerations have to be taken into account to design...

Alarbi, Nasraldin Abdulslam A.

2011-10-21T23:59:59.000Z

258

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network [OSTI]

improving production by hydraulic fracturing 8 the focus otfor fractures. (d) Hydraulic Fracturing: The model has been

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

259

Sensitivity of time lapse seismic data to the compliance of hydraulic fractures  

E-Print Network [OSTI]

We study the sensitivity of seismic waves to changes in the fracture normal and tangential compliances by analyzing the fracture sensitivity wave equation, which is derived by differentiating the elastic wave equation with ...

Fang, Xinding

2013-01-01T23:59:59.000Z

260

Particle velocity based universal algorithm for numerical simulation of hydraulic fractures  

E-Print Network [OSTI]

In the paper, we propose a new effective mathematical formulation and resulting universal numerical algorithm capable of tackling various HF models in the framework of a unified approach. The presented numerical scheme is not limited to any particular elasticity model or crack propagation regime. Its basic assumptions are: i) proper choice of independent and dependent variables (with the direct utilization of a new one - the reduced particle velocity), ii) tracing the fracture front by use of the speed equation which can be integrated in a closed form and sets an explicit relation between the crack propagation speed and the coefficients in the asymptotic expansion of the crack opening, iii) proper regularization techniques, iv) improved temporal approximation, v) modular algorithm architecture. The application of the new dependent variable, the reduced particle velocity, instead of the usual fluid flow rate, facilitates the computation of the crack propagation speed from the local relation based on the speed ...

Wrobel, Michal

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Use of Tracers to Characterize Fractures in Engineered Geothermal Systems  

Broader source: Energy.gov [DOE]

Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface areas adjacent to a single geothermal well using tracers and injection/backflow techniques; design, fabricate and test a downhole instrument for measuring fracture flow following a hydraulic stimulation experiment.

262

Hydraulic fracturing and associated stress modeling for the Eastern Gas Shales Project. Final report  

SciTech Connect (OSTI)

Frac fluid flow, structure, and fracture mechanics simulations are developed for predicting and optimizing fracture dimensions and fluid leak-offs. Roles of in situ stress and material properties for possible vertical migration of fractures from the pay zone are discussed. Rationale for foam and dendritic fracturing experiments is presented along with numerical experiments for examining the phenomena of spalling of the fracture faces and conditions for secondary fracture initiation. Assignment of conventional, foam, cyrogenic, dendritic, and explosive fracturing treatments for specific reservoir properties is considered. Variables include fracture density and extent, shale thickness, in-situ stress gradients, energy assist mechanisms, well clean-up, shale-frac fluid interaction, proppant selection, and fracture height control. The analysis suggests that correlation with prevailing in situ stress gradients are promising diagnostic indicators for fracture treatment selection and design. In conclusion, the comprehensive development of an economical strategy requires extensive and controlled field testing with supporting predictive analyses of reservoir responses. Finite element modeling of reservoir in situ stress trajectories and the flow and fracture responses in the reservoir is recommended.

Advani, S.H.

1980-12-01T23:59:59.000Z

263

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect (OSTI)

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

264

Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Annual report, September 28, 1995--September 27, 1996  

SciTech Connect (OSTI)

The digital fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economic to develop using verticle wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional verticle wells while maintaining verticle communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three verticle wells are anticipated at one-half to two-thirds the cost.

Niemeyer, B.L.

1997-09-01T23:59:59.000Z

265

E-Print Network 3.0 - advanced hydraulic fracturing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation Research Collection: Fossil Fuels 4 Author's personal copy 3D imaging of fracture propagation using synchrotron X-ray microtomography Summary: 2009 Editor: L. Stixrude...

266

A STATISTICAL FRACTURE MECHANICS APPROACH TO THE STRENGTH OF BRITTLE ROCK  

E-Print Network [OSTI]

Carlsson, H. , "Hydraulic fracturing and overcoring stress1949). Haimson, B.C. , "Hydraulic fracturing in porous andc.B. , "Laboratory hydraulic fracturing experiments in

Ratigan, J.L.

2010-01-01T23:59:59.000Z

267

Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs  

E-Print Network [OSTI]

Zimmermann, G. , 2005. Hydraulic fracturing in a sedimentaryare described in the hydraulic fracturing context, in whichoverview. However, hydraulic fracturing theories and related

Wessling, S.

2009-01-01T23:59:59.000Z

268

In-situ remediation of naturally occurring radioactive materials with high-permeability hydraulic fracturing  

E-Print Network [OSTI]

This thesis addresses the problem of removal of Naturally Occurring Radioactive Materials, NORM, and describes an effective alternative to the current treatment method for their removal. High-pen-meability fracturing, recently established...

Demarchos, Andronikos Stavros

2012-06-07T23:59:59.000Z

269

Evaluation of massive hydraulic fracturing experiments in the Devonian Shales in Lincoln County, West Virginia  

E-Print Network [OSTI]

perfor- mance. The type curves that have been generated have qualitatively shown that the fractured wells are clear'ly more stimulated than the surrounding shot wells, Fracture treatment simulation indicates that treatments pumped in the MHF wells... Optimal Stimulation Design Per Zone Simulated Reservoir Properties Economic Production Forecasts 64 68 70 15 Economic Analysis Results Reservoir Case 72 LIST OF FIGURES FIGURES 10 12 13 15 16 17 MHF Well Location In Lincoln County, WV MHF...

Holgate, Karen Elaine

2012-06-07T23:59:59.000Z

270

Field fracturing multi-sites project. Annual technical progress report, July 28, 1993--July 31, 1994  

SciTech Connect (OSTI)

The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data which will resolve significant unknowns with regard to hydraulic fracture modeling, fluid fracture rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. The goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic-fracturing test site.

Not Available

1995-02-01T23:59:59.000Z

271

INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS  

SciTech Connect (OSTI)

The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, we divided the report into two chapters. The first chapter was to image and perform experimental investigation of transfer mechanisms during CO{sub 2} flooding in NFR and HFR using X-ray CT scanner. In this chapter, we emphasized our work on understanding the connection between fracture properties and fundamentals of transfer mechanism from matrix to fractures and fluid flow through fracture systems. We started our work by investigating the effect of different overburden pressures and stress-state conditions on rock properties and fluid flow. Since the fracture aperture is one of important parameter that governs the fluid flow through the fracture systems, the average fracture aperture from the fluid flow experiments and fracture aperture distribution derived from X-ray CT scan were estimated for our modeling purposes. The fracture properties and fluid flow have significant changes in response to different overburden pressures and stress-state conditions. The fracture aperture distribution follows lognormal distribution even at elevated stress conditions. Later, we also investigated the fluid transfers between matrix and fracture that control imbibition process. We evaluated dimensionless time for validating the scheme of upscaling laboratory experiments to field dimensions. In CO{sub 2} injection experiments, the use of X-ray CT has allowed us to understand the mechanisms of CO{sub 2} flooding process in fractured system and to take important steps in reducing oil bypassed. When CO{sub 2} flooding experiments were performed on a short core with a fracture at the center of the core, the gravity plays an important role in the recovery of oil even in a short matrix block. This results are contrary with the previous believes that gravity drainage has always been associated with tall matrix blocks. In order to reduce oil bypassed, we injected water that has been viscosified with a polymer into the fracture to divert CO{sub 2} flow into matrix and delay CO{sub 2} breakthrough. Although the breakthrough time reduced considerably, water ''leak off'' into the matrix was very high. A cross-linked gel was used in the fracture to avoid this problem. The gel was found to overcome ''leak off'' problems and effectively divert CO{sub 2} flow into the matrix. As part of our technology transfer activity, we investigated the natural fracture aperture distribution of Tensleep formation cores. We found that the measured apertures distributions follow log normal distribution as expected. The second chapter deals with analysis and modeling the laboratory experiments and fluid flow through fractured networks. We derived a new equation to determine the average fracture aperture and the amount of each flow through fracture and matrix system. The results of this study were used as the observed data and for validating the simulation model. The idea behind this study is to validate the use of a set of smooth parallel plates that is common in modeling fracture system. The results suggest that fracture apertures need to be distributed to accurately model the experimental results. In order to study the imbibition process in details, we developed imbibition simulator. We validated our model with X-ray CT experimental data from different imbibition experiments. We found that the proper simulation model requires matching both weight gain and CT water saturation simultaneously as oppose to common practices in matching imbibition process with weight gain only because of lack information from CT scan. The work was continued by developing dual porosity simulation using empirical transfer function (ETF) derived from imbibition experiments. This allows reduction of uncertainty parameter in modeling transfer of fluids from matrix to the fra

David S. Schechter

2005-09-28T23:59:59.000Z

272

A Resolution of the First Unitarian Universalist Society of Albany to Oppose the Current Practice of Hydraulic Fracturing and Support the  

E-Print Network [OSTI]

existence of which we are a part, we are concerned that fracking endangers the environment, posing risks health and environmental adverse impacts of fracking, there is neither sufficient incentive to industry-volume hydraulic fracturing ("fracking") is a recently- developed technology for extracting methane gas from shale

Bystroff, Chris

273

Experience proves forced fracture closure works  

SciTech Connect (OSTI)

Forced closure, or perhaps better-named ``reverse gravel packing,`` of fractures immediately following hydraulic fracturing with proppant and gelled fluids is a technique which, with rare exception, can be extremely beneficial to the success of almost every hydraulic fracture treatment. By proper planning of the rig-up to allow immediate flow-back, substantial quantities of polymer and load fluid can be removed while simultaneously negating undesirable proppant settling within fractures in the near wellbore area. Fracture smearing (dilution of proppant into an extending fracture) after shutdown can be negated. And in most cases, proppant production from the formation can be reduced. Discussions in the article explain why Ely and Associates has the confidence to make these claims after extensive hydraulic fracturing experience in many geographical areas.

Ely, J.W. [John Ely and Associates, Inc., Houston, TX (United States)

1996-01-01T23:59:59.000Z

274

Hydraulic transmissivity and heat exchange efficiency of open fractures: a model based on lowpass filtered apertures  

E-Print Network [OSTI]

Natural open joints in rocks commonly present multi-scale self-affine apertures. This geometrical complexity affects fluid transport and heat exchange between the flow- ing fluid and the surrounding rock. In particular, long range correlations of self-affine apertures induce strong channeling of the flow which influences both mass and heat advection. A key question is to find a geometrical model of the complex aperture that describes at best the macroscopic properties (hydraulic conductivity, heat exchange) with the smallest number of parameters. Solving numerically the Stokes and heat equa- tions with a lubrication approximation, we show that a low pass filtering of the aperture geometry provides efficient estimates of the effective hydraulic and thermal properties (apertures). A detailed study of the influence of the bandwidth of the lowpass filtering on these transport properties is also performed. For instance, keeping the information of amplitude only of the largest Fourier length scales allows us to rea...

Neuville, Amélie; Schmittbuhl, Jean; 10.1111/j.1365-246X.2011.05126.x

2011-01-01T23:59:59.000Z

275

INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS  

SciTech Connect (OSTI)

For many years many efforts have been performed in the laboratory experiments to duplicate the reservoir conditions. In this study, we will investigate the permeability change at different overburden conditions. The reduction in permeability with overburden pressure has been well known. Fatt and Davis (1952) presented the changes in permeability with pressure at range 0 to 15,000 psig and found that overburden pressure caused a reduction in permeability of the consolidated oil-bearing sandstone samples by as much as 50% at 10,000 psig. Wyble (1958) performed similar experiments on three different sandstone samples to determine the changes in conductivity, porosity and permeability at pressure range 0 to 5,000 psig. His results were consistent with the observation by Fatt and Davis (1952). During the experiments, different overburden pressures (radial force) were applied only to the cylinder core while the axial direction was kept at constant atmospheric pressure. Gray et al. (1963) enhanced the previous experiments by applying axial force and combining with overburden pressure (radial force) to measure the anisotropy permeability changes at more representative reservoir stress-state condition. They showed that permeability reduction subjected to overburden pressure as a function of the ratio of radial to axial stress and the permeability reduction under non-uniform stress (radial pressure {ne} axial pressure) is less than that under uniform stress. Although extensive work has been established on the effect of overburden pressure and stress-state on matrix permeability but there are some very interesting details of fractured rock behavior under stress that have not been investigated. In this study we will show the effect of fracture aperture and fracture permeability on the fluid flow under different overburden pressure. This study is a precursor to investigating fracture apertures under different stress-state conditions (confining stress, hydrostatic stress and triaxial stress) and imaging fracture aperture distributions using X-ray CT.

David S. Schechter

2002-04-01T23:59:59.000Z

276

Analysis Of Microseismic Location Accuracy For Hydraulic Fracturing At The DWTI Site, Jasper, Texas  

E-Print Network [OSTI]

This report presents the results of a feasibility study designed to assess whether microseismic location techniques can provide enough accuracy and precision to enable a

Rieven, Shirley

1995-01-01T23:59:59.000Z

277

MULTIDIMENSIONAL NUMERICAL SIMULATION OF FLUID FLOW IN FRACTURED POROUS MEDIA  

E-Print Network [OSTI]

and fluid flow in the hydraulic fracturing process." Ph.D.depth by means of hydraulic fracturing." in Rock Mechanics:Fig. 13. Simulation of hydraulic fracturing: field data on

Narasimhan, T.N.

2014-01-01T23:59:59.000Z

278

Complexity penalized hydraulic fracture localization and moment tensor estimation under limited model information  

E-Print Network [OSTI]

In this paper we present a novel technique for micro-seismic localization using a group sparse penalization that is robust to the focal mechanism of the source and requires only a velocity model of the stratigraphy rather than a full Green's function model of the earth's response. In this technique we construct a set of perfect delta detector responses, one for each detector in the array, to a seismic event at a given location and impose a group sparsity across the array. This scheme is independent of the moment tensor and exploits the time compactness of the incident seismic signal. Furthermore we present a method for improving the inversion of the moment tensor and Green's function when the geometry of seismic array is limited. In particular we demonstrate that both Tikhonov regularization and truncated SVD can improve the recovery of the moment tensor and be robust to noise. We evaluate our algorithm on synthetic data and present error bounds for both estimation of the moment tensor as well as localization...

Ely, Gregory

2013-01-01T23:59:59.000Z

279

THE MEASUREMENT OF IN-SITU STRESS IN SALT AND ROCK USING NQR TECHNIQUES  

E-Print Network [OSTI]

2. Enclosed Probes 3. Hydraulic Fracturing Program Plangauges were placed. Hydraulic Fracturing In this meth d a

Schempp, E.

