Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Gas hydrate cool storage system  

DOE Patents [OSTI]

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

2

Molecular dynamics simulation of hydration in myoglobin  

SciTech Connect (OSTI)

This study was carried out to evaluate the stability of the 89 bound water molecules that were observed in the neutron diffraction study of CO myoglobin. The myoglobin structure derived from the neutron analysis was used as the starting point in the molecular dynamics simulation using the software package CHARMM. After salvation of the protein, energy minimization and equilibration of the system, 50 pico seconds of Newtonian dynamics was performed. This data showed that only 4 water molecules are continously bound during the length of this simulation while the other solvent molecules exhibit considerable mobility and are breaking and reforming hydrogen bonds with the protein. At any instant during the simulation, 73 of the hydration sites observed in the neutron structure are occupied by water.

Gu, Wei [New Mexico Univ., Albuquerque, NM (United States). Dept. of Biochemistry; Schoenborn, B.P. [Los Alamos National Lab., NM (United States)

1995-09-01T23:59:59.000Z

3

Dynamics of Kr in dense clathrate hydrates  

Science Journals Connector (OSTI)

The dynamics of Kr atoms as guests in dense clathrate hydrate structures are investigated using site specific Kr83 nuclear resonant inelastic x-ray scattering (NRIXS) spectroscopy in combination with molecular dynamics simulations. The dense structure H hydrate and filled-ice structures are studied at high pressures in a diamond anvil high-pressure cell. The dynamics of Kr in the structure H clathrate hydrate quench recovered at 77 K is also investigated. The Kr phonon density of states obtained from the experimental NRIXS data are compared with molecular dynamics simulations. The temperature and pressure dependence of the phonon spectra provide details of the Kr dynamics in the clathrate hydrate cages. Comparison with the dynamics of Kr atoms in the low-pressure structure II obtained previously was made. The Lamb-Mossbauer factor obtained from NRIXS experiments and molecular dynamics calculations are in excellent agreement and are shown to yield unique information on the strength and temperature dependence of guest-host interactions.

D. D. Klug; J. S. Tse; J. Y. Zhao; W. Sturhahn; E. E. Alp; C. A. Tulk

2011-05-25T23:59:59.000Z

4

Hydration water dynamics and instigation of protein structuralrelaxation  

SciTech Connect (OSTI)

Until a critical hydration level is reached, proteins do not function. This critical level of hydration is analogous to a similar lack of protein function observed for temperatures below a dynamical temperature range of 180-220K that also is connected to the dynamics of protein surface water. Restoration of some enzymatic activity is observed in partially hydrated protein powders, sometimes corresponding to less than a single hydration layer on the protein surface, which indicates that the dynamical and structural properties of the surface water is intimately connected to protein stability and function. Many elegant studies using both experiment and simulation have contributed important information about protein hydration structure and timescales. The molecular mechanism of the solvent motion that is required to instigate the protein structural relaxation above a critical hydration level or transition temperature has yet to be determined. In this work we use experimental quasi-elastic neutron scattering (QENS) and molecular dynamics simulation to investigate hydration water dynamics near a greatly simplified protein system. We consider the hydration water dynamics near the completely deuterated N-acetyl-leucine-methylamide (NALMA) solute, a hydrophobic amino acid side chain attached to a polar blocked polypeptide backbone, as a function of concentration between 0.5M-2.0M under ambient conditions. We note that roughly 50-60% of a folded protein's surface is equally distributed between hydrophobic and hydrophilic domains, domains whose lengths are on the order of a few water diameters, that justify our study of hydration dynamics of this simple model protein system. The QENS experiment was performed at the NIST Center for Neutron Research, using the disk chopper time of flight spectrometer (DCS). In order to separate the translational and rotational components in the spectra, two sets of experiments were carried out using different incident neutron wavelengths of 7.5{angstrom} and 5.5{angstrom} to give two different time resolutions. All the spectra have been measure at room temperature. The spectra were corrected for the sample holder contribution and normalized using the vanadium standard. The resulting data were analyzed with DAVE programs (http://www.ncnr.nist.gov/dave/). The AMBER force field and SPCE water model were used for modeling the NALMA solute and water, respectively. For the analysis of the water dynamics in the NALMA aqueous solutions, we performed simulations of a dispersed solute configuration consistent with our previous structural analysis, where we had primarily focused on the structural organization of these peptide solutions and their connection to protein folding. Further details of the QENS experiment and molecular dynamics simulations are reported elsewhere.

Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

2003-09-01T23:59:59.000Z

5

Hydration-dependent dynamics of deeply cooled water under strong confinement  

E-Print Network [OSTI]

We have measured the hydration-level dependence of the single-particle dynamics of water confined in the ordered mesoporous silica MCM-41. The dynamic crossover observed at full hydration is absent at monolayer hydration. ...

Bertrand, C. E.

6

Hydration dynamics near a model protein surface  

E-Print Network [OSTI]

AE, Onuchic JN. 2002. Protein folding mediated by solvation:of hydration forces in protein folding. Journal of Physicalthe broader context of protein folding and function and as

Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

2003-01-01T23:59:59.000Z

7

DPF -"Hydrated EGR" Fuel Saver System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Saver System DPF -"Hydrated EGR" Fuel Saver System GreenPower muffler uses hydrated exhaust gas recirculation to reduce NOx and improve fuel efficiency deer08rim.pdf More...

8

Method for controlling clathrate hydrates in fluid systems  

DOE Patents [OSTI]

Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

Sloan, Jr., Earle D. (Golden, CO)

1995-01-01T23:59:59.000Z

9

Dynamics of Confined Water Molecules in Aqueous Salt Hydrates  

SciTech Connect (OSTI)

The unusual properties of water are largely dictated by the dynamics of the H bond network. A single water molecule has more H bonding sites than atoms, hence new experimental and theoretical investigations about this peculiar liquid have not ceased to appear. Confinement of water to nanodroplets or small molecular clusters drastically changes many of the liquid’s properties. Such confined water plays a major role in the solvation of macro molecules such as proteins and can even be essential to their properties. Despite the vast results available on bulk and confined water, discussions about the correlation between spectral and structural properties continue to this day. The fast relaxation of the OH stretching vibration in bulk water, and the variance of sample geometries in the experiments on confined water obfuscate definite interpretation of the spectroscopic results in terms of structural parameters. We present first time-resolved investigations on a new model system that is ideally suited to overcome many of the problems faced in spectroscopical investigation of the H bond network of water. Aqueous hydrates of inorganic salts provide water molecules in a crystal grid, that enables unambiguous correlations of spectroscopic and structural features. Furthermore, the confined water clusters are well isolated from each other in the crystal matrix, so different degrees of confinement can be achieved by selection of the appropriate salt.

Werhahn, Jasper C.; Pandelov, S.; Yoo, Soohaeng; Xantheas, Sotiris S.; Iglev, H.

2011-04-01T23:59:59.000Z

10

Rock-physics Models for Gas-hydrate Systems Associated  

E-Print Network [OSTI]

Rock-physics Models for Gas-hydrate Systems Associated with Unconsolidated Marine Sediments Diana associated with unconsolidated marine sediments. The goals are to predict gas-hydrate concentration from intercalated with unconsolidated sediments. We show that the geometrical details of how gas hy- drates

Texas at Austin, University of

11

Born?Oppenheimer Molecular Dynamics of the Hydration of Na+ in a Water Cluster  

Science Journals Connector (OSTI)

Born?Oppenheimer Molecular Dynamics of the Hydration of Na+ in a Water Cluster ... The hydration of Na+ in a water cluster is studied through all-electron Born?Oppenheimer molecular dynamics. ... The method chosen in the present study was all-electron, density functional theory based, Born?Oppenheimer molecular dynamics (BOMD). ...

N. Galamba; B. J. Costa Cabral

2009-11-23T23:59:59.000Z

12

Proton Transport in Triflic Acid Hydrates Studied via Path Integral Car?Parrinello Molecular Dynamics  

Science Journals Connector (OSTI)

Proton Transport in Triflic Acid Hydrates Studied via Path Integral Car?Parrinello Molecular Dynamics ... The mono-, di-, and tetrahydrates of trifluoromethanesulfonic acid, which contain characteristic H3O+, H5O2+, and H9O4+ structures, provide model systems for understanding proton transport in materials with high perfluorosulfonic acid density such as perfluorosulfonic acid membranes commonly employed in hydrogen fuel cells. ... Hydrogen is described as a promising future fuel if the fuel cell technol. ...

Robin L. Hayes; Stephen J. Paddison; Mark E. Tuckerman

2009-12-07T23:59:59.000Z

13

Observation of dynamic crossover and dynamic heterogeneity in hydration water confined in aged cement paste  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

502101 502101 (6pp) doi:10.1088/0953-8984/20/50/502101 FAST TRACK COMMUNICATION Observation of dynamic crossover and dynamic heterogeneity in hydration water confined in aged cement paste Y Zhang 1 , M Lagi 1,2 , F Ridi 2 , E Fratini 2 , P Baglioni 2 , E Mamontov 3 and S H Chen 1,4 1 Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino, Florence, I-50019, Italy 3 Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA E-mail: sowhsin@mit.edu Received 24 September 2008, in final form 23 October 2008 Published 12 November 2008 Online at stacks.iop.org/JPhysCM/20/502101 Abstract High resolution quasi-elastic neutron scattering is used to investigate the slow dynamics of hydration water confined in calcium silicate hydrate

14

Method for controlling clathrate hydrates in fluid systems  

DOE Patents [OSTI]

Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

Sloan, E.D. Jr.

1995-07-11T23:59:59.000Z

15

Method for controlling clathrate hydrates in fluid systems  

DOE Patents [OSTI]

Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

Sloan, Jr., Earle D. (Golden, CO)

1995-01-01T23:59:59.000Z

16

Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations  

Science Journals Connector (OSTI)

Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations† ... The VACFs of all three guests in the small cages oscillate between positive and negative values with the oscillation being damped out with increasing time. ... The oscillations are damped much more strongly for CO2 hydrate than for the Xe or methane hydrates, indicating that the coupling between the rattling motions of the encaged guest molecules and the vibrational motions of the host lattice is strongest for CO2 hydrate. ...

H. Jiang; K. D. Jordan

2009-11-11T23:59:59.000Z

17

Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems  

Science Journals Connector (OSTI)

The P-T stability conditions of gas hydrate in different systems (i.e., solution, silica sand, and marine sediment) were studied using...P-T stability conditions of gas hydrate were investigated. The results show...

ChangLing Liu; YuGuang Ye; ShiCai Sun; Qiang Chen…

2013-04-01T23:59:59.000Z

18

NETL: Methane Hydrates - ANS Research Project - Modular Dynamics Tester  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Well Well Modular Formation Dynamics Tester (MDT) Tool The scientific plan for the Mt. Elbert Prospect includes multiple tests using Schlumberger’s Modular Formation Dynamics Tester (MDT) tool. This device is deployed on wireline and will be used to sample formation fluids, and measure formation pressure and permeability. The tool’s design involves extension of a sampling probe pad against the borehole wall by backup pistons and the insertion of a smaller test probe a small distance into the formation. The probe is then opened to a sampling chamber within the tool, where fluids from the formation can flow, free of contamination by the borehole fluid. The formation pressure is measured using an extremely accurate gauge that can resolve small pressure differences. The pressure and the rate of fluid flow into the sample chamber can be used to calculate reservoir permeability. Multiple probes can also be used to determine both vertical and horizontal permeability data, which can be used to assess near-wellbore permeability anisotropy (i.e., the degree to which vertical and horizontal permeability within the same reservoir differ). All of these data are useful to engineers interested in predicting the productive capability of a reservoir. Various configurations of the MDT tool can be used to accomplish specific testing goals.

19

Product design and development of an aerodynamic hydration system for bicycling and triathlon  

E-Print Network [OSTI]

Proper hydration and aerodynamic performance are both essential needs of a competitive cyclist or triathlete. Several aerodynamic systems have been developed for use on bicycles but few have been designed to be truly ...

Cote, Mark (Mark Brian)

2007-01-01T23:59:59.000Z

20

Structural basis for the transformation pathways of the sodium naproxen anhydrate-hydrate system  

Science Journals Connector (OSTI)

Relationships between the crystal structures of two polymorphs of sodium naproxen dihydrate and its monohydrate and anhydrate phases provide a basis to rationalize the observed transformation pathways in the sodium (S)-naproxen anhydrate-hydrate system.

Bond, A.D.

2014-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

THE SYSTEM THORIUM NITRATE-WATER-NITRIC ACID AT 25 AND THE HYDRATES...  

Office of Scientific and Technical Information (OSTI)

SYSTEM THORIUM NITRATE-WATER-NITRIC ACID AT 25 AND THE HYDRATES OF THORIUM NITRATE Re-direct Destination: Temp Data Fields Ferraro, J.R.; Katzin, L.I. Temp Data Storage 3: Argonne...

22

Modeling of structure H hydrate equilibria for methane, intermediate hydrocarbon molecules and water systems  

SciTech Connect (OSTI)

Clathrate hydrates are inclusion compounds in which guest molecules are engaged by water molecules under favorable conditions of pressure and temperature. The well known structures 1 and 2 have been discovered since last century, while a new structure called H has been recently described in the literature. Since that time, structure H hydrate equilibrium data involving methane and different intermediate liquid hydrocarbon molecules have been published. The equilibrium calculations involving hydrates are based on the fact that the chemical potential of water in the aqueous liquid phase is equal to the one in the hydrate phase. The chemical potential of water in the liquid aqueous phase can be easily described by classical thermodynamic relations, while the chemical potential of water in the hydrates phase is described by the expressions proposed by Van der Walls and Platteeuw derived from an adsorption model based on statistical thermodynamics. The authors present in this paper a set of Kihara potential parameters which enable the calculation of Langmuir constants which characterize the adsorption of some naphthenic and iso-paraffinic intermediate hydrocarbons in the larger cage of structure H hydrates. This work thus allows the computation of structural H hydrate equilibrium conditions for systems made of methane, intermediate hydrocarbon molecules and water.

Thomas, M.; Behar, E. [Inst. Francais du Petrole, Rueil-Malmaison (France)

1996-12-31T23:59:59.000Z

23

Additives and method for controlling clathrate hydrates in fluid systems  

DOE Patents [OSTI]

Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hindrance and/or charge repulsion. Also, polymers having an amide on which a C{sub 1}-C{sub 4} group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

Sloan, E.D. Jr.; Christiansen, R.L.; Lederhos, J.P.; Long, J.P.; Panchalingam, V.; Du, Y.; Sum, A.K.W.

1997-06-17T23:59:59.000Z

24

Additives and method for controlling clathrate hydrates in fluid systems  

DOE Patents [OSTI]

Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hinderance and/or charge repulsion. Also, polymers having an amide on which a C.sub.1 -C.sub.4 group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

Sloan, Jr., Earle Dendy (Golden, CO); Christiansen, Richard Lee (Littleton, CO); Lederhos, Joseph P. (Wheatridge, CO); Long, Jin Ping (Dallas, TX); Panchalingam, Vaithilingam (Lakewood, CO); Du, Yahe (Golden, CO); Sum, Amadeu Kun Wan (Golden, CO)

1997-01-01T23:59:59.000Z

25

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station DE-FC26-02NT41328 Goal Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of California, San Diego (Scripps Institution of Oceanography) - manage geochemical, hydrological and sedimentological investigations Texas A&M University - manage field monitoring program Location La Jolla, California 92093 Background This project will monitor, characterize, and quantify the rates of formation and dissociation of methane gas hydrates at and near the seafloor in the northern Gulf of Mexico, and determine linkages between formation/dissociation and physical/chemical parameters of the deposits over the course of a year. The stability and response of shallow gas hydrates to temperature and chemical perturbations will be monitored in situ, and localized seafloor and water column environmental impacts of hydrate formation and dissociation characterized. The following will be determined: 1) The equilibrium/steady state conditions for structure II methane gas hydrates at the field site,2) whether the system is in dynamic equilibrium and the local hydrology is characterized by steady state episodic fluid flow, and 3) how fluid fluxes and fluid composition work together to dynamically influence gas hydrate stability.

26

NETL: Methane Hydrates - DOE/NETL Projects - Temporal Characterization of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters Last Reviewed 12/18/2013 Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters Last Reviewed 12/18/2013 DE-FE0010141 Goal The overall objective of the project is to investigate hydrate system dynamics beneath seafloor mounds—a structurally focused example of hydrate occurrence at the landward extreme of their stability field—in the northern Gulf of Mexico. Researchers will conduct observatory-based in situ measurements at Woolsey Mound, MC118 to: Characterize (geophysically) the sub-bottom distribution of hydrate and its temporal variability and, Contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents, and seafloor

27

The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline com-  

E-Print Network [OSTI]

gas hydrates. Gas hydrates are crystalline com- pounds that are often encountered in oil and gas briefly present the hydrate crystalline structure and the role of hydrates in oil-and gas industry the industrial contexts where they appear, we shall cite : hydrate plugs obstructing oil- or gas

Boyer, Edmond

28

Report on Ngai et al.: Change of Caged Dynamics at Tg in hydrated proteins found after suppressing the methyl group rotation contribution"  

E-Print Network [OSTI]

neutron scattering data of solvated proteins, the solvent is now restricted to hydration water: The authors belong to the elastic neutron scattering community, which intends to explain protein dynamics of dynamic information. The full dynamic information derivable from neutron scattering experiments

Doster, Wolfgang

29

Change of caged dynamics at Tg in hydrated proteins found after suppressing the methyl-group rotation contribution  

E-Print Network [OSTI]

In conventional glassformers at sufficiently short times and low enough temperatures, molecules are mutually caged by the intermolecular potential. The fluctuation and dissipation from motion of caged molecules when observed by elastic incoherent neutron scattering exhibit a change in temperature dependence of the mean square displacement (MSD) at the glass transition temperature Tg. This is a general and fundamental property of caged dynamics in glassformers, which is observed always near Tg independent of the energy resolution of the spectrometer. Recently we showed the same change of T-dependence at Tg is present in proteins solvated with bioprotectants, coexisting with the dynamic transition at a higher temperature Td. In these solvated proteins, all having Tg and Td higher than the proteins hydrated by water alone, the observation of the change of T-dependence of the MSD at Tg is unobstructed by the methyl-group rotation contribution at lower temperatures. On the other hand, proteins hydrated by water alone have lower Tg and Td, and hence unambiguous evidence of the transition of MSD at Tg is hard to find. Notwithstanding, evidence on the break of the MSD at Tg can be found by deuterating the protein to suppress the methyl-group contribution. An alternative strategy is the use of a spectrometer that senses motions faster than 15 ps, which confers the benefit of shifting both the onset of methyl-group rotation contribution as well as the dynamic transition to higher temperatures, and again the change of MSD at Tg becomes evident. The break of the elastic intensity or the MSD at Tg coexists with the dynamics transition at Td in hydrated and solvated proteins. Recognition of this fact helps to remove inconsistency and conundrum encountered in interpreting the data that thwart progress in understanding the origin of the dynamic transition and its connection to biological function.

K. L. Ngai; S. Capaccioli; A. Paciaroni

2011-06-29T23:59:59.000Z

30

Fundamentals of Dynamical Systems  

Science Journals Connector (OSTI)

For the purposes of control system design, analysis, test, and repair, the most important part of the very broad subject known as system theory is the theory of dynamical systems. It is difficult to give a pre...

William S. Levine

2005-01-01T23:59:59.000Z

31

Potential-of-mean-force description of ionic interactions and structural hydration in biomolecular systems  

SciTech Connect (OSTI)

To understand the functioning of living organisms on a molecular level, it is crucial to dissect the intricate interplay of the immense number of biological molecules. Most of the biochemical processes in cells occur in a liquid environment formed mainly by water and ions. This solvent environment plays an important role in biological systems. The potential-of-mean-force (PMF) formalism attempts to describe quantitatively the interactions of the solvent with biological macromolecules on the basis of an approximate statistical-mechanical representation. At its current status of development, it deals with ionic effects on the biomolecular structure and with the structural hydration of biomolecules. The underlying idea of the PMF formalism is to identify the dominant sources of interactions and incorporate these interactions into the theoretical formalism using PMF`s (or particle correlation functions) extracted from bulk-liquid systems. In the following, the authors shall briefly outline the statistical-mechanical foundation of the PMF formalism and introduce the PMF expansion formalism, which is intimately linked to superposition approximations for higher-order particle correlation functions. The authors shall then sketch applications, which describe the effects of the ionic environment on nucleic-acid structure. Finally, the authors shall present the more recent extension of the PMF idea to describe quantitatively the structural hydration of biomolecules. Results for the interface of ice and water and for the hydration of deoxyribonucleic acid (DNA) will be discussed.

Hummer, G.; Garcia, A.E. [Los Alamos National Lab., NM (United States). Theoretical Biology and Biophysics Group; Soumpasis, D.M. [Max-Planck-Inst for Biophysical Chemistry, Goettingen (Germany). Biocomputation Group

1994-10-01T23:59:59.000Z

32

Analysing sand-dominated channel systems for potential gas-hydrate-reservoirs using an AVO seismic inversion technique on the Southern Hikurangi Margin, New Zealand  

Science Journals Connector (OSTI)

Gas hydrates have recently been recognised as a class of unconventional petroleum resource and the economic viability of gas production from hydrates is now being viewed as a realistic possibility within the next decade. Therefore, potential offshore hydrate accumulations in the world-class endowed gas hydrate province, the Hikurangi Margin, New Zealand, represent a significant medium- to long-term opportunity to meet the country's future energy requirements. In this paper we delineate a potential gas hydrate reservoir in the East Coast Basin, New Zealand and quantitatively estimate its gas hydrate concentrations from 2D seismic data with no well information available. The target is interesting for exploration since it shows evidence for gas-hydrate bearing sands, in particular, buried channel systems. We use a combined analysis of high-resolution velocity analysis, amplitude-versus-offset (AVO) attribute and AVO inversion to investigate whether we can identify regions that are likely to contain highly concentrated gas hydrates and whether they are likely to be sand-dominated. To estimate hydrate concentrations we apply a rock physics model. Our results indicate the presence of several – up to 200 m thick – zones that are likely to host gas hydrates, with one location predicted to consist of high-permeable channel sands and an inferred gas hydrate saturation of ?25%. These findings suggest significant amounts of gas hydrates may be present in high-quality reservoirs on this part of the margin.

M. Fohrmann; I.A. Pecher

2012-01-01T23:59:59.000Z

33

NETL: Methane Hydrates - Hydrate Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrate R&D Program Newsletter Methane Hydrate R&D Program Newsletter An image of a hydrate burning overlayed with the Newsletter Title: Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a bi-annual publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in the Ice please send an email to karl.lang@contr.netl.doe.gov Please click on the links below to access issues of "Fire in the Ice". More on Methane Hydrates

34

Design and Experimental Study of the Steam Mining System for Natural Gas Hydrates  

Science Journals Connector (OSTI)

Figure 3. Schematic diagram of the SMSGH: (1) water tank, (2) water pump, (3) water treatment system, (4) soft water tank, (5) small pump, (6) electricity steam generator, (7) steam control valve, (8) orifice device, (9) dual-wall drill pipe, (10) non-productive layer bushing, (11) floral tube in the mined bed, (12) submersible pump, (13) air pump, (14) water tank, (15) gas–liquid separator, (16) cartridge gas filter, (17) gas flow meter, (18) gas storage tank, and (19) ignition device. ... The working principle of the gas collection system is as follows: The obtained natural gas spills from the layer of earth through the floral tube in the mined bed (11) and will generate a high flow rate with the vapor and water mixture using the pump function of the air pump (13). ... Hydrates continuously generated natural gas. ...

You-hong Sun; Rui Jia; Wei Guo; Yong-qin Zhang; You-hai Zhu; Bing Li; Kuan Li

2012-11-06T23:59:59.000Z

35

High-Pressure Phase Behavior and Cage Occupancy for the CF4 Hydrate System  

Science Journals Connector (OSTI)

stability of Xe and CF4 clathrate hydrates was studied by evaluating various components of the free energy of formation. ... Introduction of CF4 gives rise to a significant distortion of the structure; whereas, Xe does not change the structure from the empty lattice. ... stability of Xe and CF4 hydrates. ...

Keisuke Sugahara; Masayoshi Yoshida; Takeshi Sugahara; Kazunari Ohgaki

2004-01-16T23:59:59.000Z

36

Microstructure of tricalcium silicate and Portland cement systems at middle periods of hydration-development of Hadley grains  

Science Journals Connector (OSTI)

The development of the microstructure of C3S paste and a Portland cement paste was studied between 7 and 24 h by means of backscattered electrons in a field-emission SEM. The course of hydration was measured by isothermal calorimetry. While the abundant occurrence of Hadley grains (hollow-shells) in Portland cement systems is well documented from a number of SEM and other microscopy studies, some earlier reports have noted that Hadley grains do not form in C3S or alite paste alone. This report shows evidence of Hadley grains in C3S paste, and follows their development from middle to late hydration stages. At around 10 h the microstructure with respect to Hadley grains were seen to develop in a very similar manner in C3S and cement. In both systems, a narrow gap often developed between the receding anhydrous cores and layer of reaction product enveloping the cores. By 1 day, Hadley grains had continued to develop only in the cement paste, where they became a prominent feature. Only small ‘hollowed-out’ hydration shells were observed in the C3S paste by 1 day. These were presumably reminiscences of the small gapped Hadley grains seen at the earlier hydration stages.

K.O. Kjellsen; B. Lagerblad

2007-01-01T23:59:59.000Z

37

Microstructure of tricalcium silicate and Portland cement systems at middle periods of hydration-development of Hadley grains  

SciTech Connect (OSTI)

The development of the microstructure of C{sub 3}S paste and a Portland cement paste was studied between 7 and 24 h by means of backscattered electrons in a field-emission SEM. The course of hydration was measured by isothermal calorimetry. While the abundant occurrence of Hadley grains (hollow-shells) in Portland cement systems is well documented from a number of SEM and other microscopy studies, some earlier reports have noted that Hadley grains do not form in C{sub 3}S or alite paste alone. This report shows evidence of Hadley grains in C{sub 3}S paste, and follows their development from middle to late hydration stages. At around 10 h the microstructure with respect to Hadley grains were seen to develop in a very similar manner in C{sub 3}S and cement. In both systems, a narrow gap often developed between the receding anhydrous cores and layer of reaction product enveloping the cores. By 1 day, Hadley grains had continued to develop only in the cement paste, where they became a prominent feature. Only small 'hollowed-out' hydration shells were observed in the C{sub 3}S paste by 1 day. These were presumably reminiscences of the small gapped Hadley grains seen at the earlier hydration stages.

Kjellsen, K.O. [Norcem A.S, Heidelberg Cement Group, N-3950 Brevik (Norway)]. E-mail: knut.kjellsen@norcem.no; Lagerblad, B. [Swedish Cement and Concrete Research Institute, S-100 44 Stockholm (Sweden)

2007-01-15T23:59:59.000Z

38

Chapter 8 - Methane Hydrates  

Science Journals Connector (OSTI)

Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.

Ray Boswell; Koji Yamamoto; Sung-Rock Lee; Timothy Collett; Pushpendra Kumar; Scott Dallimore

2014-01-01T23:59:59.000Z

39

CHARACTERIZATION OF MIXED CO2-TBPB HYDRATE FOR REFRIGERATION APPLICATIONS  

E-Print Network [OSTI]

in a dynamic loop and an Ostwald-de Waele model was obtained. Keywords: CO2, TBPB, mixed hydrates, solubility

Paris-Sud XI, Université de

40

Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR? System for Retrofit of In-Use? Trucks  

Broader source: Energy.gov [DOE]

Reports on truck fleet emission test results obtained from retrofitting in-use? old class-8 trucks with IMETs GreenPower? DPF-Hydrated-EGR system

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Density Functional Calculations of ATP Systems. 1. Crystalline ATP Hydrates and Related J. Akola and R. O. Jones*  

E-Print Network [OSTI]

Density Functional Calculations of ATP Systems. 1. Crystalline ATP Hydrates and Related Molecules J¨lich, Germany ReceiVed: August 31, 2005; In Final Form: February 8, 2006 Adenosine 5-triphosphate (ATP ) 1, 4-7), the crystalline pyrophosphates Mg2P2O7,6H2O and R-CaNa2P2O7,4H2O, and crystalline Na2ATP,3H

42

Controls on Gas Hydrate Formation and Dissociation  

SciTech Connect (OSTI)

The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both up-flow and down-flow of fluid at rates that range between 0.5 to 214 cm/yr and 2-162 cm/yr, respectively. The fluid flow system at the mound and background sites are coupled having opposite polarities that oscillate episodically between 14 days to {approx}4 months. Stability calculations suggest that despite bottom water temperature fluctuations, of up to {approx}3 C, the Bush Hill gas hydrate mound is presently stable, as also corroborated by the time-lapse video camera images that did not detect change in the gas hydrate mound. As long as methane (and other hydrocarbon) continues advecting at the observed rates the mound would remain stable. The {_}{sup 13}C-DIC data suggest that crude oil instead of methane serves as the primary electron-donor and metabolic substrate for anaerobic sulfate reduction. The oil-dominated environment at Bush Hill shields some of the methane bubbles from being oxidized both anaerobically in the sediment and aerobically in the water column. Consequently, the methane flux across the seafloor is higher at Bush hill than at non-oil rich seafloor gas hydrate regions, such as at Hydrate Ridge, Cascadia. The methane flux across the ocean/atmosphere interface is as well higher. Modeling the methane flux across this interface at three bubble plumes provides values that range from 180-2000 {_}mol/m{sup 2} day; extrapolating it over the Gulf of Mexico basin utilizing satellite data is in progress.

Miriam Kastner; Ian MacDonald

2006-03-03T23:59:59.000Z

43

Fire in the Ice, August 2010 Methane Hydrate Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Figure 1: Simulation results of coupled thermo-dynamic and geomechanical changes around a hot Figure 1: Simulation results of coupled thermo-dynamic and geomechanical changes around a hot production well intersecting an HBS near a sloping seafloor after 30 years of production and heating (Rutqvist and Moridis, 2010). CONTENTS Geohazards of In Situ Gas Hydrates ...........................................1 Behavior of Methane Released in the Deep Ocean.....5 Core-Scale Heterogeneity ............6 Gas Volume Ratios ........................9 The Role of Methane Hydrates in the Earth System ....................12 Announcements .......................15 * Inter-Laboratory Comparison Project * Mississippi Canyon 118 * Research Fellowship * Call for Papers * Call for Abstracts * Upcoming Meetings Spotlight on Research .......... 20 Graham Westbrook CONTACT

44

Rotational dynamics of hydration water in dicalcium silicate by quasielastic neutron scattering  

Science Journals Connector (OSTI)

Quasielastic neutron scattering (QENS) has been used to investigate the single-particle dynamics of interfacial water in dicalcium silicate (C2S)/water paste. Our previous neutron-scattering studies on interfacial water have focused attention on the translational dynamics of the center of mass of water molecules. In this paper, we have collected QENS data on a wider range of wave-vector transfer so that both translational and rotational motions of water molecules are detected. The data have been analyzed by models for translation and rotation we recently proposed for supercooled water. The evolution of the parameters describing the relaxational dynamics of water embedded in the C2S matrix is given at temperature T=303?K as a function of the curing time.

A. Faraone; S.-H. Chen; E. Fratini; P. Baglioni; L. Liu; C. Brown

2002-04-08T23:59:59.000Z

45

NETL: Methane Hydrates - Hydrate Modeling - TOUGH-Fx/HYDRATE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrate Modeling - TOUGH+/HYDRATE & HydrateResSim Hydrate Modeling - TOUGH+/HYDRATE & HydrateResSim TOUGH+/HYDRATE v1.0 LBNL's new hydrate reservoir simulator (TOUGH+/HYDRATE v1.0) is now publicly available for licensing. TOUGH+/HYDRATE models non-isothermal gas release, phase behavior and flow of fluids and heat in complex geologic media. The code can simulate production from natural CH4-hydrate deposits in the subsurface (i.e., in the permafrost and in deep ocean sediments), as well as laboratory experiments of hydrate dissociation/formation in porous/fractured media. TOUGH+/HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. More information on TOUGH+/Hydrate Also available is HydrateResSim. HydrateResSim (HRS) is a freeware, open-source reservoir simulator code available for use “as-is” from the NETL. HRS’ code was derived from an earlier version of the TOUGH+/Hydrate code.

