Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Estimating hydraulic conductivity from drainage patterns - A comparison case study in the Cascade Range, Oregon and the Mare Tyrrhenum quadrangle on Mars.  

E-Print Network (OSTI)

?? This study introduces a new method of estimating hydraulic conductivity on Mars from drainage dissection patterns. This method was first tested on Earth in… (more)

Grudzinski, Bartosz Piotr

2010-01-01T23:59:59.000Z

2

The hydraulic conductivity of chopped sorghum  

Science Conference Proceedings (OSTI)

Hydraulic conductivity of water through chopped sweet sorghum at various packing densities and soaking times was measured using permeameters. Hydraulic conductivity decreased by two orders of magnitude as packing density increased from 400 to 897 kg/m/sup 3/. Soaking time had less effect on hydraulic conductivity, and the effect depended on packing density.

Custer, M.H.; Reddell, D.L.; Sweeten, J.M.

1987-01-01T23:59:59.000Z

3

Definition: Hydraulic Conductivity | Open Energy Information  

Open Energy Info (EERE)

Conductivity Conductivity Jump to: navigation, search Dictionary.png Hydraulic Conductivity Hydraulic conductivity is a physical property which measures the ability of the material to transmit fluid through pore spaces and fractures in the presence of an applied hydraulic gradient. Darcy's Law defines the hydraulic conductivity as the ratio of the average velocity of a fluid through a cross-sectional area (Darcy's velocity) to the applied hydraulic gradient.[1] View on Wikipedia Wikipedia Definition Hydraulic conductivity, symbolically represented as, is a property of vascular plants, soil or rock, that describes the ease with which a fluid (usually water) can move through pore spaces or fractures. It depends on the intrinsic permeability of the material and on the degree of

4

Electromagnetic Alteration of Hydraulic Conductivity of Soils.  

E-Print Network (OSTI)

??Hydraulic conductivity is a measure of the rate at which water flows through porous media. Because of the dipole properties of water molecules, any electric… (more)

Azad, Sahba

2013-01-01T23:59:59.000Z

5

HYDRAULIC CONDUCTIVITY OF ESSENTIALLY SATURATED PEAT  

SciTech Connect

The Savannah River National Laboratory measured the hydraulic conductivity of peat samples using method ASTM D4511-00. Four samples of peat were packed into 73mm diameter plastic tubes and saturated from the bottom up with water. The columns were packed with Premier ProMoss III TBK peat to a dry density of approximately 0.16 gm/cc (10 lb/ft3). One column was packed using oven dried peat and the other 3 were packed using as delivered peat. The oven dried sample was the most difficult to saturate. All of the peat samples expanded during saturation resulting in a sample length (L) that was longer than when the sample was initially packed. Table 1 contains information related to the column packing. After saturation the hydraulic conductivity test was conducted using the apparatus shown in Figure 1. Three of the samples were tested at 2 different flow conductions, 1 high and 1 low. Table 2 and Figure 2 contain the results of the hydraulic conductivity testing. Each test was run for a minimum of 40 minutes to allow the test conditions to stabilize. The hydraulic conductivity at the end of each test is reported as the hydraulic conductivity for that test. The hydraulic conductivity of the 4 peat samples is 0.0052 {+-} 0.0009 cm/sec. This result compares well with the hydraulic conductivity measured in the pilot scale peat bed after approximately 2 months of operation. The similarity in results between the dry pack sample and moist pack samples shows the moisture content at the time of packing had a minimal effect on the hydraulic conductivity. Additionally, similarity between the results shows the test is reproducible. The hydraulic conductivity results are similar to those reported by other tests of peat samples reported in the literature.

Nichols, R

2008-02-27T23:59:59.000Z

6

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2009-09-27T23:59:59.000Z

7

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2011-02-14T23:59:59.000Z

8

Variation in Hydraulic Conductivity Over Time at the Monticello...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive...

9

Hydraulic conductivity of desiccated geosynthetic clay liners  

SciTech Connect

Large-scale tests were performed to determine the effect of a cycle of wetting and drying on the hydraulic conductivity of several geosynthetic clay liners (GCLs). The GCLs were covered with 0.6 m of pea gravel and permeated with water. After steady seepage had developed, the water was drained away, and the GCL was desiccated by circulating heated air through the overlying gravel. The drying caused severe cracking in the bentonite component of the GCLs. The GCLs were again permeated with water. As the cracked bentonite hydrated and swelled, the hydraulic conductivity slowly decreased from an initially high value. The long-term, steady value of hydraulic conductivity after the wetting and drying cycle was found to be essentially the same as the value for the undesiccated GCL. It is concluded that GCLs possess the ability to self-heal after a cycle of wetting and drying, which is important for applications in which there may be alternate wetting and drying of a hydraulic barrier (e.g. within a landfill final cover).

Boardman, B.T. [CH2M Hill, Oakland, CA (United States); Daniel, D.E. [Univ. of Texas, Austin, TX (United States)

1996-03-01T23:59:59.000Z

10

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

11

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

12

FORMED CORE SAMPLER HYDRAULIC CONDUCTIVITY TESTING  

SciTech Connect

A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

Miller, D.; Reigel, M.

2012-09-25T23:59:59.000Z

13

A Self-Consistent Approach for Calculating the Effective Hydraulic Conductivity of a Bimodal, Heterogeneous Medium  

E-Print Network (OSTI)

Snow, D.T. , Anisotropic Hydraulic conductivity of FracturedComparison of the effective hydraulic conductivity near theestimation of effective hydraulic conductivity in sand-shale

Pozdniakov, Sergey; Tsang, Chin-Fu

2004-01-01T23:59:59.000Z

14

Using electrical impedance tomography to map subsurface hydraulic conductivity  

DOE Patents (OSTI)

The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

Berryman, James G. (Danville, CA); Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Roberts, Jeffery J. (Livermore, CA)

2000-01-01T23:59:59.000Z

15

Microsoft Word - S0212500_HydraulicConductivity-PRB.doc  

Office of Legacy Management (LM)

Hydraulic Conductivity of the Monticello Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update January 2006 DOE-LM/GJ1086-2006 ESL-RPT-2006-01 DOE-LM/GJ1086-2006 ESL-RPT-2006-01 Hydraulic Conductivity of the Monticello Permeable Reactive Barrier-November 2005 Update January 2006 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Hydraulic Conductivity of the Monticello PRB-November 2005 Update January 2006 Doc. No. S0212500 Page iii Contents 1.0 Introduction ...........................................................................................................................

16

Microsoft Word - S0212500_HydraulicConductivity-PRB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update January 2006 DOE-LM/GJ1086-2006 ESL-RPT-2006-01 DOE-LM/GJ1086-2006 ESL-RPT-2006-01 Hydraulic Conductivity of the Monticello Permeable Reactive Barrier-November 2005 Update January 2006 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Hydraulic Conductivity of the Monticello PRB-November 2005 Update January 2006 Doc. No. S0212500 Page iii Contents 1.0 Introduction ...........................................................................................................................

17

Microsoft Word - S0162200_VariationHydraulicConductivity-PRB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GJ803-2005 GJ803-2005 ESL-RPT-2005-01 Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier February 2005 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier February 2005 Doc. No. S0162200 Page v Contents Executive Summary...................................................................................................................... vii 1.0 Introduction ...........................................................................................................................

18

Microsoft Word - S0162200_VariationHydraulicConductivity-PRB.doc  

Office of Legacy Management (LM)

GJ803-2005 GJ803-2005 ESL-RPT-2005-01 Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier February 2005 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier February 2005 Doc. No. S0162200 Page v Contents Executive Summary...................................................................................................................... vii 1.0 Introduction ...........................................................................................................................

19

Heat as a Tracer to Examine Hydraulic Conductance Near the Russian River Bank Filtration Facility, Sonoma County, CA  

E-Print Network (OSTI)

to examine streambed hydraulic conductance near the Russianas a tracer to determine the hydraulic conductance of themodel requires that key hydraulic parameters be identified,

Constantz, Jim; Su, Grace; Hatch, Christine

2004-01-01T23:59:59.000Z

20

Unsaturated hydraulic conductivity of compacted sand-kaolin mixtures  

SciTech Connect

The unsaturated hydraulic conductivity of compacted sand-kaolin mixtures containing 0, 5, 10, and 30% kaolin (by dry weight) is measured for matric suctions, {psi}{sub m} < {approximately} 6.0 m. The measured unsaturated hydraulic conductivity (k{sub m}) values are compared with predicted unsaturated hydraulic conductivity (k{sub p}) values using the Brooks-Corey-Burdine and van Genuchten-Mualem relative hydraulic conductivity functions. In general, the accuracy of k{sub p} decreases with an increase in kaolin content or an increase in {psi}{sub m}. In addition, k{sub m} tends to be underpredicted for kaolin contents of 10 and 30% at relatively high suctions (1.0 m {le} {psi}{sub m} {le} 6.0 m) and overpredicted for kaolin contents of 0 and 5% at relatively low suctions (0.1 m {le} {psi}{sub m} < 1.0 m). For a given kaolin content and {psi}{sub m}, k{sub p} based on the Brooks-Corey-Burdine function tends to be more accurate than k{sub m} based on the van Genuchten-Mualem function. Finally, for 1.0 m {le} {psi}{sub m} {le} 6.0 m, k{sub p} based on analysis using the maximum volumetric water content ({theta}{sub m}) attained under steady-state flow conditions typically is more accurate than k{sub p} based on analysis using the saturated volumetric water content, {theta}{sub s}, where {theta}{sub m} {approximately} 84--90% of {theta}{sub s} in this study.

Chiu, T.F. [Genesis Group, Taipei (Taiwan, Province of China); Shackelford, C.D. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Civil Engineering

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Measurement of the Hydraulic Conductivity of Gravels Using a Laboratory Permeameter and Silty Sands Using Field Testing with Observation Wells.  

E-Print Network (OSTI)

??A new laboratory permeameter was developed for measuring the hydraulic conductivity of gravels ranging from 0.1 to 2 m/s. The release of pneumatic pressure applied… (more)

Judge, Aaron

2013-01-01T23:59:59.000Z

22

Final Report - Hydraulic Conductivity with Depth for Underground Test Area (UGTA) Wells  

SciTech Connect

Hydraulic conductivity with depth has been calculated for Underground Test Area (UGTA) wells in volcanic tuff and carbonate rock. The following wells in volcanic tuff are evaluated: ER-EC-1, ER-EC-2a, ER-EC-4, ER-EC-5, ER-5-4#2, ER-EC-6, ER-EC-7, and ER-EC-8. The following wells in carbonate rock are evaluated: ER-7-1, ER-6-1, ER-6-1#2, and ER-12-3. There are a sufficient number of wells in volcanic tuff and carbonate rock to associate the conductivity values with the specific hydrogeologic characteristics such as the stratigraphic unit, hydrostratigraphic unit, hydrogeologic unit, lithologic modifier, and alteration modifier used to describe the hydrogeologic setting. Associating hydraulic conductivity with hydrogeologic characteristics allows an evaluation of the data range and the statistical distribution of values. These results are relevant to how these units are considered in conceptual models and represented in groundwater models. The wells in volcanic tuff illustrate a wide range of data values and data distributions when associated with specific hydrogeologic characteristics. Hydraulic conductivity data within a hydrogeologic characteristic can display normal distributions, lognormal distributions, semi-uniform distribution, or no identifiable distribution. There can be multiple types of distributions within a hydrogeologic characteristic such as a single stratigraphic unit. This finding has implications for assigning summary hydrogeologic characteristics to hydrostratigraphic and hydrogeologic units. The results presented herein are specific to the hydrogeologic characteristic and to the wells used to describe hydraulic conductivity. The wells in carbonate rock are associated with a fewer number of hydrogeologic characteristics. That is, UGTA wells constructed in carbonate rock have tended to be in similar hydrogeologic materials, and show a wide range in hydraulic conductivity values and data distributions. Associations of hydraulic conductivity and hydrogeologic characteristics are graphically presented even when there are only a few data. This approach benchmarks what is currently known about the association of depth-specific hydraulic conductivity and hydrogeologic characteristics.

P. Oberlander; D. McGraw; C. Russell

2007-10-31T23:59:59.000Z

23

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network (OSTI)

The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant into the fracture. However, these same viscous fluids need to break to a thin fluid after the treatment is over so that the fracture fluid can be cleaned up. In shallower, lower temperature (less than 250°F) reservoirs, the choice of a fracture fluid is very critical to the success of the treatment. Current hydraulic fracturing methods in unconventional tight gas reservoirs have been developed largely through ad-hoc application of low-cost water fracs, with little optimization of the process. It seems clear that some of the standard tests and models are missing some of the physics of the fracturing process in low-permeability environments. A series of the extensive laboratory "dynamic fracture conductivity" tests have been conducted. Dynamic fracture conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. Test results indicate that increasing gel concentration decreases retained fracture conductivity for a constant gas flow rate and decreasing gas flow rate decreases retained fracture conductivity. Without breaker, the damaging effect of viscous hydraulic fracturing fluids on the conductivity of proppant packs is significant at temperature of 150°F. Static conductivity testing results in higher retained fracture conductivity when compared to dynamic conductivity testing.

Marpaung, Fivman

2007-12-01T23:59:59.000Z

24

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network (OSTI)

The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant into the fracture. However, these same viscous fluids need to break to a thin fluid after the treatment is over so that the fracture fluid can be cleaned up. In shallower, lower temperature (less than 250oF) reservoirs, the choice of a fracture fluid is very critical to the success of the treatment. Current hydraulic fracturing methods in unconventional tight gas reservoirs have been developed largely through ad-hoc application of low-cost water fracs, with little optimization of the process. It seems clear that some of the standard tests and models are missing some of the physics of the fracturing process in low-permeability environments. A series of the extensive laboratory “dynamic fracture conductivity” tests have been conducted. Dynamic fracture conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. Test results indicate that increasing gel concentration decreases retained fracture conductivity for a constant gas flow rate and decreasing gas flow rate decreases retained fracture conductivity. Without breaker, the damaging effect of viscous hydraulic fracturing fluids on the conductivity of proppant packs is significant at temperature of 150oF. Static conductivity testing results in higher retained fracture conductivity when compared to dynamic conductivity testing.

Marpaung, Fivman

2007-12-01T23:59:59.000Z

25

Comparison of Laboratory and Field Methods for Determining the Quasi-Saturated Hydraulic Conductivity of Soils  

E-Print Network (OSTI)

to atmospheric air. The soil sealing process decreases thesealing process begins, the hydraulic pressure drops below the airair is discharged from the soils; during the third stage, the hydraulic conductivity decreases to minimum values due to sealing

Faybishenko, Boris

1997-01-01T23:59:59.000Z

26

Evaluation of the vertical and horizontal hydraulic conductivities of household wastes.  

E-Print Network (OSTI)

??Hydraulic conductivity is a measurement of the ease of movement of a fluid through a medium and is therefore a key parameter in the design… (more)

Hudson, Andrew Philip

2007-01-01T23:59:59.000Z

27

Systematic Variability of Soil Hydraulic Conductivity Across Three Vertisol Catenas  

E-Print Network (OSTI)

Soil hydraulic properties, such as saturated hydraulic conductivity (Ks), have high spatial variation, but little is known about how to vary a few measurements of Ks over an area to model hydrology in a watershed with complex topography and multiple land uses. Variations in soil structure, macropores (especially in soil that shrink and swell), land use, and soil development can cause large variations in Ks within one soil type. Characterizing the impacts of soil properties that might vary systematically with land use and terrain attributes on Ks rates would provide insight on how management and human activity affect local and regional hydrology. The overall objective of this research was to develop a strategy for using published infiltration and Ks measurements by the Natural Resources Conservation Service for watershed hydrology applications in a Vertisol, and to extend this knowledge toward developing recommendations for future infiltration measurements. To achieve this goal, soil infiltration measurements were collected across three catenas of Houston Black and Heiden clays (fine, smectitic, thermic Udic Haplusterts) under three land uses (improved pasture, native prairie, and conventional tillage row crop). Measurement locations were selected to account for variation in terrain attributes. Overall, Ks values were not significantly different across different landscape positions; however, in fields under similar land uses, Ks values were found to be lower in the footslope positions and higher in the backslope positions. The pedotransfer function, ROSETTA, provided estimates of 64 percent of the overall variability in Ks while also providing accurate estimates of the mean of Ks when particle size distribution and bulk density are used as inputs in the model. Through the use of multiple regression analysis, soil antecedent water content, bulk density, clay content, and soil organic carbon along with two indicator variables for the catenas were highly correlated (r2 = 0.59) with Ks. The indicator variables explained 17 percent of the variation in Ks that could not be explained by measured soil properties. It is recommended that when NRCS measures Ks on benchmark soils, especially high clay soils, that they collect particle size distribution, bulk density, organic carbon, and antecedent water content data.

Rivera, Leonardo Daniel

2010-08-01T23:59:59.000Z

28

Impact Of Standing Water On Saltstone Placement II - Hydraulic Conductivity Data  

Science Conference Proceedings (OSTI)

The amount of water present during placement and subsequent curing of saltstone has the potential to impact several properties important for grout quality. An active drain water system can remove residual standing water and expose the surface of the placed saltstone to air. Oxidation of the saltstone may result in an increase in the leachability of redox sensitive elements. A dry surface can lead to cracking, causing an increase in hydraulic conductivity. An inactive drain water system can allow standing water that generates unnecessary hydrostatic head on the vault walls. Standing water that cannot be removed via the drain system will be available for potential incorporation into subsequent grout placements. The objective of this work is to study the impact of standing water on grout quality pertaining to disposal units. A series of saltstone mixes was prepared and cured at ambient temperature to evaluate the impact of standing water on saltstone placement. The samples were managed to control drying effects on leachability by either exposing or capping the samples. The water to premix ratio was varied to represent a range of processing conditions. Samples were analyzed for density, leachability, and hydraulic conductivity. Report SRNL-STI-2012-00546 was issued detailing the experimental procedure, results, and conclusions related to density and leachability. In the previous report, it was concluded that: density tends to increase toward the bottom of the samples. This effect is pronounced with excess bleed water; drying of the saltstone during curing leads to decreased Leachability Index (more leaching) for potassium, sodium, rhenium, nitrite, and nitrate; there is no noticeable effect on saltstone oxidation/leachability by changing the water to premix ratio (over the range studied), or by pouring into standing water (when tested up to 10 volume percent). The hydraulic conductivity data presented in this report show that samples cured exposed to the atmosphere had about three orders of magnitude higher hydraulic conductivity than any of the other samples. Considering these data, along with the results presented in the previous report, leads to the conclusion that small changes in water to premix ratio and the inclusion of up to 10 volume percent standing water should not be expected to have a detrimental effect on saltstone grout quality. The hydraulic conductivity results further demonstrate that curing in a moist environment is critical to maintaining saltstone quality.

Cozzi, A. D.; Pickenheim, B. R.

2012-12-06T23:59:59.000Z

29

An automated tool for three types of saturated hydraulic conductivity laboratory measurements  

SciTech Connect

Acquisition of porous medium hydraulic conductivity in the laboratory is usually time-consuming and costly because of the manual labor associated with the currently available techniques. Lately, there has been increased interest in automating hydraulic conductivity laboratory techniques to reduce analysis time and improve data consistency. A new apparatus is presented that is able to determine hydraulic conductivity values with the falling head, constant head, and constant flux methods in an automated fashion. In addition, the columns are designed forcing water to flow in a nominally one-dimensional manner throughout the porous medium. In this paper, hydraulic conductivity data for standard laboratory sands are presented and compared to results obtained using a standard Tempe cell configuration. Hydraulic conductivity values obtained with the new tool for the laboratory sands are consistent with literature data. For highly permeable sands, the newly obtained hydraulic conductivity values are considerable larger then values acquired using a Tempe cell configuration. The lower conductivity values for the Tempe Cell configuration are primarily the result of insufficient spreading of water in the inlet and outlet reservoirs.

Wietsma, Thomas W.; Oostrom, Martinus; Covert, Matthew A.; Queen, Theresa E.; Fayer, Michael J.

2009-03-01T23:59:59.000Z

30

The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs  

E-Print Network (OSTI)

Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase the surface area of the formation that is connected to the wellbore. These highly conductive fractures significantly increase the production rates of petroleum fluids. During the process of hydraulic fracturing proppant is pumped and distributed in the fractures to keep them open after closure. Economic considerations have driven the industry to find ways to determine the optimal type, size and concentration of proppant that would enhance fracture conductivity and improve well performance. Therefore, direct laboratory conductivity measurements using real shale samples under realistic experimental conditions are needed for reliable hydraulic fracturing design optimization. A series of laboratory experiments was conducted to measure the conductivity of propped and unpropped fractures of Barnett shale using a modified API conductivity cell at room temperature for both natural fractures and induced fractures. The induced fractures were artificially created along the bedding plane to account for the effect of fracture face roughness on conductivity. The cementing material present on the surface of the natural fractures was preserved only for the initial unpropped conductivity tests. Natural proppants of difference sizes were manually placed and evenly distributed along the fracture face. The effect of proppant monolayer was also studied.

Kamenov, Anton

2013-05-01T23:59:59.000Z

31

Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain  

E-Print Network (OSTI)

Plain Aquifer Sediments at the Idaho National Laboratory, Idaho Scientific Investigations Report 2008 Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho By Kim S. Perkins saturated hydraulic conductivity of Snake River Plain aquifer sediments at the Idaho National Laboratory

32

Hydraulic Conductivity of Geosynthetic Clay Liners to Coal Combustion Product Leachates: Interim Report  

Science Conference Proceedings (OSTI)

Hydraulic conductivity tests are being conducted on geosynthetic clay liners (GCLs) using solutions representing leachates observed in disposal facilities for coal combustion products (CCPs). Five different GCL products that are commercially available within the United States are being tested: two containing conventional sodium bentonite (NaB), two containing polymer-modified bentonite (PMB), and one with a bentonite polymer composite (BPC). Testing to date has been conducted by direct permeation ...

2013-12-13T23:59:59.000Z

33

Capillary bundle model of hydraulic conductivity for frozen soil Kunio Watanabe1  

E-Print Network (OSTI)

Capillary bundle model of hydraulic conductivity for frozen soil Kunio Watanabe1 and Markus Flury2] We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil for both saturated and unsaturated soils, using a sand and two silt loam soils as examples. As temperature

Flury, Markus

34

Horizontal hydraulic conductivity estimates for intact coal barriers between closed underground mines  

Science Conference Proceedings (OSTI)

Unmined blocks of coal, called barriers, separate and restrict horizontal leakage between adjacent bituminous coal mines. Understanding the leakage rate across such barriers is important in planning mine closure and strongly affects recharge calculations for postmining flooding. This study presents upper-limit estimates for hydraulic conductivity (K) of intact barriers in two closed mines at moderate depth (75-300 m) in the Pittsburgh coal basin. The estimates are based on pumping rates from these mines for the years ranging from 1992 to 2000. The two mines do not approach the outcrop and are sufficiently deep that vertical infiltration is thought to be negligible. Similarly, there are no saturated zones on the pumped mines' side of shared barriers with other mines, and therefore pumping is the only outflow. Virtually all of the pumping is attributed to leakage across or over the top of barriers shared with upgradient flooded mines. The length of shared barriers totals 24 km for the two mines, and the barriers range in thickness from 15 to 50 m. K values calculated independently for each of the 9 years of the pumping record ranged from 0.037 m/d to 0.18 m/d using an isotropic model of barrier flow. Using an anisotropic model for differential K in the face cleat (K{sub f}) and butt cleat (K{sub b}) directions, results range from 0.074 to 0.34 m/d for K{sub f} and from 0.022 to 0.099 m/d for K{sub b}.

Mccoy, K.J.; Donovan, J.J.; Leavitt, B.R. [West Virginia University, Morgantown, WV (United States)

2006-08-15T23:59:59.000Z

35

Models for Unsaturated Hydraulic Conductivity Based on Truncated Lognormal Pore-size Distributions  

E-Print Network (OSTI)

We develop a closed-form three-parameter model for unsaturated hydraulic conductivity associated with a three-parameter lognormal model of moisture retention, which is based on lognormal grainsize distribution. The derivation of the model is made possible by a slight modification to the theory of Mualem. We extend the three-parameter lognormal distribution to a four-parameter model that also truncates the pore size distribution at a minimum pore radius. We then develop the corresponding four-parameter model for moisture retention and the associated closed-form expression for unsaturated hydraulic conductivity. The four-parameter model is fitted to experimental data, similar to the models of Kosugi and van Genuchten. The proposed four-parameter model retains the physical basis of Kosugi's model, while improving fit to observed data especially when simultaneously fitting pressure-saturation and pressure-conductivity data.

Malama, Bwalya

2013-01-01T23:59:59.000Z

36

Method and apparatus for determining the hydraulic conductivity of earthen material  

DOE Patents (OSTI)

An earthen material hydraulic conductivity determining apparatus includes, a) a semipermeable membrane having a fore earthen material bearing surface and an opposing rear liquid receiving surface; b) a pump in fluid communication with the semipermeable membrane rear surface, the pump being capable of delivering liquid to the membrane rear surface at a plurality of selected variable flow rates or at a plurality of selected variable pressures; c) a liquid reservoir in fluid communication with the pump, the liquid reservoir retaining a liquid for pumping to the membrane rear surface; and d) a pressure sensor in fluid communication with the membrane rear surface to measure pressure of liquid delivered to the membrane by the pump. Preferably, the pump comprises a pair of longitudinally opposed and aligned syringes which are operable to simultaneously fill one syringe while emptying the other. Methods of determining the hydraulic conductivity of earthen material are also disclosed.

Sisson, James B. (Idaho Falls, ID); Honeycutt, Thomas K. (Idaho Falls, ID); Hubbell, Joel M. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

37

Method and apparatus for determining the hydraulic conductivity of earthen material  

DOE Patents (OSTI)

An earthen material hydraulic conductivity determining apparatus includes: (a) a semipermeable membrane having a fore earthen material bearing surface and an opposing rear liquid receiving surface; (b) a pump in fluid communication with the semipermeable membrane rear surface, the pump being capable of delivering liquid to the membrane rear surface at a plurality of selected variable flow rates or at a plurality of selected variable pressures; (c) a liquid reservoir in fluid communication with the pump, the liquid reservoir retaining a liquid for pumping to the membrane rear surface; and (d) a pressure sensor in fluid communication with the membrane rear surface to measure pressure of liquid delivered to the membrane by the pump. Preferably, the pump comprises a pair of longitudinally opposed and aligned syringes which are operable to simultaneously fill one syringe while emptying the other. Methods of determining the hydraulic conductivity of earthen material are also disclosed. 15 figs.

Sisson, J.B.; Honeycutt, T.K.; Hubbell, J.M.

1996-05-28T23:59:59.000Z

38

Development, setup and testing of a dynamic hydraulic fracture conductivity apparatus  

E-Print Network (OSTI)

One of the most critical parameters in the success of a hydraulic fracturing treatment is to have sufficiently high fracture conductivity. Unbroken polymers can cause permeability impairment in the proppant pack and/or in the matrix along the fracture face. The objectives of this research project were to design and set up an experimental apparatus for dynamic fracture conductivity testing and to create a fracture conductivity test workflow standard. This entirely new dynamic fracture conductivity measurement will be used to perform extensive experiments to study fracturing fluid cleanup characteristics and investigate damage resulting from unbroken polymer gel in the proppant pack. The dynamic fracture conductivity experiment comprises two parts: pumping fracturing fluid into the cell and measuring proppant pack conductivity. I carefully designed the hydraulic fracturing laboratory to provide appropriate scaling of the field conditions experimentally. The specifications for each apparatus were carefully considered with flexibility for further studies and the capability of each apparatus was defined. I generated comprehensive experimental procedures for each experiment stage. By following the procedure, the experiment can run smoothly. Most of dry runs and experiments performed with sandstone were successful.

Pongthunya, Potcharaporn

2007-08-01T23:59:59.000Z

39

Laboratory evaluation of the constant rate of strain and constant head techniques for measurement of the hydraulic conductivity of fine grained soils  

E-Print Network (OSTI)

This thesis evaluates the constant rate of strain and constant head techniques for measurement of the hydraulic conductivity of fine grained soils. A laboratory program compares hydraulic conductivity measurements made ...

Adams, Amy Lynn

2011-01-01T23:59:59.000Z

40

Impact of an Exponential Profile of Saturated Hydraulic Conductivity within the ISBA LSM: Simulations over the Rhône Basin  

Science Conference Proceedings (OSTI)

This study focuses on the influence of an exponential profile of saturated hydraulic conductivity, ksat, with soil depth on the water budget simulated by the Interaction Soil Biosphere Atmosphere (ISBA) land surface model over the French Rhône ...

B. Decharme; H. Douville; A. Boone; F. Habets; J. Noilhan

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Saturated hydraulic conductivity determined by on ground mono-offset Ground-Penetrating Radar inside a single ring infiltrometer  

E-Print Network (OSTI)

In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and fallin...

Léger, Emmanuel; Coquet, Yves

2013-01-01T23:59:59.000Z

42

Hydraulic Conductivity, Infiltration, and Runoff from No-till and Tilled Cropland.  

E-Print Network (OSTI)

??Infiltration and runoff are important processes that affect the efficiency of center pivot irrigation systems. No-till planting systems potentially influence the hydraulic properties of soils… (more)

Deck, Jessica H

2010-01-01T23:59:59.000Z

43

HYDRAULIC CONDUCTIVITY OF SALTSTONE FORMULATED USING 1Q11, 2Q11 AND 3Q11 TANK 50 SLURRY SAMPLES  

SciTech Connect

As part of the Saltstone formulation work requested by Waste Solidification Engineering (WSE), Savannah River National Laboratory (SRNL) was tasked with preparing Saltstone samples for fresh property analysis and hydraulic conductivity measurements using actual Tank 50 salt solution rather than simulated salt solution. Samples of low level waste salt solution collected from Tank 50H during the first, second, and third quarters of 2011 were used to formulate the Saltstone samples. The salt solution was mixed with premix (45 wt % slag, 45 wt % fly ash, and 10 wt % cement), in a ratio consistent with facility operating conditions during the quarter of interest. The fresh properties (gel, set, bleed) of each mix were evaluated and compared to the recommended acceptance criteria for the Saltstone Production Facility. ASTM D5084-03, Method C was used to measure the hydraulic conductivity of the Saltstone samples. The hydraulic conductivity of Saltstone samples prepared from 1Q11 and 2Q11 samples of Tank 50H is 4.2E-9 cm/sec and 2.6E-9 cm/sec, respectively. Two additional 2Q11 and one 3Q11 sample were not successfully tested due to the inability to achieve stable readings during saturation and testing. The hydraulic conductivity of the samples made from Tank 50H salt solution compare well to samples prepared with simulated salt solution and cured under similar conditions (1.4E-9 - 4.9E-8 cm/sec).

Reigel, M.; Nichols, R.

2012-06-27T23:59:59.000Z

44

Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty  

Science Conference Proceedings (OSTI)

In decision-making processes, reliability and risk aversion play a decisive role. This paper presents a framework for stochastic optimization of control strategies for groundwater nitrate pollution from agriculture under hydraulic conductivity uncertainty. ... Keywords: Fertilizer allocation, Groundwater, Nitrates, Optimization, Stochastic management model, Uncertainty

S. Peńa-Haro; M. Pulido-Velazquez; C. Llopis-Albert

2011-08-01T23:59:59.000Z

45

Variable Range Hopping Conduction and Magnetic Properties of ...  

