Sample records for hydrate lng offshore

  1. Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals

    E-Print Network [OSTI]

    Standiford, Richard B.

    Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals in a Decision-Making Context1, Berkeley. 3/ Liquified Natural Gas Act Stats, 1977, Chap. 855, Page 2506 (effective Sept. 17, 1977 potential offshore Liquified Natural Gas (LNG) sites and the types of terminals that might occupy those

  2. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    SciTech Connect (OSTI)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31T23:59:59.000Z

    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We then used TOUGH + Hydrate to simulate the observed gas production and reservoir pressure field data at Messoyakha. We simulated various scenarios that help to explain the field behavior. We have evaluated the effect of reservoir parameters on gas recovery from hydrates. Our work should be beneficial to others who are investigating how to produce gas from a hydrate capped gas reservoir. The results also can be used to better evaluate the process of producing gas from offshore hydrates. The Schlumberger PETREL model is used in industry to the description of geologic horizons and the special distribution of properties. An interface between FLAC3D and Petrel was built by Schlumberger to allow for efficient data entry into TOUGH + Hydrate + FLAC3D.

  3. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation

    E-Print Network [OSTI]

    Lin, Andrew Tien-Shun

    Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate simulating reflectors (BSRs) imply the potential existence of gas hydrates offshore southwestern Taiwan that the fluxes are very high in offshore southwestern Taiwan. The depths of the SMI are different at sites GH6

  4. Geomechanical Performance of Hydrate-Bearing Sediments in Offshore Environments

    SciTech Connect (OSTI)

    Stephen A. Holditch

    2006-12-31T23:59:59.000Z

    The main objective of this study is to develop the necessary knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus is on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. To achieve this objective, we have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. To be sure our geomechanical modeling is realistic, we are also investigating the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. In Phase II of the project, we will review all published core data and generate additional core data to verify the models. To generate data for our models, we are using data from the literature and we will be conducting laboratory studies in 2007 that generate data to (1) evaluate the conceptual pore-scale models, (2) calibrate the mathematical models, (3) determine dominant relations and critical parameters defining the geomechanical behavior of HBS, and (4) establish relationships between the geomechanical status of HBS and the corresponding geophysical signature. The milestones for Phase I of this project are given as follows: Literature survey on typical sediments containing gas hydrates in the ocean (TAMU); Recommendations on how to create typical sediments in the laboratory (TAMU); Demonstrate that typical sediments can be created in a repeatable manner in the laboratory and gas hydrates can be created in the pore space (TAMU); Develop a conceptual pore-scale model based on available data and reports (UCB); Test the developed pore-scale concepts on simple configurations and verify the results against known measurements and observations (UCB); Complete the FLAC3D routines that will be linked with the reservoir model (LBNL); Complete the TOUGH+/HYDRATE modifications and extensions (LBNL); Complete the TOUGH+/FLAC3D interaction interface (LBNL); Integrate and test the coupled geomechanical numerical model TFxH/FLAC3D (LBNL); and Demonstrate that Petrel can be used to develop an earth model for providing data to the TOUGH+/FLAC3D (SLB).

  5. 3 , LNG (Liquefied Natural Gas) -165oC

    E-Print Network [OSTI]

    Hong, Deog Ki

    , , . . . , . , LNG (Liquefied Natural Gas) -165oC , . (Piped Natural Gas, PNG) , , . PNG, LNG ( 2-3 ), . (Natural Gas Hydrate, NGH) / . -20oC / . Natural Gas Hydrate (NGH) Liquefied Natural Gas (LNG) Modes of Transport and Storage

  6. Terr. Atmos. Ocean. Sci., Vol. 17, No. 4, 829-843, December 2006 Gas Hydrate Stability Zone in Offshore Southern Taiwan

    E-Print Network [OSTI]

    Lin, Andrew Tien-Shun

    in Offshore Southern Taiwan Wu-Cheng Chi 1, *, Donald L. Reed 2 , and Chih-Chin Tsai 3 (Manuscript received 17 in meeting natural gas demand in the future. To study the feasibility of recovering methane from the offshore hydrates in the sediments offshore of southern Taiwan. We used a dense grid of 6-channel and 120-channel

  7. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    of Gas Price ($/Mscf) for Offshore Gas Hydrate StudyEvaluation of deepwater gas-hydrate systems. The Leadingfor Gas Production from Gas Hydrates Reservoirs. J. Canadian

  8. Petrographic, Mineralogic, and Geochemical Studies of Hydrocarbon-derived Authigenic Carbonate Rock from Gas Venting, Seepage, Free Gas, and Gas Hydrate Sites in the Gulf of Mexico and offshore India

    E-Print Network [OSTI]

    Jung, Woodong

    2012-02-14T23:59:59.000Z

    . ACR collected from the seafloor in the Gulf of Mexico (GOM) and ACR recovered from drilled cores in the Krishna-Godawari (KG) basin offshore India were used. All study sites are associated with hydrocarbon gas venting, seepage, free gas, or gas hydrate...

  9. Terr. Atmos. Ocean. Sci., Vol. 17, No. 4, 933-950, December 2006 Methane Venting in Gas Hydrate Potential Area Offshore of SW

    E-Print Network [OSTI]

    Lin, Andrew Tien-Shun

    Potential Area Offshore of SW Taiwan: Evidence of Gas Analysis of Water Column Samples Tsanyao Frank Yang 1 areas offshore of SW Taiwan for analysis of dissolved gases. Some these samples show unusually high-shore and offshore of southwestern Taiwan (e.g., Chow et al. 2000; Yang et al. 2004; Chiu et al. 2006). The gases

  10. Bear Head LNG Corporation and Bear Head LNG (USA), LLC - FE Dkt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bear Head LNG Corporation and Bear Head LNG (USA), LLC - FE Dkt. No. - 15-33-LNG Bear Head LNG Corporation and Bear Head LNG (USA), LLC - FE Dkt. No. - 15-33-LNG The Office of...

  11. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    SciTech Connect (OSTI)

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31T23:59:59.000Z

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. Operating costs of a salt cavern terminal are lower than tank based terminals because ''boil off'' is eliminated and maintenance costs of caverns are lower than LNG tanks. Phase II included the development of offshore mooring designs, wave tank tests, high pressure LNG pump field tests, heat exchanger field tests, and development of a model offshore LNG facility and cavern design. Engineers designed a model facility, prepared equipment lists, and confirmed capital and operating costs. In addition, vendors quoted fabrication and installation costs, confirming that an offshore salt cavern based LNG terminal would have lower capital and operating costs than a similarly sized offshore tank based terminal. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or purposeful damage, and much more acceptable to the community. More than thirty industry participants provided cost sharing, technical expertise, and guidance in the conduct and evaluation of the field tests, facility design and operating and cost estimates. Their close participation has accelerated the industry's acceptance of the conclusions of this research. The industry participants also developed and submitted several alternative designs for offshore mooring and for high pressure LNG heat exchangers in addition to those that were field tested in this project. HNG Storage, a developer, owner, and operator of natural gas storage facilities, and a participant in the DOE research has announced they will lead the development of the first offshore salt cavern based LNG import facility. Which will be called the Freedom LNG Terminal. It will be located offshore Louisiana, and is expected to be jointly developed with other members of the research group yet to be named. An offshore port license application is scheduled to be filed by fourth quarter 2005 and the terminal could be operational by 2009. This terminal allows the large volume importa

  12. LNG annotated bibliography

    SciTech Connect (OSTI)

    Bomelburg, H.J.; Counts, C.A.; Cowan, C.E.; Davis, W.E.; DeSteese, J.G.; Pelto, P.J.

    1982-09-01T23:59:59.000Z

    This document updates the bibliography published in Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: third status report (PNL-4172) and is a complete listing of literature reviewed and reported under the LNG Technical Surveillance Task. The bibliography is organized alphabetically by author.

  13. SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG...

    Broader source: Energy.gov (indexed) [DOE]

    CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A October 2014 More Documents & Publications...

  14. LNG Monthly Report - August 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Monthly Report - August 2014 LNG Monthly Report - August 2014 LNG Monthly Report - August 2014 Aug14LNG.pdf More Documents & Publications LNG Annual Report - 2013 LNG Annual Report...

  15. Annova LNG, LLC- 14-004-CIC

    Broader source: Energy.gov [DOE]

    Application of Annova LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Request for Expedited Treatment.

  16. Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG Project LLC submits this application requesting long-term authorization to export 20...

  17. SCT&E LNG, LLC- 14-98-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed July 24, 2014, by SCT&E LNG, LLC (SCT&E), seeking a long-term multi-contract authorization to export domestically...

  18. SEMI-ANNUAL REPORTING REQUIREMENTS (LNG EXPORTERS) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    SEMI-ANNUAL REPORTING REQUIREMENTS (LNG EXPORTERS) SEMI-ANNUAL REPORTING REQUIREMENTS (LNG EXPORTERS) Companies with authorizations to export LNG are required to file, on a...

  19. Renewable, Green LNG: Update on the World's Largest Landill Gass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG Plant Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG Plant Presentation at the...

  20. Recommended research on LNG safety

    SciTech Connect (OSTI)

    Carpenter, H.J.; Gilmore, F.R.

    1981-03-01T23:59:59.000Z

    The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

  1. SCT&E LNG, LLC - FE Dkt. No. 14-98-LNG | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    FE Dkt. No. 14-98-LNG SCT&E LNG, LLC - FE Dkt. No. 14-98-LNG The Office of Fossil Energy gives notice of receipt of an Application filed July 24, 2014, by SCT&E LNG, LLC (SCT&E),...

  2. SEMI-ANNUAL REPORTS FOR LNG DEVELOPMENT COMPANY, LLC (D/B/A Oregon...

    Broader source: Energy.gov (indexed) [DOE]

    LNG DEVELOPMENT COMPANY, LLC (DBA Oregon LNG) - FE DKT. NO. 12-48-LNG - ORDER 3100 SEMI-ANNUAL REPORTS FOR LNG DEVELOPMENT COMPANY, LLC (DBA Oregon LNG) - FE DKT. NO. 12-48-LNG...

  3. LNG Reports | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2 LNG Annual ReportVesselLNG

  4. Phase I (CATTS Theory), Phase II (Milne Point), Phase III (Hydrate Ridge)

    SciTech Connect (OSTI)

    None

    2009-10-31T23:59:59.000Z

    This study introduces a new type of â??cumulative seismic attributeâ?ť (CATT) which quantifies gas hydrates resources in Hydrate Ridge offshore Oregon. CATT is base on case-specific transforms that portray hydrated reservoir properties. In this study we used a theoretical rock physics model to correct measured velocity log data.

  5. A. G. A. LNG information book, 1981. [American Gas Association

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    After reviewing the historical background of LNG development worldwide, A.G.A. discusses LNG feed preparation, liquefaction cycles, storage, pumpout, vaporization, and transportation. Other sections cover the factors to consider in evaluating an LNG facility, where to find technical publications related to LNG, and LNG data-analysis methods, conversion factors, and constants.

  6. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

  7. Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project

    E-Print Network [OSTI]

    Manesh, M. H. K.; Mazhari, V.

    Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project Mohammad Hasan Khoshgoftar Manesh, Vahid Mazhari Iran Power Projects Management Company The combination of changing...

  8. American LNG Marketing LLC- FE Dkt. No. 15-19-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 3, 2015, by American LNG Marketing LLC (American LNG) requests long-term, multi-contract authorization to...

  9. Simulation and integration of liquefied natural gas (lng) processes

    E-Print Network [OSTI]

    Al-Sobhi, Saad Ali

    2009-05-15T23:59:59.000Z

    gas (LNG). When there is a considerable distance involved in transporting natural gas, LNG is becoming the preferred method of supply because of technical, economic, and political reasons. Thus, LNG is expected to play a major role in meeting...

  10. Large Neighborhood Search for LNG Inventory Routing

    E-Print Network [OSTI]

    2011-12-15T23:59:59.000Z

    From an operations perspective, managing an LNG project involves negotiating a delivery schedule ... The model can also be used to conduct “what-if” analysis.

  11. Large Neighborhood Search for LNG Inventory Routing

    E-Print Network [OSTI]

    Vikas Goel

    2012-02-03T23:59:59.000Z

    Feb 3, 2012 ... Abstract: Liquefied Natural Gas (LNG) is steadily becoming a common mode for commercializing natural gas. Due to the capital intensive ...

  12. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  13. Bear Head LNG Corporation and Bear Head LNG (USA), LLC FE Docket No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  14. Energy Department Conditionally Authorizes Oregon LNG to Export...

    Energy Savers [EERE]

    Energy Department Conditionally Authorizes Oregon LNG to Export Liquefied Natural Gas Energy Department Conditionally Authorizes Oregon LNG to Export Liquefied Natural Gas July 31,...