46

Methane Hydrate Formation and Dissociation in a Partially Saturated Core-Scale Sand Sample  

E-Print Network [OSTI]

gas system and the sand/hydrate/water/gas systems, as wellproperties of the sand/water/gas system, hydrate formation,saturated sand/water/gas (s/w/g) system, hydrate formation,

2005-01-01T23:59:59.000Z

47

Methane Hydrate Formation and Dissocation in a Partially Saturated Sand--Measurements and Observations  

E-Print Network [OSTI]

gas system and the sand/hydrate/water/gas systems, as wellproperties of the sand/water/gas system, hydrate formation,saturated sand/water/gas (s/w/g) system, hydrate formation,

2005-01-01T23:59:59.000Z

48

Extremes in Chaotic Dynamical Systems  

E-Print Network [OSTI]

Extremes in Chaotic Dynamical Systems Valerio Lucarini valerio.lucarini@uni-hamburg.de D. Faranda Vortragsthema Datum #12;1. Introduction 2. Classical Theory: Extreme Values for i.i.d. Variables 3. Extreme Values in Dynamical Systems: Theoretical Background 4. Numerical Algorithms for studying Extremes 5

49

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of Natural Hydrate Bearing Sediments and Hydrate Dissociation Kinetics Last Reviewed 12/6/2013 Characterization of Natural Hydrate Bearing Sediments and Hydrate Dissociation Kinetics Last Reviewed 12/6/2013 FWP-45133 Work conducted under this field work proposal (FWP) includes two distinct phases. Ongoing Phase 2 work is discussed directly below. Click here to review the completed, Phase 1 work, associated with this FWP. Phase 2 Project Information Characterization of Natural Hydrate Bearing Core Samples Goal The overarching goal of this project is to gain an improved understanding of the dynamic processes of gas hydrate accumulations in geologic media by combining laboratory studies, numerical simulation, and analysis of shipboard infrared imaging of hydrate core samples. This project comprises four principal components: (1) fundamental laboratory investigations, (2)

50

NETL: Methane Hydrates - DOE/NETL Projects - Hydrate-Bearing Clayey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Last Reviewed 12/30/2013 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Last Reviewed 12/30/2013 DE-FE0009897 Goal The primary goal of this research effort is to contribute to an in-depth understanding of hydrate bearing, fine-grained sediments with a focus on investigation of their potential for hydrate-based gas production. Performer Georgia Tech Research Corporation, Atlanta GA Background Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. Yet hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate-lense topology, system connectivity, and physical

51

Laboratory measurements on core-scale sediment/hydrate samples to predice reservoir behavior  

E-Print Network [OSTI]

top) and for the sand/hydrate/water/gas system (bottom),3.145 W / m K for the sand/hydrate/water/gas system (watertop-left) and the sand-hydrate-water-gas system (bottom-

Kneafsey, Timothy J.; Seol, Yongkoo; Moridis, George J.; Tomutsa, Liviu; Freifeld, Barry M.

2008-01-01T23:59:59.000Z

52

Dynamic systems and subadditive functionals  

E-Print Network [OSTI]

Consider a problem where a number of dynamic systems are required to travel between points in minimum time. The study of this problem is traditionally divided into two parts: A combinatorial part that assigns points to ...

Itani, Sleiman M

2009-01-01T23:59:59.000Z

53

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

54

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Hydrate Reservoir  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Hydrate Reservoir Modeling Using Rock Physics Techniques Last Reviewed 11/29/2013 Advanced Hydrate Reservoir Modeling Using Rock Physics Techniques Last Reviewed 11/29/2013 DE-FE0010160 Goal The primary goal of this research is to develop analytical techniques capable of quantitatively evaluating the nature of methane hydrate reservoir systems through modeling of their acoustic response using techniques that integrate rock physics theory, amplitude analysis, and spectral decomposition. Performers Fugro GeoConsulting, Inc., Houston TX Background Past efforts under the DOE-supported Gulf of Mexico Joint Industry project included the selection of well locations utilizing prospectivity analysis based primarily on a petroleum systems approach for gas hydrate using 3-D exploration seismic data and derivative analyses that produced predicted

55

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico DE-FC26-02NT41327 Goal The project goal was to develop new methodologies to characterize the physical properties of methane hydrate and hydrate sediment systems. Performers Westport Technology Center International - Houston, TX University of Houston - Houston, TX Results Project researchers created a pressure cell for measuring acoustic velocity and resistivity on hydrate-sediment cores. They utilized the measurements for input to an existing reservoir model for evaluating possible offshore hydrate accumulations. The organization of an industry-led Advisory Board and the development of a Research Management Plan have been completed. The development of a handbook for transporting, preserving, and storing hydrate core samples brought from the field to the laboratory was completed and distributed for review by industry and researchers.

56

Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures  

Science Journals Connector (OSTI)

To explore the formation of ettringite at lower temperatures in the Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates, the effect of calcium sulfate variety on the setting time of the ternary system and the strength development of its mortars at 0, 5, 10 and 20 °C were investigated. The formation of ettringite was further analyzed using XRD and ESEM. The results show that, as temperature increases, both initial and final setting time are shortened and that compressive and flexural strength are enhanced. In particular, mortars with anhydrite develop higher strength between 0 and 10 °C but lower strength at 20 °C than those with hemihydrate. Further, pastes with anhydrite set faster than those with hemihydrate. It is also found that both the formation rate and amount of ettringite are sensitive to temperature and calcium sulfate variety.

Linglin Xu; Peiming Wang; Guofang Zhang

2012-01-01T23:59:59.000Z

57

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Testing of Gas Hydrate/Sediment Samples Mechanical Testing of Gas Hydrate/Sediment Samples DE-AT26-99FT40267 Goal Develop understanding of the mechanical characteristics of hydrate-containing sediments. Background The ACE CRREL has a unique group of experienced personnel that have studied the mechanical characteristics of ice and permafrost that can be applied to the study and characterization of the mechanical properties of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of sediments related to drilling and seafloor installations in the Gulf of Mexico. Performers US Army Corp of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory (CRREL) - project management and research products

58

Model system for slow dynamics  

Science Journals Connector (OSTI)

Systems whose dynamics are described by a quasilogarithmic or stretched-exponential time dependence are usually fitted by models which use disorder to create a distribution of relaxation times. Here we describe a model which decays slowly towards equilibrium but does not require disorder to provide the slow dynamics. The model consists of a spin system with the spins interacting via the dipole-dipole interaction. The model is able to replicate the more pronounced features observed in the magnetization decay of magnetic systems and high-temperature superconductors.

D. K. Lottis; R. M. White; E. Dan Dahlberg

1991-07-15T23:59:59.000Z

59

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas hydrate systems from three perspectives: as an energy resource, as a geohazard, and as a long-term influence on global climate. Performers Rice University, Houston, TX University of Texas, Austin, TX Oklahoma State University, Stillwater, OK Background Heterogeneity in the distribution of gas hydrate accumulations impacts all aspects of research into gas hydrate natural systems. The challenge is to delineate, understand, and appreciate these differences at the regional and local scales, where differences in in situ concentrations are relevant to the importance of gas hydrate as a resource, a geohazard, and a factor in

60

Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems1  

E-Print Network [OSTI]

HyLo 2006 Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems1 Andr´e Platzer2 Carnegie platzer@informatik.uni-oldenburg.de Abstract We introduce a hybrid variant of a dynamic logic for this extended hybrid dynamic logic. With the addition of satisfaction operators, this hybrid logic provides

Platzer, André

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Detection and Production of Methane Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

62

Hydrate-phobic surfaces  

E-Print Network [OSTI]

Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for ultra deep-sea production. Current methods for hydrate mitigation focus on injecting thermodynamic ...

Smith, Jonathan David, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

63

The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost  

SciTech Connect (OSTI)

The quantity of hydrocarbon gases trapped in natural hydrate accumulations is enormous, leading to significant interest in the evaluation of their potential as an energy source. Large volumes of gas can be readily produced at high rates for long times from methane hydrate accumulations in the permafrost by means of depressurization-induced dissociation combined with conventional technologies and horizontal or vertical well configurations. Initial studies on the possibility of natural gas production from permafrost hydrates assumed homogeneity in intrinsic reservoir properties and in the initial condition of the hydrate-bearing layers (either due to the coarseness of the model or due to simplifications in the definition of the system). These results showed great promise for gas recovery from Class 1, 2, and 3 systems in the permafrost. This work examines the consequences of inevitable heterogeneity in intrinsic properties, such as in the porosity of the hydrate-bearing formation, or heterogeneity in the initial state of hydrate saturation. Heterogeneous configurations are generated through multiple methods: (1) through defining heterogeneous layers via existing well-log data, (2) through randomized initialization of reservoir properties and initial conditions, and (3) through the use of geostatistical methods to create heterogeneous fields that extrapolate from the limited data available from cores and well-log data. These extrapolations use available information and established geophysical methods to capture a range of deposit properties and hydrate configurations. The results show that some forms of heterogeneity, such as horizontal stratification, can assist in production of hydrate-derived gas. However, more heterogeneous structures can lead to complex physical behavior within the deposit and near the wellbore that may obstruct the flow of fluids to the well, necessitating revised production strategies. The need for fine discretization is crucial in all cases to capture dynamic behavior during production.

Reagan, M. T.; Kowalsky, M B.; Moridis, G. J.; Silpngarmlert, S.

2010-05-01T23:59:59.000Z

64

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

65

In situ apparatus for the study of clathrate hydrates relevant to solar system bodies using synchrotron X-ray diffraction and Raman spectroscopy  

E-Print Network [OSTI]

Clathrate hydrates are believed to play a significant role in various solar system environments, e.g. comets, and the surfaces and interiors of icy satellites, however the structural factors governing their formation and dissociation are poorly understood. We demonstrate the use of a high pressure gas cell, combined with variable temperature cooling and time-resolved data collection, to the in situ study of clathrate hydrates under conditions relevant to solar system environments. Clathrates formed and processed within the cell are monitored in situ using synchrotron X-ray powder diffraction and Raman spectroscopy. X-ray diffraction allows the formation of clathrate hydrates to be observed as CO2 gas is applied to ice formed within the cell. Complete conversion is obtained by annealing at temperatures just below the ice melting point. A subsequent rise in the quantity of clathrate is observed as the cell is thermally cycled. Four regions between 100-5000cm-1 are present in the Raman spectra that carry feature...

Day, Sarah J; Evans, Aneurin; Parker, Julia E

2015-01-01T23:59:59.000Z

66

Opacity reduction using hydrated lime injection  

SciTech Connect (OSTI)

The purpose of this investigation is to study the effects of injecting dry hydrated lime into flue gas to reduce sulfur trioxide (SO{sub 3}) concentrations and consequently stack opacity at the University of Missouri, Columbia power plant. Burning of high sulfur coal (approx. 4% by weight) at the power plant resulted in opacity violations. The opacity problem was due to sulfuric acid mist (H{sub 2}SO{sub 4}) forming at the stack from high SO{sub 3} concentrations. As a result of light scattering by the mist, a visible plume leaves the stack. Therefore, reducing high concentrations of SO{sub 3} reduces the sulfuric acid mist and consequently the opacity problem. The current hydrated lime injection system has reduced the opacity to acceptable limits. To reduce SO{sub 3} concentrations, dry hydrated lime is injected into the flue gas upstream of a particulate collection device (baghouse) and downstream of the induced draft fan. The lime is periodically injected into the flue via a pneumatic piping system. The hydrated lime is transported down the flue and deposited on the filter bags in the baghouse. As the hydrated lime is deposited on the bags a filter cake is established. The reaction between the SO{sub 3} and the hydrated lime takes place on the filter bags. The hydrated lime injection system has resulted in at least 95% reduction in the SO{sub 3} concentration. Low capital equipment requirements and operating cost coupled with easy installation and maintenance makes the system very attractive to industries with similar problems. This paper documents the hydrated lime injection system and tests the effectiveness of the system on SO{sub 3} removal and subsequent opacity reduction. Measurements Of SO{sub 3} concentrations, flue gas velocities, and temperatures have been performed at the duct work and baghouse. A complete analysis of the hydrated lime injection system is provided.

Wolf, D.E.; Seaba, J.P. [Univ. of Missouri, Columbia, MO (United States)

1993-12-31T23:59:59.000Z

67

Dynamic power systems for power generation  

SciTech Connect (OSTI)

The characteristics of dynamic power systems have considerable potential value, especially for the space station. The base of technology that makes these dynamic power systems practical is reviewed. The following types of power-generating systems are examined herein: organic Rankine cycle, potassium Rankine cycle, Brayton cycle, and Stirling cycle.

English, R.E.

1984-04-01T23:59:59.000Z

68

Thermal stability of certain hydrated phases in systems made using portland cement. Final report  

SciTech Connect (OSTI)

As part of the study of hydraulic-cement system for use in possible underground isolation of nuclear wastes, this study was made to determine the temperature stability of ettringite and chloroaluminate. Either or both of these phases may be expected in a hydraulic cement system depending on the presence of salt (NaCl). The study of ettringite was made using 15 mixtures that contained portland cement, plaster, 2 levels of water, and in some mixtures, 1 of 6 pozzolans (3 fly ashes, 1 slag, a silica fume, a natural pozzolan), plus a 16th mixture with anhydrous sodium sulfate replacing plaster (CaSO4 . 1/2H20). Specimens were made and stored at 23, 50, and 75 C or 23, 75, and 100 C (all four temperatures in one case) for periodic examination by x-ray diffraction for phase compositiion and ettringite stability, and testing for compressive strength and restrained expansion. A more limited study of the stability of chloroaluminate was made along the same lines using fewer mixtures, salt instead of plaster, and higher temperatures plus some pressure. It was found that while some ettringette was decomposed at 75 C, depending on the composition of the mixture, all ettringite was undetectable by x-ray diffraction at 100 C, usually within a few days. The evidence indicates that the ettringite became amorphous and no significant test phases formed in its place. Since there was no corresponding loss in strength or reduction in volume, this loss of ettringite crystallinity was considered to be damaging. Based on much more limited data, chloroaluminate was found to decompose between 130 C at 25 psi and 170 C at 100 psi; no significant phases replaced it.

Buck, A.D.; Burkes, J.P.; Poole, T.S.

1985-08-01T23:59:59.000Z

69

Methane Hydrate Field Program  

SciTech Connect (OSTI)

This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

None

2013-12-31T23:59:59.000Z

70

Gas Hydrate Storage of Natural Gas  

SciTech Connect (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

71

Obsidian Hydration Rates  

Science Journals Connector (OSTI)

...OBSIDIAN HYDRATION RATE FOR KLAMATH BASIN OF CALIFORNIA AND OREGON...as the material is excreted, falls through the air, and dries...Friedman. Table 1 presents two new groups of hydra-tion readings for...the true age is believed to fall (3). The Snaketown age is...

Clement W. Meighan

1970-10-02T23:59:59.000Z

72

Bifurcations and Chaos in Simple Dynamical Systems  

E-Print Network [OSTI]

Chaos is an active research subject in the fields of science in recent years. it is a complex and an erratic behavior that is possible in very simple systems. in the present day, the chaotic behavior can be observed in experiments. Many studies have been made in chaotic dynamics during the past three decades and many simple chaotic systems have been discovered. in this work-bifurcations and chaos in simple dynamical systems - the behavior of some simple dynamical systems is studied by constructing mathematical models. investigations are made on the periodic orbits for continuous maps and idea of sensitive dependence on initial conditions,which is the hallmark of chaos, is obtained.

Mrs. T. Theivasanthi

2009-07-16T23:59:59.000Z

73

SIAM conference on applications of dynamical systems  

SciTech Connect (OSTI)

A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

Not Available

1992-01-01T23:59:59.000Z

74

Methane Hydrates - Methane Hydrate Graduate Fellowship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Future Supply and Emerging Resources Future Supply and Emerging Resources The National Methane Hydrates R&D Program - Graduate Fellowship Program Methane Hydrate Graduate Fellowship Program Jeffrey James Marlow, a graduate student in Geobiology at the California Institute of Technology, was recently selected as the 2012 recipient of the NETL-National Academy of Sciences (NAS) Methane Hydrate Research Fellowship. Please see page 15 of the March 2013 issue (Vol. 13, Issue 1) of Fire in the Ice for more information on the recipient. The Department of Energy has a long history of building synergistic relationships with research universities. Funding academic research is a "win-win-win" situation. The U.S. government is able to tap into some of the best minds available for solving national energy problems, the universities get the support they need to maintain cutting edge faculty and laboratories, and the students involved are provided with opportunities that help them along their chosen path of study, strengthening the national pool of scientists and engineers. According to Samuel Bodman, speaking about graduate research in methane hydrates, "Students are the foundation of our energy future, bringing new ideas and fresh perspectives to the energy industry. What better way to assure technology innovation than to encourage students working on the development of a resource that has the potential to tip our energy balance toward clean-burning, domestic fuels."

75

NETL: Methane Hydrates - Gas Hydrate Research in Deep Sea Sediments - New  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 DE-AI26-06NT42878 Goal The goal of the Interagency Agreement between the National Energy Technology Laboratory and the Naval Research Laboratory is to conduct research to enhance understanding of the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Performer Marine Biogeochemistry Section, Naval Research Laboratory, Washington, DC 20375 Background Methane is a potent greenhouse gas necessitating a better understanding of the mechanisms controlling its contribution to the atmospheric carbon cycle. Active methane fluxes (from deep sediment hydrates and seeps) contribute to shallow sediment biogeochemical carbon cycles, which in turn

76

Dynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydration Hydration Water on Rutile Studied by Backscattering Neutron Spectroscopy and Molecular Dynamics Simulation E. Mamontov,* ,† D. J. Wesolowski, ‡ L. Vlcek, § P. T. Cummings, §,| J. Rosenqvist, ‡ W. Wang, ⊥ and D. R. Cole ‡ Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6473, Chemical Sciences DiVision, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, Department of Chemical Engineering, Vanderbilt UniVersity, NashVille, Tennessee 37235-1604, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6496, and EnVironmental Sciences DiVision, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6036 ReceiVed: December 20, 2007; ReVised Manuscript ReceiVed: June 4, 2008 The high energy resolution, coupled with the wide dynamic range, of the new backscattering

77

Effect of under-inhibition with methanol and ethylene glycol on the hydrate control process  

SciTech Connect (OSTI)

Hydrate control can be achieved by chemical injection. Currently, methanol and ethylene glycol are the most widely used inhibitors in offshore hydrate control operations. To achieve effective hydrate inhibition, a sufficient amount of inhibitor must be injected to shift the thermodynamic equilibrium condition for hydrate formation outside the pipeline operating pressure and temperature. Recently published field experiments showed that hydrate blockages form more readily in under-inhibited systems than in systems completely without inhibitor. A laboratory study is conducted to determine the effect of low concentration (1--5wt%) methanol and ethylene glycol on the hydrate formation process. The results show that, although these chemicals are effective hydrate inhibitors when added in sufficient quantities, they actually enhance the rate of hydrate formation when added at low concentrations to the water. Furthermore, the presence of these chemicals seems to affect the size of the forming hydrate particles.

Yousif, M.H.

1996-12-31T23:59:59.000Z

78

Ecology & Earth Systems Dynamics for Educators  

E-Print Network [OSTI]

Ecology & Earth Systems Dynamics for Educators July 21-25, 2014 CI 5540-003 (86282) 3 Credits Science and Earth Science curricula in Minnesota public schools. It is designed primarily for middle

Amin, S. Massoud

79

A Robust Model Control for Dynamic Systems  

Science Journals Connector (OSTI)

Analytical methods of polynomial algebra, heuristic techniques, and digital modeling are used to study the robustness domain of linear dynamic systems with model “input–output” controllers as a function of the mutual locations of zeros ...

S. V. Tararykin; V. V. Tyutikov

2002-05-01T23:59:59.000Z

80

Methane Hydrate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

November 18, 2009 22:50 Vehicle System Dynamics VSD09 Vehicle System Dynamics  

E-Print Network [OSTI]

November 18, 2009 22:50 Vehicle System Dynamics VSD09 Vehicle System Dynamics Vol. 00, No. 00), involving the steering and braking actuators. This VDSC aims at improving automotive vehicle yaw stability the rear wheels) and use the steering actuator only if it is necessary (e.g. if the braking system

Boyer, Edmond

82

Methane Hydrate Program  

Broader source: Energy.gov (indexed) [DOE]

FY 2011 FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of research. Pursuant to statutory requirements, this report is being provided to the following

83

Marine Gas Hydrates  

Science Journals Connector (OSTI)

In several review articles, e.g., Boswell and Collett (2010), four gas hydrate reservoir types are evaluated in terms of their resource potential: sand-dominated reservoirs, clay-dominated fractured reservoirs, ....

Gerhard Bohrmann; Marta E. Torres

2014-09-01T23:59:59.000Z

84

Natural Gas Hydrate Dissociation  

Science Journals Connector (OSTI)

Materials for hydrate synthesis mainly include methane gas of purity 99.9% (produced by Nanjing Special Gases Factory Co., Ltd.), natural sea sand of grain sizes 0.063?0.09,...

Qingguo Meng; Changling Liu; Qiang Chen; Yuguang Ye

2013-01-01T23:59:59.000Z

85

Methane Hydrate Program  

Broader source: Energy.gov (indexed) [DOE]

Fiscal Year 2012 Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S. Department of Energy Fiscal Year 2012 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area

86

Dynamic Impregnator Reactor System (Poster)  

SciTech Connect (OSTI)

IBRF poster developed for the IBRF showcase. Describes the multifarious system designed for complex feedstock impregnation and processing. IBRF feedstock system has several unit operations combined into one robust system that provides for flexible and staged process configurations, such as spraying, soaking, low-severity pretreatment, enzymatic hydrolysis, fermentation, concentration/evaporation, and distillation.

Not Available

2012-09-01T23:59:59.000Z

87

NETL: Methane Hydrates - DOE/NETL Projects - Measurement and Interpretation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement and Interpretation of Seismic Velocities and Attenuation in Hydrate-Bearing Sediments Last Reviewed 12/18/2013 Measurement and Interpretation of Seismic Velocities and Attenuation in Hydrate-Bearing Sediments Last Reviewed 12/18/2013 DE-FE0009963 Goal The primary project objectives are to relate seismic and acoustic velocities and attenuations to hydrate saturation and texture. The information collected will be a unique dataset in that seismic attenuation will be acquired within the seismic frequency band. The raw data, when combined with other measurements (e.g., complex resistivity, micro-focus x-ray computed tomography, etc.), will enable researchers to understand not only the interaction between mineral surfaces and gas hydrates, but also how the hydrate formation method affects the hydrate-sediment system in terms of elastic properties. An over-arching goal of this research is to calibrate geophysical

88

Reaction dynamics in polyatomic molecular systems  

SciTech Connect (OSTI)

The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

Miller, W.H. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

89

Methane Hydrate Formation and Dissocation in a Partially Saturated Sand--Measurements and Observations  

SciTech Connect (OSTI)

We performed a sequence of tests on a partially water-saturated sand sample contained in an x-ray transparent aluminum pressure vessel that is conducive to x-ray computed tomography (CT) observation. These tests were performed to gather data for estimation of thermal properties of the sand/water/gas system and the sand/hydrate/water/gas systems, as well as data to evaluate the kinetic nature of hydrate dissociation. The tests included mild thermal perturbations for the estimation of the thermal properties of the sand/water/gas system, hydrate formation, thermal perturbations with hydrate in the stability zone, hydrate dissociation through thermal stimulation, additional hydrate formation, and hydrate dissociation through depressurization with thermal stimulation. Density changes throughout the sample were observed as a result of hydrate formation and dissociation, and these processes induced capillary pressure changes that altered local water saturation.

Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.; Seol, Yongkoo; Freifeld, Barry; Taylor, Charles E.; Gupta, Arvind

2005-03-01T23:59:59.000Z

90

Design Options for Avoiding Hydrates in Deep Offshore Production  

Science Journals Connector (OSTI)

Hydrate blockage in subsea systems is responsible for a portion of lost profits in several deepwater oil fields. ... Additionally, in this scenario, the logistic for hydrate remediation, if a rig is required, is even more complex due to the greater distance from shore. ...

Carlos A. B. R. Cardoso; Marcelo A. L. Gonçalves; Ricardo M. T. Camargo

2014-10-10T23:59:59.000Z

91

Very Large System Dynamics Models - Lessons Learned  

SciTech Connect (OSTI)

This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

Jacob J. Jacobson; Leonard Malczynski

2008-10-01T23:59:59.000Z

92

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gulf of Mexico Gas Hydrates Sea-floor Observatory Project Last Reviewed 12/18/2013 Gulf of Mexico Gas Hydrates Sea-floor Observatory Project Last Reviewed 12/18/2013 DE-FE26-06NT42877, DE-FC26-02NT41628, and DE-FC26-00NT40920 Goal The goal of this project is to conduct activities leading to the development, implementation, and operation of a remote, multi-sensor seafloor observatory focused on behavior of the marine hydrocarbon system within the gas hydrate stability zone of the deepwater Gulf of Mexico and analysis of data resultant from that observatory over time. Attaining this goal will lead to an enhanced understanding of the role the hydrocarbon system plays in the environment surrounding the site. Investigations include physical, chemical, and microbiological studies. Models developed from these studies are designed to provide a better understanding of gas

93

HYDRATE CORE DRILLING TESTS  

SciTech Connect (OSTI)

The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large-grain sand in ice. Results with this core showed that the viscosity of the drilling fluid must also be carefully controlled. When coarse sand was being cored, the core barrel became stuck because the drilling fluid was not viscous enough to completely remove the large grains of sand. These tests were very valuable to the project by showing the difficulties in coring permafrost or hydrates in a laboratory environment (as opposed to a field environment where drilling costs are much higher and the potential loss of equipment greater). Among the conclusions reached from these simulated hydrate coring tests are the following: Frozen hydrate core samples can be recovered successfully; A spring-finger core catcher works best for catching hydrate cores; Drilling fluid can erode the core and reduces its diameter, making it more difficult to capture the core; Mud must be designed with proper viscosity to lift larger cuttings; and The bottom 6 inches of core may need to be drilled dry to capture the core successfully.

John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

2002-11-01T23:59:59.000Z

94

Discontinuity-induced bifurcations of piecewise smooth dynamical systems  

Science Journals Connector (OSTI)

...piecewise smooth dynamical systems M. di Bernardo 1 2...UK 2 Department of Systems and Computer Engineering, University...state of the art in the analysis of discontinuity-induced...piecewise smooth dynamical systems, a particularly relevant...

2010-01-01T23:59:59.000Z

95

First Passage Time for Stochastic Dynamic System  

E-Print Network [OSTI]

First Passage Time for Stochastic Dynamic System and Climate Modeling Peter C Chu Naval Ocean, P.C., 2007: First passage time analysis on climate indices. Journal of Atmospheric and Oceanic. Poberezhny, 2002: Power law decay in model predictability skill. Geophysical Research Letters, 29 (15), 10

Chu, Peter C.

96

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressurized Coring Equipment Pressurized Coring Equipment Pressure Core Equipment used by the Gulf of Mexico Gas Hydrate JIP Drilling Program Pressure Core Equipment - Photo Gallery One of the key objectives of the ChevronTexaco Gulf of Mexico hydrates Joint Industry Project is the collection and analyses of deepwater sediment samples. Because these samples may contain hydrate which is only stable at specific temperature and pressure conditions it is necessary to use specialized sampling equipment. Otherwise, the combination of reduced pressure and increased temperatures as the sample is retrieved through 4,000 feet of gulf seawater will fully dissociate the hydrate, leaving only gas and water. Although techniques exist to infer hydrates presence from distinctive geochemical markers, we have lost the ability to image the nature of hydrate distribution, or to conduct measurements of the various physical and chemical properties of hydrates in the host sediments.

97

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect (OSTI)

Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

Collett, T.S. (USGS); Riedel, M. (McGill Univ., Montreal, Quebec, Canada); Cochran, J.R. (Columbia Univ., Palisades, NY); Boswell, R.M.; Kumar, Pushpendra (Oil and Natural Gas Corporation Ltd., Navi Mumbai, India); Sathe, A.V. (Oil and Natural Gas Corporation Ltd., Uttaranchal, INDIA)

2008-07-01T23:59:59.000Z

98

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Research in Deep Sea Sediments - New Zealand Task Gas Hydrate Research in Deep Sea Sediments - New Zealand Task DE-AI26-06NT42878 Goal The objective of this research is to determine the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Specific objectives include: a). Refine geophysical, geochemical and microbiological technologies for prospecting hydrate distribution and content; b). Contribute to establishing high-priority geographical regions of prospective interest, in terms of methane volume estimates; c). Prediction of environmental effects and geologic risks at the continental margin associated to the natural resource occurrence and resource exploitation; and d). Expand understanding of the biogeochemical parameters and associated microbial community diversity in shallow sediments that influence the porewater sulfate gradient observed through anaerobic oxidation of methane. To accomplish these objectives, the Naval Research Laboratory (NRL) collaborated with New Zealand’s Institute of Geological and Nuclear Sciences (GNS) in a research cruise off the coast of New Zealand. NRL has conducted similar research cruises off the west coast and east coast of the United States, in the Gulf of Mexico and off the coast of Chile.

99

Dynamics of heat transfer between nano systems  

E-Print Network [OSTI]

We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics towards the steady state and establish connection with the standard theory of heat transfer in steady state. For strongly coupled nano particles we predict Rabi oscillations in the mean occupation number of surface plasmons in each nano particle.

Svend-Age Biehs; Girish S. Agarwal

2012-10-18T23:59:59.000Z

100

Calcium-Silicate-Hydrate in cementitious systems : chemomechanical correlations, extreme temperature behavior, and kinetics and morphology of in-situ formation  

E-Print Network [OSTI]

Concrete, the second most used material on the planet, is a multi-scale heterogeneous material. A fundamental component known as Calcium-Silicate-Hydrate which forms from the reaction between cement and water is the binding ...

Jagannathan, Deepak

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Stable Conditions of Marine Gas Hydrate  

Science Journals Connector (OSTI)

Figure 9.7 shows the P-T...curve determined by the temperature-pressure method in a sediment-water-methane-hydrate system (natural sand of 20?40, 40?60, and 220?240 mesh). Methane gas is injected into the reactor...

Shicai Sun; Yuguang Ye; Changling Liu; Jian Zhang

2013-01-01T23:59:59.000Z

102

Simulation of systems with dynamically varying model structure  

Science Journals Connector (OSTI)

Hybrid systems are dynamical systems composed of components with discrete and continuous behavior. Some systems change their structure during simulation, or their components behavior is essentially changing. This ''structural dynamics'' can be described ... Keywords: Discrete-continuous simulation, Hybrid systems, Modelica, Structural dynamics, VHDL-AMS

Peter Schwarz

2008-12-01T23:59:59.000Z

103

Methane Hydrate Formation and Dissociation in a PartiallySaturated Core-Scale Sand Sample  

SciTech Connect (OSTI)

We performed a sequence of tests on a partiallywater-saturated sand sample contained in an x-ray transparent aluminumpressure vessel that is conducive to x-ray computed tomography (CT)observation. These tests were performed to gather data for estimation ofthermal properties of the sand/water/gas system and thesand/hydrate/water/gas systems, as well as data to evaluate the kineticnature of hydrate dissociation. The tests included mild thermalperturbations for the estimation of the thermal properties of thesand/water/gas system, hydrate formation, thermal perturbations withhydrate in the stability zone, hydrate dissociation through thermalstimulation, additional hydrate formation, and hydrate dissociationthrough depressurization with thermal stimulation. Density changesthroughout the sample were observed as a result of hydrate formation anddissociation, and these processes induced capillary pressure changes thataltered local water saturation.

Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.; Seol,Yongkoo; Freifeld, Barry M.; Taylor, Charles E.; Gupta, Arvind

2005-11-03T23:59:59.000Z

104

Dynamic model of hysteretic elastic systems  

Science Journals Connector (OSTI)

A model for the dynamical behavior of a hysteretic elastic system is introduced and studied numerically. This model consists of a chain of hysteretic elastic elements. Each elastic element is a spring with properties that depend on an Ising-like state variable having Brownian dynamics in an energy landscape with structure that is sensitive to the forces which the elastic element must support. A single elastic element is studied carefully, numerically in order to establish its basic behavior. A one dimensional chain of N=500 elastic elements, driven like a resonant bar, is studied numerically. The data from this study are analyzed by the methods employed in analyzing similar experimental data. The behavior of the numerical model compares well with the behavior of physical realizations of hysteretic elastic systems.

Barbara Capogrosso-Sansone and R. A. Guyer

2002-12-05T23:59:59.000Z

105

Variational properties of a pumped dynamical system  

SciTech Connect (OSTI)

We earlier constructed a generalized entropy concept to show the direction of time in an evolution following from a Markov generator. In such a dynamical system the entity found changes in a monotonic way starting from any initial state of the system. In this article, we generalize the treatment to the case when population is pumped into the system from levels not explicitly considered. These populations then pass through the coupled levels and exit by decay to levels outside the system. We derive the form of the equation of motion and relate it to our earlier treatments. It turns out that the formalism can be generalized to the new situation. Its physically relevant features are demonstrated and the behavior obtained is illustrated by a numerical treatment of the standard two-level system with pumping and relaxation included.