2010-01-01T23:59:59.000Z

280

Fractured gas well analysis: evaluation of in situ reservoir properties of low permeability gas wells stimulated by finite conductivity hydraulic fractures  

E-Print Network [OSTI]

, and the time required f e' to reach pseudo-steady-state flow in finite acting reservoirs. In Runs 6-8, variation of the fracture penetration was achieved by using different fracture lengths, while holding the drainage radius constant at 2, 640 feet for each... Reservoir Pressure Fracture Conductivity Flow Rate Drainage Radius 10/o 0. 1 md 50 ft 640 acres 150 F 0. 65 5000 psia 0. 1 500 MCF/D 2, 640 ft Run ? Xf (ft) Xf/X Drawdown Time (Days) 132. 0 264. 0 528. 0 0. 05 0. 1 0. 2 30 90 50 17...

Makoju, Charles Adoiza

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Detection and quantification of 3D hydraulic fractures with multi-component low-frequency borehole resistivity measurements  

E-Print Network [OSTI]

-bearing shale but no commercial in-situ borehole methods are available except microseismic monitoring to enhance hydrocarbon production from organic shales and tight-gas sands. While hydro-fracture technology and arbitrarily-oriented fractures in electrically complex backgrounds, such as in anisotropic layered media

Torres-Verdín, Carlos

282

This is the pre-peer reviewed version of the following article: "Can hydraulic fracturing make Poland self-sufficient in natural gas?", which will be published in final form in a  

E-Print Network [OSTI]

Poland self-sufficient in natural gas?", which will be published in final form in a special issue-4296 Can hydraulic fracturing make Poland self-sufficient in natural gas? Kjell Alekletta,b,* , Tadeusz to be able to replace gas from Russia with domestic natural gas production and eventually to become self

Patzek, Tadeusz W.

283

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network [OSTI]

and fluid flow in the hydraulic fracturing process." Ph.D.depth by means of hydraulic fracturing." in Rock Mechanics:production by hydraulic fracturing, the focus of fracture

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

284

Nonplanar fracture propagation from a horizontal wellbore: Experimental study  

SciTech Connect (OSTI)

This paper presents experimental results related to hydraulic fracturing of a horizontal well, specifically the nonplanar fracture geometries resulting from fracture initiation and propagation. Experiments were designed to investigate nonplanar fracture geometries. This paper discusses how these nonplanar fractures can be responsible for premature screenout and excessive treatment pressure when a horizontal well is hydraulically fractured. Reasons for unsuccessful hydraulic fracturing treatments of a horizontal well are presented and recommendations to ensure clear communication channels between the wellbore and the fracture are given.

Abass, H.H.; Hedayati, S.; Meadows, D.L.

1996-08-01T23:59:59.000Z

285

Introduction to the GRI/DOE Field Fracturing Multi-Site Project  

SciTech Connect (OSTI)

The objective of the Field Fracturing Multi-Sites Project is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. It is anticipated that the primary benefit of the project experiments will be the development and widespread commercialization of new fracture diagnostics technologies to determine fracture length, height, width and azimuth. Data resulting from these new technologies can then be used to prove and refine the 3D fracture model mechanisms. It is also anticipated that data collected and analyzed in the project will define the correct techniques for determining fracture closure pressure. The overall impact of the research will be to provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response.

Peterson, R.E.; Middlebrook, M.L.; Warpinski, N.R.; Cleary, M.P.; Branagan, P.T.

1993-12-31T23:59:59.000Z

286

Evaluation of fracture treatments using a layered-reservoir description: Field examples  

SciTech Connect (OSTI)

This paper presents a practical analysis technique to determine actual fracture geometry and proppant profile using a three-dimensional (3D) hydraulic-fracturing simulator. The hydraulic-fracturing model used in this study considers the variation of in-situ stress, Young`s modulus, Poisson`s ratio, and net pay thickness in the productive interval. When the method is applied, the results from the fracture propagation model conform well with the results the authors obtain from pressure-buildup and production-data analyses. This study analyzed hydraulic-fracturing treatments from several wells in the Vicksburg formation of the McAllen Ranch area in south Texas. The authors have provided guidelines to properly describe the treatment interval, how to use this information in the analysis of such fracture treatments, and how to confirm the results using pressure-transient tests and production-data analyses. This paper presents examples illustrating that a detailed description of the reservoir layers is essential to properly evaluate hydraulic-fracture treatments. For the example wells presented in this paper, post-fracture-production and pressure-transient data were available. The authors have analyzed production and pressure-transient data to estimate permeability and fracture half-length. The values of fracture half-length used to analyze the production data matched closely with those predicted by the fracture model.

Rahim, Z.; Holditch, S.A.; Zuber, M.D. [Holditch and Associates Inc., College Station, TX (United States); Buehring, D.R.

1998-02-01T23:59:59.000Z

287

GEOLOGY AND FRACTURE SYSTEM AT STRIPA  

E-Print Network [OSTI]

1978. An Approach to the Fracture Hydrology at Stripa:Shanley. 1972. Analysis of Fracture Orientations for InputHydraulic Pro erties of Fractures by P. A. Witherspoon, C.

Olkiewicz, O.

2010-01-01T23:59:59.000Z

288

Recovery of gas from hydrate deposits using conventional production technology. [Salt-frac technique  

SciTech Connect (OSTI)

Methane hydrate gas could be a sizeable energy resource if methods can be devised to produce this gas economically. This paper examines two methods of producing gas from hydrate deposits by the injection of hot water or steam, and also examines the feasibility of hydraulic fracturing and pressure reduction as a hydrate gas production technique. A hydraulic fracturing technique suitable for hydrate reservoirs is also described.

McGuire, P.L.

1982-01-01T23:59:59.000Z

289

Integrated 3D Acid Fracturing Model for Carbonate Reservoir Stimulation  

E-Print Network [OSTI]

in integrating fracture propagation, acid transport and dissolution, and well performance models in a seamless fashion for acid fracturing design. In this new approach, the fracture geometry data of a hydraulic fracture is first obtained from commercial models...

Wu, Xi

2014-06-23T23:59:59.000Z

290

Fluid Flow Modeling in Fractures  

E-Print Network [OSTI]

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

291

Constructing Hydraulic Barriers in Deep Geologic Formations  

SciTech Connect (OSTI)

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

292

Observations of the Release of Non-methane Hydrocarbons from Fractured Shale  

Science Journals Connector (OSTI)

The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing (“fracking”). ... These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the “fracking” process, improving gas yields and reducing environmental impacts. ... This technique, termed hydraulic fracturing (commonly known as “fracking”), consists of drilling a well in the prospective shale units and injecting water under high pressure mixed with sand (?5%) and chemical additives (?0.2%) to fracture the rock and stimulate the release of hydrocarbons. ...

Roberto Sommariva; Robert S. Blake; Robert J. Cuss; Rebecca L. Cordell; Jon F. Harrington; Iain R. White; Paul S. Monks

2014-06-30T23:59:59.000Z

293

VALIDITY OF CUBIC LAW FOR FLUID FLOW IN A DEFORMABLE ROCK FRACTURE  

E-Print Network [OSTI]

hydraulic properties of fractures." T^ be published in Water14). 15. An Approach to the Fracture Hydrology at Stripa:Hydraulic Properties of Fractures by P. A. Witherspoon, C.

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

294

Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using small-specimen reuse technique  

SciTech Connect (OSTI)

The temperature dependence of fracture toughness in HT9 steel irradiated to 3–145 dpa at 380–503 degrees*C was investigated using miniature three-point bend (TPB) fracture specimens. A miniature-specimen reuse technique has been established: the tested halves of subsize Charpy impact specimens with dimensions of 27 mm *3mm* 4 mm were reused for this fracture test campaign by cutting a notch with a diamond-saw in the middle of each half, and by fatigue-precracking to generate a sharp crack tip. It was confirmed that the fracture toughness of HT9 steel in the dose range depends more strongly on the irradiation temperature than the irradiation dose. At an irradiation temperature <430 *degreesC, the fracture toughness of irradiated HT9 increased with the test temperature, reached an upper shelf of 180—200 MPa*m^.5 at 350–450 degrees*C, and then decreased with the test temperature. At an irradiation temperature >430 degrees*C, the fracture toughness was nearly unchanged up to about 450 *degreesC and decreased slowly with test temperatures in a higher temperature range. Such a rather monotonic test temperature dependence after high-temperature irradiation is similar to that observed for an archive material generally showing a higher degree of toughness. A brittle fracture without stable crack growth occurred in only a few specimens with relatively lower irradiation and test temperatures. In this discussion, these TPB fracture toughness data are compared with previously published data from 12.7 mm diameter disc compact tension (DCT) specimens.

Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, Stuart A.; Toloczko, Mychailo B.

2014-01-01T23:59:59.000Z

295

E-Print Network 3.0 - adopted hydraulic retention Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MODELING FRAC-PACKS AND FRACTURE PROPAGATION IN Summary: , 2006 JIP on Sand Control and Hydraulic Fracturing 2 MOTIVATION Need better models for fluid flow... cuttings) Sand...

296

State-of-the-art fracturing in the North Sea  

SciTech Connect (OSTI)

This paper will focus on recent advances in hydraulic fracturing technology with emphasis on North Sea applications. Five generalized applications that will benefit most from advances in technology have been identified. Because North Sea oil and gas field development requires the use of platform facilities for wellhead and processing equipment, deviated and horizontal wells are often used to effectively drain the reservoirs. Many of these wells require fracture stimulation. The success rate of such wells has increased significantly in recent years as a result of the following: Researchers better understand how fractures initiate and grow; Pre-treatment diagnostic techniques have improved substantially; Engineers better understand how completion design affects well performance. With improved understanding of post-frac well performance, engineers can evaluate the feasibility of developing a reservoir through fractured, horizontal wells. In addition to a review of the advances in HPHT technology that would apply to North Sea applications, this paper will identify improvements necessary before these techniques are applied in the North Sea. Hydraulic fracturing is being used more frequently (1) in high-permeability reservoirs to improve the overall profitability of the project, and (2) as an alternative to traditional sand control applications in soft, weakly consolidated reservoirs. The effect of hydraulic fracturing operations on the North Sea environment must be recognized. The advances in fluid design and post-treatment flowback procedures that minimize these effects are discussed. 78 refs., 19 figs.

Domelen, M.S. Van; Jacquier, R.C.; Sanders, M.W.

1995-12-31T23:59:59.000Z

297

Laboratory analysis of fluid flow and solute transport through a variably saturated fracture embedded in porous tuff  

SciTech Connect (OSTI)

Laboratory techniques are developed that allow concurrent measurement of unsaturated matrix hydraulic conductivity and fracture transmissivity of fractured rock blocks. Two Apache Leap tuff blocks with natural fractures were removed from near Superior, Arizona, shaped into rectangular prisms, and instrumented in the laboratory. Porous ceramic plates provided solution to block tops at regulated pressures. Infiltration tests were performed on both test blocks. Steady flow testing of the saturated first block provided estimates of matrix hydraulic conductivity and fracture transmissivity. Fifteen centimeters of suction applied to the second block top showed that fracture flow was minimal and matrix hydraulic conductivity was an order of magnitude less than the first block saturated matrix conductivity. Coated-wire ion-selective electrodes monitored aqueous chlorided breakthrough concentrations. Minute samples of tracer solution were collected with filter paper. The techniques worked well for studying transport behavior at near-saturated flow conditions and also appear to be promising for unsaturated conditions. Breakthrough curves in the fracture and matrix, and a concentration map of chloride concentrations within the fracture, suggest preferential flows paths in the fracture and substantial diffusion into the matrix. Average travel velocity, dispersion coefficient and longitudinal dispersivity in the fracture are obtained. 67 refs., 54 figs., 23 tabs.

Chuang, Y.; Haldeman, W.R.; Rasmussen, T.C.; Evans, D.D. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

1990-02-01T23:59:59.000Z

298

Modeling of Acid Fracturing in Carbonate Reservoirs  

E-Print Network [OSTI]

The acid fracturing process is a thermal, hydraulic, mechanical, and geochemical (THMG)-coupled phenomena in which the behavior of these variables are interrelated. To model the flow behavior of an acid into a fracture, mass and momentum balance...

Al Jawad, Murtada s

2014-06-05T23:59:59.000Z

299

Fracturing pressures and near-well fracture geometry of arbitrarily oriented and horizontal wells  

SciTech Connect (OSTI)

The hydraulic fracturing of arbitrarily oriented and horizontal wells is made challenging by the far more complicated near-well fracture geometry compared to that of conventional vertical wells. This geometry is important both for hydraulic fracture propagation and the subsequent post-treatment well performance. Fracture tortuosity of arbitrarily oriented and horizontal wells is likely to cause large initiation pressures and reduction in the fracture widths. This paper presents a comprehensive study of the effects of important variables, including the principal stresses, wellbore orientation, and perforation configuration on fracture geometry. Initiation pressures, the contact between arbitrarily oriented wells and the fracture plane, and the near-well fracture geometry are determined and discussed. This study also shows that because of the near-well stress concentration the fracture width at the wellbore is always smaller than the maximum fracture width. This can have important consequences during hydraulic fracturing.

Chen, Z.; Economides, M.J.

1995-12-31T23:59:59.000Z

300

Definition: Hydraulic Conductivity | Open Energy Information  

Open Energy Info (EERE)

Conductivity Conductivity Jump to: navigation, search Dictionary.png Hydraulic Conductivity Hydraulic conductivity is a physical property which measures the ability of the material to transmit fluid through pore spaces and fractures in the presence of an applied hydraulic gradient. Darcy's Law defines the hydraulic conductivity as the ratio of the average velocity of a fluid through a cross-sectional area (Darcy's velocity) to the applied hydraulic gradient.[1] View on Wikipedia Wikipedia Definition Hydraulic conductivity, symbolically represented as, is a property of vascular plants, soil or rock, that describes the ease with which a fluid (usually water) can move through pore spaces or fractures. It depends on the intrinsic permeability of the material and on the degree of

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Equipment and technique for improving penetration rate by the transformation of drill string vibration to hydraulic pulsating jet  

Science Journals Connector (OSTI)

Abstract To improve the down-hole drilling fluid energy and its utilization efficiency, a drilling string absorption and hydraulic pulsed jet generator was designed, its simulation model was established and simulation analysis was conducted, and its performance was tested in field application. Based on the idea of translating the energy of the drill string vibration into high pressure hydraulic pulsating jet energy, the structure of the device was designed and its working principle was analyzed, and then its simulation model was established. The simulation analysis results demonstrate that the device can produce the jet pressure 2 to 6 \\{MPa\\} higher than the nozzle pressure drop in conventional drilling. Field test results show that the device can improve the drilling speed significantly and extend the service life of the bit effectively; the device itself has steady performance and long service life, and can satisfy the drilling requirements.