Science Conference Proceedings (OSTI)

The electrical resistivities have been measured over a wide range of temperature (5-285K), suggesting semiconductor behavior. The charge transport ...

46

Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests  

SciTech Connect

Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative to volcanic-rock units is exemplified by the large difference in their estimated maximum hydraulic conductivity; 4,000 and 400 feet per day, respectively. Simulated minimum estimates of hydraulic conductivity are inexact and represent the lower detection limit of the method. Minimum thicknesses of lithologic intervals also were defined for comparing AnalyzeHOLE results to hydraulic properties in regional ground-water flow models.

Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

2010-02-12T23:59:59.000Z

47

A Self-Consistent Approach for Calculating the Effective Hydraulic Conductivity of a Bimodal, Heterogeneous Medium  

E-Print Network (OSTI)

Dagan's approximation d Shale Volume Fraction Figure 2.conductivity in sand-shale formations, Water Resources Res.distribution (e.g. , sand-shale aquifers, aquitards with

Pozdniakov, Sergey; Tsang, Chin-Fu

2004-01-01T23:59:59.000Z

48

Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California  

Science Conference Proceedings (OSTI)

The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologicaly complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

Belcher, W.R.; Sweetkind, D.S.; Elliott, P.E.

2002-11-19T23:59:59.000Z

49

Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods  

E-Print Network (OSTI)

conductivity Streambed seepage Heat as a tracer Surface water­ground water interaction Pajaro River s u m m a r was 62 m3 s�1 , with most of the loss occurring along the lower part of the experimental reach. Point and with time, with greater seepage occurring along the lower part of the reach and during the summer and fall

Fisher, Andrew

50

Hydraulic properties of adsorbed water films in unsaturated porous media  

E-Print Network (OSTI)

ionic strength and unit hydraulic head gradient. Figure 7.of the unsaturated hydraulic conductivity on matricYork. Durner, W. (1994), Hydraulic conductivity estimation

Tokunaga, Tetsu K.

2009-01-01T23:59:59.000Z

51

Finite - difference modeling of the Yucca Mountain, Nevada Area: a study of the regional water table gradients based on hydraulic conductivity contrasts  

E-Print Network (OSTI)

The Nevada Yucca Mountain site is being investigated to determine if it is a suitable site for the construction of a high-level nuclear waste repository. A feature of concern north of the selected site is an abrupt rise in the water table. This high gradient of 0.15 is flanked to the north by a moderate gradient of 0.015 and to the south by a very small gradient of 0.0001. Since the mechanisms creating this feature have the potential to cause changes in the position and configuration of the water table, they must be understood so risk analysis of the site may be performed. The three distinct gradient regions found at the site may be related to the Cenozoic volcanics, the Paleozoic clastic aquitard, and the Paleozoic carbonates. The large hydraulic gradient regionally corresponds with the northern limit of the Paleozoic carbonates, at the contact of the Eleana Formation, a Paleozoic aquitard. This study investigates, using finite difference modeling, the relationship between the steep hydraulic gradient and hydraulic conductivity contrasts. The site was modeled with flow boundaries to investigate the effects of variable gradient input to the flow balance calculation. A model was run with differential volcanic hydraulic conductivity zones with regulated flow into the carbonates. Constant head boundaries were implemented in models to investigate the effect of both a confined and open carbonate zone and with vertical barriers above the argillite/carbonate contact. The results of the study found that vertical and horizontal hydraulic conductivity contrasts do not fully account for the steep gradients, although the vertical contrasts marginally increase the gradient from horizontal contrasts. The confined carbonate zone model produced results that do not correlate with field data. The vertical barrier model did successfully reproduce steep gradients with gradient steepness related to flow restriction. Through the use of flow boundaries the steep gradient was reproduced successfully with a contrast of 0.8 orders of magnitude by allowing flow into the carbonate zone.

Davidson, Timothy Ross

1994-01-01T23:59:59.000Z

52

HYDRAULIC FRACTURING  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDRAULIC FRACTURING In addition to the recovery processes featured in this series of drawings, hydraulic fracturing is included as an example of technologies that contribute to...

53

A Short-Range Forecasting Experiment Conducted during the Canadian Atlantic Storms Program  

Science Conference Proceedings (OSTI)

During the Canadian Atlantic Storms Program (CASP), a dedicated forecast center conducted experiments in mesoscale forecasting. Several forecast products, including a marine forecast and a site-specific public forecast, were written every 3 h. ...

K. A. Macdonald; M. Danks; J. D. Abraham

1988-06-01T23:59:59.000Z

54

Lab Scale Hydraulic Parameter Estimation .  

E-Print Network (OSTI)

??Hydraulic tomography has been tested at the field scale, lab scale and in synthetic experiments. Recently Illman and Berg have conducted studies at the lab… (more)

Hartz, Andrew Scott

2011-01-01T23:59:59.000Z

55

OBSERVATIONS OF A POTENTIAL SIZE-EFFECT IN EXPERIMENTAL DETERMINATION OF THE HYDRAULIC PROPERTIES OF FRACTURES  

E-Print Network (OSTI)

DETERMINATION OF THE HYDRAULIC PROPERTIES OF FRACTURES P. A.cell 5. Variation of hydraulic conductivity in a fracturecceleratior of gravity hydraulic head fracture intrinsic

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

56

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

57

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole. 4 figs.

Gregory, D.L.; Hardee, H.C.; Smallwood, D.O.

1990-01-01T23:59:59.000Z

58

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole. 4 figs.

Gregory, D.L.; Hardee, H.C.; Smallwood, D.O.

1990-12-31T23:59:59.000Z

59

Evaporation of Picolitre Droplets on Surfaces with a Range of Wettabilities and Thermal Conductivities  

E-Print Network (OSTI)

of inkjet droplets ranges between 10 µm and 100 µm. Evaporation should still be limited by dif- fusion at this scale. Convection occurs in evaporating sessile droplets [12] where, in order to conserve mass, evaporating liquid is replenished by a convective... at 10 W for 5 minutes at different lo- cations in the reactor, resulting in different roughnesses. S1 showed a root mean squared (rms) roughness of ?130 nm by AFM (Digital Instruments Nanoscope III scanning probe microscope), whereas S2 had an RMS...

Talbot, E.L.; Berson, A.; Brown, P.S.; Bain, C.D.

2012-01-01T23:59:59.000Z

60

HYDRAULIC SERVO  

DOE Patents (OSTI)

A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

Wiegand, D.E.

1962-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydraulic constraints on photosynthesis in subtropical evergreen broad leaf forest and pine woodland trees of the Florida Everglades  

E-Print Network (OSTI)

127:445– Zimmermann MH (1978) Hydraulic architecture of someÁ South Florida Á Hydraulic conductivity Á PhotosyntheticArgentina Introduction Plant hydraulic characteristics have

Jones, Tim J.; Luton, Corene D.; Santiago, Louis S.; Goldstein, Guillermo

2010-01-01T23:59:59.000Z

62

Estimation of deformation and stiffness of fractures close to tunnels using data from single-hole hydraulic testing and grouting  

E-Print Network (OSTI)

normal stiffness and hydraulic conductivity of a major sheareffect in single-hole hydraulic testing and grouting. Int JRutqvist J. Determination of hydraulic normal stiffness of

Fransson, A.

2010-01-01T23:59:59.000Z

63

Hydraulic manipulator research at ORNL  

Science Conference Proceedings (OSTI)

Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

1997-03-01T23:59:59.000Z

64

HYDRAULIC FLUIDS  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about hydraulic fluids. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Exposure to hydraulic fluids occurs mainly in the workplace. Drinking certain types of hydraulic fluids can cause death in humans, and swallowing or inhaling certain types of hydraulic fluids has caused nerve damage in animals. Contact with some types of hydraulic fluids can irritate your skin or eyes. These substances have been found in at least 10 of the 1,428 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are hydraulic fluids? (Pronounced ?????ô????????????) Hydraulic fluids are a large group of liquids made of many kinds of chemicals. They are used in automobile automatic

unknown authors

1997-01-01T23:59:59.000Z

65

Hydraulic Fracturing (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

66

Measurement of density, temperature, and electrical conductivity of a shock-compressed nonideal nitrogen plasma in the megabar pressure range  

Science Conference Proceedings (OSTI)

Kinematic and thermodynamic parameters of shock-compressed liquid nitrogen are measured behind the front of a plane shock wave using plane wave and hemispherical shock wave generators. In these experiments, high values of compression parameters (shock-compressed hydrogen density {approx} 3.25 g/cm{sup 3} and temperature T{approx} 56000 K at a pressure of P {approx} 265 GPa) are attained. The density, pressure, temperature, and electrical conductivity of the nonideal plasma of shock-compressed liquid nitrogen are measured. A nearly isochoric behavior of the nitrogen shock adiabat is observed in the pressure range P = 100-300 GPa. The thermodynamics of shock-compressed nitrogen is an alyzed using the model of the equation of state in the quasi-chemical representation (SAHA code) as well as the semiempirical wide-range equation of state developed at the Institute of Experimental Physics. Experimental results are interpreted on the basis of calculations as the fixation of the boundary of transition of shock-compressed nitrogen from the polymer phase to the state of a strongly nonideal plasma at P {approx} 100 GPa, {approx} 3.4 g/cm{sup 3}.

Mochalov, M. A.; Zhernokletov, M. V.; Il'kaev, R. I.; Mikhailov, A. L. [Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Fortov, V. E. [Russian Academy of Sciences (IVTAN), Joint Institute for High Temperatures (Russian Federation); Gryaznov, V. K. [Russian Academy of Sciences, Chernogolovka, Institute of Problems of Chemical Physics (Russian Federation); Iosilevskiy, I. L., E-mail: ilios@orc.r [Russian Academy of Sciences (IVTAN), Joint Institute for High Temperatures (Russian Federation); Mezhevov, A. B.; Kovalev, A. E.; Kirshanov, S. I.; Grigor'eva, Yu. A.; Novikov, M. G.; Shuikin, A. N. [Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation)

2010-01-15T23:59:59.000Z

67

Microseismic Tracer Particles for Hydraulic Fracturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Scientists at Los Alamos National Laboratory have developed a method by which microseismic events can be discriminated/detected that correspond to only the portion of the hydraulic fracture that contains the proppant material and can be expected to be conductive to the flow of oil and gas. July 3, 2013 Microseismic Tracer Particles for Hydraulic Fracturing Figure 1: A graph of ionic conductivity as a function of temperature for the anti-perovskite Li3OCl. Available for thumbnail of Feynman Center (505) 665-9090 Email Microseismic Tracer Particles for Hydraulic Fracturing Applications: Oil and gas production Geophysical exploration Benefits: Tracks the disposition of material in a hydraulic fracturing

68

Corporation Commission Hydraulic FracturingHydraulic Fracturing  

E-Print Network (OSTI)

Corporation Commission Hydraulic FracturingHydraulic Fracturing Joint Committee on Energy Commission What is Hydraulic Fracturing d H D It W k?and How Does It Work? · Stimulates a well to increase by Stanolind Oil Company. 2 #12;Kansas Corporation Commission Are Hydraulic Fracture Jobs Performed in Kansas

Peterson, Blake R.

69

A New Parameter to Assess Hydromechanical Effect in Single-hole Hydraulic Testing and Grouting  

E-Print Network (OSTI)

of rock joints from hydraulic field testing. Ph.D. thesis,R W, Bodvarsson G S. Hydraulic conductivity of rockFractures as Derived From Hydraulic and Tracer Tests. Water

Fransson, A.

2008-01-01T23:59:59.000Z

70

Hydraulic fracturing-1  

Science Conference Proceedings (OSTI)

This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

Not Available

1990-01-01T23:59:59.000Z

71

An apparatus for simultaneous measurement of electrical conductivity and thermopower of thin films in the temperature range of 300-750 K  

SciTech Connect

An automated apparatus capable of measuring the electrical conductivity and thermopower of thin films over a temperature range of 300-750 K is reported. A standard dc resistance measurement in van der Pauw geometry was used to evaluate the electrical conductivity, and the thermopower was measured using the differential method. The design of the instrument, the methods used for calibration, and the measurement procedure are described in detail. Given the lack of a standard National Institute of Standards and Technology (Gaithersburg, Md.) sample for high temperature thermopower calibration, the disclosed calibration procedure shall be useful for calibration of new instruments.

Ravichandran, J. [Applied Science and Technology Graduate Group, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kardel, J. T.; Scullin, M. L. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Bahk, J.-H.; Bowers, J. E. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Heijmerikx, H. [Department of Physics, University of California, Berkeley, California 94720 (United States); Majumdar, A. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States)

2011-01-15T23:59:59.000Z

72

Acoustic Character Of Hydraulic Fractures In Granite  

E-Print Network (OSTI)

Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

Paillet, Frederick I.

1983-01-01T23:59:59.000Z

73

Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs  

Science Conference Proceedings (OSTI)

The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

Stephen Holditch; A. Daniel Hill; D. Zhu

2007-06-19T23:59:59.000Z

74

Hydraulic properties of adsorbed water films in unsaturated porous media  

SciTech Connect

Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

Tokunaga, Tetsu K.

2009-03-01T23:59:59.000Z

75

TEMPEST. Transient 3-D Thermal-Hydraulic  

SciTech Connect

TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence is treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.

Eyler, L.L. [Pacific Northwest Lab., Richland, WA (United States)

1992-01-31T23:59:59.000Z

76

Unsaturated hydraulic parameters determined from direct and indirect methods  

SciTech Connect

Hydraulic parameters are required for numerical simulations of unsaturated flow at Yucca Mountain, a vertically heterogeneous volcanic site for a potential high-level waste repository in the desert southwest. In this paper, direct measurements of the unsaturated hydraulic conductivity using a centrifuge with a specialized rotor are compared to those estimated using a predictive conductivity equation and two methods of measuring moisture retention.

Flint, Lorraine E.; Hudson, David B.; Flint, Alan L.

1997-10-22T23:59:59.000Z

77

Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling  

Science Conference Proceedings (OSTI)

The objective of this study is to develop a dataset of the soil hydraulic parameters associated with two empirical soil functions (i.e., a water retention curve and hydraulic conductivity) using multiple pedotransfer functions (PTFs). The dataset ...

Yongjiu Dai; Wei Shangguan; Qingyun Duan; Baoyuan Liu; Suhua Fu; Guoyue Niu

2013-06-01T23:59:59.000Z

78

Electronics and hydraulics control transmission  

SciTech Connect

Caterpillar engineers have combined electronics and hydraulics for improved transmission control and productivity. The control system had extensive field test experience during development. The system accumulated more than 100,000 hours on 17 vehicles, with individual vehicle times in the 2000-10,000-hour range. Job sites were chosen to test the system over a wide range of applications and locales. The EPTC components are CAT-designed and made by outside suppliers. The components must comply with CAT designs and specifications. All components are 100% functionally tested. The control box is computer-tested functionally at the supplier and at CAT before vehicle installation.

Morris, H.C.; Sorrells, G.K.

1986-04-01T23:59:59.000Z

79

Hydraulic Fracturing in Particulate Materials .  

E-Print Network (OSTI)

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has… (more)

Chang, Hong

2004-01-01T23:59:59.000Z

80

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, January 1993-April 1994  

SciTech Connect

The production of natural gas from coal typically requires stimulation in the form of hydraulic fracturing and, more recently, cavity completions. The results of hydraulic fracturing treatments have ranged from extremely successful to less than satisfactory. The purpose of this work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated. The leakoff and proppant transport of fluids with breaker has been investigated and recommendations have been made for breaker application to minimize damage potential in coal. A data base called COAL`S has been created in Paradox (trademark) for Windows to catalogue coalbed methane activities in the Black Warrior and San Juan Basins.

Penny, G.S.; Conway, M.W.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL: Fleet Test and Evaluation - Hydraulic Hybrid Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Drive Systems Hydraulic Hybrid Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of hydraulic hybrid drive systems in delivery vehicles. Because hydraulic hybrids feature highly efficient regenerative braking systems and "engine off at idle" capabilities, they are ideal for parcel delivery applications where stop-and-go traffic is common. Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the vehicle's fuel economy

82

Hydraulic Institute Member Benefits  

Energy.gov (U.S. Department of Energy (DOE))

As the developer of the universally acclaimed ANSI/HI Pump Standards, a key reference for pump knowledge and end-user specifications, the Hydraulic  nstitute (HI) provides its members with timely...

83

Suspensions in hydraulic fracturing  

Science Conference Proceedings (OSTI)

Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

Shah, S.N. [Univ. of Oklahoma, Norman, OK (United States)

1996-12-31T23:59:59.000Z

84

Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same  

DOE Patents (OSTI)

The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

Shafer, Scott F. (Morton, IL)

2002-01-01T23:59:59.000Z

85

Grundfos HVAC OEM Efficient water hydraulics  

E-Print Network (OSTI)

Grundfos HVAC OEM Efficient water hydraulics for Heat Pumps Anders Mønsted GRUNDFOS Holding A/S Group Technical Key Account Manager HVAC OEM Project Management http://net.grundfos.com/doc/webnet/hv acoem/index.htmlOEM online #12;Introduction Grundfos Company Grundfos HVAC OEM Current Circulator Range

Oak Ridge National Laboratory

86

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

87

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

88

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

and T. W. Keech (1977), Hydraulic fracture mapping usingpotential measurements during hydraulic fracturing of BunterSP Monitoring during hydraulic fracturing using the TG-2

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

89

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

and T. W. Keech (1977), Hydraulic fracture mapping usingpotential measurements during hydraulic fracturing of Bunterbetween electrical and hydraulic flow patterns from rock

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

90

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

P. , "Investigations on hydraulic cement from spent oilCO, April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROMUniversity of California. HYDRAULIC CEMENT PREPARATION FROM

Mehta, P.K.

2013-01-01T23:59:59.000Z

91

Hydraulic Fracturing Poster | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Fracturing Poster Hydraulic Fracturing Poster Educational poster graphically displaying the key components of hydraulic fracturing. Teachers: If you would like hard...

92

INL Experimental Program Roadmap for Thermal Hydraulic Code Validation  

DOE Green Energy (OSTI)

Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related to VHTRs, sodium-cooled fast reactors, and light-water reactors. These experiments range from relatively low-cost benchtop experiments for investigating individual phenomena to large electrically-heated integral facilities for investigating reactor accidents and transients.

Glenn McCreery; Hugh McIlroy

2007-09-01T23:59:59.000Z

93

HYDRAULIC SERVO CONTROL MECHANISM  

DOE Patents (OSTI)

A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

Hussey, R.B.; Gottsche, M.J. Jr.

1963-09-17T23:59:59.000Z

94

Hydraulic mining method  

DOE Patents (OSTI)

A hydraulic mining method includes drilling a vertical borehole into a pitched mineral vein and a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by a fluid jet stream and the resulting slurry flows down the footwall borehole into the vertical borehole from where it is pumped upwardly therethrough to the surface.

Huffman, L.H.; Knoke, G.S.

1984-06-15T23:59:59.000Z

95

Cradle modification for hydraulic ram  

DOE Green Energy (OSTI)

The analysis of the cradle hydraulic system considers stress, weld strength, and hydraulic forces required to lift and support the cradle/pump assembly. The stress and weld strength of the cradle modifications is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). The hydraulic forces are evaluated to ensure that the hydraulic system is capable of rotating the cradle and pump assembly to the vertical position (between 70{degrees} and 90{degrees}).

Koons, B.M.

1995-03-02T23:59:59.000Z

96

Dynamic model for hydraulic dissipators  

Science Conference Proceedings (OSTI)

The authors propose a mathematical model of a hydraulic link with energy dissipation, the device working reversibly to the alternative traction and compression movement. The dynamic behavior of the energy hydraulic dissipater depends on the instantaneous ... Keywords: dissipater's control, dynamic behavior, hydraulic dissipater, mathematical model

Adrian S. Axinti; Gavril Axinti

2009-03-01T23:59:59.000Z

97

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

98

Determination of permeability of granitic rocks in GT-2 from hydraulic fracturing data  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory is currently conducting a study to determine the feasibility to extract geothermal energy from dry hot rock. The investigated concept calls for the creation of a hydraulic fracture in hot, impermeable rock. Heat will be exchanged subsequently at the fracture surface between the rock and a circulating fluid. The successful creation of hydraulic fractures in the granitic section of exploratory holes GT-1 and GT-2 yielded sufficient data to calculate the average permeability of the rock next to a fracture by means of the mathematical model. The calculated permeabilities were found to be in the microdarcy range and proved the granitic rock penetrated by GT-1 and GT-2 to be sufficiently impermeable to test the above concept. (auth)

Delisle, G.

1975-11-01T23:59:59.000Z

99

Hydraulic transmissivity and heat exchange efficiency of open fractures: a model based on lowpass filtered apertures  

E-Print Network (OSTI)

Natural open joints in rocks commonly present multi-scale self-affine apertures. This geometrical complexity affects fluid transport and heat exchange between the flow- ing fluid and the surrounding rock. In particular, long range correlations of self-affine apertures induce strong channeling of the flow which influences both mass and heat advection. A key question is to find a geometrical model of the complex aperture that describes at best the macroscopic properties (hydraulic conductivity, heat exchange) with the smallest number of parameters. Solving numerically the Stokes and heat equa- tions with a lubrication approximation, we show that a low pass filtering of the aperture geometry provides efficient estimates of the effective hydraulic and thermal properties (apertures). A detailed study of the influence of the bandwidth of the lowpass filtering on these transport properties is also performed. For instance, keeping the information of amplitude only of the largest Fourier length scales allows us to rea...

Neuville, Amélie; Schmittbuhl, Jean; 10.1111/j.1365-246X.2011.05126.x

2011-01-01T23:59:59.000Z

100

Hydraulic fracturing of jointed formations  

DOE Green Energy (OSTI)

Measured by volume, North America's largest hydraulic fracturing operations have been conducted at Fenton Hill, New Mexico to create geothermal energy reservoirs. In the largest operation 21,000 m/sup 3/ of water were injected into jointed granitic rock at a depth of 3.5 km. Microearthquakes induced by this injection were measured with geophones placed in five wells drilled into, or very close, to the reservoir, as well as 11 surface seismometers. The large volume of rock over which the microearthquakes were distributed indicates a mechanism of hydraulic stimulation which is at odds with conventional fracturing theory, which predicts failure along a plane which is perpendicular to the least compressive earth stress. A coupled rock mechanics/fluid flow model provides much of the explanation. Shear slippage along pre-existing joints in the rock is more easily induced than conventional tensile failure, particularly when the difference between minimum and maximum earth stresses is large and the joints are oriented at angles between 30 and 60 degrees to the principal earth stresses, and a low viscosity fluid like water is injected. Shear slippage results in local redistribution of stresses, which allows a branching, or dendritic, stimulation pattern to evolve, in agreement with the patterns of microearthquake locations. These results are qualitatively similar to the controversial process known as ''Kiel'' fracturing, in which sequential injections and shut-ins are repeated to create dendritic fractures for enhanced oil and gas recovery. However, we believe that the explanation is shear slippage of pre-existing joints and stress redistribution, not proppant bridging and fluid blocking as suggested by Kiel. 15 refs., 10 figs.

Murphy, H.D.; Fehler, M.C.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gas condensate damage in hydraulically fractured wells  

E-Print Network (OSTI)

This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing from a gas condensate reservoir. Questions were raised about whether flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. In the most recent work done by Adedeji Ayoola Adeyeye, this subject was studied when the effects of reservoir depletion were minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. He also used an infinite conductivity hydraulic fracture along with a linear model as an adequate analogy. He concluded that the skin due to liquid build-up is not enough to prevent lower flowing bottomhole pressures from producing more gas. This current study investigated the condensate damage at the face of the hydraulic fracture in transient and boundary dominated periods when the effects of reservoir depletion are taken into account. As a first step, simulation of liquid flow into the fracture was performed using a 2D 1-phase simulator in order to help us to better understand the results of gas condensate simulation. Then during the research, gas condensate models with various gas compositions were simulated using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.

Reza, Rostami Ravari

2004-08-01T23:59:59.000Z

102

Hydraulic characterization of Midnite Mine, Wellpinit, WA: Summary of 1994 field season. Report of investigations/1996  

Science Conference Proceedings (OSTI)

The Midnite Mine is an inactive uranium mine on the Spokane Indian Reservation in Wasington State. Preliminary results of hydraulic stress tests performed in the bedrock at the site are described. Slug tests and pumping tests were conducted using preexisting USBM monitoring wells. Slug test results were used to generate hydraulic conductivity estimates for fractured and unfractured intrusives. The pumping tests demonstrated varying degrees of spatial continuity. Hydraulically continuous fractured zones along north-south planes were demonstrated in two cases for distances of 90 and 116 m (300 and 380 ft). The short-term pumping tests provided no evidence of east-west hydraulic continuity in fractured zones.

Williams, B.C.; Riley, J.A.

1996-06-01T23:59:59.000Z

103

Hydraulic properties of asphalt concrete.  

E-Print Network (OSTI)

??This research has applied standard unsaturated flow models and laboratory methods common to soil analysis, to characterize the hydraulic properties of asphalt concrete. Wetting and… (more)

Pease, Ronald Eric

2010-01-01T23:59:59.000Z

104

LLNL-PROC-491799 Hydraulic  

NLE Websites -- All DOE Office Websites (Extended Search)

PROC-491799 Hydraulic fracturing: insights from field, lab, and numerical studies S. Johnson, P. Fu, R. Settgast, S. Walsh August 3, 2011 Fall Meeting of the American Geophysical...

105

ENVE 417 HYDRAULIC DESIGN TOPIC SYLLABUS  

E-Print Network (OSTI)

. John Wiley & Sons, Inc. New York, NY. 2001. Hydraulic Design Handbook, Larry W. Mays, McGraw-Hill, New of Applied Hydraulics (properties of fluids and energy equation Review of Applied Hydraulics (pipe, open

Clark, Shirley E.

106

Hydraulically actuated well shifting tool  

SciTech Connect

This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

Roth, B.A.

1992-10-20T23:59:59.000Z

107

Hydraulic waste energy recovery, Phase 2  

SciTech Connect

The energy required for booster station operation is supplied by the electrical utility company and has an associated cost. Energy removed by pressure reducing valves in the system is lost or wasted. The objective of this project is to capture the wasted hydraulic energy with in-line turbines. In this application, the in-line turbines act as pressure reducing valves while removing energy from the water distribution system and converting it to electrical energy. The North Service Center pumping station was selected for the pilot program due to the availability of a wide range in pressure drop and flow, which are necessary for hydraulic energy recovery. The research performed during this project resulted in documentation of technical, economic, installation, and operational information necessary for local government officials to make an informed judgement as it relates to in-line turbine generation.

1992-02-01T23:59:59.000Z

108

Location of hydraulic fractures using microseismic techniques  

DOE Green Energy (OSTI)

Microearthquakes with magnitudes ranging between -6 and -2 have been observed in three successive massive injections of water at the Hot Dry Rock Geothermal Energy demonstration site at Fenton Hill, New Mexico. The injection was part of a program to increase the heat transfer area of hydraulic fractures and to decrease the flow-through impedance between wells. The microearthquakes were used in mapping the location of the extended hydraulic fractures. A downhole triaxial system positioned approximately 200 m vertically above the injection point in a shut-in production well was used for detection. The microearthquakes occurred in a north-northwest striking zone 400 m in length passing through the injection point. During a third substantially larger injection, microearthquakes occurred in a dispersed volume at distances as great as 800 m from the zone active in the first two injections.

Albright, J.A.; Pearson, C.F.

1980-01-01T23:59:59.000Z

109

Sensitivity study on hydraulic well testing inversion using simulated annealing  

DOE Green Energy (OSTI)

For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion.

Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi

1997-11-01T23:59:59.000Z

110

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Generators Ltd Jump to: navigation, search Name Tidal Hydraulic Generators Ltd Address 14 Thislesboon Drive Place Mumbles Zip SA3 4HY Sector Marine and Hydrokinetic Phone...

111

Some Fundamental Mechanisms of Hydraulic Fracturing .  

E-Print Network (OSTI)

??This dissertation focuses mainly on three topics: (1) mixed-mode branching and segmentation of hydraulic fractures in brittle materials, (2) hydraulic fracture propagation in particulate materials,… (more)

Wu, Ruiting

2006-01-01T23:59:59.000Z

112

Gas condensate damage in hydraulically fractured wells  

E-Print Network (OSTI)

This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing a gas condensate reservoir and questions were raised about how much drop in flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. Previous attempts to answer these questions have been from the perspective of a radial model. Condensate builds up in the reservoir as the reservoir pressure drops below the dewpoint pressure. As a result, the gas moving to the wellbore becomes leaner. With respect to the study by El-Banbi and McCain, the gas production rate may stabilize, or possibly increase, after the period of initial decline. This is controlled primarily by the condensate saturation near the wellbore. This current work has a totally different approach. The effects of reservoir depletion are minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. It also assumes an infinite conductivity hydraulic fracture and uses a linear model. During the research, gas condensate simulations were performed using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.

Adeyeye, Adedeji Ayoola

2003-12-01T23:59:59.000Z

113

Electrokinetic high pressure hydraulic system  

DOE Patents (OSTI)

A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

2000-01-01T23:59:59.000Z

114

The relationship between reference canopy conductance and simplified hydraulic architecture  

E-Print Network (OSTI)

Department of Geography, National Taiwan University, Taipei, Taiwan d Departamento de Engenharia Mecanica

Katul, Gabriel

115

Production Hydraulic Packer Field Test  

Science Conference Proceedings (OSTI)

In October 1999, the Rocky Mountain Oilfield Testing Center and Halliburton Energy Services cooperated on a field test of Halliburton's new Production Hydraulic Packer technology on Well 46-TPX-10 at Naval Petroleum Reserve No. 3 near Casper, WY. Performance of the packer was evaluated in set and unset operations. The packer's ability to seal the annulus between the casing and tubing was hydraulically tested and the results were recorded.

Schneller, Tricia; Salas, Jose

2000-06-30T23:59:59.000Z

116

Debris Thermal Hydraulics Modeling of QUENCH Experiments  

SciTech Connect

Porous debris formation and behavior in QUENCH experiments (QUENCH-02, QUENCH-03) plays a considerable role and its adequate modeling is important for thermal analysis. This work is aimed to the development of a numerical module which is able to model thermal hydraulics and heat transfer phenomena occurring during the high-temperature stage of severe accident with the formation of debris region and molten pool. The original approach for debris evolution is developed from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The debris model is based on the system of continuity, momentum and energy conservation equations, which consider the dynamics of volume-averaged velocities and temperatures of fluid, solid and gaseous phases of porous debris. The different mechanisms of debris formation are considered, including degradation of fuel rods according to temperature criteria, taking into consideration some correlations between rod layers thicknesses; degradation of rod layer structure due to thermal expansion of melted materials inside intact rod cladding; debris formation due to sharp temperature drop of previously melted material due to reflood; and transition to debris of material from elements lying above. The porous debris model was implemented to best estimate numerical code RATEG/SVECHA/HEFEST developed for modeling thermal hydraulics and severe accident phenomena in a reactor. The model is used for calculation of QUENCH experiments. The results obtained by the model are compared to experimental data concerning different aspects of thermal behavior: thermal hydraulics of porous debris, radiative heat transfer in a porous medium, the generalized melting and refreezing behavior of materials, hydrogen production. (authors)

Kisselev, Arcadi E.; Kobelev, Gennadii V.; Strizhov, Valerii F.; Vasiliev, Alexander D. [Nuclear Safety Institute - IBRAE, 52 Bolshaya Tulskaya Ulitsa, Moscow, 113191 (Russian Federation)

2006-07-01T23:59:59.000Z

117

LMR thermal hydraulics calculations in the US  

SciTech Connect

A wide range of thermal hydraulics computer codes have been developed by various organizations in the US. These codes cover an extensive range of purposes from within-assembly-wise pin temperature calculations to plant wide transient analysis. The codes are used for static analysis, for analysis of protected anticipated transients, and for analysis of a wide range of unprotected transients for the more recent inherently safe LMR designs. Some of these codes are plant-specific codes with properties of a specific plant built into them. Other codes are more general and can be applied to a number of plants or designs. These codes, and the purposes for which they have been used, are described.