Andersson, Erika [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Stenholm, Stig [Physics Department, Royal Institute of Technology, KTH, Stockholm (Sweden); Laboratory of Computational Engineering, HUT, Espoo (Finland)

2010-02-15T23:59:59.000Z

106

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

107

Dynamical systems method (DSM) for nonlinear equations in Banach spaces  

E-Print Network [OSTI]

Dynamical systems method (DSM) for nonlinear equations in Banach spaces A.G. Ramm * Department in revised form 20 December 2004; accepted 22 December 2004 Abstract The DSM (dynamical systems method; Nonlinear problems 1. Introduction In [1] and [2] the DSM (Dynamical systems method) was developed

108

Dynamical systems method (DSM) for nonlinear equations in Banach spaces  

E-Print Network [OSTI]

Dynamical systems method (DSM) for nonlinear equations in Banach spaces A.G. Ramm Mathematics://www.math.ksu.edu/ ramm Abstract The DSM (dynamical systems method) is justified for nonlinear operator equations] the DSM (Dynamical Systems Method) was developed for solving op- erator equations F(u) = 0 (1

109

Quantitative Adaptation Analytics for Assessing Dynamic Systems of Systems.  

SciTech Connect (OSTI)

Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.; Le, Hai D.; Kao, Gio K; Melander, Darryl J.; Longsine, Dennis Earl [Sandia National Laboratories, Unknown, Unknown; Vander Meer, Robert Charles,

2015-01-01T23:59:59.000Z

110

Obstacle penetrating dynamic radar imaging system  

DOE Patents [OSTI]

An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

Romero, Carlos E. (Livermore, CA); Zumstein, James E. (Livermore, CA); Chang, John T. (Danville, CA); Leach, Jr.. Richard R. (Castro Valley, CA)

2006-12-12T23:59:59.000Z

111

Heat flux dynamics in dissipative cascaded systems  

E-Print Network [OSTI]

We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at the beginning can considerably affect the heat flux rate. We carry out our study in two paradigmatic cases -- a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes -- and compare the corresponding behaviours. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.

Salvatore Lorenzo; Alessandro Farace; Francesco Ciccarello; G. Massimo Palma; Vittorio Giovannetti

2014-12-19T23:59:59.000Z

112

Information flow within stochastic dynamical systems  

E-Print Network [OSTI]

Information flow or information transfer is an important concept in dynamical systems which has applications in a wide variety of scientific disciplines. In this study, we show that a rigorous formalism can be established in the context of a generic stochastic dynamical system. The resulting measure of of information transfer possesses a property of transfer asymmetry and, when the stochastic perturbation to the receiving component does not rely on the giving component, has a form same as that for the corresponding deterministic system. An application with a two-dimensional system is presented, and the resulting transfers are just as expected. A remarkable observation is that, for two highly correlated time series, there could be no information transfer from one certain series, say $x_2$, to the other ($x_1$). That is to say, the evolution of $x_1$ may have nothing to do with $x_2$, even though $x_1$ and $x_2$ are highly correlated. Information transfer analysis thus extends the traditional notion of correlation analysis by providing a quantitative measure of causality between time series.

X. San Liang

2007-10-04T23:59:59.000Z

113

Methane Hydrates R&D U S  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Power of Working Together the Power of Working Together Interagency Coordination on Methane Hydrates R&D U . S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r g y N a t i o n a l E n e r g y T e c h n o l o g y L a b o r a t o r y  Introduction Perhaps no areas of science are receiving more care- ful scrutiny and public discussion than those that deal with the interactions among earth, ocean, climate, and humanity. At the same time, our growing demands for energy are challenging us to find additional sources of clean fuel. The science of methane hydrates, a poten- tially vast source of natural gas that is part of a complex of dynamic natural systems, sits squarely in the center of these issues and the debates that surround them. Over the past two decades, scientists have been

114

Coarse grained open system quantum dynamics  

SciTech Connect (OSTI)

We show that the quantum dynamics of a system comprised of a subspace Q coupled to a larger subspace P can be recast as a reduced set of 'coarse grained' ordinary differential equations with constant coefficients. These equations can be solved by a single diagonalization of a general complex matrix. The method makes no assumptions about the strength of the couplings between the Q and the P subspaces, nor is there any limitation on the initial population in P. The utility of the method is demonstrated via computations in three following areas: molecular compounds, photonic materials, and condensed phases.

Thanopulos, Ioannis [Department of Chemistry, University of British Columbia, Vancouver V6T 1Z3 (Canada); Brumer, Paul [Chemical Physics Theory Group, Department of Chemistry, and Center of Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada); Shapiro, Moshe [Department of Chemistry, University of British Columbia, Vancouver V6T 1Z3 (Canada); Department of Chemical Physics, Weizmann Institute, Rehovot 76100 (Israel)

2008-11-21T23:59:59.000Z

115

Dynamic data filtering system and method  

DOE Patents [OSTI]

A computer-implemented dynamic data filtering system and method for selectively choosing operating data of a monitored asset that modifies or expands a learned scope of an empirical model of normal operation of the monitored asset while simultaneously rejecting operating data of the monitored asset that is indicative of excessive degradation or impending failure of the monitored asset, and utilizing the selectively chosen data for adaptively recalibrating the empirical model to more accurately monitor asset aging changes or operating condition changes of the monitored asset.

Bickford, Randall L; Palnitkar, Rahul M

2014-04-29T23:59:59.000Z

116

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cruise Cruise Special Report - Bottom-Simulating Reflections(BSR). Seismic lines from deep continental shelves all around the world contain anomalous reflections known as bottom-simulating reflections(BSR). The reflections mimic the sea-floor topography at a near constant depth below the surface, and commonly cut across geological layers. The nature of the reflection indicates a horizon across which seismic velocity dramatically decreases. At one time, scientists thought the reflection must be due to some mineralogical alteration in the sediment due to heat and pressure. Once the existence of natural methane hydrate was established, BSRs were thought to record the decrease in velocity when passing from hydrate-bearing sediments to those containing only water. Therefore, BSRs were thought to be a direct indicator of hydrate: no BSR meant no hydrate. However, the velocity contrast between hydrate and no-hydrate was determined to be insufficient to cause BSRs. Today, scientists have established that BSRs are an indication of concentrations of free methane gas that is blocked from further upward migration by the presence of methane hydrate in the overlying layers. Consequently, the distribution of BSRs may mark only a subset of the areas containing hydrate.

117

Local dynamic update for component-based distributed systems  

Science Journals Connector (OSTI)

Dynamic evolution is a key aspect of the design, development, and maintenance of complex and distributed software systems built by integrating components. Evolution, traditionally obtained by producing software upgrades, may derive from changes in the ... Keywords: component-based distributed system, dynamic reconfiguration, dynamic software update, software evolution

Valerio Panzica La Manna

2012-06-01T23:59:59.000Z

118

Dynamic software update for component-based distributed systems  

Science Journals Connector (OSTI)

Dynamic evolution is a key aspect of the design, development, and maintenance of complex and distributed software systems built by integrating components. Evolution, tradi- tionally obtained by producing software upgrades, may de- rive from changes in ... Keywords: component-based distributed system, dynamic reconfiguration, dynamic software update, software evolution

Valerio Panzica La Manna

2011-06-01T23:59:59.000Z

119

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through numerical simulation, conventional and innovative approaches for producing methane from gas hydrate-bearing geologic reservoirs. Numerical simulation is being used to assess the production of natural gas hydrates from geologic deposits using three production technologies: 1) depressurization, 2) direct CO2 exchange, and 3) dissociation-reformation CO2 exchange. Performers Battelle Pacific Northwest Division, Richland, Washington 99352 Background There are relatively few published studies of commercial production methods for gas hydrates, and all of these studies have examined essentially

120

methane hydrate science plan-final.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 Principal Authors: Consor um for Ocean Leadership and the Methane Hydrate Project Science Team December 2013 DOE Award Number: DE-FE0010195 Project Title: Methane Hydrate...

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Department of Energy Advance Methane Hydrates Science and Technology  

Broader source: Energy.gov (indexed) [DOE]

Advance Methane Hydrates Science and Technology Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas hydrates, and their implications for future resources, geohazards, and the environment Characterizing the Affect of Environmental Change on Gas-Hydrate-Bearing Deposits The University of California at San Diego (San Diego, Calif.) - Researchers at the University of California at San Diego will design, build, and test an electromagnetic (EM) system designed for very shallow water use and will apply the system to determine the extent of offshore permafrost on the U.S. Beaufort inner shelf. Energy Department Investment: $507,000 Duration: 36 months The University of Mississippi (Oxford, Miss.) - Using electronic measurements, the researchers will

122

Methane hydrates: Fire from ice  

Science Journals Connector (OSTI)

... Attempts to compare these methods began last January. Most usable hydrate deposits probably lie offshore, but it is cheaper to begin with those beneath the Arctic. One of the ... As well as abundant hydrates, the site has similar geology and reservoir conditions to many offshore deposits, making it an ideal and accessible testing ground. Those involved say that they ...

David Adam

2002-08-29T23:59:59.000Z

123

Methane hydrate formation and dissociation in a partially saturated core-scale sand sample  

SciTech Connect (OSTI)

We performed a series of experiments to provide data for validating numerical models of gas hydrate behavior in porous media. Methane hydrate was formed and dissociated under various conditions in a large X-ray transparent pressure vessel, while pressure and temperature were monitored. In addition, X-ray computed tomography (CT) was used to determine local density changes during the experiment. The goals of the experiments were to observe changes occurring due to hydrate formation and dissociation, and to collect data to evaluate the importance of hydrate dissociation kinetics in porous media. In the series of experiments, we performed thermal perturbations on the sand/water/gas system, formed methane hydrate, performed thermal perturbations on the sand/hydrate/water/gas system resulting in hydrate formation and dissociation, formed hydrate in the resulting partially dissociated system, and dissociated the hydrate by depressurization coupled with thermal stimulation. Our CT work shows significant water migration in addition to possible shifting of mineral grains in response to hydrate formation and dissociation. The extensive data including pressure, temperatures at multiple locations, and density from CT data is described.

Kneafsey, T.J. (LBNL); Tomutsa, L. (LBNL); Moridis, G.J. (LBNL); Seol, Y. (LBNL); Freifeld, B.M. (LBNL); Taylor, C.E.; Gupta, A. (Colorado School of Mines, Golden, CO)

2007-03-01T23:59:59.000Z

124

The Great Gas Hydrate Escape  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Great Gas Great Gas Hydrate Escape The Great Gas Hydrate Escape Computer simulations revealing how methane and hydrogen pack into gas hydrates could enlighten alternative fuel production and carbon dioxide storage January 25, 2012 | Tags: Carver, Chemistry, Energy Technologies, Hopper, Materials Science PNNL Contact: Mary Beckman , +1 509 375-3688, mary.beckman@pnl.gov NERSC Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov The methane trapped in frozen water burns easily, creating ice on fire. For some time, researchers have explored flammable ice for low-carbon or alternative fuel or as a place to store carbon dioxide. Now, a computer analysis of the ice and gas compound, known as a gas hydrate, reveals key details of its structure. The results show that hydrates can hold hydrogen

125

Wax and hydrate control with electrical power  

SciTech Connect (OSTI)

Electrical heating of subsea flowlines is an effective way to prevent wax and hydrate information, especially for long transportation distances and in low-temperature deep water. Systems are available for use in conjunction with bundles, pipe-in-pipe, and wet-thermal-insulation systems. These systems provide environmentally friendly fluid-temperature control without chemicals or flaring for pipeline depressurizing. Enhanced production is achieved because no time is lost by unnecessary depressurizing, pigging, heating-medium circulation, or removal of hydrate and wax blockages. The seabed temperature at 100-m and greater water depths may range from 7 to {minus}1.5 C, causing a rapid cooling of the hot well streams being transported in subsea flowlines. Under these supercooling conditions, vulnerable crude oils and multiphase compositions will deposit wax and asphalts; also the gas/water phase may freeze solid with hydrate particles. The paper discusses thermal-insulated flowlines, heat-loss compensation with electrical power, electrical power consumption and operation, and subsea electrical-power distribution system.

NONE

1997-08-01T23:59:59.000Z

126

Optimal Shipboard Power System Management via Mixed Integer Dynamic Programming  

E-Print Network [OSTI]

Optimal Shipboard Power System Management via Mixed Integer Dynamic Programming Harry G. Kwatny' power systems using a logical specification to define the transition dynamics of the discrete subsystem following component failure(s) is a central goal of power system management including electric shipboard

Kwatny, Harry G.

127

Hybrid Dynamical Systems, or HDS: The Ultimate Switching Experience  

E-Print Network [OSTI]

Hybrid Dynamical Systems, or HDS: The Ultimate Switching Experience Michael S. Branicky Laboratory concentrated on formalizing the notion of a hybrid system as switching among an indexed collection of dynamical give a quick overview of the area of hybrid systems. I also briefly review the formal definition

Branicky, Michael S.

128

On a local formalism for time evolution of dynamical systems  

E-Print Network [OSTI]

The formalism of local maximization for entropy gradient producing the evolution and dynamical equations for closed systems. It eliminates the inconsistency between the reversibilty of time in dynamical equations and the strict direction of irreversible evolution for complex systems, causality contradictions and ambiguity of time flow in different systems. Independently it leads to basic principles of special relativity.

Drozdov, I V

2015-01-01T23:59:59.000Z

129

Measurement of in situ hydrate thermodynamic properties  

SciTech Connect (OSTI)

Heat capacities and heats of fusion measured in simulated in situ natural gas hydrates using tetrahydrofuran hydrates in clean sand indicated that sediments significantly affect hydrate formation conditions. These data are required to devise and evaluate methods for producing natural gas from hydrates, a potentially significant energy resource.

Sloan, E.D.

1982-03-01T23:59:59.000Z

130

Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships  

E-Print Network [OSTI]

1 Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships Tor A. Johansen in order to implement energy storage in the kinetic and potential energy of the ship motion using the DP in order to relate the dynamic energy storage capacity to the maximum allowed ship position deviation

Johansen, Tor Arne

131

The Dynamics of Brain-Body-Environment Systems  

E-Print Network [OSTI]

The Dynamics of Brain-Body-Environment Systems in Behavior and Cognition An NSF IGERT Training Program Environment BodyAgent Agent Graduate Traineeships Available in Research Themes * Brain Dynamics the dynamical interaction of brains with bodies, agents with their environments, and agents with other agents

Menczer, Filippo

132

Dynamic Algorithm for Space Weather Forecasting System  

E-Print Network [OSTI]

We propose to develop a dynamic algorithm that intelligently analyzes existing solar weather data and constructs an increasingly more accurate equation/algorithm for predicting solar weather accurately in real time. This dynamic algorithm analyzes a...

Fischer, Luke D.

2011-08-08T23:59:59.000Z

133

Response of oceanic hydrate-bearing sediments to thermalstresses  

SciTech Connect (OSTI)

In this study, we evaluate the response of oceanicsubsurface systems to thermal stresses caused by the flow of warm fluidsthrough noninsulated well systems crossing hydrate-bearing sediments.Heat transport from warm fluids, originating from deeper reservoirs underproduction, into the geologic media can cause dissociation of the gashydrates. The objective of this study is to determine whether gasevolution from hydrate dissociation can lead to excessive pressurebuildup, and possibly to fracturing of hydrate-bearing formations andtheir confining layers, with potentially adverse consequences on thestability of the suboceanic subsurface. This study also aims to determinewhether the loss of the hydrate--known to have a strong cementing effecton the porous media--in the vicinity of the well, coupled with thesignificant pressure increases, can undermine the structural stability ofthe well assembly.Scoping 1D simulations indicated that the formationintrinsic permeability, the pore compressibility, the temperature of theproduced fluids andthe initial hydrate saturation are the most importantfactors affecting the system response, while the thermal conductivity andporosity (above a certain level) appear to have a secondary effect.Large-scale simulations of realistic systems were also conducted,involving complex well designs and multilayered geologic media withnonuniform distribution of properties and initial hydrate saturationsthat are typical of those expected in natural oceanic systems. Theresults of the 2D study indicate that although the dissociation radiusremains rather limited even after long-term production, low intrinsicpermeability and/or high hydrate saturation can lead to the evolution ofhigh pressures that can threaten the formation and its boundaries withfracturing. Although lower maximum pressures are observed in the absenceof bottom confining layers and in deeper (and thus warmer and morepressurized) systems, the reduction is limited. Wellbore designs withgravel packs that allow gas venting and pressure relief result insubstantially lower pressures.

Moridis, G.J.; Kowalsky, M.B.

2006-05-01T23:59:59.000Z

134

Hydrates represent gas source, drilling hazard  

SciTech Connect (OSTI)

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

135

Estimating Power System Dynamic States Using Extended Kalman Filter  

SciTech Connect (OSTI)

Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This new dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.

Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw; Zhou, Ning

2014-10-31T23:59:59.000Z

136

Methane Hydrates R&D Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

137

Hydrates as an Energy Source  

Science Journals Connector (OSTI)

As an energy resource, gas hydrates are considered together with other unconventional hydrocarbon ... of these unconventional resources. Besides the tar sands and extra heavy oils, other examples are shale gas an...

Carlo Giavarini; Keith Hester

2011-01-01T23:59:59.000Z

138

Methane Hydrate Research and Modeling  

Broader source: Energy.gov [DOE]

Research is focused on understanding the physical and chemical nature of gas hydrate-bearing sediments. These studies advance the understanding of the in situ nature of GHBS and their potential...

139

Hydrogen Storage in Clathrate Hydrates  

Science Journals Connector (OSTI)

Structure, stability, and reactivity of clathrate hydrates with or without hydrogen encapsulation are studied using standard density functional calculations. Conceptual density functional theory based reactivity descriptors and the associated electronic ...

Pratim Kumar Chattaraj; Sateesh Bandaru; Sukanta Mondal

2010-12-14T23:59:59.000Z

140

4 - Fundamentals of dynamic and static diesel engine system designs  

Science Journals Connector (OSTI)

Abstract: This chapter lays out the foundation of dynamic and static diesel engine system designs by linking the theoretical governing equations of the instantaneous engine in-cylinder cycle processes and the gas flow network of the air system. Engine manifold filling dynamics is discussed for dynamic system design. The chapter develops the theory of pumping loss and engine delta P, which are key design issues for modern high-EGR turbocharged diesel engines. The theory is used to predict engine hardware performance or determine hardware specifications to meet target performance. Four core equations for engine air system are proposed. Different theoretical options of engine air system design are summarized.

Qianfan Xin

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Applications of axial and radial compressor dynamic system modeling  

E-Print Network [OSTI]

The presented work is a compilation of four different projects related to axial and centrifugal compression systems. The projects are related by the underlying dynamic system modeling approach that is common in all of them. ...

Spakovszky, Zoltán S. (Zoltán Sándor), 1972-

2001-01-01T23:59:59.000Z

142

Dynamic characteristics of ocean platform with mooring system  

E-Print Network [OSTI]

characteristics of a semi-submersible system are simulated in the time domain based on linear theory. The semi-submersibleDynamic characteristics of ocean platform with mooring system Aichun Feng ­af2g10@soton

Sóbester, András

143

15.872 System Dynamics II, Fall 2010  

E-Print Network [OSTI]

15.872 is a continuation of 15.871 Introduction to System Dynamics. It emphasizes tools and methods needed to apply systems thinking and simulation modeling successfully in complex real-world settings. The course uses ...

Sterman, John

144

Analysis of Dynamic Task Allocation in Multi-Robot Systems  

E-Print Network [OSTI]

Analysis of Dynamic Task Allocation in Multi-Robot Systems Kristina Lerman1 , Chris Jones2 , Aram of Southern California, Los Angeles, CA 90089-0781, USA {lerman|galstyan}@isi.edu, {cvjones|maja}@robotics.usc.edu Abstract Dynamic task allocation is an essential requirement for multi-robot systems functioning in unknown

Lerman, Kristina

145

ON THE ERGODIC THEORY OF DISCRETE DYNAMICAL SYSTEMS  

E-Print Network [OSTI]

a class of measures, called harmonic mea- sures, that one can associate to a dynamical system consisting is infinite cyclic, then these measures are invariant. We show how the theory of classical dynamical systems with invariant measure can be extended to the case of harmonic measure. Other properties of harmonic measures

Candel, Alberto

146

Dynamic model order reduction for shipboard integrated power systems  

Science Journals Connector (OSTI)

The shipboard integrated power system is modeled by a system of differential-algebraic equations with dynamics having time constants varying from fractions of a second to several minutes. Control and simulation of naval shipboard power systems for different ... Keywords: electric ship, integrated power system, model order reduction, shipboard power system, singular perturbation

Sudipta Lahiri; Dagmar Niebur; Harry Kwatny; Gaurav Bajpai

2009-07-01T23:59:59.000Z

147

Controlling Complex Systems and Developing Dynamic Technology  

E-Print Network [OSTI]

the power output of steam engines to feed the factories ofas a whole, the governed steam engine becomes a less dynamic

Avizienis, Audrius Victor

2013-01-01T23:59:59.000Z

148

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

SciTech Connect (OSTI)

The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

2010-11-01T23:59:59.000Z

149

Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water$-$Xe system  

E-Print Network [OSTI]

Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We study the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a possible instability of clathrate at cryogenic temperatures and conversion to an amorphous phase comprised of "xenon + hydration shell" Xe$\\cdot$(H$_{2}$O)$_{21.5}$ clusters. Simulations of ice$-$xenon solution interface in equilibrium and during ice growth reveal the effects of xenon on the ice$-$liquid interface, where adsorbed xenon causes roughening of ice surface but does not preferentially form clathrate. These results provide evidence against the ice-blocker mechanism of xenon cryoprotection.

Vasilii I. Artyukhov; Alexander Yu. Pulver; Alex Peregudov; Igor Artyuhov

2014-07-11T23:59:59.000Z

150

NETL: Methane Hydrates - DOE/NETL Projects - Kinetic Parameters for the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kinetic Parameters for the Exchange of Hydrate Formers Last Reviewed 12/16/2013 Kinetic Parameters for the Exchange of Hydrate Formers Last Reviewed 12/16/2013 FWP 65213 Goal The overarching goal of this project is to gain an improved understanding of the dynamic processes of gas hydrate accumulations in geologic media by combining laboratory studies, numerical simulation, and analysis of shipboard infrared imaging of hydrate core samples. This project comprises four principal components: (1) fundamental laboratory investigations, (2) numerical simulator development and verification, (3) hydrate core characterization and analysis, and (4) applied laboratory and numerical investigations. Performer Pacific Northwest National Laboratory (PNNL), Richland, Washington Background Numerical Simulation A new simulator in the STOMP simulator series for the production of natural

151

High-efficiency solar dynamic space power generation system  

SciTech Connect (OSTI)

Space power technologies have undergone significant advances over the past few years, and great emphasis is being placed on the development of dynamic power systems at this time. A design study has been conducted to evaluate the applicability of a combined cycle concept-closed Brayton cycle and organic Rankine cycle coupling-for solar dynamic space power generation systems. In the concept presented in this paper (solar dynamic combined cycle), the waste heat rejected by the closed Brayton cycle working fluid is utilized to heat the organic working fluid of an organic Rankine cycle system. This allows the solar dynamic combined cycle efficiency to be increased compared to the efficiencies of two subsystems (closed Brayton cycle and organic fluid cycle). Also, for small-size space power systems (up to 50 kW), the efficiency of the solar dynamic combined cycle can be comparable with Stirling engine performance. The closed Brayton cycle and organic Rankine cycle designs are based on a great deal of maturity assessed in much previous work on terrestrial and solar dynamic power systems. This is not yet true for the Stirling cycles. The purpose of this paper is to analyze the performance of the new space power generation system (solar dynamic combined cycle). The significant benefits of the solar dynamic combined cycle concept such as efficiency increase, mass reduction, specific area-collector and radiator-reduction, are presented and discussed for a low earth orbit space station application.

Massardo, A. (Dept. di Ingegneria Energetica, Univ. di Genova, 16145 Genova (IT))

1991-08-01T23:59:59.000Z

152

Definition: Dynamic Capability Rating System | Open Energy Information  

Open Energy Info (EERE)

Capability Rating System Capability Rating System Jump to: navigation, search Dictionary.png Dynamic Capability Rating System Dynamic capability rating adjusts the thermal rating of power equipment based on factors such as air temperature, wind speed, and solar radiation to reflect actual operating conditions. These systems are primarily used on high capacity or critical power system elements such as transmission lines and large power transformers.[1] Related Terms transmission lines, Dynamic capability rating, thermal rating, power, solar radiation, rating, transmission line, transformer References ↑ https://www.smartgrid.gov/category/technology/dynamic_capability_rating_system [[Category LikeLike UnlikeLike You like this.Sign Up to see what your friends like. : Smart Grid Definitions|Template:BASEPAGENAME]]

153

Toward Standards for Dynamics in Electric Energy Systems  

E-Print Network [OSTI]

Toward Standards for Dynamics in Electric Energy Systems Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12 Engineering Research Center The Power Systems Engineering Research Center (PSERC) is a multi-university Center

154

Well log evaluation of natural gas hydrates  

SciTech Connect (OSTI)

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

155

Well log evaluation of natural gas hydrates  

SciTech Connect (OSTI)

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

156

HydrateNewsIssue2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 T H E N A T I O N A L E N E R G Y T E C H N O L O G Y L A B O R A T O R Y M E T H A N E H Y D R A T E N E W S L E T T E R Announcements ChevronTexaco Gulf of Mexico Gas Hydrates Joint Industry Project Naturally Occurring Gas Hydrate Data Collection Workshop March 14-15, 2002, Adam's Mark Hotel, Houston, Texas The ChevronTexaco Gulf of Mexico Gas Hydrates Joint Industry Project (JIP), in collaboration with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), will be holding a workshop to collect data on naturally occurring hydrates in the Gulf of Mexico (GOM). All key contributors to the understanding of naturally occurring hydrates are invited to apply to participate in the first of three workshops sponsored by the JIP. The purpose of the workshop is to develop a clear understanding of what

157

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect (OSTI)

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

158

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

SciTech Connect (OSTI)

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

159

System Transition: Dynamics of Change in the US Air TransportationSystem  

E-Print Network [OSTI]

System Transition: Dynamics of Change in the US Air TransportationSystem by Aleksandra L Education Committee #12;#12;System Transition: Dynamics of Change in the US Air Transportation System of the requirements for the degree of Doctor of Philosophy in Technology, Management, and Policy Abstract The US Air

de Weck, Olivier L.

160

Effect of Elevated Curing Temperature on Early Hydration and Microstructure of Composite Cements  

E-Print Network [OSTI]

Effect of Elevated Curing Temperature on Early Hydration and Microstructure of Composite Cements J, Seascale, Cumbria, CA20 1PG, UK Abstract The heat of hydration of a number of composite cement systems has of composite cements based on the partial replacement of Portland cement by waste materials has become

Sheffield, University of

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Dynamic Effective-Field Scheme for Rare-Earth Systems  

Science Journals Connector (OSTI)

We demonstrate the importance of including the dynamical exchange-interaction term in the Hamiltonian of a rare-earth system. The probability distribution of the dynamic exchange field is derived in the molecular field approximation. The result is exemplified for the zero-field magnetization and crystal field spectroscopy of NdSb.

Albert Furrer and Heinz Heer

1973-11-26T23:59:59.000Z

162

Patch dynamics: macroscopic simulation of multiscale systems , Y. Kevrekidis2  

E-Print Network [OSTI]

Patch dynamics: macroscopic simulation of multiscale systems G. Samaey1 , Y. Kevrekidis2 , D. Rose1-called "equation-free" framework, based on the idea of a so-called coarse-grained time-stepper. The patch dynamics microscopic model in small portions of the space-time domain (the patches). We present some theoretical

Gorban, Alexander N.

163

QUANTUM DYNAMICS OF TRANSITION PROCESSES IN THE INTERACTING SYSTEMS  

E-Print Network [OSTI]

for the description of the simultaneous quantum dynamics of the open and closed string fields in the unified string transition processes as well as stationary regimes in pairs of the interacting systems with auto--oscillations of the simultaneous quan­ tum dynamics of closed and open string fields in the unified string field theory

164

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ Sampling and Characterization of Naturally Occurring Methane Hydrate Using the D/V JOIDES Resolution Last Reviewed 02/05/2010 In Situ Sampling and Characterization of Naturally Occurring Methane Hydrate Using the D/V JOIDES Resolution Last Reviewed 02/05/2010 DE-FC26-01NT41329 photo of a man showing the pressure core sampler on the deck of JOIDES Resolution Pressure core sampler on deck courtesy Texas A&M University Goal The goal of the project was to characterize hydrate accumulation at Hydrate Ridge (offshore Oregon) and improve the ability to use geophysical and subsurface logging to identify hydrates. A follow-on goal was to characterize hydrate accumulation at offshore Vancouver Island, BC, Canada. Background This project focused on physically verifying the existence of hydrates at Hydrate Ridge through the collection of pressurized and non-pressurized core samples and logging data. This study developed and tested tools to

165

Project to evaluate natural gas hydrates  

Science Journals Connector (OSTI)

More than 170 scf of natural gas, mostly methane, may be contained in 1 cu ft of hydrate, according to Malcolm A. Goodman, president of Enertech & Research Co., Houston, which is involved in the new hydrate project. ...

1980-07-28T23:59:59.000Z

166

methane_hydrates | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrate and its potential as a fuel source, please read the 2011 Methane Hydrates Primer. Information on other elements of the program can be found under the links below. Fire...

167

Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data  

SciTech Connect (OSTI)

The numerical simulator TOUGH+HYDRATE (T+H) was used to predict the transient pure methane hydrate (no sediment) dissociation data. X-ray computed tomography (CT) was used to visualize the methane hydrate formation and dissociation processes. A methane hydrate sample was formed from granular ice in a cylindrical vessel, and slow depressurization combined with thermal stimulation was applied to dissociate the hydrate sample. CT images showed that the water produced from the hydrate dissociation accumulated at the bottom of the vessel and increased the hydrate dissociation rate there. CT images were obtained during hydrate dissociation to confirm the radial dissociation of the hydrate sample. This radial dissociation process has implications for dissociation of hydrates in pipelines, suggesting lower dissociation times than for longitudinal dissociation. These observations were also confirmed by the numerical simulator predictions, which were in good agreement with the measured thermal data during hydrate dissociation. System pressure and sample temperature measured at the sample center followed the CH{sub 4} hydrate L{sub w}+H+V equilibrium line during hydrate dissociation. The predicted cumulative methane gas production was within 5% of the measured data. Thus, this study validated our simulation approach and assumptions, which include stationary pure methane hydrate-skeleton, equilibrium hydrate-dissociation and heat- and mass-transfer in predicting hydrate dissociation in the absence of sediments. It should be noted that the application of T+H for the pure methane hydrate system (no sediment) is outside the general applicability limits of T+H.

Gupta, A.; Moridis, G.J.; Kneafsey, T.J.; Sloan, Jr., E.D.

2009-08-15T23:59:59.000Z

168

SUBSURFACE CHARACTERIZATION OF THE HYDRATE BEARING  

E-Print Network [OSTI]

fps). The underlying wet sand at the base of the gas hydrate stability zone (GHSZ) has low resistivity

Sediments Near; Alaminos Canyon; Thomas Latham; Dianna Shelander; Ray Boswell; Timothy Collett; Myung Lee

169

Mixed moments of random mappings and chaotic dynamical systems  

Science Journals Connector (OSTI)

...and signi cance in computer implementations and...contradictions. Analysis of the properties...discretizations, including computer implementations of dynamical systems, constitutes a new...mathematics. This analysis is not straightforward...

2000-01-01T23:59:59.000Z

170

Dynamical Decoupling and Dephasing in Interacting Two-Level Systems  

E-Print Network [OSTI]

We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing ...

Bylander, Jonas

171

Dynamical Systems and Embedded Cognition Randall D. Beer  

E-Print Network [OSTI]

1 Dynamical Systems and Embedded Cognition Randall D. Beer Cognitive Science Program Dept University Press. Please address all correspondence to: Randall D. Beer Phone: (812) 856-0873 Cognitive

Beer, Randall D.

172

A Dynamical Systems Analysis of Resonant Flybys: Ballistic Case  

Science Journals Connector (OSTI)

In this analysis, resonant flybys were explored within the context of the circular restricted three-body problem using dynamical systems theory. The first step in this process involved the construction of a fl...

Rodney L. Anderson; Martin W. Lo

2011-04-01T23:59:59.000Z

173

Complex dynamics of blackouts in power transmission systems  

Science Journals Connector (OSTI)

In order to study the complex global dynamics of a series of blackouts in power transmission systems a dynamical model of such a system has been developed. This model includes a simple representation of the dynamical evolution by incorporating the growth of power demand the engineering response to system failures and the upgrade of generator capacity. Two types of blackouts have been identified each having different dynamical properties. One type of blackout involves the loss of load due to transmission lines reaching their load limits but no line outages. The second type of blackout is associated with multiple line outages. The dominance of one type of blackout over the other depends on operational conditions and the proximity of the system to one of its two critical points. The model displays characteristics such as a probability distribution of blackout sizes with power tails similar to that observed in real blackout data from North America.