Zhichuan GUAN; Hongning ZHANG; Wei ZHANG; Yongwang LIU; Deyang LIANG

2014-01-01T23:59:59.000Z

302

EVALUATION OF TEMPORAL VARIATIONS IN HYDRAULIC CAPTURE DUE TO CHANGING FLOW PATTERNS USING MAPPING AND MODELING TECHNIQUES  

SciTech Connect (OSTI)

Robust performance evaluation represents one of the most challenging aspects of groundwater pump-and-treat (P&T) remedy implementation. In most cases, the primary goal of the P&T system is hydraulic containment, and ultimately recovery, of contaminants to protect downgradient receptors. Estimating the extent of hydraulic containment is particularly challenging under changing flow patterns due to variable pumping, boundaries and/or other conditions. We present a systematic approach to estimate hydraulic containment using multiple lines of evidence based on (a) water-level mapping and (b) groundwater modeling. Capture Frequency Maps (CFMs) are developed by particle tracking on water-level maps developed for each available water level data set using universal kriging. In a similar manner, Capture Efficiency Maps (CEMs) are developed by particle tracking on water-levels calculated using a transient groundwater flow model: tracking is undertaken independently for each stress period using a very low effective porosity, depicting the 'instantaneous' fate of each particle each stress period. Although conceptually similar, the two methods differ in their underlying assumptions and their limitations: their use together identifies areas where containment may be reliable (i.e., where the methods are in agreement) and where containment is uncertain (typically, where the methods disagree). A field-scale example is presented to illustrate these concepts.

SPILIOTOPOULOS AA; SWANSON LC; SHANNON R; TONKIN MJ

2011-04-07T23:59:59.000Z

303

Optimizing fracture stimulation using treatment-well tiltmeters and integrated fracture modeling  

SciTech Connect (OSTI)

This paper covers the optimization of hydraulic fracture treatments in a new coalbed methane (CBM) reservoir in Wyoming. A multiwell pilot project was conducted in the Copper Ridge (CR) field to assess future development potential. Hydraulic fracture mapping was successfully performed with treatment-well tiltmeters on six wells including the first-ever used on propped treatments. The mapped fracture height was then used to calibrate the fracture model, perform on-site fracture-design changes, and optimize future fracture treatments. This paper shows how early use of fracture diagnostics can assist in the development of a new reservoir.

Mayerhofer, M.; Stutz, L.; Davis, E.; Wolhart, S. [Pinnacle Technology Houston, Houston, TX (United States)

2006-05-15T23:59:59.000Z

304

Fracture induced anisotropy in viscoelastic UNLP, 11 Octubre de 2012  

E-Print Network [OSTI]

Fracture induced anisotropy in viscoelastic media UNLP, 11 Octubre de 2012 . Fracture induced anisotropy in viscoelastic media ­ p. #12;Fractured media. I Fractures are common in the earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused

Santos, Juan

305

Analyzing Aqueous Solution Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives  

E-Print Network [OSTI]

Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are “gelled fracturing” and “slick-water fracturing”. Both methods utilize up to several million gallons of water-based fluid per well in a...

Plamin, Sammazo Jean-bertrand

2013-09-29T23:59:59.000Z

306

Analizing Aqueous Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives  

E-Print Network [OSTI]

Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are “gelled fracturing” and “slick-water fracturing”. Both methods utilize up to several million gallons of water-based fluid per well in a...

Qureshi, Maha

2013-09-29T23:59:59.000Z

307

Theoretical and Numerical Simulation of Non-Newtonian Fluid Flow in Propped Fractures  

E-Print Network [OSTI]

and short effective fracture length, sometimes causing severe productivity impairment of a hydraulically fractured well. Some residual gels are concentrated in the filter cakes built on the fracture walls and have much higher polymer concentration than...

Ouyang, Liangchen

2013-12-10T23:59:59.000Z

308

Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids  

E-Print Network [OSTI]

, which provides the flexibility required to accurately represent complex geologic domains and fractures in three dimensions. Using these Voronoi grids, the interaction between propped hydraulic fractures and secondary "stress-release" fractures were...

Olorode, Olufemi Morounfopefoluwa

2012-02-14T23:59:59.000Z

309

Geophysical Prospecting, 2007, 55, 891899 doi:10.1111/j.1365-2478.2007.00654.x Importance of borehole deviation surveys for monitoring of hydraulic  

E-Print Network [OSTI]

of borehole deviation surveys for monitoring of hydraulic fracturing treatments Petr Bulant1 , Leo Eisner2 accepted April 2007 ABSTRACT During seismic monitoring of hydraulic fracturing treatment, it is very common-system geometry derived from microseismic event locations. For common hydraulic fracturing geometries, a 2

Cerveny, Vlastislav

310

Interferometric hydrofracture microseism localization using neighboring fracture  

E-Print Network [OSTI]

Interferometric hydrofracture microseism localization using neighboring fracture Oleg V. Poliannikov1 , Alison E. Malcolm1 , Hugues Djikpesse2 , and Michael Prange2 ABSTRACT Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir

Malcolm, Alison

311

An analysis of horizontal fracture initiation during hydrofrac stress measurements in granite at North Conway, New Hampshire  

Science Journals Connector (OSTI)

......test of a new wireline hydraulic fracture stress and permeability...7-conductor wireline cable, hydraulic winch, pressure pumps...pressure of 500 bar and a hydraulic power supply, all mounted upon a compact trailer. The objective of the......

Keith F. Evans; Christopher H. Scholz; Terry Engelder

1988-05-01T23:59:59.000Z

312

How can we use one fracture to locate another?  

E-Print Network [OSTI]

Hydraulic fracturing is an important tool that helps extract fluids from the subsurface. It is critical in applications ranging from enhanced oil recovery to geothermal energy pro-duction. As the goal of fracturing is to ...

Poliannikov, Oleg V.

2011-01-01T23:59:59.000Z

313

E-Print Network 3.0 - advanced hydraulic studies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUBSIDENCE AND STRESS REORIENTATION Summary: 12;April 17, 2006 JIP on Sand Control and Hydraulic Fracturing 8 RESEARCH OBJECTIVES Advance... ;April 17, 2006 JIP on Sand Control...

314

Method of fracturing a geological formation  

DOE Patents [OSTI]

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

315

Characterizing the Mechanics of Fracturing from Earthquake Source Parameter and Multiplet Analyses: Application to the Soultz-sous-Forêts Hot Dry Rock site  

E-Print Network [OSTI]

In 2000 and 2003, two massive hydraulic fracturing experiments were carried out at the European Geothermal Hot

Michelet, Sophie

2005-01-01T23:59:59.000Z

316

Development of a punching technique for ductile fracture testing over a wide range of stress states and strain rates  

E-Print Network [OSTI]

Advanced High Strength Steels (AHSS) are becoming increasingly popular in automotive design because of possible weight savings due to the high strength. However, traditional methods are not capable of predicting fracture ...

Walters, Carey Leroy

2009-01-01T23:59:59.000Z

317

Fracture orientation analysis by the solid earth tidal strain method | Open  

Open Energy Info (EERE)

orientation analysis by the solid earth tidal strain method orientation analysis by the solid earth tidal strain method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fracture orientation analysis by the solid earth tidal strain method Details Activities (1) Areas (1) Regions (0) Abstract: A new practical method has been developed to estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of tidal and barometric strain analysis.

318

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

a 2D 1-phase simulator in order to help us to better understand the results of gas condensate simulation. Then during the research, gas condensate models with various gas compositions were simulated using a commercial simulator (CMG). The results...

Reza, Rostami Ravari

2004-11-15T23:59:59.000Z

319

The investigation of fracture aperture effect on shale gas transport using discrete fracture model  

Science Journals Connector (OSTI)

Abstract Discrete fracture model (DFM) numerical simulation is used to investigate the shale gas transports in fractured porous media in this paper. A new seepage flow mathematic model, in which flow in fracture meets “Cubic law” and matrix meets “non-Darcy law”, is adopted and fracture aperture effect on the transport behavior is simulated by solving the nonlinear partial differential equations using finite element analysis (FEA). In this DFM, fluid flows into wellbore which is surrounded by impermeable rock matrix is merely through fractures that connect to it. The model is used to simulate a random generated fractures network to study the flow and transport characteristics in fractured porous media (FPM). Several cases with different fracture aperture in same natural fractured model are given. The preliminary simulation results show that both the natural and hydraulic fracture aperture have a significant impact on shale gas migration and production.

Lidong Mi; Hanqiao Jiang; Junjian Li; Tao Li; Ye Tian

2014-01-01T23:59:59.000Z

320

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Candidate Well Selection for the Test of Degradable Biopolymer as Fracturing Fluid  

E-Print Network [OSTI]

for environment and health effects of hydraulic fracturing becomes intense, many efforts are made to replace the conventional fracturing fluid with more environment-friendly materials. The degradable biopolymer is one of the novel materials that is injected...

Hwang, Yun Suk

2012-02-14T23:59:59.000Z

322

Thickness Measurement of Fracture Fluid Gel Filter Cake after Static Build Up and Shear Erosion  

E-Print Network [OSTI]

. Despite proven economic benefit, the hydraulic fracture fluid damages the producing formation and the propped fracture. To analyze the gel damage effect quantitatively, the filter cake thickness is used as a parameter that has not been measured before...

Xu, Ben

2011-08-08T23:59:59.000Z

323

Fracture Blisters  

E-Print Network [OSTI]

21. McCann S, Gruen G. Fracture Blisters: A Review of thewith Lower Extremity Fracture: Results of a ProspectiveC, Koval K. Treatment of Fracture Blisters: A Prospective

Uebbing, Claire M; Walsh, Mark; Miller, Joseph B; Abraham, Mathew; Arnold, Clifford

2011-01-01T23:59:59.000Z

324

A Self-Consistent Approach for Calculating the Effective Hydraulic Conductivity of a Bimodal, Heterogeneous Medium  

SciTech Connect (OSTI)

In this paper, we consider an approach for estimating the effective hydraulic conductivity of a 3D medium with a binary distribution of local hydraulic conductivities. The medium heterogeneity is represented by a combination of matrix medium conductivity with spatially distributed sets of inclusions. Estimation of effective conductivity is based on a self-consistent approach introduced by Shvidler (1985). The tensor of effective hydraulic conductivity is calculated numerically by using a simple system of equations for the main diagonal elements. Verification of the method is done by comparison with theoretical results for special cases and numerical results of Desbarats (1987) and our own numerical modeling. The method was applied to estimating the effective hydraulic conductivity of a 2D and 3D fractured porous medium. The medium heterogeneity is represented by a combination of matrix conductivity and a spatially distributed set of highly conductive fractures. The tensor of effective hydraulic conductivity is calculated for parallel- and random-oriented sets of fractures. The obtained effective conductivity values coincide with Romm's (1966) and Snow's (1969) theories for infinite fracture length. These values are also physically acceptable for the sparsely-fractured-medium case with low fracture spatial density and finite fracture length. Verification of the effective hydraulic conductivity obtained for a fractured porous medium is done by comparison with our own numerical modeling for a 3D case and with Malkovsky and Pek's (1995) results for a 2D case.

Pozdniakov, Sergey; Tsang, Chin-Fu

2004-01-02T23:59:59.000Z

325

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE  

Open Energy Info (EERE)

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Details Activities (1) Areas (1) Regions (0) Abstract: This project aims to improve understanding of the subsurface fracture system in the Coso geothermal field, located in the east central California. We applied shear-wave splitting technique on a set of high quality, locally recorded microearthquake (MEQ) data. Four major fracture directions have been identified from the seismograms recorded by the permanent sixteen-station down-hole array: N10- 20W, NS, N20E, and N40-45E,

326

Hydraulic characterization of hydrothermally altered Nopal tuff  

SciTech Connect (OSTI)

Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

Green, R.T.; Meyer-James, K.A. [Southwest Research Institute, San Antonio, TX (United States); Rice, G. [George Rice and Associates, San Antonio, TX (United States)

1995-07-01T23:59:59.000Z

327

An Experimental Investigation of Pressure-dependent and Time-dependent Fracture Aperture and Permeability in Barnett Shale.  

E-Print Network [OSTI]

?? U.S. domestic shale-gas production is economic owing to the new completion practice of horizontal wells and multiple hydraulic fractures. The performance of these fractures… (more)

Gong, Yin

2014-01-01T23:59:59.000Z

328

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: High precision earthquake locations and subsurface velocity structure provide potential insights into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir management. We analyze 16 years of seismicity to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously

329

Apparatus and method for monitoring underground fracturing  

DOE Patents [OSTI]

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

1999-08-10T23:59:59.000Z

330

Apparatus and method for monitoring underground fracturing  

DOE Patents [OSTI]

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

Warpinski, Norman R. (Albuquerque, NM); Steinfort, Terry D. (Tijeras, NM); Branagan, Paul T. (Las Vegas, NV); Wilmer, Roy H. (Las Vegas, NV)

1999-08-10T23:59:59.000Z

331

URTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic  

E-Print Network [OSTI]

by 20%. Introduction: Thermal fracturing Injection of cold fluids into reservoir rock, induces thermalURTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic Fracturing of Gas Shales Saeid of any part of this paper without the written consent of URTeC is prohibited. Summary Thermal shock

Patzek, Tadeusz W.

332

Chapter 9 - Hydraulic Pumps  

Science Journals Connector (OSTI)

Publisher Summary This chapter provides an overview of hydraulic-powered downhole pumps, which are powered by a stream of high pressure power fluid supplied by a power fluid (PF) pump at the surface and sent to a downhole pump or pump engine. Hydraulic pumps are basically of two types—piston downhole pumps that are similar to beam down-hole pumps, and jet downhole pumps that reduce the pressure on the formation by high-speed power fluid flow through the throat of a venturi or jet pump nozzle-diffuser combination. Hydraulic pumps can be used to remove liquids from gas wells. A skid-mounted hydraulic pump can be used to kick off a gas well and then be moved to another well for testing, production, or longer term de-watering. Hydraulic pumping is generally not depth limited, and deviated or crooked wells do not present problems. Hydraulic reciprocating pumps can produce a low bottomhole pressure. A jet pump may require a fluid height over the pump of 20% of submergence. A jet pump is more trouble-free than a reciprocating hydraulic pump and can tolerate some solids in the production. Fairly high rates of more than several hundred bbls/day are possible. In general, hydraulic systems are not rate limited when removing liquids from gas wells.

James Lea; Henry Nickens; Michael Wells

2003-01-01T23:59:59.000Z

333

Downhole hydraulic seismic generator  

DOE Patents [OSTI]

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

334

Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography  

SciTech Connect (OSTI)

In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

2012-01-10T23:59:59.000Z

335

Hydraulic Institute Member Benefits  

Broader source: Energy.gov [DOE]

As the developer of the universally acclaimed ANSI/HI Pump Standards, a key reference for pump knowledge and end-user specifications, the Hydraulic  nstitute (HI) provides its members with timely...

336

Optimizing bit hydraulics increases penetration rate  

SciTech Connect (OSTI)

At some point, rate of penetration depends as much or more on hydraulics as on bit weight and rotary speed. An easy-to-follow graphical technique shows how to maximize ROP at the rig by finding the optimum pressure drop through the bit and the highest possible crossflow velocity.