  15. Energy Department Conditionally Authorizes Cameron LNG to Export...

    Broader source: Energy.gov (indexed) [DOE]

    Conditionally Authorizes Cameron LNG to Export Liquefied Natural Gas Energy Department Conditionally Authorizes Cameron LNG to Export Liquefied Natural Gas February 11, 2014 -...

  16. Parallel Large-Neighborhood Search Techniques for LNG Inventory ...

    E-Print Network [OSTI]

    2014-04-17T23:59:59.000Z

    transport of LNG in large ships to markets, re-gasification of LNG, and injection into ...... International energy outlook 2011: Us energy information administration.

  17. Effect of under-inhibition with methanol and ethylene glycol on the hydrate control process

    SciTech Connect (OSTI)

    Yousif, M.H.

    1996-12-31T23:59:59.000Z

    Hydrate control can be achieved by chemical injection. Currently, methanol and ethylene glycol are the most widely used inhibitors in offshore hydrate control operations. To achieve effective hydrate inhibition, a sufficient amount of inhibitor must be injected to shift the thermodynamic equilibrium condition for hydrate formation outside the pipeline operating pressure and temperature. Recently published field experiments showed that hydrate blockages form more readily in under-inhibited systems than in systems completely without inhibitor. A laboratory study is conducted to determine the effect of low concentration (1--5wt%) methanol and ethylene glycol on the hydrate formation process. The results show that, although these chemicals are effective hydrate inhibitors when added in sufficient quantities, they actually enhance the rate of hydrate formation when added at low concentrations to the water. Furthermore, the presence of these chemicals seems to affect the size of the forming hydrate particles.

  18. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01T23:59:59.000Z

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  19. Study of gelled LNG. Final technical report

    SciTech Connect (OSTI)

    Rudnicki, M I; Cabeal, J A; Hoffman, L C; Newton, R A; Schaplowsky, R K; Vander Wall, E M

    1980-01-01T23:59:59.000Z

    Research involved the characterization of gelled LNG (GELNG) with respect to process, flow, and use properties and an examination of the degree of safety enhancement attainable by gelation. The investigation included (1) an experimental examination of gel properties and gel safety characteristics as well as (2) an analytical study involving the economics and preliminary design of an industrial scale gelation system. The safety-related criterion for successful application of gelled LNG is the substantial reduction of the Maximum Distance to the Lower Flammability Limit, MDLFL. This will be achieved by first, gel-inhibition of the hydrodynamic pooling and spreading of the spill, and second, the suppressed thermal transport properties of the GELNG relative to those of LNG. The industrial scale gelation study evaluated a design capable of producing 11,000 gallons (LNG tank truck) of gel in two hours. The increased cost of gelation using this equipment was estimated at $0.23/10/sup 6/ Btu for plants with liquefaction facilities. The technical results of this study are supportive of the conclusion that gelation of LNG will reduce, relative to ungelled LNG, the hazard associated with a given size spill. Parameters of interest to the LNG facility operator (such as pumpability) are not significantly affected by gelation, and the impact on LNG delivery cost appears to be small, about 5%. Thus, the initial assumption that gelation would provide a practical means to enhance safety is supported by the results of this study. Larger scale, comparative spill tests of LNG and GELNG are now required to confirm the safety aspects of use of the gelled material.

  20. SIGNIFICANT EVENTS IN THE HISTORY OF LNG 1914 First (U.S.) patent awarded for LNG handling/shipping.

    E-Print Network [OSTI]

    /shipping. 1917 First commercial natural gas liquefaction plant built in West Virginia. 1944 At an LNG peak storage facility. #12;1999 LNG liquefaction plant opens in Trinidad and Tobago. First LNG shipment from Pelican. Explosions and fire destroy a portion of the LNG liquefaction plant in Skikda, Algeria, killing

  1. Raley's LNG Truck Site Final Data Report

    SciTech Connect (OSTI)

    Battelle

    1999-07-01T23:59:59.000Z

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  2. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt. No.- 15-33-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 25, 2015, by Bear Head LNG, requesting long-term multi-contract authority as further described in their...

  3. Sandia National Laboratories: Offshore Wind RD&D: Large Offshore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Offshore Rotor Development Offshore Wind RD&D: Large Offshore Rotor Development Overview Sandia National Laboratories Wind Energy Technologies Department, creates and...

  4. Bound Improvement for LNG Inventory Routing

    E-Print Network [OSTI]

    2013-10-29T23:59:59.000Z

    the business cases and common characteristics for LNG inventory routing can be seen ... incumbent solutions are developed to solve this model more efficiently. ...... associated voyage (v,a) can be selected depends on the resource availability

  5. ,"California Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural Gas Expected FutureTotal OffshorePriceLNG

  6. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    SciTech Connect (OSTI)

    Collett, T.S. (USGS); Riedel, M. (McGill Univ., Montreal, Quebec, Canada); Cochran, J.R. (Columbia Univ., Palisades, NY); Boswell, R.M.; Kumar, Pushpendra (Oil and Natural Gas Corporation Ltd., Navi Mumbai, India); Sathe, A.V. (Oil and Natural Gas Corporation Ltd., Uttaranchal, INDIA)

    2008-07-01T23:59:59.000Z

    Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

  7. SEMI-ANNUAL REPORTS FOR TRUNKLINE LNG EXPORT, LLC - DK. NO. 13...

    Broader source: Energy.gov (indexed) [DOE]

    TRUNKLINE LNG EXPORT, LLC - DK. NO. 13-04-LNG - ORDER 3252 SEMI-ANNUAL REPORTS FOR TRUNKLINE LNG EXPORT, LLC - DK. NO. 13-04-LNG - ORDER 3252 April 2013 October 2013 April 2014...

  8. Bayesian-lopa methodology for risk assessment of an LNG importation terminal

    E-Print Network [OSTI]

    Yun, Geun-Woong

    2009-05-15T23:59:59.000Z

    LNG (Liquefied Natural Gas) is one of the fastest growing energy sources in the U.S. to fulfill the increasing energy demands. In order to meet the LNG demand, many LNG facilities including LNG importation terminals are operating currently...

  9. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  10. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

  11. Energy Department Authorizes Cameron LNG and Carib Energy to...

    Energy Savers [EERE]

    Cameron LNG and Carib Energy to Export Liquefied Natural Gas Energy Department Authorizes Cameron LNG and Carib Energy to Export Liquefied Natural Gas September 10, 2014 - 2:00pm...

  12. 2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Broader source: Energy.gov (indexed) [DOE]

    4 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas...

  13. 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Energy Savers [EERE]

    2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas...

  14. Detection and Production of Methane Hydrate

    SciTech Connect (OSTI)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31T23:59:59.000Z

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation.

  15. Annotated bibliography: LNG safety and environmental control research

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This bibliography provides brief summaries of literature related to LNG safety and environmental control, organized alphabetically by author.

  16. Comparative safety analysis of LNG storage tanks

    SciTech Connect (OSTI)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01T23:59:59.000Z

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  17. International Trade in Natural Gas: Golden Age of LNG?

    E-Print Network [OSTI]

    Gabrieli, John

    International Trade in Natural Gas: Golden Age of LNG? Yichen Du and Sergey Paltsev Report No. 271;1 International Trade in Natural Gas: Golden Age of LNG? Yichen Du* and Sergey Paltsev* Abstract The introduction of liquefied natural gas (LNG) as an option for international trade has created a market for natural gas where

  18. LNG FEM: Graded Meshes on Domains of Polygonal Structures

    E-Print Network [OSTI]

    Nistor, Victor

    LNG FEM: Graded Meshes on Domains of Polygonal Structures Hengguang Li and Victor Nistor Abstract. We develop LNG FEM, a software package for graded mesh generation and for solving elliptic equations. LNG FEM gen- erates user-specified graded meshes on arbitrary 2D domains with straight edges

  19. LNG, Public Opinion and Decision-making: Conflict in Oregon

    E-Print Network [OSTI]

    Scott, Christopher

    LNG, Public Opinion and Decision-making: Conflict in Oregon Lisa MB Harrington Kansas State University #12;2 LNG · Liquified Natural Gas · Natural gas condensed into a liquid by cooling to about -163º;· LNG is considered cleaner than coal and petroleum- based fuels, but development also poses issues

  20. LNG Annual Report - 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX Office of Legacy6 LNG Annual8 LNG

  1. LNG Annual Report - 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX Office of Legacy6 LNG Annual8 LNG9

  2. LNG Annual Report - 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX Office of Legacy6 LNG Annual81 LNG

  3. LNG Annual Report - 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX Office of Legacy6 LNG Annual81 LNG2

  4. WINDExchange Offshore Wind Webinar: Transmission Planning and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

  5. Louisiana LNG Energy LLC – FE Dkt. No. 14-19-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 5, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term multi-contract authorization to export...

  6. G2 LNG LLC- FE Dkt. No. 15-45-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 19, 2015, by G2 LNG LLC (G2), seeking a long-term multi-contract authorization to export domestically produced...

  7. Venture Global Calcasieu Pass, LLC- (Formerly Venture Global LNG, LLC)- 14-88-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on May 13, 2014, by Venture Global LNG, LLC (VGP) requesting long-term, multi-contract authority to export (in addition...

  8. G2 LNG LLC- FE Dkt. No. 15-44-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 19 2015, by G2 LNG LLC (G2), seeking a long-term, multi-contract authorization to export domestically produced...

  9. CAMERON LNG, LLC- FE DKT. NO. 15-36-LNG (FTA)

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed February 23, 2015, by Cameron LNG, LLC (Cameron), seeking a long-term multi-contract authorization to export domestically...

  10. An Overview Study of LNG Release Prevention

    Office of Scientific and Technical Information (OSTI)

    or liquid LNG system could crack the decks or r e s u l t in f i r e hazards, special care i s taken t o ensure t h a t the possibility of leaks i s minimized. All valves in...

  11. EIS-0511: Aguirre Offshore GasPort Project, Puerto Rico

    Broader source: Energy.gov [DOE]

    FERC prepared an EIS with 10 cooperating agencies, including DOE, for the proposed Aguirre Offshore GasPort Project. The proposal would include construction and operation of a marine LNG-receiving facility about 1 mile outside of Jobos Bay, near the towns of Salinas and Guayama, Puerto Rico, and a 4-mile subsea pipeline connecting to the Aguirre Plant in Salinas. Additional information is available from the FERC website (www.ferc.gov); at the eLibrary link, click on “General Search” and enter docket number CP13-193.

  12. Hydrate-phobic surfaces

    E-Print Network [OSTI]

    Smith, Jonathan David, S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for ultra deep-sea production. Current methods for hydrate mitigation focus on injecting thermodynamic ...

  13. Sandia National Laboratories: Offshore Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Offshore Publications Jason Magalen, Craig Jones, and Jesse Roberts, Offshore Wind Guidance Document: Oceanography and Sediment Stability, Development of a Conceptual...

  14. High efficiency Brayton cycles using LNG

    DOE Patents [OSTI]

    Morrow, Charles W. (Albuquerque, NM)

    2006-04-18T23:59:59.000Z

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  15. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 11-161-LNG On November 15, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE)...

  16. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTI...

    Broader source: Energy.gov (indexed) [DOE]

    FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE...

  17. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...

    Broader source: Energy.gov (indexed) [DOE]

    EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER 2913 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER...

  18. Application of Computational Fluid Dynamics in the Forced Dispersion Modeling of LNG Vapor Clouds

    E-Print Network [OSTI]

    Kim, Byung-Kyu

    2013-05-31T23:59:59.000Z

    The safety and security of liquefied natural gas (LNG) facilities has prompted the need for continued study of LNG mitigation systems. Water spray systems are widely recognized as an effective measure for dispersing LNG vapor clouds. Currently...

  19. SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION...

    Broader source: Energy.gov (indexed) [DOE]

    - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-161-LNG - ORDER 3282 SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT....

  20. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG On May 17, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE) issued...

  1. EIS-0487: Freeport LNG Liquefaction Project, Brazoria County, Texas

    Broader source: Energy.gov [DOE]

    Federal Energy Regulatory Commission (FERC) prepared an EIS to analyze the potential environmental impacts of a proposal to construct and operate the Freeport Liquefied Natural Gas (LNG) Liquefaction Project, which would expand an existing LNG import terminal and associated facilities in Brazoria County, Texas, to enable the terminal to liquefy and export LNG. DOE, Office of Fossil Energy – a cooperating agency in preparing the EIS – has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  2. ,"New York Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","227...

  3. ,"New York Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  4. Heat Generation by Heat Pump for LNG Plants.

    E-Print Network [OSTI]

    Moe, Bjřrn Kristian

    2011-01-01T23:59:59.000Z

    ?? Abstract The LNG production plant processing natural gas from the Snřhvit field outside Hammerfest in northern Norway utilizes heat and power produced locally with… (more)

  5. Parallel Large-Neighborhood Search Techniques for LNG Inventory ...

    E-Print Network [OSTI]

    Badrinarayanan Velamur Asokan

    2014-04-17T23:59:59.000Z

    Apr 17, 2014 ... Parallel Large-Neighborhood Search Techniques for LNG Inventory Routing. Badrinarayanan Velamur Asokan(badri.velamur.asokan ***at*** ...