B. A. Carreras; V. E. Lynch; I. Dobson; D. E. Newman

2004-01-01T23:59:59.000Z

174

Responsive Systems Comparison Method: Dynamic Insights into Designing a Satellite  

E-Print Network [OSTI]

satellite radar system architectures for providing the United States Military a global, all-weather, onResponsive Systems Comparison Method: Dynamic Insights into Designing a Satellite Radar System Adam of talk #12;seari.mit.edu � 2009 Massachusetts Institute of Technology 5 Case Application: Satellite Radar

de Weck, Olivier L.

175

Distributed dynamic load balancing for pipelined computations on heterogeneous systems  

Science Journals Connector (OSTI)

One of the most significant causes for performance degradation of scientific and engineering applications on high performance computing systems is the uneven distribution of the computational work to the resources of the system. This effect, which is ... Keywords: Distributed model, Dynamic load balancing algorithms, Loops with dependencies, Master-worker model, Non-dedicated heterogeneous systems, Synchronization, Weighting

Ioannis Riakiotakis; Florina M. Ciorba; Theodore Andronikos; George Papakonstantinou

2011-10-01T23:59:59.000Z

176

Fast Concurrent Dynamic Linking for an Adaptive Operating System  

E-Print Network [OSTI]

Fast Concurrent Dynamic Linking for an Adaptive Operating System Crispin Cowan, Tito Autrey operating system is one that can adapt to some particular circumstance to gain some functional or perfor due to the cost of inter-process protection barriers. Commercial operating systems that can e ciently

Walpole, Jonathan

177

Interpolating dynamical systems: Applications to experimental data analysis  

SciTech Connect (OSTI)

Experimental data from Rayleigh-Benard convection is used to demonstrate new techniques in data analysis. The data, in the form of Poincare sections, are fit to a map of the plane as a function of a system control parameter. This provides a very useful method for interpolating experimental low-dimensional dynamical systems. The fitted map can then be studied using numerical bifurcation methods or other nonlinear dynamics analysis techniques. 16 refs., 3 figs., 1 tab.

Ecke, R.E.

1991-01-01T23:59:59.000Z

178

Gas hydrates: past and future geohazard?  

Science Journals Connector (OSTI)

...David Pyle, John Smellie and David Tappin Gas hydrates: past and future geohazard? Mark...University of Bristol, , Bristol, UK Gas hydrates are ice-like deposits containing a mixture of water and gas; the most common gas is methane. Gas hydrates...

2010-01-01T23:59:59.000Z

179

Gas hydrates: past and future geohazard?  

Science Journals Connector (OSTI)

...seafloor samples were recovered in the Black Sea...warm to support the solid gas hydrates, so...stored in other fossil fuel reservoirs. However...Kvenvolden (2007). Solid points are locations...hydrates have been recovered. Figure 4. This...trapped below the solid gas hydrate layer...

2010-01-01T23:59:59.000Z

180

Modeling System Development for the Evaluation of Dynamic Air Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling System Development for the Evaluation of Dynamic Air Quality Modeling System Development for the Evaluation of Dynamic Air Quality Impacts of DER Speaker(s): Robert Van Buskirk Date: January 30, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare A critical challenge for the atmospheric sciences is to understand the anthropogenic impacts on atmospheric chemistry over spatial scales ranging from the urban to the regional, and ultimately to the global, and over corresponding time scales ranging from minutes to weeks and ultimately annual trends. A similar challenge for energy policymakers is to integrate an understanding of impact dynamics into the economic dynamics of energy supply and demand. The challenges of dynamic analysis of emissions impacts from the energy sector have substantially increased with a new

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The 1st Joint International Conference on Multibody System Dynamics May 2527, 2010, Lappeenranta, Finland  

E-Print Network [OSTI]

The 1st Joint International Conference on Multibody System Dynamics May 25­27, 2010, Lappeenrantast Joint International Conference on Multibody System Dynamics (IMSD'10)., Lappeenranta : Finland

Paris-Sud XI, Université de

182

Protein structure and hydration probed by SANS and osmotic stress  

SciTech Connect (OSTI)

Interactions governing protein folding, stability, recognition, and activity are mediated by hydration. Here, we use small-angle neutron scattering coupled with osmotic stress to investigate the hydration of two proteins, lysozyme and guanylate kinase (GK), in the presence of solutes. By taking advantage of the neutron contrast variation that occurs upon addition of these solutes, the number of protein-associated (solute-excluded) water molecules can be estimated from changes in both the zero-angle scattering intensity and the radius of gyration. Poly(ethylene glycol) exclusion varies with molecular weight. This sensitivity can be exploited to probe structural features such as the large internal GK cavity. For GK, small-angle neutron scattering is complemented by isothermal titration calorimetry with osmoticstress to also measure hydration changes accompanying ligand binding. These results provide a framework for studying other biomolecular systems and assemblies using neutron scattering together with osmotic stress.

Rau, Dr. Donald [National Institutes of Health

2008-01-01T23:59:59.000Z

183

Introductory overview: Hydrate knowledge development  

Science Journals Connector (OSTI)

...both within and without the pipeline is outlined, and examples...magnitude more problematic than wax, the next largest obstruction...energy resources, (2) pipeline blockage prevention and remediation...funding for hydrates inside the pipeline has provided physics and chemistry...

E. Dendy Sloan

184

Basin scale assessment of gas hydrate dissociation in response to climate change  

SciTech Connect (OSTI)

Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating climate. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. Field investigations have discovered substantial methane gas plumes exiting the seafloor along the Arctic Ocean margin, and the plumes appear at depths corresponding to the upper limit of a receding gas hydrate stability zone. It has been suggested that these plumes may be the first visible signs of the dissociation of shallow hydrate deposits due to ongoing climate change in the arctic. We simulate the release of methane from oceanic deposits, including the effects of fully-coupled heat transfer, fluid flow, hydrate dissociation, and other thermodynamic processes, for systems representative of segments of the Arctic Ocean margins. The modeling encompasses a range of shallow hydrate deposits from the landward limit of the hydrate stability zone down to water depths beyond the expected range of century-scale temperature changes. We impose temperature changes corresponding to predicted rates of climate change-related ocean warming and examine the possibility of hydrate dissociation and the release of methane. The assessment is performed at local-, regional-, and basin-scales. The simulation results are consistent with the hypothesis that dissociating shallow hydrates alone can result in significant methane fluxes at the seafloor. However, the methane release is likely to be confined to a narrow region of high dissociation susceptibility, defined by depth and temperature, and that any release will be continuous and controlled, rather than explosive. This modeling also establishes the first realistic bounds for methane release along the arctic continental shelf for potential hydrate dissociation scenarios, and ongoing work may help confirm whether climate change is already impacting the stability of the vast oceanic hydrate reservoir.

Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.; Cameron-Smith, P.

2011-07-01T23:59:59.000Z

185

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interrelation of Global Climate and the Response of Oceanic Hydrate Accumulations Last Reviewed 8/21/2013 Interrelation of Global Climate and the Response of Oceanic Hydrate Accumulations Last Reviewed 8/21/2013 Field Work Proposals: ESD07-014 (LBNL) and 08FE-003 (LANL) Project Goal The primary objectives of this project are to: 1) investigate the effect of rising water temperatures on the stability of oceanic hydrate accumulations, 2) estimate the global quantity of hydrate-originating carbon that could reach the upper atmosphere as CH4 or CO2 thus affecting global climate, 3) quantify the interrelationship between global climate and the amount of hydrate-derived carbon reaching the upper atmosphere focusing on the potential link between hydrate dissociation and cascading global warming and 4) test the discharge phase of the Clathrate Gun Hypothesis which stipulates large-scale hydrate dissociation and gas

186

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 - Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 Project Goals The primary goals of the DOE/NETL Natural Gas Hydrate Field Studies (NGHFS) project are: Conduct field-based studies that advance the ability to predict, detect, characterize, and understand distribution of and controls on natural gas hydrate occurrences. Analyze geologic, geochemical, and microbiologic data for indications of past and current changes to the stability of natural gas hydrate in marine settings. Develop links between the U.S. Gas Hydrate Program and international R&D efforts through direct participation in international field programs and workshops. Evaluate the potential role natural gas hydrates may play in the global carbon cycle through analysis of modern and paleo-natural gas

187

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 EST-380-NEDA Goal The purpose of this study is to establish sediment lithology and quantification of methane in hydrates hosted in fine-grained sediments from the Gulf of Mexico (GoM), a marine site of methane hydrate occurrence. The results will help establish a correlation between laboratory data and hydrate accumulation field data on dispersed hydrates in the natural environment. Performer Brookhaven National Laboratory (BNL), Upton, New York 11973 Background Gas hydrates are located in permafrost and marine environments and show potential as a vast methane source worldwide. However, methane is about 17 times more potent a greenhouse gas than CO2 and the inherent instability of

188

Methane Hydrate Advisory Committee | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Advisory Methane Hydrate Advisory Committee Methane Hydrate Advisory Committee The Methane Hydrate Advisory Committee was created in response to provisions of the Methane Hydrate Research and Development Act of 2000 and reauthorized by the Energy Policy Act of 2005. The Committee is to advise the Secretary of Energy on potential applications of methane hydrate; assist in developing recommendations and priorities for the methane hydrate research and development program; and submit to Congress one or more reports on an assessment of the research program and an assessment of the DOE 5-year research plan. The Committee's charter stipulates that up to 15 members can be appointed by the Secretary of Energy, representing institutions of higher education, industrial enterprises and oceanographic institutions and state agencies.

189

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

– Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 – Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 Project Objective Observe hydrate formation and dissociation phenomena in various porous media and characterize hydrate-bearing sediments by estimating physical properties (kinetic parameters for hydrate formation and dissociation, thermal conductivity, permeability, relative permeability, and mechanical strength) to enhance fundamental understanding on hydrate formation and accumulation and to support numerical simulations and potential gas hydrate production Project Performers Yongkoo Seol – NETL Office of Research & Development Jeong Choi – Oak Ridge Institute for Science and Education Jongho Cha-Virginia Polytech Institute Project Location National Energy Technology Laboratory - Morgantown, West Virginia

190

Methane Hydrate Production Feasibility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

191

Handbook of gas hydrate properties and occurrence  

SciTech Connect (OSTI)

This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

Kuustraa, V.A.; Hammershaimb, E.C.

1983-12-01T23:59:59.000Z

192

Supercomputers model and simulate complex, dynamic systems  

Office of Environmental Management (EM)

Laboratory System has built and deployed some of the most significant high-performance computing (HPC) resources available anywhere, including 32 of the 500 fastest...

193

Inventory management with dynamic Bayesian network software systems  

E-Print Network [OSTI]

Inventory management with dynamic Bayesian network software systems Mark Taylor1 and Charles Fox2 1.fox@sheffield.ac.uk Abstract. Inventory management at a single or multiple levels of a supply chain is usually performed-the-shelf graphical software systems. We show how such sys- tems may be deployed to model a simple inventory problem

Barker, Jon

194

Orbits of hybrid systems as qualitative indicators of quantum dynamics  

E-Print Network [OSTI]

Hamiltonian theory of hybrid quantum-classical systems is used to study dynamics of the classical subsystem coupled to different types of quantum systems. It is shown that the qualitative properties of orbits of the classical subsystem clearly indicate if the quantum subsystem does or does not have additional conserved observables.

N. Buric; D. B. Popovic; M. Radonjic; S. Prvanovic

2014-03-03T23:59:59.000Z

195

Cognitive Modeling Carsten Pfeffer Dynamical Systems Approaches to  

E-Print Network [OSTI]

Cognitive Modeling Carsten Pfeffer Dynamical Systems Approaches to Cognition Carsten Pfeffer Universität Bremen December 1st, 2014 December 1st, 2014 1/30 #12;Cognitive Modeling Carsten Pfeffer Introduction Physical Symbol Systems December 1st, 2014 2/30 #12;Cognitive Modeling Carsten Pfeffer

Bremen, Universität

196

STABILITY ANALYSIS OF INTERCONNECTED POWER SYSTEMS COUPLED WITH MARKET DYNAMICS  

E-Print Network [OSTI]

, with energy imbalance in the physical system, with or without network congestion, driving the market responseSTABILITY ANALYSIS OF INTERCONNECTED POWER SYSTEMS COUPLED WITH MARKET DYNAMICS F.L. Alvarado1 J University of Paraiba, Brazil Abstract: The use of market mechanisms to determine gen- eration dispatch

197

SYSTEM DYNAMICS USE FOR TECHNOLOGIES ASSESSMENT Egils Ginters (a)  

E-Print Network [OSTI]

, and existence of concurrent technologies for sustainability assessment. Keywords: technology assessment, system and sustainability of the new technology in real time. In the framework of FP7-ICT- 2009-5 CHOREOS project No. 257178SYSTEM DYNAMICS USE FOR TECHNOLOGIES ASSESSMENT Egils Ginters (a) , Zane Barkane (b) , Hugues

Boyer, Edmond

198

Solar system constraints on multifield theories of modified dynamics  

Science Journals Connector (OSTI)

......define a conserved energy-momentum tensor...modified dynamics by Solar system phenomenology...where is the usual energy-momentum tensor...frame effects to project into the Solar system via the scalar...additional term in the energy-momentum tensor......

R. H. Sanders

2006-08-11T23:59:59.000Z

199

The Center for Control, Dynamical Systems, and Computation Spring Seminars  

E-Print Network [OSTI]

filter. These schemes are first applied to a vehicle health monitoring system evaluated in realThe Center for Control, Dynamical Systems, and Computation Spring Seminars Presents Theory and Practice of Fault Detection and Identification by Professor Jason Speyer Mechanical and Aerospace

Akhmedov, Azer

200

Optimal PMU Placement Evaluation for Power System Dynamic State Estimation  

E-Print Network [OSTI]

Optimal PMU Placement Evaluation for Power System Dynamic State Estimation Jinghe Zhang, Student--The synchronized phasor measurement unit (PMU), developed in the 1980s, is considered to be one of the most important devices in the future of power systems. The recent development of PMU technology provides high

Bishop, Gary

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dynamically Quantifying and Improving the Reliability of Distributed Storage Systems  

E-Print Network [OSTI]

Dynamically Quantifying and Improving the Reliability of Distributed Storage Systems Rekha Bachwani,ricardob}@cs.rutgers.edu {gryz,dubnicki}@nec-labs.com Abstract In this paper, we argue that the reliability of large-scale storage systems can be significantly improved by using bet- ter reliability metrics and more efficient

Bianchini, Ricardo

202

Methane hydrate formation and dissociationin a partially saturatedcore-scale sand sample  

SciTech Connect (OSTI)

We performed a series of experiments to provide data forvalidating numerical models of gas hydrate behavior in porous media.Methane hydrate was formed and dissociated under various conditions in alarge X-ray transparent pressure vessel, while pressure and temperaturewere monitored. In addition, X-ray computed tomography (CT) was used todetermine local density changes during the experiment. The goals of theexperiments were to observe changes occurring due to hydrate formationand dissociation, and to collect data to evaluate the importance ofhydrate dissociation kinetics in porous media. In the series ofexperiments, we performed thermal perturbations on the sand/water/gassystem, formed methane hydrate, performed thermal perturbations on thesand/hydrate/water/gas system resulting in hydrate formation anddissociation, formed hydrate in the resulting partially dissociatedsystem, and dissociated the hydrate by depressurization coupled withthermal stimulation. Our CT work shows significant water migration inaddition to possible shifting of mineral grains in response to hydrateformation and dissociation. The extensive data including pressure,temperatures at multiple locations, and density from CT data isdescribed.

Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.; Seol,Yongkoo; Freifeld, Barry M.; Taylor, Charles E.; Gupta, Arvind

2006-02-03T23:59:59.000Z

203

Fusion dynamics of symmetric systems near barrier energies  

E-Print Network [OSTI]

The enhancement of the sub-barrier fusion cross sections was explained as the lowering of the dynamical fusion barriers within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model. The numbers of nucleon transfer in the neck region are appreciably dependent on the incident energies, but strongly on the reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions $^{58}$Ni+$^{58}$Ni and $^{64}$Ni+$^{64}$Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of neutron to proton in the neck region at initial collision stage is observed and obvious for neutron-rich systems, which can reduce the interaction potential of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared them with the available experimental data.

Zhao-Qing Feng; Gen-Ming Jin

2009-09-06T23:59:59.000Z

204

Dynamic thermal management in chip multiprocessor systems  

E-Print Network [OSTI]

- mal Management (PDTM) based on Application-based Thermal Model (ABTM) and Core-based Thermal Model (CBTM) in the multicore systems. Based on predicted temperature from ABTM and CBTM, the proposed PDTM can maintain the system temperature below a desired...

Liu, Chih-Chun

2009-05-15T23:59:59.000Z

205

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wireline Logging Wireline Logging From: Timothy Collett, USGS Conventional Wireline Logging Operations in the Gulf of Mexico Gas Hydrate JIP Drilling Program Conventional wireline (CWL) logging operations in the Gulf of Mexico Gas Hydrate JIP Drilling Program (GOM-JIP) was scheduled to include the deployment of a signal logging string (Figure 1) and a vertical seismic profiling (VSP) tool (Figure 2) in several of the Atwater Valley and Keathley Canyon drill sites. The only wireline logging tool scheduled to be deployed was the FMS-sonic tool string, which consisted of the Formation MicroScanner (FMS), a general purpose inclinometer tool (GPIT), and scintillation gamma ray tool (SGT), and the dipole shear sonic imager tool (DSI). The vertical seismic imager tool (VSI) will also be deployed during the GOM-JIP drilling program. The wireline logging tools were provided by Schlumberger wireline services.

206

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field trial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2012 Ignik Sikumi gas hydrate field trial 2012 Ignik Sikumi gas hydrate field trial Photo of the Ignik Drilling Pad Download 2011/2012 Field Test Data Ignik Sikumi #1 "Fire in the Ice" Video Project Background Participants Ignik Sikumi Well Review CO2-Ch4 Exchange Overview August 2, 2013 - Project operations are complete. Read the Final Project Technical Report [PDF-44.1MB] February 19, 2013 - Data from the 2011/2012 field test is now available! Click here to access data. Status Report - May 7, 2012 Final abandonment of Ignik Sikumi #1 wellsite has been completed. Tubing, casing-tubing annulus, and flatpack were filled with cement per the abandonment procedure approved by the Alaska Oil and Gas Conservation Commission. To minimize effects on the landscape and leave as little trace of the operations as possible, a small area around the wellhead was

207

Dynamic safeguard assessment of terror attacks using system dynamics method for nuclear power plants  

Science Journals Connector (OSTI)

For the minimisation of the damage in possible terror attacks on the nuclear power plants and other nuclear facilities, a dynamic assessment is performed in the aspects of nuclear safeguard. The incidents against nuclear facilities are modelled by the time-step scenario. Several cases are explained for the illicit trafficking of radioactive material. The dynamic simulation is examined by the system dynamics method. In the modelling, there are three major models that include the nuclear insider terror, the reaction control and the nuclear forensic steps. The risk increases slowly and decreases rapidly in the result. This is the similar pattern of the September 2001 terror where many lives were lost.

Tae-Ho Woo; Un-Chul Lee; Yun-Il Kim

2010-01-01T23:59:59.000Z

208

Structure H hydrate phase equilibria of paraffins, naphthalenes, and olefins with methane  

SciTech Connect (OSTI)

Initial phase equilibrium data are reported for 10 methane + liquid hydrocarbon systems forming structure H hydrates in the pressure range of 1--6 MPa. Four-phase equilibrium conditions were measured for each system, with paraffinic, naphthenic, and olefinic liquid hydrocarbons filling the large cage of structure H, and methane stabilizing the two smaller cages present in the hydrate. Many of these liquid hydrocarbons constitute a small fraction of crude oils and condensates, and the high stability and relative ease of formation of structure H suggest a possible impact of these hydrates upon hydrocarbon facilities.

Mehta, A.P.; Sloan, E.D. Jr. (Colorado School of Mines, Golden, CO (United States))

1994-10-01T23:59:59.000Z

209

HYDRATE DISSOCIATION IN A 1-D DOMAIN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HYDRATE DISSOCIATION IN A 1-D DOMAIN HYDRATE DISSOCIATION IN A 1-D DOMAIN I. Domain Description 1-D Cartesian system, L x W x H = 1.5 m x 1.0 m x 1.0 m Discretization: 30 x 1 x 1 in (x,y,z) Uniform Δx = 0.05 m each; Δy = Δz = 1 m II. Initial Conditions Pressure: P i = 8 MPa Temperature: T i = 2 o C (for thermal stimulation), T i = 6 o C (for depressurization) Saturations: S H = 0.5, S A = 0.5, S G = 0.0 III. Boundary Conditions At x = X max : No mass or heat flow At x = 0: Constant S A = 1.0 (1) Constant P 0 = P i Constant T 0 = 45 o C Thermal stimulation (2) Constant T 0 = T i = 6 o C Constant P 0 = 2.8 MPa Depressurization to a pressure above the Q-point, no ice formation (3) Constant T 0 = T i = 6 o C Constant P 0 = 0.5 MPa Depressurization to a pressure below the Q-point,

210

Flex power perspectives of indirect power system control through dynamic  

Open Energy Info (EERE)

Flex power perspectives of indirect power system control through dynamic Flex power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of indirect power system control through dynamic power price Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Ion Hydration and Associated Defects in Hydrogen Bond Network of Water: Observation of Reorientationally Slow Water Molecules Beyond First Hydration Shell in Aqueous Solutions of MgCl$_2$  

E-Print Network [OSTI]

Effects of presence of ions, at moderate to high concentrations, on dynamical properties of water molecules are investigated through classical molecular dynamics simulations using two well known non-polarizable water models. Simulations reveal that the presence of magnesium chloride (MgCl$_2$) induces perturbations in the hydrogen bond network of water leading to the formation of bulk-like domains with \\textquoteleft defect sites\\textquoteright~on boundaries of such domains: water molecules at such defect sites have less number of hydrogen bonds than those in bulk water. Reorientational autocorrelation functions for dipole vectors of such defect water molecules are computed at different concentrations of ions and compared with system of pure water. Earlier experimental and simulation studies indicate significant differences in reorientational dynamics for water molecules in the first hydration shell of many dissolved ions. Results of this study suggest that defect water molecules, which are beyond the first hydration shells of ions, also experience significant slowing down of reorientation times as a function of concentration in the case of MgCl$_2$. However, addition of cesium chloride(CsCl) to water does not perturb the hydrogen bond network of water significantly even at higher concentrations. This difference in behavior between MgCl$_2$ and CsCl is consistent with the well-known Hofmeister series.

Upayan Baul; Satyavani Vemparala

2014-12-18T23:59:59.000Z

212

Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits  

SciTech Connect (OSTI)

Gas hydrates are solid crystalline compounds in which gas molecules are lodged within the lattices of an ice-like crystalline solid. The vast quantities of hydrocarbon gases trapped in hydrate formations in the permafrost and in deep ocean sediments may constitute a new and promising energy source. Class 2 hydrate deposits are characterized by a Hydrate-Bearing Layer (HBL) that is underlain by a saturated zone of mobile water. Class 3 hydrate deposits are characterized by an isolated Hydrate-Bearing Layer (HBL) that is not in contact with any hydrate-free zone of mobile fluids. Both classes of deposits have been shown to be good candidates for exploitation in earlier studies of gas production via vertical well designs - in this study we extend the analysis to include systems with varying porosity, anisotropy, well spacing, and the presence of permeable boundaries. For Class 2 deposits, the results show that production rate and efficiency depend strongly on formation porosity, have a mild dependence on formation anisotropy, and that tighter well spacing produces gas at higher rates over shorter time periods. For Class 3 deposits, production rates and efficiency also depend significantly on formation porosity, are impacted negatively by anisotropy, and production rates may be larger, over longer times, for well configurations that use a greater well spacing. Finally, we performed preliminary calculations to assess a worst-case scenario for permeable system boundaries, and found that the efficiency of depressurization-based production strategies are compromised by migration of fluids from outside the system.

Reagan, Matthew; Moridis, George; Zhang, Keni

2008-05-01T23:59:59.000Z

213

Formation of Hydrates from Single-Phase Aqueous Solutions and Implications for Oceanic Sequestration of CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Formation of Hydrates from Single-Phase Aqueous Solutions Formation of Hydrates from Single-Phase Aqueous Solutions and Implications for Oceanic Sequestration of CO 2 . G. Holder (holder@engrng.pitt.edu) 412-624-9809 L. Mokka (lakshmi.mokka@netl.doe.gov) 412-386-6019 Department of Chemical and Petroleum Engineering University of Pittsburgh Pittsburgh, PA 15261 R. Warzinski* (robert.warzinski@netl.doe.gov) 412-386-5863 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940 Pittsburgh, PA 15236-0940 Introduction a Gas hydrates are crystalline solids formed from mixtures of water and low molecular weight compounds, referred to as hydrate formers, that typically are gases at ambient conditions (1). Generally, hydrates are formed in the laboratory from two-phase systems by contacting a hydrate former or formers in the gas or liquid phase with liquid water and increasing the pressure until

214

Dynamic Positioning Systems Usability and Interaction Styles  

E-Print Network [OSTI]

of Strathclyde Rolls-Royce Marine AS Froy.Bjorneseth@cis.strath.ac.uk Mark D. Dunlop University of Strathclyde Mark.Dunlop@cis.strath.ac.uk Jann Peter Strand Rolls-Royce Marine AS Jann computer controlled system to automatically maintain a ship's position and heading by using her own

Dunlop, Mark D.

215

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect (OSTI)

In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses.

Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)

2008-07-01T23:59:59.000Z

216

2.0 Closed-Domain Hydrate Dissociation (Base Case w/ Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Closed-Domain Hydrate Dissociation (Base Case w/ Hydrate) Closed-Domain Hydrate Dissociation (Base Case w/ Hydrate) 2.1 Problem Description One half of a 20-m, one-dimensional horizontal domain, discretized using uniformly spaced 1-m grid cells (optionally 0.1-m grid cells) is initialized with aqueous-hydrate conditions; whereas, the other half of the domain is initialized with gas-aqueous conditions. As with the Base Case problem, a closed horizontal domain is used to eliminate gravitational body forces and boundary condition effects. The initial conditions are specified to yield complete dissociation of the hydrate, via the thermal capacitance of the domain-half initialized with gas-aqueous conditions. To initialize the aqueous-hydrate half of the domain, temperature, pressure, and hydrate saturation are

217

Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction  

E-Print Network [OSTI]

Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy ...

Smith, J. David

218

Rapid Gas Hydrate Formation Process Opportunity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Formation Process Gas Hydrate Formation Process Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is a method and device for producing gas hydrates from a two-phase mixture of water and a hydrate forming gas such as methane (CH 4 ) or carbon dioxide (CO 2 ). The two-phase mixture is created in a mixing zone, which may be contained within the body of the spray nozzle. The two-phase mixture is subsequently sprayed into a reaction vessel, under pressure and temperature conditions suitable for gas hydrate formation. The reaction

219

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

220

Reaction dynamics and photochemistry of divalent systems  

SciTech Connect (OSTI)

Results are presented of molecular beam studies of bimolecular and unimolecular reactions of Ba. Chapter 1 discusses the reaction Ba + NO{sub 2}. Formation of the dominant BaO({sup 1}{Sigma}) + NO products resulted primarily from decay of long-lived Ba{sup +}NO{sub 2}{sup {minus}} collision complexes. Secondary mechanisms led to formation of forward scattered, internally excited BaO, and BaNO + O. D{sub o}(Ba-NO) = 65{plus_minus}20 kcal/mol. Reactions of ground state and electronically excited Ba with water and alcohols are examined in Chapter 2. Reaction of Ba({sup 1}S) + H{sup 2}O led to BaO + H{sub 2}, whereas excited state Ba({sup 1}D) + H{sub 2}O reacted to form BaOH + H. Collisions between Ba and CH{sub 3}OH led to BaOCH{sub 3} + H. Radical channels involve H-atom migration and are promoted by excitation of the incident Ba atom. In Chapter 3, reactions of Ba({sup 1}S) with ClO{sub 2}2 and O{sub 3} are discussed. Again, direct and complex mechanisms were observed. Formation of BaCl + O{sub 2} from decomposition of Ba{sup +}ClO{sub 2}{sup {minus}} accounted for 10% of total reaction crass section. Although Ba + O{sub 3} {yields} BaO + 0{sub 2} occurs primarily by direct reaction mechanisms, the secondary channel Ba + 0{sub 3} {yields} BaO{sub 2} + 0 involved decay of long lived Ba{sup +}O{sub 3}{sup {minus}} intermediates. D{sub o}(Ba{minus}O{sub 2}) = 120 {plus_minus}20 kcal/mol. Photodissociation dynamics of NO{sub 3} is explored in chapter 4. Visible excitation leads to formation of NO + 0{sub 2} and NO{sub 2} + O. Wavelength dependence of branching ratios is investigated. D{sub o}(O-NO{sub 2}) = 48.55 kcal/mole ;and calculate {Delta}H{sub f}(NO{sub 3}) = 17.75 kcal/mole (298K). Chapter 5 discusses the photodissociation of OClO in a molecular beam. Although ClO({sup 2}II) + O({sup 3}P) is dominant, Cl({sup 2}P) + O{sub 2} also forms, with a max yield of 3.9{plus_minus}0.8% near 404nm.

Davis, H.F.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Systemic risk: the dynamics of model banking systems  

Science Journals Connector (OSTI)

...is, to study systemic risk. Recent events have...100 experts on systemic risk from 22 countries, representing banks, regulators, investment firms, US national laboratories...parallels between systemic risk in the financial sector...its interaction with political and other constraints...

2010-01-01T23:59:59.000Z

222

Diffuse-Charge Dynamics in Electrochemical Systems  

E-Print Network [OSTI]

The response of a model micro-electrochemical system to a time-dependent applied voltage is analyzed. The article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics. The model problem consists of a symmetric binary electrolyte between parallel-plate, blocking electrodes which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and numerical solutions are obtained for large voltages. The ``weakly nonlinear'' limit of thin double layers is then analyzed by matched asymptotic expansions in the small parameter $\\epsilon = \\lambda_D/L$, where $\\lambda_D$ is the screening length and $L$ the electrode separation. At leading order, the system initially behaves like an RC circuit with a response time of $\\lambda_D L / D$ (not $\\lambda_D^2/D$), where $D$ is the ionic diffusivity, but nonlinearity violates this common picture and introduce multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse part of the double layer couples to bulk diffusion at the time scale, $L^2/D$. In the ``strongly nonlinear'' regime (controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concentration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of more general situations involving surface conduction, multi-component electrolytes, and Faradaic processes.

Martin Z. Bazant; Katsuyo Thornton; Armand Ajdari

2004-01-08T23:59:59.000Z

223

Physical Properties of Gas Hydrates: A Review  

SciTech Connect (OSTI)

Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

2010-01-01T23:59:59.000Z

224

Imaging Hydrated Microbial Extracellular Polymers: Comparative...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to...

225

Left invertibility, flatness and identifiability of switched linear dynamical systems: a framework  

E-Print Network [OSTI]

Left invertibility, flatness and identifiability of switched linear dynamical systems: a framework invertibility and flatness, dynamical systems are structurally equivalent to some specific cryptographic invertibility, flatness and identifiability of discrete- time switched linear systems are investigated

Paris-Sud XI, Université de

226

The evolutionary dynamics of self-incompatibility systems  

E-Print Network [OSTI]

The evolutionary dynamics of self-incompatibility systems Ed Newbigin1 and Marcy K. Uyenoyama2 1, Duke University, Durham, NC 27708-0338, USA Self-incompatible flowering plants reject pollen, pollen and pistil mating specificities segregate as a single locus, the S locus. In at least two self-incompat

Uyenoyama, Marcy K

227

DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.  

E-Print Network [OSTI]

(thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact - that have a special dynamic behaviour, and the wind turbines. Detailed models for each one of the power system components are developed. Emphasis is given in the representation of different hydro power plant

Paris-Sud XI, Université de

228

FRW Cosmological model with Modified Chaplygin Gas and Dynamical System  

E-Print Network [OSTI]

The Friedmann-Robertson-Walker(FRW) model with dynamical Dark Energy(DE) in the form of modified Chaplygin gas(MCG) has been investigated. The evolution equations are reduced to an autonomous system on the two dimensional phase plane and it can be interpreted as the motion of the particle in an one dimensional potential.