Robinson, L.

1982-07-01T23:59:59.000Z

337

Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs  

E-Print Network [OSTI]

technologies, such as large volume fracture treatments, are required before a reasonable profit can be made. Hydraulic fracturing is one of the best methods to stimulate a tight gas well. Most fracture treatments result in 3-6 fold increases in the productivity...

Wang, Yilin

2009-05-15T23:59:59.000Z

338

Fracture Quality From Integrating Time-Lapse VSP and Microseismic Data  

E-Print Network [OSTI]

Tight gas reservoirs are problematic to produce, often requiring multiple stages of hydraulic fracturing in order to create connected pathways through which hydrocarbons may flow. In this paper, we propose a new methodology ...

House, Nancy J.

2007-01-01T23:59:59.000Z

339

Chapter 9 - Hydraulic pumping  

Science Journals Connector (OSTI)

Publisher Summary The hydraulic pumping system takes liquid (water or oil) from a liquid reservoir on the surface, puts it through a reciprocating multiplex piston pump or horizontal electrical submersible pump to increase the pressure, and then injects the pressurized liquid (power fluid) down-hole through a tubing string. At the bottom of the injection tubing string, the power fluid is directed into the nozzle of a jet pump or to the hydraulic engine of a piston pump, both of which have been set well below the producing fluid level. The surface injection pressures normally range from approximately 2000 psi up to 4000 psi, with some going up to but rarely above 4500 psi. An electric motor, diesel engine, or gas engine is used to drive the multiplex pump. The fundamental operating principle of subsurface hydraulic pumps is Pascal's Law, postulated by Blaise Pascal in 1653. This principle makes it possible to transmit pressure from the surface by means of a liquid-filled tubing string to any given point below the surface. The chapter further highlights applications to dewatering wells-gas and coal bed methane, limitations of other forms of lift, advantages of hydraulic pumping, disadvantages of hydraulic pumping, and different types of operating systems.

James F. Lea; Henry V. Nickens; Mike R. Wells

2008-01-01T23:59:59.000Z

340

theoretical and applied fracture  

E-Print Network [OSTI]

theoretical and applied fracture mechanics ELSEVIER Theoretical and Applied Fracture Mechanics 00 and Applied Fracture Mechanics 00 (1995) 000-000 Recently, some European countries developed defect specific. A suitable probabilistic fracture mechanic

Cizelj, Leon

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fracture aperture reconstruction and determination of hydrological properties: a  

E-Print Network [OSTI]

Fracture aperture reconstruction and determination of hydrological properties: a case study for fracture aperture reconstruction. The rst one is a correlation technique that estimates the normal aper techniques are applied to discontinuities extracted from a core drilled down to 20 m in a fractured marl

Toussaint, Renaud

342

EVALUATION OF ENHANCED VOC REMOVAL WITH SOIL FRACTURING IN THE SRS UPLAND UNIT  

SciTech Connect (OSTI)

The Environmental Restoration Technology Section (ERTS) of the Savannah River National Laboratory (SRNL) conducted pilot scale testing to evaluate the effectiveness of using hydraulic fracturing as a means to improve soil vapor extraction (SVE) system performance. Laboratory and field research has shown that significant amounts of solvents can be entrapped in low permeability zones by capillary forces and removal by SVE can be severely limited due to low flow rates, mass transfer resistance of the hydrophobic compounds by trapped interparticle water, and diffusion resistance. Introducing sand-filled fractures into these tight zones improves the performance of SVE by (1) increasing the overall permeability of the formation and thereby increasing SVE flow rates, (2) shortening diffusion pathways, and (3) increasing air permeability by improving pore water removal. The synergistic effect of the fracture well completion methods, fracture and flow geometry, and pore water removal appears to increase the rate of solvent mass removal over that of increasing flow rate alone. A field test was conducted where a conventional well in the SRS Upland Unit was tested before and after hydraulic fracturing. ERTS teamed with Clemson University through the South Carolina University and Education Foundation (SCUREF) program utilizing their expertise in fracturing and fracture modeling. The goals of the fracturing pilot testing were to evaluate the following: (1) The effect of hydraulic fractures on the performance of a conventional well. This was the most reliable way to remove the effects of spatial variations in permeability and contaminant distribution on relative well performance. It also provided data on the option of improving the performance of existing wells using hydraulic fractures. (2) The relative performance of a conventional SVE well and isolated hydraulic fractures. This was the most reliable indicator of the performance of hydraulic fractures that could be created in a full-scale implementation. The SVE well, monitoring point arrays and four fracturing wells were installed and the well testing has been completed. Four fractures were successfully created the week of July 25, 2005. The fractures were created in an open area at the bottom of steel well casing by using a water jet to create a notch in the soil and then injecting a guar-sand slurry into the formation. The sand-filled fractures increase the effective air permeability of the subsurface formation diffusion path lengths for contaminant removal. The primary metrics for evaluation were an increase in SVE flow rates in the zone of contamination and an increase in the zone of influence. Sufficient testing has been performed to show that fracturing in the Upland Unit accelerates SVE solvent remediation and fracturing can increase flow rates in the Upland Unit by at least one order of magnitude.

Riha, B

2005-10-31T23:59:59.000Z

343

Chapter 9 - Hydraulic Turbines  

Science Journals Connector (OSTI)

This chapter covers the following topics: Features of hydraulic turbines; Early history and development; Efficiency of various types of turbine; Size of the various turbine types; The Pelton wheel turbine and controlling its speed; Energy losses; Reaction turbines; The Francis and the Kaplan turbines; Calculation of performance; Effect of size on the performance of hydraulic turbines; Cavitation and its avoidance; Calculation of the various specific speeds of turbines; The Wells turbine- Design and performance variables; Tidal power turbines- The SeaGen tidal turbine and its operational principles.

S.L. Dixon; C.A. Hall

2014-01-01T23:59:59.000Z

344

Fracturing alliance improves profitability of Lost Hills field  

SciTech Connect (OSTI)

About 2 billion bbl of oil-in-place are present in the massive diatomite deposits of California's Lost Hills field, about 45 miles north-west of Bakersfield, Calif. Massive hydraulic fracturing treatments, 2,500-3,000 lb of proppant/net perforated ft, are an integral part of developing these reserves. An exclusive fracturing alliance initiated in 1990 between Chevron U.S.A. and Schlumberger Dowell has improved profitability of the Los Hills field. the paper describes the geology, the field before 1987, the 1987--90 period when hydraulic fracturing stimulation was found to be very costly, and after 1990 when the alliance was formed. The paper also describes the fracturing fluid, proppants, engineering evaluation, and execution of the job.

Stewart, M. (Schlumberger Dowell, Bakersfield, CA (United States)); Stewart, D. (Chevron U.S.A. Production Co., Houston, TX (United States)); Gaona, M. (Chevron U.S.A. Production Co., Bakersfield, CA (United States))

1994-11-21T23:59:59.000Z

345

Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow  

SciTech Connect (OSTI)

Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

2013-08-01T23:59:59.000Z

346

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

347

Geochemical and Microbiological Characterization of the Arbuckle Saline Aquifer, a Potential CO2 Storage Reservoir; Implications for Hydraulic Separation and Caprock Integrity  

E-Print Network [OSTI]

oil field in Sumner County, Kansas. Results from field characterization present strong evidence of hydraulic separation of the Upper and Lower Arbuckle and the likelihood of an extensive fracture network evidenced by essentially homogeneous brines...

Scheffer, Aimee

2012-12-31T23:59:59.000Z

348

Rewards & pitfalls of using treating pressure analysis for evaluating fracture design  

SciTech Connect (OSTI)

Analyzing pressures during a fracture treatment provides insight into the hydraulic fracturing process, and is widely used today. In this paper, case histories are reviewed and guidelines are presented to identify pitfalls and establish strategies in pressure-analysis methods and procedures.

Cramer, D.D.

1996-12-31T23:59:59.000Z

349

Hydraulic manipulator research at ORNL  

SciTech Connect (OSTI)

Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

1997-03-01T23:59:59.000Z

350

Reactor Thermal-Hydraulics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

351

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

352

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

353

Production-systems analysis for fractured wells  

SciTech Connect (OSTI)

Production-systems analysis has been in use for many years to design completion configurations on the basis of an expected reservoir capacity. The most common equations used for the reservoir calculations are for steady-state radial flow. Most hydraulically fractured wells require the use of an unsteady-state production simulator to predict the higher flow rates associated with the stimulated well. These high flow rates may present problems with excessive pressure drops through production tubing designed for radial-flow production. Therefore, the unsteady-state nature of fractured-well production precludes the use of steady-state radial-flow inflow performance relationships (IPR's) to calculate reservoir performance. An accurate prediction of fractured-well production must be made to design the most economically efficient production configuration. It has been suggested in the literature that a normalized reference curve can be used to generate the IPR's necessary for production-systems analysis. However, this work shows that the reference curve for fractured-well response becomes time-dependent when reservoir boundaries are considered. A general approach for constructing IPR curves is presented, and the use of an unsteady-state fractured-well-production simulator coupled with the production-systems-analysis approach is described. A field case demonstrates the application of this method to fractured wells.

Hunt, J.L. (Halliburton Services (US))

1988-11-01T23:59:59.000Z

354

Hydraulic Fracturing Expert Team from Colorado State University Bill Ritter  

E-Print Network [OSTI]

issues associated with oil and gas exploration and production in Colorado and the Rocky Mountain region of technologies to reduce the environmental impact of oil and gas production and has developed a suite to sediments, including those that may produce natural gas and oil, when they are buried by natural processes

355

Shale Gas Hydraulic Fracturing in the Dutch Posidonia Shale:.  

E-Print Network [OSTI]

??Recently the oil and gas industry is looking at the Posidonia shale in the Dutch subsurface for production of the unconventional shale gas. This is… (more)

Janzen, M.R.

2012-01-01T23:59:59.000Z

356

Optimising hydraulic fracture treatments in reservoirs under complex conditions.  

E-Print Network [OSTI]

??Growing global energy demand has prompted the exploitation of non-conventional resources such as Coal Bed Methane (CBM) and conventional resources such as gas-condensate reservoirs. Exploitation… (more)

Valencia, Karen Joy

2005-01-01T23:59:59.000Z

357

A Political Ecology of Hydraulic Fracturing for Natural Gas in  

E-Print Network [OSTI]

environments, both in terms of perception and in terms of physical space. (Robbins 2004) #12;Outline ! Background of Marcellus Shale Gas Play ! Current Events: The Case of PA ! Geography of Fracking in Study Corbett #12;PA's Marcellus Shale Country is constructed as a Neoliberal Environment · Residents

Scott, Christopher

358

The use of seismic anisotropy for characterizing subsurface fracture ori-  

E-Print Network [OSTI]

The use of seismic anisotropy for characterizing subsurface fracture ori- entations and intensity anisotropy as a routine technique for fracture characterization is partly because of its inability to pro- vide information about sizes and vol- ume of fractures. Although both grain-scale micro

Edinburgh, University of

359

Fracture Properties From Seismic Scattering  

E-Print Network [OSTI]

Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

Burns, Daniel R.

2007-01-01T23:59:59.000Z

360

Seismic characterization of fractures  

E-Print Network [OSTI]

Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

JM Carcione

2014-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Rio Blanco: Stimulating Gas and Conflict in Colorado  

Science Journals Connector (OSTI)

...shale development, will be by massive hydraulic fracturing. This tech-nique, already...University, is confident that massive hydraulic fracturing will work there. Morse is...to stimulation by either nu-clear or hydraulic fracturing. Significantly, Assistant...

Luther J. Carter

1973-05-25T23:59:59.000Z

362

Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock  

E-Print Network [OSTI]

influence of effective fracture aperture, Water Resourcesa system of parallel fractures, Water Resources Research,solutions for a single fractures, Water Resources Research,

Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

2008-01-01T23:59:59.000Z

363

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

SciTech Connect (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

364

Hydrology and Hydraulic Properties of a Bedded Evaporite Formation  

SciTech Connect (OSTI)

The Permian Salado Formation in the Delaware Basin of New Mexico is an extensively studied evaporite deposit because it is the host formation for the Waste Isolation Pilot Plant, a repository for transuranic wastes. Geologic and hydrologic studies of the Salado conducted since the mid-1970's have led to the development of a conceptual model of the hydrogeology of the formation that involves far-field permeability in anhydrite layers and at least some impure halite layers. Pure halite layers and some impure halite layers may not possess an interconnected pore network adequate to provide permeability. Pore pressures are probably very close to lithostatic pressure. In the near field around an excavation, dilation, creep, and shear have created and/or enhanced permeability and decreased pore pressure. Whether flow occurs in the far field under natural gradients or only after some threshold gradient is reached is unknown. If far-field flow does occur, mean pore velocities are probably on the order of a meter per hundreds of thousands to tens of millions of years. Flow dimensions inferred from most hydraulic-test responses are subradial, which is believed to reflect channeling of flow through fracture networks, or portions of fractures, that occupy a diminishing proportion of the radially available space, or through percolation networks that are not ''saturated'' (fully interconnected). This is probably related to the directional nature of the permeability created or enhanced by excavation effects. Inferred values of permeability cannot be separated from their associated flow dimensions. Therefore, numerical models of flow and transport should include heterogeneity that is structured to provide the same flow dimensions as are observed in hydraulic tests. Modeling of the Salado Formation around the WIPP repository should also include coupling between hydraulic properties and the evolving stress field because hydraulic properties change as the stress field changes.

BEAUHEIM,RICHARD L.; ROBERTS,RANDALL M.

2000-11-27T23:59:59.000Z

365

GPR Method for the Detection and Characterization of Fractures and Karst Features: Polarimetry, Attribute Extraction, Inverse Modeling and Data Mining Techniques  

E-Print Network [OSTI]

AND KARST FEATURES: POLARIMETRY, ATTRIBUTE EXTRACTION, INVERSE MODELING AND DATA MINING TECHNIQUES A Dissertation by DOUGLAS SPENCER SASSEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... like to thank Clyde Munster, Phillip Taucer, Brad Wilcox and Binayak Mohanty for inviting me to participate in this research opportunity. Without the enthusiasm and dedication to this project from Dax Soule and Josh Gowan the data acquisition would...