Dunn, F.E.; Malloy, D.J.; Mohr, D.

1987-04-27T23:59:59.000Z

118

Hydraulic Performance of a Multistage Array of Advanced Centrifugal Contactors  

Science Conference Proceedings (OSTI)

The hydraulic characteristics of an advanced design centrifugal contactor array have been determined at the Savannah River Laboratory (SRL). The advanced design utilizes couette mixing (Taylor vortices) in the annulus between the rotating and stationary bowls. Excellent phase separation over a wide range of flow conditions was obtained. Interfaces within an entire eight-stage array were controlled with a single weir air pressure.

Hodges, M.E.

2001-05-29T23:59:59.000Z

119

Modeling Hydraulic Responses to Meteorological Forcing: from Canopy to Aquifer  

E-Print Network (OSTI)

equations  for  some  soil  hydraulic properties.  Water Modeling Hydraulic Responses to Meteorological Forcing: CA 94720  lpan@lbl.gov  Modeling Hydraulic Responses to 

Pan, Lehua; Jin, Jiming; Miller, Norman; Wu, Yu-Shu; Bodvarsson, Gudmundur

2008-01-01T23:59:59.000Z

120

HYDRAULIC CALCULATIONS FOR A MODIFIED IN-SITU RETORT  

E-Print Network (OSTI)

LBL-1 0431 UC-91 HYDRAULIC CALCULATIONS FOR A MODIFIED IN-REFERENCES • . • • • • . , . HYDRAULIC CALCULATIONS FOR ACalifomia. LBL-10431 HYDRAULIC CALCULATIONS FOR A MODIFIED

Hall, W.G.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydraulic Fracturing | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Fracturing Hydraulic Fracturing Jump to: navigation, search More info on OpenEI Oil and Gas Gateway Federal Environmental Statues Federal Oil and Gas Statutes Oil and Gas Companies United States Oil and Gas Boards International Oil and Gas Boards Other Information Fracking Regulations by State Wells by State Fracking Chemicals Groundwater Protection Related Reports A Perspective on Health and Natural Gas Operations: A Report for Denton City Council Just the Fracking Facts The Politics of 'Fracking': Regulating Natural Gas Drilling Practices in Colorado and Texas Addressing the Environmental Risks from Shale Gas Development Water Management Technologies Used by Marcellus Shale Gas Producers Methane contamination of drinking wateraccompanying gas-well drilling and hydraulic fracturing

122

Electrokinetic high pressure hydraulic system  

DOE Patents (OSTI)

An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA); Arnold, Don W. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Schoeniger, Joseph S. (Oakland, CA); Neyer, David W. (Castro Valley, CA)

2001-01-01T23:59:59.000Z

123

Method for directional hydraulic fracturing  

DOE Patents (OSTI)

A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

1994-01-01T23:59:59.000Z

124

Electokinetic high pressure hydraulic system  

DOE Patents (OSTI)

A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

2000-01-01T23:59:59.000Z

125

Hydraulic jumps on an incline  

E-Print Network (OSTI)

When a fluid jet strikes an inclined solid surface at normal incidence, gravity creates a flow pattern with a thick outer rim resembling a parabola and reminiscent of a hydraulic jump. There appears to be little theory or experiments describing simple aspects of this phenomenon, such as the maximum rise height of the fluid above the impact point, and its dependence on jet velocity and inclination angle. We address this with experiments, and present a simple theory based on horizontal hydraulic jumps which accounts for the rise height and its scaling, though without describing the shape of the parabolic envelope.

Jean-Luc Thiffeault; Andrew Belmonte

2010-09-01T23:59:59.000Z

126

Hydraulic jumps on an incline  

E-Print Network (OSTI)

When a fluid jet strikes an inclined solid surface at normal incidence, gravity creates a flow pattern with a thick outer rim resembling a parabola and reminiscent of a hydraulic jump. There appears to be little theory or experiments describing simple aspects of this phenomenon, such as the maximum rise height of the fluid above the impact point, and its dependence on jet velocity and inclination angle. We address this with experiments, and present a simple theory based on horizontal hydraulic jumps which accounts for the rise height and its scaling, though without describing the shape of the parabolic envelope.

Thiffeault, Jean-Luc

2010-01-01T23:59:59.000Z

127

Groundwater flow near the Shoal Site, Sand Springs Range, Nevada: Impact of density-driven flow  

Science Conference Proceedings (OSTI)

The nature of flow from a highland recharge area in a mountain range in north-central Nevada to discharge areas on either side of the range is evaluated to refine a conceptual model of contaminant transport from an underground nuclear test conducted beneath the range. The test, known as the Shoal event, was conducted in 1963 in granitic rocks of the Sand Springs Range. Sparse hydraulic head measurements from the early 1960s suggest flow from the shot location to the east to Fairview Valley, while hydrochemistry supports flow to salt pans in Fourmile Flat to the west. Chemical and isotopic data collected from water samples and during well-logging arc best explained by a reflux brine system on the west side of the Sand Springs Range, rather than a typical local flow system where all flow occurs from recharge areas in the highlands to a central discharge area in a playa. Instead, dense saline water from the playa is apparently being driven toward the range by density contrasts. The data collected between the range and Fourmile Flat suggest the groundwater is a mixture of younger, fresher recharge water with older brine. Chemical contrasts between groundwater in the east and west valleys reflect the absence of re-flux water in Fairview Valley because the regional discharge area is distant and thus there is no accumulation of salts. The refluxing hydraulic system probably developed after the end of the last pluvial period and differences between the location of the groundwater divide based on hydraulic and chemical indicators could reflect movement of the divide as the groundwater system adjusts to the new reflux condition.

Chapman, J.; Mihevc, T.; McKay, A.

1994-09-01T23:59:59.000Z

128

Steam Turbine Hydraulic Control system Maintenance Guide  

Science Conference Proceedings (OSTI)

Steam turbine hydraulic control system maintenance problems have been a significant factor in plant power reductions, shutdowns, and lost generation. This guide provides recommendations to improve the reliability of the hydraulic components and fluid.

1996-12-31T23:59:59.000Z

129

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03T23:59:59.000Z

130

On Internal Hydraulics with Entrainment  

Science Conference Proceedings (OSTI)

The hydraulics of a single layer flow with entrainment is examined with a reduced-gravity model. Expressions are derived for the local change of Froude number and layer thickness as a function of the entrainment velocity. It is shown that ...

Frank Gerdes; Chris Garrett; David Farmer

2002-03-01T23:59:59.000Z

131

Dynamic Measurement of Hydraulic Parameters Under Liquid ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Dynamic Measurement of Hydraulic Parameters Under Liquid Unsaturated Flow ...

132

The communication protocol design of electro-hydraulic control system for hydraulic supports at coal mine  

Science Conference Proceedings (OSTI)

The electro-hydraulic control system for hydraulic supports is a multi embedded systems constitute a computer network system working in the coal mine harsh environment. Excellent hardware connection and fine communication protocol are the fundamental ... Keywords: AVR microcontroller, communication protocols, electro-hydraulic control, hydraulic support

Jingguo Wen; Zisheng Lian

2011-09-01T23:59:59.000Z

133

Software implementation of hydraulic shock numerical computation in the pressure hydraulic systems without protection devices  

Science Conference Proceedings (OSTI)

This paper presents software for calculus of hydraulic shock phenomenon in pressure hydraulic systems without protection device. The program is written in Java programming language and responds to the following requirements: easy management of several ... Keywords: flowchart, graphical interface, hydraulic shock (water hammer), method of characteristics, pressure hydraulic system, software

Ichinur Omer

2010-08-01T23:59:59.000Z

134

Heat Conduction  

Science Conference Proceedings (OSTI)

Table 2   Differential equations for heat conduction in solids...conduction in solids General form with variable thermal properties General form with constant thermal properties General form, constant properties, without heat

135

Coordinated studies in support of hydraulic fracturing of coalbed methane. Final report, July 1990-May 1995  

Science Conference Proceedings (OSTI)

The primary objective of this project is to provide laboratory data that is pertinent to designing hydraulic fracturing treatments for coalbed methane. Coal fluid interactions studies, fracture conductivity, fluid leak-off through cleats, rheology, and proppant transport are designed to respresent Black Warrior and San Juan treatments. A second objective is to apply the information learned in laboratory testing to actual hydraulic fracturing treatments in order to improve results. A final objective is to review methods currently used to catalog well performance following hydraulic fracturing for the purpose of placing the data in a useable database that can be accessed by users to determine the success of various treatment scenarios.

Penny, G.S.; Conway, M.W.

1996-02-01T23:59:59.000Z

136

Hydraulic fracturing and propping tests at Yakedake field in Japan  

DOE Green Energy (OSTI)

Hydraulic fracturing experiments have been conducted at Yakedake field in Gifu prefecture, Japan. From the data obtained during the fracturing operation, the open-hole section permeability was estimated of the wellbore, the minimum pressure required to propagate the fracture, the impedances before and after the propping, and the earth stress normal to the fracture plane. The final fracture plane was also mapped with the microseismic events.

Yamaguchi, Tsutomu; Seo, Kunio; Suga, Shoto; Itoh, Toshinobu; Kuriyagawa, Michio

1984-01-01T23:59:59.000Z

137

Mapping acoustic emissions from hydraulic fracture treatments using coherent array processing: Concept  

DOE Green Energy (OSTI)

Hydraulic fracturing is a widely-used well completion technique for enhancing the recovery of gas and oil in low-permeability formations. Hydraulic fracturing consists of pumping fluids into a well under high pressure (1000--5000 psi) to wedge-open and extend a fracture into the producing formation. The fracture acts as a conduit for gas and oil to flow back to the well, significantly increasing communication with larger volumes of the producing formation. A considerable amount of research has been conducted on the use of acoustic (microseismic) emission to delineate fracture growth. The use of transient signals to map the location of discrete sites of emission along fractures has been the focus of most research on methods for delineating fractures. These methods depend upon timing the arrival of compressional (P) or shear (S) waves from discrete fracturing events at one or more clamped geophones in the treatment well or in adjacent monitoring wells. Using a propagation model, the arrival times are used to estimate the distance from each sensor to the fracturing event. Coherent processing methods appear to have sufficient resolution in the 75 to 200 Hz band to delineate the extent of fractures induced by hydraulic fracturing. The medium velocity structure must be known with a 10% accuracy or better and no major discontinuities should be undetected. For best results, the receiving array must be positioned directly opposite the perforations (same depths) at a horizontal range of 200 to 400 feet from the region to be imaged. Sources of acoustic emission may be detectable down to a single-sensor SNR of 0.25 or somewhat less. These conclusions are limited by the assumptions of this study: good coupling to the formation, acoustic propagation, and accurate knowledge of the velocity structure.

Harris, D.B.; Sherwood, R.J.; Jarpe, S.P.; Harben, P.E.

1991-09-01T23:59:59.000Z

138

Ductility of lightly reinforced concrete hydraulic structures  

E-Print Network (OSTI)

In the past, intake towers built by the Corp of Engineers were designed without consideration of seismic effects. This study investigates an economic approach to determining the ductility of an existing lightly reinforced concrete hydraulic structure. An intake tower, typical of older structure, with reinforcing steel ratios below code specified minimums was selected and modeled using DRAIN-2DX, a dynamic analysis program for personal computers which incorporates the effects of inelastic deformation. The analyses, performed with three separate earthquake acceleration time histories for various model conditions, produced a range of ductility values. The results indicate that ductility is facilitated by the presence of in-plane walls. However, the calculated ductility values may be exaggerated due to the elastic panel elements in the model which redistribute loads away from yielded sections. Also, larger ductility values were calculated for reservoirs with water than for empty reservoirs.

Raines, Amy Lynette

1994-01-01T23:59:59.000Z

139

Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress.  

Science Conference Proceedings (OSTI)

We have conducted five hydraulic fracturing stress measurement campaigns in Korea, involving 13 test holes ranging in depth from 30 to 250 m, at locations from North Seoul to the southern coast of the peninsula. The measurements reveal consistent crustal stress magnitudes and directions that suggest persistence throughout western and southern Korea. The maximum horizontal stress {sigma}{sub H} is oriented between ENE-WSW and E-W, in accord with plate movement and deformation, and with directions indicated by both focal mechanism solutions from earthquakes inland and offshore as well as borehole breakouts in mainland China close to its eastern coast. With respect to magnitudes, the vertical stress is the overall minimum stress at all tested locations, suggesting a thrust faulting regime within the relatively shallow depths reached by our tests. Typically, such a stress regime becomes one favoring strike-slip at greater depths, as is also indicated by the focal mechanism solutions around Korea.

Haimson, Bezalel Cecil (University of Wisconsin, Madison, WI); Lee, Moo Yul; Song, I. (Ruhr-University Bochum, Bochum, Germany)

2003-07-01T23:59:59.000Z

140

Gas Test Loop Booster Fuel Hydraulic Testing  

SciTech Connect

The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

Gas Test Loop Hydraulic Testing Staff

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Combined hydraulic and regenerative braking system  

DOE Patents (OSTI)

A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

Venkataperumal, R.R.; Mericle, G.E.

1979-08-09T23:59:59.000Z

142

158 HYDRAULIC PERFORMANCE OF BRIDGE RAILS  

E-Print Network (OSTI)

This research program addresses issues associated with the hydraulic effects of bridge rails on floodwater levels upstream of bridge structures. The hydraulics of bridge rails and traffic barrier systems are not well understood, especially with regard to rail/barrier systems in series and the submergence of structures. The hydraulics of bridge rails is an important issue for TxDOT bridge rehabilitation projects with potentially significant cost implications. This research project is designed to address issues associated with the hydraulic performance of bridge rails and traffic barriers, and to provide guidance on how different rail/barrier systems can be included in floodplain hydraulics models. 17. Key Words Hydraulics, bridge rails, floodplain, Weir equations,

All J. Charbeneau; On Klenzendorf; Michael E. Barrett; Randall J. Charbeneau; Brandon Klenzendorf; Michael E. Barrett

2008-01-01T23:59:59.000Z

143

Combined hydraulic and regenerative braking system  

DOE Patents (OSTI)

A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

Venkataperumal, Rama R. (Troy, MI); Mericle, Gerald E. (Mount Clemens, MI)

1981-06-02T23:59:59.000Z

144

High Resolution River Hydraulic and Water Quality Characterization Using Rapidly Deployable Networked Infomechanical Systems (NIMS RD)  

E-Print Network (OSTI)

High Resolution River Hydraulic and Water Quality1594. High Resolution River Hydraulic and Water Qualityobserving spatiotemporal hydraulic and chemical properties

Thomas C. Harmon; Richard F. Ambrose; Robert M. Gilbert; Jason C. Fisher; Michael Stealey; William J. Kaiser

2006-01-01T23:59:59.000Z

145

Hydraulic fracturing and shale gas extraction.  

E-Print Network (OSTI)

??In the past decade the technique of horizontal drilling and hydraulic fracturing has been improved so much that it has become a cost effective method… (more)

Klein, Michael

2012-01-01T23:59:59.000Z

146

Hydraulic fractures traced by monitoring microseismic events  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: The trend toward production of hydrocarbons from unconventional reservoirs (tight gas, shale oilgas) has caused a large increase in the use of hydraulic fracture...

147

Microseismic Tracer Particles for Hydraulic Fracturing  

NLE Websites -- All DOE Office Websites (Extended Search)

The trend toward production of hydrocarbons from unconventional reservoirs (tight gas, shale oilgas) has caused a large increase in the use of hydraulic fracture stimulation of...

148

Geothermal: Sponsored by OSTI -- Hydraulic fracturing: insights...  

Office of Scientific and Technical Information (OSTI)

Hydraulic fracturing: insights from field, lab, and numerical studies Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

149

Monitoring hydraulic fracture growth: Laboratory experiments  

Science Conference Proceedings (OSTI)

The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

Groenenboom, J.; Dam, D.B. van

2000-04-01T23:59:59.000Z

150

Control rod drive hydraulic system  

DOE Patents (OSTI)

A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

Ose, Richard A. (San Jose, CA)

1992-01-01T23:59:59.000Z

151

Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes  

SciTech Connect

The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

Kalb, P.D.; Heiser, J.H. III; Colombo, P.

1990-01-01T23:59:59.000Z

152

Hydrodynamic design of axial hydraulic turbines  

Science Conference Proceedings (OSTI)

This paper presents a complete methodology of the hydrodynamic design for the runner of axial hydraulic turbines (Kaplan) using the finite element method. The procedure starts with the parametric design of the meridian channel. Next, the stream traces ... Keywords: QTurbo3D, axial hydraulic turbines, design, meridian channel, runner blade

Daniel Balint; Viorel Câmpian

2011-04-01T23:59:59.000Z

153

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network (OSTI)

may 2010 Mercury-Contaminated Hydraulic Mining Debris in SanCA 94025 Abstract The hydraulic gold-mining process usedsediment created by hydraulic gold mining in the Sierra

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

154

Hydraulic waste energy recovery, Phase 2. A technical report  

SciTech Connect

The energy required for booster station operation is supplied by the electrical utility company and has an associated cost. Energy removed by pressure reducing valves in the system is lost or wasted. The objective of this project is to capture the wasted hydraulic energy with in-line turbines. In this application, the in-line turbines act as pressure reducing valves while removing energy from the water distribution system and converting it to electrical energy. The North Service Center pumping station was selected for the pilot program due to the availability of a wide range in pressure drop and flow, which are necessary for hydraulic energy recovery. The research performed during this project resulted in documentation of technical, economic, installation, and operational information necessary for local government officials to make an informed judgement as it relates to in-line turbine generation.

1992-02-01T23:59:59.000Z

155

Hydraulic Institute Mission and Vision:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institute Mission and Vision: Institute Mission and Vision: Vision: To be a global authority on pumps and pumping systems. Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing and delivering comprehensive industry standards. * Expanding knowledge by providing education and tools for the effective application, testing, installation, operation and maintenance of pumps and pumping systems. * Serving as a forum for the exchange of industry information. The Hydraulic Institute is a non-profit industry (trade) association established in 1917. HI and its members are dedicated to excellence in the engineering, manufacture, and application of pumping equipment. The Institute plays a leading role in the development of pump standards in North America and worldwide. HI

156

Thermal hydraulics development for CASL  

SciTech Connect

This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

Lowrie, Robert B [Los Alamos National Laboratory

2010-12-07T23:59:59.000Z

157

Hydraulic Institute Mission and Vision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Institute Mission and Vision Hydraulic Institute Mission and Vision Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing...

158

Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves  

Science Conference Proceedings (OSTI)

Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at a location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.

Liu, H.H.

2012-02-23T23:59:59.000Z

159

Model development and calibration for the coupled thermal, hydraulic and mechanical phenomena of the bentonite  

E-Print Network (OSTI)

FOR THE COUPLED THERMAL, HYDRAULIC AND MECHANICAL PHENOMENAby the interdependence of thermal, hydraulic and mechanical

Hernelind, J.

2009-01-01T23:59:59.000Z

160

Progressive wetting of initially hydrophobic plant surfaces by salts – a prerequisite for hydraulic activation of stomata?  

E-Print Network (OSTI)

along a transstomatal hydraulic connection. Referencesis called here ‘hydraulic activation of stomata’ (HAS). The

Burkhardt, Juergen; Hunsche, Mauricio; Pariyar, Shyam

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The feasibility of hydraulic energy recovery from geopressured- geothermal resources  

DOE Green Energy (OSTI)

This report presents the results of a study conducted by the Idaho National Engineering Laboratory (INEL) for DOE on the application of hydraulic energy recovery from geopressured-geothermal resources. The report examines both the technical and economic feasibility. Previous reports and demonstrations of geopressured-geothermal energy have been directed to the recovery of heat and methane. This report is specifically directed to extracting the pressure component of a typical reservoir. The pressure energy available in a 220 psia geopressured fluid could yield 1.49 W{center dot}h per pound and an average well could produce 500kW. The best available device for recovering this energy is a Pelton turbine. Commercial Pelton turbines are not available for this application but are technically feasible. Suitable turbines could be developed with first of a kind engineering and tooling costs of approximately $227,000. The breakeven cost to add conversion of hydraulic energy to an existing methane/heat recovery system would be $0.030 per kWh based on a 10 year lifetime. Development testing is necessary to understand the effect of the dissolved gases, verify cavitation suppression, and materials selection. Cavitation suppression would be provided by utilizing the gas backpressure of the dissolved methane and carbon dioxide that exists in the geofluid. It is estimated that adding conversion of hydraulic energy to an operating system recovering heat and methane could reduce the overall cost of electrical production by about 1.5 cents per kWh. This is not a viable stand-alone system is the well costs are to be born by the conversion of hydraulic energy alone. 5 refs., 4 figs., 2 tabs.

Thurston, G.C.; Plum, M.M.

1991-09-01T23:59:59.000Z

162

Conductive Polymers  

DOE Green Energy (OSTI)

Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

Bohnert, G.W.

2002-11-22T23:59:59.000Z

163

Bubble visualization in a simulated hydraulic jump  

E-Print Network (OSTI)

This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

Witt, Adam; Shen, Lian

2013-01-01T23:59:59.000Z

164

Comparative hydraulic and anatomic properties in palm trees (Washingtonia robusta) of varying heights: implications for hydraulic limitation to increased height growth  

E-Print Network (OSTI)

studies that suggest that hydraulic limitation may not onlyand Dawson 2007). The hydraulic limitation hypothesis isevidence that the hydraulic cost of increased frictional

Renninger, Heidi J.; Phillips, Nathan; Hodel, Donald R.

2009-01-01T23:59:59.000Z

165

Geomechanical review of hydraulic fracturing technology  

E-Print Network (OSTI)

Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been documented in literature on the subject. The ...

Arop, Julius Bankong

2013-01-01T23:59:59.000Z

166

Hydraulic Fracturing Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Shale Gas » Hydraulic Oil & Gas » Shale Gas » Hydraulic Fracturing Technology Hydraulic Fracturing Technology Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Hydraulic fracturing is a technique in which large volumes of water and sand, and small volumes of chemical additives are injected into low-permeability subsurface formations to increase oil or natural gas flow. The injection pressure of the pumped fluid creates fractures that enhance gas and fluid flow, and the sand or other coarse material holds the fractures open. Most of the injected fluid flows back to the wellbore and is pumped to the surface.

167

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalJ. B. , "Simulated effects of oil-shale development on the

Mehta, P.K.

2013-01-01T23:59:59.000Z

168

On the Use of Rotating Hydraulic Models  

Science Conference Proceedings (OSTI)

Two problems regarding the use of rotating hydraulic channel flow models are addressed. The first concerns the difficulties encountered when trying to identify the “potential” depth for a flow of uniform (but nonzero) potential vorticity in a ...

K. M. Borenäs; L. J. Pratt

1994-01-01T23:59:59.000Z

169

Definition: Hydraulic Fracturing | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Dictionary.png Hydraulic Fracturing The process used in the Oil and Gas industry of drilling deep into the ground and injecting water, sand, and other...

170

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

Mehta, P.K.

2013-01-01T23:59:59.000Z

171

Flow Properties in Rotating, Stratified Hydraulics  

Science Conference Proceedings (OSTI)

This paper discusses three distinct features of rotating, stratified hydraulics, using a reduced-gravity configuration. First, a new upstream condition is derived corresponding to a wide, almost motionless basin, and this is applied to flow ...

Peter D. Killworth

1992-09-01T23:59:59.000Z

172

Hydraulic fracture optimization using hydraulic fracture and reservoir modeling in the Piceance Basin, Colorado.  

E-Print Network (OSTI)

??Hydraulic fracturing is an important stimulation method for producing unconventional gas reserves. Natural fractures are present in many low-permeability gas environments and often provide important… (more)

Reynolds, Harris Allen

2012-01-01T23:59:59.000Z

173

Hydraulic frac sets Rockies depth record  

SciTech Connect

A depth record for massive hydraulic fracture in the Rocky Mt. region was set April 22 with the treatment of a central Wyoming gas well. The No. 1-29 Moneta Hills Well was treated through perforations at 19,838 to 19,874 ft and 20,064 to 20,100 ft. Soon after, another well in the Madden Deep Field was subject to hydraulic fracture through perforations a

Not Available

1980-06-01T23:59:59.000Z

174

COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 2, User's manual  

Science Conference Proceedings (OSTI)

COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code.

Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

1986-11-01T23:59:59.000Z

175

COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method  

Science Conference Proceedings (OSTI)

COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods.

Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

1986-11-01T23:59:59.000Z

176

Effective hydraulic parameters for steady state vertical flow in heterogeneous soils  

E-Print Network (OSTI)

to be consistent with the previous findings of mean- gradient unsaturated hydraulic conductivity [Yeh et al., 1985a correlation, boundary condition (surface pressure head), and elevation above the water table on the effective vertical flow in heterogeneous soils, Water Resour. Res., 39(8), 1227, doi:10.1029/2002WR001831, 2003. 1

Mohanty, Binayak P.

177

Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report  

Science Conference Proceedings (OSTI)

Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

1993-12-01T23:59:59.000Z

178

Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture  

E-Print Network (OSTI)

Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurementreopening during hydraulic fracturing stress determinations.

Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

2000-01-01T23:59:59.000Z

179

Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system  

SciTech Connect

Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated using recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10{sup 0} to 10{sup 2} m{sup 2}/d, with 65% of the calculated estimate values occurring between 10{sup 1} to 10{sup 2} m{sup 2}d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt.

Spane, F.A. Jr.; Vermeul, V.R.

1994-09-01T23:59:59.000Z

180

Production of hydraulic oil from Baku crudes  

Science Conference Proceedings (OSTI)

The demand for low-pour oils for use in hydraulic systems is considerably greater than the possible production volume. The base stocks for hydraulic oils - AMG-10, MGE-10A, RM, and RMTs - are obtained by sulfuric acid treatment. In the interest of improving the ecological aspects of hydraulic oil production, sulfuric acid treatment is being replaced by hydroprocessing. The work described here was aimed at determining the feasibility of obtaining hydraulic oil of the RM type from lube distillate fractions of the mixed low-wax crudes processed in the Baku Azerneftyag Petroleum Refinery. This oil is intended for use in hydraulic systems of automatic control apparatus, mainly in flight vehicles operating in the North. Stringent requirements are imposed on its solid point and viscosity. solid point no higher than -60{degrees}C. viscosity w higher than 350 mm{sup 2}/sec at -40{degrees}C. The lube fractions used as starting materials had viscosities of 2.77 and 16.84 mm{sup 2}/sec at 50{degrees}C, with respective flash points of 85{degrees} and 168{degrees}C. As another starting material we used a gasoil cut with a viscosity of 4.4 mm{sup 2}/sec at 50{degrees}C and a flash point of 134{degrees}C.

Samedova, F.I.; Kasumova, A.M.; Alieva, V.M.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydraulic Hybrid Systems | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Hybrid Systems Hydraulic Hybrid Systems Jump to: navigation, search Logo: Hydraulic Hybrid Systems Name Hydraulic Hybrid Systems Address 320 N. Railroad Ave Place Loveland, Colorado Zip 80537 Sector Vehicles Product hydraulic hybrid system for light-duty vehicles Year founded 2008 Number of employees 11-50 Phone number 303-519-4144 Website http://www.hydraulichybridsyst Coordinates 40.394833°, -105.0758931° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.394833,"lon":-105.0758931,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, November 1991-December 1992  

Science Conference Proceedings (OSTI)

The purpose of the work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated.

Not Available

1993-04-01T23:59:59.000Z

183

HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN  

E-Print Network (OSTI)

u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSthe calculated stress. n HYDRAULIC FRACTURING EQUIPMENT AND

Doe, T.

2010-01-01T23:59:59.000Z

184

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network (OSTI)

responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

Nelson, J.T.

2009-01-01T23:59:59.000Z

185

Hydraulic controls on river biota and the consequence for ecosystem processes.  

E-Print Network (OSTI)

periphyton biomass on hydraulic characteristics and nutrientheterogeneity. Journal of Hydraulic Engineering 110:1568-morphology. Journal Of Hydraulic Engineering 129:885- Power,

Limm, Michael Peter

2009-01-01T23:59:59.000Z

186

Alternative representations of in-stream habitat: classification using remote sensing, hydraulic modeling, and fuzzy logic  

E-Print Network (OSTI)

C. , 1996, Two-dimensional hydraulic simulation of physicalfish: Linking statistical hydraulic models with multivariateusing Remote Sensing, Hydraulic Modeling, and Fuzzy Logic

Legleiter, Carl J.; Goodchild, M F

2005-01-01T23:59:59.000Z

187

The Hydraulic Institute: Who We Are  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Institute: Hydraulic Institute: Who We Are The Global Authority on Pumps and Pumping Systems As the developer of the universally acclaimed ANSI/HI Pump Standards, a key reference for pump knowledge and end-user specifications, the Hydraulic Institute (HI) provides its members with timely and essential resources for the advancement of their pump industry businesses. HI is also an indispensable asset for business intelligence, professional development, and pump industry leadership and advocacy, serving as the unequivocal voice of the North American pump industry since its inception in 1917. The Institute has become the industry resource for cutting- edge educational programs, critical industry reports, business-enhancing services, and a myriad of opportunities

188

The hydraulic jump as a white hole  

E-Print Network (OSTI)

In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.

G. E. Volovik

2005-08-30T23:59:59.000Z

189

Hydraulic characterization of hydrothermally altered Nopal tuff  

SciTech Connect

Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

Green, R.T.; Meyer-James, K.A. [Southwest Research Institute, San Antonio, TX (United States); Rice, G. [George Rice and Associates, San Antonio, TX (United States)

1995-07-01T23:59:59.000Z

190

Bucknell Hydraulic Flume | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Flume Hydraulic Flume Jump to: navigation, search Basic Specifications Facility Name Bucknell Hydraulic Flume Overseeing Organization Bucknell University Hydrodynamic Testing Facility Type Flume Length(m) 9.8 Beam(m) 1.2 Depth(m) 0.6 Water Type Freshwater Cost(per day) Depends on personnel requirements Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.7 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Velocity(m/s) 2.7 Recirculating Yes Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Various sensors available on a test-by-test basis Available Sensors Flow, Velocity Data Generation Capability Real-Time No Integrated Display/Graphics Microsoft Windows based systems

191

Self-potential observations during hydraulic fracturing  

SciTech Connect

The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

Moore, Jeffrey R.; Glaser, Steven D.