Nairwita Mazumder; Ritabrata Biswas; Subenoy Chakraborty

2011-06-23T23:59:59.000Z

229

Seminar -1. letnik, II. stopnja Memristive system vacancies dynamics  

E-Print Network [OSTI]

Seminar - 1. letnik, II. stopnja Memristive system vacancies dynamics Klemen Zelic Mentor: Prof. Dr of ionic crystal - TiO2 . . . . . . . . . . . . . . . . . 3 3 Doped ionic crystal 3 3.1 Vacancy doped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Diffusion with vacancies interaction . . . . . . . . . . . . . . . 11 4.2.1 vacancies

Â?umer, Slobodan

230

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane Expulsion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced temperature change, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the updip limit of the stability zone on continental margins. The behavior shall be explored in response to both longer term changes in sea level (e.g., twenty-thousand years) and shorter term due to atmospheric

231

Level dynamics for a periodically driven quantum system  

Science Journals Connector (OSTI)

We map the eigenvalue problem of a periodically driven quantum system with N-dimensional Hilbert space to a Hamiltonian N-particle system connected with an infinite-dimensional Lie algebra. This N-particle system is integrable and its equations of motion can be written in Lax form. It is a natural generalization of the so-called generalized Calogero-Moser and Sutherland models, which can be derived from eigenvalue problems of autonomous and kicked quantum systems, respectively. We show that, contrary to common opinion, the generalization of the Weierstrass potential dynamics no longer fulfills all Lax equations and is therefore not expected to be integrable.

R. Scharf and M. Ku?

1989-10-15T23:59:59.000Z

232

Characterizing quantum dynamics with initial system-environment correlations  

E-Print Network [OSTI]

We fully characterize the reduced dynamics of an open quantum system initially correlated with its environment. Using a photonic qubit coupled to a simulated environment we tomographically reconstruct a superchannel---a generalised channel that treats preparation procedures as inputs---from measurement of the system alone, despite its coupling to the environment. We introduce novel quantitative measures for determining the strength of initial correlations, and to allow an experiment to be optimised in regards to its environment.

Martin Ringbauer; Christopher J. Wood; Kavan Modi; Alexei Gilchrist; Andrew G. White; Alessandro Fedrizzi

2014-10-21T23:59:59.000Z

233

Preliminary relative permeability estimates of methane hydrate-bearing sand  

E-Print Network [OSTI]

sand, the gas permeability of the sand with hydrate, and thefor gas and water through methane hydrate-bearing sand. X-hydrate dissociation and making a single-phase (gas or water) permeability measurement of the sand

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

2006-01-01T23:59:59.000Z

234

Examination of Hydrate Formation Methods: Trying to Create Representative Samples  

E-Print Network [OSTI]

gas hydrate morphology on the seismic velocities of sands,sand does not distribute water and gas evenly. Resultant hydrateHydrate Using Excess Gas Method Followed by Water Saturation Description In this method, moist sand

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

235

Power Systems Frequency Dynamic Monitoring System Design and Applications  

E-Print Network [OSTI]

Disturbance Recorder (FDR), Phasor Measurement Unit (PMU), Wide Area Measurement System, Under Frequency Load Management System (IMS) to work as a central server to process the frequency data. The device comparison between FDR and commercial PMU (Phasor Measurement Unit) demonstrate the advantage of FNET. The web

Schrijver, Karel

236

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The DOE/JIP Gulf of Mexico Hydrate Research Cruise The DOE/JIP Gulf of Mexico Hydrate Research Cruise Status Reports During this expedition we will maintain an intermittent log of information relayed from the chief scientist on the expedition. To view a report for a particular day click on the "Day x" link in any highlighted box. The planned cruise timeline [PDF-13KB] is April 17 - May 21, 2005. This is the "planned" timeline. The schedule may change without prior notification due weather conditions or other unplanned occurrences. April 17 Day 1 April 18 Day 2 April 19 Day 3 April 20 Day 4 April 21 Day 5 April 22 Day 6 April 23 Day 7 April 24 Day 8 April 25 Day 9 April 26 Day 10 April 27 Day 11 April 28 Day 12 April 29 Day 13 April 30 Day 14 May 1 Day 15 May 2 Day 16 May 3 Day 17 May 4 Day 18 May 5

237

Gas hydrate-filled fracture reservoirs on continental margins.  

E-Print Network [OSTI]

?? Many scientists predicted that gas hydrate forms in fractures or lenses in fine-grained sediments, but only in the last decade were gas hydrates found… (more)

Cook, Ann Elizabeth

2010-01-01T23:59:59.000Z

238

Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical CO2. Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical...

239

Chemically reacting plumes, gas hydrate dissociation and dendrite solidification  

E-Print Network [OSTI]

the coated bubbles leave the hydrate stability zone thestability zone extends far enough above the sea ?oor, gas hydrates may nucleate on the bubble

Conroy, Devin Thomas

2008-01-01T23:59:59.000Z

240

SOM 825 Advanced Mathematical Programming: Dynamic Network Systems  

E-Print Network [OSTI]

, dynamic spatial price equilibrium problems, dynamic transportation problems (both fixed and elastic demand Formulation Dynamic Financial Network Models Dynamic Traffic Network Models and Algorithms ** Elastic Demand (Classical and Spatial) Dynamic Spatial Price Models and Algorithms ** Quantity Formulation ** Price

Nagurney, Anna

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dynamical safety assessment of hydrogen production nuclear power plants using system dynamics method  

Science Journals Connector (OSTI)

Nuclear power plants for hydrogen production are investigated in the aspect of nuclear safety. The non-linear dynamical safety assessment is introduced for the analysis of the high temperature gas cooled reactor (HTGR) which is used for hydrogen production as well as electricity generation. The dynamical algorithm is adjusted for the safety assessment with an easier and reliable output. A feedback of power increase affects to the temperature decrease. The top event of the event is power and temperature stable. It is affected by the human factor, poison, and some other physical variables. There are several factors including the economic and safety factors which are considered for the reliability of the modelling simulations. Using the system dynamics (SD) method, the event quantification is performed for the event flows, stocks, and feedback by the single and double arrow lines.

Taeho Woo; Soonho Lee

2013-01-01T23:59:59.000Z

242

A molecular dynamics study of polymer/graphene interfacial systems  

SciTech Connect (OSTI)

Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.

Rissanou, Anastassia N.; Harmandaris, Vagelis [Department of Mathematics and Applied Mathematics, University of Crete, GR-71409, Heraklion, Crete, Greece and Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110, Heraklion, Cret (Greece)

2014-05-15T23:59:59.000Z

243

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program DOE/NETL Methane Hydrate Projects Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA

244

NETL: Methane Hydrates - ANS Research Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo Gallery Photo Gallery Photo of hydrate saturated, fine grained sand core from the Mt. Elbert #1 well Hydrate saturated, fine grained sand core from the Mt. Elbert #1 well .- click on image to enlarge Photo of close up of fine grained sand core sample. This sample was taken for porewater geochemical analyses and was hydrate saturated at the time of recovery. Close up of fine grained sand core sample. This sample was taken for porewater geochemical analyses and was hydrate saturated at the time of recovery.- click on image to enlarge Photo of close up of fine grained sand core sample being placed in water. Links to video of hydrate dissociating One visual test used to confirm that a core contains hydrate is to place a small sample from the core in a canister of water. The gas dissociated from the hydrate-bearing sediment is released into the water and bubbles to the surface. In the video sequence shown here, dissociated hydrate gas from a sample of Mt. Elbert #1 core can be seen and heard as it is released into the water. - click on image to view video [MPEG]

245

POWER GRID DYNAMICS: ENHANCING POWER SYSTEM OPERATION THROUGH PRONY ANALYSIS  

SciTech Connect (OSTI)

Prony Analysis is a technique used to decompose a signal into a series consisting of weighted complex exponentials and promises to be an effi cient way of recognizing sensitive lines during faults in power systems such as the U.S. Power grid. Positive Sequence Load Flow (PSLF) was used to simulate the performance of a simple two-area-four-generator system and the reaction of the system during a line fault. The Dynamic System Identifi cation (DSI) Toolbox was used to perform Prony analysis and use modal information to identify key transmission lines for power fl ow adjustment to improve system damping. The success of the application of Prony analysis methods to the data obtained from PSLF is reported, and the key transmission line for adjustment is identifi ed. Future work will focus on larger systems and improving the current algorithms to deal with networks such as large portions of the Western Electricity Coordinating Council (WECC) power grid.

Ray, C.; Huang, Z.

2007-01-01T23:59:59.000Z

246

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

2005-02-01T23:59:59.000Z

247

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 ESD05-048 Goal The project is bringing new laboratory measurements and evaluation techniques to bear on the difficult problems of characterization and gas recovery from methane hydrate deposits. Performer Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Background LBNL is performing laboratory tests to provide data to support the characterization and development of methane hydrate deposits. Major areas of research underway include hydrologic measurements, combined geomechanical/geophysical measurements, and synthetic hydrate formation studies. Hydrologic Measurements Relatively little research has been done to experimentally determine

248

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat flow and gas hydrates on the continental margin of India Last Reviewed 12/15/2011 Heat flow and gas hydrates on the continental margin of India Last Reviewed 12/15/2011 DE-NT0005669 Goal The goals of this project are to construct maps of apparent and residual heat flow through the western continental margin of India and to investigate the relationship of residual heat flow anomalies to fluid flow and gas hydrate distribution in the subsurface. Performer Oregon State University, College of Oceanic and Atmospheric Science, Corvallis, OR 97331 Map of the four regions sampled during NGHP Expedition 01 Map of the four regions sampled during NGHP Expedition 01 Background Gas hydrate distribution in sediments depends on methane supply, which in turn depends on fluid flow. When drilling data are available to calibrate seismic observations of the base of the gas hydrate stability zone (GHSZ),

249

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

If you need help finding information on a particular project, please contact the content manager. If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed Projects Click on project number for a more detailed description of the project. Project Number Project Name Primary Performer DE-FC26-01NT41332 Alaska North Slope Gas Hydrate Reservoir Characterization BP Exploration Alaska, Inc. DE-FC26-01NT41330 Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration Chevron Energy Technology Company DE-FE0009897 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Georgia Tech Research Corporation DE-FE0009904 Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Oklahoma State University

250

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Properties of Hydrate – Tool Development Last Reviewed 3/18/2013 Thermal Properties of Hydrate – Tool Development Last Reviewed 3/18/2013 Project Goal The goal of this project is increased understanding of gas hydrate thermal properties through measurements on natural hydrate-bearing sediment cores and hydrate-bearing cores formed within laboratory pressure vessels. Project Performers Eilis Rosenbaum, NETL, Office of Research and Development Ronald Lynn, NETL, RDS/Parsons Dr. David Shaw, Geneva College Project Location National Energy Technology Laboratory, Pittsburgh, PA Background NETL utilizes a modified transient plane source (TPS) shown in Figure 1 using a technique originally developed by Gustafsson [1, 2] in a single-sided configuration (Figure 2). The TPS technique is capable of simultaneously determining both thermal conductivity and thermal

251

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gathering, Processing and Evaluating Seismic and Physical Data on Gas Hydrates in the Gulf of Mexico Last Reviewed 02/05/2010 Gathering, Processing and Evaluating Seismic and Physical Data on Gas Hydrates in the Gulf of Mexico Last Reviewed 02/05/2010 DE-AT26-97FT34343 photo of piston core apparatus prior to being dropped Piston core apparatus with 6-ton weight prior to being dropped Photo courtesy USGS Goal The goal of the project is to characterize hydrates in the Gulf of Mexico (GOM) and further develop field techniques for characterizing hydrates. Performer US Geological Survey, Woods Hole Field Center Location Woods Hole Massachusetts Background Oceanic methane hydrates are a major emerging research topic spanning energy resource issues, global climate change, seafloor stability, ocean acoustics, impact on deep marine biota, and a number of special topics. Recent developments in the last five years have both broadened and deepened

252

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seismic-Scale Rock Physics of Methane Hydrate Seismic-Scale Rock Physics of Methane Hydrate DE-FC26-05NT42663 Goal The goal of this project was to establish rock physics models for use in generating synthetic seismic signatures of methane hydrate reservoirs. Ultimately, the intent was to improve seismic detection and quantification of offshore and onshore methane hydrate accumulations. Performer Stanford University, Stanford, CA 94305 Background Gas hydrate reservoir characterization is, in principle, no different from traditional hydrocarbon reservoir characterization. The seismic response of the subsurface is determined by the spatial distribution of the elastic properties (properties of the subsurface that deform as seismic waves pass through it) and attenuation. By mapping changes in the elastic properties, scientists can identify geologic features, including hydrocarbon reservoirs.

253

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 DE-FC26-06NT42963 Goal The goal of this project is to develop observational and experimental data that can provide a better understanding of the basic mechanisms at work in a methane hydrate reservoir that is under production. To this end, a thorough physical understanding of underlying phenomena associated with methane hydrate production will be acquired through unique, multi-scale experiments and associated analyses. In addition, one or more mathematical models that account for the observed phenomena and provide insights that may help to optimize methane hydrate production methods will be developed. Performers Georgia Tech Research Corporation, Atlanta, Georgia 30332 Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee 37831

254

Overview on Hydrate Coring, Handling and Analysis  

SciTech Connect (OSTI)

Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

2003-06-30T23:59:59.000Z

255

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-06-01T23:59:59.000Z

256

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-07-01T23:59:59.000Z

257

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-03-01T23:59:59.000Z

258

NETL-ORD Methane Hydrate Project - Micro XCT Characterization and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micro-XCT Characterization and Examination of Pressured Cores Last Reviewed 7/15/2013 Micro-XCT Characterization and Examination of Pressured Cores Last Reviewed 7/15/2013 Goal The primary goal of this research is to visualize gas hydrate within sediment pore spaces under in situ conditions using a high-resolution micro-XCT scanner. Performers Yongkoo Seol – NETL Office of Research & Development Eilis Rosenbaum – NETL Office of Research & Development Jongho Cha- Oak Ridge Institute for Science and Education Location National Energy Technology Laboratory - Morgantown, West Virginia Description The initial phase of this research will focus on developing the experimental system needed to accommodate hydrate-bearing samples under in-situ conditions within an existing micro-XCT (X-ray transparent cell) system. Development will consist of designing, building, and testing the

259

Determining the role of hydration forces in protein folding  

SciTech Connect (OSTI)

One of the primary issues in protein folding is determining what forces drive folding and eventually stabilize the native state. A delicate balance exists between electrostatic forces such as hydrogen bonding and salt bridges, and the hydrophobic effect, which are present for both intramolecular protein interactions and intermolecular contributions with the surrounding aqueous environment. This article describes a combined experimental, theoretical, and computational effort to show how the complexity of aqueous hydration can influence the structure, folding and aggregation, and stability of model protein systems. The unification of the theoretical and experimental work is the development or discovery of effective amino acid interactions that implicitly include the effects of aqueous solvent. The authors show that consideration of the full range of complexity of aqueous hydration forces such as many-body effects, long-ranged character of aqueous solvation, and the assumptions made about the degree of protein hydrophobicity can directly impact the observed structure, folding, and stability of model protein systems.

Sorenson, J.M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry] [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Hura, G. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States); [Lawrence Berkeley National Lab., CA (United States). Life Sciences Div.; Soper, A.K. [Rutherford Appleton Lab., Didcot (United Kingdom). ISIS Facility] [Rutherford Appleton Lab., Didcot (United Kingdom). ISIS Facility; Pertsemlidis, A. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry] [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; Head-Gordon, T. [Lawrence Berkeley National Lab., CA (United States)] [Lawrence Berkeley National Lab., CA (United States)

1999-07-01T23:59:59.000Z

260

Particle confinement and Perturbed Dynamical System in Warped Product Spacetime  

E-Print Network [OSTI]

In this paper we have considered a five-dimensional warped product spacetime with spacelike extra dimension. We have decomposed the geodesic equations to get the motion along the extra dimension and have studied the dynamical system associated with it. The relation between the total energy along the phase path and the extra-dimensional coordinate have been established for different types of warping function and the nature of confinement of particle trajectories in these cases have been analyzed. We have also calculated the energy associated with the phase path under a linear coordinate perturbation independent of the affine parameter and have analyzed the nature of confinement and the geodesic motions in such a case. Finally, the stability of the dynamical system under a perturbation due to an extra-dimension dependent additional force and under the effect of scalar fields in the bulk, have been examined.

Pinaki Bhattacharya; Sarbari Guha

2012-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water...

262

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Core Handling Core Handling From: Cruise Prospectus [PDF-827KB] Visit the Photo Gallery for more pictures showing core handling Non-pressurized and Pressure Core Handling Non-pressurized Core Handling (Fugro Hydraulic Piston Corer and Fugro Corer) Photo of Core packed in ice bath Core packed in ice bath Cores that might contain gas hydrates should be recovered as quickly as possible. An ice bath may be used in some cases to slow the dissociation process. A core reception/preparation van will be on the deck of the Uncle John where individual cores (perhaps up to 9 m long) can be laid on ‘core hooks' and quickly drilled, labeled and sectioned. Infrared (IR) camera imaging will be done as soon as practical after core recovery. Both track-mounted and hand held IR cameras will be used to identify the

263

Dynamics of Josephson junction systems in the computational subspace  

E-Print Network [OSTI]

The quantum dynamics of the Josephson junction system in the computational subspace is investigated. A scheme for the controlled not operation is given for two capasitively coupled SQUIDs. In this system, there is no systematic error for the two qubit operation. For the inductively coupled SQUIDs, the effective Hamiltonian causes systematic errors in the computational subspace for the two qubit operation. Using the purterbation theory, we construct a more precise effective Hamiltonian. This new effective Hamiltonian reduces the systematic error to the level much lower than the threshold of the fault resilent quantum computation.

Wang Xiang-Bin; Matsumoto Keiji; Fan Heng; Y. Nakamura

2001-12-05T23:59:59.000Z

264

Eurasian Math. Journal, 3, N1, (2012), 5-19. Dynamical Systems Method (DSM) for solving  

E-Print Network [OSTI]

Eurasian Math. Journal, 3, N1, (2012), 5-19. 1 #12;Dynamical Systems Method (DSM) for solving conditions are given for the validity of the Dynamical Systems Method (DSM) for solving the above operator equation. It is proved that the DSM (Dynamical Systems Method) u(t) = -A-1 a(t)(u(t))[F(u(t)) + a

265

Dynamical systems method (DSM) for selfadjoint Mathematics Department, Kansas State University,  

E-Print Network [OSTI]

Dynamical systems method (DSM) for selfadjoint operators A.G. Ramm Mathematics Department, Kansas Let A be a selfadjoint linear operator in a Hilbert space H . The DSM (dynam­ ical systems method regularization [1],[10], method of quasiso­ lutions [3], and the dynamical systems method (DSM) (see [6], [7], [8

266

A new version of the Dynamical Systems Method (DSM) for nonlinear equations with monotone operators  

E-Print Network [OSTI]

A new version of the Dynamical Systems Method (DSM) for solving nonlinear equations with monotone. Dynamical systems method (DSM), nonlinear operator equations, monotone operators, discrepancy principle. 1 Introduction In this paper we study a version of the Dynamical Systems Method (DSM) for solving the equation F

267

Best practices for system dynamics model design and construction with powersim studio.  

SciTech Connect (OSTI)

This guide addresses software quality in the construction of Powersim{reg_sign} Studio 8 system dynamics simulation models. It is the result of almost ten years of experience with the Powersim suite of system dynamics modeling tools (Constructor and earlier Studio versions). It is a guide that proposes a common look and feel for the construction of Powersim Studio system dynamics models.

Malczynski, Leonard A.

2011-06-01T23:59:59.000Z

268

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico - Applications for Safe Exploration and Production Last Reviewed 12/18/2013 Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico - Applications for Safe Exploration and Production Last Reviewed 12/18/2013 DE-FC26-01NT41330 Goal: The goal of this project is to develop technology and collect data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GoM). The intent of the project is to better understand the impact of hydrates on safety and seafloor stability as well as provide data for use by scientists in their study of climate change and assessment of the feasibility of marine hydrate as a potential future energy resource. Photo of the Helix Q4000 The Semi-Submersible Helix Q4000 used on the 21 day JIP Leg II Drilling and Logging Expedition

269

Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations  

Science Journals Connector (OSTI)

Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

2014-01-01T23:59:59.000Z

270

Assessment of dynamic energy conversion systems for radioisotope heat sources  

SciTech Connect (OSTI)

The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

Thayer, G.R.; Mangeng, C.A.

1985-06-01T23:59:59.000Z

271

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Broader source: Energy.gov [DOE]

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

272

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

Thomas E. Williams; Keith Millheim; Buddy King

2004-03-01T23:59:59.000Z

273

Low-power electricity generation from dynamical systems  

Science Journals Connector (OSTI)

This talk will review our research on energy harvesting from electroelastic dynamical systems for low-power electricity generation with an emphasis on piezoelectric transduction. The transformation of vibrations into electricity using piezoelectric materials with the goal of powering small electronic components has received growing attention over the last decade. Enabling energy-autonomous small electronic components can lead to reduced maintenance costs in various wireless applications such as structural health monitoring of civil and military systems. After a brief discussion of energy harvesting methods for low-power electricity generation this talk will be focused on linear and nonlinear energy harvesting using piezoelectric materials through the topics of distributed-parameter electroelastic dynamics of energy harvesters performance and frequency bandwidth enhancement by exploiting nonlinear dynamic phenomena deterministic and stochastic excitation of monostable and bistable configurations effects of dissipative and inherent electroelastic nonlinearities electroaeroelastic flow energy harvesting using airfoil-based and bluff body-based configurations and enhanced harvesting of structure-borne propagating waves using elastoacoustic mirrors and metamaterial structures. A brief introduction to our efforts on multifunctional underwater thrust and power generation using flexible piezoelectric composites will also be given.

Alper Erturk

2013-01-01T23:59:59.000Z

274

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

275

System and method for reducing combustion dynamics in a combustor  

DOE Patents [OSTI]

A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

2013-08-20T23:59:59.000Z

276

X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand  

SciTech Connect (OSTI)

We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

Seol, Yongkoo; Kneafsey, Timothy J.

2009-06-01T23:59:59.000Z

277

Dynamic Impregnator Reactor System (Poster), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Several unit operations are combined into Several unit operations are combined into one robust system, off ering fl exible and staged process confi gurations in one vessel. Spraying, soaking, low-severity pretreat- ment, enzymatic hydrolysis, fermentation, concentration/evaporation, and distillation are amongst its many capabilities. * 1,900 L Horizontal Paddle Blender Vessel with Sidewall Liquid Drains * 6-60 rpm / 50 HP Tri-Directional Agitator * 3.4 bar & Vacuum ASME Design, 316L Stainless Steel * Heating/Cooling Jacket using Water or Steam * 150 L Chemical Mix Tank & Pump with Spray Injectors * Vent Condenser with Collection Tank and Vacuum Pump Dynamic Impregnator Reactor System Multifaceted system designed for complex feedstock impregnation and processing Integrated Biorefi nery Research Facility | NREL * Golden, Colorado | December 15, 2011 | NREL/PO-5100-56156

278

Methane Hydrate Program Annual Report to Congress  

Broader source: Energy.gov (indexed) [DOE]

FY 2010 FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled, U.S. Department of Energy FY 2010 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of

279

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection and Microbiological Analysis of Gas Hydrate Cores Collection and Microbiological Analysis of Gas Hydrate Cores FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a fundamental modeling parameter - the amount of methane generated in deep sediments by methanogenic microorganisms. This would allow methane distribution models of gas hydrate reservoirs to accurately reflect an unknown volume and the distribution of biogenic methane within in a reservoir. The personnel at INEL have experience in similar biologic research and are considered to be experts by their global peers. Performer Idaho National Engineering and Environmental Laboratory (INEEL) - sample collection and analysis Location

280

Arctic Methane, Hydrates, and Global Climate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arctic Methane, Hydrates, and Global Climate Arctic Methane, Hydrates, and Global Climate Speaker(s): Matthew T. Reagan Date: March 17, 2010 - 12:00pm Location: 90-3122 Paleooceanographic evidence has been used to postulate that methane may have had a significant role in regulating past climate. However, the behavior of contemporary permafrost deposits and oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. A recent expedition to the west coast of Spitsbergen discovered substantial methane gas plumes exiting the seafloor at depths that correspond to the upper limit of the receding gas hydrate stability zone. It has been suggested that these plumes may be the

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 DE-FC26-01NT41331 photo of new Anadarko drilling rig in place at Hot Ice No.1 on Alaska's North Slope Hot Ice No. 1 Drilling Platform courtesy Anadarko Petroleum Corp. Goal The goal of the project was to develop technologies for drilling and recovering hydrates in arctic areas. The specific objectives were to drill, core, and test a well through the hydrate stability zone in northern Alaska Performers Maurer Technology, Inc.* - Project coordination with DOE Anadarko Petroleum Corporation - Overall project management for the design, construction, and operation of the Arctic Drilling Platform and mobile core lab, and field coring operations Noble Engineering and Development* - Real time data collection and

282

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of aerobic methanotrophy in preventing the escape of methane from marine, hydrate-bearing reservoirs to the atmosphere and ultimately to better define the role of aerobic methanotrophy in the global carbon cycle. Graph overlayed on photo - Methane seeps with the resulting methane plume Methane seeps with the resulting methane plume, Geophysical Research Letters, November 2007 Performers University of California – Santa Barbara, Santa Barbara (UCSB), CA 93106 Background The global methane reservoir in the form of gas hydrate is estimated at 500–10,000 Gt (KVENVOLDEN, 1995; MILKOV, 2004). This pool of carbon

283

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterizing Arctic Hydrates (Canadian Test Well and Alaskan "Wells of Opportunity") Characterizing Arctic Hydrates (Canadian Test Well and Alaskan "Wells of Opportunity") photo of drilling rig at Mallik 2L-38 location Rig at Mallik 2L-38 location courtesy Geological Survey of Canada DE-AT26-97FT34342 Goal The purpose of this project is to assess the recoverability and potential production characteristics of the onshore natural gas hydrate and associated free-gas accumulations in the Arctic of North America Performer United States Geological Survey, Denver, Colorado 80225 - partner in GSC-managed consortium and provide expertise in data gathering and analysis Background The U.S. Geological Survey has been participating in natural gas hydrate reservoir research with DOE NETL through an interagency agreement which began in the early 1980’s. The work has been an ongoing effort as part of

284

ConocoPhillips Gas Hydrate Production Test  

SciTech Connect (OSTI)

Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

2013-06-30T23:59:59.000Z

285

Gas hydrate formation in fine sand  

Science Journals Connector (OSTI)

Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in ... Sea. The testing media consisted of silica sand particles with diameters of ...

XiaoYa Zang; DeQing Liang; NengYou Wu

2013-04-01T23:59:59.000Z

286

Weakening of ice by magnesium perchlorate hydrate  

E-Print Network [OSTI]

I show that perchlorate hydrates, which have been indirectly detected at high Martian circumpolar latitudes by the Phoenix Mars Lander, have a dramatic effect upon the rheological behavior of polycrystalline water ice under ...

Lenferink, Hendrik J., 1985-

2012-01-01T23:59:59.000Z

287

Hydrate Control for Gas Storage Operations  

SciTech Connect (OSTI)

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

288

Methane Hydrate Field Studies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Field Studies Field Studies Methane Hydrate Field Studies Arctic/Alaska North Slope Field Studies Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and currently lack outlets to commercial markets, Alaska provides an excellent laboratory to study E&P technology. The research also has implications for various Alaska resources, including potential gas hydrate resources for local communities, conventional "stranded" gas, as well as Alaska's large unconventional oil resources. The hydrate deposits have been delineated in the process of developing underlying oil fields, and drilling costs are much lower than offshore. DOE-BP Project

289

Metal-Catalyzed Hydration of 2-Pyridyloxirane  

E-Print Network [OSTI]

In the presence of CuII the hydration of 2-pyridyloxiran is accelerated 18,000-fold, and its reaction with Cl–, Br–, and MeO– becomes 100% regiospecific for ?-attack.

Hanzlik, Robert P.; Michaely, William J.

1975-01-01T23:59:59.000Z

290

Methane Hydrates R&D Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

abundance suggest that they contain perhaps more organic carbon that all the world's oil, gas, and coal combined. The primary mission of the Methane Hydrates R&D Program is to...

291

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

292

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation. In addition to the Final Report, several companion Topical Reports are being published.

Thomas E. Williams; Keith Millheim; Bill Liddell

2004-11-01T23:59:59.000Z

293

Dynamic Systems Analysis Report for Nuclear Fuel Recycle  

SciTech Connect (OSTI)

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

2008-12-01T23:59:59.000Z

294

Presentations from the March 27th - 28th Methane Hydrates Advisory...  

Broader source: Energy.gov (indexed) [DOE]

the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate...

295

Contingent robot behaviors from self-referential dynamical systems Ralf Der, Frank Hesse and Rene Liebscher  

E-Print Network [OSTI]

Contingent robot behaviors from self-referential dynamical systems Ralf Der, Frank Hesse and Ren and a challenging objective for autonomous robots. In our earlier work we introduced homeokinesis ­ the dynamical-regulating dynamical system. Mathematical arguments show that the robot behaviors emerging from this are both

Der, Ralf

296

Methane hydrate formation and dissociation in a partially saturated sand  

SciTech Connect (OSTI)

To predict the behavior of hydrate-bearing sediments and the economic extractability of natural gas from reservoirs containing gas hydrates, we need reservoir simulators that properly represent the processes that occur, as well as accurate parameters. Several codes are available that represent some or all of the expected processes, and values for some parameters are available. Where values are unavailable, modelers have used estimation techniques to help with their predictions. Although some of these techniques are well respected, measurements are needed in many cases to verify the parameters. We have performed a series of experiments in a partially water saturated silica sand sample. The series included methane hydrate formation, and dissociation by both thermal stimulation and depressurization. The sample was 7.6 cm in diameter and 25 cm in length. In addition to measuring the system pressure and temperatures at four locations in the sample, we measured local density within the sample using x-ray computed tomography. Our goals in performing the experiment were to gather information for estimating thermal properties of the medium and to examine nonequilibrium processes.

Kneafsey, Timothy J.; Tomutsa, Liviu; Taylor, Charles E.; Gupta, Arvind; Moridis, George; Freifeld, Barry; Seol, Yongkoo

2004-11-24T23:59:59.000Z

297

A sensor array system for monitoring moisture dynamics inunsaturated soil  

SciTech Connect (OSTI)

To facilitate investigations of moisture dynamics inunsaturated soil, we have developed a technique to qualitatively monitorpatterns of saturation changes. Field results suggest that this device,the sensor array system (SAS), is suitable for determining changes inrelative wetness along vertical soil profiles. The performance of theseprobes was compared with that of the time domain reflectometry (TDR)technique under controlled and field conditions. Measurements from bothtechniques suggest that by obtaining data at high spatial and temporalresolution, the SAS technique was effective in determining patterns ofsaturation changes along a soil profile. In addition, hardware used inthe SAS technique was significantly cheaper than the TDR system, and thesensor arrays were much easier to install along a soilprofile.

Salve, R.; Cook, P.J.

2007-05-15T23:59:59.000Z

298

On the linear operation of cloned dynamical systems and its Lyapunov exponents  

E-Print Network [OSTI]

The cloned dynamical system theory is introduced and the Lyapunov exponents of this system are qualitatively proven to be same as the original dynamical system. This property indicates that these two systems have the same error propagation speed in the phase space, and thus we can interpret the phenomenon as why the ensemble mean method sometimes is not effective.

Pengfei Wang

2013-11-10T23:59:59.000Z

299

Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites  

SciTech Connect (OSTI)

In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct graduate students (OSU and UW) as well as DOE staff from the NETL lab in Albany on the use of Crunch Flow for geochemical applications.

Torres, Marta

2014-01-31T23:59:59.000Z

300

Subcellular metabolic organization in the context of dynamic energy budget and biochemical systems theories  

Science Journals Connector (OSTI)

...metabolites, energy compounds and...engineering. New York, NY: Marcel...cellular systems. New York, NY: Chapman...2010 Dynamic energy budget theory...biologists. New York, NY: Cambridge...context of dynamic energy budget and biochemical...

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DNA hydration studied by neutron fiber diffraction  

SciTech Connect (OSTI)

The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J. [Keele Univ. (United Kingdom)] [and others

1994-12-31T23:59:59.000Z

302

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA Background The USGS Interagency Agreement (IA) involves laboratory research and

303

Structural Investigation of Methane Hydrate Sediments by Microfocus X-ray Computed Tomography Technique under High-Pressure Conditions  

Science Journals Connector (OSTI)

The structure of natural gas hydrate sediments was observed by microfocus X-ray computed tomography (CT). A newly developed high-pressure vessel for the microfocus X-ray CT system was applied to observe the sediments at a temperature above 273 K and under high-pressure conditions. The obtained two-dimensional CT images clearly showed the spatial distribution of the free-gas pore, sand particles, water, and hydrates. These results demonstrated that microfocus X-ray CT can be effective for studying natural gas hydrate sediment samples.