Sassen, Douglas Spencer

2011-02-22T23:59:59.000Z

366

Evaluation of subsurface fracture geometry using fluid pressure response to  

Open Energy Info (EERE)

subsurface fracture geometry using fluid pressure response to subsurface fracture geometry using fluid pressure response to solid earth tidal strain Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Evaluation of subsurface fracture geometry using fluid pressure response to solid earth tidal strain Details Activities (1) Areas (1) Regions (0) Abstract: The nature of solid earth tidal strain and surface load deformation due to the influence of gravitational forces and barometric pressure loading are discussed. The pore pressure response to these types of deformation is investigated in detail, including the cases of a confined aquifer intersected by a well and a discrete fracture intersected by a well. The integration of the tidal response method with conventional pump tests in order to independently calculate the hydraulic parameters of the

367

Detection of formation fracture in a waterflooding experiment  

SciTech Connect (OSTI)

A 30 day waterflooding test in which seawater was injected into an oil limestone reservoir located in the West Coast of the Persian Gulf was analyzed. The purpose of the analysis was to detect the possible occurrence of fracture. During testing, injection flow rates were recorded while tubing head pressures (THP) were maintained constant. Three different tubing head pressures were maintained during the test: initial THP of 990 psig, intermediate THP of 1240 psig, and final THP of 1490 psig. A radial flow analysis disclosed an increase in transmissibility for the intermediate and final stages of pumping. During these stages the bottomhole fluid pressures (BHP) exceeded the formation's minimum in situ stress as determined by an energy balance method. Both the increase in fluid transmissibility and the BHP rise above the minimum in situ stress indicated the occurrence of fracture. The expected fracture snape was obtained by using a 3-D hydraulic fracturing simulator.

Morales, R.H.; Abou-Sayed, A.S.; Al Saffar, A.; Jones, A.H.

1985-03-01T23:59:59.000Z

368

Recover Power with Hydraulic Motors  

E-Print Network [OSTI]

Anywhere liquid pressure is reduced across a throttling device, there is a potential application for a hydraulic power recovery motor (HPRM). Cost of power makes HPRM's attractive with recoveries as small as 25 hp on a continuous basis. When...

Brennan, J. R.

1982-01-01T23:59:59.000Z

369

Experiences with aquifer testing and analysis in fractured low-permeability sedimentary rocks exhibiting nonradial pumping response  

SciTech Connect (OSTI)

Multiple-well aquifer pumping tests have been used successfully to measure the bulk hydraulic properties of limestone and shale formations of the Conasauga Group of East Tennessee and to define directional components in transmissivity associated with joints and small-scale folds. This experience demonstrates that multiple-well pumping tests can be used to measure the characteristics of low-permeability fractured rocks, and it illustrates the application of data interpretation techniques that are based on models of nonradial aquifer pumping response. Analytical models that have been used to interpret pumping test data include models for simple anisotropic response and for complex pumping response in an anisotropic aquifer intersected by a single high-conductivity vertical fracture. Comparisons of results obtained using nonradial flow methods with those obtained using traditional (radial flow) analytical methods indicate that the error from radial flow methods is generally less than an order of magnitude, an insignificant error in most low-permeability settings. However, the nonradial flow methods provide much more information on structural controls on groundwater movement. Special challenges encountered in conducting aquifer pumping tests in this hydrogeologic environment include selecting a pumping rate that can be sustained after fracture storage is depleted and laying out a test configuration that is consistent with the test geometry required by the nonradial flow interpretive models. Effective test design and data interpretation thus require extensive insight into site geology.

Smith, E.D.; Vaughan, N.D.

1985-01-01T23:59:59.000Z

370

MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES  

SciTech Connect (OSTI)

The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studies, and some of the new results are presented in this report. These samples are being scanned in order to quantify the distribution of apertures and the nature of the asperities. Low resolution images of fluids in a sample with a shear fracture were performed and they provide the confidence that flow patterns and saturations could be determined in the future. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective is to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

2005-06-15T23:59:59.000Z

371

Microsoft Word - NETL-TRS-6-2014_Imaging Techniques Applied to...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of oil that are now technically recoverable due to advances in horizontal drilling and hydraulic fracturing (U.S. EIA, 2013). The same properties that allow shale formations to...

372

The unsaturated hydraulic characteristics of the Bandelier Tuff  

SciTech Connect (OSTI)

This report summarizes the physical and, unsaturated hydraulic properties of the Bandelier Tuff determined from laboratory measurements made on core samples collected at Los Alamos National Laboratory. We fit new van Genuchten-type moisture retention curves to this data, which was categorized according to member of the Bandelier Tuff and subunit of the Tshirege Member. Reasonable consistency was observed for hydraulic properties and retention curves within lithologic units, while distinct differences were observed for those properties between units. With the moisture retention data, we constructed vertical profiles of in situ matric suction and hydraulic head. These profiles give an indication of the likely direction of liquid water movement within the unsaturated zone and allow comparison of core-scale and field-scale estimates of water flow and solute transport parameters. Our core-derived transport velocities are much smaller than values estimated from tritium, Cl, and NO{sub 3} contamination found recently in boreholes. The contaminant tracer-derived transport velocities from Los Alamos Canyon are greater than corederived values found for the Otowi Member, and for Mortandad Canyon, greater than core-derived values for that borehole. The significant difference found for Mortandad Canyon suggests that fracture or other fast-path transport may be important there. The relatively small difference between observed and predicted velocities at Los Alamos Canyon may mean that vadose zone transport there occurs by unsaturated matrix flow.

Rogers, D.B.; Gallaher, B.M.

1995-09-01T23:59:59.000Z

373

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

374

Electrokinetic high pressure hydraulic system  

DOE Patents [OSTI]

An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA); Arnold, Don W. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Schoeniger, Joseph S. (Oakland, CA); Neyer, David W. (Castro Valley, CA)

2001-01-01T23:59:59.000Z

375

Well testing model for multi-fractured horizontal well for shale gas reservoirs with consideration of dual diffusion in matrix  

Science Journals Connector (OSTI)

Abstract Shale gas reservoir is typical unconventional reservoir, it's necessary to take advantage of multi-stage fractured horizontal well so as to develop those kinds of reservoirs, which can form high conductivity hydraulic fractures and activate natural fractures. Due to the existence of concentration gap between matrix and fractures, desorption gas can simultaneously diffuse into the natural fractures and hydraulic fractures. This process can be called dual diffusion. Based on the triple-porosity cubic model, this paper establishes a new well testing model of multi-stage fractured horizontal well in shale gas reservoir with consideration of the unique mechanisms of desorption and dual diffusion in matrix. Laplace transformation is employed to solve this new model. The pseudo pressure transient responses are inverted into real time space with stehfest numerical inversion algorithm. Type curves are plotted, and different flow regimes in shale gas reservoirs are identified and the effects of relevant parameters are analyzed as well. Considering the mechanism of dual diffusion in matrix, the flow can be divided into five regimes: early linear flow; pseudo-steady state inter-porosity flow; the diffusion from matrix into micro-fractures; the diffusion from matrix into hydraulic fractures and boundary-dominated flow. There are large distinctions of pressure response between pseudo steady state diffusion and unsteady state diffusion under different value of pore volume ratio. It's similar to the feature of pseudo-steady state inter-porosity flow, diffusion coefficient and Langmuir parameters reflect the characters of pseudo-steady state diffusion. The numbers of stage of hydraulic fractures have certain impact on the shape factor of matrix and the inter-porosity coefficient. This new model is validated compared with some existing models. Finally, coupled with an application, this mew model can be approximately reliable and make some more precise productivity prediction.

Leng Tian; Cong Xiao; Mingjin Liu; Daihong Gu; Guangyu Song; Helong Cao; Xianglong Li

2014-01-01T23:59:59.000Z

376

Compartmentalization analysis using discrete fracture network models  

SciTech Connect (OSTI)

This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates Inc., Redmond, WA (United States); Wadleigh, E. [Marathon Oil Company, Midland, TX (United States). Mid-Continent Region Production

1997-12-31T23:59:59.000Z

377

Compartmentalization analysis using discrete fracture network models  

SciTech Connect (OSTI)

This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

1997-08-01T23:59:59.000Z

378

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect (OSTI)

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03T23:59:59.000Z

379

Simulation on Discrete Fracture Network Using Flexible Voronoi Gridding  

E-Print Network [OSTI]

........................................... 3 1.2.2 Gridding Techniques ............................................................. 4 1.2.2.1 Globally Orthogonal Grid ...................................... 5 1.2.2.2 Corner Point Grid... ................................................... 5 1.2.3 Locally Orthogonal Grid ....................................................... 6 1.3 Introduction to Discrete Fracture Network Simulation ................... 7 1.4 Introduction to Fracture Aperture Measurement Using X-Ray CT...

Syihab, Zuher

2011-02-22T23:59:59.000Z

380

Fracture characterization from attenuation of Stoneley waves across a fracture  

E-Print Network [OSTI]

Fractures contribute significantly to the permeability of a formation. It is important to understand the fracture distribution and fluid transmissivity. Though traditional well logs can image fractures intersecting the ...

Bakku, Sudhish Kumar

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Summary of micrographic analysis of fracture coating phases on drill cores from Pahute Mesa, Nevada Test Site. Revision 1  

SciTech Connect (OSTI)

The flow path between Pahute Mesa and the groundwater discharge area in Oasis Valley (approximately 18 miles to the southwest) is of concern due to the relatively short travel distance between a recharge area where underground nuclear testing has been conducted and the off-site water users. Groundwater flow and transport modeling by IT Corporation (IT) has shown rapid tritium transport in the volcanic rock aquifers along this flow path. The resultant estimates of rapid transport were based on water level data, limited hydraulic conductivity data, estimates of groundwater discharge rates in Oasis Valley, assumed porosities, and estimated retardation rates. Many of these parameters are poorly constrained and may vary considerably. Sampling and analytical techniques are being applied as an independent means to determine transport rates by providing an understanding of the geochemical processes that control solute movement along the flow path. As part of these geochemical investigations, this report summarizes the analysis of fracture coating mineral phases from drill core samples from the Pahute mesa area of the Nevada Test Site (NTS). Archived samples were collected based on the presence of natural fractures and on the types and abundance of secondary mineral phases present on those fracture surfaces. Mineral phases present along fracture surfaces are significant because, through the process of water-rock interaction, they can either contribute (as a result of dissolution) or remove (as a result of precipitation or adsorption) constituents from solution. Particular attention was paid to secondary calcite occurrences because they represent a potential source of exchangeable carbon and can interact with groundwater resulting in a modified isotopic signature and apparent water age.

NONE

1998-12-01T23:59:59.000Z

382

Using Chemicals to Optimize Conformance Control in Fractured Reservoirs  

SciTech Connect (OSTI)

This report describes work performed during the first year of the project, ''Using Chemicals to Optimize Conformance Control in Fractured Reservoirs.'' This research project has three objectives. The first objective is to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective is to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective is to develop procedures to optimize blocking agent placement in naturally fractured reservoirs. This research project consists of three tasks, each of which addresses one of the above objectives. Our work is directed at both injection wells and production wells and at vertical, horizontal, and highly deviated wells.

Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Liu, Jin; Wavrik, Kathryn

1999-09-27T23:59:59.000Z

383

Evaluation of fracture treatment type on the recovery of gas from the cotton valley formation  

E-Print Network [OSTI]

Every tight gas well needs to be stimulated with a hydraulic fracture treatment to produce natural gas at economic flow rates and recover a volume of gas that provides an acceptable return on investment. Over the past few decades, many different...

Yalavarthi, Ramakrishna

2009-05-15T23:59:59.000Z

384

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES...  

Open Energy Info (EERE)

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search OpenEI Reference...

385

Fracturing alliance allows massive diatomite oil reserves to be economically produced at Lost Hills, California: A case study  

SciTech Connect (OSTI)

As North American oilfield operations mature, there is a perceptible loosening of the autocratic ties between oil companies and contractors. They are being replaced by alliances or partnerships designed to minimize cost while improving profitability of the companies involved. Many papers have been written concerning alliance theory, but little documentation exists detailing actual performance. This paper evaluates a mature alliance, its implementation, structure and results. In Lost Hills, California, the diatomite formation requires hydraulic fracturing to allow oil recovery at profitable production rates. Because hydraulic fracturing is approximately two-thirds of the total well cost, it is imperative that fracturing investments be optimized to allow field development to proceed at optimum levels. Therefore, in 1990, a fracturing alliance (the first of its kind) was initiated between Chevron and Schlumberger Dowell. Over 1 billion lbm of sand has been successfully placed during approximately 2,000 fracture stimulation jobs. Through this prototype fracturing alliance, many major accomplishments are being achieved. The most notable are the hydraulic fracturing costs that have been reduced by 40% while improving the profitability of both companies. This paper illustrates the benefits of an alliance and justifies the change in management style from a low-bid operating strategy to a win-win customer/supplier attitude.

Klins, M.A.; Stewart, D.W.; Pferdehirt, D.J.; Stewart, M.E.

1995-12-31T23:59:59.000Z

386

A Rare Isolated Trapezoid Fracture  

E-Print Network [OSTI]

wrist in suggested scaphoid fracture. Acta Radiol. 1988;29:Rare isolated trapezoid fracture: a case report. Hand. 2008;suspect and diagnose this fracture. 2,8 REFERENCES 1. Papp

Afifi, Negean; Lu, Jenny J

2011-01-01T23:59:59.000Z

387

The role of fracture coatings on water imbibition into unsaturated tuff from Yucca Mountain  

SciTech Connect (OSTI)

Studies dealing with fracture flow at Yucca Mountain have generally assumed that any water flowing down in a fracture will be absorbed by the porous matrix. However, a thin lining of low permeability material on the fracture walls may significantly impede imbibition into the matrix of unsaturated tuff. In this research, imbibition was measured across the fracture surfaces in the laboratory. Samples were collected from surface outcrops of Tiva Canyon and Topopah Spring members of the Paintbrush tuff near Yucca Mountain. Sorptivity, a convenient measure of imbibition, was used to investigate the changes in hydraulic properties as a result of fracture coatings. Results from experimental analysis of Topopah Spring tuff showed decreased sorptivity across coated fracture surfaces. Statistically, the coatings on the Tiva Canyon samples do not significantly affect sorptivity. Scanning Electron Microscope analysis shows that coatings on the s grit Tiva Canyon samples are made up of iron, aluminum and to some extent magnesium. Coating material on the Topopah Spring samples is made up of calcium, magnesium, aluminum and iron. Coating significantly reduces the sorptivity for the Topopah Spring tuff. Numerical results are presented to show the effect of fracture coatings on water infiltration down a vertical fracture in simulated tuff. For the Topopah Spring tuff, the wetting front in the coated fracture travels deeper in the fracture and less into the matrix compared to the wetting front in the uncoated fracture. For the Tiva Canyon tuff, the wetting front in the uncoated fracture travels deeper in the fracture and less into the matrix as compared to the wetting front in the coated fracture.

Chekuri, V.S.; Tyler, S.W.; Fordham, J.W.

1995-11-01T23:59:59.000Z

388

Regional Analysis And Characterization Of Fractured Aquifers In The  

Open Energy Info (EERE)

Analysis And Characterization Of Fractured Aquifers In The Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Details Activities (1) Areas (1) Regions (0) Abstract: Areas related to low-temperature geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available downhole techniques to identify the locations of fracture zones in crystalline rocks depend upon the measurement of some thermal parameter such as temperature or heat flow. The temperature-depth profiles and their derivatives provide a direct indication of those fracture zones that

389

Measuring the fracture toughness of ultra-thin films with application to AlTa coatings  

E-Print Network [OSTI]

1 Measuring the fracture toughness of ultra-thin films with application to AlTa coatings Yong Xiang Abstract An experimental technique is presented for measuring the fracture toughness of brittle thin films with a focused ion beam and the membranes are pressurized until rupture. The fracture stress of the membrane

390

Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length  

E-Print Network [OSTI]

Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...