2007-09-13T23:59:59.000Z

192

Downhole mud properties complicate drilling hydraulics  

Science Conference Proceedings (OSTI)

This paper explains that wellsite parameters such as penetration rate, hole cleaning, hole erosion and overall wellbore stability are directly related to the hydraulic conditions occurring while drilling. Drilling hydraulics, in turn, are largely a function of the drilling mud's properties, primarily viscosity and density. Accurate pressure loss calculations are necessary to maximize bit horse-power and penetration rates. Also, annular pressure loss measurements are important to record equivalent circulating densities, particularly when drilling near balanced formation pressures or when approaching formation fracture pressures. Determination of the laminar, transitional or turbulent flow regimes will help ensure the mud will remove drill cuttings from the wellbore and minimize hole erosion.

Leyendecker, E.A.; Bruton, J.R.

1986-10-01T23:59:59.000Z

193

Hydraulic Property and Soil Textural Classification Measurements for Rainier Mesa, Nevada Test Site, Nevada  

SciTech Connect

This report presents particle size analysis, field-saturated hydraulic conductivity measurements, and qualitative descriptions of surficial materials at selected locations at Rainier Mesa, Nevada. Measurements and sample collection were conducted in the Rainier Mesa area, including unconsolidated sediments on top of the mesa, an ephemeral wash channel near the mesa edge, and dry U12n tunnel pond sediments below the mesa. Particle size analysis used a combination of sieving and optical diffraction techniques. Field-saturated hydraulic conductivity measurements employed a single-ring infiltrometer with analytical formulas that correct for falling head and spreading outside the ring domain. These measurements may prove useful to current and future efforts at Rainier Mesa aimed at understanding infiltration and its effect on water fluxes and radionuclide transport in the unsaturated zone.

Ebel, Brian A.; Nimmo, John R.

2009-12-29T23:59:59.000Z

194

Hydraulic fracture experiments in GT-1 and GT-2  

DOE Green Energy (OSTI)

Hydraulic fracturing experiments were conducted in granite rock, at temperatures near 100 and 150/sup 0/C, in two wells 0.785 km (2575 ft) and 1.98 km (6500 ft) deep near Los Alamos, New Mexico. No unusual difficulty was observed in fracturing crystalline rock hydraulically. The apparent surface energy (energy required to create new fracture surface by breaking the rock) was measured as 100 J/m/sup 2/. Orientation of the deeper fracture was measured as N35/sup 0/E (+-5/sup 0/). The fraction of fluid injected into the rock that could be recovered at hydrostatic surface pressure was measured. The efficiency of recovery was as high as 92 percent after the fracture impedance was lowered by ''propping'' the fracture with sand. Permeability of the rock over the face of the fracture was compatible with laboratory measurements (10/sup -7/ to 10/sup -8/ darcys). Downhole pressures required to extend the fractures were about 150 and 340 bars (2175 and 4900 psi), respectively.

Aamodt, R.L.

1977-02-01T23:59:59.000Z

195

DOE's Shale Gas and Hydraulic Fracturing Research | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Shale Gas and Hydraulic Fracturing Research DOE's Shale Gas and Hydraulic Fracturing Research April 26, 2013 - 11:05am Addthis Statement of Guido DeHoratiis Acting Deputy...

196

Comparison of Soil Hydraulic Parameterizations for Mesoscale Meteorological Models  

Science Conference Proceedings (OSTI)

Soil water contents, calculated with seven soil hydraulic parameterizations, that is, soil hydraulic functions together with the corresponding parameter sets, are compared with observational data. The parameterizations include the Campbell/Clapp–...

Frank J. Braun; Gerd Schädler

2005-07-01T23:59:59.000Z

197

HYDRAULIC FRACTURING AND INDUCED SEISMICITY IN KANSAS  

E-Print Network (OSTI)

For some time the public has asked questions about seismic activity related to hydraulic fracturing and other oil-field related activities. In particular, there is concern that the energy that goes into the subsurface during hydraulic fracturing is sufficient to cause felt earthquakes. The following is a response to those questions. 1) Seismic activity that is related to human activities is generally referred to as “induced seismicity ” or “triggered seismicity. ” Induced seismicity is defined as “seismic events attributable to human activities ” (National Research Council, 2012). The term “triggered seismicity ” is also used to describe situations in which human activities “could potentially ‘trigger ’ large and potentially damaging earthquakes ” (Shemeta et al., 2012). The following discussion uses only the term “induced seismicity ” to refer to seismic activity in which human activity plays a role. 2) Because it uses energy to fracture rocks to release oil or natural gas, hydraulic fracturing does create microseismic events (of a magnitude less than 2.0). Felt earthquake activity (generally greater than a magnitude 3.0) resulting from hydraulic fracturing has been confirmed from only one location in the world (National Research Council, 2012). In the

unknown authors

2013-01-01T23:59:59.000Z

198

Regulation of Hydraulic Fracturing (or lack thereof)  

E-Print Network (OSTI)

: "subsurface emplacement of fluids by well injection." 42 U.S.C. § 300h(d)(1). #12;UIC Program Requirements, EPA has concluded that the injection of hydraulic fracturing fluids into [coalbed methane] wells poses Water Act The federal Safe Drinking Water Act prohibits "underground injection" that is not authorized

Boufadel, Michel

199

MAAP Thermal-Hydraulic Qualification Studies  

Science Conference Proceedings (OSTI)

As a severe accident code, the Modular Accident Analysis Program (MAAP) predicts system response to accident-initiated events. Recent qualification studies demonstrate that MAAP thermal-hydraulic modeling adequately predicts accident sequences before fuel damage occurs. Specifically, MAAP predictions provide a good match with thermal performance trends in test data and independent predictions by other computer programs.

1992-06-01T23:59:59.000Z

200

Rotating Hydraulics and Upstream Basin Circulation  

Science Conference Proceedings (OSTI)

The flow in a source-fed f-plane basin drained through a strait is explored using a single-layer (reduced gravity) shallow-water numerical model that resolves the hydraulic flow within the strait. The steady upstream basin circulation is found to ...

Karl R. Helfrich; Lawrence J. Pratt

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

John Day Tailrace MASS2 Hydraulic Modeling  

DOE Green Energy (OSTI)

Recent biological results for the Juvenile Bypass System at John Jay Lock and Dam have raised concerns about the hydraulic conditions that are created in the tailrace under different project operations. This Memorandum for Record discusses the development and application of a truncated MASS2 model in the John Day tailrace.

Rakowski, Cynthia L.; Richmond, Marshall C.

2003-06-03T23:59:59.000Z

202

Constructing Hydraulic Barriers in Deep Geologic Formations  

Science Conference Proceedings (OSTI)

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

203

Electrically and Hydraulically Rechargeable Zinc-air Battery  

A secondary zinc air battery, which can be either eletrically or hydraulically recharged, is provided with an inventive metal ...

204

Transient Properties of Refractory Castable with Hydraulic Binders  

Science Conference Proceedings (OSTI)

Abstract Scope, Refractory castable with hydraulic binders have widespread application in aluminium casthouses (furnaces, launders, etc.). Their selection is

205

Vehicle hydraulic system that provides heat for passenger compartment  

DOE Patents (OSTI)

A vehicle includes a vehicle housing which defines a passenger compartment. Attached to the vehicle housing is a hydraulic system, that includes a hydraulic fluid which flows through at least one passageway within the hydraulic system. Also attached to the vehicle housing is a passenger compartment heating system. The passenger compartment heating system includes a heat exchanger, wherein a portion of the heat exchanger is a segment of the at least one passageway of the hydraulic system.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2001-01-01T23:59:59.000Z

206

Korean Development of Advanced Thermal-Hydraulic Codes for Water Reactors and HTGRs: Space and Gamma  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics

Hee Cheon No; Sang Jun Ha; Kyung Doo Kim; Hong Sik Lim; Eo Hwak Lee; Hyung Gon Jin

207

Seismic studies of a massive hydraulic fracturing experiment  

DOE Green Energy (OSTI)

During a massive hydraulic fracturing experiment carried out at Fenton Hill, New Mexico, 850 microearthquakes, ranging in magnitudes from -3 to 0, were located reliably using arrival times recorded at a set of 5 downhole geophone stations. A subset of these events were located using an upgraded hodogram technique. The seismicity defines a tabular zone with horizontal extent of 900 m, vertical extent of 800 m, and thickness of 150 m. This zone strikes N340/sup 0/E, and dips 75/sup 0/ to the east; its position indicates that no hydraulic connection between the two predrilled wells could be achieved by the fracturing. The distribution of locations obtained from arrival times shows good agreement with those derived from hodograms. Well constrained fault plane solutions were determined for 26 of the larger microearthquakes observed at a surface seismic net. Most solutions display one nearly vertical nodal plane that strikes close to N - S, and a T axis that trends roughly E - W, in agreement with regional indicators of the least principal stress direction. 9 refs., 6 figs.

House, L.; Keppler, H.; Kaieda, H.

1985-01-01T23:59:59.000Z

208

Thermal conductivity of aqueous foam  

Science Conference Proceedings (OSTI)

Thermal conductivity plays an important part in the response of aqueous foams used as geothermal drilling fluids. The thermal conductivity of these foams was measured at ambient conditions using the thermal conductivity probe technique. Foam densities studied were from 0.03 to 0.2 g/cm/sup 3/, corresponding to liquid volume fractions of the same magnitude. Microscopy of the foams indicated bubble sizes in the range 50 to 300 ..mu..m for nitrogen foams, and 30 to 150 ..mu..m for helium foams. Bubble shapes were observed to be polyhedral at low foam densities and spherical at the higher densities. The measured conductivity values ranged from 0.05 to 0.12 W/m-K for the foams studied. The predicted behavior in foam conductivity caused by a change in the conductivity of the discontinuous gas phase was observed using nitrogen or helium gas in the foams. Analysis of the probe response data required an interpretation using the full intergral solution to the heat conduction equation, since the thermal capacity of the foam was small relative to the thermal mass of the probe. The measurements of the thermal conductivity of the foams were influenced by experimental effects such as the probe input power, foam drainage, and the orientation of the probe and test cell. For nitrogen foams, the thermal conductivity vs liquid volume fraction was observed to fall between predictions based on the parallel ordering and Russell models for thermal conduction in heterogeneous materials.

Drotning, W.D.; Ortega, A.; Havey, P.E.

1982-05-01T23:59:59.000Z

209

Oxygen ion conducting materials  

DOE Patents (OSTI)

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

210

Mechanisms and impact of damage resulting from hydraulic fracturing. Topical report, May 1995-July 1996  

Science Conference Proceedings (OSTI)

This topical report documents the mechanisms of formation damage following hydraulic fracturing and their impact upon gas well productivity. The categories of damage reviewed include absolute or matrix permeability damage, relative permeability alterations, the damage of natural fracture permeability mechanisms and proppant conductivity impairment. Case studies are reviewed in which attempts are made to mitigate each of the damage types. Industry surveys have been conducted to determine the perceptions of the industry on the topic of formation damage following hydraulic fracturing and to identify key formations in which formation damage is a problem. From this information, technical hurdles and new technology needs are identified and estimates are made of the benefits of developing and applying minimum formation damage technology.

Penny, G.S.; Conway, M.W.; Almond, S.W.; Himes, R.; Nick, K.E.

1996-08-01T23:59:59.000Z

211

Normal Conducting CLIC Technology  

Science Conference Proceedings (OSTI)

The CLIC (Compact Linear Collider) multi?lateral study group based at CERN is studying the technology for an electron?positron linear collider with a centre?of?mass energy up to 5 TeV. In contrast to the International Linear Collider (ILC) study which has chosen to use super?conducting cavities with accelerating gradients in the range of 30–40 MV/m to obtain centre?of?mass collision energies of 0.5–1 TeV

Erk Jensen; CLIC Study Team

2006-01-01T23:59:59.000Z

212

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network (OSTI)

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

213

Hydraulic/Shock-Jumps in Protoplanetary Disks  

E-Print Network (OSTI)

In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.

A. C. Boley; R. H. Durisen

2005-10-11T23:59:59.000Z

214

Downstream hydraulic geometry relations: 1. Theoretical development  

E-Print Network (OSTI)

In this study, it is hypothesized that (1) the spatial variation of the stream power of a channel for a given discharge is accomplished by the spatial variation in channel form (flow depth and channel width) and hydraulic variables, including energy slope, flow velocity, and friction, and (2) that the change in stream power is distributed among the changes in flow depth, channel width, flow velocity, slope, and friction, depending on the constraints (boundary conditions) the channel has to satisfy. The second hypothesis is a result of the principles of maximum entropy and minimum energy dissipation or its simplified minimum stream power. These two hypotheses lead to four families of downstream hydraulic geometry relations. The conditions under which these families of relations can occur in field are discussed.

Singh, Vijay P.; Yang, Chih Ted; Deng, Z. Q.

2003-12-04T23:59:59.000Z

215

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

SciTech Connect

Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000°C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

Mehta, P.K.; Persoff, P.; Fox, J.P.

1980-06-01T23:59:59.000Z

216

Thermal-Hydraulic Analysis of Advanced Mixed-Oxide Fuel Assemblies with VIPRE-01  

E-Print Network (OSTI)

Two new fuel assembly designs for light water reactors using advanced mixed-oxide fuels have been proposed to reduce the radiotoxicity of used nuclear fuel discharged from nuclear power plants. The research efforts of this thesis are the first to consider the effects of burnup on advanced mixed-oxide fuel assembly performance and thermal safety margin over an assembly?s expected operational burnup lifetime. In order to accomplish this, a new burnup-dependent thermal-hydraulic analysis methodology has been developed. The new methodology models many of the effects of burnup on an assembly design by including burnup-dependent variations in fuel pin relative power from neutronic calculations, assembly power reductions due to fissile content depletion and core reshuffling, and fuel material thermal-physical properties. Additionally, a text-based coupling method is developed to facilitate the exchange of information between the neutronic code DRAGON and thermal-hydraulic code VIPRE-01. The new methodology effectively covers the entire assembly burnup lifetime and evaluates the thermal-hydraulic performance against ANS Condition I, II, and III events with respect to the minimum departure from nucleate boiling ratio, peak cladding temperatures, and fuel centerline temperatures. A comprehensive literature survey on the thermal conductivity of posed fuel materials with burnup-dependence has been carried out to model the advanced materials in the thermal-hydraulic code VIPRE-01. Where documented conductivity values are not available, a simplified method for estimating the thermal conductivity has been developed. The new thermal conductivity models are based on established FRAPCON-3 fuel property models used in the nuclear industry, with small adjustments having been made to account for actinide additions. Steady-state and transient thermal-hydraulic analyses are performed with VIPRE- 01 for a reference UO2 assembly design, and two advanced mixed-oxide fuel assembly designs using the new burnup-dependent thermal-hydraulic analysis methodology. All three designs maintain a sufficiently large thermal margin with respect to the minimum departure from nucleate boiling ratio, and maximum cladding and fuel temperatures during partial and complete loss-of-flow accident scenarios. The presence of a thin (Am,Zr)O2 outer layer on the fuel pellet in the two advanced mixed-oxide fuel assembly designs increases maximum fuel temperatures during transient conditions, but does not otherwise greatly compromise the thermal margin of the new designs.

Bingham, Adam R.

2009-05-01T23:59:59.000Z

217

Hydraulic system for a ratio change transmission  

DOE Patents (OSTI)

Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

Kalns, Ilmars (Northville, MI)

1981-01-01T23:59:59.000Z

218

Hydraulic Cooling Tower Driver- The Innovation  

E-Print Network (OSTI)

One of the weaknesses of present day cooling tower drives are fan wrecks caused by shaft couplings breaking, gear box malfunctions due to inadequate lubrication, gear tooth wear, and inaccessibility for inspection and routine maintenance. The hydro-drive eliminates these items from the drive train and puts the same electric motor HP at ground level close coupled to a hydraulic pump, filters, and oil reservoir. Hydraulic lines bring oil pressure to the hydraulic motor, which is more than 75% less weight than comparable gear boxes and presents a smooth practically trouble free performance. In this three cell installation, the original 75 horsepower motors and 18’ diameter fans were cooling a total of 14,000 GPM which were CTI tested and 74.7% of capability. The upgrading and retrofit consisted of installing at ground level 100 horse power motors, 22’ diameter fans, 14’ high velocity recovery fan cylinders, “V” PVC splash bars, and high efficiency cellular drift eliminators. Testing after completion indicated a 92% tower now circulating 21,000 GPM instead of the original 14,000.

Dickerson, J. A.

1987-09-01T23:59:59.000Z

219

Conduction and Moisture Diffusion  

Science Conference Proceedings (OSTI)

Table 2   Equivalent physical quantities...conduction Temperature Temperature gradient Heat flux Heat conductivities Resistivities Electric conduction Electric potential Electric field intensity Current density Electric conductivities Resistivities Electrostatics Electric potential Electric field intensity Electric induction, electric...

220

Concrete Electrical Conductivity Test  

Science Conference Proceedings (OSTI)

Concrete Electrical Conductivity Test. Description/Summary: ... Details. Type of software: Virtual concrete electrical conductivity test. Authors: ...

2013-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography  

SciTech Connect

In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

2012-01-10T23:59:59.000Z

222

Free-wheeling hydraulic power mills  

DOE Green Energy (OSTI)

Free-wheeling power plants using free replenishable hydraulic forces of winds and water currents would consist of most or all of the following: fore and after cones to increase throughput; duplex impellers; rotors with dc/ac excitation, ac/dc inverters and dc field coils; stators with ac output of varying frequency, voltage and power; solid-state ac/dc inverters, dc electrolytic cell banks for GH/sub 2/ and GO/sub 2/ production; and neon refrigerators for reducing these to LOX and chilled GH/sub 2/ for ease in shipment or storage.

Hall, F.F.

1978-10-01T23:59:59.000Z

223

Hydraulic Fracturing and Water Use in Dallas, Texas.  

E-Print Network (OSTI)

??Dallas, Texas is located in North Texas and sits above the eastern portion of the Barnett Shale natural gas formation. Hydraulic fracturing, or fracking, was… (more)

Yates, Sarah

2013-01-01T23:59:59.000Z

224

Thermal Hydraulic Optimization of Nuclear Systems [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Hydraulic Thermal Hydraulic Optimization of Nuclear Systems Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Thermal Hydraulic Optimization of Nuclear Systems Accelerator Driven Test Facility Target Accelerator Driven Test Facility Target. Click on image to view larger

225

Modeling Of Hydraulic Fracture Network Propagation In Shale Gas Reservoirs.  

E-Print Network (OSTI)

??The most effective method for stimulating shale gas reservoirs is massive hydraulic fracture treatments. Recent fracture diagnostic technologies such as microseismic technology have shown that… (more)

Ahn, Chong

2012-01-01T23:59:59.000Z

226

Haptic Control of Hydraulic Machinery Using Proportional Valves .  

E-Print Network (OSTI)

??Supplying haptic or force feedback to operators using hydraulic machinery such as excavators has the potential to increase operator capabilities. Haptic, robotic, human-machine interfaces enable… (more)

Kontz, Matthew Edward

2007-01-01T23:59:59.000Z

227

Dynamic analysis and fault diagnosis of a water hydraulic motor.  

E-Print Network (OSTI)

??This research is concerned with condition monitoring and fault diagnosis of the piston of the water hydraulic motor by vibration signal analysis. Vibration signatures are… (more)

Chen, Hanxin.

2008-01-01T23:59:59.000Z

228

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

229

Application of the directional hydraulic fracturing at Berezovskaya Mine  

SciTech Connect

The paper analyzes the experimental research of the directional hydraulic fracturing applied for weakening of rocks at Berezovskaya Mine (Kuznetsk Coal Basin) in 2005-2006.

Lekontsev, Y.M.; Sazhin, P.V. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute for Mining

2008-05-15T23:59:59.000Z

230

Applying and analyzing robust modern control on uncertain hydraulic systems .  

E-Print Network (OSTI)

??In this work modern robust control systems are designed and compared to standard techniques for a hydraulic implement system. The system includes an independent metering… (more)

Bax, Brian

2006-01-01T23:59:59.000Z

231

Optimization of the Cooling Process of a Heavy Hydraulic Turbine ...  

Science Conference Proceedings (OSTI)

Hydraulic turbine lower band castings, of the matensitic stainless steel (Cr13% ... Effect of Si Content on Fracture Behaviour Change by Strain Rate in Si Steels.

232

Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)  

E-Print Network (OSTI)

Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high efficiency hydraulic pump system. Significant energy usage and demand savings are verified for the retrofitted injection molding machine. The savings are realized by electronically attenuating the torque of a positive displacement pump irrespective of the volumetric flow required by the cycle. With help of a power analyzer, power quality issues are addressed. Some voltage distortion was observed due to the harmonic currents introduced by the control algorithm of the high efficiency hydraulic system. A comparative study of electrical energy and demand savings between an injection molding machine retrofitted with the high efficiency hydraulic pump system or variable frequency drive will also be presented.

Sfeir, R. A.; Kanungo, A.; Liou, S.

2005-01-01T23:59:59.000Z

233

Thermal-Hydraulic Analysis of Seed-Blanket Unit Duplex Fuel Assemblies with VIPRE-01  

E-Print Network (OSTI)

One of the greatest challenges facing the nuclear power industry is the final disposition of nuclear waste. To meet the needs of the nuclear power industry, a new fuel assembly design, called DUPLEX, has been developed which provides higher fuel burnups, burns transuranic waste while reducing minor actinides, reduces the long term radiotoxicity of spent nuclear fuel, and was developed for use in current light water reactors. The DUPLEX design considered in this thesis is based on a seed and blanket unit (SBU) configuration, where the seed region contains standard UO2 fuel, and the blanket region contains an inert matrix (Pu,Np,Am)O2-MgO-ZrO2 fuel. The research efforts of this thesis are first to consider the higher burnup effects on DUPLEX assembly thermal-hydraulic performance and thermal safety margin over the assembly’s expected operational lifetime. In order to accomplish this, an existing burnup-dependent thermal-hydraulic methodology for conventional homogeneous fuel assemblies has been updated to meet the modeling needs specific to SBU-type assemblies. The developed framework dramatically expands the capabilities of the latest thermal-hydraulic evaluation framework such that the most promising and unique DUPLEX fuel design can be evaluated. As part of this updated methodology, the posed DUPLEX design is evaluated with respect to the minimum departure from nucleate boiling ratio, peak fuel temperatures for both regions, and the peak cladding temperatures, under ANS Condition I, II, and III transient events with the thermal-hydraulic code VIPRE-01. Due to difficulty in the fabrication and handling of minor actinide dioxides, documented thermal conductivity values for the considered IMF design are unavailable. In order to develop a representative thermal conductivity model for use in VIPRE-01, an extensive literature survey on the thermal conductivity of (Pu,Np,Am)O2-MgO-ZrO2 component materials and a comprehensive review of combinatory models was performed. Using the updated methodology, VIPRE-01 is used to perform steady-state and transient thermal hydraulic analyses for the DUPLEX fuel assembly. During loss-of-flow accident scenarios, the DUPLEX design is shown to meet imposed safety criteria. However, using the most conservative thermal conductivity modeling approach for (Pu,Np,Am)O2-MgO-ZrO2, the blanket region fuel temperatures remain only slightly below the design limit.

McDermott, Patrick 1987-

2012-12-01T23:59:59.000Z

234

Goal 4 Long Life Pavement Rehabilitation Strategies-Rigid: Flexural Fatigue Life of Hydraulic Cement Concrete Beams  

E-Print Network (OSTI)

Flexural Fatigue Life of Hydraulic Cement Concrete Beamsperformance of Fast-Setting Hydraulic Cement Concrete (and Thermal Expansion of Hydraulic Cement Concrete Mixes”,

Kohler, Erwin R.; Ali, Abdikarim; Harvey, John T

2005-01-01T23:59:59.000Z

235

CLMT2 user's guide: A Coupled Model for Simulation of Hydraulic Processes from Canopy to Aquifer Version 1.0  

E-Print Network (OSTI)

equations  for  some  soil  hydraulic properties.  Water are capable to simulate hydraulic processes from  top of Model for Simulation of Hydraulic Processes from Canopy to 

Pan, Lehua

2006-01-01T23:59:59.000Z

236

Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data  

E-Print Network (OSTI)

Catalog of Vadose Zone Hydraulic Properties for the Hanfordand Measurement of the Hydraulic Properties of UnsaturatedEstimation for Soil Hydraulic Properties Using Zero-Offset

2005-01-01T23:59:59.000Z

237

A Darcian integral approximation to interblock hydraulic conductivity means in vertical infiltration  

Science Conference Proceedings (OSTI)

Keywords: Yucca Mountain tuff, elliptic boundary value problem, numerical method, piecewise steady-state flow, simulation model, unsaturated flow

Donald L. Baker

2000-06-01T23:59:59.000Z

238

Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and  

E-Print Network (OSTI)

days to reduce energy use. · The design team is investigating on-site, micro-hydro power by using water

Grether, Gregory

239

Comparison of Laboratory and Field Methods for Determining the Quasi-Saturated Hydraulic Conductivity of Soils  

E-Print Network (OSTI)

and Technology, the Office of Environmental Management, U.S.the Environmental Management Science Program, the Office of

Faybishenko, Boris

1997-01-01T23:59:59.000Z

240

Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture  

DOE Green Energy (OSTI)

A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))

1988-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

P and PI controllers for a nonlinear hydraulic network  

E-Print Network (OSTI)

constraints) arising in industrial applications. Current case study: Grundfos district heating system #12;P" district heating system #12;P and PI controllers for a nonlinear hydraulic network Sept. 20, 2007 Page 4 Results #12;P and PI controllers for a nonlinear hydraulic network Sept. 20, 2007 Page 5 District Heating

De Persis, Claudio

242

Simulation of Dynamic Characteristic for Passive Hydraulic Mount  

Science Conference Proceedings (OSTI)

Dynamic modeling of Passive Hydraulic Engine Mounts (PHEM) is developed with inertia track, decoupler and throttle. Mathematically, the state equations governing vibration isolation behaviors of the PHEMs are presented and solved by means of the lumped ... Keywords: passive hydraulic mount, simulation, test

Zhang Yunxia; Fang Zuhua

2009-08-01T23:59:59.000Z

243

Fold Catastrophe Model of Fracture Propagation of Hydraulic Fracturing  

Science Conference Proceedings (OSTI)

According to energy conservation from the destruction of rock catastrophe, a new calculation method of the length of fracture propagation in hydraulic fracturing is proposed, and assuming the crack extends to approximate ellipse, the width calculation ... Keywords: hydraulic fracture, fold catastrophe, fracture parameters

Zhaowan Chun; Wan Tingting; Ai Chi; Ju Guoshuai

2010-05-01T23:59:59.000Z

244

A New Parameter Identification Method for Hydraulic Fractured Gas Wells  

Science Conference Proceedings (OSTI)

The relaxation search algorithm to identify the parameters of hydraulic fractured gas wells is developed in this paper based on the inductive matrix. According to the optimization theory and parallel computation method, the parameters to be identified ... Keywords: Gas Wells, hydraulic fracturing, formation parameters, parameter identification, historic fitting

Li Tiejun; Guo Dali; Min Chao

2010-12-01T23:59:59.000Z

245

New Experimental Studies of Thermal Hydraulics of Rod Bundles (NESTOR)  

Science Conference Proceedings (OSTI)

The NESTOR project (that is, new experimental studies of thermal hydraulics of rod bundles) is a multiyear collaborative endeavor of the Electric Power Research Institute (EPRI), Electricit de France (EDF), and Commissariat a lEnergie Atomique (CEA). The project is aimed at elucidating thermal-hydraulics unknowns pertaining to axial offset anomaly (AOA) in pressurized water reactor (PWR) cores.

2011-10-26T23:59:59.000Z

246

Integrated Thermal and Hydraulic Analysis of Distillation Columns  

E-Print Network (OSTI)

This paper outlines the implementation of column thermal and hydraulic analysis in a simulation environment. The methodology is described using a separations example. Column Thermal Analysis has been discussed in the literature extensively. The paper outlines how bringing together the column thermal and hydraulics analysis provides significant additional insights to help screen the options for distillation column revamps.

Samant, K.; Sinclair, I.; Keady, G.

2002-04-01T23:59:59.000Z

247

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers  

E-Print Network (OSTI)

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers by Tom Myers Abstract Hydraulic fracturing of deep shale beds to develop natural gas has caused concern regarding the potential and preferential flow through fractures--could allow the transport of contaminants from the fractured shale

248

A finite element model for three dimensional hydraulic fracturing  

Science Conference Proceedings (OSTI)

This paper is devoted to the development of a model for the numerical simulation of hydraulic fracturing processes with 3d fracture propagation. It takes into account the effects of fluid flow inside the fracture, fluid leak-off through fracture walls ... Keywords: boundary elements, finite elements, hydraulic fracturing, petroleum recovery

Philippe R. B. Devloo; Paulo Dore Fernandes; Sônia M. Gomes; Cedric Marcelo Augusto Ayala Bravo; Renato Gomes Damas

2006-11-01T23:59:59.000Z

249

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network (OSTI)

Motion for a New Model of Hydraulic Fracture With an Induced1987. Hydrodynamics of a Vertical Hydraulic Fracture, Earthand Fluid Flow in the Hydraulic Fracture Pmess, (PhD.

Nelson, J.T.

2009-01-01T23:59:59.000Z

250

LABORATORY INVESTIGATIONS ON THE HYDRAULIC AND THERMOMECHANICAL PROPERTIES OF FRACTURED CRYSTALLINE ROCKS  

E-Print Network (OSTI)

INVESTIGATIONS ON THE HYDRAULIC AND THERMOMECHANICALdetermination of the hydraulic p r o p e r t i e s of f r ainfluence of thermal and hydraulic stresses. The success of

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

251

The Integration of an Electro-hydraulic Manipulator Arm into a Self-contained Mobile Delivery System  

Science Conference Proceedings (OSTI)

The Portable Articulated Arm Deployment System (PAADS) is a remotely controlled vehicle for delivering a tele-operated electro-hydraulic manipulator arm to a field deployable location. The self-contained system includes a boom vehicle with long reach capability, an electro-hydraulic manipulator arm, closed circuit television (CCTV) systems, and onboard tools. On board power systems consist of a self contained, propane fired 8 KW generator and an air compressor for pneumatic tools. The generator provides the power to run the air compressor as well as provide power to operate the 110 VAC auxiliary lighting system for the video cameras. The separate control console can be located up to 500 ft from the vehicle. PAADS is a fully integrated system, containing all equipment required to perform complex field operations. Hydraulic integration of the manipulator arm into the vehicle hydraulic drive system was necessary to eliminate the tether management of hoses, which extended vehicle operating range, minimized hydraulic pressure losses, and provided the opportunity to go to a radio frequency (RF) control system in the future, thereby eliminating the control cable. This paper presents the key decision points during system development. Emphasis is placed on ease of operator control and not on an intelligent machine approach. In addition, emphasis is placed on the philosophy of remote operation based on sound principles on integration.

Borland, Mark Wilson; Berry, Stephen Michael

1999-04-01T23:59:59.000Z

252

The Integration of an Electro-Hydraulic Manipulator Arm into a Self-Contained Mobile Delivery System  

SciTech Connect

The Portable Articulated Arm Deployment System (PAADS) is a remotely controlled vehicle for delivering a tele-operated electro-hydraulic manipulator arm to a field-deployable location. The self-contained system includes a boom vehicle with long reach capability, an electro-hydraulic manipulator arm, closed circuit television (CCTV) systems, and onboard tools. On board power systems consist of a self-contained, propane-fired 8-KW generator and an air compressor for pneumatic tools. The generator provides the power to run the air compressor as well as power to operate the 110-VAC auxiliary lighting system for the video cameras. The separate control console can be located up to 500 ft from the vehicle. PAADS is a fully integrated system, containing all equipment required to perform complex field operations. Hydraulic integration of the manipulator arm into the vehicle hydraulic drive system was necessary to eliminate the tether management of hoses, which extended vehicle operating range, minimized hydraulic pressure losses, and provided the opportunity to go to a radio frequency (RF) control system in the future, thereby eliminating the control cable. This paper presents the key decision points during system development. Emphasis is placed on ease of operator control and not on an intelligent machine approach. In addition, emphasis is placed on the philosophy of remote operation based on sound principles of integration.