Shigeki Jin; Jiro Nagao; Satoshi Takeya; Yusuke Jin; Junko Hayashi; Yasushi Kamata; Takao Ebinuma; Hideo Narita

2006-01-01T23:59:59.000Z

304

Natural gas hydrates on the continental slope off Pakistan: constraints from seismic techniques  

Science Journals Connector (OSTI)

......2000 research-article Articles Natural gas hydrates on the continental slope...J. Int. (2000) 140, 295310 Natural gas hydrates on the continental slope...adequate gas supplies for hydrate Natural gas hydrates (clathrates) are a crystalline......

Ingo Grevemeyer; Andreas Rosenberger; Heinrich Villinger

2000-02-01T23:59:59.000Z

305

Quantum tomography meets dynamical systems and bifurcations theory  

SciTech Connect (OSTI)

A powerful tool for studying geometrical problems in Hilbert spaces is developed. We demonstrate the convergence and robustness of our method in every dimension by considering dynamical systems theory. This method provides numerical solutions to hard problems involving many coupled nonlinear equations in low and high dimensions (e.g., quantum tomography problem, existence and classification of Pauli partners, mutually unbiased bases, complex Hadamard matrices, equiangular tight frames, etc.). Additionally, this tool can be used to find analytical solutions and also to implicitly prove the existence of solutions. Here, we develop the theory for the quantum pure state tomography problem in finite dimensions but this approach is straightforwardly extended to the rest of the problems. We prove that solutions are always attractive fixed points of a nonlinear operator explicitly given. As an application, we show that the statistics collected from three random orthonormal bases is enough to reconstruct pure states from experimental (noisy) data in every dimension d ? 32.

Goyeneche, D., E-mail: dardo.goyeneche@cefop.udec.cl [Departamento de Fisíca, Universidad de Concepción, Casilla 160-C, Concepción, Chile and Center for Optics and Photonics, Universidad de Concepción, Casilla 4012, Concepción (Chile); Torre, A. C. de la [Departamento de Física, Universidad Nacional de Mar del Plata, IFIMAR-CONICET, Dean Funes 3350, 7600 Mar del Plata (Argentina)

2014-06-15T23:59:59.000Z

306

Methane Hydrate Formation and Dissocation in a Partially Saturated Sand--Measurements and Observations  

E-Print Network [OSTI]

Energy Technology Laboratory Methane Hydrates Research Group USA Arvind Gupta Colorado School of Mines Center for Hydrate Research USA ABSTRACT

2005-01-01T23:59:59.000Z

307

Methane Hydrate Formation and Dissociation in a Partially Saturated Core-Scale Sand Sample  

E-Print Network [OSTI]

Energy Technology Laboratory Methane Hydrates Research Group USA Arvind Gupta Colorado School of Mines Center for Hydrate Research USA ABSTRACT

2005-01-01T23:59:59.000Z

308

Impact of PHEV Loads on the Dynamic Performance of Power System  

E-Print Network [OSTI]

additional load to the power systems [5]. According to the Electric Power Research Institute (EPRI), PHEVsImpact of PHEV Loads on the Dynamic Performance of Power System F. R. Islam, H. R. Pota, M. A into the existing grid. This paper analyses the impact of PHEV loads on the dynamic behaviour of a power system

Pota, Himanshu Roy

309

Behavioral interpretation of the object-oriented paradigm for interconnected dynamic system  

E-Print Network [OSTI]

-oriented language Modelica is finally presented. 1 Keywords Object-modeling techniques, mathematical models, dynamic, published in "International Journal of Systems Science 38, 4 (2007) 319-326" #12;language: Modelica [Tiller dynamic systems, e.g. the language Modelica, lead to handle differential algebraic equation systems

Paris-Sud XI, Université de

310

Dynamical systems method (DSM) for selfadjoint Mathematics Department, Kansas State University,  

E-Print Network [OSTI]

Dynamical systems method (DSM) for selfadjoint operators A.G. Ramm Mathematics Department, Kansas Let A be a selfadjoint linear operator in a Hilbert space H. The DSM (dynam- ical systems method systems method (DSM) (see [6], [7], [8], and the literature cited there). The DSM for solving equation (2

311

Interoperability between a dynamic reliability modeling and a Systems Engineering process Principles and Case Study  

E-Print Network [OSTI]

element for interoperability with the tools and activities required for a dynamic reliability assessment. The case study is the dynamic assessment of availability of a feed-water control system in a power plant steam generator, presented in previous articles. Keywords: Systems engineering, systems modeling, RAMS

Paris-Sud XI, Université de

312

Evaluating the impacts of dynamic reconfiguration on the QoS of running systems  

Science Journals Connector (OSTI)

A major challenge in dynamic reconfiguration of a running system is to understand in advance the impact on the system's Quality of Service (QoS). For some systems, any unexpected change to QoS is unacceptable. In others, the possibility of dissatisfaction ... Keywords: Dynamic reconfiguration, QoS assurance, Quantitative analysis, Software evolution, Software maintenance

Wei Li

2011-12-01T23:59:59.000Z

313

A Dynamical Network View of Lyon's Velo'v Shared Bicycle System  

E-Print Network [OSTI]

A Dynamical Network View of Lyon's V´elo'v Shared Bicycle System Pierre Borgnat1 , C´eline Robardet@gmail.com Corresponding Authors Summary. Community shared bicycle systems are an instance of public trans- portation's shared bicycle system, called V´elo'v, can be seen as a dynamical complex network, and how using commu

Robardet, Céline

314

Auxiliary ECR heating system for the gas dynamic trap  

SciTech Connect (OSTI)

Physics aspects of a new system for electron cyclotron resonance heating (ECRH) at the magnetic mirror device Gas Dynamic Trap (GDT, Budker Institute, Novosibirsk) are discussed. This system based on two 400 kW/54.5 GHz gyrotrons is aimed at increasing the electron temperature up to the range 250-350 eV for improved energy confinement of hot ions. The key physical issue of the GDT magnetic field topology is that conventional ECRH geometries are not accessible. The proposed solution is based on a peculiar effect of radiation trapping in inhomogeneous magnetized plasma. Under specific conditions, oblique launch of gyrotron radiation results in generation of right-hand-polarized (R) electromagnetic waves propagating with high N{sub Double-Vertical-Line Double-Vertical-Line} in the vicinity of the cyclotron resonance layer, which leads to effective single-pass absorption of the injected microwave power. In the present paper, we investigate numerically an optimized ECRH scenario based on the proposed mechanism of wave propagation and discuss the design of the ECRH system, which is currently under construction at the Budker Institute.

Shalashov, A. G.; Gospodchikov, E. D.; Smolyakova, O. B.; Malygin, V. I. [Institute of Applied Physics of the Russian Academy of Sciences, Ulyanova St. 46, 603950 Nizhny Novgorod (Russian Federation); Bagryansky, P. A. [Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Prospect 11, 630090 Novosibirsk (Russian Federation); Thumm, M. [Institut fuer Hochfrequenztechnik und Elektronik, Karlsruhe Institut fuer Technologie, Engesserstrasse 5, 76131 Karlsruhe (Germany)

2012-05-15T23:59:59.000Z

315

Ultrafast Structural Dynamics in Combustion Relevant Model Systems  

SciTech Connect (OSTI)

The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electron’s orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecule’s time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or e

Weber, Peter M. [Brown University

2014-03-31T23:59:59.000Z

316

Integrated system dynamics toolbox for water resources planning.  

SciTech Connect (OSTI)

Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

2006-12-01T23:59:59.000Z

317

NETL: Methane Hydrates - DOE/NETL Projects - Mapping Permafrost and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 DE-FE0010144 Goal The objective of this project is to develop and test a towed electromagnetic source and receiver system suitable for deployment from small coastal vessels to map near-surface electrical structure in shallow water. The system will be used to collect permafrost data in the shallow water of the U.S. Beaufort Inner Shelf at locations coincident with seismic lines collected by the U.S. Geological Survey (USGS). The electromagnetic data will be used to identify the geometry, extent, and physical properties of permafrost and any associated gas hydrate in order to provide a baseline for future studies of the effects of any climate-driven dissociation of

318

INVESTIGATION OF SYSTEM DYNAMICS APPLIED TO BUILDING SIMULATION FOR ANTI-TERRORISM RESOURCE ALLOCATION  

E-Print Network [OSTI]

INVESTIGATION OF SYSTEM DYNAMICS APPLIED TO BUILDING SIMULATION FOR ANTI-TERRORISM RESOURCE ............................................................................. 26 2.8 Terrorism-Resistant Design

Bank, Lawrence C.

319

Dynamic Scheduling of Hard RealTime Applications in Open System Environment  

E-Print Network [OSTI]

Dynamic Scheduling of Hard Real­Time Applications in Open System Environment Z. Deng J. W.­S. Liu J

320

International Cooperation in Methane Hydrates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil & Gas » Methane Hydrate » Oil & Gas » Methane Hydrate » International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program (DSDP) recovered the first subsea substantial methane hydrate deposits, which spurred methane hydrate research in the US and other countries. The successor programs, the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) sampled hydrate deposits off Oregon (ODP 204, 2002) and in the Cascadia Margin off Vancouver Island, Canada (ODP 146, 1992 and IODP 311, 2005). In the Atlantic Ocean off the US, ODP Leg 146 sampled hydrate deposits on the Blake Ridge and Carolina Rise in 1995. International cooperation helps scientists in the US and other countries

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Numerical Simulation Last Reviewed 3/8/2013 Numerical Simulation Last Reviewed 3/8/2013 Project Goal The goal of NETL's gas hydrate numerical simulation studies is to obtain pertinent, high-quality information on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with NETL's experimental and field studies programs to ensure the validity of input datasets and scenarios. Project Performers Brian Anderson, NETL/RUA Fellow (West Virginia University) Hema Siriwardane, NETL/RUA Fellow (West Virginia University) Eugene Myshakin, NETL/URS Project Locations National Energy Technology Laboratory, Pittsburgh PA, and Morgantown WV West Virginia University, Morgantown, WV Background Field-scale hydrate production tests rely heavily on reservoir-scale

322

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields DE-FC26-06NT42962 Goal The goal of this project is to characterize and quantify the postulated gas hydrate resource associated with the Barrow Gas Fields – three producing fields located in a permafrost region near Barrow, the North Slope's biggest population center and economic hub. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Performers North Slope Borough, Barrow, Alaska (North Slope Borough) 99723

323

Method for production of hydrocarbons from hydrates  

DOE Patents [OSTI]

A method of recovering natural gas entrapped in frozen subsurface gas hydrate formations in arctic regions. A hot supersaturated solution of CaCl.sub.2 or CaBr.sub.2, or a mixture thereof, is pumped under pressure down a wellbore and into a subsurface hydrate formation so as to hydrostatically fracture the formation. The CaCl.sub.2 /CaBr.sub.2 solution dissolves the solid hydrates and thereby releases the gas entrapped therein. Additionally, the solution contains a polymeric viscosifier, which operates to maintain in suspension finely divided crystalline CaCl.sub.2 /CaBr.sub.2 that precipitates from the supersaturated solution as it is cooled during injection into the formation.

McGuire, Patrick L. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

324

MethaneHydrateRD_FC.indd  

Broader source: Energy.gov (indexed) [DOE]

gas is an important energy gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy (FE) has played a major role in developing technologies to help tap new, unconventional sources of natural gas. FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and managed a high-quality research portf olio that has enabled signifi cant progress toward the (DOE) Program's long-term goals." The Nati onal Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety of forms in sediments within and below thick permafrost in Arctic regions, and in the

325

Universal Science of Complexity: Consistent Understanding of Ecological, Living and Intelligent System Dynamics  

E-Print Network [OSTI]

A major challenge of interdisciplinary description of complex system behaviour is whether real systems of higher complexity levels can be understood with at least the same degree of objective, "scientific" rigour and universality as "simple" systems of classical, Newtonian science paradigm. The problem is reduced to that of arbitrary, many-body interaction (unsolved in standard theory). Here we review its causally complete solution, the ensuing concept of complexity and applications. The discovered key properties of dynamic multivaluedness and entanglement give rise to a qualitatively new kind of mathematical structure providing the exact version of real system behaviour. The extended mathematics of complexity contains the truly universal definition of dynamic complexity, randomness (chaoticity), classification of all possible dynamic regimes, and the unifying principle of any system dynamics and evolution, the universal symmetry of complexity. Every real system has a non-zero (and actually high) value of unreduced dynamic complexity determining, in particular, "mysterious" behaviour of quantum systems and relativistic effects causally explained now as unified manifestations of complex interaction dynamics. The observed differences between various systems are due to different regimes and levels of their unreduced dynamic complexity. We outline applications of universal concept of dynamic complexity emphasising cases of "truly complex" systems from higher complexity levels (ecological and living systems, brain operation, intelligence and consciousness, autonomic information and communication systems) and show that the urgently needed progress in social and intellectual structure of civilisation inevitably involves qualitative transition to unreduced complexity understanding (we call it "revolution of complexity").

Andrei P. Kirilyuk

2014-05-26T23:59:59.000Z

326

Real Time Dynamic Wind Calculation for a Pressure Driven Wind System Criss Martin  

E-Print Network [OSTI]

.8 [Simulation and Model- ing]: Types of Simulation--Animation; Keywords: Dynamic wind, snow, real time animationReal Time Dynamic Wind Calculation for a Pressure Driven Wind System Criss Martin Dept. of Computer University of North Texas Abstract We describe real time dynamic wind calculation for a pressure driven wind

Parberry, Ian

327

Hydration of non-polar anti-parallel ?-sheets  

SciTech Connect (OSTI)

In this work we focus on anti-parallel ?-sheets to study hydration of side chains and polar groups of the backbone using all-atom molecular dynamics simulations. We show that: (i) water distribution around the backbone does not depend significantly on amino acid sequence, (ii) more water molecules are found around oxygen than nitrogen atoms of the backbone, and (iii) water molecules around nitrogen are highly localized in the planed formed by peptide backbones. To study hydration around side chains we note that anti-parallel ?-sheets exhibit two types of cross-strand pairing: Hydrogen-Bond (HB) and Non-Hydrogen-Bond (NHB) pairing. We show that distributions of water around alanine, leucine, and valine side chains are very different at HB compared to NHB faces. For alanine pairs, the space between side chains has a higher concentration of water if residues are located in the NHB face of the ?-sheet as opposed to the HB face. For leucine residues, the HB face is found to be dry while the space between side chains at the NHB face alternates between being occupied and non-occupied by water. Surprisingly, for valine residues the NHB face is dry, whereas the HB face is occupied by water. We postulate that these differences in water distribution are related to context dependent propensities observed for ?-sheets.

Urbic, Tomaz [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ašker?eva 5, SI-1000 Ljubljana (Slovenia)] [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ašker?eva 5, SI-1000 Ljubljana (Slovenia); Dias, Cristiano L., E-mail: cld@njit.edu [Physics Department, New Jersey Institute of Technology, Newark, New Jersey 07102-1982 (United States)

2014-04-28T23:59:59.000Z

328

Liquid-state polaron theory of the hydrated electron revisited  

E-Print Network [OSTI]

The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the DRL approximation to the "two-chain" equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.

James P. Donley; David R. Heine; Caleb A. Tormey; David T. Wu

2014-12-25T23:59:59.000Z

329

Versatile dynamic isotope power systems for the exploration of space. [Pu 238  

SciTech Connect (OSTI)

Dynamic, isotope-heated power systems are needed to carry out the exploration of space and are major elements identified by NASA for the Space Exploration Inititative (SEI). The Dynamic Isotope Power System (DIPS) Demonstration Program is aimed at establishing the advanced technology as well as the system designs and hardware for the SEI and other exploratory missions. Several conceptual designs of DIPS systems have been developed to provide compact, reliable, and long-lived power systems.

Johnson, R.A.; Stadnik, A.G. (Rockwell International Rocketdyne Division, 6633 Canoga Ave Canoga Park, CA (USA)); Cataldo, R. (National Aeronautics and Space Administration-Lewis Research Center, Cleveland, OH (USA)); Williams, R. (US Department of Energy, Germantown, MD (USA))

1991-01-05T23:59:59.000Z

330

Potential effects of gas hydrate on human welfare  

Science Journals Connector (OSTI)

...distribution of gas hydrate (Fig. 4). According...sediment) of methane hydrate is 10-fold greater...unconventional sources of gas, such as coal beds, tight sands, black shales...conventional natural gas. Given these attractive...that natural gas hydrate could serve as...

Keith A. Kvenvolden

1999-01-01T23:59:59.000Z

331

Measurement and modeling of hydrate dissociation: Final report  

SciTech Connect (OSTI)

Natural gas could be recovered from hydrate deposits by either of two basic methods (1) thermal stimulation in which an external source of energy is provided and (2) lowering of the equilibrium pressure (depressurization) in which the energy of the hydrate-containing and the surrounding media is utilized. In this work, we have measured and modeled mathematically the dissociation of hydrates in consolidated and unconsolidated porous media. Hydrates were formed in laboratory samples of Ottawa sand and Berea sandstone using miscible and non-miscible hydrate formers. A state-of-the-art, computer-controlled transient hot wire needle probe apparatus was developed for the measurements of thermal conductivity of pure hydrates and hydrate-containing porous media. We have measured the thermal conductivity of hydrate-containing Ottawa sand and Berea sandstone samples in order to determine the physical properties necessary for the mathematical models. We have also measured the electric resistivity of methane hydrate-containing Berea sandstone in order to verify the formation of the hydrate and to track the dissociation front during hydrate depressurization. Two mathematical models were developed for the process of hydrate dissociation in porous media using the two recovery schemes thermal stimulation and depressurization. 10 refs., 9 figs., 1 tab.

Sloan, E.D.; Selim, M.S.

1988-04-01T23:59:59.000Z

332

CO2 Hydrate Composite for Ocean Carbon Sequestration  

Science Journals Connector (OSTI)

CO2 Hydrate Composite for Ocean Carbon Sequestration ... Further studies are needed to address hydrate conversion efficiency, scale-up criteria, sequestration longevity, and impact on the ocean biota before in-situ production of sinking CO2 hydrate composite can be applied to oceanic CO2 storage and sequestration. ...

Sangyong Lee; Liyuan Liang; David Riestenberg; Olivia R. West; Costas Tsouris; Eric Adams

2003-07-18T23:59:59.000Z

333

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

334

NETL: Methane Hydrates - DOE/NETL Projects - Properties of Hydrate-Bearing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Properties of Hydrate-Bearing Sediments Subjected to Changing Gas Compositions Last Reviewed 12/11/2013 Properties of Hydrate-Bearing Sediments Subjected to Changing Gas Compositions Last Reviewed 12/11/2013 ESD12-011 Goal The objective of this research is to measure physical, chemical, mechanical, and hydrologic property changes in methane hydrate-bearing sediments subjected to injection of carbon dioxide and nitrogen. Performer Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720 Background A number of studies have investigated the impact of injecting carbon dioxide (CO2) and CO2-nitrogen (N2) mixtures into methane hydrate for the purpose of sequestering CO2 and releasing methane (CH4), and review articles have been published summarizing the literature. Most of these studies have investigated the fundamental physical/chemical nature of the exchange of CO2 and/or N2 with CH4 in the clathrate. These studies have

335

Research on propeller dynamic load simulation system of electric propulsion ship  

Science Journals Connector (OSTI)

A dynamic marine propeller simulation system was developed, which is ... requirement of theory research and engineering design of marine electric propulsion system. By applying an actual ship parameter...J? ? K ...

Hui Huang ? ?; Ai-di Shen ???; Jian-xin Chu ???

2013-04-01T23:59:59.000Z

336

Dynamics Visual Servo Control System for the Electric Buses Battery Replacement Robot Following the Target  

Science Journals Connector (OSTI)

This paper designs a robotic system based on dynamics visual servo control system for the electric buses battery replacement robot following the target in order to meet the development of the domestic electric car and to adapt to changes in the height ... Keywords: battery replacement robot, following the target, multi-axis motion control technology, dynamics visual servo, PID control

Qi Hui; Tan Lin

2012-04-01T23:59:59.000Z

337

Operator renewal theory and mixing rates for dynamical systems with infinite measure  

E-Print Network [OSTI]

Operator renewal theory and mixing rates for dynamical systems with infinite measure Ian Melbourne renewal sequences in the context of infinite ergodic theory. For large classes of dynamical systems technique, operator renewal theory, to obtain precise asymptotics and hence sharp mixing rates

338

Convergence of penalty and augmented Lagrangian formulations in the dynamic analysis of nonlinear multibody systems  

E-Print Network [OSTI]

AND RECOMMENDATIONS. . . , . . . . . . . . . , . . . . . . . . REFERENCES. . APPENDIX A: CLASSICAL MECHANICS BACKGROUND. . . . . . . . . . . . . . . . . . . . . . . VITA. LIST OF FIGURES Figure Page 1. 1 Formulations for the Dynamic Analysis of Multibody Systems... to the dynamic analysis of multibody systems to overcome some of the numerical difficulties associated with certain penalty methods3. Figure 1. 1 illustrates that the augmented Lagrangian formulation is a combination of the penalty and Lagrange multiplier...

Bustamante, David Anthony

2012-06-07T23:59:59.000Z

339

The comparison of four dynamic systems-based software packages: Translation and sensitivity analysis  

E-Print Network [OSTI]

The comparison of four dynamic systems-based software packages: Translation and sensitivity Wetness Energy Balance (SWEB) model for canopy surface wetness has been translated into four software pack of the model. Ã? 2005 Elsevier Ltd. All rights reserved. Keywords: Model comparison; Dynamic simulation; System

Vermont, University of

340

Proc. Amer. Math. Soc., 134, N4, (2006), 10591063. Dynamical systems method (DSM) for unbounded  

E-Print Network [OSTI]

Proc. Amer. Math. Soc., 134, N4, (2006), 1059­1063. 1 #12; Dynamical systems method (DSM in a real Hilbert space H , a generator of C 0 semigroup, and g : H # H be a C 2 loc nonlinear map. The DSM this equation by the dynamical systems method (DSM), which allows one also to develop numerical methods

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Aware Dynamic Voltage and Frequency Selection for Real-Time Systems with Energy Harvesting  

E-Print Network [OSTI]

Energy Aware Dynamic Voltage and Frequency Selection for Real-Time Systems with Energy Harvesting}@binghamton.edu Abstract In this paper, an energy aware dynamic voltage and frequency selection (EA-DVFS) algorithm energy and the harvested energy in a future duration. Specifically, if the system has sufficient energy

Qiu, Qinru

342

ON DYNAMICAL SYSTEM THEORY APPLICATION TO EARTH-SATELLITE PITCH AUTHOR: Emmanuel Osei-Frimpong -KNUST  

E-Print Network [OSTI]

ON DYNAMICAL SYSTEM THEORY APPLICATION TO EARTH-SATELLITE PITCH AUTHOR: Emmanuel Osei the dynamics of Pitch Attitude librations of an orbiting earth-satellite is discussed. This highly non linear equation of motion of the Pitch Attitude librations is transformed into a system of equations in terms

Assani, Idris

343

Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems Valerio Lucarini,  

E-Print Network [OSTI]

Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems Valerio Lucarini the geometrical properties of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto

344

Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea  

Science Journals Connector (OSTI)

Abstract Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the “gas hydrate petroleum system” has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.

Xiujuan Wang; Timothy S. Collett; Myung W. Lee; Shengxiong Yang; Yiqun Guo; Shiguo Wu

2014-01-01T23:59:59.000Z

345

Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates  

Science Journals Connector (OSTI)

The storage capacity of hydrogen in the tetrahydrothiophene and furan hydrates was investigated by means of pressure–volume–temperature measurement. The hydrogen–absorption rate of tetrahydrothiophene and furan hydrates is much larger than that of tetrahydrofuran hydrate in spite of same crystal structure (structure-II). The storage amount of hydrogen at 275.1 K is about 1.2 mol (hydrogen)/mol (tetrahydrothiophene or furan hydrate) (?0.6 mass%) at 41.5 MPa, which is coincident with that of tetrahydrofuran hydrate.

Takaaki Tsuda; Kyohei Ogata; Shunsuke Hashimoto; Takeshi Sugahara; Masato Moritoki; Kazunari Ohgaki

2009-01-01T23:59:59.000Z

346

Detection of gas hydrates by the measurement of instantaneous temperature  

E-Print Network [OSTI]

. Changes, either in temperature or pressure, can cause the hydrate to dissociate. In situ gas hydrates were discovered in the permafrost region of the Soviet Union and have been typically The Journal of Geotechnical En ineerin of the American Society... to detect hydrates. Both of these methods, illustrated in Fig. 6, may not detect hydrates in the form of nodules or thin layers. Hence it is necessary to develop a local method to detect Ocean Floor BASE QE GAS HYDRATE PIG. 5. Bottom Simulating...

Dinakaran, Srikanth

2012-06-07T23:59:59.000Z

347

Product systems of Hilbert modules and their applications in quantum dynamics  

E-Print Network [OSTI]

Product systems of Hilbert modules and their applications in quantum dynamics Michael Skeide Markov adjointable operators on a Hilbert B­module E, and the related product systems consist of correspon- dences systems. But unlike units in Arve- son systems (that is, product systems of Hilbert spaces), units

Schürmann, Michael

348

Methane Hydrates - The National R&D Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program The National Methane Hydrates R&D Program Welcome to the information portal for the National Methane Hydrate R&D Program. Over the past eight years, research carried out under this program has resulted in significant advances in our understanding of methane hydrates, their role in nature, and their potential as a future energy resource. This success is largely due to an unprecedented level of cooperation between federal agencies, industry, national laboratories, and academic institutions. For a quick introduction to methane hydrate and its potential as a fuel source, please read the 2011 Methane Hydrates Primer. Information on other elements of the program can be found under the remaining Key Links. Read More.

349

Methane Hydrates and Climate Change | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrates and Climate Change Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater sediments, the ocean or atmosphere. DOE is conducting research to understand the mechanisms and volumes involved in these little-studied processes. DOE environmental and climate change research projects related to Arctic methane hydrate deposits include: Characterization of Methane Degradation and Methane-Degrading

350

Comparative Assessment of Advanced Gay Hydrate Production Methods  

SciTech Connect (OSTI)

Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

M. D. White; B. P. McGrail; S. K. Wurstner

2009-06-30T23:59:59.000Z

351

Fiber Optic Sensing Technology for Detecting Gas Hydrate Formation and Decomposition  

SciTech Connect (OSTI)

A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 L) pressure vessel providing high spatial resolution, time resolved, 3-D measurement of hybrid temperature-strain (TS) values within experimental sediment gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data is visualized as a 'movie' of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Processing Simulator (SPS) at Oak Ridge National Laboratory show clear indications of hydrate formation and dissociation events at expected P-T conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

Rawn, Claudia J [ORNL; Leeman, John R [University of Oklahoma, Norman; Ulrich, Shannon M [ORNL; Alford, Jonathan E [ORNL; Phelps, Tommy Joe [ORNL; Madden, Megan Elwood [University of Oklahoma, Norman

2011-01-01T23:59:59.000Z

352

Neutron scattering evidence of a boson peak in protein hydration water Alessandro Paciaroni,1  

E-Print Network [OSTI]

Neutron scattering evidence of a boson peak in protein hydration water Alessandro Paciaroni,1 Anna Viterbo, Italy Received 24 February 1999 Measurement of the low temperature neutron excess of scattering, has been detected by neutron scattering and Raman spectros- copy in a large variety of glassy systems

Tuscia, Università Degli Studi Della

353

Stability analysis and controller synthesis for hybrid dynamical systems  

Science Journals Connector (OSTI)

...Yovine1995The algorithmic analysis of hybrid systemsTheoret...systemsHybrid systems:computation...controlLecture Notes in Computer Science, no...systemsHybrid systems:computation...controlLecture Notes in Computer Science, no...systemsIEEE Control Systems Mag. 28 3673...Iung2002Stability analysis and control synthesis...

2010-01-01T23:59:59.000Z

354

Attractor Spaces as Modules: A Semi-Eliminative Reduction of Symbolic AI to Dynamic Systems Theory  

Science Journals Connector (OSTI)

I propose a semi-eliminative reduction of Fodor's concept of module to the concept of attractor basin which is used in Cognitive Dynamic Systems Theory (DST). I show how attractor basins perform the same explanatory function as modules in several DST ... Keywords: Central Pattern Generator, Dynamic Systems Theory, Fodor, GOFAI, Kelso, Mezernich and Kaas, Port, Thelen and Smith, Van Gelder, Walter Freeman, animal locomotion, attractor spaces, bifurcations, collective variable, connectionism, distributed processing, invariant sets, modularity, orbit, symbolic systems hypothesis

Teed Rockwell

2005-02-01T23:59:59.000Z

355

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing operations. Annual report, January 1--December 31, 1992  

SciTech Connect (OSTI)

Natural gas hydrates are solid crystalline compounds which form when molecules smaller than n-butane contact molecules of water at elevated pressures and reduced temperatures, both above and below the ice point. Because these crystalline compounds plug flow channels, they are undesirable. In this project the authors proposed an alternate approach of controlling hydrate formation by preventing hydrate growth into a sizeable mass which could block a flow channel. The authors call this new technique kinetic inhibition, because while it allows the system to exist in the hydrate domain, it prevents the kinetic agglomeration of small hydrate crystals to the point of pluggage of a flow channel. In order to investigate the kinetic means of inhibiting hydrate formation, they held two consortium meetings, on June 1, 1990 and on August 31, 1990. At subsequent meetings, the authors determined the following four stages of the project, necessary to reach the goal of determining a new hydrate field inhibitor: (1) a rapid screening method was to be determined for testing the hydrate kinetic formation period of many surfactants and polymer candidates (both individually and combined), the present report presents the success of two screening apparatuses: a multi-reactor apparatus which is capable of rapid, high volume screening, and the backup screening method--a viscometer for testing with gas at high pressure; (2) the construction of two high, constant pressure cells were to experimentally confirm the success of the chemicals in the rapid screening apparatus; (3) in the third phase of the work, Exxon volunteered to evaluate the performance of the best chemicals from the previous two stages in their 4 inch I.D. Multiphase flow loop in Houston; (4) in the final phase of the work, the intention was to take the successful kinetic inhibition chemicals from the previous three stages and then test them in the field in gathering lines and wells from member companies.

NONE

1992-12-31T23:59:59.000Z

356

Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel  

Science Journals Connector (OSTI)

The performance of two gas/liquid contact modes was evaluated in relation to the rate of gas hydrate formation. Hydrate formation experiments were conducted for several gas mixtures relevant to natural gas hydrate formation in the earth (CH4, CH4/C3H8, CH4/C2H6 and CH4/C2H6/C3H8) and two CO2 capture and storage (CO2, CO2/H2/C3H8). One set of experiments was conducted in a bed of silica sand, saturated with water (fixed fed column) while the other experiment was conducted in a stirred vessel for each gas/gas mixture. Both sets of experiments were conducted at a constant temperature. The rate of hydrate formation is customarily correlated with the rate of gas consumption. The results show that the rate of hydrate formation in the fixed bed column is significantly greater and thereby resulted in a higher percent of water conversion to hydrate in lesser reaction time for all the systems studied.

Praveen Linga; Nagu Daraboina; John A. Ripmeester; Peter Englezos

2012-01-01T23:59:59.000Z

357

Enterprise design for dynamic complexity : architecting & engineering organizations using system & structural dynamics  

E-Print Network [OSTI]

As the business world is neither linear nor static, the mastery of its "chaotic" nonlinear dynamics lies at the heart of finding high-leverage policies that return uncommon benefits for marginal costs. Today's global ...

Piepenbrock, Theodore F. (Theodore Frederick), 1965-

2004-01-01T23:59:59.000Z

358

Evidence for natural gas hydrate occurrences in Colombia Basin  

SciTech Connect (OSTI)

Multichannel and selected single-channel seismic lines of the continental margin sediments of the Colombia basin display compelling evidence for large accumulations of natural gas hydrate. Seismic bottom simulating reflectors (BSRs), interpreted to mark the base of the hydrate stability zone, are pronounced and very widespread along the entire Panama-Colombia lower continental slope. BSRs have also been identified at two locations on the abyssal plain. Water depths for these suspected hydrate occurrences range from 900 to 4000 m. Although no gas hydrate samples have been recovered from this area, biogenic methane is abundant in Pliocene turbidites underlying the abyssal plain. More deeply buried rocks beneath the abyssal plain are thermally mature. Thermogenic gas from these rocks may migrate upward along structural pathways into the hydrate stability zone and form hydrate. Impermeable hydrate layers may form caps over large accumulations of free gas, accounting for the very well-defined BSRs in the area. The abyssal plain and the deformed continental margin hold the highest potential for major economic accumulations of gas hydrate in the basin. The extensive continuity of BSRs, relatively shallow water depths, and promixity to onshore production facilities render the marginal deformed belt sediments the most favorable target for future economic development of the gas hydrate resource within the Colombia basin. The widespread evidence of gas hydrates in the Colombia basin suggests a high potential for conventional hydrocarbon deposits offshore of Panama and Colombia.