  6. SCT&E LNG, LLC - FE Dkt. No. 14-72-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT. NO. 14-98-LNG NFTA SCT&E LNG, LLC -

  7. SCT&E LNG, LLC - FE Dkt. No. 14-89-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT. NO. 14-98-LNG NFTA SCT&E LNG, LLC

  8. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  9. E-Print Network 3.0 - american lng projects Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of gas working paper series Summary: the Mediterranean with Sonatrach and potential French partners. However, by the mid-1980s two LNG import projects... The company's first LNG...

  10. LNG_v11_appendixupdate.qxd

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2 LNG Annualn d e r s t a n

  11. LNG Annual Report - 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX Office of Legacy6 LNG Annual Report

  12. LNG Annual Report - 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX Office of Legacy6 LNG Annual

  13. LNG Annual Report - 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX Office of Legacy6 LNG Annual8

  14. LNG Annual Report - 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX Office of Legacy6 LNG Annual81

  15. Chemically reacting plumes, gas hydrate dissociation and dendrite solidification

    E-Print Network [OSTI]

    Conroy, Devin Thomas

    2008-01-01T23:59:59.000Z

    II Gas hydrates Introductionto gas hydrates . . . . . . . . . . 1.127 Gas hydrate dissociation in porous media . 1.

  16. Single-cycle mixed-fluid LNG process Part II: Optimal operation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Single-cycle mixed-fluid LNG process Part II: Optimal operation Jørgen Bauck Jensen and Sigurd of work that goes into the design of LNG processes, there is surprisingly little attention simple LNG process, namely the PRICO process. Keywords: PRICO, LNG, operation 1 Introduction The process

  17. Energy from Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Ram, B.

    2006-02-01T23:59:59.000Z

    This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

  18. X-ray Scanner for ODP Leg 204: Drilling Gas Hydrates on Hydrate Ridge, Cascadia Continental Margin

    E-Print Network [OSTI]

    Freifeld, Barry; Kneafsey, Tim; Pruess, Jacob; Reiter, Paul; Tomutsa, Liviu

    2002-01-01T23:59:59.000Z

    International Conference of Gas Hydrates, Yokohama, Japan.Prospectus, Drilling Gas Hydrates On Hydrate Ridge, CascadiaLeg 204: Drilling Gas Hydrates on Hydrate Ridge, Cascadia

  19. Methane Hydrate Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Report to Congress | Page 13 Hutchinson, D., Ruppel, C., Roberts, H., Carney, R., Smith, M., 2011. Gas hydrates in the Gulf of Mexico. In Gulf of Mexico Origin, Waters, and...

  20. New energy saving system for future LNG carriers

    SciTech Connect (OSTI)

    Kahara, Susumu; Suetake, Yoshihiro [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Ishimaru, Junshiro; Hiraoka, Kazuyoshi [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan)

    1994-12-31T23:59:59.000Z

    Steam turbine plant, which burns BOG (Boil-Off Gas) as fuel, has bene installed for LNG carriers with the necessity of disposing BOG safely. Are other plants unpractical for LNG carriers? To answer to this question, this paper evaluates (1) dual fuel diesel, (2) diesel with reliquefaction plant, (3) diesel with auxiliary boiler and power assist motor, (4) gas turbine/steam turbine and (5) steam turbine with CRP (Contra Rotating Propeller) from several aspects, such as safety and reliability, maintainability and operability, economy and effect on environment. Based on the above studies, this paper proposes Steam turbine with CRP plant as a new energy saving system for future LNG carriers.

  1. Marine electromagnetic methods for gas hydrate characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen Andrea

    2008-01-01T23:59:59.000Z

    1.2 Gas Hydrates . . . . . . . .1.2.1 Distribution of Gas Hydrates . . . . . . . . . . .1.2.2 Importance of Gas Hydrates . . . . .

  2. Marine Electromagnetic Methods for Gas Hydrate Characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen A

    2008-01-01T23:59:59.000Z

    1.2 Gas Hydrates . . . . . . . .1.2.1 Distribution of Gas Hydrates . . . . . . . . . . .1.2.2 Importance of Gas Hydrates . . . . .

  3. Four Critical Needs to Change the Hydrate Energy Paradigm from Assessment to Production: The 2007 Report to Congress by the U.S. Federal methane Hydrate Advisory Committee

    SciTech Connect (OSTI)

    Mahajan,D.; Sloan, D.; Brewer, P.; Dutta, N.; Johnson, A.; Jones, E.; Juenger, K.; Kastner, M.; Masutani, S.; Swenson, R.; Whelan, J.; Wilson, s.; Woolsey, R.

    2009-03-11T23:59:59.000Z

    This work summarizes a two-year study by the U.S. Federal Methane Hydrate Advisory Committee recommending the future needs for federally-supported hydrate research. The Report was submitted to the US Congress on August 14, 2007 and includes four recommendations regarding (a) permafrost hydrate production testing, (b) marine hydrate viability assessment (c) climate effect of hydrates, and (d) international cooperation. A secure supply of natural gas is a vital goal of the U.S. national energy policy because natural gas is the cleanest and most widely used of all fossil fuels. The inherent cleanliness of natural gas, with the lowest CO2 emission per unit of heat energy of any fossil fuel, means substituting gas for coal and fuel oil will reduce emissions that can exacerbate the greenhouse effect. Both a fuel and a feedstock, a secure and reasonably priced supply of natural gas is important to industry, electric power generators, large and small commercial enterprises, and homeowners. Because each volume of solid gas hydrate contains as much as 164 standard volumes of methane, hydrates can be viewed as a concentrated form of natural gas equivalent to compressed gas but less concentrated than liquefied natural gas (LNG). Natural hydrate accumulations worldwide are estimated to contain 700,000 TCF of natural gas, of which 200,000 TCF are located within the United States. Compared with the current national annual consumption of 22 TCF, this estimate of in-place gas in enormous. Clearly, if only a fraction of the hydrated methane is recoverable, hydrates could constitute a substantial component of the future energy portfolio of the Nation (Figure 1). However, recovery poses a major technical and commercial challenge. Such numbers have sparked interest in natural gas hydrates as a potential, long-term source of energy, as well as concerns about any potential impact the release of methane from hydrates might have on the environment. Energy-hungry countries such as India and Japan are outspending the United States on hydrate science and engineering R&D by a factor of 10, and may bring this resource to market as much as a decade before the United States.

  4. Pangea LNG (North America) Holdings, LLC- 14-002-CIC (FE Dkt. No. 12-184-LNG New Company Name: NextDecade Partnerss, LLC)

    Broader source: Energy.gov [DOE]

    Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North America) Holdings, LLC and a Revision of the Point from which the...

  5. Offshore Renewable Energy Solutions

    E-Print Network [OSTI]

    power ­ to meet its target of achieving 15% of energy consumption from renewable sources by 2020. CefasOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre and maximise resource input on field and lab-based studies ­ saving you time and money.Recognised expertise

  6. Renewable LNG: Update on the World's Largest Landfill Gas to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NRELDOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado....

  7. International Trade in Natural Gas: Golden Age of LNG?

    E-Print Network [OSTI]

    Du, Y.

    The introduction of liquefied natural gas (LNG) as an option for international trade has created a market for natural gas where global prices may eventually be differentiated by the transportation costs between world ...

  8. Chevron U.S.A. Inc.- 14-119-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed August 27, 2014 by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural gas (LNG)...

  9. California's LNG Terminals: The Promise of New Gas Supplies

    Broader source: Energy.gov [DOE]

    Presentation covers California's LNG terminals and is given at the Federal Utility Partnership Working Group (FUPWG) Fall Meeting, held on November 28-29, 2007 in San Diego, California.

  10. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Why offshore wind energy? Offshore wind turbines have theturbine will also uncover potential problems that exist with offshore wind energy.

  11. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01T23:59:59.000Z

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  12. EIS-0509: Mississippi River LNG Project, Plaquemines Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EIS that analyzes the potential environmental impacts of proposed liquefied natural gas (LNG) export terminal facilities in Plaquemines Parish, Louisiana. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  13. EIS-0508: Downeast LNG Import-Export Project, Robbinston, Maine

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EIS that analyzes the potential environmental impacts of proposed liquefied natural gas (LNG) import and export terminal facilities in Washington County, Maine. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  14. Attitudes toward offshore oil development: A summary of current evidence

    E-Print Network [OSTI]

    Gramling, R; Freudenburg, Wm R

    2006-01-01T23:59:59.000Z

    Press; 1968. [11] Offshore Staff. Deep sea drillingproject completes second leg. Offshore 1969:67–72. [12] Weeks LG. Offshore operations around the world. Offshore

  15. SEMI-ANNUAL REPORT MAGNOLIA LNG LLC FE DKT. NO. 13-131-LNG - ORDER 3406 |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving Loan FundsDepartment of Energy MAGNOLIA LNG

  16. SEMI-ANNUAL REPORTS FOR WALLER LNG SERVICES, LLC D/B/A WALLER POINT LNG -

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving Loan FundsDepartment ofNO.FE DKT. NO. 12-152-LNG

  17. Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1CubicVehicle0 0ThousandGulf LNG,

  18. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Electric Drivetrain Electric Drivetrain Conv. DieselDiesel Hyb. Conv. LNG-SI LNG-SI Hyb. Conv. LNG-CI LNG-CICompression Ignition Carbon Dioxide Diesel Gallon Equivalent

  19. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Electric Drivetrain Conv. Diesel Diesel Hyb. Conv. LNG-SI LNG-SI Hyb.Conv. LNG-CI LNG-CI Hyb. Battery EV Fuel Cell Short Haul

  20. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  1. Section 999 Program Library | Department of Energy

    Office of Environmental Management (EM)

    on Facebook Fossil Energy on Twitter Sign up for NewsAlerts Fossil Energy RSS Feeds Clean Coal Carbon Capture and Storage Oil & Gas Methane Hydrate LNG Offshore Drilling Enhanced...

  2. LNG cascading damage study. Volume I, fracture testing report.

    SciTech Connect (OSTI)

    Petti, Jason P.; Kalan, Robert J.

    2011-12-01T23:59:59.000Z

    As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

  3. Recordkeeping for Offshore Course Offerings Guideline

    E-Print Network [OSTI]

    Guideline Recordkeeping for Offshore Course Offerings Guideline Policy Supported: Recordkeeping and operation of Offshore Courses. Contact Officer: Manager, Records Management Phone: 9360 2162 Printed copies outlines responsibilities for managing records in all formats associated with Offshore Courses

  4. Cost of Offshore Wind Energy Charlene Nalubega

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Cost of Offshore Wind Energy and Industrial Engineering The focus of my research is to estimate the cost of floating offshore wind turbines water as well as on land based wind farms. The specific offshore wind energy case under consideration

  5. 44 MArch 2006 Can offshore aquaculture

    E-Print Network [OSTI]

    Miami, University of

    44 MArch 2006 Can offshore aquaculture of carnivorous fish be sustainable? Case studies from opera- tions further offshore. The United States is paving the technological road to sustainable development of offshore aquaculture through university-industry-government partnerships. Emerging technology

  6. Offshore Aquaculture in the United States

    E-Print Network [OSTI]

    Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities). 2008. Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities;Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities Prepared

  7. Japan Completes First Offshore Production Test .............................1

    E-Print Network [OSTI]

    1 CONTENTS Japan Completes First Offshore Production Test .............................1 New Reservoirs in the Offshore Caribbean Region of Colombia..........................................7 CSEM Survey of a Methane Vent Site, Offshore West Svalbard...12 Pressure Core Analysis Tools Used

  8. Pangea LNG (North America) Holdings, LLC - 14-003-CIC | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North America) Holdings, LLC to Next Decade Partners,...

  9. Pangea LNG (North America) Holdings, LLC - 14-003-CIC | Department...

    Broader source: Energy.gov (indexed) [DOE]

    America) Holdings, LLC - 14-003-CIC Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North...

  10. Pangea LNG (North America) Holdings, LLC - 14-002-CIC | Department...

    Broader source: Energy.gov (indexed) [DOE]

    America) Holdings, LLC - 14-002-CIC Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North...

  11. CE FLNG, LLC - FE DKT. NO. 12-123-LNG - ORDER 3193 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    CE FLNG, LLC - FE DKT. NO. 12-123-LNG - ORDER 3193 CE FLNG, LLC - FE DKT. NO. 12-123-LNG - ORDER 3193 No reports submitted for this docket. More Documents & Publications...

  12. Energy Department Announces Offshore Wind Demonstration Awardees...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will help address key challenges associated with installing utility-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

  13. Accelerating Offshore Wind Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and support innovative offshore installations for commercial deployment by 2017. Offshore wind is a large, untapped energy resource, with the potential to generate 4,000 gigawatts...