M. Borland; S. M. Berry

1999-04-01T23:59:59.000Z

253

Application of microseismic technology to hydraulic fracture diagnostics: GRI/DOE Field Fracturing Multi-Sites Project  

SciTech Connect

The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment as well as surface facilities and equipment conducive to acquiring high-quality data. It is anticipated that the project`s research advancements will provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response. The M-Site Project is jointly sponsored by the Gas Research Institute (GRI) and the US Department of Energy (DOE). The site developed for M-Site hydraulic fracture experimentation is the former DOE Multiwell Experiment (MWX) site located near Rifle, Colorado. The MWX project drilled three closely-spaced wells (MWX-1, MWX-2 and MWX-3) which were the basis for extensive reservoir analyses and tight gas sand characterizations in the blanket and lenticular sandstone bodies of the Mesaverde Group. The research results and background knowledge gained from the MWX project are directly applicable to research in the current M-Site Project.

Wilmer, R. [CER Corp., Las Vegas, NV (United States); Warpinski, N.R. [Sandia National Laboratories (United States); Wright, T.B. [Resources Engineering Systems (United States); Branagan, P.T. [Branagan & Associates (United States); Fix, J.E. [Fix & Associates (United States)

1995-06-01T23:59:59.000Z

254

THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.  

SciTech Connect

BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.

2003-05-04T23:59:59.000Z

255

Neutron Imaging Reveals Internal Plant Hydraulic Dynamics  

SciTech Connect

Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

Warren, Jeffrey [ORNL; Bilheux, Hassina Z [ORNL; Kang, Misun [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-Lin [ORNL; Horita, Jusuke [ORNL; Perfect, Edmund [ORNL

2013-01-01T23:59:59.000Z

256

RADIO RANGING DEVICE  

DOE Patents (OSTI)

A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

Nieset, R.T.

1961-05-16T23:59:59.000Z

257

Thermal Hydraulics of Sodium-Cooled Fast Reactors: Key Design and Safety Issues and Highlights  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Fission Reactors; Thermal Hydraulics

Hisashi Ninokata; Hideki Kamide

258

Method for valve seating control for an electro-hydraulic engine valve  

DOE Patents (OSTI)

Valve lift in an internal combustion engine is controlled by an electro-hydraulic actuation mechanism including a selectively actuable hydraulic feedback circuit.

Sun, Zongxuan (Plymouth, MN)

2011-01-11T23:59:59.000Z

259

Replacement of petroleum based hydraulic fluids with a soybean-based alternative  

DOE Green Energy (OSTI)

Despite the best preventative measures, ruptured hoses, spills and leaks occur with use of all hydraulic equipment. Although these releases do not usually produce a RCRA regulated waste, they are often a reportable occurrence. Clean-up and subsequent administrative procedure involves additional costs, labor and work delays. Concerns over these releases, especially related to Sandia National Laboratories (SNL) vehicles hauling waste on public roads prompted Fleet Services (FS) to seek an alternative to the standard petroleum based hydraulic fluid. Since 1996 SNL has participated in a pilot program with the University of Iowa (UNI) and selected vehicle manufacturers, notably John Deere, to field test hydraulic fluid produced from soybean oil in twenty of its vehicles. The vehicles included loaders, graders, sweepers, forklifts and garbage trucks. Research was conducted for several years at UNI to modify and market soybean oils for industrial uses. Soybean oil ranks first in worldwide production of vegetable oils (29%), and represents a tremendous renewable resource. Initial tests with soybean oil showed excellent lubrication and wear protection properties. Lack of oxidative stability and polymerization of the oil were concerns. These concerns were being addressed through genetic alteration, chemical modification and use of various additives, and the improved lubricant is in the field testing stage.

Rose, B.; Rivera, P.

1998-05-01T23:59:59.000Z

260

Combined hydraulic and black-box models for flood forecasting in urban drainage systems  

E-Print Network (OSTI)

Abstract: Rapid urbanization and its implications for both water quality issues and floods have increased the need for modeling of urban drainage systems. Many operational models are based on deterministic solutions of hydraulic equations. Improving such models by adding a “black-box ” component to deal with any systematic structure in the residuals is proposed. In this study, a conventional deterministic stormwater drainage network model is first developed for a rapidly developing catchment using the HYDROWORKS ?now called Infoworks ? package, from Wallingford Software in the United Kingdom. However, despite the generally satisfactory results, the HYDROWORKS model tended to underestimate the flow volume. In this paper, a black-box or “systems ” model is fitted to the hydraulic urban drainage model in order to improve its overall efficiency. A study was conducted of suitable black-box models, which included the nonlinear artificial neural network model ?ANN?, and the linear time series models of Box and Jenkins in 1976. They were added to either the output ?in simulation mode ? or, in updating mode, to the residuals ?i.e., difference between modeled and measured output ? of the deterministic hydraulic model. The updating procedure provided a considerable improvement in the overall model efficiency for different lead-time forecasting. In simulation mode, however, only the nonlinear ANN model gave better performance in calibration, and a slight improvement in validation.

Michael Bruen; M. Asce; Jianqing Yang

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells  

E-Print Network (OSTI)

Frequently a discrepancy is found between the stimulated shale volume (SSV) estimated from production data and the SSV expected from injected water and proppant volume. One possible explanation is the presence of a fracture network, often termed fracture complexity, that may have been opened or reopened during the hydraulic fracturing operation. The main objective of this work is to investigate the role of fracture complexity in resolving the apparent SSV discrepancy and to illustrate whether the presence of reopened natural fracture network can be observed in pressure and production data of shale gas wells producing from two shale formations with different well and reservoir properties. Homogeneous, dual porosity and triple porosity models are investigated. Sensitivity runs based on typical parameters of the Barnett and the Horn River shale are performed. Then the field data from the two shales are matched. Homogeneous models for the two shale formations indicate effective infinite conductivity fractures in the Barnett well and only moderate conductivity fractures in the Horn River shale. Dual porosity models can support effectively infinite conductivity fractures in both shale formations. Dual porosity models indicate that the behavior of the Barnett and Horn River shale formations are different. Even though both shales exhibit apparent bilinear flow behavior the flow behaviors during this trend are different. Evidence of this difference comes from comparing the storativity ratio observed in each case to the storativity ratio estimated from injected fluid volumes during hydraulic fracturing. In the Barnett shale case similar storativity ratios suggest fracture complexity can account for the dual porosity behavior. In the Horn River case, the model based storativity ratio is too large to represent only fluids from hydraulic fracturing and suggests presence of existing shale formation microfractures.

Apiwathanasorn, Sippakorn

2012-08-01T23:59:59.000Z

262

Prototype Data Models and Data Dictionaries for Hanford Sediment Physical and Hydraulic Properties  

Science Conference Proceedings (OSTI)

The Remediation Decision Support (RDS) project, managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC), has been compiling physical and hydraulic property data and parameters to support risk analyses and waste management decisions at Hanford. In FY09 the RDS project developed a strategic plan for a physical and hydraulic property database. This report documents prototype data models and dictionaries for these properties and associated parameters. Physical properties and hydraulic parameters and their distributions are required for any type of quantitative assessment of risk and uncertainty associated with predictions of contaminant transport and fate in the subsurface. The central plateau of the Hanford Site in southeastern Washington State contains most of the contamination at the Site and has up to {approx}100 m of unsaturated and unconsolidated or semi-consolidated sediments overlying the unconfined aquifer. These sediments contain a wide variety of contaminants ranging from organic compounds, such as carbon tetrachloride, to numerous radionuclides including technetium, plutonium, and uranium. Knowledge of the physical and hydraulic properties of the sediments and their distributions is critical for quantitative assessment of the transport of these contaminants in the subsurface, for evaluation of long-term risks and uncertainty associated with model predictions of contaminant transport and fate, and for evaluating, designing, and operating remediation alternatives. One of the goals of PNNL's RDS project is to work with the Hanford Environmental Data Manager (currently with CHPRC) to develop a protocol and schedule for incorporation of physical property and hydraulic parameter datasets currently maintained by PNNL into HEIS. This requires that the data first be reviewed to ensure quality and consistency. New data models must then be developed for HEIS that are approved by the HTAG that oversees HEIS development. After approval, these new data models then need to be implemented in HEIS by the EDM before there is an actual repository for the data. This document summarizes modifications to previously developed data models, and new data models and data dictionaries for physical and hydraulic property data and parameters to be transferred to HEIS. A prototype dataset that conforms to the specifications of these recommended data models has been identified and processed, and is ready for transfer to CHPRC for inclusion in HEIS. Additional datasets are planned for transfer from PNNL to CHPRC in FY11.

Rockhold, Mark L.; Last, George V.; Middleton, Lisa A.

2010-09-30T23:59:59.000Z

263

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: High precision earthquake locations and subsurface velocity structure provide potential insights into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir management. We analyze 16 years of seismicity to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously

264

Code of Conduct  

NLE Websites -- All DOE Office Websites (Extended Search)

Governance » Governance » Ethics, Accountability » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Code of Conduct (505) 667-7506 Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our work, and mutual respect and teamwork. LANL must demonstrate to customers and the public that the Laboratory is accountable for its actions and that it conducts business in a trustworthy manner. What is LANL's Code of Conduct? Charlie McMillan 1:46 Laboratory Director Charlie McMillan introduces the code LANL's Code of Conduct is designed to help employees recognize and

265

Hydraulic and Clean-in-Place Evaluations for a 12.5-cm Annular Centrifugal Contactor at INL  

Science Conference Proceedings (OSTI)

Hydraulic and Clean-in-Place Evaluations for a 12.5 cm Annular Centrifugal Contactor at the INL Troy G. Garn, Dave H. Meikrantz, Nick R. Mann, Jack D. Law, Terry A. Todd Idaho National Laboratory Commercially available, Annular Centrifugal Contactors (ACC) are currently being evaluated for processing dissolved nuclear fuel solutions to selectively partition integrated elements using solvent extraction technologies. These evaluations include hydraulic and clean-in-place (CIP) testing of a commercially available 12.5 cm unit. Data from these evaluations is used to support design of future nuclear fuel reprocessing facilities. Hydraulic testing provides contactor throughput performance data on two-phase systems for a wide range of operating conditions. Hydraulic testing results on a simple two-phase oil and water system followed by a 30 % Tributyl phosphate in N-dodecane / nitric acid pair are reported. Maximum total throughputs for this size contactor ranged from 20 to 32 liters per minute without significant other phase carryover. A relatively new contactor design enhancement providing Clean-in-Place capability for ACCs was also investigated. Spray nozzles installed into the central rotor shaft allow the rotor internals to be cleaned, offline. Testing of the solids capture of a diatomaceous earth/water slurry feed followed by CIP testing was performed. Solids capture efficiencies of >95% were observed for all tests and short cold water cleaning pulses proved successful at removing solids from the rotor.

Troy G. Garn; David H. Meikrantz; Nick R. Mann; Jack D. Law; Terry A. Todd

2008-09-01T23:59:59.000Z

266

Control of Test Conduct  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Revision 1 Effective June 2008 Control of Test Conduct Prepared by Electric Transportation Applications Prepared by: Date: Garrett P....

267

UNPERMITTED INJECTION OF DIESEL FUELS THROUGH HYDRAULIC FRACTURING IS A VIOLATION...  

E-Print Network (OSTI)

Thank you for the opportunity to provide comments on the Environmental Protection Agency’s (“EPA”) development of UIC Class II permitting guidance for hydraulic fracturing activities that use diesel fuels in fracturing fluids. The Natural Resources Defense Council (“NRDC”) is a national, non-profit legal and scientific organization with 1.3 million members and activists worldwide. Since its founding in 1970, NRDC has been active on a wide range of environmental issues, including fossil fuel extraction and drinking water protection. NRDC is actively engaged in issues surrounding oil and gas development and hydraulic fracturing, particularly in the Rocky Mountain West and Marcellus Shale regions. Earthjustice is a non-profit public interest law firm originally founded in 1971. Earthjustice works to protect natural resources and the environment, and to defend the right of all people to a healthy environment. Earthjustice is actively addressing threats to air, water, public health and wildlife from oil and gas development and hydraulic fracturing in the Marcellus Shale and Rocky Mountain regions. Founded in 1892, the Sierra Club works to protect communities, wild places, and the planet itself. With 1.4 million members and activists worldwide, the Club works to provide healthy communities in which to live, smart energy solutions to combat global warming, and an enduring legacy of for America’s wild

Ariel Rios Building

2011-01-01T23:59:59.000Z

268

Long range dependence  

Science Conference Proceedings (OSTI)

The notion of long range dependence is discussed from a variety of points of view, and a new approach is suggested. A number of related topics is also discussed, including connections with non-stationary processes, with ergodic theory, self-similar processes ... Keywords: large deviations, long range dependence, rare events

Gennady Samorodnitsky

2007-01-01T23:59:59.000Z

269

Invert Effective Thermal Conductivity Calculation  

SciTech Connect

The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m {center_dot} K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations.

M.J. Anderson; H.M. Wade; T.L. Mitchell

2000-03-17T23:59:59.000Z

270

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test  

E-Print Network (OSTI)

Unconventional gas has become an important resource to help meet our future energy demands. Although plentiful, it is difficult to produce this resource, when locked in a massive sedimentary formation. Among all unconventional gas resources, tight gas sands represent a big fraction and are often characterized by very low porosity and permeability associated with their producing formations, resulting in extremely low production rate. The low flow properties and the recovery factors of these sands make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a hydraulic fracture is to create a long, highly conductive fracture to facilitate the gas flow from the reservoir to the wellbore to obtain commercial production rates. Fracture conductivity depends on several factors, such as like the damage created by the gel during the treatment and the gel clean-up after the treatment. This research is focused on predicting more accurately the fracture conductivity, the gel damage created in fractures, and the fracture cleanup after a hydraulic fracture treatment under certain pressure and temperature conditions. Parameters that alter fracture conductivity, such as polymer concentration, breaker concentration and gas flow rate, are also examined in this study. A series of experiments, using a procedure of “dynamical fracture conductivity test”, were carried out. This procedure simulates the proppant/frac fluid slurries flow into the fractures in a low-permeability rock, as it occurs in the field, using different combinations of polymer and breaker concentrations under reservoirs conditions. The result of this study provides the basis to optimize the fracturing fluids and the polymer loading at different reservoir conditions, which may result in a clean and conductive fracture. Success in improving this process will help to decrease capital expenditures and increase the production in unconventional tight gas reservoirs.

Correa Castro, Juan

2011-05-01T23:59:59.000Z

271

CONDUCT OF OPERATIONS (CO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONDUCT OF OPERATIONS (CO) CONDUCT OF OPERATIONS (CO) OBJECTIVE TA-55 SST Facility NNSA ORR Implementation Plan 1 1 CO.1 The formality and discipline of operations is adequate to conduct work safely and programs are inplace to maintain this formality and discipline. (Core Requirement 13) Criteria 1. Programmatic elements of conduct of operations are in place for TA-55 SST operations. 2. The TA-55 SST operations personnel adequately demonstrate the principles of conduct ofoperations requirements during the shift performance period. Approach Record Reviews: Review procedures and other facility documents to verify compliance with conduct of operations principles. Interviews: Interview a sampling of the TA-55 SST associated personnel to validate their understanding of the conduct of operations principles (e.g., procedure usage,

272

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network (OSTI)

S, and Flegal AR 2008. Mercury in the San Francisco Estuary.may 2010 Mercury-Contaminated Hydraulic Mining Debris in Sancontaminants such as ele- mental mercury and cyanide used in

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

273

Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Fracturing Data Collection Tools Improve Environmental Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection April 18, 2013 - 12:03pm Addthis Washington, DC -Two data collection tools specifically developed for hydraulic fracturing are available to help regulatory agencies monitor drilling and completion operations and enhance environmental protection. Developed with support from the U.S. Department of Energy's Office of Fossil Energy (FE), the Risk Based Data Management System (RBDMS) and FracFocus chemical disclosure registry provide a way for industry professionals, regulatory agencies and the general public to more easily access information on oil and natural gas activities. These reporting and

274

Hydraulically Drained Flows in Rotating Basins. Part II: Steady Flow  

Science Conference Proceedings (OSTI)

The slow, horizontal circulation in a deep, hydraulically drained basin is discussed within the context of reduced-gravity dynamics. The basin may have large topographic variations and is fed from above or from the sides by mass sources. ...

Lawrence J. Pratt

1997-12-01T23:59:59.000Z

275

Hydraulic Physical Modeling and Observations of a Severe Gap Wind  

Science Conference Proceedings (OSTI)

Strong gap winds in Howe Sound, British Columbia, are simulated using a small-scale physical model. Model results are presented and compared with observations recorded in Howe Sound during a severe gap wind event in December 1992. Hydraulic ...

Timothy D. Finnigan; Jason A. Vine; Peter L. Jackson; Susan E. Allen; Gregory A. Lawrence; Douw G. Steyn

1994-12-01T23:59:59.000Z

276

Adaptive control of hydraulic shift actuation in an automatic transmission  

E-Print Network (OSTI)

A low-order dynamic model of a clutch for hydraulic control in an automatic transmission is developed by separating dynamics of the shift into four regions based on clutch piston position. The first three regions of the ...

Thornton, Sarah Marie

2013-01-01T23:59:59.000Z

277

Hydraulic Control of Flows with Nonuniform Potential Vorticity  

Science Conference Proceedings (OSTI)

The hydraulics of flow contained in a channel and having nonuniform potential vorticity is considered from a general standpoint. The channel cross section is rectangular and the potential vorticity is assumed to be prescribed in terms of the ...

Lawrence J. Pratt; Laurence Armi

1987-11-01T23:59:59.000Z

278

On-line hydraulic state prediction for water distribution systems  

E-Print Network (OSTI)

This paper describes and demonstrates a method for on?line hydraulic state prediction in urban water networks. The proposed method uses a Predictor?Corrector (PC) approach in which a statistical data?driven algorithm is ...

Whittle, Andrew

279

Hydraulically actuated gas exchange valve assembly and engine using same  

DOE Patents (OSTI)

An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

Carroll, Thomas S. (Peoria, IL); Taylor, Gregory O. (Hinsdale, IL)

2002-09-03T23:59:59.000Z

280

Generalized Conditions for Hydraulic Criticality of Oceanic Overflows  

Science Conference Proceedings (OSTI)

Two methods for assessing the hydraulic criticality of an observed or modeled overflow are discussed. The methods are valid for single-layer deep flows with arbitrary potential vorticity and cross section. The first method is based on a purely ...

Larry Pratt; Karl Helfrich

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P.Cement Manufacture from Oil Shale, U.S. Patent 2,904,445,203 (1974), E. D. York, Amoco Oil Co. , letter to J, P. Fox,

Mehta, P.K.

2012-01-01T23:59:59.000Z

282

Steady state thermal hydraulic analysis of hydride fueled BWRs  

E-Print Network (OSTI)

(cont.) Since the results obtained in the main body of the analysis account only for thermal-hydraulic constraints, an estimate of the power reduction due to the application of neutronic constraints is also performed. This ...

Ferroni, Paolo, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

283

Multiphase Flow Dynamics 4: Nuclear Thermal Hydraulics, 1st edition  

Science Conference Proceedings (OSTI)

Volume 4 of the successful book package "Multiphase Flow" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring ...

Nikolay I. Kolev

2009-06-01T23:59:59.000Z

284

Modeling of Hydraulically Controlled Exchange Flow in the Bosphorus Strait  

Science Conference Proceedings (OSTI)

Recent hydrographic observations obtained in the Bosphorus Strait illustrate several features of the flow that may be related with the internal hydraulics. A two-layer numerical model indicates that the two-way exchange flow may indeed be subject ...

Temel Oguz; Emin Özsoy; Mohammed A. Latif; Halil I. Sur; Ümit Ünlüata

1990-07-01T23:59:59.000Z

285

Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Fracturing Data Collection Tools Improve Environmental Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection April 18, 2013 - 12:03pm Addthis Washington, DC -Two data collection tools specifically developed for hydraulic fracturing are available to help regulatory agencies monitor drilling and completion operations and enhance environmental protection. Developed with support from the U.S. Department of Energy's Office of Fossil Energy (FE), the Risk Based Data Management System (RBDMS) and FracFocus chemical disclosure registry provide a way for industry professionals, regulatory agencies and the general public to more easily access information on oil and natural gas activities. These reporting and

286

Is the Faroe Bank Channel Overflow Hydraulically Controlled?  

Science Conference Proceedings (OSTI)

The overflow of dense water from the Nordic Seas through the Faroe Bank Channel (FBC) has attributes suggesting hydraulic control—primarily an asymmetry across the sill reminiscent of flow over a dam. However, this aspect has never been confirmed ...

James B. Girton; Lawrence J. Pratt; David A. Sutherland; James F. Price

2006-12-01T23:59:59.000Z

287

Part-Load Flow and Hydraulic Stability of Centrifugal Pumps  

Science Conference Proceedings (OSTI)

Replacement energy costs for outages of large plants caused by feedpump problems amount to more than $400 million annually. Laboratory tests were performed to increase understanding of the physical mechanisms responsible for unstable performance curves and hydraulic excitation forces that can lead to failure. Tentative guidelines have been established for the selection of hydraulic design parameters.Background The size and number of fossil-fired generating ...

1992-03-01T23:59:59.000Z

288

Integrated hydraulic cooler and return rail in camless cylinder head  

SciTech Connect

An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

Marriott, Craig D. (Clawson, MI); Neal, Timothy L. (Ortonville, MI); Swain, Jeff L. (Flushing, MI); Raimao, Miguel A. (Colorado Springs, CO)

2011-12-13T23:59:59.000Z

289

Gravity-free hydraulic jumps and metal femtocups  

E-Print Network (OSTI)

Hydraulic jumps created by gravity are seen every day in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity, by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, we show that this leads to solid femtolitre cups of gold, silver, copper, niobium and tin.

Rama Govindarajan; Manikandan Mathur; Ratul DasGupta; N. R. Selvi; Neena Susan John; G. U. Kulkarni

2006-10-03T23:59:59.000Z

290

Optimal power management for a hydraulic hybrid delivery truck  

E-Print Network (OSTI)

Hydraulic hybrid propulsion and energy storage components demonstrate characteristics that are very different from their electric counterparts, thus requiring unique control strategies. This paper presents a methodology for developing a power management strategy tailored specifically to a parallel Hydraulic Hybrid Vehicle (HHV) configured for a medium-size delivery truck. The Hydraulic Hybrid Vehicle is modelled in the MATLAB/SIMULINK environment to facilitate system integration and control studies. A Dynamic Programming (DP) algorithm is used to obtain optimal control actions for gear shifting and power splitting bet ween the engine and the hydraulic motor over a representative urban driving schedule. Features of optimal trajectories are then studied to derive i mplementable rules. System behaviour demonstrates that the new control strategy takes advantage of high power density and efficiency characteristics of hydraulic components, and minimizes disadvantages of low energy density, to achieve enhanced overall efficiency. Simulation results indicate that the potential for fuel economy improvement of medium trucks with hydraulic hybrid propulsion can be as high as 48 %. 1

Bin Wu; Chan-chiao Lin; Zoran Filipi; Huei Peng

2004-01-01T23:59:59.000Z

291

Process management using component thermal-hydraulic function classes  

DOE Patents (OSTI)

A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

Morman, James A. (Woodridge, IL); Wei, Thomas Y. C. (Downers Grove, IL); Reifman, Jaques (Western Springs, IL)

1999-01-01T23:59:59.000Z

292

Process management using component thermal-hydraulic function classes  

DOE Patents (OSTI)

A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

Morman, J.A.; Wei, T.Y.C.; Reifman, J.

1999-07-27T23:59:59.000Z

293

Electrical vs. Hydraulic Rock Types in Clastic Reservoirs: Pore-Scale Understanding Verified with Field Observations in the Gulf of Mexico, U.S.  

E-Print Network (OSTI)

with Field Observations in the Gulf of Mexico, U.S. Chicheng Xu*, Carlos Torres-VerdĂ­n, and Shuang Gao of turbidite oil reservoir in the Gulf of Mexico shows that inclusion of resistivity logs in the classification oil reservoir in the Gulf of Mexico, US. Electrical and Hydraulic Conductivity Models In a porous rock

Torres-VerdĂ­n, Carlos

294

Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography  

E-Print Network (OSTI)

method, Water Resources Research 36 (8), 2095-2105 Yeh, T. -determine the water saturation. However, Yeh at al. , 2000Yeh (2005), Characterization of aquifer heterogeneity using transient hydraulic tomography, Water

Brauchler, R.

2012-01-01T23:59:59.000Z

295

High conductance surge cable  

DOE Patents (OSTI)

An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

1998-12-08T23:59:59.000Z

296

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation  

SciTech Connect

This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field�s main producers, and the chemical stimulation of target well 27-15.

Rose, Peter Eugene [Energy and Geoscience Institute at the Univerity of Utah] [Energy and Geoscience Institute at the Univerity of Utah

2013-04-15T23:59:59.000Z

297

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation  

SciTech Connect

This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field�������¢����������������s main producers, and the chemical stimulation of target well 27-15.

Rose, Peter Eugene [Energy and Geoscience Institute at the University of Utah] [Energy and Geoscience Institute at the University of Utah

2013-04-15T23:59:59.000Z

298

Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

2009-10-01T23:59:59.000Z

299

Thermally Conductive Graphite Foam  

oriented graphite planes, similar to high performance carbon fibers, which have been estimated to exhibit a thermal conductivity greater than 1700 ...

300

Research Conduct Policies  

Office of Science (SC) Website

Research Conduct Policies Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB)...

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrodynamics of a vertical hydraulic fracture  

DOE Green Energy (OSTI)

We have developed a numerical algorithm, HUBBERT, to simulate the hydrodynamics of a propagating vertical, rectangular fracture in an elastic porous medium. Based on the IFD method, this algorithm assumes fracture geometry to be prescribed. The breakdown and the creation of the incipient fracture is carried out according to the Hubbert-Willis theory. The propagation of the fracture is based on the criterion provided by Griffith, based on energy considerations. The deformation properties of the open fracture are based on simple elasticity solutions. The fracture is assumed to have an elliptical shape to a distance equal to the fracture height, beyond which the shape is assumed to be parallel plate. A consequence of Griffith's criterion is that the fracture must propagate in discrete steps. The parametric studies carried out suggest that for a clear understanding of the hydrodynamics of the hydraulic fracture many hitherto unrecognized parameters must be better understood. Among these parameters one might mention, efficiency, aperture of the newly formed fracture, stiffness of the newly formed fracture, relation between fracture aperture and permeability, and well bore compliance. The results of the studies indicate that the patterns of pressure transients and the magnitudes of fracture length appear to conform to field observations. In particular, the discrete nature of fracture propagation as well as the relevant time scales of interest inferred from the present work seem to be corroborated by seismic monitoring in the field. The results suggest that the estimation of least principal stress can be reliably made either with shut in data or with reinjection data provided that injection rates are very small.

Narasimhan, T.N.

1987-03-24T23:59:59.000Z

302

Hydraulic Permeability of Resorcinol-Formaldehyde Resin  

SciTech Connect

An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing the oxygenated simulant into the feed tank. The dissolved oxygen (DO) concentration of the recirculating simulant was monitored, and the amount of oxygen that reacted with the resin was determined from the change in the DO concentration of the recirculating simulant solution. Prior to hydraulic testing the resin for runs 2 and 3 was covered with the simulant solution and irradiated in a spent fuel element at the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Both batches of resin were irradiated to a total gamma dose of 177 Mrad, but the resin for run 2 reached a maximum temperature during irradiation of 51 C, while the resin for run 3 reached a temperature of 38 C. The different temperatures were the result of the operating status of HFIR at the time of the irradiation and were not part of the test plan; however, the results clearly show the impact of the higher-temperature exposure during irradiation. The flow rate and pressure drop data from the test loop runs show that irradiating the RF resin reduces both the void fraction and the permeability of the resin bed. The mechanism for the reduction in permeability is not clear because irradiation increases the particle size of the resin beads and makes them deform less under pressure. Microscopic examination of the resin beads shows that they are all smooth regular spheres and that irradiation or oxygen uptake did not change the shape of the beads. The resin reacts rapidly with DO in the simulant solution, and the reaction with oxygen reduces the permeability of a bed of new resin by about 10% but has less impact on the permeability of irradiated resin. Irradiation increases the toughness of the resin beads, probably by initiating cross-linking reactions in them. Oxygen uptake reduces the crush strength of both new and irradiated resin; however, the pressures that caused the beads to crush are much higher than would be expected during the operation of an ion exchange column. There was no visible evidence of broken beads in any of the resin samples taken from the test loop. Reaction with oxygen red

Taylor, Paul Allen [ORNL

2010-01-01T23:59:59.000Z

303

Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models  

SciTech Connect

Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

2008-01-01T23:59:59.000Z

304

Electrically conductive diamond electrodes  

DOE Patents (OSTI)

An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

Swain, Greg (East Lansing, MI); Fischer, Anne (Arlington, VA),; Bennett, Jason (Lansing, MI); Lowe, Michael (Holt, MI)

2009-05-19T23:59:59.000Z

305

Process management using component thermal-hydraulic function classes  

DOE Patents (OSTI)

A process management expert system for a nuclear, chemical or other process is effective following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. The search process is based upon mass, momentum and energy conservation principles so that qualitative thermal-hydraulic fundamental principles are satisfied for new system configurations. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

Morman, James A.; Wei, Thomas Y.C.; Reifman, Jaques

1997-12-01T23:59:59.000Z

306

RADIO RANGING DEVICE  

DOE Patents (OSTI)

A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

Bogle, R.W.

1960-11-22T23:59:59.000Z

307

High dynamic range imaging  

Science Conference Proceedings (OSTI)

Current display devices can display only a limited range of contrast and colors, which is one of the main reasons that most image acquisition, processing, and display techniques use no more than eight bits per color channel. This course outlines recent ...

Paul Debevec; Erik Reinhard; Greg Ward; Sumanta Pattanaik

2004-08-01T23:59:59.000Z

308

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test  

E-Print Network (OSTI)

Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process is to increase the conductivity of the reservoir by the creation of fractures deep into the formation, changing the flow pattern from radial to linear flow. The dynamic conductivity test was used for this research to evaluate the effect of closure stress, temperature, proppant concentration, and flow back rates on fracture conductivity. The objective of performing a dynamic conductivity test is to be able to mimic actual field conditions by pumping fracturing fluid/proppant slurry fluid into a conductivity cell, and applying closure stress afterwards. In addition, a factorial design was implemented in order to determine the main effect of each of the investigated factors and to minimize the number of experimental runs. Due to the stochastic nature of the dynamic conductivity test, each experiment was repeated several times to evaluate the consistency of the results. Experimental results indicate that the increase in closure stress has a detrimental effect on fracture conductivity. This effect can be attributed to the reduction in fracture width as closure stress was increased. Moreover, the formation of channels at low proppant concentration plays a significant role in determining the final conductivity of a fracture. The presence of these channels created an additional flow path for nitrogen, resulting in a significant increase in the conductivity of the fracture. In addition, experiments performed at high temperatures and stresses exhibited a reduction in fracture conductivity. The formation of a polymer cake due to unbroken gel dried up at high temperatures further impeded the propped conductivity. The effect of nitrogen rate was observed to be inversely proportional to fracture conductivity. The significant reduction in fracture conductivity could possibly be due to the effect of polymer dehydration at higher flow rates and temperatures. However, there is no certainty from experimental results that this conductivity reduction is an effect that occurs in real fractures or whether it is an effect that is only significant in laboratory conditions.