Lolon, Elyezer P.

2006-04-12T23:59:59.000Z

391

Natural and Induced Fracture Diagnostics from 4-D VSP in low Permeability Gas Reservoirs  

SciTech Connect (OSTI)

Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

Mark Willis; Daniel Burns; M. Nafi Toksoz

2008-09-30T23:59:59.000Z

392

Diagnosis and evaluation of fracturing treatments  

SciTech Connect (OSTI)

This paper introduces the pressure derivative in fracturing-pressure analysis for oil wells. The derivative is shown to enhance the analysis capabilities significantly. The interpretation methodology is presented, and several field data sets and simulations are discussed to illustrate to technique.

Barree, R.D. (Marathon Oil Co. (US)); Ayoub, J.A.; Brown, J.E.; Elphick, J.J. (Dowell Schlumberger (US))

1992-02-01T23:59:59.000Z

393

Hydraulic conductivity of shaly sands  

SciTech Connect (OSTI)

The effects of clays on the hydraulic conductivity of a sandstone are analyzed by considering a simple clay coating structure for the sand grains. In the model, silicate insulating nuclei are uniformly surrounded by charged clay particles. The total charge on the clays is compensated by a counterion density Q{sub v}. Assuming a capillary flow regime inside this granular model a Kozeny-Carman type equation has been derived, expressing its intrinsic permeability k in terms of a porosity-tortuosity factor {phi}{sup (m{minus}0.5)} and of the parameter Q{sub v}. The power-law derived expression shows that k decreases with the amount of clay, not only because a high Q{sub v} implies a narrowing of the pore channels, but also because it modifies the hydraulic tortuosity of the medium. This new equation has been statistically tested with extensive petrophysical laboratory data for different types of shaly sandstones.

Lima, O.A.L. de [PPPG/Federal Univ. of Bahia, Salvador Bahia (Brazil)

1994-12-31T23:59:59.000Z

394

Method to study fracture fluid polymer degradation using size exclusion chromatography. [Size exclusion chromatography  

SciTech Connect (OSTI)

A Size Exclusion Chromatography system is described which can be used to study conditions affecting the degradation of fracturing fluid polymers. In general, the effects of breaker type and concentration, temperature, and other additives to the fracturing fluid system can be monitored using this technique. Identification of effective conditions for polymer degradation may result in better design of fracturing fluids in order to minimize fracture and formation damage. 18 references, 20 figures, 6 tables.

Gall, B.L.; Raible, C.J.

1984-02-01T23:59:59.000Z

395

GCFR thermal-hydraulic experiments  

SciTech Connect (OSTI)

The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.

1980-01-01T23:59:59.000Z

396

Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

Electrical Techniques Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the electrical resistivity of the

397

Damage tolerance of well-completion and stimulation techniques in coalbed methane reservoirs  

SciTech Connect (OSTI)

Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and, stimulation approach. A new comparison parameter named as the normalized productivity index is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on this index over the production time. The results for each stimulation technique show that the value of the index declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease.

Jahediesfanjani, H.; Civan, F. [University of Oklahoma, Norman, OK (United States)

2005-09-01T23:59:59.000Z

398

Seismicity and Reservoir Fracture Characterization  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

399

Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Techniques Details Activities (0) Areas (0) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Determination of lithology, grain size Stratigraphic/Structural: Thickness and geometry of rock strata, fracture identification Hydrological: Porosity, permeability, water saturation Thermal: Formation temperature with depth Dictionary.png Downhole Techniques: Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids

400

Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Techniques Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Techniques Details Activities (0) Areas (0) Regions (0) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Magnetotelluric Techniques:

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Continuous time random walk analysis of solute transport in fractured porous media  

SciTech Connect (OSTI)

The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.

Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens

2008-06-01T23:59:59.000Z

402

Adaptive wavelet transform for vibration signal modelling and application in fault diagnosis of water hydraulic motor  

Science Journals Connector (OSTI)

There has been an increasing application of water hydraulics in industries due to growing concern on the environmental, health and safety issues. The fault diagnosis of water hydraulic motor is important for improving water hydraulic system reliability and performance. In this paper, fault diagnosis of water hydraulic motor in water hydraulic system is investigated based on adaptive wavelet analysis. A novel method for modelling the vibration signal based on the adaptive wavelet transform (AWT) is proposed. The linear combination of wavelets is introduced as wavelet itself and adapted for the particular vibration signal, which goes beyond adapting parameters of a fixed-shape wavelet. The AWT procedure based on the parametric optimisation by genetic algorithm (GA) is developed. The model-based method by AWT is applied to extract the features in the fault diagnosis of the water hydraulic motor. This technique for de-noising the corrupted simulation signal shows that it can improve the signal-to-noise ratio of the vibration signal. The results of the experimental signal demonstrate the characteristic vibration signal details in fine resolution. The magnitude plots of the continuous wavelet transform (CWT) show the characteristic signal's energy in time and frequency domain which can be used as feature values for fault diagnosis of water hydraulic motor.

H.X. Chen; Patrick S.K. Chua; G.H. Lim

2006-01-01T23:59:59.000Z

403

Abstract, AGU Fall meeting, San Francisco, 10-14 December, 2007 Seismic characterisation of hydraulic stimulation tests at the Coso geothermal  

E-Print Network [OSTI]

of hydraulic stimulation tests at the Coso geothermal area, California Bruce R. Julian U. S. Geological Survey, Durham DH1 3LE, U.K., g.r.foulger@durham.ac.uk Francis C. Monastero Geothermal Program Office, U. S. Navy and after fluid injection tests at the Coso geothermal area, California, to map the fractures formed

Foulger, G. R.

404

On the fracture toughness of advanced materials  

E-Print Network [OSTI]

occurs when the materials resistance to fracture ceases toall classes of materials, the fracture resistance does notthese biological materials derive their fracture resistance

Launey, Maximilien E.

2009-01-01T23:59:59.000Z

405

Geothermal Ultrasonic Fracture Imager | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Ultrasonic Fracture Imager Geothermal Ultrasonic Fracture Imager Development of a downhole wireline tool to characterize fractures in EGS wells in temperatures up to...

406

Ultrasound-Confirmed Frontal Bone Fracture  

E-Print Network [OSTI]

table--frontal sinus fractures. Facial Plast Surg Clin NorthConfirmed Frontal Bone Fracture Jeremy N. Johnson, DO Danielan isolated comminuted fracture of the left frontal sinus

Johnson, Jeremy N; Crandall, Stephen; Kang, Christopher S

2009-01-01T23:59:59.000Z

407

Fracture, aging and disease in bone  

E-Print Network [OSTI]

separate during bone fracture. Nature Materials 4, 612 (on nonagenarians with hip fractures? Injury 30, 169 (1999).bone mass as predictors of fracture in a prospective study.

Ager, J.W.; Balooch, G.; Ritchie, R.O.

2006-01-01T23:59:59.000Z

408

Fracture behavior and microstructural characteristics of irradiated Zircaloy cladding  

SciTech Connect (OSTI)

Zircaloy cladding tube specimens from commercial power reactor fuel assemblies (burnup >22 MWd/kgU) have been deformed to fracture at 325/sup 0/C by either the internal gas-pressurization or the expanding-mandrel technique in a helium or argon environment containing no fission product species (e.g., I, Cs, or Cd). The fracture surfaces of 11 irradiated specimens fractured by internal gas pressurization were examined by scanning electron microscopy, and 7 specimens were found to contain various degrees of the pseudocleavage feature that is characteristic of pellet-cladding interaction failures. Out of 10 test specimens fractured by expanding-mandrel loading, 5 were found to contain regions of pseudocleavage on the fracture surfaces. The specimens exhibited ''X-marks'' on the outer surface and brittle incipient cracks distributed on the inner surface, which are also characteristic of pellet-cladding interaction failures.

Chung, H.M.; Yaggee, F.L.; Kassner, T.F.

1985-06-01T23:59:59.000Z

409

Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

410

Hydraulic Geometry: Empirical Investigations and Theoretical Approaches  

E-Print Network [OSTI]

Hydraulic Geometry: Empirical Investigations and Theoretical Approaches B.C. Eatona, a Department are determined by the channel shape, gradient and a flow resistance parameter. A review of the literature Geomorphology April 21, 2010 #12;the research on downstream hydraulic geometry has focussed on the factors

Eaton, Brett

411

Ocean Thermal Gradient Hydraulic Power Plant  

Science Journals Connector (OSTI)

...for the probable life of the earth, only...low-pressure steam turbines pSrhaps hun-dreds...con-ventional hydraulic turbine under gravity flow...horizontally and the remaining available energy...through a hydraulic turbine to generatepower...between the liquid and gas-eous phases, with...

Earl J. Beck

1975-07-25T23:59:59.000Z

412

Grundfos HVAC OEM Efficient water hydraulics  

E-Print Network [OSTI]

Compact Hydro Block for Heat Pumps Hydraulic solution for small Heat Pump Systems p condensor Heating Future opportunities for heat pumps Grundfos Compact Hydro block Composite Design for Heat Pumps hydraulics Available today: Compact Hydro Block for integration High degree of pre-design Most important

Oak Ridge National Laboratory

413

Multi-Phase Fracture-Matrix Interactions Under Stress Changes  

SciTech Connect (OSTI)

The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) counter-current fluid transport between the matrix and the fracture, (c) studying the effect of confining stress on the distribution of fracture aperture and two-phase flow, and (d) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress, on the nature of the rock, and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual and detailed descriptions of the process are shown in the report. Both extensional and shear fractures have been considered. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective was to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering. A group of Shear fractures were studied, with layers perpendicular and parallel to the main axis of the sample. The structures of the fractures as well as their impact on absolute permeability and on oil displacement by water were evaluated. Shear fractures perpendicular to the layers lead to a wide distribution of pores and to an overall increase in absolute permeability. Shear fractures parallel to the layers lead to an overall increase in absolute permeability, but a decrease in displacement efficiency. This DoE project funded or partially funded three Ph.D. and four M.Sc. students at the Pennsylvania State University. The results from the research have yielded several abstracts, presentations and papers. Much of the work is still in the process of being published.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarao; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

2005-12-07T23:59:59.000Z

414

Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing  

Science Journals Connector (OSTI)

...Discussion Although a practically most intriguing application of dynamic comminution modeling may be the fracturing of gas or oil shale by electro-hydraulic pulsed arc (15, 16) or by chemical explosion in the pipe of a horizontal borehole, no data...

Zden?k P. Bažant; Ferhun C. Caner

2013-01-01T23:59:59.000Z

415

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Abstract Borehole televiewer, temperature and flowmeter logs and hydraulic fracturing stress measurements conducted in six wells penetrating a geothermal reservoir associated with the Stillwater fault zone in Dixie Valley, Nevada, were used to investigate the relationship between reservoir permeability and the contemporary in situ stress field. Data from wells drilled into productive and nonproductive segments of the Stillwater fault zone indicate that permeability in all wells is dominated by a relatively

416

Acid Fracture and Fracture Conductivity Study of Field Rock Samples  

E-Print Network [OSTI]

Acid fracturing is a well stimulation strategy designed to increase the productivity of a producing well. The parameters of acid fracturing and the effects of acid interaction on specific rock samples can be studied experimentally. Acid injection...

Underwood, Jarrod

2013-11-15T23:59:59.000Z

417

Fracture mechanics of cellular glass  

SciTech Connect (OSTI)

Cellular glasses are prime candidate materials for the structural substrate of mirrored glass for solar concentrator reflecting panels. These materials are brittle, however, and susceptible to mechanical failure from slow crack growth caused by a stress corrosion mechanism. The results are detailed of one part of a program established to develop improved cellular glasses and to characterize the behavior of these and commercially available materials. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials are developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region I may be slower, by orders of magnitude, than that found in dense glasses.

Zwissler, J.G.; Adams, M.A.

1981-02-01T23:59:59.000Z

418

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture  

E-Print Network [OSTI]

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Brian Somerday for producing both strength of materials and fracture mechanics data H H HH H H d/dt > 0 strength of materials: UTS, YS, f, RA H2 H2H2 H2 H2 H2 H2 H2 HH H H H H H H H H d/dt 0 fracture mechanics: KIH, KTH

419

Hydraulics and Well Testing of Engineered Geothermal Reservoirs...  

Open Energy Info (EERE)

Hydraulics and Well Testing of Engineered Geothermal Reservoirs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydraulics and Well Testing of...

420

Hydraulic Institute Mission and Vision:  

Broader source: Energy.gov (indexed) [DOE]

Institute Mission and Vision: Institute Mission and Vision: Vision: To be a global authority on pumps and pumping systems. Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing and delivering comprehensive industry standards. * Expanding knowledge by providing education and tools for the effective application, testing, installation, operation and maintenance of pumps and pumping systems. * Serving as a forum for the exchange of industry information. The Hydraulic Institute is a non-profit industry (trade) association established in 1917. HI and its members are dedicated to excellence in the engineering, manufacture, and application of pumping equipment. The Institute plays a leading role in the development of pump standards in North America and worldwide. HI

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Reservoir fracture characterizations from seismic scattered waves  

E-Print Network [OSTI]

The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

Fang, Xinding

2012-01-01T23:59:59.000Z

422

Fracture Conductivity of the Eagle Ford Shale  

E-Print Network [OSTI]

conductivity is influenced by several variables including fracture surface roughness, fracture closure stress, proppant size, and proppant concentration. The proppant concentration within a fracture can significantly affect the magnitude of fracture...

Guzek, James J

2014-07-25T23:59:59.000Z

423

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

424

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

425

Microearthquake Technology for EGS Fracture Characterization...  

Broader source: Energy.gov (indexed) [DOE]

Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization;...

426

Geothermal | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and scattering techniques to understand flow through fractures and the hydraulic fracture process Energy conversion including the exploration of improved thermodynamic cycles and...

427

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL  

E-Print Network [OSTI]

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY of stimulation is induced shear on preexisting fractures, which increases their transmissibility by orders of magnitude. The processes that create fractured rock are discussed from the perspective of geology and rock

Stanford University

428

An analysis of selected factors controlling or affecting the hydraulic conductivity of compacted soil liners  

E-Print Network [OSTI]

of the requirements for the degree of MASTER OF SCIENCE December 19B6 Major Subject: Civil Engineering AM ANALYSIS OF SELECTED FACTORS CONTROLLING OR AFFECTING THE HYDRAULIC CONDUCTIVITY OF COMPACTED SOIL LINERS A Thesis by ROBERT CARY SPEAKE, JR. Approved... Figure 4. Double-liner design for a surface impoundment Figure 5. Schematic of example macrofeatures found in soil liners 21 Figure 6. Parallelopiped showing components of fractured-liner model 23 Figure 7. Head of leachate on liner ver sus flow rate...