  14. Offshore Wind Potential Tables

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNews Wind CollegiateOffshore wind

  15. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01T23:59:59.000Z

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  16. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  17. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect (OSTI)

    Jerry Havens; Iraj A. Salehi

    2005-02-21T23:59:59.000Z

    This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.

  18. Single-cycle mixed-fluid LNG process Part I: Optimal design

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Single-cycle mixed-fluid LNG process Part I: Optimal design Jørgen Bauck Jensen and Sigurd the design optimization of a relatively simple LNG pro- cess; the PRICO process. A simple economic objective. Keywords: PRICO, LNG, design 1 Introduction Stebbing and O'Brien (1975) reported on the performance

  19. LNG FEM: GENERATING GRADED MESHES AND SOLVING ELLIPTIC EQUATIONS ON 2-D DOMAINS OF POLYGONAL STRUCTURES

    E-Print Network [OSTI]

    LNG FEM: GENERATING GRADED MESHES AND SOLVING ELLIPTIC EQUATIONS ON 2-D DOMAINS OF POLYGONAL, Minnesota 55455­0436 Phone: 612-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu #12;LNG FEM AND VICTOR NISTOR Abstract. We develop LNG FEM, a software package for graded mesh gen- eration

  20. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) announced its intent to prepare an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Jackson County Mississippi and modify related facilities to enable the terminal to liquefy natural gas for export. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  1. Comparison of CNG and LNG technologies for transportation applications

    SciTech Connect (OSTI)

    Sinor, J.E. (Sinor (J.E.) Consultants, Inc., Niwot, CO (United States))

    1992-01-01T23:59:59.000Z

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  2. Analysis of LNG peakshaving-facility release-prevention systems

    SciTech Connect (OSTI)

    Pelto, P.J.; Baker, E.G.; Powers, T.B.; Schreiber, A.M.; Hobbs, J.M.; Daling, P.M.

    1982-05-01T23:59:59.000Z

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems were evaluated.

  3. SCT&E LNG, LLC - FE DKT. NO. 14-98-LNG NFTA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT. NO. 14-98-LNG NFTA SCT&E LNG, LLC - FE

  4. Rapid gas hydrate formation process

    DOE Patents [OSTI]

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15T23:59:59.000Z

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  5. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12T23:59:59.000Z

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  6. Cours Titre Professeur Horaire Local examen LNG 1010 Langage et cognition Daniel Valois Jeudi 16 h 19 h

    E-Print Network [OSTI]

    Parrott, Lael

    Local Cours Titre Professeur Horaire Local examen LNG 1010 Langage et cognition Daniel Valois Jeudi 16 h à 19 h LNG 1080 Lexicologie, sémantique et morphologie Mireille Tremblay Vendredi 8 h 30 à 11 h 30 LNG 1120 Histoire de la langue française Lundi 8 h 30 à 11 h 30 LNG 1125 Temps et espaces

  7. CONMOW: Condition Monitoring for Offshore Wind Farms

    E-Print Network [OSTI]

    Edwin Wiggelinkhuizen; Theo Verbruggen; Henk Braam; Luc Rademakers; Miguel Catalin Tipluica; Andrew Maclean; Axel Juhl Christensen; Edwin Becker; Pr?ftechnik Cm Gmbh (d; Dirk Scheffler; Nordex Energy Gmbh (d

    practice the European project CONMOW (Condition Monitoring for Offshore Wind Farms) was started in November

  8. Conceptual Liquefied Natural Gas (LNG) terminal design for Kuwait

    E-Print Network [OSTI]

    Aljeeran, Fares

    2006-08-16T23:59:59.000Z

    containment systems (Pepper and Shah 2004) ..............................................5 6. Single containment tanks (UH IELE 2003b).........................................................................5 7. Double containment tanks (UH IELE 2003b...)........................................................................7 8. Full containment tanks (UH IELE 2003b).............................................................................7 9. Underground LNG storage tank (UH IELE 2003b)...............................................................7 10. Three...

  9. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01T23:59:59.000Z

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  10. Analysis of LNG import terminal release prevention systems

    SciTech Connect (OSTI)

    Baker, E G

    1982-04-01T23:59:59.000Z

    The release prevention systems of liquefied natural gas (LNG) import terminal were analyzed. A series of potential release scenarios were analyzed to determine the frequency of the release events, the probability these releases are not stopped or isolated by emergency shutdown systems, the estimated release quantities, and the critical components of the system. The two plant areas identified as being most significant with respect to safety are the unloading system and the storage system. Rupture of the main transfer line and gross failure of the storage tanks are the two release scenarios of primary safety interest. Reducing the rate of failure by improved design, better maintenance and testing, or adding redundancy of the critical system components for these plant areas and release scenarios will result in improved safety. Several design alternatives which have the potential to significantly reduce the probability of a large release of LNG occurring at an import terminal are identified. These design alternatives would reduce the probability of a large release of LNG by reducing the expected number of failures which could cause a release or by reducing the magnitude of releases that do occur. All of these alternatives are technically feasible and have been used or considered for use in at least one LNG facility. A more rigorous analysis of the absolute risk of LNG import terminal operation is necessary before the benefits of these design alternatives can be determined. In addition, an economic evaluation of these alternatives must be made so the costs and benefits can be compared. It is concludd that for remotely located facilities many of these alternatives are probably not justified; however, for facilities located in highly populated areas, these alternatives deserve serious consideration.

  11. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Frank Rack; Gerhard Bohrmann; Anne Trehu; Michael Storms; Derryl Schroeder; ODP Leg 204 Shipboard Scientific Party

    2002-09-30T23:59:59.000Z

    The primary accomplishment of the JOI Cooperative Agreement with DOE/NETL in this quarter was the deployment of tools and measurement systems on ODP Leg 204 to study hydrate deposits on Hydrate Ridge, offshore Oregon from July through September, 2002. During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to map estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which the process of gas hydrate formation is occurring. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: (1) the discovery that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally consistent results; (2) evidence for the importance of sediment properties for controlling the migration of fluids in the accretionary complex; (3) geochemical indications that the gas hydrate system at Hydrate Ridge contains significant concentrations of higher order hydrocarbons and that fractionation and mixing signals will provide important constraints on gas hydrate dynamics; and (4) the discovery of very high chlorinity values that extend for at least 10 mbsf near the summit, indicating that hydrate formation here must be very rapid.

  12. methane hydrate science plan-final.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Principal Authors: Consor um for Ocean Leadership and the Methane Hydrate Project Science Team December 2013 DOE Award Number: DE-FE0010195 Project Title: Methane Hydrate...

  13. Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm

    E-Print Network [OSTI]

    Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm #12;Prepared for: ELSAM A/S, Overgade 45 prior to the construction of an offshore wind farm at Horns Rev, situated approximately 15 km off

  14. 4, 9931057, 2007 Methane hydrate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 993­1057, 2007 Methane hydrate stability and anthropogenic climate change D. Archer Title Discussions Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Methane 2007 Correspondence to: D. Archer (d-archer@uchicago.edu) 993 #12;BGD 4, 993­1057, 2007 Methane hydrate

  15. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

  16. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Enabling New Markets for Offshore Wind Energy." Proc. ofand Laura Parsons. Offshore Wind Energy. Washingto, DC:Challenges for Floating Offshore Wind Turbines. Tech. no.

  17. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2013-07-01T23:59:59.000Z

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  18. Dual fuel development for an LNG marine engine

    SciTech Connect (OSTI)

    Acker, G.H.

    1988-01-01T23:59:59.000Z

    A dual-fuel conversion for the 3406-B Caterpillar marine diesel engine has been developed. The purpose of this conversion is to use lower priced natural gas as a fuel, thus providing substantial cost savings for large fuel consumers. Details of the conversion system are given. Data is presented showing fuel consumption, conditions leading to engine knock, conditions promoting methane flame propagation, and air-fuel ratios required for efficient combustion. The system resulting from this study will use Liquefied Natural Gas (LNG) to power a dual-fuel conversion of a shrimp boat's main engine and generator set. The cold temperatures of the LNG will also be used as a heat sink to refrigerate the fish-hold area of the boat.

  19. Experiments for the Measurement of LNG Mass Burning Rates

    E-Print Network [OSTI]

    Herrera Gomez, Lady Carolina

    2012-07-16T23:59:59.000Z

    ..................................................................................... 21#1; 3.2#1; Facilities .......................................................................................... 22#1; 3.3#1; Instrumentation and equipment....................................................... 23 vii Page 3.4#1; Procedure... by natural gas. LNG is a sound option for meeting increasing global natural gas demand. to continue growth through 2030 Figure 1. U.S. Energy consumption by fuel By September 2002, about 113 facilities were reported to be operating in the U...

  20. SUESS ET AL.: SEA FLOOR METHANE HYDRATES AT HYDRATE RIDGE, CASCADIA MARGIN Sea Floor Methane Hydrates at Hydrate Ridge, Cascadia Margin

    E-Print Network [OSTI]

    Goldfinger, Chris

    SUESS ET AL.: SEA FLOOR METHANE HYDRATES AT HYDRATE RIDGE, CASCADIA MARGIN 1 Sea Floor Methane are exposed at the sea floor. A methane-oxidizing bacterial consortium populates the exposures of hydrate; colonies of vent macro-fauna are abundant as well. Discharge of methane from destabilized hydrate

  1. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  2. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  3. Hydrates represent gas source, drilling hazard

    SciTech Connect (OSTI)

    Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

    1997-12-01T23:59:59.000Z

    Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

  4. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Environmental Management (EM)

    New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

  5. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model. [Cyclic thermal injection

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01T23:59:59.000Z

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  6. AWEA Offshore Windpower Conference & Exhibition 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AWEA Offshore Windpower Conference & Exhibition 2014 AWEA Offshore Windpower Conference & Exhibition 2014 October 7, 2014 12:00PM EDT to October 8, 2014 9:00PM EDT Atlantic City,...

  7. Infauna Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 #12;Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 Published: 13 May 2004 Prepared: Michael Bech

  8. American Wind Energy Association Offshore WINDPOWER Conference...

    Broader source: Energy.gov (indexed) [DOE]

    Offshore WINDPOWER Conference & Exhibition American Wind Energy Association Offshore WINDPOWER Conference & Exhibition October 7, 2014 9:00AM EDT to October 8, 2014 5:00PM EDT AWEA...

  9. Mari Voldsund Exergy analysis of offshore

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Mari Voldsund Exergy analysis of offshore oil and gas processing Doctoral thesis for the degree my contact persons, helping out both with administrative issues, and with matters concerning offshore

  10. amerikaanse lng-projecten zetten: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amerikaanse lng-projecten zetten First Page Previous Page 1 Next Page Last Page Topic Index 1 Verschenen: Lans Bovenberg, Jean Frijn, Kees Goudswaard en Theo Nijman, 'Sociale...

  11. About Hercules Offshore Headquartered in Houston, Texas, Hercules Offshore serves the oil and

    E-Print Network [OSTI]

    Fisher, Kathleen

    About Hercules Offshore Headquartered in Houston, Texas, Hercules Offshore serves the oil and gas exploration, drilling and related maintenance tasks. Hercules Offshore operates in key oil producing sites at Hercules Offshore require precision control, global management and careful integration of both on

  12. Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm

    E-Print Network [OSTI]

    Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm #12;Prepared for: ELSAM A/S, Overgade 45 to establish an offshore wind farm with an output of 150 MW in the waters of Horns Rev, approximately 15 km off to some environmental guidelines for offshore wind farms prepared by the Dani

  13. Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore windfarms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore@globalnet.co.uk · WEB SITE: www.multi-science.co.uk #12;Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore windfarms R.J. Barthelmie1,2, J. Badger3, S.C. Pryor2, C.B. Hasager3, M

  14. MFR PAPER 1179 Offshore Headboat Fishing in

    E-Print Network [OSTI]

    MFR PAPER 1179 Offshore Headboat Fishing in North Carolina and South Carolina GENE R. HUNTSMAN. Bill Gulf Stream /I Mustang /I Comanche J. J. Operated in Fishing area t972 1973 OffShore X OUshore X X Ollshore X X Offshore X X Inshore X X Inshore X X Inshore X X Inshore X X Inshore X X Inshore X Inshore X X

  15. Ankndigung Stellenausschreibung Forschungsprojekt Offshore-Solutions

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Ankündigung Stellenausschreibung für das Forschungsprojekt Offshore-Solutions - Dienstleistungspotenziale von Werften und Reedereien als Lösungsanbieter während des Betriebs von Offshore Windparks und Reedereien in der Betriebsphase von Offshore-Windparks, ggf. bis zu einer Positionierung als

  16. OFFSHORE WIND FARMS Guidance note for Environmental

    E-Print Network [OSTI]

    OFFSHORE WIND FARMS Guidance note for Environmental Impact Assessment In respect of FEPA and CPA requirements Version 2 - June 2004 #12;Offshore Wind Farms: Guidance Note for Environmental Impact Assessment 2004 #12;Offshore Wind Farms: Guidance Note for Environmental Impact Assessment in Respect of FEPA

  17. The Offshore Services Global Value Chain

    E-Print Network [OSTI]

    Richardson, David

    The Offshore Services Global Value Chain ECONOMIC UPGRADING AND WORKFORCE DEVELOPMENT Karina & COMPETITIVENESS #12;The Offshore Services Global Value Chain: Economic Upgrading and Workforce Development "Skills & Competitiveness, Duke University Posted: November 17, 2011 #12;The Offshore Services Global Value Chain: Economic

  18. Offshore Wind Power Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Power Farm Environmental Impact Assessment on Water Quality #12;Prepared with a planned 150 MW offshore wind farm at Horns Rev, an assessment was made of the effects the wind farm would for the preparation of EIA studies for offshore wind farms." Horns Rev is situated off BlĂĄvands Huk, which is Denmark

  19. Offshore wind resource assessment through satellite images

    E-Print Network [OSTI]

    1 Slide no. 4 Offshore wind resource assessment through satellite images Charlotte Bay Hasager images for offshore wind ressource assessment in lieu of in-situ mast observations #12;4 Slide no Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps in the North

  20. A Simple Model of Offshore Outsourcing,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Simple Model of Offshore Outsourcing, Technology Upgrading and Welfare Jaewon JUNG THEMA Simple Model of Offshore Outsourcing, Technology Upgrading and Welfare Jaewon Jung and Jean Mercenier in the North as making explicit offshore outsourcing decisions to cheap-labor economies. Globalization results

  1. Offshore Wind Turbines: Some Technical Challenges

    E-Print Network [OSTI]

    Houlsby, Guy T.