Romero Lugo, Jose 1985-

2012-12-01T23:59:59.000Z

309

RANGE DESIGN CRITERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RANGE DESIGN CRITERIA RANGE DESIGN CRITERIA U.S. DEPARTMENT OF ENERGY Office of Health, Safety and Security AVAILABLE ONLINE AT: INITIATED BY: http://www.hss.energy.gov Office of Health, Safety and Security Notices This document is intended for the exclusive use of elements of the Department of Energy (DOE), to include the National Nuclear Security Administration, their contractors, and other government agencies/individuals authorized to use DOE facilities. DOE disclaims any and all liability for personal injury or property damage due to use of this document in any context by any organization, group, or individual, other than during official government activities. Local DOE management is responsible for the proper execution of firearms-related programs for

310

Determination of in-situ stress to predict direction of hydraulically created fractures for development of hot dry rock geothermal reservoir in Japan  

DOE Green Energy (OSTI)

It is very important to know the underground stress state to design and complete a Hot Dry Rock geothermal reservoir because the direction of the hydraulic fractures depends on the earth stress. The hydraulic mini fracturing technique was introduced to determine the in-situ stress state without assuming the borehole axis to be parallel to one of the principal stresses. Small scale hydraulic fracturing tests were conducted to verify this technique at an underground power plant and microseismic activities were monitored for fracture mapping. The direction of the fracture propagation was estimated from the in-situ stress state and compared with the fracture plane mapped by microseismic activities. 2 refs., 7 figs., 1 tab.

Kuriyagawa, Michio; Kobayashi, Hideo; Matsunaga, Isao; Kosugi, Masayuki; Yamaguchi, Tsutomu; Sasaki, Shunji; Hori, Yoshinao

1985-01-01T23:59:59.000Z

311

Conducting fiber compression tester  

DOE Patents (OSTI)

The invention measures the resistance across a conductive fiber attached to a substrate place under a compressive load to determine the amount of compression needed to cause the fiber to fail. 3 figs.

DeTeresa, S.J.

1989-12-07T23:59:59.000Z

312

NSLS Conduct of Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Securing the X-Ray Tunnel (LS-OPS-0003) Qualified Search Personnel for NSLS Accelerators (LS-ESH-0009) General Procedures Caution Tags (LS-OPS-0004) Conduct of...

313

Cylindrical thermal contact conductance  

E-Print Network (OSTI)

Thermal contact conductance is highly important in a wide variety of applications, from the cooling of electronic chips to the thermal management of spacecraft. The demand for increased efficiency means that components need to withstand higher temperatures and heat transfer rates. Many situations call for contact heat transfer through nominally cylindrical interfaces, yet relatively few studies of contact conductance through cylindrical interfaces have been undertaken. This study presents a review of the experimental and theoretical investigations of the heat transfer characteristics of composite cylinders, presenting data available in open literature in comparison with relevant correlations. The present investigation presents a study of the thermal contact conductance of cylindrical interfaces. The experimental investigation of sixteen different material combinations offers an opportunity to develop predictive correlations of the contact conductance, in conjunction with an analysis of the interface pressure as a function of the thermal state of the individual cylindrical shells. Experimental results of the present study are compared with previously published conductance data and conductance models.

Ayers, George Harold

2003-08-01T23:59:59.000Z

314

Transient Thermal, Hydraulic, and Mechanical Analysis of a Counter Flow Offset Strip Fin Intermediate Heat Exchanger using an Effective Porous Media Approach  

E-Print Network (OSTI)

Transient Thermal, Hydraulic, and Mechanical Analysis of a2009 Transient Thermal, Hydraulic, and Mechanical AnalysisAbstract Transient Thermal, Hydraulic, and Mechanical Stress

Urquiza, Eugenio

2009-01-01T23:59:59.000Z

315

Feed-Pump Hydraulic Performance and Design Improvement, Phase I:  

Office of Scientific and Technical Information (OSTI)

Feed-Pump Hydraulic Performance Feed-Pump Hydraulic Performance and Design Improvement, Phase I: J2esearch Program Design Volume 2 EPRI EPRI CS-2323 Volume 2 Project 1884-6 Final Report March 1982 Keywords: Feed Pumps Feed Pump Reliability Feed Pump Hydraulics Feed Pump Design Feed Pump Research Feed Pump Specifications Prepared by Borg-Warner Corporation (Byron Jackson Pump Division and Borg-Warner Research Center) Carson, California and Massa^ f Technology Cambri__ . s ,-T. a a *a_^"nt.- ji^, w « ' jm.m ^j.^M\MMMim^mjii'mmmjmiiiimm\i- " I E CT R I C P 0 W E R R E S E A R C H I N ST ITO T E DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees,

316

On equivalence of thinning fluids used for hydraulic fracturing  

E-Print Network (OSTI)

The paper aims to answer the question: if and how non-Newtonian fluids may be compared in their mechanical action when used for hydraulic fracturing? By employing the modified formulation of the PKN problem we obtain its simple analytical solutions in the cases of perfectly plastic and Newtonian fluids. Since the results for shear thinning fluids are intermediate between those for these cases, the obtained equation for the fracture length suggests a criterion of the equivalence of various shear thinning fluids for the problem of hydraulic fractures. We assume fluids equivalent in their hydrofracturing action, when at a reference time they produce fractures of the same length. The equation for the fracture length translates the equivalence in terms of the hydraulic fracture length and treatment time into the equivalence in terms of the properties of a fracturing fluid (behavior and consistency indices). Analysis shows that the influence of the consistency and behavior indices on the fracture length, particle v...

Linkov, Alexander

2012-01-01T23:59:59.000Z

317

DOE's Shale Gas and Hydraulic Fracturing Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas and Hydraulic Fracturing Research Shale Gas and Hydraulic Fracturing Research DOE's Shale Gas and Hydraulic Fracturing Research April 26, 2013 - 11:05am Addthis Statement of Guido DeHoratiis Acting Deputy Assistant Secretary for Oil and Natural Gas before the House Committee on Science, Space, and Technology Subcommittees on Energy and Environment. I want to thank the Chairs, Ranking Members and Members of the Subcommittees for inviting me to appear before you today to discuss the critical role that the Department of Energy's Office of Fossil Energy, in collaboration with the Department of the Interior (DOI) and the Environmental Protection Agency (EPA), is playing to improve the safety and environmental performance of developing our Nation's unconventional oil and natural gas (UOG) resources.

318

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

Generators THG Generators THG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Hydraulic Generators THG.jpg Technology Profile Primary Organization Tidal Hydraulic Generators Ltd Project(s) where this technology is utilized *MHK Projects/Ramsey Sound Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system, involving relatively small revolving blades which gather power to a central collector, where electricity is generated. The generator, which is situated under water, is 80 metres square, stands at 15 metres high, and is designed to run for a minimum of ten years without service.

319

Performance Evaluation of Gene Expression Programming for Hydraulic Data Mining  

E-Print Network (OSTI)

Abstract: Predication is one of the fundamental tasks of data mining. In recent years, Artificial Intelligence techniques are widely being used in data mining applications where conventional statistical methods were used such as Regression and classification. The aim of this work is to show the applicability of Gene Expression Programming (GEP), a recently developed AI technique, for hydraulic data prediction and to evaluate its performance by comparing it with Multiple Linear Regression (MLR). Both GEP and MLR were used to model the hydraulic jump over a roughened bed using very large series of experimental data that contain all the important flow and roughness parameters such as the initial Froude number, the height of roughness ratio, the length of roughness ratio, the initial length ratio (from the gate) and the roughness density. The results show that GEP is a promising AI approach for hydraulic data prediction.

Khalid Eldr; Abdel-azim Negm

2006-01-01T23:59:59.000Z

320

Advanced hydraulic fracturing methods to create in situ reactive barriers  

Science Conference Proceedings (OSTI)

This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

Murdoch, L. [FRX Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States). Dept. of Geological Sciences; Siegrist, B.; Meiggs, T. [Oak Ridge National Lab., TN (United States)] [and others

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ice slurry hydraulic characterization testing of a direct freeze district cooling system  

DOE Green Energy (OSTI)

The work described in this report was performed by Chicago Bridge Iron Technical Services Company (CBITS) for the US Department of Energy (DOE). The scope of the current effort (Phase 2) is divided into three separate areas: (1) Ice Slurry Hydraulic Characterization Testing -- The objective of this effort is to fully characterize the flow characteristics of an ice slurry system in 3 different pipe sizes and across a wide range of velocities and ice fractions. This work is a direct continuation of the Phase 1 effort, with the inclusion of equipment upgrades and a wider range of test conditions. (2) Ice Slurry District Cooling Feasibility Testing -- The objective of this effort is to simulate the real-time operation of a prototype Direct Freeze district cooling system. This work includes the design, construction and operation of a pilot-scale Direct Freeze district cooling system. Variable cooling loads and ice storage capability will combine to simulate a dynamic district cooling network with thermal energy storage for peak-shifting. (3) Final Report With Economic Analysis -- The objective of this effort is to document and analyze the technical results obtained and also to discuss the economic impact of these results on a commercial Direct Freeze district cooling system. This report briefly presents the results obtained in the Ice Slurry Hydraulic Characterization Testing. A detailed discussion of these results will be provided in the project final report. 8 figs., 1 tab.

Winters, P.J.

1990-08-01T23:59:59.000Z

322

In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport  

SciTech Connect

Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

Warren, Jeffrey [ORNL; Brooks, J Renee [U.S. Environmental Protection Agency, Corvallis, OR; Dragila, Maria [Oregon State University, Corvallis; Meinzer, Rick [USDA Forest Service

2011-01-01T23:59:59.000Z

323

Neutron range spectrometer  

DOE Patents (OSTI)

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10T23:59:59.000Z

324

Scaling Characteristics of Soil Hydraulic Parameters at Varying Spatial Resolutions  

E-Print Network (OSTI)

This dissertation focuses on the challenge of soil hydraulic parameter scaling in soil hydrology and related applications in general; and, in particular, the upscaling of these parameters to provide effective values at coarse scales. Soil hydraulic properties are required for many hydrological and ecological models at their representative scales. Prediction accuracy of these models is highly dependent on the quality of the model input parameters. However, measurement of parameter data at all such required scales is impractical as that would entail huge outlays of finance, time and effort. Hence, alternate methods of estimating the soil hydraulic parameters at the scales of interest are necessary. Two approaches to bridge this gap between the measurement and application scales for soil hydraulic parameters are presented in this dissertation. The first one is a stochastic approach, based on artificial neural networks (ANNs) applied within a Bayesian framework. ANNs have been used before to derive soil hydraulic parameters from other more easily measured soil properties at matching scales. Here, ANNs were applied with different training and simulation scales. This concept was further extended to work within a Bayesian framework in order to provide estimates of uncertainty in such parameter estimations. Use of ancillary information such as elevation and vegetation data, in addition to the soil physical properties, were also tested. These multiscale pedotransfer function methods were successfully tested with numerical and field studies at different locations and scales. Most upscaling efforts thus far ignore the effect of the topography on the upscaled soil hydraulic parameter values. While this flat-terrain assumption is acceptable at coarse scales of a few hundred meters, at kilometer scales and beyond, the influence of the physical features cannot be ignored. anew upscaling scheme which accounts for variations in topography within a domain was developed to upscale soil hydraulic parameters to hill-slope (kilometer) scales. The algorithm was tested on different synthetically generated topographic configurations with good results. Extending the methodology to field conditions with greater complexities also produced good results. A comparison of different recently developed scaling schemes showed that at hill-slope scales, inclusion of topographic information produced better estimates of effective soil hydraulic parameters at that scale.

Belur Jana, Raghavendra

2010-05-01T23:59:59.000Z

325

Downstream hydraulic geometry relations: 2. Calibration and testing  

E-Print Network (OSTI)

Using 456 data sets under bank-full conditions obtained from various sources, the geometric relations, derived in part 1 [ Singh et al., 2003 ], are calibrated and verified using the split sampling approach. The calibration of parameters shows that the change in stream power is not shared equally among hydraulic variables and that the unevenness depends on the boundary conditions to be satisfied by the channel under consideration. The agreement between the observed values of the hydraulic variables and those predicted by the derived relations is close for the verification data set and lends credence to the hypotheses employed in this study.

Singh, Vijay P.; Yang, Chih Ted; Deng, Zhi-Qiang

2003-12-04T23:59:59.000Z

326

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

SciTech Connect

A process for making hydraulic cements from spent oil shale is described in this paper. Inexpensive cement is needed to grout abandoned in-situ retorts of spent shale for subsidence control, mitigation of leaching, and strengthening the retorted mass in order to recover oil from adjacent pillars of raw shale. A hydraulic cement was produced by heating a 1:1 mixture of Lurgi spent shale and CaCO{sub 3} at 1000 C for one hour. This cement would be less expensive than ordinary portland cement and is expected to fulfill the above requirements.

Mehta, P.K.; Persoff, P.

1980-04-01T23:59:59.000Z

327

Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical results are included.

Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

1996-09-01T23:59:59.000Z

328

CONDUCTING A RECORDS INVENTORY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROCEDURE FOR CONDUCTING A RECORDS INVENTORY PROCEDURE FOR CONDUCTING A RECORDS INVENTORY Revision 1 10/31/07 Approved by: DOE Records Management Division, IM-23 PROCEDURE FOR CONDUCTING A RECORDS INVENTORY 1. GENERAL. A records inventory is compiling a descriptive list of each record series or system, including the location of the records and any other pertinent data. A records inventory is not a list of each document or each folder. 2. DEFINE THE RECORDS INVENTORY GOAL(S). The goals of a records inventory should be to: a. Gather information for scheduling purposes; b. Prepare for conversion to other media or to identify the volume of classified and/or permanent records in your organization's custody; and c. Identify any existing shortcomings, deficiencies, or problems with

329

PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN  

DOE Green Energy (OSTI)

Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12 inch IX Column and sixteen cycles were completed in the 24 inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead morphology. The skeletal density of the RF resin in the 24 inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

Adamson, D

2006-11-08T23:59:59.000Z

330

Range imaging laser radar  

SciTech Connect

A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

Scott, Marion W. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

331

Lunar Laser Ranging Science  

E-Print Network (OSTI)

Analysis of Lunar Laser Ranging (LLR) data provides science results: gravitational physics and ephemeris information from the orbit, lunar science from rotation and solid-body tides, and Earth science. Sensitive tests of gravitational physics include the Equivalence Principle, limits on the time variation of the gravitational constant G, and geodetic precession. The equivalence principle test is used for an accurate determination of the parametrized post-Newtonian (PPN) parameter \\beta. Lunar ephemerides are a product of the LLR analysis used by current and future spacecraft missions. The analysis is sensitive to astronomical parameters such as orbit, masses and obliquity. The dissipation-caused semimajor axis rate is 37.9 mm/yr and the associated acceleration in orbital longitude is -25.7 ''/cent^2, dominated by tides on Earth with a 1% lunar contribution. Lunar rotational variation has sensitivity to interior structure, physical properties, and energy dissipation. The second-degree lunar Love numbers are detected; k_2 has an accuracy of 11%. Lunar tidal dissipation is strong and its Q has a weak dependence on tidal frequency. A fluid core of about 20% the Moon's radius is indicated by the dissipation data. Evidence for the oblateness of the lunar fluid-core/solid-mantle boundary is getting stronger. This would be independent evidence for a fluid lunar core. Moon-centered coordinates of four retroreflectors are determined. Station positions and motion, Earth rotation variations, nutation, and precession are determined from analyses. Extending the data span and improving range accuracy will yield improved and new scientific results. Adding either new retroreflectors or precise active transponders on the Moon would improve the accuracy of the science results.

James G. Williams; Dale H. Boggs; Slava G. Turyshev; J. Todd Ratcliff

2004-11-18T23:59:59.000Z

332

3-D Transient Hydraulic Tomography in Unconfined Aquifers with Fast Drainage Response  

SciTech Connect

We investigate, through numerical experiments, the viability of three-dimensional transient hydraulic tomography (3DTHT) for identifying the spatial distribution of groundwater flow parameters (primarily, hydraulic conductivity K) in permeable, unconfined aquifers. To invert the large amount of transient data collected from 3DTHT surveys, we utilize an iterative geostatistical inversion strategy in which outer iterations progressively increase the number of data points fitted and inner iterations solve the quasilinear geostatistical formulas of Kitanidis. In order to base our numerical experiments around realistic scenarios, we utilize pumping rates, geometries, and test lengths similar to those attainable during 3DTHT field campaigns performed at the Boise Hydrogeophysical Research Site (BHRS). We also utilize hydrologic parameters that are similar to those observed at the BHRS and in other unconsolidated, unconfined fluvial aquifers. In addition to estimating K, we test the ability of 3DTHT to estimate both average storage values (specific storage Ss and specific yield Sy) as well as spatial variability in storage coefficients. The effects of model conceptualization errors during unconfined 3DTHT are investigated including: (1) assuming constant storage coefficients during inversion and (2) assuming stationary geostatistical parameter variability. Overall, our findings indicate that estimation of K is slightly degraded if storage parameters must be jointly estimated, but that this effect is quite small compared with the degradation of estimates due to violation of ‘‘structural’’ geostatistical assumptions. Practically, we find for our scenarios that assuming constant storage values during inversion does not appear to have a significant effect on K estimates or uncertainty bounds.

Cardiff, Michael A.; Barrash, Warren

2011-12-16T23:59:59.000Z

333

Multi channel thermal hydraulic analysis of gas cooled fast reactor using genetic algorithm  

SciTech Connect

There are three analyzes to be done in the design process of nuclear reactor i.e. neutronic analysis, thermal hydraulic analysis and thermodynamic analysis. The focus in this article is the thermal hydraulic analysis, which has a very important role in terms of system efficiency and the selection of the optimal design. This analysis is performed in a type of Gas Cooled Fast Reactor (GFR) using cooling Helium (He). The heat from nuclear fission reactions in nuclear reactors will be distributed through the process of conduction in fuel elements. Furthermore, the heat is delivered through a process of heat convection in the fluid flow in cooling channel. Temperature changes that occur in the coolant channels cause a decrease in pressure at the top of the reactor core. The governing equations in each channel consist of mass balance, momentum balance, energy balance, mass conservation and ideal gas equation. The problem is reduced to finding flow rates in each channel such that the pressure drops at the top of the reactor core are all equal. The problem is solved numerically with the genetic algorithm method. Flow rates and temperature distribution in each channel are obtained here.

Drajat, R. Z.; Su'ud, Z.; Soewono, E.; Gunawan, A. Y. [Department of Mathematics, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Physics, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Mathematics, Institut Teknologi Bandung, Bandung 40132 (Indonesia)

2012-05-22T23:59:59.000Z

334

Joint Hydraulic Institute/ASAP Letter of March 30th - Clarification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Hydraulic InstituteASAP Letter of March 30th - Clarification of Point 2 Joint Hydraulic InstituteASAP Letter of March 30th - Clarification of Point 2 We would like to...

335

The Design and Qualification of a Hydraulic Hardware-in-the-Loop Simulator .  

E-Print Network (OSTI)

??The goal of this work was to design and evaluate a hydraulic Hardware-in-the-Loop (HIL) simulation system based around electric and hydraulic motors. The idea behind… (more)

Driscoll, Scott Crawford

2005-01-01T23:59:59.000Z

336

A Java-based program for numerical computation of hydraulic shock  

Science Conference Proceedings (OSTI)

Numerical solving, by method of characteristics, of the hydraulic shock problem required to develop a computer program that automatically respond to the following requirements: easy management of several projects, easy introduction, editing and change ... Keywords: flowchart, graphical interface, hydraulic shock

Ichinur Omer; Cristina Serban

2010-05-01T23:59:59.000Z

337

Automatic hydraulic fracturing design for low permeability reservoirs using artificial intelligence  

Science Conference Proceedings (OSTI)

The hydraulic fracturing technique is one of the major developments in petroleum engineering in the last two decades. Today, nearly all the wells completed in low permeability gas reservoirs require a hydraulic fracturing treatment in order to produce ...

Andrei Sergiu Popa / Shahab Mohaghegh

2004-01-01T23:59:59.000Z

338

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

1996-01-01T23:59:59.000Z

339

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

1999-01-01T23:59:59.000Z

340

Development and modeling of conducting polymer actuators and the fabrication of a conducting polymer based feedback loop  

E-Print Network (OSTI)

Conducting polymers as a class of materials can be used to build a diverse range of devices. Conducting polymer based actuators (muscles), transistors (neurons), strain gages (muscle spindles), force sensors (Golgi tendon ...

Madden, Peter Geoffrey Alexander, 1971-

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Proportional and Proportional-Integral Controllers for a Nonlinear Hydraulic  

E-Print Network (OSTI)

in a nonlinear hydraulic network of a reduced-size yet meaningful district heating system with two end correspondingly the controllers. In this paper we focus on one of these case studies, a district heating system to the system. Presently district heating systems are designed to meet the needs of a given number of end users

De Persis, Claudio

342

Hydraulic Control of Sill Flow with Bottom Friction  

Science Conference Proceedings (OSTI)

The hydraulics of strait and sill flow with friction is examined using a reduced gravity model. It is shown that friction moves the critical (or control) point from the sill to a location downstream. If the strait has constant width, the control ...

L. J. Pratt

1986-11-01T23:59:59.000Z

343

Gap Winds in a Fjord. Part II: Hydraulic Analog  

Science Conference Proceedings (OSTI)

A simple shallow-water model of gap wind in a channel that is based upon hydraulic theory is presented and compared with observations and output from a 3D mesoscale numerical model. The model is found to be successful in simulating gap winds. The ...

Peter L. Jackson; D. G. Steyn

1994-12-01T23:59:59.000Z

344

The Modeling of Slurry Friction Loss of Hydraulic Fracturing  

Science Conference Proceedings (OSTI)

In recent years, the research on theoretical model of hydraulic fracturing has experienced development. But there is little progress in the research on slurry friction loss in the fracturing string, which is the key to guide the design and construction ... Keywords: slurry, friction loss, momentum transfer

Yongming Li; Hu Mao; Fengsheng Yao; Song Wang; Jinzhou Zhao

2011-10-01T23:59:59.000Z

345

Multilayer Hydraulic Control with Application to the Alboran Sea Circulation  

Science Conference Proceedings (OSTI)

The flow of a single layer of fluid along a channel of variable dimensions is hydraulically controlled when long gravity waves can no longer propagate upstream at the cross-section of minimum area. For a multilayer fluid, it is shown that a ...

Nelson G. Hogg

1985-04-01T23:59:59.000Z

346

A Time-Dependent Aspect of Hydraulic Control in Straits  

Science Conference Proceedings (OSTI)

The concept of hydraulic control by a sill is discussed in terms of its consequences for the upstream flow. Based on observations of the upstream flow alone. “control” is shown to be distinguishable from “noncontrol” only if the flow is unsteady. ...

L. J. Pratt

1984-08-01T23:59:59.000Z

347

Time-Dependent Two-Layer Hydraulic Exchange Flows  

Science Conference Proceedings (OSTI)

A theory is presented for time-dependent two-layer hydraulic flows through straits. The theory is used to study exchange flows forced by a periodic barotropic (tidal) flow. For a given strait geometry the resulting flow is a function of two ...

Karl R. Helfrich

1995-03-01T23:59:59.000Z

348

Control of a Hydraulically-Powered, Differential Lift Project Proposal  

E-Print Network (OSTI)

to raise and lower the load. A pump draws hydraulic oil from a reservoir through a four-port, three. As oil enters one side of the cylinder, oil exits the other side, passes through the valve, and drains leading from the pump through the valve and into the cylinder, such that (1) where p is the effort, p

349

On-site investigations and diagnosis of hydraulic structures  

SciTech Connect

Hydraulic structures (HSs) should be classified as complex engineering systems. It is difficult to imagine an absolutely reliable and safe engineering system. It is completely obvious that if such a system were possible, then economically it would not experience any competition with less reliable systems whose operation is organized in a certain way.

Vasilevskii, A.G.

1994-06-01T23:59:59.000Z

350

Validation of high performance pneumo-hydraulic shock absorbers  

Science Conference Proceedings (OSTI)

The paper discusses a theoretical and experimental approach to the validation of high performance shock absorbers, based on a flexible and innovative procedure. This type of components needs specific and unconventional tests, in order to detect the actual ... Keywords: oil-hydraulics, shock absorbers, validation, virtual instrumentation

Enrico Ravina

2006-02-01T23:59:59.000Z

351

IOWA INSTITUTE OF HYDRAULIC RESEARCH THE UNIVERSITY OF IOWA  

E-Print Network (OSTI)

at Power Plants EPRIa Odgaard, Nakato Icing-Induced Vibration of Cables EPRIa Ettema, Nixon ** Hydraulic Patel ** Diffraction of Acoustic Waves by a Circular Disk of Arbitrary Impedance DTRC Chwang #12;Summary Structure, Spurlock Power Station EKP Nakato ** Consulting Services to Establish Value of Exploratory

Stanier, Charlie

352

Comments on “Is the Faroe Bank Channel Overflow Hydraulically Controlled?”  

Science Conference Proceedings (OSTI)

In a recent paper Girton et al., due to what appears to be a misunderstanding, stated that a critical-flow analysis of the deep-water transport through the Faroe Bank Channel had been undertaken by Lake et al. on the basis of rotating hydraulic ...

Linda Enmar; Karin Borenäs; Iréne Lake; Peter Lundberg

2009-06-01T23:59:59.000Z

353

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network (OSTI)

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and Controversies Kyle J Ferrar;UNITED STATES SHALE BASINS Modern Shale Gas Development in the U.S.: A Primer, (2009) U.S. Dept of Energy Development http://www.secinfo.com/DB/SEC/2007 #12;Where to Drill? Harper, John A. (2008). The Marcellus Shale

Sibille, Etienne

354

Study on an Electric Drilling Rig with Hydraulic Energy Storage  

Science Conference Proceedings (OSTI)

An electric drilling rig with hydraulic energy storage is researched. This rig can recover the potential energy of the drill stem lowered and owns remarkable energy-saving effect. The mathematical model of the new rig lifting the drill stem was deduced ... Keywords: electric drilling rig, energy-recovering, energy-saving

Zhang Lujun

2010-06-01T23:59:59.000Z

355

Numerical Simulation Research on Proppant Transport in Hydraulic Fracture  

Science Conference Proceedings (OSTI)

Among the mathematical models of describing the prop pant settling or transport process, the particle settling velocity primarily takes the gravity, buoyancy and other conventional forces into consideration under the equilibrium condition of forces, ... Keywords: hydraulic fracturing, solid-liquid two phaes flow, proppant transport, numerical simulation, predictor-corrector method

Yongming Li; Song Wang; Jinzhou Zhao; Zhang Jiyao; Xiangzeng Wang; Ruimin Gao

2011-10-01T23:59:59.000Z

356

Engine having hydraulic and fan drive systems using a single high pressure pump  

DOE Patents (OSTI)

An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2000-01-01T23:59:59.000Z

357

Hydraulic constraints on photosynthesis in subtropical evergreen broad leaf forest and pine woodland trees of the Florida Everglades  

E-Print Network (OSTI)

PAPER Hydraulic constraints on photosynthesis in subtropicalwater transport and photosynthesis represents the trade-offwater transport and photosynthesis to evaluate hydraulic

Jones, Tim J.; Luton, Corene D.; Santiago, Louis S.; Goldstein, Guillermo

2010-01-01T23:59:59.000Z

358

Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis  

E-Print Network (OSTI)

Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much smaller stimulated pore volume than what would be expected from microseismic evidence and reports of fracturing fluids reaching distant wells. In addition, claims that hydraulic fracturing may open or reopen a network of natural fractures is of particular interest. This study examines hydraulic fracturing of shale gas formations with specific interest in fracture geometry. Several field cases are analyzed using microseismic analysis as well as net pressure analysis of the fracture treatment. Fracture half lengths implied by microseismic events for some of the stages are several thousand feet in length. The resulting dimensions from microseismic analysis are used for calibration of the treatment model. The fracture profile showing created and propped fracture geometry illustrates that it is not possible to reach the full fracture geometry implied by microseismic given the finite amount of fluid and proppant that was pumped. The model does show however that the created geometry appears to be much larger than half the well spacing. From a productivity standpoint, the fracture will not drain a volume more than that contained in half of the well spacing. This suggests that for the case of closely spaced wells, the treatment size should be reduced to a maximum of half the well spacing. This study will provide a framework for understanding hydraulic fracture treatments in shale formations. In addition, the results from this study can be used to optimize hydraulic fracture treatment design. Excessively large treatments may represent a less than optimal approach for developing these resources.

Ahmed, Ibraheem 1987-

2012-12-01T23:59:59.000Z

359

Determining Columbia and Snake River Project Tailrace and Forebay Zones of Hydraulic Influence using MASS2 Modeling  

SciTech Connect

Although fisheries biology studies are frequently performed at US Army Corps of Engineers (USACE) projects along the Columbia and Snake Rivers, there is currently no consistent definition of the ``forebay'' and ``tailrace'' regions for these studies. At this time, each study may use somewhat arbitrary lines (e.g., the Boat Restriction Zone) to define the upstream and downstream limits of the study, which may be significantly different at each project. Fisheries researchers are interested in establishing a consistent definition of project forebay and tailrace regions for the hydroelectric projects on the lower Columbia and Snake rivers. The Hydraulic Extent of a project was defined by USACE (Brad Eppard, USACE-CENWP) as follows: The river reach directly upstream (forebay) and downstream (tailrace) of a project that is influenced by the normal range of dam operations. Outside this reach, for a particular river discharge, changes in dam operations cannot be detected by hydraulic measurement. The purpose of this study was to, in consultation with USACE and regional representatives, develop and apply a consistent set of criteria for determining the hydraulic extent of each of the projects in the lower Columbia and Snake rivers. A 2D depth-averaged river model, MASS2, was applied to the Snake and Columbia Rivers. New computational meshes were developed most reaches and the underlying bathymetric data updated to the most current survey data. The computational meshes resolved each spillway bay and turbine unit at each project and extended from project to project. MASS2 was run for a range of total river flows and each flow for a range of project operations at each project. The modeled flow was analyzed to determine the range of velocity magnitude differences and the range of flow direction differences at each location in the computational mesh for each total river flow. Maps of the differences in flow direction and velocity magnitude were created. USACE fishery biologists requested data analysis to determine the project hydraulic extent based on the following criteria: 1) For areas where the mean velocities are less than 4 ft/s, the water velocity differences between operations are not greater than 0.5 ft/sec and /or the differences in water flow direction are not greater than 10 degrees, 2) If mean water velocity is 4.0 ft/second or greater the boundary is determined using the differences in water flow direction (i.e., not greater than 10 degrees). Based on these criteria, and excluding areas with a mean velocity of less than 0.1 ft/s (within the error of the model), a final set of graphics were developed that included data from all flows and all operations. Although each hydroelectric project has a different physical setting, there were some common results. The downstream hydraulic extent tended to be greater than the hydraulic extent in the forebay. The hydraulic extent of the projects tended to be larger at the mid-range flows. At higher flows, the channel geometry tends to reduce the impact of project operations.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

2010-12-01T23:59:59.000Z

360

On H8Robust Control for Hydraulic Servo System of Steam Turbine  

Science Conference Proceedings (OSTI)

Digital Electrical Hydraulic Servo System (DEH )of steam turbine has perfect performance, but it is difficult to format mathematical model accurately. Due to complexity of steam turbine and hydraulic servo system and the complex factors of applying field, ... Keywords: component, Steam turbine, hydraulic Servo System, H8 Robust control, hybrid Sensitiveness, disturbance

Lian-yu Chen

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN  

E-Print Network (OSTI)

9 - J u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORINGPfft IKS I nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORINGs u r e s t r a i n s . Hydraulic f r a c t u r i n g , t h

Doe, T.