Finley, P.D.; Krason, J.; Dominic, K.

1987-05-01T23:59:59.000Z

359

NETL: Methane Hydrates - ANS Research Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Alaska North Slope Stratigraphic Test Well The Alaska North Slope Stratigraphic Test Well image showing Donyon Rig Photo courtesy Doyon Drilling Inc Project Background Participants Status Report Maps of Research Area Science Plan Photo Gallery Well log Data From BP-DOE-US "Mount Elbert" Test Is Now Available. Digital well log data acquired at the February 2007 gas hydrates test well at Milne Point, Alaska are now available. Data include Gamma ray, neutron porosity, density porosity, three-dimensional high resolution resistivity, acoustics including compressional- and shear-wave data and nuclear magnetic resonance. A listing of the available data, as well as instructions on obtaining the data, can be found on the NETL Gas Hydrates Website . The drilling of the “Mt. Elbert prospect” within the Milne Point Unit

360

NETL: Methane Hydrates - ANS Research Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Well - Location Maps Well - Location Maps Maps of Prospect The Mt. Elbert prospect is located within the Milne Point Unit on Alaska’s North Slope. The Milne Point field, one of a number of distinct oil fields on the North Slope, extends offshore into the Beaufort Sea and is situated north of the large Kuparuk Field and northwest of the well known Prudhoe Bay Field. Map showing project location Map showing Milne Point Unit on Alaska’s North Slope The work done under the “Alaska North Slope Gas Hydrate Reservoir Characterization” project has resulted in a characterization of two large prospective methane hydrate accumulations (or trends); the Eileen Trend, which underlies but extends well beyond the Milne Point field, and the Tarn Trend to the west of the Kuparuk Field.

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Detection and Production of Methane Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42960 Quarterly Progress Report Reporting Period: April-June 2007 Detection and Production of Methane Hydrate Submitted by: Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2007 Office of Fossil Energy Detection and Production of Methane Hydrate Quarterly Progress Report Reporting Period: April-June 2007 Prepared by: George Hirasaki Rice University August 2007 CONTRACT NO. DE-FC26-06NT42960 Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; Fax: 713-348-5478; Email: gjh@rice.edu

362

A statistical mechanical description of biomolecular hydration  

SciTech Connect (OSTI)

We present an efficient and accurate theoretical description of the structural hydration of biological macromolecules. The hydration of molecules of almost arbitrary size (tRNA, antibody-antigen complexes, photosynthetic reaction centre) can be studied in solution and in the crystal environment. The biomolecular structure obtained from x-ray crystallography, NMR, or modeling is required as input information. The structural arrangement of water molecules near a biomolecular surface is represented by the local water density analogous to the corresponding electron density in an x-ray diffraction experiment. The water-density distribution is approximated in terms of two- and three-particle correlation functions of solute atoms with water using a potentials-of-mean-force expansion.

NONE

1996-02-01T23:59:59.000Z

363

SIAM conference on applications of dynamical systems. Abstracts and author index  

SciTech Connect (OSTI)

A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

Not Available

1992-12-31T23:59:59.000Z

364

Nonlinear reduction of high-dimensional dynamical systems via neural networks  

Science Journals Connector (OSTI)

A technique for empirically determining optimal coordinates for modeling a dynamical system is presented. The methodology may be viewed as a nonlinear extension of the Karhunen-Loève procedure and is implemented via an autoassociative neural network. Given a high-dimensional system of differential equations which model a dynamical system asymptotically residing on a stable attractor, the task of the network is to compute a reembedding of the attractor and the dynamics into an ambient space which reflects the intrinsic dimensionality of the problem. The method is demonstrated on the unforced Van der Pol oscillator, the forced Van der Pol, and the Kuramoto-Sivashinsky equation.

Michael Kirby and Rick Miranda

1994-03-21T23:59:59.000Z

365

A test for a conjecture on the nature of attractors for smooth dynamical systems  

SciTech Connect (OSTI)

Dynamics arising persistently in smooth dynamical systems ranges from regular dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov, uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The latter include many classical examples such as Lorenz and Hénon-like attractors and enjoy strong statistical properties. It is natural to conjecture (or at least hope) that most dynamical systems fall into these two extreme situations. We describe a numerical test for such a conjecture/hope and apply this to the logistic map where the conjecture holds by a theorem of Lyubich, and to the 40-dimensional Lorenz-96 system where there is no rigorous theory. The numerical outcome is almost identical for both (except for the amount of data required) and provides evidence for the validity of the conjecture.

Gottwald, Georg A., E-mail: georg.gottwald@sydney.edu.au [School of Mathematics and Statistics, University of Sydney, Sydney 2006 NSW (Australia); Melbourne, Ian, E-mail: I.Melbourne@warwick.ac.uk [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom)] [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom)

2014-06-15T23:59:59.000Z

366

Dynamic analysis and design of air spring mounting system for marine propulsion system  

Science Journals Connector (OSTI)

Abstract Marine propulsion unit (MPU) is one of the dominant vibration and noise sources onboard ship. Its vibration can be attenuated effectively by isolating MPU with low-frequency mounting system. But this is difficult to implement due to the stringent requirement of MPU alignment with the propulsion shafting. In this paper a novel air spring mounting system (ASMS) for propulsion system is proposed consisting of air spring subsystem, alignment control subsystem and safety protection subsystem. The load distribution optimization method and dynamic model of ASMS are presented. The factors that affect system stability and natural frequencies are analyzed, as well as the design measures to enhance system performance. A theoretical model is presented to estimate the isolation effect of ASMS. The monitoring model of alignment between MPU and propulsion shafting is established, followed by the alignment control algorithm and converge rule which assures the fast and uniform convergence of both air springs? load distribution and alignment control process. Safety protection mechanism is designed to ensure that the MPU can operate safely in case of ASMS failure or other extreme circumstances. A scaled ASMS prototype is manufactured and tested on a special experimental setup. Experimental results validate the effectiveness of theoretical models and show that the performance of ASMS satisfies the operation requirements of MPU.

Lin He; Wei Xu; Wenjun Bu; Liang Shi

2014-01-01T23:59:59.000Z

367

Adaptive and Dynamic Ant Colony Search Algorithm for Optimal Distribution Systems Reinforcement Strategy  

Science Journals Connector (OSTI)

The metaheuristic technique of Ant Colony Search has been revised here in order to deal with dynamic search optimization problems having a large search space and mixed integer variables. The problem to which it has been applied is an electrical distribution ... Keywords: ant colony search, dynamic optimization problems, electrical distribution systems

S. Favuzza; G. Graditi; E. Riva Sanseverino

2006-02-01T23:59:59.000Z

368

Impact of fraud on the mean-field dynamics of cooperative social systems Torsten Rhl,1  

E-Print Network [OSTI]

Impact of fraud on the mean-field dynamics of cooperative social systems Torsten Röhl,1 Claudia in the past. We analyze the impact of fake reputations or fraud on the dynamics of reputation and can even be enhanced by them. We conclude that fraud per se does not necessarily have a detrimental

Traulsen, Arne

369

Operator renewal theory and mixing rates for dynamical systems with in nite measure  

E-Print Network [OSTI]

Operator renewal theory and mixing rates for dynamical systems with in#12;nite measure Ian of operator renewal sequences in the context of in#12;nite ergodic theory. For large classes of dynamical for mixing rates. Sarig [37] introduced a powerful new technique, operator renewal theory, to obtain precise

370

8th International IFAC Symposium on Dynamics and Control of Process Systems  

E-Print Network [OSTI]

-of-freedom, Dynamic, Economic, Plantwide, Optimization. 1. INTRODUCTION Due to globalisation the process industry;According to White (1999) economic process optimization dates back almost 50 years. The current state8th International IFAC Symposium on Dynamics and Control of Process Systems DEGREES OF FREEDOM

Van den Hof, Paul

371

Dynamic online optimization of a house heating system in a fluctuating energy price  

E-Print Network [OSTI]

Dynamic online optimization of a house heating system in a fluctuating energy price scenario University of Science and Technology (NTNU), Trondheim, Norway Abstract: We consider dynamic optimization of the energy consumption in a building with energy storage capabilities. The goal is to find optimal policies

Skogestad, Sigurd

372

Microfluidic systems for single DNA dynamics Danielle J. Mai,a  

E-Print Network [OSTI]

Microfluidic systems for single DNA dynamics Danielle J. Mai,a Christopher Brockmana and Charles M in microfluidics have enabled the molecular-level study of polymer dynamics using single DNA chains. Single polymer. Microfluidic devices have enabled the precise control of model flow fields to study the non

Schroeder, Charles

373

Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System  

E-Print Network [OSTI]

Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel

Victoria, University of

374

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

375

Analysis and synthesis techniques of nonlinear dynamical systems with applications to diagnostic of controlled thermonuclear fusion reactors.  

E-Print Network [OSTI]

??Nonlinear dynamical systems are of wide interest to engineers, physicists and mathematicians, and this is due to the fact that most of physical systems in… (more)

Pisano, Fabio

2013-01-01T23:59:59.000Z

376

A dynamic slack management technique for real-time distributed embedded systems  

E-Print Network [OSTI]

This work presents a novel slack management technique, the Service Rate Based Slack Distribution Technique, for dynamic real-time distributed embedded systems targeting the reduction and management of energy consumption. Energy minimization...

Acharya, Subrata

2006-04-12T23:59:59.000Z

377

Networking technology adoption : system dynamics modeling of fiber-to-the-home  

E-Print Network [OSTI]

A system dynamics model is developed and run to study the adoption of fiber-to-the-home as a residential broadband technology. Communities that currently do not have broadband in the United States are modeled. This case ...

Kelic, Andjelka, 1972-

2005-01-01T23:59:59.000Z

378

Dynamic Exergy Analysis of a Solar Ejector Refrigeration System with Hot Water Storage Tank  

Science Journals Connector (OSTI)

A dynamic model is proposed to use in investigating the exergy analysis of a solar ejector refrigeration system using R141, for office ... in Tehran. Classical hourly outdoor temperature and solar radiation model...

Hooman Golchoobian; Ali Behbahaninia…

2014-01-01T23:59:59.000Z

379

Dynamic interaction analysis of a LIM train and elevated bridge system  

Science Journals Connector (OSTI)

A three-dimensional dynamic interaction model is developed for a LIM (linear induction motor) train and elevated bridge system, which is composed of a LIM-driven vehicle submodel and a finite element bridge su...

H. Xia; W. W. Guo; C. Y. Xia; Y. -L. Pi…

2009-12-01T23:59:59.000Z

380

Model predictive controller design for the dynamic positioning system of a semi-submersible platform  

Science Journals Connector (OSTI)

This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-frequ...

Hongli Chen; Lei Wan; Fang Wang…

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Multiple Fault Diagnosis in Electrical Power Systems with Dynamic Load Changes Using Soft Computing  

Science Journals Connector (OSTI)

Power systems monitoring is particularly challenging due to the presence of dynamic load changes in normal operation mode of network ... , noisy information and lack or excess of data. In this domain, the need to...

Juan Pablo Nieto González

2013-01-01T23:59:59.000Z

382

15.874 / 15.871 System Dynamics for Business Policy, Fall 2003  

E-Print Network [OSTI]

15.874 and 15.871 provide an introduction to system dynamics modeling for the analysis of business policy and strategy. Students learn to visualize a business organization in terms of the structures and policies that create ...

Morrison, J. Bradley

383

Dynamical systems in nanophotonics: From energy efficient modulators to light forces and optomechanics  

E-Print Network [OSTI]

We demonstrate novel device concepts based on rigorous design of the dynamics of resonant nanophotonic systems, such as dispersionless resonant switches and energy-efficient mo-dulator architectures, slow-light cells, and ...

Kaertner, Franz X.

384

History of the Development of Low Dosage Hydrate Inhibitors  

Science Journals Connector (OSTI)

Low dosage hydrate inhibitors (LDHIs) are a recent and alternative technology to thermodynamic inhibitors for preventing gas hydrates from plugging oil and gas production wells and pipelines. ... A wide range of OPEX savings, possible extended field lifetime and multi-million dollar CAPEX savings, are economic drivers for choosing LDHIs instead of other hydrate prevention methods.2 ... A second apparatus is the ball-stop rig or rocker rig. ...

Malcolm A. Kelland

2006-04-01T23:59:59.000Z

385

Detection and evaluation methods for in-situ gas hydrates  

SciTech Connect (OSTI)

With the increased interest in naturally occuring hydrates, the need for improved detection and evaluation methods has also increased. In this paper, logging of hydrates is discussed and selected logs from four arctic wells are examined. A new procedure based on temperature log analysis is described. The concept of a downhole heater for use with drill stem testing is also described for testing and evaluation of hydrate intervals. 12 refs.

Goodman, M.A.; Guissani, A.P.; Alger, R.P.

1982-01-01T23:59:59.000Z

386

Hydration of Clays at the Molecular Scale: The Promising Perspective of Classical Density Functional Theory  

E-Print Network [OSTI]

We report here how the hydration of complex surfaces can be efficiently studied thanks to recent advances in classical molecular density functional theory. This is illustrated on the example of the pyrophylite clay. After presenting the most recent advances, we show that the strength of this implicit method is that (i) it is in quantitative or semi-quantitative agreement with reference all-atoms simulations (molecular dynamics here) for both the solvation structure and energetics, and that (ii) the computational cost is two to three orders of magnitude less than in explicit methods. The method remains imperfect, in that it locally overestimates the polarization of water close to hydrophylic sites of the clay. The high numerical efficiency of the method is illustrated and exploited to carry a systematic study of the electrostatic and van der Waals components of the surface-solvant interactions within the most popular force field for clays, CLAYFF. Hydration structure and energetics are found to weakly depend u...

Jeanmairet, Guillaume; Levesque, Maximilien; Rotenberg, Benjamin; Borgis, Daniel

2014-01-01T23:59:59.000Z

387

Competitive Dynamics in Electronic Networks: A Model and the Case of Interorganizational Systems  

Science Journals Connector (OSTI)

Interorganizational systems (IOS)-distributed computing systems that support processes shared by two or more firms-have become fundamental to business operations, opening avenues to unprecedented collaborative linkages, even among competitors, and to ... Keywords: Co-Opetition Network, Competitive Action, Competitive Dynamics, Interorganizational Systems, Ios, Network Structure, Social Networks

Lei Chi; Clyde Holsapple; Cidambi Srinivasan

2007-04-01T23:59:59.000Z

388

Climate Dynamics Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System  

E-Print Network [OSTI]

-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global of the Marine Low Cloud Simulation in the NCAR1 Community Earth System Model (CESM) and the NCEP Global2Climate Dynamics Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System

Bretherton, Chris

389

Evaluation of lime-fly ash stabilized bases and subgrades using static and dynamic deflection systems  

E-Print Network [OSTI]

EVALUATION OF LIME-FLY ASH STABILIZED BASFS AND SUBGRADES USING STATIC AND DYNAMIC DEFLECTION SYSTEMS A Thesis GARY W. RABA Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1982 Major Subject: Civil Engineering EVALUATION OF LIME-FLY ASH STABILIZED BASES AND SUBGRADES USING STATIC AND DYNAMIC DEFLECTION SYSTEMS A Thesis by Gary Nl. Raba Approved as to style and content by: !Chairman...

Raba, Gary W.

1982-01-01T23:59:59.000Z

390

Strategies for gas production from oceanic Class 3 hydrate accumulations  

E-Print Network [OSTI]

Mexico,” Fire In The Ice: NETL Methane Hydrates R&D Programand Kelly Boswell of DOE-NETL for making the Tigershark data

Moridis, George J.; Reagan, Matthew T.

2007-01-01T23:59:59.000Z

391

Distributed Dynamics of Systems with Closed Kinematic Chains  

E-Print Network [OSTI]

) ­ Orin and Walker (1982): Efficient dynamic computer simulation of robotic mechanisms ­ Featherstone block predictor-corrector methods of ODE's Chain-level distribution ­ McMillan, Sadayappan and Orin Two NASA robots carrying a metal beam (a) (b) Figure 2.10: ARNOLD, MDOF vehicle with compliant linkage

Krovi, Venkat

392

The role of environmental correlations in the non-Markovian dynamics of a spin system  

E-Print Network [OSTI]

We put forward a framework to study the dynamics of a chain of interacting quantum particles affected by individual or collective multi-mode environment, focussing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environmental system magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as entanglement and purity that are not observed under a separable multi-mode environment. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.

Salvatore Lorenzo; Francesco Plastina; Mauro Paternostro

2011-06-27T23:59:59.000Z

393

Car?Parrinello Molecular Dynamics Study of Anharmonic Systems:? A Mannich Base in Solution  

Science Journals Connector (OSTI)

Car?Parrinello Molecular Dynamics Study of Anharmonic Systems:? A Mannich Base in Solution ... Proton dynamics play a crucial role in many chemical, biochemical, and industrial processes1-4 because most of the properties of the water, which is the solvent in these systems, can be traced to intermolecular hydrogen bonds. ... However, there is also a fundamental reason for our choice of the atomic velocity power spectrum method; only in this way can we capture the dynamic nature of processes at the molecular level. ...

Aneta Jezierska; Jaros?aw Panek; Urban Borštnik; Janez Mavri; Dušanka Janeži?

2007-04-21T23:59:59.000Z

394

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico  

E-Print Network [OSTI]

Documented Example of Gas Hydrate Saturated Sand in the Gulfthat observed for gas hydrate-bearing sand sediments in thethan those for the gas hydrate-bearing sand formations in

Boswell, R.D.

2010-01-01T23:59:59.000Z

395

Feasibility of monitoring gas hydrate production with time-lapse VSP  

E-Print Network [OSTI]

Documented Example of Gas Hydrate Saturated Sand in the Gulfmoduli for the sand/gas/water/hydrate mixture with theK eff for the sand/gas/aqueous/hydrate mixture is calculated

Kowalsky, M.B.

2010-01-01T23:59:59.000Z

396

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network [OSTI]

conductivity of gas hydrate-bearing sand. J. Geophys. Res.seal overlying gas hydrate-bearing sand reservoirs togeologic data on gas-hydrate-bearing sand reservoirs in the

Moridis, G.J.

2011-01-01T23:59:59.000Z

397

Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization  

E-Print Network [OSTI]

documented example of gas hydrate saturated sand in the Gulfa volume of water to gas hydrate in sands at these pressureseffects of hydrate redistribution in cemented, gas-rich sand

Waite, W.F.

2008-01-01T23:59:59.000Z

398

Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting...  

Broader source: Energy.gov (indexed) [DOE]

June 6-7 2013 Methane Hydrates Advisory Meeting Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting ConocoPhillips test results and data analysis Methane Hydrate...

399

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network [OSTI]

hydrates, Fire In The Ice, NETL Methane Hydrates R&D ProgramCanada, Fire In The Ice, NETL Methane Hydrates R&D Programat MMS, Fire In The Ice, NETL Methane Hydrates R&D Program

Moridis, George J.

2008-01-01T23:59:59.000Z

400

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

E-Print Network [OSTI]

Gas hydrate formation in a variable volume bed of silica sandamount of sand, gas, and water. Although methane hydrate has

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CO{sub 2} HYDRATE PROCESS FOR GAS SEPARATION  

SciTech Connect (OSTI)

Modifications were implemented to the hydrogen flow test rig per safety review comments, and the apparatus was tested for leaks. Tests were then done using Helium/CO{sub 2} mixtures to re-verify performance prior to hydrogen testing. It was discovered that hydrate formation was more difficult to initiate, and new initiation methods were developed to improve the tests. Delivery of ETM hardware continued and buildup of the ETM system continued, the ETM is now mechanically complete. The STU (pilot plant) site selection process was resumed because Tennessee Eastman declined to participate in the program. Two potential sites were visited: The Global Energy/Conoco-Phillips Wabash River Plant, and the Tampa Electric Polk Power Plant.

G. Deppe; R. Currier; D. Spencer

2004-01-01T23:59:59.000Z

402

Biosystem Dynamics & Design | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biosystem Dynamics & Design Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems Biosystem Dynamics &...

403

The dynamics and kinematics of bio-in swimming systems  

E-Print Network [OSTI]

The motion of biological systems in fluids is inherently complex, even for the simplest organisms. In this thesis, we develop methods of analyzing locomotion of both mechanical and biological systems with the aim of ...

Burton, Lisa Janelle

2013-01-01T23:59:59.000Z

404

Modeling Equilibrium Dynamics of the Benguela Current System  

Science Journals Connector (OSTI)

The Regional Ocean Modeling System (ROMS) is used to systematically investigate equilibrium conditions and seasonal variations of the Benguela system at a resolution of 9 km, including both the large-scale offshore flow regime and the ...

Jennifer Veitch; Pierrick Penven; Frank Shillington

2010-09-01T23:59:59.000Z

405

Diversity in evolving systems : scaling and dynamics of genealogical trees  

E-Print Network [OSTI]

Diversity is a fundamental property of all evolving systems. This thesis examines spatial and temporal patterns of diversity. The systems I will study consist of a population of individuals, each with a potentially unique ...

Rauch, Erik, 1974-

2004-01-01T23:59:59.000Z

406

Dynamic modeling of tubular SOFC for marine power system  

Science Journals Connector (OSTI)

Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system. This paper emphasizes on the ... SOFC power system and its performance based upon marine oper...

Bao-gang San; Pei-lin Zhou; David Clealand

2010-09-01T23:59:59.000Z

407

Macromolecular hydration compared with preferential hydration and their role on macromolecule-osmolyte coupled diffusionwz  

E-Print Network [OSTI]

to solute hydration and size ratio and is not complicated by other factors such as ionic interactions should not be neglected in multicomponent-diffusion theoretical models even when ionic interactions quantities that shape the thermodynamic and diffusion behavior of macromolecule­additive­water solutions.1

Annunziata, Onofrio

408

Studies of Reaction Kinetics of Methane Hydrate Dissocation in Porous Media  

E-Print Network [OSTI]

sand cores partially satu- rated with water, hydrate and CH 4 gas,the formation of hydrates. For the sand/water/gas/CH 4 -

Moridis, George J.; Seol, Yongkoo; Kneafsey, Timothy J.

2005-01-01T23:59:59.000Z

409

A study of the sensitivity of topological dynamical systems and the Fourier spectrum of chaotic interval maps  

E-Print Network [OSTI]

of lifting some topological properties from a given dynamical system (Y,S) to an- other (X,T). After studying some basic facts about topological dynamical systems, we move to the particular case of interval maps. We know that through the knowl- edge... discussion with some basic concepts of what a dynamical system is and how the dynamic is generated. Definition 2.1. A dynamical system (X,T) consists of a topological compact metric space X and a surjective, continuous map T : X ?X. The first thing we have...

Roque Sol, Marco A.

2009-06-02T23:59:59.000Z

410

Gas hydrates in the Gulf of Mexico  

E-Print Network [OSTI]

filled by one or more gases. In marine sediments gas hydrates are found in regions where high pressure, low temperature and gas in excess of solubility are present. Low molecular weight hydrocarbons (LMWH), I. e. methane through butane, carbon dioxide... loop at a helium carrier flow of 12 ml/min with an elution order of methane, ethane, carbon dioxide and propane. Each fraction was trapped in a U- shaped Porpak-Q filled glass tube immersed in LN2. Butanes and heartier weight gases were trapped...

Cox, Henry Benjamin

1986-01-01T23:59:59.000Z

411

Technology verification phase. Dynamic isotope power system. Final report  

SciTech Connect (OSTI)

The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

Halsey, D.G.

1982-03-10T23:59:59.000Z

412

Modeling and dynamic performance evaluation of target capture in robotic systems  

SciTech Connect (OSTI)

In this paper, a dynamic system consisting of a robot manipulator and a target is analyzed. The target is considered in a general way as a dynamic subsystem having finite mass and moments of inertia (e.g., a rigid body or a second robot). The situation investigated is when the robot establishes interaction with the target in such a way that it intercepts and captures a reference element of the target. The analysis of target capture is divided into three phases in terms of time: the precapture, free motion (finite motion); the transition from free to constrained motion in the vicinity of interception and capture (impulsive motion); and the postcapture, constrained motion (finite motion). The greatest attention is paid to the analysis of the phase of transition, the impulsive motion, and dynamics of the system. Based on the use of impulsive constraints and the Jourdainian formulation of analytical dynamics, a novel approach is proposed for the dynamic modeling of target capture by a robot manipulator. The proposed approach is suitable to handle both finite and impulsive motions in a common analytical framework. Based on the dynamic model developed and using a geometric representation of the system's dynamics, a detailed analysis and a performance evaluation framework are presented for the phase of transition. Both rigid and structurally flexible models of robots are considered. For the performance evaluation analyses, two main concepts are proposed and corresponding performance measures are derived. These tools may be used in the analysis, design, and control of time-varying robotic systems. The dynamic system of a three-link robot arm capturing a rigid body is used to illustrate the material presented.

Koevecses, J.; Cleghorn, W.L.; Fenton, R.G.

2000-04-01T23:59:59.000Z

413

Effects of Antiagglomerants on the Interactions between Hydrate Particles  

E-Print Network [OSTI]

production Introduction The undesirable formation of gas hydrates in natural gas pipelines, and their prevention is a problem that has received considerable interest. In subsea pipelines, the presence of water of hydrates. These crystalline compounds can agglomerate and form plugs in the pipelines. The costs associated

Firoozabadi, Abbas

414

Does a dynamical system lose energy by emitting gravitational waves?  

E-Print Network [OSTI]

We note that Eddington's radiation damping calculation of a spinning rod fails to account for the complete mass integral as given by Tolman. The missing stress contributions precisely cancel the standard rate given by the 'quadrupole formula'. This indicates that while the usual 'kinetic' term can properly account for dynamical changes in the source, the actual mass is conserved. Hence gravity waves are not carriers of energy in vacuum. This supports the hypothesis that energy including the gravitational contribution is confined to regions of non-vanishing energy-momentum tensor $T_{ik}$. PACS numbers: 04.20.Cv, 04.30.-w

F. I. Cooperstock

1999-09-30T23:59:59.000Z

415

Dynamic Scheduling of a Parallel Server System in Heavy Traffic with Complete Resource Pooling: Asymptotic Optimality of a  

E-Print Network [OSTI]

as the optimal cost in the Brownian control problem. Short title: Dynamic Scheduling of Parallel Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Scheduling Control and Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . 7Dynamic Scheduling of a Parallel Server System in Heavy Traffic with Complete Resource Pooling

416

Dynamical formulations and control of an automatic retargeting system  

E-Print Network [OSTI]

........................... 39 B.Example2........................... 40 C.Example3........................... 41 viii CHAPTER Page D.Conclusion........................... 42 IX TARGET IDENTIFICATION ................... 44 A.TwoMirrorSystem...................... 44 B.DeterminationofMirror... to front of the cameras. It is impractical to physically move the camera and its large lens system in a pan and tilt motion. However, a mirror system can be used to alleviate this problem. Two mirrors will be used to redirected the beam where commanded...

Sovinsky, Michael Charles

2007-04-25T23:59:59.000Z

417

Comparing FumeFx with Autodesk Maya Dynamic System.  

E-Print Network [OSTI]

?? One of the main problem areas within computer graphics is simulating natural phenomena’s, working with fluid solvers, and particle systems. In the special effects… (more)

Blom, Andrej

2008-01-01T23:59:59.000Z

418

NREL: Dynamic Maps, Geographic Information System (GIS) Data...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 2012 The Geographic Information System (GIS) Team at the National Renewable Energy Laboratory (NREL) encompasses a broad range of scientific research and reporting activity...

419

NREL: Dynamic Maps, Geographic Information System (GIS) Data...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 2012 The Geographic Information System (GIS) Team at the National Renewable Energy Laboratory (NREL) encompasses a broad range of scientific research and reporting activity...

420

DYNAMIC CONTROL OF A FLOW-RACK AUTOMATED STORAGE AND RETRIEVAL SYSTEM  

E-Print Network [OSTI]

DYNAMIC CONTROL OF A FLOW-RACK AUTOMATED STORAGE AND RETRIEVAL SYSTEM Khalid HACHEMI*, **, Hassane (CPN) for a flow-rack automated storage and retrieval system. The AS/RS is modelled using Coloured Petri nets, the developed model has been used to capture and provide the rack state. We introduce

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Time Series Prediction by Chaotic Modeling of Nonlinear Dynamical Systems Arslan Basharat+  

E-Print Network [OSTI]

Inc. Clifton Park, NY, USA arslan.basharat@kitware.com Mubarak Shah+ + University of Central Florida Orlando, FL, USA shah@cs.ucf.edu Abstract We use concepts from chaos theory in order to model nonlinear dynamical systems that exhibit deterministic be- havior. Observed time series from such a system can be em

Central Florida, University of

422

Dynamics and Steady States in Excitable Mobile Agent Systems Fernando Peruani1,2  

E-Print Network [OSTI]

. Sibona1,3 1 Max Planck Institute for the Physics of Complex Systems, No¨thnitzer Stra�e 38, 01187 Dresden-agent contact rate (CR) becomes crucial to understand the excitation dynamics, which exhibits three regimes. In an excitable system, agents typically have three states, quies- cent, excited, and refractory, and pass through

Peruani, Fernando

423

Dynamic Key-Updating: Privacy-Preserving Authentication for RFID Systems , Jinsong Han2  

E-Print Network [OSTI]

Dynamic Key-Updating: Privacy-Preserving Authentication for RFID Systems Li Lu1 , Jinsong Han2 an emerging requirement ­ protecting user privacy [13] in RFID authentications. In most RFID systems, tags sensitive information. For example, without pri- vacy protection, any reader can identify a consumer's ID

Liu, Yunhao

424

Dynamics of hydrothermal seeps from the Salton Sea geothermal system (California, USA) constrained by temperature monitoring  

E-Print Network [OSTI]

Dynamics of hydrothermal seeps from the Salton Sea geothermal system (California, USA) constrained-, and petroleum-bearing seeps are part of the Salton Sea geothermal system (SSGS) in southern California. Carbon likely reflect a combination of hydrothermal flux variations from the SSGS and the local temporal changes

Svensen, Henrik

425

Coherence resonance in excitable and oscillatory systems: The essential role of slow and fast dynamics  

E-Print Network [OSTI]

Coherence resonance in excitable and oscillatory systems: The essential role of slow and fast 1999 Stochastic noise of an appropriate amplitude can maximize the coherence of the dynamics of certain types of excitable systems via a phenomenon known as coherence resonance CR . In this paper we

Collins, James J.

426

Dynamic Voltage Scaling for Systemwide Energy Minimization in Real-Time Embedded Systems  

E-Print Network [OSTI]

%. We show that our scheduling approach minimizes the total static and dynamic energy consumption increase the total energy consumption of the system. A minimum power consumption is associated with keeping the processorenergy consumption as opposed to the entire system energy consumption. The slowdown resulting from DVS

Gupta, Rajesh

427

System-level, Unified In-band and Out-of-band Dynamic Thermal Control  

E-Print Network [OSTI]

and improve the reliability of systems. Our thermal control framework unifies temperature control mechanisms supply, etc.) to operate less efficiently. Third, high temperatures can trigger thermal emergenciesSystem-level, Unified In-band and Out-of-band Dynamic Thermal Control Dong Li* , Rong Ge** , Kirk

428

A dynamical systems approach for the station keeping of a Solar Sail  

E-Print Network [OSTI]

A dynamical systems approach for the station keeping of a Solar Sail Ariadna Farr´es and `Angel considered the movement of a solar sail in the Sun - Earth system. As a model we have used the RTBP adding the solar radiation pressure. It can be seen that we have a 2D family of equilibria parametrised by the two

Barcelona, Universitat de

429

Energy Department Advances Research on Methane Hydrates - the World's  

Broader source: Energy.gov (indexed) [DOE]

Research on Methane Hydrates - the Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource August 31, 2012 - 1:00pm Addthis Washington, DC - The Energy Department today announced the selection of 14 new research projects across 11 states that will be a part of an expanding portfolio of projects designed to increase our understanding of methane hydrates' potential as a future energy supply. Methane hydrates are 3D ice-lattice structures with natural gas locked inside, and are found both onshore and offshore - including under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world. Today's projects build on the completion of a successful, unprecedented test

430

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

431

Energy Department Advances Research on Methane Hydrates - the World's  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Advances Research on Methane Hydrates - the Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource August 31, 2012 - 1:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - The Energy Department today announced the selection of 14 new research projects across 11 states that will be a part of an expanding portfolio of projects designed to increase our understanding of methane hydrates' potential as a future energy supply. Methane hydrates are 3D ice-lattice structures with natural gas locked inside, and are found both onshore and offshore - including under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world.