    1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil of foundations for offshore structures. He also has a strong interest in the development of the fundamental

  2. Canadian offshore oil production solution gas utilization alternatives

    SciTech Connect (OSTI)

    Wagner, J.V.

    1999-07-01T23:59:59.000Z

    Oil and gas development in the Province of Newfoundland and Labrador is in its early stage and the offshore industry emphasis is almost exclusively on oil production. At the Hibernia field, the Gravity Base Structure (GBS) is installed and the first wells are in production. The Terra Nova project, based on a Floating Production Storage Offloading (FPSO) ship shaped concept, is in its engineering and construction stage and first oil is expected by late 2000. Several other projects, such as Husky's White Rose and Chevron's Hebron, have significant potential for future development in the same area. It is highly probably that these projects will employ the FPSO concept. It is also expected that the solution gas disposal issues of such second generation projects will be of more significance in their regulatory approval process and of such second generation projects will be of more significance in their regulatory approval process and the operators may be forced to look for alternatives to gas reinjection. Three gas utilization alternatives for a FPSO concept based project have been considered and evaluated in this paper: liquefied natural gas (LNG), compressed natural gas (CNG), and gas-to-liquids conversion (GTL). The evaluation and the relative ranking of these alternatives is based on a first pass screening type of study which considers the technical and economical merits of each alternative. Publicly available information and in-house data, compiled within Fluor Daniel's various offices, was used to establish the basic parameters.

  3. Response of oceanic hydrate-bearing sediments to thermal stresses

    E-Print Network [OSTI]

    Moridis, G.J.; Kowalsky, M.B.

    2006-01-01T23:59:59.000Z

    c) aqueous, gas and hydrate phase saturations, (d) waterIntrinsic Rate of Methane Gas Hydrate Decomposition”, Chem.Western Nankai Trough”, in Gas Hydrates: Challenges for the

  4. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    E-Print Network [OSTI]

    Kneafsey, T.J.

    2012-01-01T23:59:59.000Z

    permeability measurements of gas hydrate-bearing sediments,International Conference on Gas Hydrates, edited, p. 1058,2009), Influence of gas hydrate morphology on the seismic

  5. Strategies for gas production from oceanic Class 3 hydrate accumulations

    E-Print Network [OSTI]

    Moridis, George J.; Reagan, Matthew T.

    2007-01-01T23:59:59.000Z

    coexistence of aqueous, gas and hydrate phases, indicatingIntrinsic Rate of Methane Gas Hydrate Decomposition”, Chem.Makogon, Y.F. , “Gas hydrates: frozen energy,” Recherche

  6. Preliminary relative permeability estimates of methane hydrate-bearing sand

    E-Print Network [OSTI]

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

    2006-01-01T23:59:59.000Z

    gas production from gas hydrate reservoirs. We estimated theof gas production from gas hydrate reservoirs. Fieldpermeability function in gas hydrate-bearing sediments is

  7. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

  8. LNG (liquefied natural gas) in the Asia-Pacific region: Twenty years of trade and outlook for the future

    SciTech Connect (OSTI)

    Kiani, B.

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: the current status of LNG trade in the Asia-Pacific region; present structure and projected demand in the Asia-Pacific region; prospective and tentative projects; and LNG contracts: stability versus flexibility.

  9. Optimizingof Tangential Tool Shift in Gear Hobbing" Prof. Dr.-lng. habil. K.-D. Bouzakis (I), Aristoteles Universityof Thessaloniki;

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    Optimizingof Tangential Tool Shift in Gear Hobbing" Prof. Dr.-lng. habil. K.-D. Bouzakis (I), Aristoteles Universityof Thessaloniki; Assistant Prof. Dr.-lng. A. Antoniadis, Technological Educational

  10. Methane Hydrates: Major Energy Source for the Future or Wishful Thinking?

    SciTech Connect (OSTI)

    Thomas, Charles Phillip

    2001-09-01T23:59:59.000Z

    Methane hydrates are methane bearing, ice-like materials that occur in abundance in permafrost areas such as on the North Slope of Alaska and Canada and as well as in offshore continental margin environments throughout the world including the Gulf of Mexico and the East and West Coasts of the United States. Methane hydrate accumulations in the United States are currently estimated to be about 200,000 Tcf, which is enormous when compared to the conventional recoverable resource estimate of 2300 Tcf. On a worldwide basis, the estimate is 700,000 Tcf or about two times the total carbon in coal, oil and conventional gas in the world. The enormous size of this resource, if producible to any degree, has significant implications for U.S. and worldwide clean energy supplies and global environmental issues. Historically the petroleum industry's interests in methane hydrates have primarily been related to safety issues such as wellbore stability while drilling, seafloor stability, platform subsidence, and pipeline plugging. Many questions remain to be answered to determine if any of this potential energy resource is technically and economically viable to produce. Major technical hurdles include: 1) methods to find, characterize, and evaluate the resource; 2) technology to safely and economically produce natural gas from methane hydrate deposits; and 3) safety and seafloor stability issues related to drilling through gas hydrate accumulations to produce conventional oil and gas. The petroleum engineering profession currently deals with gas hydrates in drilling and production operations and will be key to solving the technical and economic problems that must be overcome for methane hydrates to be part of the future energy mix in the world.

  11. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30T23:59:59.000Z

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  12. Cours Titre Professeur Horaire Local examen LNG 6350 Morphologie Jean-Yves Morin Jeudi 16 h 19 h C-9019

    E-Print Network [OSTI]

    Parrott, Lael

    Local Cours Titre Professeur Horaire Local examen LNG 6350 Morphologie Jean-Yves Morin Jeudi 16 h à 19 h C-9019 LNG 6360 Phonologie Lundi 16 h à 19 h C-9019 LNG 6570 Neuro et psycholinguistique Gonia Jarema-Arvanitakis Mercredi 8 h 30 à 11 h 30 C-9019 LNG 6775 Sémantique François Lareau Mardi 8 h 30 à 11

  13. Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis

    E-Print Network [OSTI]

    Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis In the liquefied natural gas (LNG) shipping industry, the phenomenon of slosh- ing can lead to the occurrence. The parsimonious representation thus obtained proves to be very convenient for the simulation of mul- tivariate

  14. Computational fluid dynamics for LNG vapor dispersion modeling: a key parameters study

    E-Print Network [OSTI]

    Cormier, Benjamin Rodolphe

    2009-05-15T23:59:59.000Z

    The increased demand for liquefied natural gas (LNG) has led to the construction of several new LNG terminals in the United States (US) and around the world. To ensure the safety of the public, consequence modeling is used to estimate the exclusion...

  15. LNG Safety Research Report to Congress | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2 LNG Annual

  16. Annova LNG, LLC - 14-004-CIC | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 DocumentationAnalysisAnnova LNG, LLC - 14-004-CIC

  17. LNG Export Study - Related Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXX Office of Legacy6 LNG

  18. Cameron LNG LLC Final Order | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6CleanCaithness Shepherds FlatAwardCameron LNG LLC

  19. Cameron LNG LLC - 14-001-CIC | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical5/08February 29of Algae Crude Oil | DepartmentCameron LNG LLC -

  20. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Gas Hydrates? What Role Do Gas Hydrates Play in Nature? Theme 2 Gas Hydrates as a Potential Energy Resource Are Gas Hydrates a Potential Energy Source? How Big Is the...

  1. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Frank Rack; Michael Storms; Derryl Schroeder; Brandon Dugan; Peter Schultheiss; ODP Leg 204 Shipboard Scientific Party

    2002-12-31T23:59:59.000Z

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were (1) the preliminary postcruise evaluation of the tools and measurement systems that were used during ODP Leg 204 to study hydrate deposits on Hydrate Ridge, offshore Oregon from July through September 2002; and (2) the preliminary study of the hydrate-bearing core samples preserved in pressure vessels and in liquid nitrogen cryofreezers, which are now stored at the ODP Gulf Coast Repository in College Station, TX. During ODP Leg 204, several newly modified downhole tools were deployed to better characterize the subsurface lithologies and environments hosting microbial populations and gas hydrates. A preliminary review of the use of these tools is provided herein. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were used extensively and successfully during ODP Leg 204 aboard the D/V JOIDES Resolution. These systems provided a strong operational capability for characterizing the in situ properties of methane hydrates in subsurface environments on Hydrate Ridge during ODP Leg 204. Pressure was also measured during a trial run of the Fugro piezoprobe, which operates on similar principles as the DVTP-P. The final report describing the deployments of the Fugro Piezoprobe is provided in Appendix A of this report. A preliminary analysis and comparison between the piezoprobe and DVTP-P tools is provided in Appendix B of this report. Finally, a series of additional holes were cored at the crest of Hydrate Ridge (Site 1249) specifically geared toward the rapid recovery and preservation of hydrate samples as part of a hydrate geriatric study partially funded by the Department of Energy (DOE). In addition, the preliminary results from gamma density non-invasive imaging of the cores preserved in pressure vessels are provided in Appendix C of this report. An initial visual inspection of the samples stored in liquid nitrogen is provided in Appendix D of this report.

  2. An Analysis of the Risks of a Terrorist Attack on LNG Receiving Facilities in the United States

    E-Print Network [OSTI]

    Wang, Hai

    facilities in the United States (U.S.) arises from the opening of the Trinidad LNG liquefaction plant in 1999An Analysis of the Risks of a Terrorist Attack on LNG Receiving Facilities in the United States #12;An Analysis of the Risks of a Terrorist Attack on LNG Receiving Facilities in the United States 3

  3. (LNG) production. Volitional selection occurs, for instance, in verbal fluency and verb generation, tasks widely used as

    E-Print Network [OSTI]

    #12;(LNG) production. Volitional selection occurs, for instance, in verbal fluency and verb attention focusing on incorpo- rating response selection into contemporary models of LNG and speech. One-general processes has important theoretical impli- cations for modelling of spoken LNG behaviour. Contempo- rary

  4. Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation

    E-Print Network [OSTI]

    Jaramillo, Paulina

    1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

  5. Offshore petroleum security: Analysis of offshore security threats, target attractiveness, and the international legal framework for the protection and security of offshore petroleum installations.

    E-Print Network [OSTI]

    Kashubsky, Mikhail

    2011-01-01T23:59:59.000Z

    ??The offshore petroleum industry is of critical importance to the global economy. Offshore petroleum installations are considered elements of critical national infrastructure in many nation-States… (more)

  6. Brazoria Offshore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTIAdvancedOffshore Jump to:

  7. High-pressure gas hydrates 

    E-Print Network [OSTI]

    Loveday, J. S.; Nelmes, R. J.

    It has long been known that crystalline hydrates are formed by many simple gases that do not interact strongly with water, and in most cases the gas molecules or atoms occupy 'cages' formed by a framework of water molecules. The majority...

  8. Geological evolution and analysis of confirmed or suspected gas hydrate localities

    SciTech Connect (OSTI)

    Finley, P.D.; Krason, J.