2010-01-01T23:59:59.000Z

362

Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump  

DOE Patents (OSTI)

An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2001-01-01T23:59:59.000Z

363

a review of 2 Shale gas extraction in the UK: a review of hydraulic fracturing  

E-Print Network (OSTI)

Shale gas extraction in the UK: a review of hydraulic fracturing June 2012 #12;2 Shale gas extraction in the UK: a review of hydraulic fracturing This document can be viewed online at: royalsociety.org/policy/projects/shale-gas-extraction and raeng.org.uk/shale Shale gas extraction in the UK: a review of hydraulic fracturing Issued: June 2012

Rambaut, Andrew

364

Low Temperature Proton Conductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

and and MEAs at Freezing Temperatures Thomas A. Zawodzinski, Jr. Case Western Reserve University Cleveland, Ohio 2 Freezing Fuel Cells: Impact on MEAS Below 0 o C *Transport processes/motions slow down: questions re: lower conductivity,water mobility etc *Residual water will have various physical effects in different portions of the MEA questions re: durability of components 3 3 'States' of Water in Proton Conductors ? Freezing (bulk), bound freezable, bound non freezable water states claimed based on DSC * Freezing water more mobile, allegedly important for high conductivity Analysis common for porous systems Does the presence of these states matter? Why? 4 'State of Water' in PEMs At T < 0 o C *'Liquid-like' water freezes *'Non-freezing' fraction: water of solvation at pore

365

Conduction cooled tube supports  

DOE Patents (OSTI)

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

366

Preliminary assessment of a geothermal energy reservoir formed by hydraulic fracturing  

DOE Green Energy (OSTI)

Two, 3-km-deep boreholes have been drilled into hot (approximately 200/sup 0/C) graphite in northern New Mexico in order to extract geothermal energy from hot dry rock. Both boreholes were hydraulically fractured to establish a flow connection. Presently this connection has a large flow impedance which may be improved with further stimulation. Fracture-to-borehole intersection locations and in situ thermal conductivity were determined from flowing temperature logs. In situ measurements of permeability show an extremely strong dependence upon pore pressure--the permeability increased by a factor of 80 as the pressure was increased 83 bars (1200 psi). An estimate of the minimum horizontal earth stress was derived from fracture extension pressures and found to be one-half the overburden stress.

Murphy, H.D.; Lawton, R.G.; Tester, J.W.; Potter, R.M.; Brown, D.W.; Aamodt, R.L.

1976-01-01T23:59:59.000Z

367

PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code  

SciTech Connect

This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.

Vondy, D.R.

1981-09-01T23:59:59.000Z

368

Electrical imagining of engineered hydraulic barriers  

SciTech Connect

Electrical resistance tomography (ERT) was used to image the full-scale test emplacement of a thin-wall grout barrier installed by high-pressure jetting and a thick-wall polymer barrier installed by low-pressure permeation injection. Both case studies compared images of electrical resistivity before and after barrier installation. Barrier materials were imaged as anomalies which were more electrically conducting than the native sandy soils at the test sites. Although the spatial resolution of the ERT was insufficient to resolve flaws smaller than a reconstruction voxel (50 cm on a side), the images did show the spatial extent of the barrier materials and therefore the general shape of the structures. To verify barrier performance, ERT was also used to monitor a flood test of a thin-wall grout barrier. Electrical resistivity changes were imaged as a saltwater tracer moved through the barrier at locations which were later found to be defects in a wall or the joining of two walls.

Daily, W.; Ramirez, A.L.

2000-02-01T23:59:59.000Z

369

Prediction of effects of hydraulic fracturing using reservoir and well flow simulation  

Science Conference Proceedings (OSTI)

This paper presents a method to predict and evaluate effects of hydraulic fracturing jobs by using reservoir and well flow numerical simulation. The concept of the method i5 that steam production rate at the operating well head pressure is predicted with different fracture conditions which would be attained by the hydraulic fracturing jobs. Then, the effects of the hydraulic fracturing is evaluated by comparing the predicted steam production rate and that before the hydraulic fracturing. This course of analysis will suggest how large fracture should be created by the fracturing job to attain large enough increase in steam production at the operating condition and the best scheme of the hydraulic fracturing job.

Mineyuki Hanano; Tayuki Kondo

1992-01-01T23:59:59.000Z

370

Soil Hydraulic Properties Influenced by Corn Stover Removal from No-Till Corn in Ohio.  

SciTech Connect

Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (?b), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ?b in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (?b), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ?b in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.

Blanco-Canqui, H.; Lal, Rattan; Post, W. M.; Izaurralde, R Cesar C.; Shipitalo, M. J.

2007-01-01T23:59:59.000Z

371

Soil Water Retention and Relative Permeability for Full Range of Saturation  

SciTech Connect

Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to capillary forces only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified with six datasets from the literature. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but under-estimate the conductivity while the extended models match the retention and conductivity measurements well.

Zhang, Z. F.

2010-09-28T23:59:59.000Z

372

Proppant Fracture Conductivity with High Proppant Loading and High Closure Stress  

E-Print Network (OSTI)

Ultra-deepwater reservoirs are important unconventional reservoirs that hold the potential to produce billions of barrels of hydrocarbons, but also present major challenges. This type of reservoir is usually high pressure and high temperature (HPHT) and has a relatively high permeability. Hydraulic fracturing high permeability reservoirs are different from the hydraulic fracturing technology used in low permeability formations. The main purpose of hydraulic fracturing in low permeability reservoirs is to create a long, highly conductive path, whereas in high permeability formations hydraulic fracturing is used predominantly to bypass near wellbore formation damage, control sand production and reduce near wellbore pressure drop. Hydraulically fracturing these types of wells requires short fractures packed with high proppant concentrations. In addition, fracturing in high permeability reservoirs aims at achieving enough fracture length to increase productivity, especially when the viscosity of the reservoir fluid is high. In order to pump such a job and ensure long term productivity from the fracture, understanding the behavior of the fracture fluid and proppant is critical. A series of laboratory experiments have been conducted to study conductivity and fracture width with high proppant loading, high temperature and high pressure. Proppant was manually placed in the fracture and fracture fluid was pumped through the pack. Conductivity was measured by pumping oil to simulate reservoir conditions. Proppant performance and fracture fluids, which carry the proppant into the fracture, and their subsequent clean-up during production, were studied. High strength proppant is ideal for deep fracture stimulations and in this study different proppant loadings at different stresses were tested to see the impact of crushing and fracture width reduction on fracture conductivity. The preliminary test results indicated that oil at reservoir conditions improves clean-up of fracture fluid left in the proppant pack compared with using water at ambient temperature. Increasing the proppant concentration in the fracture showed higher conductivity values in some cases even at high closure stress. The increase in effective closure stress with high temperature resulted in a significant loss in conductivity. Additionally, the fracture width decreased with time and increased effective closure stress. Tests were also run to study the effect of cyclic loading which is expected to further decrease conductivity.

Rivers, Matthew Charles

2010-05-01T23:59:59.000Z

373

Acceptance test report for the Westinghouse 100 ton hydraulic trailer  

DOE Green Energy (OSTI)

The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP`s facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson`s facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified.

Barrett, R.A.

1995-03-06T23:59:59.000Z

374

Massive hydraulic fracture of Fenton Hill HDR Well EE-3  

DOE Green Energy (OSTI)

Subsequent to a 5.6 million gallon massive hydraulic fracturing (MHF) experiment in Fenton Hill Hot Dry Rock (HDR) Well EE-2, a 2 million gallon MHF was planned for Well EE-3. Although hydraulic communication between wells EE-2 and EE-3 was not established during the initial MHF, a large reservoir was created around EE-2 which seemed to be in proximity with EE-3. The objective of this 2nd MHF was two-fold, to test the reservoir and seismic characteristics of the EE-3 openhole region from 11,390 to 11,770 ft and to drive fractures into the fractured region created earlier by the EE-2 MHF experiment. This paper discusses well repairs to prepare EE-3 for the MHF, the pumping operations, and injection parameters and briefly summarizes seismic results. 2 refs., 6 figs.

Dash, Z.V.; Dreesen, D.S.; Walter, F.; House, L.

1985-01-01T23:59:59.000Z

375

A Study of Hydraulic Fracturing Initiation in Transversely Isotropic Rocks  

E-Print Network (OSTI)

Hydraulic fracturing of transverse isotropic reservoirs is of major interest for reservoir stimulation and in-situ stress estimation. Rock fabric anisotropy not only causes in-situ stress anisotropy, but also affects fracture initiation from the wellbore. In this study a semi-analytical method is used to investigate these effects with particular reference to shale stimulation. Using simplifying assumptions, equations are derived for stress distribution around the wellbore's walls. The model is then used to study the fracture initiation pressure variations with anisotropy. A sensitivity analysis is carried out on the impact of Young's modulus and Poisson's ration, on the fracture initiation pressure. The results are useful in designing hydraulic fractures and also can be used to develop information about in-situ rock properties using failure pressure values observed in the field. Finally, mechanical and permeability anisotropy are measured using Pulse Permeameter and triaxial tests on Pierre shale.

Serajian, Vahid

2011-08-01T23:59:59.000Z

376

Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting,  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2013 8, 2013 Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection Washington, D.C. -Two data collection tools specifically developed for hydraulic fracturing are available to help regulatory agencies monitor drilling and completion operations and enhance environmental protection. Developed with support from the U.S. Department of Energy's Office of Fossil Energy (FE), the Risk Based Data Management System (RBDMS) and FracFocus chemical disclosure registry (http://fracfocus.org/) provide a way for industry professionals, regulatory agencies and the general public to more easily access information on oil and natural gas activities. These reporting and data collection tools have been developed by the Groundwater Protection Council (GWPC) and various states.

377

DEVELOPMENT OF THE HELICAL REACTION HYDRAULIC TURBINE Final Technical Report  

Office of Scientific and Technical Information (OSTI)

DEVELOPMENT OF THE HELICAL REACTION HYDRAULIC TURBINE DEVELOPMENT OF THE HELICAL REACTION HYDRAULIC TURBINE Final Technical Report (DE-FGO1-96EE 15669) Project Period: 7/1/96 - 6/30/98 For submission to: The US Department of Energy, EE-20 1000 Independence Avenue, SW Washington, DC 20585 Attn: Mr. David Crouch Prepared by: Dr. Alexander Gorlov, PI MIME Department Northeastern University Boston, MA 02115 August, 1998 DISCLAIMER T h i s nport,was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or

378

ROC/RMOTC Hydraulic Pump Test Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

EXTREME EXTREME PETROLEUM TECHNOLOGY, INC. Petroleum Engineers Property Evaluation and Economics Reserves Estimates and Reports Well and Completion Design Reservoir and EOR Studies Expert Witness Testimony Regulatory Permitting Wellsite Management Coalbed Methane Final Report Roc Oil/RMOTC Hydraulic Pump Test For Mr. Bob Cook Roc Oil, Inc. Level 16 100 William Street, Sydney 2011 NSW Australia Office +61 2 8356 2059 Fax +61 2 9380 2066 BCook@rocoil.com.au 29 Oct 2004 159 N. Wolcott, Suite 100 PO Box 490 Casper, WY 82601 USA Phone (307)266-4498 Fax (307)266-4495 Web ExtremePetroTech.com ROC OIL/RMOTC HYDRAULIC PUMP TEST FINAL REPORT Executive Summary Roc Oil (ROC) has a majority interest and acts as Operator in a JV project (Cliff Head) in the Offshore

379

Hydraulic engine valve actuation system including independent feedback control  

DOE Patents (OSTI)

A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

Marriott, Craig D

2013-06-04T23:59:59.000Z

380

Monitoring the Width of Hydraulic Fractures With Ultrasonic Measurements  

E-Print Network (OSTI)

Introduction During hydraulic fracturing experiments in the laboratory the opening of hydraulic fractures is monitored with ultrasonic transducers. The experiment closely resembles seismic monitoring surveys in the field [MEADOWS AND WIN- TERSTEIN 1994, WILLS ET AL. 1992]. The extraction of information out of these experiments is critically dependent on the understanding of the elastodynamic behaviour of the thin fluid filled fractures. The laboratory experiments provide useful information on what determines the seismic visibility of these fractures, both for compressional and shear waves. The role of the fracture thickness or width on the elastodynamic response and a new method for monitoring fracture opening is investigated. Most theoretical approaches postulate the use of the classical boundary conditions. The void boundary condition assumes a stress free surface. The "fluid-filled" fracture boundary condition

J. Groenenboom; A.J.W. Duijndam; J.T. Fokkema

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal Hydraulic Analysis of HTGR Coupled with Hydrogen Plant  

DOE Green Energy (OSTI)

The US Department of Energy is investigating the use of high-temperature gas-cooled reactors (HTGR) to produce electricity and hydrogen. Although the hydrogen production processes using the nuclear energy are in an early stage of development, coupling hydrogen plant to HTGR requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear plant. In anticipation of the design, development and procurement of an advanced power conversion system for HTGR, this study was initiated to identify the major design and technology options and their tradeoffs in the evaluation of power conversion system (PCS) coupled to hydrogen plant. In this study, we investigated a number of design configurations and performed thermal hydraulic analyses using various working fluids and various conditions. This paper includes a portion of thermal hydraulic results based on a direct cycle and a parallel intermediate heat exchanger (IHX) configuration option.

Chang Oh; Cliff Davis; Robert Barner; Paul Pickard

2006-06-01T23:59:59.000Z

382

Cooling Tower Energy Conservation Through Hydraulic Fan Drives  

E-Print Network (OSTI)

Many companies offer gearboxes, shafts, and couplings for cooling tower fan drives, with little or no innovation. These companies have traditionally been purchased with an emphasis on cost and not "Return on Investment!" In the past, when energy conservation or "Return on Investment" was emphasized, the only alternative was to add an expensive frequency inverter for variable speed control. This meant expensive rewiring, placing additional controls in an already crowded control room, or constructing a special building for them. However, with H.E.M.'s patented Hydraulic Fan Drive, one receives variable speed control and more efficiency for approximately the price of a mechanical drive. The new, more efficient Hydraulic Drive allows for a variable speed control and the ability to sense water temperature to control fan speed.

Dickerson, J.

1991-06-01T23:59:59.000Z

383

Publications from Research Conducted at IMAGING | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications from Research Conducted at IMAGING Publications from Research Conducted at IMAGING 2013 Publications Barnett A. K., Cox M. N., Crow L., Diawara Y., Funk L. L., Hayward Jason P., Menhard K., Sedov V. N., "A high count rate neutron beam monitor for neutron scattering facilities", IEEE Transactions on Nuclear Science 60, 668-670 (2013). Bingham P., Polsky Y., Anovitz L., "Neutron imaging for geothermal energy systems", Proceedings of the SPIE 8661, 86610K (2013). Kang M., "Hydraulic properties of variably-saturated porous media determined using quantitative neutron radiography", University of Tennessee , (2013). Kang M., Bilheux H. Z., Voisin S., Cheng C. L., Perfect E., Horita J., Warren J. M., "Water calibration measurements for neutron radiography: application to water content quantification in porous media", Nuclear

384

Method for enhancement of sequential hydraulic fracturing using control pulse fracturing  

Science Conference Proceedings (OSTI)

A method is described for creating multiple sequential hydraulic fractures via hydraulic fracturing combined with controlled pulse fracturing where two wells are utilized comprising: (a) drilling and completing a first and second well so that the wells will be in fluid communication with each other after subsequent fracturing in each well; (b) creating more than two simultaneous multiple vertical fractures via a controlled pulse fracturing method in the second well; (c) thereafter hydraulically fracturing the reservoir via the first well thereby creating fractures in the reservoir and afterwards shutting-in the first well without any induced pressure; (d) applying thereafter hydraulic pressure to the reservoir via the second well in an amount sufficient to fracture the reservoir thereby forming a first hydraulic fracture perpendicular to the least principal in-situ stress; (e) maintaining the hydraulic pressure on the reservoir while pumping via the second well alternate slugs of a thin-fluid spacer and a temporary blocking agent having a proppant therein whereupon a second hydraulic fracture is initiated; (f) maintaining the hydraulic pressure on the second well while pumping alternate slugs of spacer and blocking agent into the second hydraulic fracture thereby causing the second hydraulic fracture to propagate away from the first hydraulic fracture in step (e) in a curved trajectory which intersects a fracture created in the first well; (g) maintaining the hydraulic pressure while pumping as in step (f) whereupon another hydraulic fracture initiates causing another curved fracture trajectory to form and intersect the fracture created in the first well; and (h) repeated steps (f) and (g) until a desired number of hydraulic fractures are created which allows a substantial improvement in removing a natural resource from the reservoir.

Jennings, A.R. Jr.; Strubhar, M.K.

1993-07-20T23:59:59.000Z

385

THERMAL HYDRAULIC ANALYSIS OF A GAS TEST LOOP SYSTEM  

Science Conference Proceedings (OSTI)

This paper discusses thermal hydraulic calculations for a Gas Test Loop (GTL) system designed to provide a high intensity fast-flux irradiation environment for testing fuels and materials for advanced concept nuclear reactors. To assess the performance of candidate reactor fuels, these fuels must be irradiated under actual fast reactor flux conditions and operating environments, preferably in an existing irradiation facility [1]. Potential users of the GTL include the Generation IV Reactor Program, the Advanced Fuel Cycle Initiative and Space Nuclear Programs.

Donna Post Guillen; James E. Fisher

2005-11-01T23:59:59.000Z

386

Circular hydraulic jump in generalized-Newtonian fluids  

E-Print Network (OSTI)

We carry out an analytical study of laminar circular hydraulic jumps, in generalized-Newtonian fluids obeying the two-parametric power-law model of Ostwald-de Waele. Under the boundary-layer approximation we obtained exact expressions determining the flow, an implicit relation for the jump radius is derived. Corresponding results for Newtonian fluids can be retrieved as a limiting case for the flow behavior index n=1, predictions are made for fluids deviating from Newtonian behavior.

Rai, Ashutosh; Poria, Swarup

2008-01-01T23:59:59.000Z

387

Mathematical modeling of hydraulic fracturing in coal seams  

Science Conference Proceedings (OSTI)

Hydraulic fracturing of coal seam is considered as a process of development of discontinuities in rock mass elements due to change in hydrogeomechanical situation on filtration of fluid under pressure. Failure is associated with excess of the effective stresses over the rock tension strength. The problem on filtration and failure of massif is solved by the finite-element method using the procedure of fictitious nodal forces.

Olovyanny, A.G. [All Russian Science Research Institute for Mine Surveying, St. Petersburg (Russian Federation)

2005-02-01T23:59:59.000Z

388

Heat or cold storage composition containing a hydrated hydraulic cement  

SciTech Connect

A polyphase composition for the storage of heat or cold is disclosed that utlizes the latent heat of fusion of a salt hydrate continuous phase intimately intermixed with a hydrated hydraulic cement continuous phase and wherein said continuous phases are optionally in contact with a discontinuous crystalline phase comprising a nucleating component and wherein the composition is enveloped, contained, or packaged within a vapor impermeable material.

Boardman, B.J.

1981-07-07T23:59:59.000Z

389

Advanced geothermal hydraulics model -- Phase 1 final report, Part 2  

DOE Green Energy (OSTI)

An advanced geothermal well hydraulics model (GEODRIL) is being developed to accurately calculate bottom-hole conditions in these hot wells. In Phase 1, real-time monitoring and other improvements were added to GEODRIL. In Phase 2, GEODRIL will be integrated into Marconi's Intelligent Drilling Monitor (IDM) that will use artificial intelligence to detect lost circulation, fluid influxes and other circulation problems in geothermal wells. This software platform has potential for significantly reducing geothermal drilling costs.

W. Zheng; J. Fu; W. C. Maurer

1999-07-01T23:59:59.000Z

390

MASS TRANSFER AND HYDRAULIC TESTING OF THE V-05 AND V-10 CONTACTORS WITH THE NEXT GENERATION SOLVENT  

SciTech Connect

The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)- MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the “first stage” D(Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet Algorithm for Stagewise Solvent Extraction (SASSE) predicted equivalent DF for MCU from this testing is greater than 3,500 assuming 95% efficiency during extraction and 80% efficiency during scrub and strip. Hydraulically, the system performed very well in all tests. Target flows were easily obtained and stable throughout testing. Though some issues were encountered with plugging in the coalescer, they were not related to the solvent. No hydraulic upsets due to the solvent were experienced during any of the tests conducted. The first extraction coalescer element used in testing developed high pressure drop that made it difficult to maintain the target flow rates. Analysis showed an accumulation of sodium aluminosilicate solids. The coalescer was replaced with one from the same manufacturer’s lot and pressure drop was no longer an issue. Concentrations of Isopar™ L and Modifier were measured using semi-volatile organic analysis (SVOA) and high performance liquid chromatography (HPLC) to determine the amount of solvent carryover. For low-flow (0.27 gpm aqueous) conditions in stripping, SVOA measured the Isopar™ L post-contactor concentration to be 25 mg/L, HPLC measured 39 mg/L of Modifier. For moderate-flow (0.54 gpm aqueous) conditions, SVOA measured the Isopar™ L postcontactor to be ~69 mg/L, while the HPLC measured 56 mg/L for Modifier. For high-flow (0.8 gpm aqueous) conditions, SVOA measured the Isopar™ L post-contactor to be 39 mg/L. The post-coalescer (pre-decanter) measurements by SVOA for Isopar™ L were all less than the analysis detection limit of 10 mg/L. The HPLC measured 18, 22 and 20 mg/L Modifier for the low, medium, and high-flow rates respectively. In extraction, the quantity of pre-coalescer Isopar™ L carryover measured by SVOA was ~280- 410 mg/L at low flow (4 gpm aqueous), ~400-450 mg/L at moderate flow (8 gpm aqueous), and ~480 mg/L at high flow (12 gpm aqueous). The amount of post coalescer (pre-decanter) Isopar™ L carryover measured by SVOA was less than 45 mg/L for all flow rates. HPLC results for Modifier were 182, 217 and

Herman, D.; Duignan, M.; Williams, M.; Peters, T.; Poirier, M.; Fondeur, F.

2013-07-31T23:59:59.000Z

391

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

392

A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions  

SciTech Connect

Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

Liu, H. H.

2010-09-15T23:59:59.000Z

393

Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems  

Science Conference Proceedings (OSTI)

Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

Clifton B. Higdon III

2011-01-07T23:59:59.000Z

394

Long range alpha particle detector  

DOE Patents (OSTI)

An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

MacArthur, Duncan W. (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM); McAtee, James L. (Los Alamos, NM); Unruh, Wesley P. (Los Alamos, NM); Cucchiara, Alfred L. (Los Alamos, NM); Huchton, Roger L. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

395

Long range alpha particle detector  

DOE Patents (OSTI)

An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

1993-02-02T23:59:59.000Z

396

TEMPORAL VARIABILITY OF RIVERBED HYDRAULIC CONDUCTIVITY ALONG THE GREAT MIAMI RIVER, SOUTHWEST OHIO: A CONTINUANCE OF DATA GATHERING AND INSTRUMENTATION.  

E-Print Network (OSTI)

??A year-long practicum was undertaken to continue the investigation of riverbed scour and deposition at a site on the Great Miami River. Data were gathered… (more)

Windeler, Britton

2006-01-01T23:59:59.000Z

397

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

398

Conductive lithium storage electrode  

Science Conference Proceedings (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

399

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

400

ORNL rod-bundle heat-transfer test data. Volume 6. Thermal-hydraulic test facility experimental data report for test 3. 05. 5B - double-ended cold-leg break simulation  

SciTech Connect

Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the ORNL PWR Blowdown Heat Transfer Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.05.5B was designed to provide transient thermal-hydraulics data in rod bundle geometry under reactor accident-type conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.; Schwinkendorf, K.N.

1982-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydraulic Fracture Optimization with a Pseudo-3D Model in Multi-layered Lithology  

E-Print Network (OSTI)

Hydraulic Fracturing is a technique to accelerate production and enhance ultimate recovery of oil and gas while fracture geometry is an important aspect in hydraulic fracturing design and optimization. Systematic design procedures are available based on the so-called two-dimensional models (2D) focus on the optimization of fracture length and width, assuming one can estimate a value for fracture height, while so-called pseudo three dimensional (p-3D) models suitable for multi-layered reservoirs aim to maximize well production by optimizing fracture geometry, including fracture height, half-length and width at the end of the stimulation treatment. The proposed p-3D approach to design integrates four parts: 1) containment layers discretization to allow for a range of plausible fracture heights, 2) the Unified Fracture Design (UFD) model to calculate the fracture half-length and width, 3) the PKN or KGD models to predict hydraulic fracture geometry and the associated net pressure and other treatment parameters, and, finally, 4) Linear Elastic Fracture Mechanics (LEFM) to calculate fracture height. The aim is to find convergence of fracture height and net pressure. Net pressure distribution plays an important role when the fracture is propagating in the reservoir. In multi-layered reservoirs, the net pressure of each layer varies as a result of different rock properties. This study considers the contributions of all layers to the stress intensity factor at the fracture tips to find the final equilibrium height defined by the condition where the fracture toughness equals the calculated stress intensity factor based on LEFM. Other than maximizing production, another obvious application of this research is to prevent the fracture from propagating into unintended layers (i.e. gas cap and/or aquifer). Therefore, this study can aid fracture design by pointing out: (1) Treating pressure needed to optimize fracture geometry, (2) The containment top and bottom layers of a multi-layered reservoir, (3) The upwards and downwards growth of the fracture tip from the crack center.

Yang, Mei

2011-08-01T23:59:59.000Z

402

Development of models for the sodium version of the two-phase three-dimensional thermal hydraulics code THERMIT. [LMFBR  

SciTech Connect

Several different models and correlations were developed and incorporated in the sodium version of THERMIT, a thermal-hydraulics code written at MIT for the purpose of analyzing transients under LMFBR conditions. This includes: a mechanism for the inclusion of radial heat conduction in the sodium coolant as well as radial heat loss to the structure surrounding the test section. The fuel rod conduction scheme was modified to allow for more flexibility in modelling the gas plenum regions and fuel restructuring. The formulas for mass and momentum exchange between the liquid and vapor phases were improved. The single phase and two phase friction factors were replaced by correlations more appropriate to LMFBR assembly geometry.

Wilson, G.J.; Kazimi, M.S.

1980-05-01T23:59:59.000Z

403

Range of Glaciers: The Exploration of the Northern Cascade Range  

E-Print Network (OSTI)

D. Hook, Reference Librarian, University of Idaho Library,Moscow, Idaho 83844-2350, (208) 885-6066.Robert D. Hook University of Idaho, USA Fred Beckey. Range

Hook, Robert D.

2006-01-01T23:59:59.000Z

404

Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming  

SciTech Connect

A tubular preform is contracted in an electro-hydraulic forming operation. The tubular preform is wrapped with one or more coils of wire and placed in a chamber of an electro-hydraulic forming tool. The electro-hydraulic forming tool is discharged to form a compressed area on a portion of the tube. The tube is then placed in a hydroforming tool that expands the tubular preform to form a part.

Golovashchenko, Sergey Fedorovich (Beverly Hills, MI)

2011-03-15T23:59:59.000Z

405

Estimating uncertainty in thermal-hydraulic codes using the linear variate method  

Science Conference Proceedings (OSTI)

Thermal-hydraulic codes are subject o uncertainties that must be considered in determining whether safety criteria are satisfied in nuclear reactors. Uncertainties correspond to parameters in a thermal-hydraulic model. A thermal-hydraulic model is typically a nonlinear, discontinuous function of the uncertainties. Evaluating the effect of the uncertainties is difficult. This paper describes an efficient Monte Carlo method for determining the effect of the uncertainties.

Kubic, W.L. Jr. (Los Alamos National Laboratory, NM (USA)); White, A.M. (Westinghouse Savannah River Company, Aiken, SC (USA))

1989-11-01T23:59:59.000Z

406

Specification of Surface Roughness for Hydraulic Flow Test Plates  

Science Conference Proceedings (OSTI)

A study was performed to determine the surface roughness of the corrosion layer on aluminum clad booster fuel plates for the proposed Gas Test Loop (GTL) system to be incorporated into the Advanced Test Reactor (ATR) at the Idaho National Laboratory. A layer of boehmite (a crystalline, non-porous gamma-alumina hydrate) is typically pre-formed on the surface of the fuel cladding prior to exposure to reactor operation to prevent the uncontrolled buildup of corrosion product on the surface. A representative sample coupon autoclaved with the ATR driver fuel to produce the boehmite layer was analyzed using optical profilometry to determine the mean surface roughness, a parameter that can have significant impact on the coolant flow past the fuel plates. This information was used to specify the surface finish of mockup fuel plates for a hydraulic flow test model. The purpose of the flow test is to obtain loss coefficients describing the resistance of the coolant flow paths, which are necessary for accurate thermal hydraulic analyses of the water-cooled booster fuel assembly. It is recommended that the surface roughness of the boehmite layer on the fuel cladding be replicated for the flow test. While it is very important to know the order of magnitude of the surface roughness, this value does not need to be matched exactly. Maintaining a reasonable dimensional tolerance for the surface finish on each side of the 12 mockup fuel plates would ensure relative uniformity in the flow among the four coolant channels. Results obtained from thermal hydraulic analyses indicate that ±15% deviation from a surface finish (i.e., Ra) of 0.53 ěm would have a minimal effect on coolant temperature, coolant flow rate, and fuel temperature.

Donna Post Guillen; Timothy S. Yoder

2006-05-01T23:59:59.000Z

407

Thermal Hydraulic Effect of Fuel Plate Surface Roughness  

Science Conference Proceedings (OSTI)

This study presents surface roughness measurements characteristic of the pre-film layer applied to a typical Advanced Test Reactor (ATR) fuel plate. This data is used to estimate the friction factor for thermal hydraulic flow calculations of a Gas Test Loop (GTL) system proposed for incorporation into ATR to provide a fast neutron flux environment for the testing of nuclear fuels and materials. To attain the required neutron flux, the design includes booster fuel plates clad with the same aluminum alloy as the ATR driver fuel and cooled with water supplied by the ATR primary coolant pumps. The objectives of this study are to: (1) determine the surface roughness of the protective boehmite layer applied to the ATR driver fuel prior to reactor operations in order to specify the machining tolerances for the surface finish on simulated booster fuel plates in a GTL hydraulic flow test model, and (2) assess the consequent thermal hydraulic impact due to surface roughness on the coolability of the booster fuel with a similar pre-film layer applied. While the maximum roughness of this coating is specified to be 1.6 µm (63 microinches), no precise data on the actual roughness were available. A representative sample coupon autoclaved with the ATR driver fuel to produce the pre-film coating was analyzed using optical profilometry. Measurements yielded a mean surface roughness of 0.53 µm (21 microinches). Results from a sensitivity study show that a ±15% deviation from the mean measured surface finish would have a minimal effect on coolant temperature, coolant flow rate, and fuel temperature. However, frictional losses from roughnesses greater than 1.5 µm (~60 microinches) produce a marked decrease in flow rate, causing fuel and coolant temperatures to rise sharply.