Speake, Robert Cary

2012-06-07T23:59:59.000Z

429

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

to Geothermal Prospecting Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Use of Geophysical Techniques...

430

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

and test combined geophysical techniques to characterize fluid flow, in relation to fracture orientations and fault distributions in a geothermal system. Average Overall Score:...

431

In-situ stress and fracture permeability in a fault-hosted geothermal reservoir at Dixie Valley, Nevada  

SciTech Connect (OSTI)

As part of a study relating fractured rock hydrology to in-situ stress and recent deformation within the Dixie Valley Geothermal Field, borehole televiewer logging and hydraulic fracturing stress measurements were conducted in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Borehole televiewer logs from well 73B-7 show numerous drilling-induced tensile fractures, indicating that the direction of the minimum horizontal principal stress, S{sub hmin}, is S57{degrees}E. As the Stillwater fault at this location dips S50{degrees}E at {approximately}53{degrees}, it is nearly at the optimal orientation for normal faulting in the current stress field. Analysis of the hydraulic fracturing data shows that the magnitude of S{sub hmin} is 24.1 and 25.9 MPa at 1.7 and 2.5 km, respectively. In addition, analysis of a hydraulic fracturing test from a shallow well 1.5 km northeast of 73B-7 indicates that the magnitude of S{sub hmin} is 5.6 MPa at 0.4 km depth. Coulomb failure analysis shows that the magnitude of S{sub hmin} in these wells is close to that predicted for incipient normal faulting on the Stillwater and subparallel faults, using coefficients of friction of 0.6-1.0 and estimates of the in-situ fluid pressure and overburden stress. Spinner flowmeter and temperature logs were also acquired in well 73B-7 and were used to identify hydraulically conductive fractures.

Hickman, S. [Geological Survey, Menlo Park, CA (United States); Barton, C.; Zoback, M. [Stanford Univ., CA (United States)] [and others

1997-12-31T23:59:59.000Z

432

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

433

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network [OSTI]

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

Mehta, P.K.

2013-01-01T23:59:59.000Z

434

Hydraulic Institute and TAPPI forge standards partnership  

Science Journals Connector (OSTI)

The Hydraulic Institute (HI) and the Technical Association of Pulp and Paper Industry (TAPPI) are partnering to provide their memberships with a direct link to purchase pump standards specific to pumps installed or required in the pulp and paper industry.

2009-01-01T23:59:59.000Z

435

Fracture permeability and seismic wave scattering--Poroelastic linear-slip interface model for heterogeneous fractures  

E-Print Network [OSTI]

modeling of faults and fractures: Geophysics, 60, 1514-1526.Poroelastic modeling of fracture-seismic wave interaction:by a heterogeneous fracture: J. Acoust. Soc. Am. , 115,

Nakagawa, S.

2010-01-01T23:59:59.000Z

436

Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities  

E-Print Network [OSTI]

of transport and design and operation of ground- water remediation systems, are crucially dependent transient hydraulic tomography at several pumping/observation densities, Water Resour. Res., 49, 7311

Barrash, Warren

437

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Broader source: Energy.gov (indexed) [DOE]

Nanosensors for Fractured Reservoir Characterization. 2. Characterization of Fracture Properties using Production Data. 3. Fracture Characterization by Resistivity...

438

Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report  

SciTech Connect (OSTI)

The first of a three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The objectives of the study are to (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies were conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulator was initialized using properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. Simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicate that the simulator is predicting the effects of critical reservoir parameters in a logical and consistent manner. The results to-date confirm that horizontal wells can increase both oil recovery rate and total oil recovery from naturally fractured reservoirs. The year one simulation results will provide the baseline for the ongoing study which will evaluate the performance degradation caused by the sensitivity of fracture permeability to pressure change, and investigate fluid injection pressure maintenance as a means to improve oil recovery performance. The study is likely to conclude that fracture closure decreases oil recovery and that pressure support achieved through fluid injection could be beneficial in improving recovery.

Not Available

1991-10-01T23:59:59.000Z

439

Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems  

SciTech Connect (OSTI)

The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.

Cotte, F.P.; Doughty, C.; Birkholzer, J.

2010-11-01T23:59:59.000Z

440

Use of Tracers to Characterize Fractures in Engineered Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Fractures in Engineered Geothermal Systems Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface...

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Coalbed methane stimulation techniques: Mechanisms and applicability. Topical report, August 1991-July 1993  

SciTech Connect (OSTI)

Increased pore pressure around a wellbore during injection into a coalbed reservoir can cause increased stresses, degradation in mechanical properties and plastic deformation. These near-wellbore effects can lead to elevated breakdown and treatment pressures during hydraulic fracturing and alternatively can promote cavity evolution and conductivity-connectivity alteration during dynamic openhole cavitation. Laboratory experimentation and field data interpretation are provided to support these contentions. Practical considerations for controlling excessive pressure during hydraulic fracturing are suggested as are similar considerations for maximizing cavity growth, deliverability, applicability, and formation evaluation.

Khodaverdian, M.F.

1994-11-01T23:59:59.000Z

442

Procedure for estimating fracture energy from fracture surface roughness  

DOE Patents [OSTI]

The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

Williford, Ralph E. (Kennewick, WA)

1989-01-01T23:59:59.000Z

443

FRACTURED PETROLEUM RESERVOIRS  

SciTech Connect (OSTI)

The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

Abbas Firoozabadi

1999-06-11T23:59:59.000Z

444

Brittle Fracture Ductile to Brittle transition  

E-Print Network [OSTI]

FRACTURE Brittle Fracture Ductile to Brittle transition Fracture Mechanics T.L. Anderson CRC sulphur in steel Residual stress Continuity of the structure Microcracks #12;Fracture Brittle Ductile Factors affecting fracture Strain rate State of stress Temperature #12;Behaviour described Terms Used

Subramaniam, Anandh

445

Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report  

SciTech Connect (OSTI)

The second year of this three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study are to: (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies have been conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulation model has been initialized with properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. During year one, simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure charge. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. During the second year the performances of the same vertical and horizontal wells were evaluated with the assumption that fracture permeability was a function of reservoir pressure. This required repetition of most of the natural depletion cases simulated in year one while invoking the pressure-sensitive fracture permeability option. To investigate sensitivity to in situ stress, two stress conditions were simulated for each primary variable. The water injection cases, begun in year one, were extended to include most of the reservoir parameters investigated for natural depletion, including fracture permeability as a function of net stress and the use of horizontal wells. The results thus far confirm that pressure-sensitive fractures degrade well performance and that the degradation is reduced by water injection pressure maintenance. Furthermore, oil recovery can be significantly increased by water injection pressure maintenance.

Not Available

1992-11-01T23:59:59.000Z

446

Hydraulic Hybrid Systems | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Hybrid Systems Hydraulic Hybrid Systems Jump to: navigation, search Logo: Hydraulic Hybrid Systems Name Hydraulic Hybrid Systems Address 320 N. Railroad Ave Place Loveland, Colorado Zip 80537 Sector Vehicles Product hydraulic hybrid system for light-duty vehicles Year founded 2008 Number of employees 11-50 Phone number 303-519-4144 Website http://www.hydraulichybridsyst Coordinates 40.394833°, -105.0758931° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.394833,"lon":-105.0758931,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Fracture model for cemented aggregates  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

2013-01-01T23:59:59.000Z

448

Complications in Ankle Fracture Surgery.  

E-Print Network [OSTI]

??Mikko Ovaska. Complications in Ankle Fracture Surgery. Helsinki Bone and Joint Research Group, Department of Orthopaedic Surgery and Traumatology, Faculty of Medicine, University of Helsinki,… (more)

Ovaska, Mikko

2014-01-01T23:59:59.000Z

449

Seismic anisotropy of fractured rock  

E-Print Network [OSTI]

A comparison of the theory with recent ultra- sonic experiments on a simulated fractured medium .... Note that Poisson's ratio and Young's modulus for the.

M. Schoenberg, C. M. Sayers

2000-02-18T23:59:59.000Z

450

Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming  

SciTech Connect (OSTI)

Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

Harstad, H. [New Mexico Tech, Socorro, NM (United States); Teufel, L.W.; Lorenz, J.C.; Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

1996-08-01T23:59:59.000Z

451

The Cost Effectiveness of Fracture Stimulation in Increasing the Flow from Geothermal Wells  

SciTech Connect (OSTI)

The cost effectiveness of fracture stimulation at The Geysers, the Imperial Valley, and other geothermal resource areas in the United States vas studied using GEOCOM, a computer code for analyzing the impact of completion activities on the life-cycle costs of geothermal wells. Technologies for fracturing the reservoir near the wellbore involve the creation of a pressure pulse in the wellbore by means of either hydraulic or explosive force. The cost of a single fracture stimulation job can vary from $50,000 to over $500,000, with a typical cost of around $300,000. The code shows that additional flow achieved by fracture stimulation must exceed 10,000 pounds per hour for each $100,000 invested in stimulation in order for a fracture treatment to be cost effective. In some reservoirs, this additional flow must be as great as 30,000 pounds per hour. The cost effectiveness of fracturing has not yet been demonstrated in the field. The Geothermal Well Stimulation Program achieved an overall average of about 10,000 pounds per hour for each $100,000 invested.

Brown, Gerald L.

1983-12-15T23:59:59.000Z

452

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Broader source: Energy.gov (indexed) [DOE]

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

453

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Broader source: Energy.gov (indexed) [DOE]

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

454

The Hydraulic Institute: Who We Are  

Broader source: Energy.gov (indexed) [DOE]

Hydraulic Institute: Hydraulic Institute: Who We Are The Global Authority on Pumps and Pumping Systems As the developer of the universally acclaimed ANSI/HI Pump Standards, a key reference for pump knowledge and end-user specifications, the Hydraulic Institute (HI) provides its members with timely and essential resources for the advancement of their pump industry businesses. HI is also an indispensable asset for business intelligence, professional development, and pump industry leadership and advocacy, serving as the unequivocal voice of the North American pump industry since its inception in 1917. The Institute has become the industry resource for cutting- edge educational programs, critical industry reports, business-enhancing services, and a myriad of opportunities

455

Bucknell Hydraulic Flume | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Flume Hydraulic Flume Jump to: navigation, search Basic Specifications Facility Name Bucknell Hydraulic Flume Overseeing Organization Bucknell University Hydrodynamic Testing Facility Type Flume Length(m) 9.8 Beam(m) 1.2 Depth(m) 0.6 Water Type Freshwater Cost(per day) Depends on personnel requirements Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.7 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Velocity(m/s) 2.7 Recirculating Yes Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Various sensors available on a test-by-test basis Available Sensors Flow, Velocity Data Generation Capability Real-Time No Integrated Display/Graphics Microsoft Windows based systems

456

Hydraulic impact end effector final test report. Automation and robotics section, ER/WM-AT Program  

SciTech Connect (OSTI)

One tool being developed for dislodging and fragmenting the hard salt cake waste in the single-shell nuclear waste tanks at the Hanford Reservation near Richland, Washington, is the hydraulic impact end effector (HIEE). This total operates by discharging 11-in. slugs of water at ultrahigh pressures. The HIEE was designed, built, and initially tested in 1992. Work in 1993 included advanced developments of the HIEE to further investigate its fragmentation abilities and to determine more effective operating procedures. These tests showed that more fragmentation can be achieved by increasing the charge pressure of 40 kpsi to 55 kpsi and by the use of different operating procedures. The size of the material and the impact energy of the water slug fired from the HIEE are believed to be major factors in material fragmentation. The material`s ability to fracture also appears to depend on the distance a fracture or crack line must travel to a free surface. Thus, larger material is more difficult to fracture than smaller material. Discharge pressures of 40 kpsi resulted in little penetration or fracturing of the material. At 55 kpsi, however, the size and depth of the fractures increased. Nozzle geometry had a significant effect on fragment size and quantity. Fragmentation was about an order of magnitude greater when the HIEE was discharged into drilled holes rather than onto the material surface. Since surface shots tend to create craters, a multi-shot procedure, coupled with an advanced nozzle design, was used to drill (crater) deep holes into large material. With this procedure, a 600-lb block was reduced to smaller pieces without the use of any additional equipment. Through this advanced development program, the HIEE has demonstrated that it can quickly fragment salt cake material into small, easily removable fragments. The HIEE`s material fragmentation ability can be substantially increased through the use of different nozzle geometries and operating procedures.

Couture, S.

1994-02-18T23:59:59.000Z

457

Fracture compliance estimation using borehole tube waves  

E-Print Network [OSTI]

We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

Bakku, Sudhish Kumar

458

INL Experimental Program Roadmap for Thermal Hydraulic Code Validation  

SciTech Connect (OSTI)

Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related to VHTRs, sodium-cooled fast reactors, and light-water reactors. These experiments range from relatively low-cost benchtop experiments for investigating individual phenomena to large electrically-heated integral facilities for investigating reactor accidents and transients.

Glenn McCreery; Hugh McIlroy

2007-09-01T23:59:59.000Z

459

Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs  

SciTech Connect (OSTI)

Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

Guo, Genliang; George, S.A.; Lindsey, R.P.

1997-08-01T23:59:59.000Z

460

Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

Parra, J.; Collier, H.; Angstman, B.

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The hydraulic conductivity of chopped sorghum forage  

E-Print Network [OSTI]

ZL Kn H, Hg Hs ? H4 Hs ? H 6 Ln Hn+ & Q = flow rate L = layer thickness H = hydrostatic head Figure 3. Constnnt hend permenmeter for n mnterini mnde up of lngers of verging conductiviifes. 10 K is the hydraulic conductivity of a layer... will henceforth be called simply the hydraulic conductivity, K) was calculated using the equation. Q~XL A H7-Hi (Eq. 6) where H7-Hi is the head difference between the first and seventh pressure taps. Darcy's law, which is valid only for laminar flow...

Custer, Micheal Hugh

2012-06-07T23:59:59.000Z

462

Microearthquake Technology for EGS Fracture Characterization  

Broader source: Energy.gov [DOE]

Project objectives: To understand how EGS fracture networks develop; To develop technology to determine accurate absolute three-dimensional positions of EGS fracture networks.