    1988-10-01T23:59:59.000Z

    Geological factors controlling the formation, stability, and distribution of gas hydrates of the Beaufort Sea region were investigated by basin analysis. Geological, geophysical, and geochemical data from the region were assembled and evaluated to determine the relationships of geological environments and gas hydrates. The Beaufort Sea is the southern part of the Arctic Ocean offshore of the North Slope of Alaska and the Yukon and Mackenzie districts of Canada. The Beaufort Sea study region extends northward from the Arctic coasts of Alaska and Canada between Point Barrow on the west to Cape Beaufort on the east. The northern boundary of the Beaufort Sea study region is 72.5{degrees}N. The study region comprises broad continental shelves, slopes, rises, and the Arctic abyssal plain. 84 refs., 76 figs., 9 tabs.

  9. Gas hydrate reservoir characteristics and economics

    SciTech Connect (OSTI)

    Collett, T.S.; Bird, K.J.; Burruss, R.C.; Lee, Myung W.

    1992-01-01T23:59:59.000Z

    The primary objective of the DOE-funded USGS Gas Hydrate Program is to assess the production characteristics and economic potential of gas hydrates in northern Alaska. The objectives of this project for FY-1992 will include the following: (1) Utilize industry seismic data to assess the distribution of gas hydrates within the nearshore Alaskan continental shelf between Harrison Bay and Prudhoe Bay; (2) Further characterize and quantify the well-log characteristics of gas hydrates; and (3) Establish gas monitoring stations over the Eileen fault zone in northern Alaska, which will be used to measure gas flux from destabilized hydrates.

  10. Gas hydrate reservoir characteristics and economics

    SciTech Connect (OSTI)

    Collett, T.S.; Bird, K.J.; Burruss, R.C.; Lee, Myung W.

    1992-06-01T23:59:59.000Z

    The primary objective of the DOE-funded USGS Gas Hydrate Program is to assess the production characteristics and economic potential of gas hydrates in northern Alaska. The objectives of this project for FY-1992 will include the following: (1) Utilize industry seismic data to assess the distribution of gas hydrates within the nearshore Alaskan continental shelf between Harrison Bay and Prudhoe Bay; (2) Further characterize and quantify the well-log characteristics of gas hydrates; and (3) Establish gas monitoring stations over the Eileen fault zone in northern Alaska, which will be used to measure gas flux from destabilized hydrates.

  11. Offshore Wind in NY State (New York)

    Broader source: Energy.gov [DOE]

    NYSERDA has expressed support for the development of offshore wind and committed funding to several publicly-available assessments that measure the potential energy benefits and environmental...

  12. Virginia Offshore Wind Development Authority (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other...

  13. Optimization of offshore natural gas field development.

    E-Print Network [OSTI]

    Johansen, Gaute Rannem

    2011-01-01T23:59:59.000Z

    ?? In this thesis the target is to find the optimal development solution of an offshore natural gas field. Natural gas is increasing in importance… (more)

  14. Developing Integrated National Design Standards for Offshore...

    Energy Savers [EERE]

    report that summarizes the regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States. In 2012, the American Wind Energy...

  15. Infauna Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    #12;Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2004 Published: 21 April-2004................................................. 48 Wind farm area (Turbine), Reference area (Ref

  16. Structural reliability of offshore wind turbines.

    E-Print Network [OSTI]

    Agarwal, Puneet, 1977-

    2012-01-01T23:59:59.000Z

    ??Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the… (more)

  17. Handbook of gas hydrate properties and occurrence

    SciTech Connect (OSTI)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01T23:59:59.000Z

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  18. Improving offshore communication by choosing the right coordination

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Improving offshore communication by choosing the right coordination strategy Matthias Fabriek;Improving offshore communication by choosing the right coordination strategy Page 2 of 92 ABSTRACT This thesis researches communication and coordination in offshore custom software development (CSD) projects

  19. ASSESSMENT OF METHODS USED TO INVESTIGATE THE IMPACT OF OFFSHORE

    E-Print Network [OSTI]

    Aberdeen, University of

    ASSESSMENT OF METHODS USED TO INVESTIGATE THE IMPACT OF OFFSHORE WIND FARMS ON SEABIRDS Kate Louise....................................................................................2 Environmental impact assessments for offshore wind developments..................7 Study aims Chapter three: Offshore marine surveillance radar installation and methods for ensuring data quality

  20. Sandia National Laboratories: Innovative Offshore Vertical-Axis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindInnovative Offshore Vertical-Axis Wind Turbine Rotors Innovative Offshore Vertical-Axis Wind Turbine Rotors This project seeks to advance large offshore vertical-axis wind...

  1. Laboratory measurements on core-scale sediment/hydrate samples to predice reservoir behavior

    E-Print Network [OSTI]

    Kneafsey, Timothy J.; Seol, Yongkoo; Moridis, George J.; Tomutsa, Liviu; Freifeld, Barry M.

    2008-01-01T23:59:59.000Z

    International Conference on Gas Hydrates, Trondheim, Norway,coring of near-surface gas hydrate sediments on HydrateInternational Conference on Gas Hydrates, Trondheim, Norway,

  2. Assessment of Offshore Wind System Design, Safety, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of...

  3. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...

    Broader source: Energy.gov (indexed) [DOE]

    0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape...

  4. SciTech Connect: Offshore Wind Jobs and Economic Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation) Citation Details In-Document Search Title: Offshore Wind Jobs and Economic Development...

  5. DOE Announces Webinars on an Offshore Wind Economic Impacts Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for...

  6. WINDExchange Webinar: Economic Impacts of Offshore Wind: Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WINDExchange Webinar: Economic Impacts of Offshore Wind: Market, Manufacturing, and Jobs WINDExchange Webinar: Economic Impacts of Offshore Wind: Market, Manufacturing, and Jobs...

  7. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 September 11, 2014 -...

  8. Offshore Resource Assessment and Design Conditions Public Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Resource Assessment and Design Conditions Public Meeting Summary Report Offshore Resource Assessment and Design Conditions Public Meeting Summary Report Report from DOE's...

  9. Advanced Offshore Wind Tech: Accelerating New Opportunities for...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm...

  10. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind...

  11. Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

  12. SciTech Connect: Offshore Wind Jobs and Economic Development...

    Office of Scientific and Technical Information (OSTI)

    Technologies Office Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY OFFSHORE WIND JOBS; OFFSHORE WIND...

  13. New Report Shows Trend Toward Larger Offshore Wind Systems, with...

    Broader source: Energy.gov (indexed) [DOE]

    offshore wind energy technologies. Addthis Related Articles New Reports Highlight Major Potential in Offshore Wind Energy Developing Integrated National Design Standards for...

  14. Assessment of Offshore Wind Energy Resources for the United States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The...

  15. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Offshore wind turbines have the potential to generateuncover potential problems that exist with offshore windwind turbines in operation, this technology has the potential

  16. Jefferson Offshore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Jump to:Jamestown,Jefferson City,Offshore

  17. Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefactio...

    Broader source: Energy.gov (indexed) [DOE]

    Application of Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC to Transfer Control of Long-term Authorization to Export...

  18. International LNG trade : the emergence of a short-term market

    E-Print Network [OSTI]

    Athanasopoulos, Panagiotis G

    2006-01-01T23:59:59.000Z

    Natural gas is estimated to be the fastest growing component of world primary energy consumption. Liquefied natural gas (LNG) supply chain is a way of transporting natural gas over seas, by following a procedure of gas ...

  19. The effect of LNG on the relationship between UK and Continental Europena natural gas markets

    E-Print Network [OSTI]

    Koenig, Philipp

    2012-12-10T23:59:59.000Z

    the structural relationship between UK and Continental European markets. (ii) The effect of UK import capacity extensions since 2005, through both pipeline and LNG regasification capacity, on this long-term relationship will be analyzed. The results suggest...

  20. Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes

    E-Print Network [OSTI]

    Qi, Ruifeng

    2012-10-19T23:59:59.000Z

    Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical...

  1. Opportunities for LNG supply infrastructure and demand growth in US and International markets

    E-Print Network [OSTI]

    Connell, Richard Perry

    2004-01-01T23:59:59.000Z

    Countries are looking beyond their borders for options to satiate a forecasted increase in natural gas consumption. A strong option for importing natural gas is by way of a liquefied natural gas (LNG) supply chain where ...

  2. Multiple stage multiple filter hydrate store

    DOE Patents [OSTI]

    Bjorkman, H.K. Jr.

    1983-05-31T23:59:59.000Z

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means for separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means. 7 figs.

  3. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  4. Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction

    E-Print Network [OSTI]

    Smith, J. David

    Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy ...

  5. Development of Alaskan gas hydrate resources

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01T23:59:59.000Z

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  6. Physical Properties of Gas Hydrates: A Review

    SciTech Connect (OSTI)

    Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

    2010-01-01T23:59:59.000Z

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  7. Marine electromagnetic methods for gas hydrate characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen Andrea

    2008-01-01T23:59:59.000Z

    to thank my advisor Professor Steven Constable for creatingDiego, 2008 Professor Steven Constable, Chair Gas hydrate isProfessor Professor Steven Constable, Chair Kevin Brown Je?

  8. Marine Electromagnetic Methods for Gas Hydrate Characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen A

    2008-01-01T23:59:59.000Z

    to thank my advisor Professor Steven Constable for creatingDiego, 2008 Professor Steven Constable, Chair Gas hydrate isProfessor Professor Steven Constable, Chair Kevin Brown Je?

  9. Imaging Hydrated Microbial Extracellular Polymers: Comparative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to...

  10. Desalination utilizing clathrate hydrates (LDRD final report).

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy (Sandia National Laboratories, Albuquerque, NM); Greathouse, Jeffery A. (Sandia National Laboratories, Albuquerque, NM); Majzoub, Eric H. (University of Missouri, Columbia, MO)

    2008-01-01T23:59:59.000Z

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations show that R141b hydrate is stable at temperatures up to 265K, while the isomer hydrate is only stable up to 150K. Despite hydrogen bonding between guest and host, R141b molecules rotated freely within the water cage. The Raman spectrum of R141b in both the pure and hydrate phases was also compared with vibrational analysis from both computational methods. In particular, the frequency of the C-Cl stretch mode (585 cm{sup -1}) undergoes a shift to higher frequency in the hydrate phase. Raman spectra also indicate that this peak undergoes splitting and intensity variation as the temperature is decreased from 4 C to -4 C.

  11. Hydration dynamics near a model protein surface

    E-Print Network [OSTI]

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-01-01T23:59:59.000Z

    AE, Onuchic JN. 2002. Protein folding mediated by solvation:of hydration forces in protein folding. Journal of Physicalthe broader context of protein folding and function and as

  12. MARINE INSTITUTE Offshore Safety and Survival Centre (OSSC)

    E-Print Network [OSTI]

    Oyet, Alwell

    MARINE INSTITUTE Offshore Safety and Survival Centre (OSSC) Fisheries and Marine Institute Memorial/PROGRAM APPLYING FOR: [ ] MED A1 Basic Safety [ ] Offshore Fire Team (OFT) [ ] Offshore Fire Team Recurrent Familiarization[ ] Offshore Survival Introduction (OSI) [ ] MED D Senior Officer [ ] HUET Helicopter Underwater

  13. ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource

    E-Print Network [OSTI]

    Pryor, Sara C.

    ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource Assessment in European Seas A. M offshore is generally larger than at geographically nearby onshore sites, which can offset the higher installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind

  14. Offshore Series Wind Turbine Variable Hub heights & rotor diameters

    E-Print Network [OSTI]

    Firestone, Jeremy

    3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

  15. Loads Analysis of Several Offshore Floating Wind Turbine Concepts

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.

    2011-10-01T23:59:59.000Z

    This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

  16. Quantifying the hurricane risk to offshore wind turbines

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Quantifying the hurricane risk to offshore wind turbines Stephen Rosea , Paulina Jaramilloa,1. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind

  17. The Great Gas Hydrate Escape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience andFebruaryTheFarrel W.Great Gas Hydrate

  18. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Broader source: Energy.gov [DOE]

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  19. Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical CO2. Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical...

  20. Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2011-03-01T23:59:59.000Z

    Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

  1. Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects.

    E-Print Network [OSTI]

    Uraz, Emre

    2011-01-01T23:59:59.000Z

    ?? Transportation and installation of offshore wind turbines (Tower, Nacelle and Rotor) is a complete process conducted over several phases, usually in sequence. There are… (more)

  2. System architecture of offshore oil production systems

    E-Print Network [OSTI]

    Keller, James (James Thomas)

    2008-01-01T23:59:59.000Z

    This thesis presents an approach to applying Systems Architecture methods to the development of large, complex, commercial systems, particularly offshore oil and gas productions systems. The aim of this research was to ...

  3. Slow motion responses of compliant offshore structures

    E-Print Network [OSTI]

    Cao, Peimin

    2012-06-07T23:59:59.000Z

    An efficient method is developed to predict slow motion responses of slender compliant offshore structures in the unidirectional irregular waves and currents. The environmental loads are computed using the modified Morison equation based on slender...

  4. Outsourcing, offshoring and the US office market

    E-Print Network [OSTI]

    Topolewski, Tanya M., 1969-

    2004-01-01T23:59:59.000Z

    There is intense debate among industry analysts and scholars over potential job losses caused by offshoring. The real estate industry has been grappling to understanding the implications of these numbers, as some have ...