432

METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

METHANE HYDRATE ADVISORY COMMITTEE METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------~ 1. Committee's Official Designation. Methane Hydrate Advisory Committee (MHAC) 2. Authority:. This charter establishes the Methane Hydrate Advisory Committee (Committee) pursuant to Title IX, Subtitle F, Section 968, Methane Hydrate Research of the Energy Policy Act of 2005 (EPACT), Public Law 109-58. This charter establishes the MHAC under the authority of the Department of Energy (DOE). The MHAC is being renewed in accordance with the provisions of the Federal Advisory Committee Act (FACA), as amended, 5 U.S.C., App.2. 3. Objectives and Scope of Activities. The Committee provides advice to the Secretary of Energy by developing recommendations and broad programmatic priorities for the methane

433

Seismic-Scale Rock Physics of Methane Hydrate  

SciTech Connect (OSTI)

We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

Amos Nur

2009-01-08T23:59:59.000Z

434

NETL: Methane Hydrates - DOE/NETL Projects - Structural and Stratigraphic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Last Reviewed 12/24/2013 Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Last Reviewed 12/24/2013 DE-FE0009904 Goal The goal of this project is to determine structural and stratigraphic controls on hydrate occurrence and distribution in Green Canyon (GC) 955 and Walker Ridge (WR) 313 blocks with special emphasis on hydrate-bearing sand reservoirs. Structural and stratigraphic controls on hydrate distribution are examined by jointly analyzing surface-towed, multichannel seismic (MCS) and Ocean Bottom Seismometer (OBS) data and well logs through a combination of pre-stack depth migration (PSDM), traveltime and full-waveform inversion (FWI), and rock physics modeling methods. Performers Oklahoma State University, Stillwater, OK 74078-1026

435

DOE Announces $2 Million Funding for Methane Hydrates Projects | Department  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects November 7, 2005 - 12:43pm Addthis Seeks to Unlock World's Biggest Potential Source of "Ice That Burns" WASHINGTON, DC - The Department of Energy (DOE) today announced a total of $2 million in funding to five research projects that will assess the energy potential, safety, and environmental aspects of methane hydrate exploration and development. Termed the "ice that burns," methane hydrates are crystalline solids that release a flammable gas when melted. They are considered the Earth's biggest potential source of hydrocarbon energy and could be a key element in meeting natural gas demand in the United States,

436

Role of environmental correlations in the non-Markovian dynamics of a spin system  

SciTech Connect (OSTI)

We study the dynamics of a chain of interacting quantum particles affected by an individual or collective environment(s), focusing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environment magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as spin entanglement and purity that are not observed under a separable environmental state. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.

Lorenzo, Salvatore [Dipartimento di Fisica, Universita della Calabria, I-87036 Arcavacata di Rende (Italy); INFN - Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN (United Kingdom); Plastina, Francesco [Dipartimento di Fisica, Universita della Calabria, I-87036 Arcavacata di Rende (Italy); INFN - Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Paternostro, Mauro [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN (United Kingdom)

2011-09-15T23:59:59.000Z

437

Majorana path integral for nonequilibrium dynamics of two-level systems  

SciTech Connect (OSTI)

We present a new field-theoretic approach to analyze nonequilibrium dynamics of two-level systems (TLS), which is based on a correspondence between a driven TLS and a Majorana fermion field theory coupled to bosonic fields. This approach allows us to calculate analytically properties of nonlinear TLS dynamics with an arbitrary accuracy. We apply our method to analyze specific TLS dynamics under a monochromatic periodic drive that is relevant to the problem of decoherence in Josephson junction qubits. It is demonstrated that the method gives the precise positions of the resonance peaks in the nonlinear dielectric response function that are in agreement with numerical simulations.

Sedrakyan, Tigran A.; Galitski, Victor M. [Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742 (United States)

2011-04-01T23:59:59.000Z

438

Structure, dynamics and reactions of protein hydration water  

Science Journals Connector (OSTI)

...held at 80 K; filled circles, solvent held at 80 K; open diamonds...held at 180 K; open circles, solvent held at 180 K. (b) Solvent held at 300 K. (c) Protein...1992; Ferrand et al. 1993; Green et al. 1994; Fitter et al...

2004-01-01T23:59:59.000Z

439

Hydration Control of the Mechanical and Dynamical Properties of Cellulose  

Science Journals Connector (OSTI)

Loukas Petridis *†, Hugh M. O’Neill ‡§, Mariah Johnsen †?, Bingxin Fan ?, Roland Schulz †#, Eugene Mamontov ?, Janna Maranas ?, Paul Langan ‡§?, and Jeremy C. Smith †# ... sucrofermentans (ATCC 700178) in minimal media and purification of cellulose has been described previously. ... In vivo generated deuterated bacterial cellulose, cultivated from 100% deuterated glycerol in D2O medium, was analyzed for deuterium incorporation by ionic liq. ...

Loukas Petridis; Hugh M. O’Neill; Mariah Johnsen; Bingxin Fan; Roland Schulz; Eugene Mamontov; Janna Maranas; Paul Langan; Jeremy C. Smith

2014-10-17T23:59:59.000Z

440

Determination of desorption efficiency utilizing direct injection: a dynamic calibration system and phase equilibrium  

E-Print Network [OSTI]

) Ronald H. Williams B. S. , Purdue University B. S. , University of Arkansas Chairman of Advisory Committee: Dr . R. B. Konzen Three methods for determining desorption efficiency for or ganic solvents adsorbed on activated charcoal were compared.... The three methods involved a dynamic calibra- tion system, direct injection, and phase equilibrium. The methods differed in the manner in which the analyte was placed on the adsorbent. The desorption efficiencies ob- tained using the dynamic calibration...

Williams, Ronald H

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Dynamic Response Optimization of Complex Multibody Systems in a Penalty Formulation using Adjoint Sensitivity  

E-Print Network [OSTI]

Multibody dynamics simulations are currently widely accepted as valuable means for dynamic performance analysis of mechanical systems. The evolution of theoretical and computational aspects of the multibody dynamics discipline make it conducive these days for other types of applications, in addition to pure simulations. One very important such application is design optimization. A very important first step towards design optimization is sensitivity analysis of multibody system dynamics. Dynamic sensitivities are often calculated by means of finite differences. Depending of the number of parameters involved, this procedure can be computationally expensive. Moreover, in many cases, the results suffer from low accuracy when real perturbations are used. The main contribution to the state-of-the-art brought by this study is the development of the adjoint sensitivity approach of multibody systems in the context of the penalty formulation. The theory developed is demonstrated on one academic case study, a five-bar mechanism, and on one real-life system, a 14-DOF vehicle model. The five-bar mechanism is used to illustrate the sensitivity approach derived in this paper. The full vehicle model is used to demonstrate the capability of the new approach developed to perform sensitivity analysis and gradient-based optimization for large and complex multibody systems with respect to multiple design parameters.

Yitao Zhu; Daniel Dopico; Corina Sandu; Adrian Sandu

2014-10-30T23:59:59.000Z

442

Dynamic  

Office of Legacy Management (LM)

Dynamic Dynamic , and Static , Res.ponse of the Government Oil Shale Mine at ' , . , Rifle, Colorado, to the Rulison Event. , . ; . . DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. p ( y c - - a 2-1 0 -4- REPORT AT (29-2) 914 USBM 1 0 0 1 UNITED STATES DEPARTMENT O F THE I NTERIOR BUREAU OF MINES e s.09 P. L. R U S S E L L RESEARCH D l RECTOR Februory 2, lB7O DYNAMIC AND STATIC RESPONSE 'OF THE GOVERNMENT OIL SHALE MINE A T RIFLE, COLORADO, T O THE, RULISON EVENT ORDER FROM CFSTl A S ~ B ~ &J C / This page intentionally left blank CONTENTS Page . . . . . . . . . . . . . . . . . . . . . . . . . H i s t o r i c . a l Des c r i p t i o n 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3

443

Dynamic response of guardrail systems encased in pavement mow strips  

E-Print Network [OSTI]

Strong post guardrail systems have long been employed to keep misguided vehicles on the roadway. In order to combat vegetation growth around the posts, many new guardrail installations are being encased in pavement mow strips. By increasing...

Seckinger, Nathaniel Ryan

2012-06-07T23:59:59.000Z

444

Structures and Dynamics of Quasi-2D Mesoscale Convective Systems  

Science Journals Connector (OSTI)

Recently, three distinct archetypes for midlatitude linear mesoscale convective systems (MCSs) have been identified. This article focuses on the fundamentals of two of these archetypes: convective lines with trailing stratiform (TS) precipitation ...

Matthew D. Parker; Richard H. Johnson

2004-03-01T23:59:59.000Z

445

Fully coupled dynamic analysis of a floating wind turbine system  

E-Print Network [OSTI]

The use of wind power is in a period of rapid growth worldwide and wind energy systems have emerged as a promising technology for utilizing offshore wind resources for the large scale generation of electricity. Drawing ...

Withee, Jon E

2004-01-01T23:59:59.000Z

446

Identifications and Monitoring of Power System Dynamics Based on the PMUs and Wavelet Technique  

E-Print Network [OSTI]

Abstract—Low frequency power oscillations may be triggered by many events in the system. Most oscillations are damped by the system, but undamped oscillations can lead to system collapse. Oscillations develop as a result of rotor acceleration/deceleration following a change in active power transfer from a generator. Like the operations limits, the monitoring of power system oscillating modes is a relevant aspect of power system operation and control. Unprevented low-frequency power swings can be cause of cascading outages that can rapidly extend effect on wide region. On this regard, a Wide Area Monitoring, Protection and Control Systems (WAMPCS) help in detecting such phenomena and assess power system dynamics security. The monitoring of power system electromechanical oscillations is very important in the frame of modern power system management and control. In first part, this paper compares the different technique for identification of power system oscillations. Second part analyzes possible identification some power system dynamics behaviors Using Wide Area Monitoring Systems (WAMS) based on Phasor Measurement Units (PMUs) and wavelet technique. Keywords—Power system oscillations, Modal analysis, Prony, Wavelet, PMU, Wide Area Monitoring System.

Samir Avdakovic; Amir Nuhanovic

2010-01-01T23:59:59.000Z

447

Humidity-controlled preparation of frozen-hydrated biological samples for cryogenic coherent x-ray diffraction microscopy  

SciTech Connect (OSTI)

Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, we report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.

Takayama, Yuki; Nakasako, Masayoshi [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522 (Japan); RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148 (Japan)

2012-05-15T23:59:59.000Z

448

Notes 02. Dynamic response of second order mechanical systems  

E-Print Network [OSTI]

frequency. Is this response the maximum ever expected? Explain. Recall that system periodic response is () ( )cos( ) s Xt XHr t ?=?+ Solution. From the amplitude of FRF () 2 22 1 () 1(2) s X Hr X rr? == ?+ Set r=r a = 1.2 and |X... that u=m e/M, where m is the imbalance mass and e is its radial location ( ) 2 cosM XDXKXMu t++=?? #0;#5;#0;#5; #0;#5; Recall that system periodic response is () ( )cos( )Xt uHr t ?=?+ a) What is the value of damping ? necessary so...

San Andres, Luis

2008-01-01T23:59:59.000Z

449

Molecular simulations of beta-amyloid protein near hydrated lipids (PECASE).  

SciTech Connect (OSTI)

We performed molecular dynamics simulations of beta-amyloid (A{beta}) protein and A{beta} fragment(31-42) in bulk water and near hydrated lipids to study the mechanism of neurotoxicity associated with the aggregation of the protein. We constructed full atomistic models using Cerius2 and ran simulations using LAMMPS. MD simulations with different conformations and positions of the protein fragment were performed. Thermodynamic properties were compared with previous literature and the results were analyzed. Longer simulations and data analyses based on the free energy profiles along the distance between the protein and the interface are ongoing.

Thompson, Aidan Patrick; Han, Kunwoo (Texas A& M University, College Station, TX); Ford, David M. (Texas A& M University, College Station, TX)

2005-12-01T23:59:59.000Z

450

[Investigation of transitions from order to chaos in dynamical systems  

SciTech Connect (OSTI)

This report briefly discusses the following topics on chaotic systems; numerical investigations of fast dynamo problem for stationary space-periodic flows with chaotic streamlines; analytical and numerical investigations of magnetic field generation by conducting flows with finite resistivity; and emittance growth in charged particle beams.

Not Available

1992-01-01T23:59:59.000Z

451

NETL: Methane Hydrates - DOE/NETL Projects - NT42496  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conducting Scientific Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates Last Reviewed 05/16/2011 Conducting Scientific Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates Last Reviewed 05/16/2011 DE-AI26-05NT42496 Goal The United States Geological Survey (USGS) conducts scientific studies of natural gas hydrates in support of DOE efforts to evaluate and understand methane hydrates, their potential as an energy resource, and the hazard they may pose to ongoing drilling efforts. This project extends USGS support to the DOE Methane Hydrate Research Program previously supported under DE-AT26-97FT34342 and DE-AT26-97FT34343. Performer U.S. Geological Survey at Denver, CO, Woods Hole, MA, and Menlo Park, CA. Background The USGS Interagency Agreement (IA) involves laboratory research and international field studies in which DOE/NETL has a significant interest.

452

Bonding Strength by Methane Hydrate Formed among Sand Particles  

Science Journals Connector (OSTI)

The mechanical properties of methane hydrate?bearing sand were investigated by low temperature and high confining pressure triaxial testing apparatus in the present study. The specimens were prepared by infiltrating the methane gas into partially saturated sand specimen under the given temperature and stress condition which is compatible with the phase equilibrium condition for the stability of methane hydrate. The tests were firstly performed to investigate the effect of temperature on the shear behaviour of the specimen. Then the effect of backpressure was investigated. The strength of methane hydrate bearing sand increased as the temperature decreased and the back pressure increased. The bonding strength due to methane hydrate was dependent on methane hydrate saturation temperature and back pressure but independent of effective stress. Dissociation tests of methane hydrate were also performed by applying the temperature to the specimen at the various initial stress conditions. The marked development of shear and volumetric strains were observed due to dissociation of the methane hydrate in the specimen corresponding to the initial stress conditions.

M. Hyodo; Y. Nakata; N. Yoshimoto; R. Orense; J. Yoneda

2009-01-01T23:59:59.000Z

453

Bulk Power System Dynamics and Control -VII, August 19-24, 2007, Charleston, South Carolina, USA Dynamics of a Microgrid Supplied by Solid Oxide Fuel Cells1  

E-Print Network [OSTI]

. The results of an example in which two SOFC plants provide power to a microgrid are presented. The simulation1 Bulk Power System Dynamics and Control - VII, August 19-24, 2007, Charleston, South Carolina, USA, but is not concerned with the thermal dynamics. A DC-DC boost converter interfaces the SOFC stack to a DC bus, where

Hiskens, Ian A.

454

E ects of the Driving Force on the Composition of Natural Gas Hydrates  

E-Print Network [OSTI]

E ects of the Driving Force on the Composition of Natural Gas Hydrates Odd I. Levik(1) , Jean for storage and transport of natural gas. Storage of natural gas in the form of hydrate at elevated pressure concept) (Gud- mundsson et al. 1998). Natural gas hydrate contains up to 182 Sm3 gas per m3 hydrate

Gudmundsson, Jon Steinar

455

A system dynamics approach to intermodalism at the Port of Lewiston  

SciTech Connect (OSTI)

Intermodalism refers to interconnections among modes of transportation, e.g., road, rail, water, and air. Effective intermodal planning must cross boundaries between the public and private sectors as well as transportation modes. The development of an effective and efficient intermodal transportation system requires the identification of barriers to intermodal transportation and the investigation of the impact of proposed changes in infrastructure development, policies, regulations, and planning. A systems approach is necessary to adequately represent the interaction between the sometimes incompatible concerns of all modes and stakeholders. A systems dynamics model of intermodalism at the Port of Lewiston has been developed to highlight leverage points, hidden assumptions, second order effects resulting from feedback loops and system drivers. The purpose of this document is to present the results of the system dynamics model work.

Sebo, D.

1996-08-01T23:59:59.000Z

456

The sensitivity of seismic responses to gas hydrates  

SciTech Connect (OSTI)

The sensitivity of seismic reflection coefficients and amplitudes, and their variations with changing incidence angles and offsets, was determined with respect to changes in the parameters which characterize marine sediments containing gas hydrates. Using the results of studies of ice saturation effects in permafrost soils, we have introduced rheological effects of hydrate saturation. The replacement of pore fluids in highly porous and unconsolidated marine sediments with crystalline gas hydrates, increases the rigidity of the sediments, and alters the ratio of compressional/shear strength ratio. This causes Vp/Vs ratio variations which have an effect on the amplitudes of P-wave and S-wave reflections. Analysis of reflection coefficient functions has revealed that amplitudes are very sensitive to porosity estimates, and errors in the assumed model porosity can effect the estimates of hydrate saturation. Additionally, we see that the level of free gas saturation is difficult to determine. A review of the effects of free gas and hydrate saturation on shear wave arrivals indicates that far-offset P to S wave converted arrivals may provide a means of characterizing hydrate saturations. Complications in reflection coefficient and amplitude modelling can arise from gradients in hydrate saturation levels and from rough sea floor topography. An increase in hydrate saturation with depth in marine sediments causes rays to bend towards horizontal and increases the reflection incidence angles and subsequent amplitudes. This effect is strongly accentuated when the vertical separation between the source and the hydrate reflection horizon is reduced. The effect on amplitude variations with offset due to a rough sea floor was determined through finite difference wavefield modelling. Strong diffractions in the waveforms add noise to the amplitude versus offset functions.

Foley, J.E.; Burns, D.R.

1992-08-01T23:59:59.000Z

457

The sensitivity of seismic responses to gas hydrates. Final report  

SciTech Connect (OSTI)

The sensitivity of seismic reflection coefficients and amplitudes, and their variations with changing incidence angles and offsets, was determined with respect to changes in the parameters which characterize marine sediments containing gas hydrates. Using the results of studies of ice saturation effects in permafrost soils, we have introduced rheological effects of hydrate saturation. The replacement of pore fluids in highly porous and unconsolidated marine sediments with crystalline gas hydrates, increases the rigidity of the sediments, and alters the ratio of compressional/shear strength ratio. This causes Vp/Vs ratio variations which have an effect on the amplitudes of P-wave and S-wave reflections. Analysis of reflection coefficient functions has revealed that amplitudes are very sensitive to porosity estimates, and errors in the assumed model porosity can effect the estimates of hydrate saturation. Additionally, we see that the level of free gas saturation is difficult to determine. A review of the effects of free gas and hydrate saturation on shear wave arrivals indicates that far-offset P to S wave converted arrivals may provide a means of characterizing hydrate saturations. Complications in reflection coefficient and amplitude modelling can arise from gradients in hydrate saturation levels and from rough sea floor topography. An increase in hydrate saturation with depth in marine sediments causes rays to bend towards horizontal and increases the reflection incidence angles and subsequent amplitudes. This effect is strongly accentuated when the vertical separation between the source and the hydrate reflection horizon is reduced. The effect on amplitude variations with offset due to a rough sea floor was determined through finite difference wavefield modelling. Strong diffractions in the waveforms add noise to the amplitude versus offset functions.

Foley, J.E.; Burns, D.R.

1992-08-01T23:59:59.000Z

458

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Resolution Sidescan Sonar and Multibeam Bathymetric Data Collection and Processing, Atwater Canyon, Gulf of Mexico High-Resolution Sidescan Sonar and Multibeam Bathymetric Data Collection and Processing, Atwater Canyon, Gulf of Mexico DE-AT26-97FT34344 photo of DTAGS seismic source being deployed DTAG seismic source being deployed courtesy Naval Research Laboratory Goal: During February 14-18, 2005, a scientific cruise was conducted using the R/V Pelican to obtain high-resolution sidescan sonar and multibeam bathymetric data of Mounds D and F in the Atwater Valley area of the Gulf of Mexico, to better characterize sites selected for experimental drilling by the ChevronTexaco Gas Hydrates Joint Industry Project (JIP). Performers: Naval Research Lab - Dr. Joan Gardner Location: Washington, DC 20375 Atwater Valley, Gulf of Mexico Background: During May, 2004 the Naval Research Lab (NRL) collected piston cores and

459

Geometric Hamilton-Jacobi Theory for Nonholonomic Dynamical Systems  

E-Print Network [OSTI]

The geometric formulation of Hamilton--Jacobi theory for systems with nonholonomic constraints is developed, following the ideas of the authors in previous papers. The relation between the solutions of the Hamilton--Jacobi problem with the symplectic structure defined from the Lagrangian function and the constraints is studied. The concept of complete solutions and their relationship with constants of motion, are also studied in detail. Local expressions using quasivelocities are provided. As an example, the nonholonomic free particle is considered.

J. F. Cariñena; X. Gracia; G. Marmo; E. Martinez; M. C. Muñoz-Lecanda; N. Roman--Roy

2009-08-17T23:59:59.000Z

460

The growth rate of gas hydrate from refrigerant R12  

SciTech Connect (OSTI)

Experimental and theoretical investigations were presented dealing with three phase direct-contact heat transfer by evaporation of refrigerant drops in an immiscible liquid. Refrigerant R12 was used as the dispersed phase, while water and brine were the immiscible continuous phase. A numerical solution is presented to predict the formation rate of gas hydrates in test column. The solution provided an acceptable agreement when compared with experimental results. The gas hydrate growth rate increased with time. It increased with increasing dispersed phase flow rate. The presence of surface-active sodium chloride in water had a strong inhibiting effect on the gas hydrate formation rate. (author)

Kendoush, Abdullah Abbas; Jassim, Najim Abid [Centre of Engineering Physics, Ministry of Sciences and Technology, P.O. Box 765, Baghdad (Iraq); Joudi, Khalid A. [Al-Nahrain University, Baghdad (Iraq)

2006-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "hydrates system dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost  

SciTech Connect (OSTI)

Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e.g., natural gas, coal, nuclear), preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation.

Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

2013-04-01T23:59:59.000Z

462

Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system  

E-Print Network [OSTI]

We study prediction-assimilation systems, which have become routine in meteorology and oceanography and are rapidly spreading to other areas of the geosciences and of continuum physics. The long-term, nonlinear stability of such a system leads to the uniqueness of its sequentially estimated solutions and is required for the convergence of these solutions to the system's true, chaotic evolution. The key ideas of our approach are illustrated for a linearized Lorenz system. Stability of two nonlinear prediction-assimilation systems from dynamic meteorology is studied next via the complete spectrum of their Lyapunov exponents; these two systems are governed by a large set of ordinary and of partial differential equations, respectively. The degree of data-induced stabilization is crucial for the performance of such a system. This degree, in turn, depends on two key ingredients: (i) the observational network, either fixed or data-adaptive; and (ii) the assimilation method.

Alberto Carrassi; Michael Ghil; Anna Trevisan; Francesco Uboldi

2007-11-23T23:59:59.000Z

463

Examination of Hydrate Formation Methods: Trying to Create Representative Samples  

SciTech Connect (OSTI)

Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas is placed in a sample, then the sample is flooded with water and cooled [Priest et al., 2009]. We have performed a number of tests in which hydrate was formed and the uniformity of the hydrate formation was examined. These tests have primarily used a variety of modifications of the excess gas method to make the hydrate, although we have also used a version of the excess water technique. Early on, we found difficulties in creating uniform samples with a particular sand/ initial water saturation combination (F-110 Sand, {approx} 35% initial water saturation). In many of our tests we selected this combination intentionally to determine whether we could use a method to make the samples uniform. The following methods were examined: Excess gas, Freeze/thaw/form, Freeze/pressurize/thaw, Excess gas followed by water saturation, Excess water, Sand and kaolinite, Use of a nucleation enhancer (SnoMax), and Use of salt in the water. Below, each method, the underlying hypothesis, and our results are briefly presented, followed by a brief conclusion. Many of the hypotheses investigated are not our own, but were presented to us. Much of the data presented is from x-ray CT scanning our samples. The x-ray CT scanner provides a three-dimensional density map of our samples. From this map and the physics that is occurring in our samples, we are able to gain an understanding of the spatial nature of the processes that occur, and attribute them to the locations where they occur.

Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

2011-04-01T23:59:59.000Z

464

Dynamics of multi-qubit systems in noisy environment  

E-Print Network [OSTI]

Some properties of multi-qubit systems interacting with noisy environment is discussed. The amount of the survival entanglement is quantified for the GHZ and W-states. It is shown that the entanglement decay depends on the noise type ( correlated or non-correlated), number of interacted qubits with the environment and the initial state which passes through this noisy environment. In general, the GHZ is more fragile than the W-state. The phenomena of entanglement sudden death appears only for non-correlated noise.

N. Metwally; A. Almannaei

2014-09-26T23:59:59.000Z

465

Detection and control of combustion instability based on the concept of dynamical system theory  

Science Journals Connector (OSTI)

We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.

Hiroshi Gotoda; Yuta Shinoda; Masaki Kobayashi; Yuta Okuno; Shigeru Tachibana

2014-02-11T23:59:59.000Z

466

Dynamical system analysis for DBI dark energy interacting with dark matter  

E-Print Network [OSTI]

A dynamical system analysis related to Dirac Born Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW space time, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.

Mahata, Nilanjana

2015-01-01T23:59:59.000Z

467

Design of dynamically updated automatic ontology for mobile phone information retrieval system  

Science Journals Connector (OSTI)

This paper focuses on the construction of an automatic ontology tree which is capable of dynamically updating information for efficient management of up-to-date information in the domain of mobile phones. The proposed system takes the URL of the most relevant website as input. It acquires information from web pages that are related to the domain and based on those information automatically constructs the ontology tree. To make the ontology tree up-to-date periodic comparison of the values are made with information available over the internet, outdated information is pruned and updates are merged into the ontology tree dynamically. The constructed ontology tree can be queried with domain-related queries and the ontology tree provides relevant result for the query. The proposed system is suited for domains that make frequent updates because it takes special care on dynamically monitoring changes on the web and performing updates on par with it.

S. Saraswathi; S. Venkataramanasam

2014-01-01T23:59:59.000Z

468

A Dynamic Performance Analysis on CANDU Fuel Handling System for Operational Improvement  

SciTech Connect (OSTI)

The dynamic performance of the Fueling Machine (F/M) Heavy Water (D{sub 2}O) supply system for Wolsong Nuclear Power Plant (NPP) was evaluated using Modular Modeling System (MMS) computer code. Parametric study has been carried out to investigate the effects of dual common set pressure and the position change rate of series valve on the dynamic behavior of common header pressure and common bleed valve position during the mode changes of supply pressure. The results show that the introduction of the series valve position demand curve and the dual common header set pressure is effective to attenuate the overshoot of common header pressure during mode changes. This does not lead any adverse effects on the system performance of supply pressure control and heavy water supply to F/M during the mode changes. The dynamic evaluation results of the F/M D{sub 2}O supply system will be used for the new control system parameter settings and help to relieve system operators' burdens during the system operation. (authors)

Jeong Mann Kim; Byung Ryul Jung [Korea Power Engineering Company, Inc, 360 9 Mabuk Dong, Giheung-gu Yongin-si, Gyeonggi-do 449-713 (Korea, Republic of); Wan Kyu Park [Korea Hydro and Nuclear Power Company, 167 Samseong-dong, Kangnam-gu, Seoul 135-791 (Korea, Republic of)

2002-07-01T23:59:59.000Z

469

A Domain Decomposition Approach for Large-Scale Simulations of Flow Processes in Hydrate-Bearing Geologic Media  

SciTech Connect (OSTI)

Simulation of the system behavior of hydrate-bearing geologic media involves solving fully coupled mass- and heat-balance equations. In this study, we develop a domain decomposition approach for large-scale gas hydrate simulations with coarse-granularity parallel computation. This approach partitions a simulation domain into small subdomains. The full model domain, consisting of discrete subdomains, is still simulated simultaneously by using multiple processes/processors. Each processor is dedicated to following tasks of the partitioned subdomain: updating thermophysical properties, assembling mass- and energy-balance equations, solving linear equation systems, and performing various other local computations. The linearized equation systems are solved in parallel with a parallel linear solver, using an efficient interprocess communication scheme. This new domain decomposition approach has been implemented into the TOUGH+HYDRATE code and has demonstrated excellent speedup and good scalability. In this paper, we will demonstrate applications for the new approach in simulating field-scale models for gas production from gas-hydrate deposits.

Zhang, Keni; Moridis, G.J.; Wu, Y.-S.; Pruess, K.

2008-07-01T23:59:59.000Z

470

Dynamic Particle System for Mesh Extraction on the GPU University of Utah  

E-Print Network [OSTI]

@sci.utah.edu Charles Hansen University of Utah Salt Lake City, UT, USA hansen@cs.utah.edu ABSTRACT ExtractingDynamic Particle System for Mesh Extraction on the GPU Mark Kim University of Utah Salt Lake City, UT, USA mbk@cs.utah.edu Guoning Chen University of Utah Salt Lake City, UT, USA chengu

Utah, University of

471

INTEGRATED SYSTEM FOR CONTINUOUS DYNAMIC MONITORING : PONTE NUOVO DEL POPOLO BRIDGE  

E-Print Network [OSTI]

INTEGRATED SYSTEM FOR CONTINUOUS DYNAMIC MONITORING : � PONTE NUOVO DEL POPOLO � BRIDGE Mauro as a key activity to increase the knowledge on the structural behavior of existing bridges. The paper of the "Ponte Nuovo del Popolo" bridge, located in the city center of Verona. The results of the first 1.5 year

Boyer, Edmond

472

A. Ford and H. Flynn: Statistical Screening of Models 273 Statistical screening of system dynamics  

E-Print Network [OSTI]

in the information spectrum in Figure 1. Hard sources include physical laws and the results of controlled experimentsA. Ford and H. Flynn: Statistical Screening of Models 273 Statistical screening of system dynamics models Andrew Forda * and Hilary Flynnb Abstract This paper describes a pragmatic method of searching

Ford, Andrew

473

Comment on "Random-field Ising model as a dynamical system"  

Science Journals Connector (OSTI)

It is analytically shown that the gap which produces the fractal structure of the attractor of the dynamical system vanishes linearly if the exchange reaches a critical value in contrast to the 52 power law claimed to be observed numerically by Satija Phys. Rev. B 35 6877 (1987). Several other statements of this paper are critically discussed.

Ulrich Behn and Valentin A. Zagrebnov

1988-10-01T23:59:59.000Z

474

The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling Platform  

E-Print Network [OSTI]

The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling VOLUNTEERISM MANY DEVELOPERS Grand Challenge: Building a Toolbox of Component Models with guidance and input Members and Governance · Tools for Collaboration 1) CSDMS Wiki 2) CSDMS Modeling Tool · Strategies

Wright, Dawn Jeannine

475

plains the overall dynamical behavior of the nitrogen-Chlorella-Brachionus system; a sim-  

E-Print Network [OSTI]

plains the overall dynamical behavior of the nitrogen-Chlorella-Brachionus system; a sim- ple day; 0.4 per day; 0.25 (17). We took bC to be the highest at which Chlorella can maintain a stable

Rohani, Pejman

476

A Dynamic Attribute-Based Load Shedding Scheme for Data Stream Management Systems  

E-Print Network [OSTI]

A Dynamic Attribute-Based Load Shedding Scheme for Data Stream Management Systems Amit Ahuja of tuples, becomes imperative in data stream load shedding, since shedding a complete tuple would lead to shedding informative attribute data along with less-informative attribute data in the tuple. Our load

Ng, Yiu-Kai Dennis

477

Nonlinear dynamical systems with data and model uncertainties subjected to seismic loads  

E-Print Network [OSTI]

Nonlinear dynamical systems with data and model uncertainties subjected to seismic loads Christophe loads with data uncertainties for the nonlinearities. An application to a multisupported reactor coolant and Acoustics Dpt., 92141, Clamart cedex, France ABSTRACT This paper deals with data uncertainties

Paris-Sud XI, Université de

478

A Method to Study the Effect of Renewable Resource Variability on Power System Dynamics  

E-Print Network [OSTI]

1 A Method to Study the Effect of Renewable Resource Variability on Power System Dynamics Yu reliance on renewable resources, such as wind or solar. It is well known that the integration proposes a set-theoretic method to assess the effect of variability associated with renewable-based elec

Liberzon, Daniel

479

Boundary spanning, knowledge dynamics and emerging innovation systems early lessons from nanotechnology  

E-Print Network [OSTI]

nanotechnology DIME Workshop "Industrial innovation dynamics and knowledge characteristics, exploring systems. Using nanotechnology as a case the paper focuses on analysing boundary spanning effects to capture possible changes in the knowledge base and search modes related to the rise of nanotechnology

480

Dynamic Positioning System of Semisubmersible Drilling Platform with a T-S Fuzzy Neural Network Controller  

Science Journals Connector (OSTI)

Position-keeping of a semi submersible drilling platform is an important matter in a production system in the deep sea. It is a key problem how to keep platform stationary in this study. In the paper a kind of T-S fuzzy neural network controller is used ... Keywords: Dynamic positioning, Semisubmersible drilling platform, T-S fuzzy neural network

Yan Li; Yu Gu

2012-10-01T23:59:59.000Z