463

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

464

Peri-prosthetic fracture vibration testing  

SciTech Connect (OSTI)

The purpose of this study is to establish a test setup and vibration analysis method to predict femoral stem seating and prevent bone fracture using accelerometer or force response data from an instrument stem and impactor. This study builds upon earlier studies to identify a means to supplement a surgeon's tactile and auditory senses by using damage identification techniques normally used for civil and mechanical structures. Testing will be conducted using foam cortical shell sawbones prepared for stems of different geometries. Each stem will be instrumented with an accelerometer. Two impactor designs will be compared: a monolithic impactor with an integrated load cell and accelerometer and a two piece impactor. Acceleration and force measurements will be taken in the direction of impaction. Signal processing techniques will be applied to the acceleration time histories to determine features that can be used to assess device seating and potential fracture. A consistent energy input will be applied using a drop tower. The effect of introducing compliance under the bone support vise will also be investigated. The ultimate goal of this study is to design an integrated portable data acquisition system capable of being used in future cadaveric testing. This paper will discuss the experimental set-up, the signal processing techniques used and the subsequent results.

Cruce, Jesse R [Los Alamos National Laboratory; Erwin, Jenny R [Los Alamos National Laboratory; Remick, Kevin R [Los Alamos National Laboratory; Cornwell, Phillip J [Los Alamos National Laboratory; Menegini, R. Michael [INDIANA UNIV.; Racanelli, Joe [STRYKER ORTHOPAEDICS

2011-01-28T23:59:59.000Z

465

Investigation of valve plate in water hydraulic axial piston motor  

Science Journals Connector (OSTI)

This paper has introduced the developments of water hydraulic axial piston equipments. According to the effects of physico-chemical properties of water on water hydraulic components, a novel valve plate for water

Song-Lin Nie Ph.D; Zhuang-Yun Li…

2002-03-01T23:59:59.000Z

466

Diagnosis of Fracture Flow Conditions with Acoustic Sensing  

E-Print Network [OSTI]

processing techniques and quantitative analysis are used to measure flow rates in a simulated fractured well. Production into a 5-½ inch OD well was simulated by injecting fluid through packed bed of 16/30 mesh, 20/40 mesh and 30/50 mesh proppant. Gas...

Martinez, Roberto

2014-07-10T23:59:59.000Z

467

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

468

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

469

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

470

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques (Redirected from Electromagnetic Sounding Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

471

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

472

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

473

Quantitative supersonic flow visualization by hydraulic analogy  

E-Print Network [OSTI]

The hydraulic analogy, which forms the basis for the phics. current investigation, can be used to study supersonic gas flows with great ease by means of a water table. As a result of the analogy, water heights in free surface water flow correspond...

Rani, Sarma Laxminarasimha

2012-06-07T23:59:59.000Z

474

Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same  

DOE Patents [OSTI]

The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

Shafer, Scott F. (Morton, IL)

2002-01-01T23:59:59.000Z

475

Optimizing Fracture Treatments in a Mississippian "Chat" Reservoir, South-Central Kansas  

SciTech Connect (OSTI)

This project is a collaboration of Woolsey Petroleum Corporation (a small independent operator) and the Kansas Geological Survey. The project will investigate geologic and engineering factors critical for designing hydraulic fracture treatments in Mississippian ''chat'' reservoirs. Mississippian reservoirs, including the chat, account for 159 million m3 (1 billion barrels) of the cumulative oil produced in Kansas. Mississippian reservoirs presently represent {approx}40% of the state's 5.6*106m3 (35 million barrels) annual production. Although geographically widespread, the ''chat'' is a heterogeneous reservoir composed of chert, cherty dolomite, and argillaceous limestone. Fractured chert with micro-moldic porosity is the best reservoir in this 18- to 30-m-thick (60- to 100-ft) unit. The chat will be cored in an infill well in the Medicine Lodge North field (417,638 m3 [2,626,858 bbls] oil; 217,811,000 m3 [7,692,010 mcf] gas cumulative production; discovered 1954). The core and modern wireline logs will provide geological and petrophysical data for designing a fracture treatment. Optimum hydraulic fracturing design is poorly defined in the chat, with poor correlation of treatment size to production increase. To establish new geologic and petrophysical guidelines for these treatments, data from core petrophysics, wireline logs, and oil-field maps will be input to a fracture-treatment simulation program. Parameters will be established for optimal size of the treatment and geologic characteristics of the predicted fracturing. The fracturing will be performed and subsequent wellsite tests will ascertain the results for comparison to predictions. A reservoir simulation program will then predict the rate and volumetric increase in production. Comparison of the predicted increase in production with that of reality, and the hypothetical fracturing behavior of the reservoir with that of its actual behavior, will serve as tests of the geologic and petrophysical characterization of the oil field. After this feedback, a second well will be cored and logged, and procedure will be repeated to test characteristics determined to be critical for designing cost-effective fracture treatments. Most oil and gas production in Kansas, and that of the Midcontinent oil industry, is dominated by small companies. The overwhelming majority of these independent operators employ less than 20 people. These companies have limited scientific and engineering expertise and they are increasingly needing guidelines and technical examples that will help them to not be wasteful of their limited financial resources and petroleum reserves. To aid these operators, the technology transfer capabilities of the Kansas Geological Survey will disseminate the results of this study to the local, regional, and national oil industry. Internet access, seminars, presentations, and publications by Woolsey Petroleum Company and Kansas Geological Survey geologists and engineers are anticipated.

K. David Newell; Saibal Bhattacharya; Alan Byrnes; W. Lynn Watney; Willard Guy

2005-10-01T23:59:59.000Z

476

IOWA INSTITUTE OF HYDRAULIC RESEARCH COLLEGE OF ENGINEERING  

E-Print Network [OSTI]

SUMMARY OF ACTIVITIES IOWA INSTITUTE OF HYDRAULIC RESEARCH COLLEGE OF ENGINEERING THE UNIVERSITY This report of the activities of the Iowa Institute of Hydraulic Research (IIHR) covers the period July 1997 international initiatives included the effectuation of cooperative agreements with Danish Hydraulic Institute

Stanier, Charlie

477

Describing bond graph models of hydraulic components in Modelica  

Science Journals Connector (OSTI)

In this paper we discuss an object oriented description of bond graph models of hydraulic components by means of the unified modeling language Modelica. A library which is still under development is briefly described and models of some standard hydraulic components are given for illustration. In particular we address the modeling of hydraulic orifices.

W. Borutzky; B. Barnard; J.U. Thoma

2000-01-01T23:59:59.000Z

478

Sustained Storage and Transport of Hydraulic Gold Mining Sediment  

E-Print Network [OSTI]

Sustained Storage and Transport of Hydraulic Gold Mining Sediment in the Bear River, California L deposits of hydraulic gold mining sediment remain in main channels of the Bear River more than 100 years- sic model of sediment transport in a symmet- rical wave that is based on hydraulic mining sediment

James, L. Allan

479

Fracturing Fluid Characterization Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Documentation Page Documentation Page 1. Report No. DE - FC 21 - 92MC29077 2. 3. Recipient's Accession No. 5. Report Date August 31, 2000 4. Title and Subtitle Fracturing Fluid Characterization Facility 6. 7. Author(s) The University of Oklahoma 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 9. Performing Organization Name and Address The University of Oklahoma Sarkeys Energy Center T301 100 E Boyd St Norman, OK 73019 11. Contract (C) or Grant (G) No. DOE:DE FC21 92 MC29077 13. Type of Report & Period Covered Final Report 09 30 92 - 03 31 00 12. Sponsoring Organization Name and Address US Dept of Energy - FETL 3610 Collins Ferry Road Morgantown, WV 26505 14. 15. Supplementary Notes Several technical papers were prepared and presented at various Society of Petroleum Engineers Conferences and US

480

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORKSFOR HYDRAULICALLY FRACTURED HORIZONTAL WELLS IN FAULTED SHALE GAS RESERVOIRS.  

E-Print Network [OSTI]

??There is no alternative energy to replace fossil fuels yet, demand for hydrocarbon is still increasing all over the world. In addition to that, productions… (more)

Oz, Sinan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic fracturing techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity  

Science Journals Connector (OSTI)

......EGS) on the United States in the 21st Century (2006) Massachusetts Institute of Technology. 209. Available at: www1.eere.energy.gov/geothermal/egs_technology.html (last accessed 7 August 2013). Nara Y. , Yamanaka H., Oe Y., Kaneko......

Arno Zang; Jeoung Seok Yoon; Ove Stephansson; Oliver Heidbach

2013-01-01T23:59:59.000Z

482

Characterization and reservoir evaluation of a hydraulically fractured, shaly gas reservoir  

E-Print Network [OSTI]

, Shaly Gas Reservoir. ( December 1991 ) Cesar Alfonso Santiago Molina, Ingeniero de Petroleos, Universidad Nacional de Colombia; Chair of Advisory Committee: Dr. Steven W. Poston Shale content in reservoir rocks affect their petrophysical properties... for their support. The author also wishes to express his deepest appreciation to Dr. H. Chen for all the help and suggestions he made in this study. The author expresses his gratitude to every one in Empresa Colombiana de Petroleos, Ecopetrol, who made possible...

Santiago Molina, Cesar Alfonso

1991-01-01T23:59:59.000Z

483

Analysis of pressure data from the horizontal wells with multiple hydraulic fractures in shale gas.  

E-Print Network [OSTI]

??In the last several years, the unconventional gas reservoirs development has grown tremendously. Most of these unconventional reservoirs have very low permeability and are not… (more)

Tabar, Essa M.

2011-01-01T23:59:59.000Z

484

Effective stress history and the potential for seismicity associated with hydraulic fracturing of shale reservoirs  

Science Journals Connector (OSTI)

...the thrust direction. Buckling of a pipeline had been experienced...microarray deployment, global positioning system...deformation revealed that the buckling and associated dilation...of fault-controlled buckling in thinly layered sedimentary...

T. R. Harper

485

Electric potential source localization reveals a borehole leak during hydraulic fracturing  

Science Journals Connector (OSTI)

...long-term problems by employing continuous aquifer monitoring based on the physical principals...aquitards and wells in multilayered-aquifer systems: Water Resources Research, 47...for moment tensor characterization of fracking events: Geophysics, 77 , no.-5...

A. K. Haas; A. Revil; M. Karaoulis; L. Frash; J. Hampton; M. Gutierrez; M. Mooney

486

Pressure transient response in a closed two-layer gas reservoir containing a hydraulic fracture  

E-Print Network [OSTI]

. )(25) ) + (0. 01) (0 . 1013)(15) (0 57)(0 1192)(40) (0. 57)(0. 1192)(40) 0. 865 Figure 29 shows a match of the pressure buildup data with a type curve for C = 1. 0 and C = 0. 9. As Fig. 29 shows, the first several points of the pressure buildup.... 5 1398. 1403. 1408. 1413. 1421. 1432. 1450. 1483. . 9802E-01 . 1970 . 5939 1. 689 5. 086 15. 44 46. 75 142. 0 . 6053E+06 . 3012E+06 . 9990E+05 . 3513E+05 . 1167E+05 3844. 1270. 418. 7 TYPE CURVE PLOTTING FUNCTIONS Effective...

Sullivan, Richard Burl

2012-06-07T23:59:59.000Z

487

Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing  

E-Print Network [OSTI]

Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 earthquakes; Long Valley caldera; seismic moment tensors; swarms; seismic sources 1. Introduction The ¢rst

Foulger, G. R.

488

Water Value and Environmental Implications of Hydraulic Fracturing: Eagle-Ford Shale  

E-Print Network [OSTI]

to develop implications based on industry, government and institutional data, and draw conclusions relative to impacts on the environment, realized amount of water, and value of water used for a typical well in the Eagle-Ford development, a water...

Allen, W.; Lacewell, R.; Zinn, M.

2014-01-01T23:59:59.000Z

489

Joint location and source mechanism inversion of microseismic events: benchmarking on seismicity induced by hydraulic fracturing  

Science Journals Connector (OSTI)

......microseismic monitoring for oil and gas focuses...applied the method to field data acquired with...of geophones and production wells in the 3-D...stimulation at four production wells were carried...5 to 0.07 (a cumulative SNR for all stations...Cotton Valley gas field, east Texas. Geophysics......

D. Anikiev; J. Valenta; F. Stan?k; L. Eisner

2014-01-01T23:59:59.000Z

490

Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity  

Science Journals Connector (OSTI)

......2.8 1.7 61 Cumulative seismic energy...is compared with field data. We use data...circles indicate cumulative values for Es of...in agreement with field observations (about...sequestration, oil and (shale) gas...the Subsurface: Production, Storage and Conversion-Hou......

Arno Zang; Jeoung Seok Yoon; Ove Stephansson; Oliver Heidbach

2013-01-01T23:59:59.000Z

491

Impact of hydraulic fractures on type curves for horizontal wells in CBM reservoirs.  

E-Print Network [OSTI]

??As production technologies continue to increase, more and more unconventional natural gas plays are becoming economical and attractive to produce. CBM, or coalbed methane, currently… (more)

Bell, David Christopher.

2011-01-01T23:59:59.000Z

492

Radium and Barium Removal through Blending Hydraulic Fracturing Fluids with Acid Mine Drainage  

Science Journals Connector (OSTI)

The differential retention of radium through co-precipitation into barite versus adsorption on carbonate and/or Mn and Fe hydrous oxides has important environmental health implications with respect to radon emission. ... We thank Gary Dwyer, Alissa White, and Ellie Kern for providing invaluable guidance and sample analyses throughout the project and Tim Johnson for advising. ... Nathaniel Warner was supported by the National Science Foundation (NSF) Partnerships for International Research and Education (PIRE) award (NSF-OISE-12-43433). ...

Andrew J. Kondash; Nathaniel R. Warner; Ori Lahav; Avner Vengosh

2013-12-24T23:59:59.000Z

493

Rock deformation models and fluid leak-off in hydraulic fracturing  

Science Journals Connector (OSTI)

......pressure-dependent leakoff and high process-zone stress in coal-stimulation treatments. SPE Prod. Oper. (2009) 24:407-414...2009) 166:1089-1106. georef;2013075987 2013-075987 Economic geology, geology of energy sources Oxford University Press......

Viktoriya M. Yarushina; David Bercovici; Michael L. Oristaglio

2013-01-01T23:59:59.000Z

494

Fracturing around excavations in salt at the WIPP  

SciTech Connect (OSTI)

Salt is a plastic material when subjected to high confining pressures. However, salt can behave in a brittle manner with the development of fracturing when subject to deviatoric stresses and low confining pressures. Field data demonstrating brittle behavior have been collected and evaluated at the Waste Isolation Pilot Plant (WIPP), in Carlsbad, New Mexico. This facility is being developed to prove technology for the safe emplacement and storage of transuranic nuclear wastes in deep excavations in salt. Studies using visual, instrumentation and geophysical techniques have been carried out in the underground facility to identify and characterize the types of fractures that develop around openings. 11 refs., 7 figs.

Cook, R.F. (Westinghouse Electric Corp., Carlsbad, NM (USA). Waste Isolation Div.); Roggenthen, W.M. (South Dakota School of Mines and Technology, Rapid City, SD (USA). Dept. of Geology and Geological Engineering)

1991-01-01T23:59:59.000Z

495

Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetic Techniques Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

496