  5. Future characteristics of Offshore Support Vessels

    E-Print Network [OSTI]

    Rose, Robin Sebastian Koske

    2011-01-01T23:59:59.000Z

    The objective of this thesis is to examine trends in Offshore Support Vessel (OSV) design and determine the future characteristics of OSVs based on industry insight and supply chain models. Specifically, this thesis focuses ...

  6. Engineering Challenges for Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P.

    2007-09-01T23:59:59.000Z

    The major objective of this paper is to survey the technical challenges that must be overcome to develop deepwater offshore wind energy technologies and to provide a framework from which the first-order economics can be assessed.

  7. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind industries, and significant first-hand knowledge of offshore installation, operation and maintenance (IO&M) activities. The aim of the GL GH study was to enable project...

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-07-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  10. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

  12. Overview on Hydrate Coring, Handling and Analysis

    SciTech Connect (OSTI)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30T23:59:59.000Z

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  13. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    Iraj A. Salehi; Jerry Havens; Tom Spicer

    2006-09-30T23:59:59.000Z

    The initial scope of work for this project included: (1) Improving the FEM3A advanced turbulence closure module, (2) Adaptation of FEM3A for more general applications, and (3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETL's FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTI's technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

  14. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    None

    2006-09-30T23:59:59.000Z

    The initial scope of work for this project included: 1) Improving the FEM3A advanced turbulence closure module, 2) Adaptation of FEM3A for more general applications, and 3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETL’s FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTI’s technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

  15. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31T23:59:59.000Z

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  16. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30T23:59:59.000Z

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  17. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    SciTech Connect (OSTI)

    Frank R. Rack; Tim Francis; Peter Schultheiss; Philip E. Long; Barry M. Freifeld

    2005-04-01T23:59:59.000Z

    The primary activities accomplished during this quarter were continued efforts to develop plans for Phase 2 of this cooperative agreement based on the evolving operational planning for IODP Expedition 311, which will use the JOIDES Resolution to study marine methane hydrates along the Cascadia margin, offshore Vancouver Island. IODP Expedition 311 has been designed to further constrain the models for the formation of marine gas hydrate in subduction zone accretionary prisms. The objectives include characterizing the deep origin of the methane, its upward transport, its incorporation in gas hydrate, and its subsequent loss to the seafloor. The main attention of this expedition is on the widespread seafloor-parallel layer of dispersed gas hydrate located just above the base of the predicted stability field. In a gas hydrate formation model, methane is carried upward through regional sediment or small-scale fracture permeability, driven by the tectonic consolidation of the accretionary prism. The upward moving methane is incorporated into the gas hydrate clathrate as it enters the methane hydrate stability zone. Also important is the focusing of a portion of the upward methane flux into localized plumes or channels to form concentrations of near-seafloor gas hydrate. The amount of gas hydrate in local concentrations near the seafloor is especially important for understanding the response of marine gas hydrate to climate change. The expedition includes coring and downhole measurements at five sites across the Northern Cascadia accretionary prism. The sites will track the history of methane in an accretionary prism from (1) its production by mainly microbiological processes over a thick sediment vertical extent, (2) its upward transport through regional or locally focused fluid flow, (3) its incorporation in the regional hydrate layer above the BSR or in local concentrations at or near the seafloor, (4) methane loss from the hydrate by upward diffusion, and (5) methane oxidation and incorporation in seafloor carbonate, or expulsion to the ocean. This expedition builds on the previous Cascadia gas hydrate drilling of ODP Leg 146 and on more recent ODP Leg 204 off Oregon. Important experiments being considered for DOE/NETL funding as part of the JOI cooperative agreement include, (1) Logging-While-Drilling/Measurements-While-Drilling (LWD/MWD), (2) Pressure Core Sampling (PCS/HYACINTH) of gas hydrate, and fluid recovery under in situ conditions, (3) X-ray CT logging of whole cores under in situ conditions, and (4) Infrared thermal imaging of whole round cores to map temperature variations resulting from the presence of hydrate. Preliminary budget estimates have been made for each of these tasks and discussions are ongoing with DOE/NETL program managers to develop a final plan that can be implemented within the constraints of the available funding and logistical considerations.

  18. Applications of human factors engineering to LNG release prevention and control

    SciTech Connect (OSTI)

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01T23:59:59.000Z

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  19. Gas Hydrates Research Programs: An International Review

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2009-12-09T23:59:59.000Z

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  20. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect (OSTI)

    O`Brien, J.E.; Siahpush, A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

    1998-02-01T23:59:59.000Z

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2003-12-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the US have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by maurer Technology, noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R and D in the area of onshore hydrate deposition. They plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. They also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. They are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. They hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, the goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  3. Opacity reduction using hydrated lime injection

    SciTech Connect (OSTI)

    Wolf, D.E.; Seaba, J.P. [Univ. of Missouri, Columbia, MO (United States)

    1993-12-31T23:59:59.000Z

    The purpose of this investigation is to study the effects of injecting dry hydrated lime into flue gas to reduce sulfur trioxide (SO{sub 3}) concentrations and consequently stack opacity at the University of Missouri, Columbia power plant. Burning of high sulfur coal (approx. 4% by weight) at the power plant resulted in opacity violations. The opacity problem was due to sulfuric acid mist (H{sub 2}SO{sub 4}) forming at the stack from high SO{sub 3} concentrations. As a result of light scattering by the mist, a visible plume leaves the stack. Therefore, reducing high concentrations of SO{sub 3} reduces the sulfuric acid mist and consequently the opacity problem. The current hydrated lime injection system has reduced the opacity to acceptable limits. To reduce SO{sub 3} concentrations, dry hydrated lime is injected into the flue gas upstream of a particulate collection device (baghouse) and downstream of the induced draft fan. The lime is periodically injected into the flue via a pneumatic piping system. The hydrated lime is transported down the flue and deposited on the filter bags in the baghouse. As the hydrated lime is deposited on the bags a filter cake is established. The reaction between the SO{sub 3} and the hydrated lime takes place on the filter bags. The hydrated lime injection system has resulted in at least 95% reduction in the SO{sub 3} concentration. Low capital equipment requirements and operating cost coupled with easy installation and maintenance makes the system very attractive to industries with similar problems. This paper documents the hydrated lime injection system and tests the effectiveness of the system on SO{sub 3} removal and subsequent opacity reduction. Measurements Of SO{sub 3} concentrations, flue gas velocities, and temperatures have been performed at the duct work and baghouse. A complete analysis of the hydrated lime injection system is provided.

  4. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  5. Effectiveness of Alcohol Cosurfactants in Hydrate Antiagglomeration Minwei Sun,

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    and deepwater oil capture. One of the most effective methods to address gas hydrate problems is through-in-water emulsions, therefore enhancing the hydrate antiagglomeration effect. 1. INTRODUCTION Gas hydrates, especially in the deep sea, formation of gas hydrates may plug flowlines.1 There are significant safety

  6. Comparison of CNG and LNG technologies for transportation applications. Final subcontract report, June 1991--December 1991

    SciTech Connect (OSTI)

    Sinor, J.E. [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

    1992-01-01T23:59:59.000Z

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  7. ,"Iowa Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved NaturalPriceLNG StorageWellheadLNG

  8. ,"New Hampshire Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"ShaleCoalbedShaleLNG StorageDeliveriesPriceLNG

  9. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No.

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNG Expansion, L.P. and FLNG Liquefaction,

  10. Secretary Bodman Tours LNG Powered City Bus in Seoul | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1to Launch New SolarEnergyNeedforLNG

  11. Price discrimination and limits to arbitrage: An analysis of global LNG markets

    E-Print Network [OSTI]

    Ritz, Robert A.

    2014-07-31T23:59:59.000Z

    -ful?lling properties. 2 large-scale emergence of shale gas over the last few years has put strong downward pressure on US natural gas prices. Second, the US at present only has very limited LNG export capability; its infrastructure still re?ects the assumption... -seller pairings, but information on such individual transactions is generally unavailable. Also widely reported is an LNG price based on the Japanese Crude Cocktail (JCC); this re?ects oil-linked pric- ing formulae that underlie long-term supply contracts? rather...

  12. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01T23:59:59.000Z

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

  13. SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection, Offshore wind turbines, Numerical response simulation. INTRODUCTION Offshore wind turbines are exposed

  14. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30T23:59:59.000Z

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  15. Federal Offshore Statistics, 1993. Leasing, exploration, production, and revenue as of December 31, 1993

    SciTech Connect (OSTI)

    Francois, D.K.

    1994-12-31T23:59:59.000Z

    This document contains statistical data on the following: federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; federal offshore oil and natural gas sales volume and royalties; revenue from federal offshore leases; disbursement of federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. A glossary is included.

  16. A realistic molecular model of cement hydrates

    E-Print Network [OSTI]

    Ulm, Franz-Josef

    Despite decades of studies of calcium-silicate-hydrate (C-S-H), the structurally complex binder phase of concrete, the interplay between chemical composition and density remains essentially unexplored. Together these ...

  17. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect (OSTI)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30T23:59:59.000Z

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  18. Hydrate Control for Gas Storage Operations

    SciTech Connect (OSTI)

    Jeffrey Savidge

    2008-10-31T23:59:59.000Z

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  19. Weakening of ice by magnesium perchlorate hydrate

    E-Print Network [OSTI]

    Lenferink, Hendrik J., 1985-

    2012-01-01T23:59:59.000Z

    I show that perchlorate hydrates, which have been indirectly detected at high Martian circumpolar latitudes by the Phoenix Mars Lander, have a dramatic effect upon the rheological behavior of polycrystalline water ice under ...

  20. Modeling of gas hydrates from first principles

    E-Print Network [OSTI]

    Cao, Zhitao, 1974-

    2002-01-01T23:59:59.000Z

    Ab initio calculations were used to determine the H20-CH4 potential energy surface (PES) accurately for use in modeling gas hydrates. Electron correlation was found to be treated accurately by the second-order Moller-Plesset ...

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2004-11-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation. In addition to the Final Report, several companion Topical Reports are being published.

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models and to research teams for developing future gas-hydrate projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and has been documented by the project team. This Topical Report documents drilling and coring operations and other daily activities.

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation.

  5. FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT Prepared by Jon Lilley, Blaise Sheridan, Dawn........................................................................................................................ 28 #12; 3 Feed-in Tariffs and Offshore Wind Power Development Prepared Pursuant to DOE Grant Em

  6. Offshore Natural Gas Royalty Regime (Newfoundland and Labrador, Canada)

    Broader source: Energy.gov [DOE]

    The province’s offshore contains large natural gas deposits. The Provincial Government has developed an Offshore Natural Gas Royalty Regime that will ensure these resources are developed in the...

  7. Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 #12;Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 Published: 14 May 2004

  8. Strengthening America's Energy Security with Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

  9. Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

  10. Energy and Interior Departments Host Offshore Energy Knowledge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Articles DOE to Host a Booth at Offshore WINDPOWER Wind Program Newsletter: Second Quarter 2012 DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential...

  11. Fe-containing phases in hydrated cements

    SciTech Connect (OSTI)

    Dilnesa, B.Z., E-mail: belay.dilnesa@gmail.com [Empa, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Wieland, E. [Paul Scherrer Institute, Laboratory for Waste Management, 5232 Villigen PSI (Switzerland); Lothenbach, B. [Empa, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Dähn, R. [Paul Scherrer Institute, Laboratory for Waste Management, 5232 Villigen PSI (Switzerland); Scrivener, K.L. [Ecole Polytechnique Federal de Lausanne (EPFL), Laboratory for Construction Materials, 1015 Lausanne (Switzerland)

    2014-04-01T23:59:59.000Z

    In this study synchrotron X-ray absorption spectroscopy (XAS) has been applied, an element specific technique which allows Fe-containing phases to be identified in the complex mineral mixture of hydrated cements. Several Fe species contributed to the overall Fe K-edge spectra recorded on the cement samples. In the early stage of cement hydration ferrite was the dominant Fe-containing mineral. Ferrihydrite was detected during the first hours of the hydration process. After 1 day the formation of Al- and Fe-siliceous hydrogarnet was observed, while the amount of ferrihydrite decreased. The latter finding agrees with thermodynamic modeling, which predicts the formation of Fe-siliceous hydrogarnet in Portland cement systems. The presence of Al- and Fe-containing siliceous hydrogarnet was further substantiated in the residue of hydrated cement by performing a selective dissolution procedure. - Highlights: • Fe bound to ferrihydrite at early age hydration • Fe found to be stable in siliceous hydrogarnet at longer term age hydration • Fe-containing AFt and AFm phases are less stable than siliceous hydrogarnet. • The study demonstrates EXAFS used to identify amorphous or poorly crystalline phases.