Donna Post Guillen; Timothy S. Yoder

2008-09-01T23:59:59.000Z

408

Functional Analysis and Thermal-Hydraulics Program Plan  

SciTech Connect

The purpose of this document is to set forth the Program Plan for the Functional Analysis and Thermal-Hydraulics (FA TH) Program (herein after referred to as the [open quotes]Program[close quotes]) for the 5 year period covering fiscal years 1992 thru 1996. Specifically, the actions planned by the Safety Analysis Group (SAG) of the Reactor Safety Research Section within SRTC will be identified, defined, and a schedule and resource projection presented. This document will be used by the Reactor Safety Research Section management as the baseline definition for the Program's scope, schedule and cost. Annual budget and staffing requests will be submitted based on this approved baseline. Status reporting and progress monitoring will be performed against this approved baseline. This Program plan will be revised as needed to reflect the changes that come about due to Program redirection. The Program's primary mission is to provide further assurance that the Savannah River Site K-Reactor is designed, modified, operated and maintained in a safe, cost-effective manner through application of functional analysis methodology and continued development of thermal hydraulic support capabilities. It is envisioned that the Program will continue throughout the operating life of K-Reactor and have a permanent staff of eight: one lead and seven engineers. The Program has two primary elements; (1) functional analysis, and (2) thermal-hydraulics. Functional analysis is the first element of the formal Systems Engineering Process. Systems Engineering methodology is commonly applied in both commercial and military programs, particularly where the needs of the program involve complex interrelationships between hardware, software, personnel, and support facilities. It has been extensively used in development of military systems, and in the commercial sector in the development of designs for nuclear power reactors.

Paik, I.K.; Lord, R.; Parks, B.

1992-03-27T23:59:59.000Z

409

Functional Analysis and Thermal-Hydraulics Program Plan  

SciTech Connect

The purpose of this document is to set forth the Program Plan for the Functional Analysis and Thermal-Hydraulics (FA&TH) Program (herein after referred to as the {open_quotes}Program{close_quotes}) for the 5 year period covering fiscal years 1992 thru 1996. Specifically, the actions planned by the Safety Analysis Group (SAG) of the Reactor Safety Research Section within SRTC will be identified, defined, and a schedule and resource projection presented. This document will be used by the Reactor Safety Research Section management as the baseline definition for the Program`s scope, schedule and cost. Annual budget and staffing requests will be submitted based on this approved baseline. Status reporting and progress monitoring will be performed against this approved baseline. This Program plan will be revised as needed to reflect the changes that come about due to Program redirection. The Program`s primary mission is to provide further assurance that the Savannah River Site K-Reactor is designed, modified, operated and maintained in a safe, cost-effective manner through application of functional analysis methodology and continued development of thermal hydraulic support capabilities. It is envisioned that the Program will continue throughout the operating life of K-Reactor and have a permanent staff of eight: one lead and seven engineers. The Program has two primary elements; (1) functional analysis, and (2) thermal-hydraulics. Functional analysis is the first element of the formal Systems Engineering Process. Systems Engineering methodology is commonly applied in both commercial and military programs, particularly where the needs of the program involve complex interrelationships between hardware, software, personnel, and support facilities. It has been extensively used in development of military systems, and in the commercial sector in the development of designs for nuclear power reactors.

Paik, I.K.; Lord, R.; Parks, B.

1992-03-27T23:59:59.000Z

410

Application of hydraulically assembled shaft coupling hubs to large agitators  

SciTech Connect

This paper describes the basis for and implementation of hydraulically assembled shaft coupling hubs for large tank-mounted agitators. This modification to the original design was intended to minimize maintenance personnel exposure to ionizing radiation and also provide for disassembly capability without damage to shafts or hubs. In addition to realizing these objectives, test confirmed that the modified couplings reduced agitator shaft end runouts approximately 65%, thereby reducing bearing loads and increasing service life, a significant enhancement for a nuclear facility. 5 refs.

Murray, W.E.; Anderson, T.D. [Bechtel National, Inc., Aiken, SC (United States); Bethmann, H.K. [Westinghouse Savannah River Co., Aiken, SC (United States)

1991-12-31T23:59:59.000Z

411

Application of hydraulically assembled shaft coupling hubs to large agitators  

SciTech Connect

This paper describes the basis for and implementation of hydraulically assembled shaft coupling hubs for large tank-mounted agitators. This modification to the original design was intended to minimize maintenance personnel exposure to ionizing radiation and also provide for disassembly capability without damage to shafts or hubs. In addition to realizing these objectives, test confirmed that the modified couplings reduced agitator shaft end runouts approximately 65%, thereby reducing bearing loads and increasing service life, a significant enhancement for a nuclear facility. 5 refs.

Murray, W.E.; Anderson, T.D. (Bechtel National, Inc., Aiken, SC (United States)); Bethmann, H.K. (Westinghouse Savannah River Co., Aiken, SC (United States))

1991-01-01T23:59:59.000Z

412

Linear hydraulic drive system for a Stirling engine  

SciTech Connect

A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible. 2 figs.

Walsh, M.M.

1984-02-21T23:59:59.000Z

413

Advance plant severe accident/thermal hydraulic issues for ACRS  

DOE Green Energy (OSTI)

The ACRS has been reviewing various advance plant designs for certification. The most active reviews have been for the ABWR, AP600, and System 80+. We have completed the reviews for ABWR and System 80+ and are presently concentrating on AP600. The ACRS gave essentially unqualified certification approval for the two completed reviews, yet,,during the process of review a number of issues arose and the plant designs changed somewhat to accommodate some of the ACRS concerns. In this talk, I will describe some of the severe accident and thermal hydraulic related issues we discussed in our reviews.

Kress, T.S.

1994-09-01T23:59:59.000Z

414

A PKN Hydraulic Fracture Model Study and Formation Permeability Determination  

E-Print Network (OSTI)

Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional and unconventional hydraulic fracturing operations, fracturing during water-flooding of petroleum reservoirs, shale gas, and injection/extraction operation in a geothermal reservoir. Designing a hydraulic fracturing job requires an understanding of fracture growth as a function of treatment parameters. There are various models used to approximately define the development of fracture geometry, which can be broadly classified into 2D and 3D categories. 2D models include, the Perkins-Kern-Nordgren (PKN) fracture model, and the Khristianovic-Geertsma-de. Klerk (KGD) fracture model, and the radial model. 3D models include fully 3D models and pseudo-three-dimensional (P-3D) models. The P-3D model is used in the oil industry due to its simplification of height growth at the wellbore and along the fracture length in multi-layered formations. In this research, the Perkins-Kern-Nordgren (PKN) fracture model is adopted to simulate hydraulic fracture propagation and recession, and the pressure changing history. Two different approaches to fluid leak-off are considered, which are the classical Carter's leak-off theory with a constant leak-off coefficient, and Pressure-dependent leak-off theory. Existence of poroelastic effect in the reservoir is also considered. By examining the impact of leak-off models and poroelastic effects on fracture geometry, the influence of fracturing fluid and rock properties, and the leak-off rate on the fracture geometry and fracturing pressure are described. A short and wide fracture will be created when we use the high viscosity fracturing fluid or the formation has low shear modulus. While, the fracture length, width, fracturing pressure, and the fracture closure time increase as the fluid leak-off coefficient is decreased. In addition, an algorithm is developed for the post-fracture pressure-transient analysis to calculate formation permeability. The impulse fracture pressure transient model is applied to calculate the formation permeability both for the radial flow and linear fracture flow assumption. Results show a good agreement between this study and published work.

Xiang, Jing

2011-12-01T23:59:59.000Z

415

Scientific aspects of hydraulic engineering in the Extreme North  

SciTech Connect

Information relative to participation of the B. E. Vedeneev All-Russian Scientific-Research Institute of Hydraulic Engineering (VNIIG im. B. E. Vedeneeva) in the solution of problems of scientific verification of the design, construction, and operation of water-development works in regions of the Extreme North are presented. Basic characteristics of changes in the technical condition of high rock-and-earthfill dams, and the conditions under which their safety is ensured for long-term service in these regions are examined.

Panov, S. I.; Krivonogova, N. F.

2012-03-15T23:59:59.000Z

416

Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures  

E-Print Network (OSTI)

Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF) considering interaction between a hydraulic fracture (HF) and a pre-existing NF, has been investigated comprehensively using a two dimensional Displacement Discontinuity Method (DDM) Model in this thesis. The rock is first considered as an elastic impermeable medium (with no leakoff), and then the effects of pore pressure change as a result of leakoff of fracturing fluid are considered. A uniform pressure fluid model and a Newtonian fluid flow model are used to calculate the fluid flow, fluid pressure and width distribution along the fracture. Joint elements are implemented to describe different NF contact modes (stick, slip, and open mode). The structural criterion is used for predicting the direction and mode of fracture propagation. The numerical model was used to first examine the mechanical response of the NF to predict potential reactivation of the NF and the resultant probable location for fracture re-initiation. Results demonstrate that: 1) Before the HF reaches a NF, the possibility of fracture re-initiation across the NF and with an offset is enhanced when the NF has weaker interfaces; 2) During the stage of fluid infiltration along the NF, a maximum tensile stress peak can be generated at the end of the opening zone along the NF ahead of the fluid front; 3) Poroelastic effects, arising from fluid diffusion into the rock deformation can induce closure and compressive stress at the center of the NF ahead of the HF tip before HF arrival. Upon coalescence when fluid flows along the NF, the poroelastic effects tend to reduce the value of the HF aperture and this decreases the tension peak and the possibility of fracture re-initiation with time. Next, HF trajectories near a NF were examined prior to coalesce with the NF using different joint, rock and fluid properties. Our analysis shows that: 1) Hydraulic fracture trajectories near a NF may bend and deviate from the direction of the maximum horizontal stress when using a joint model that includes initial joint deformation; 2) Hydraulic fractures propagating with higher injection rate or fracturing fluid of higher viscosity propagate longer distance when turning to the direction of maximum horizontal stress; 3) Fracture trajectories are less dependent on injection rate or fluid viscosity when using a joint model that includes initial joint deformation; whereas, they are more dominated by injection rate and fluid viscosity when using a joint model that excludes initial joint deformation.

Xue, Wenxu

2010-12-01T23:59:59.000Z

417

Capsule injection system for a hydraulic capsule pipelining system  

DOE Patents (OSTI)

An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Liu, Henry (Columbia, MO)

1982-01-01T23:59:59.000Z

418

Interwell tracer analyses of a hydraulically fractured granitic geothermal reservoir  

DOE Green Energy (OSTI)

Field experiments using fluorescent dye and radioactive tracers (Br{sup 82} and I{sup 131}) have been employed to characterize a hot, low-matrix permeability, hydraulically-fractured granitic reservoir at depths of 2440 to 2960 m (8000 to 9700 ft). Tracer profiles and residence time distributions have been used to delineate changes in the fracture system, particularly in diagnosing pathological flow patterns and in identifying new injection and production zones. The effectiveness of one- and two-dimensional theoretical dispersion models utilizing single and multiple porous, fractured zones with velocity and formation dependent effects are discussed with respect to actual field data.

Tester, J.W.; Potter, R.M.; Bivins, R.L.

1979-01-01T23:59:59.000Z

419

Linear hydraulic drive system for a Stirling engine  

DOE Patents (OSTI)

A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

Walsh, Michael M. (Schenectady, NY)

1984-02-21T23:59:59.000Z

420

Upgrading the HFIR Thermal-Hydraulic Legacy Code Using COMSOL  

Science Conference Proceedings (OSTI)

Modernization of the High Flux Isotope Reactor (HFIR) thermal-hydraulic (TH) design and safety analysis capability is an important step in preparation for the conversion of the HFIR core from a high enriched uranium (HEU) fuel to a low enriched uranium (LEU) fuel. Currently, an important part of the HFIR TH analysis is based on the legacy Steady State Heat Transfer Code (SSHTC), which adds much conservatism to the safety analysis. The multi-dimensional multi-physics capabilities of the COMSOL environment allow the analyst to relax the number and magnitude of conservatisms, imposed by the SSHTC, to present a more physical model of the TH aspect of the HFIR.

Bodey, Isaac T [ORNL; Arimilli, Rao V [ORNL; Freels, James D [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Coupled 3D hydrodynamic models for submarine outfalls. Denvironmental hydraulic design and control of multiport diffusers.  

E-Print Network (OSTI)

??The book describes the hydraulic design and environmental impact prediction technologies for such installations. Focus are the hydrodynamics approached by computer models. First, a multiport… (more)

Bleninger, Tobias

2007-01-01T23:59:59.000Z

422

In Situ Characterization of Unsaturated Soil Hydraulic Properties at the Maricopa Environmental Monitoring Site.  

E-Print Network (OSTI)

??Characterization of the unsaturated hydraulic properties is fundamental in modeling soil water flow and contaminant transport in the vadose zone. The objective of this study… (more)

Graham, Aaron Robert.

2004-01-01T23:59:59.000Z

423

Condition monitoring of internal leakage in modern water hydraulic cylinders using acoustic emission.  

E-Print Network (OSTI)

??This research aims to develop a sensitive method for condition monitoring of internal leakage in a modem water hydraulic cylinder by means of acoustic emission… (more)

Chen, Ping.

2009-01-01T23:59:59.000Z

424

Influence of boundary conditions on the hydraulic-mechanical behaviour of an unsaturated swelling soil.  

E-Print Network (OSTI)

??The hydraulic-mechanical behaviour of swelling clay is examined in this thesis. The study includes laboratory testing and numerical modeling which considers the influence of boundary… (more)

Siemens, Gregory Allen

2006-01-01T23:59:59.000Z

425

Automatic hydraulic fracturing design for low permeability reservoirs using artificial intelligence.  

E-Print Network (OSTI)

??The hydraulic fracturing technique is one of the major developments in petroleum engineering in the last two decades. Today, nearly all the wells completed in… (more)

Popa, Sergui Andrei, 1970-

2004-01-01T23:59:59.000Z

426

INTERPRETATION OF HYDRAULIC FRACTURING PRESSURE IN LOW-PERMEABILITY GAS RESERVOIRS.  

E-Print Network (OSTI)

??Hydraulic fracturing has been used in most oil and gas wells to increase production by creating fractures that extend from the wellbore into the formation.… (more)

Kim, Gun Ho

2010-01-01T23:59:59.000Z

427

Experimental Analysis of the Flow, Pressure, Speed, and Torque Characteristics of Two Eaton Geroler Hydraulic Motors.  

E-Print Network (OSTI)

??This paper presents data collected examining the flow, pressure, speed, and torque characteristics of two Eaton Geroler hydraulic motors. A test installation was designed and… (more)

Cazaban, Philip M.

2011-01-01T23:59:59.000Z

428

Hydraulic fracture productivity performance in tight gas sands, a numerical simulation approach.  

E-Print Network (OSTI)

??Hydraulically fractured tight gas reservoirs are one of the most common unconventional sources being produced today, and look to be a regular source of gas… (more)

Ostojic, Jakov

2013-01-01T23:59:59.000Z

429

Electrodeposition of conducting polymer fibers  

E-Print Network (OSTI)

Conducting polymers are materials that possess the electrical conductivity of metals while still retaining the mechanical properties such as flexibility of traditional polymers. Polypyrrole (PPy) is one of the more commonly ...

Chen, Angela Y. (Angela Ying-Ju), 1982-

2004-01-01T23:59:59.000Z

430

Property:Wave Period Range(s) | Open Energy Information  

Open Energy Info (EERE)

Wave Period Range(s) Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave Period Range(s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 10.0 + 10-ft Wave Flume Facility + 0.0 + 11-ft Wave Flume Facility + 10.0 + 2 2-ft Flume Facility + 10.0 + 3 3-ft Wave Flume Facility + 10.0 + 5 5-ft Wave Flume Facility + 10.0 + 6 6-ft Wave Flume Facility + 10.0 + A Alden Large Flume + 2.1 + Alden Small Flume + 0.0 + Alden Wave Basin + 1.0 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.0 + Carderock Tow Tank 2 + 0.0 + Carderock Tow Tank 3 + 0.0 + Chase Tow Tank + 3.1 + Coastal Harbors Modeling Facility + 2.3 +

431

Transparent Conductive Nano-Composites  

Indium Tin Oxide, the most widely used commercial transparent conducting coating, has severe limitations such inflexibility, high processing ...

432

Hydraulic fracturing method employing a fines control technique  

SciTech Connect

A method is described for controlling fines or sand in an unconsolidated or loosely consolidated formation or reservoir penetrated by at least one wellbore where hydraulic fracturing is used in combination with control of the critical salinity rate and the critical fluid flow velocity. The method comprises: (a) placing at least one wellbore in the reservoir; (b) hydraulically fracturing the formation via the wellbore with a fracturing fluid which creates at least one fracture; (c) placing a proppant comprising a gravel pack into the fracture; (d) determining the critical salinity rate and the critical fluid flow velocity of the formation or reservoir surrounding the wellbore; (e) injecting a saline solution into the formation or reservoir at a velocity exceeding the critical fluid flow velocity and at a saline concentration sufficient to cause the fines or particles to be transferred and fixed deep wihtin the formation or reservoir without plugging the formation, fracture, or wellbore; and (f) producing a hydrocarbonaceous fluid from the formation or reservoir at a velocity such that the critical flow velocity is not exceeded deep within the formation, fracture, or wellbore.

Stowe, L.R.

1986-11-18T23:59:59.000Z

433

Hydraulic fracturing of a moderate permeability reservoir, Kuparuk River Unit  

SciTech Connect

Sixty-five percent of the proven reserves in one of the United States' largest oil fields, the Kuparuk River Unit, are contained in the lower of two producing horizons. This zone, commonly referred to as the ''A'' sand, has a permeability of between 30 and 100 md. Unfortunately this interval is easily damaged during drilling and completion operations. Low initial flow efficiencies have been confirmed by numerous pressure transient tests. A program of hydraulic fracturing was initiated in March 1984 to overcome near wellbore damage and provide stimulation to more efficiently tap ''A'' sand reserves. More than 300 fracture stimulations have been completed to date in the arctic setting of the Kuparuk River Unit. These jobs have used a variety of fluids, proppants, and pumping schedules. The current hydraulic fracture design was evolved by continual interpretation of field results and related data from these previous stimulations. Success of the overall program has been impressive. Average post-fracture flow efficiency has been in excess of 100%. Post-fracture rate increase has averaged approximately 300%, accounting for a total rate increase of over 125,000 BOPD (19,900 m/sup 3//d). Based on these results, fracturing will continue to play an important part in future field development. This paper is the first review of the Kuparuk River Unit fracture program. It provides a case history of the development of a standard fracture design. In addition, the findings of this study would be applicable to reservoirs elsewhere with similar characteristics.

Niemeyer, B.L.; Reinart, M.R.

1986-01-01T23:59:59.000Z

434

Hydraulically-actuated operating system for an electric circuit breaker  

DOE Patents (OSTI)

This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.

Barkan, Philip (Media, PA); Imam, Imdad (Secane, PA)

1978-01-01T23:59:59.000Z

435

In-Plant Testing of High-Efficiency Hydraulic Separators  

SciTech Connect

Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

2006-06-30T23:59:59.000Z

436

IN-PLANT TESTING OF HIGH-EFFICIENCY HYDRAULIC SEPARATORS  

SciTech Connect

Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

G.H. Luttrell; R.Q. Honaker; R.C. Bratton; T.C. Westerfield; J.N. Kohmuench

2006-05-22T23:59:59.000Z

437

Measuring Range Anxiety: the Substitution-Emergency-Detour (SED) Method  

Science Conference Proceedings (OSTI)

Range anxiety has been widely recognized as a critical barrier for battery electric vehicles (BEV), but its measurement method is lacking. Such a knowledge gap makes it difficult to analyse the competiveness of and the demand for BEVs. This study develops the Substitution-Emergency-Detour (SED) method to measure the range anxiety cost, and conducts sensitivity analysis of range anxiety cost with respect to nine factors. It is found that the most effective ways to reduce range anxiety are reducing driving intensity, increasing the vehicle range, extending the vehicle range with better charging infrastructure. Better household vehicle flexibility and less range uncertainty can also significantly reduce range anxiety. The SED method and the numerical results are expected to contribute to better understanding of the range anxiety barrier and the BEV demand.

Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

438

Fan-less long range alpha detector  

DOE Patents (OSTI)

A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

MacArthur, Duncan W. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

439

Fan-less long range alpha detector  

DOE Patents (OSTI)

A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

MacArthur, D.W.; Bounds, J.A.

1994-05-10T23:59:59.000Z

440

APS Long Range Operations Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Shutdown Planning Shutdown Planning Planning Templates Shutdown Planning Schedules: Current Shutdown Schedule Archives: 2006 - 2013 APS Long-Range Operations Schedule: 2014 Archives: 2013 | 2012 2011 | 2010 | 2009 | 2008 2007 | 2006 | 2005 | 2004 2003 | 2002 | 2001 | 2000 1999 | 1998 | 1997 | 1996 APS Long-Range Operations Schedule (Fiscal Year 2014) Alternate Formats: iCal | Excel | PDF APS Long-Range Operation Schedule 2013-3 2014-1 2014-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

Note: This page contains sample records for the topic "hydraulic conductivity ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydraulic head interpolation using anfis-model selection and sensitivity analysis  

Science Conference Proceedings (OSTI)

The aim of this study is to investigate the efficiency of anfis (adaptive neuro fuzzy inference system) for interpolating hydraulic head in a 40-km^2 agricultural watershed of the Seine basin (France). Inputs of anfis are Cartesian coordinates and the ... Keywords: Hydraulic head, Hydrogeology, Sensitivity analysis, Spatial interpolation, anfis

Bedri Kurtulus; Nicolas Flipo

2012-01-01T23:59:59.000Z

442

New Experimental Studies of Thermal-Hydraulics of Rod Bundles (NESTOR)  

Science Conference Proceedings (OSTI)

The NESTOR (New Experimental Studies of Thermal-hydraulics of Rod Bundles) project is a multi-year collaborative endeavor of EPRI, Electricit de France (EDF), and Commissariat lEnergie Atomique (CEA). The project is aimed at elucidating thermal-hydraulics unknowns pertaining to axial offset anomaly (AOA) in pressurized water reactor (PWR) cores.

2008-12-22T23:59:59.000Z

443

An efficient design pattern algorithm for the environmental and hydrologic/hydraulic ubiquitous model developments  

Science Conference Proceedings (OSTI)

In this paper, we propose an efficient design pattern algorithm for the environmental and hydrologic/hydraulic ubiquitous model developments which specifies pattern names for retrieving, exploring the adapted patterns on the stage of design without pattern ... Keywords: composite design pattern, environmental, hydrologic/hydraulic, pattern, pattern names

Hyung Moo Kim; Jae Soo Yoo

2009-08-01T23:59:59.000Z

444

New Idea for Hydraulic Testing Machine with Stress and Strain Rates Controlled and its Realization  

Science Conference Proceedings (OSTI)

Based on the relationship between pressure and flux of thin-walled hole, a new idea is proposed for hydraulic testing machine. Using transducer and computer technique, hydraulic system is formed by SCM(single chip micyoco), needle valve, frequency converter ... Keywords: testing machine, stress rate, strain rate, needle valves

Du Jingqing; Gao Shiqiao; Niu Shaohua

2010-05-01T23:59:59.000Z

445

Research on Maintenance Optimization for Steam Turbine Digital Electro-Hydraulic Control System  

Science Conference Proceedings (OSTI)

As the substitute of mechanical hydraulic governing system, steam turbine digital electro-hydraulic control system presents different maintenance characteristics. If the traditional maintenance strategy is still adopted, that is the replacement or inspection ... Keywords: DEH control system, maintenance optimization, risk evaluation, fault tree

Zhenhe Wang; Shaocong Guo

2009-11-01T23:59:59.000Z

446

The Direct Neural Control Applied to the Position Control in Hydraulic Servo System  

Science Conference Proceedings (OSTI)

This study utilizes the direct neural control (DNC) based on back propagation neural networks (BPN) with specialized learning architecture applied to control the position of a cylinder rod in an electro-hydraulic servo system (EHSS). The proposed neural ... Keywords: Back propagation, Electro-hydraulic servo system, Neural networks, Position control

Yuan Kang; Yi-Wei Chen; Yeon-Pun Chang; Ming-Huei Chu

2008-09-01T23:59:59.000Z

447

Modeling and Parameter Optimization for an Articulating Electro Hydraulic Forest Machinery  

Science Conference Proceedings (OSTI)

This paper focuses on modeling and parameter estimation for the electro hydraulic actuation system of an articulated forestry machine. The linear graph method is implemented in deriving mathematical models of the swing, boom and stick subsystems. Actuation ... Keywords: Forest Machinery, Articulating Electro Hydraulic, Parameter Optimization

Wei-Zhan Guo; Liu-Jin Hao; Yu Ying; Wu-Jia Di

2010-01-01T23:59:59.000Z

448

Engine having a high pressure hydraulic system and low pressure lubricating system  

DOE Patents (OSTI)

An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2000-01-01T23:59:59.000Z

449

Analysis of dynamic characteristics of single piston hydraulic free piton engine  

Science Conference Proceedings (OSTI)

The operation theory of the single piston hydraulic free piston engine (SPHFPE) was introduced and was simplified as a gas spring-mass system. The mathematics model of the gas spring rate vs. displacement was set up. The equivalent spring rate and frequency ... Keywords: AMESim, dynamic characteristic, equivalent spring rate, hydraulic free piston engine (HFPE), spring-mass system

Haoling Ren; Haibo Xie; Huayong Yang

2010-11-01T23:59:59.000Z

450

New Experimental Studies of Thermal-Hydraulics in Rod Bundles (NESTOR)  

Science Conference Proceedings (OSTI)

The NESTOR (New Experimental Studies of Thermal-Hydraulics of Rod Bundles) project is a multiyear collaborative endeavor of EPRI, Electricitde France (EDF), and Commissariat l'Energie Atomique (CEA). The project is aimed at elucidating thermal-hydraulics unknowns pertaining to axial offset anomaly (AOA) in pressurized water reactor (PWR) cores.

2006-12-19T23:59:59.000Z

451

Dynamic Response Analysis of Underground Powerhouse Structures Considering Coupling Effects of Hydraulic Impulse and Dynamic Loads  

Science Conference Proceedings (OSTI)

When accident takes place in hydropower generator units, they transit from normal working condition to accident working condition. During this period, the generator pier structures bear coupling effect of dynamic load from the units and hydraulic impulse ... Keywords: underground powerhouse structure, unit dynamic load, hydraulic impulse, coupling effect, dynamic analysis

Li Xiaoli; Yuan Chaoqing; Li Ke; Li Yujie

2012-05-01T23:59:59.000Z

452

Numerical simulation of hydraulic shock in a water pumping system protected by air  

Science Conference Proceedings (OSTI)

Air may be efficiently used in water pumping system protection from hydraulic shock, due to its elasticity. The paper presents the results regarding the extreme pressures in the discharge duct of a pumping installation, obtained by numerical simulation ... Keywords: air chamber, biphasic flow, dissolution, hydraulic shock, pumping installation

Anca Constantin; Claudiu Stefan Nitescu

2010-10-01T23:59:59.000Z

453

New Experimental Studies of Thermal-Hydraulics of Rod Bundles (NESTOR)  

Science Conference Proceedings (OSTI)

NESTOR (New Experimental Studies of Thermal-hydraulics of Rod Bundles) project is a multiyear collaborative endeavor of EPRI, Electricite de France (EDF), and Commissariat a l'Energie Atomique (CEA). The project is aimed at elucidating thermal-hydraulics unknowns pertaining to the problem of axial offset anomaly (AOA) in PWR cores.

2005-12-05T23:59:59.000Z

454

Vorticity Generation in the Shallow-Water Equations as Applied to Hydraulic Jumps  

Science Conference Proceedings (OSTI)

The authors attempt to find a bridge between the vorticity dynamics of a finite cross-stream length hydraulic jump implied by the Navier-Stokes equations and that given by the shallow-water approximation (SWA) with the turbulence of the hydraulic ...

Richard Rotunno; Piotr K. Smolarkiewicz

1995-02-01T23:59:59.000Z

455

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks  

Science Conference Proceedings (OSTI)

Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective ... Keywords: Fractal dimension, Global sensitivity, Hydraulic fracturing, Optimization, Surrogate model

Mingjie Chen, Yunwei Sun, Pengcheng Fu, Charles R. Carrigan, Zhiming Lu, Charles H. Tong, Thomas A. Buscheck

2013-08-01T23:59:59.000Z

456

Estimating Salinity Variance Dissipation Rate from Conductivity Microstructure Measurements  

Science Conference Proceedings (OSTI)

At the smallest length scales, conductivity measurements include a contribution from salinity fluctuations in the inertial–convective and viscous–diffusive ranges of the turbulent scalar variance spectrum. Interpreting these measurements is ...

Jonathan D. Nash; James N. Moum

1999-02-01T23:59:59.000Z

457

A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development  

DOE Green Energy (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

Ahmad Ghassemi

2003-06-30T23:59:59.000Z

458

The electrical conductivity of sodium polysulfide melts  

DOE Green Energy (OSTI)

The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

Meihui Wang

1992-06-01T23:59:59.000Z

459

Preliminary report on the baseline thermal and hydraulic performance tests of a sieve tray direct contact heat exchanger  

DOE Green Energy (OSTI)

A sieve tray direct contact heat exchanger was designed, built and then tested in a binary power cycle at the Raft River geothermal test site. A series of baseline thermal and hydraulic tests were conducted with an isobutane working fluid. The evaluation of these tests is reported. The testing of the DCHX confirmed that the repeated forming and coalescence of the working fluid drops in the sieve tray column produce excellent heat transfer performance. Tray thermal efficiencies were at or above the design value of 70% and the pinch points were well under the design goal of 1/sup 0/F (too small to be measured with installed instrumentation). From a hydraulic standpoint, the column operated at the working fluid velocities from the plate holes corresponding to the predicted condition of maximum total drop surface area (or minimum drop size) when the unit was operating near the flooding limits, or throughputs. This is the recommended working fluid hole velocity for use in designing sieve tray columns. The geothermal flow limits encountered (at flooding) corresponded roughly to the thermal rise velocity of a 1/32-inch drop. This is a drop size commonly used for specifying the terminal velocity (or continuous fluid velocity) in the design of columns for mass transfer applications.

Mines, G.L.

1982-11-01T23:59:59.000Z

460

Adaptively parallelizing distributed range queries  

Science Conference Proceedings (OSTI)

We consider the problem of how to best parallelize range queries in a massive scale distributed database. In traditional systems the focus has been on maximizing parallelism, for example by laying out data to achieve the highest throughput. However, ...

Ymir Vigfusson; Adam Silberstein; Brian F. Cooper; Rodrigo Fonseca

2009-08-01T23:59:59.000Z