  12. Offshore Renewable Energy R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet describes the offshore renewable energy R and D efforts at the National Renewable Energy Laboratory.

  13. NREL Assesses National Design Standards for Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01T23:59:59.000Z

    Report summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  14. Presentations from the March 27th - 28th Methane Hydrates Advisory...

    Broader source: Energy.gov (indexed) [DOE]

    the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate...

  15. Strategies for gas production from hydrate accumulations under various geologic conditions

    E-Print Network [OSTI]

    Moridis, G.; Collett, T.

    2003-01-01T23:59:59.000Z

    JNOC/GSC Mallik 2L- 38 Gas Hydrate Research Well, Mackenziedeposits. INTRODUCTION Gas hydrates are solid crystallinequantity of hydrocarbon gas hydrates range between 10 15 to

  16. Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations

    E-Print Network [OSTI]

    Kneafsey, T.

    2012-01-01T23:59:59.000Z

    DOE-USGS Mount Elbert gas hydrate stratigraphic test well:International Conference on Gas Hydrates, Vancouver, BritishGeologic controls on gas hydrate occurrence in the Mount

  17. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    E-Print Network [OSTI]

    Moridis, George J.; Sloan, E. Dendy

    2006-01-01T23:59:59.000Z

    EG. Formation of gas hydrates in natural gas transmissiongeology of natural gas hydrates. Amsterdam: Springer-Verlag;Soloviev, VA. Submarine gas hydrates. St. Petersburg;1998.

  18. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    E-Print Network [OSTI]

    Kwon, T.H.

    2012-01-01T23:59:59.000Z

    Dissociation heat of mixed-gas hydrate composed of methaneInternational Conference on Gas Hydrates (ICGH 2008), 2008,and specific heats of gas hydrates under submarine and

  19. Feasibility of monitoring gas hydrate production with time-lapse VSP

    E-Print Network [OSTI]

    Kowalsky, M.B.

    2010-01-01T23:59:59.000Z

    density of the aqueous, gas, and hydrate phases, which isfunction of the aqueous, gas and hydrate phase saturations;in Marine Sediments with Gas Hydrates: Effective Medium

  20. The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost

    E-Print Network [OSTI]

    Reagan, M. T.

    2010-01-01T23:59:59.000Z

    Spatial distributions of gas and hydrate phase saturations (from the Mallik 2002 Gas Hydrate Production Research Wellsimulating the behavior of gas hydrates, Energy Conversion

  1. EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal consisting of two floating liquefaction, storage and offloading units and a 29-mile pipeline header system to transport natural gas from existing pipeline systems to the LNG terminal facilities.

  2. Study of the Effects of Obstacles in Liquefied Natural Gas (LNG) Vapor Dispersion using CFD Modeling

    E-Print Network [OSTI]

    Ruiz Vasquez, Roberto

    2012-10-19T23:59:59.000Z

    by enhanced mixing. Through parametric analysis it is demonstrated that height, width and shape of the obstacles play an important role in the vapor concentration reduction. The findings of this research may be applied in the design stage of an LNG terminal...

  3. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01T23:59:59.000Z

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  4. Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions

    E-Print Network [OSTI]

    Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions This report Natural Gas for Hawai`i: Policy Economic and Technical Questions Prepared for the U.S. Department Hawai`i Energy Sustainability Program Task 4: Deliverable on Liquefied Natural Gas Prepared by FACTS

  5. Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results Christopher N. Elkinton the layout of an offshore wind farm presents a significant engineering challenge. Most of the optimization literature to date has focused on land-based wind farms, rather than on offshore farms. Typically, energy

  6. Review report 2004 The Danish Offshore Wind Farm

    E-Print Network [OSTI]

    - 1 - Review report 2004 The Danish Offshore Wind Farm Demonstration Project: Horns Rev and Nysted Offshore Wind Farms Environmental impact assessment and monitoring Prepared for The Environmental Group By Elsam Engineering and ENERGI E2 October 2005 #12;- 2 - Review Report 2004 The Danish Offshore Wind Farm

  7. OFFSHORE BOUNDARY-LAYER MODELLING H. Bergstrm1

    E-Print Network [OSTI]

    OFFSHORE BOUNDARY-LAYER MODELLING H. Bergström1 and R. Barthelmie2 1) Uppsala Univ., Dept. of Earth) of the ENDOW (EfficieNt Development of Offshore Windfarms) project, where the objectives are to provide currently be incorporated into a wind farm design tool. The offshore thermal stratification climate is also

  8. OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION C. N. Elkinton* , J. F Governors Dr., Amherst, MA 01003, USA * celkinto@ecs.umass.edu ABSTRACT Optimizing the layout of an offshore focused on land-based wind farms, rather than on offshore farms. The conventional method used to lay out

  9. Challenges in Predicting Power Output from Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Challenges in Predicting Power Output from Offshore Wind Farms R. J. Barthelmie1 and S. C. Pryor2 Abstract: Offshore wind energy is developing rapidly in Europe and the trend is towards large wind farms an offshore wind farm, accurate assessment of the wind resource/power output from the wind farm is a necessity

  10. Modeling and Computational Strategies for Optimal Development Planning of Offshore

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Modeling and Computational Strategies for Optimal Development Planning of Offshore Oilfields for offshore oil and gas fields as a basis to include the generic fiscal rules with ringfencing provisions-integer programming. 1 Introduction Offshore oil and gas field development planning has received significant attention

  11. Numerical Simulation of Wave Loads on Static Offshore Structures

    E-Print Network [OSTI]

    Numerical Simulation of Wave Loads on Static Offshore Structures Hrvoje Jasak, Inno Gatin, Vuko Workshop, Cambridge, 30 July 2014 Numerical Simulation of Wave Loads on Static Offshore Structures ­ p. #12 of Wave Loads on Static Offshore Structures ­ p. #12;VOF Free Surface Flow Model Modelling of Free Surface

  12. Ris-R-1407(EN) Efficient Development of Offshore

    E-Print Network [OSTI]

    Risø-R-1407(EN) Efficient Development of Offshore Windfarms (ENDOW) Final report to the European, Roskilde April 2003 #12;Abstract Europe has large offshore wind energy potential that is poised energy supply. Offshore wind energy developments are underway in many European countries with planned

  13. Assessing Novel Foundation Options for Offshore Wind Turbines

    E-Print Network [OSTI]

    Byrne, Byron

    Assessing Novel Foundation Options for Offshore Wind Turbines B.W. Byrne, BE(Hons), BCom, MA, DPhil G.T. Houlsby, MA, DSc, FREng, FICE Oxford University, UK SYNOPSIS Offshore wind farms of these being the foundations for the offshore turbines. We review here the results of a recent research

  14. E2I EPRI Assessment Offshore Wave Energy Conversion Devices

    E-Print Network [OSTI]

    E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

  15. Ris National Laboratory Satellite SAR applied in offshore wind

    E-Print Network [OSTI]

    Risø National Laboratory Satellite SAR applied in offshore wind ressource mapping: possibilities is to quantify the regional offshore wind climate for wind energy application based on satellite SAR ·Study of 85SAR(m/s) Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps

  16. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 resource Offshore technology Prototypes and projects Cost Proposed 7th Plan Treatment 2 #12;Why technology transfer from offshore oil & gas industry On-shore fabrication & assembly (assembled unit towed

  17. Offshore wind profile measurements from remote sensing instruments

    E-Print Network [OSTI]

    Offshore wind profile measurements from remote sensing instruments Ioannis Antoniou (1) , Hans E) have been mounted on top of a transformer platform situated offshore close to the Nysted wind farm be used to supplement met mast measurements for offshore applications. #12;1. Introduction Exploiting

  18. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    Quantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic site at Horns Rev is given based on satellite SAR observa- tions.The comparison of offshore satellite

  19. Ris-R-1298(EN) Validation of Satellite SAR Offshore

    E-Print Network [OSTI]

    Risø-R-1298(EN) Validation of Satellite SAR Offshore Wind Speed Maps to In-Situ Data, Microscale project goal is to develop a method for utilizing the satellite wind speed maps for offshore wind resources, e.g. in future planning of offshore wind farms. The report describes the validation analysis

  20. Scour around an offshore wind turbine W.F. Louwersheimer

    E-Print Network [OSTI]

    Langendoen, Koen

    Scour around an offshore wind turbine MSc Thesis W.F. Louwersheimer January, 2007 Delft University of Technology Ballast Nedam Faculty of Civil Engineering Egmond Offshore Energy Section of Hydraulic Engineering #12;Scour around an offshore wind turbine Delft University of Technology Ballast Nedam - Egmond

  1. Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations Vijay Gupta1 of uncertainty and complex fiscal rules in the development planning of offshore oil and gas fields which involve, Offshore Oil and Gas, Multistage Stochastic, Endogenous, Production Sharing Agreements (PSAs) 1

  2. Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms

    E-Print Network [OSTI]

    #12;Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms Annual Report 2004 Horns Rev Offshore Wind Farm Published: May 2005 Prepared by: Christian B. Hvidt Lars BrĂĽnner Frank Reier without clear reference to the source. #12;Hydroacoustic monitoring of fish communities in offshore wind

  3. Access to and Usage of Offshore Liberty Ship

    E-Print Network [OSTI]

    Access to and Usage of Offshore Liberty Ship Reefs in Texas ROBERT B. DITTON, ALAN R. GRAEFE to establish cover and habitat for fisheries. Offshore artificial reef con- struction began in 1935 led many other states to become interested in deploying offshore artificial reefs. The first reef

  4. REVIEW Open Access Assessing environmental impacts of offshore wind

    E-Print Network [OSTI]

    Aberdeen, University of

    REVIEW Open Access Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future Helen Bailey1* , Kate L Brookes2 and Paul M Thompson3 Abstract Offshore wind power literature and our experience with assessing impacts of offshore wind developments on marine mammals

  5. Armelle Choplin et Jrme Lombard La Mauritanie offshore.

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Armelle Choplin et Jérôme Lombard La Mauritanie offshore. Extraversion économique, �tat et du pouvoir. La « Mauritanie offshore » prime désormais sur l'intérieur du pays et sur la société well into the first circles of the power. The « offshore Mauritania » dominates henceforth

  6. ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER

    E-Print Network [OSTI]

    Firestone, Jeremy

    ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

  7. Ab Frhjahr 2009 startet hier der Bau von sechs Offshore-

    E-Print Network [OSTI]

    Vollmer, Heribert

    Ab FrĂĽhjahr 2009 startet hier der Bau von sechs Offshore- Windenergieanlagen (OWEA) vom Typ Ent- wicklung der Offshore-Wind- energie besondere Bedeutung zu. Derzeit laufen in der Aus Vorhaben durchgefĂĽhrt. Acht Einleitung Ziel der Bundesregierung ist es, bis zum Jahr 2030 Offshore

  8. Integrated Multidisciplinary Constrained Optimization of Offshore Support Structures

    E-Print Network [OSTI]

    Papalambros, Panos

    structure of a real offshore wind park where both its tower and foundation are designed separatelyIntegrated Multidisciplinary Constrained Optimization of Offshore Support Structures Rad Haghi1, Turaj Ashuri2, Paul L.C. van der Valk3 and David P. Molenaar1 1 Offshore Center of Competence, Siemens

  9. Extreme Loads for an Offshore Wind Turbine using Statistical

    E-Print Network [OSTI]

    Manuel, Lance

    Extreme Loads for an Offshore Wind Turbine using Statistical Extrapolation from Limited Field Data,itiscommontoeithercarry out extensive simulation studies or undertake a field measurement campaign. At the Blyth offshore wind here is to estimate extreme loads for an offshore wind turbine for which the environmental and load

  10. Electric power from offshore wind via synoptic-scale interconnection

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric power from offshore wind via synoptic-scale interconnection Willett Kemptona,1 , Felipe M regional estimate, Kempton et al. (2) calculated that two-thirds of the offshore wind power off the U in the U.S. Atlantic region is already underway. Fig. 1 shows as black squares offshore wind developments

  11. Using satellite data for mapping offshore wind resources and wakes

    E-Print Network [OSTI]

    (no wind) Horns Rev Offshore Wind Farm Blaavandshuk Met. mast N #12;Wind Horns Rev Wind speed map from · Wake near large offshore wind farms is quantified in space and time · Software for usersUsing satellite data for mapping offshore wind resources and wakes Charlotte Bay Hasager, Merete

  12. Feasibility of methods and systems for reducng LNG tanker fire hazards

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    In this program concepts for reducing fire hazards that may result from LNG tanker collisions are identified and their technical feasibility evaluated. Concepts considered include modifications to the shipborne LNG containers so that in the event of a container rupture less of the contents would spill and/or the contents would spill at a reduced rate. Changes in the cargo itself, including making the LNG into a gel, solidifying it, converting it to methanol, and adding flame suppressants are also evaluated. The relative effectiveness and the costs of implementing these methods in terms of increased cost of gas at the receiving terminal, are explained. The vulnerability of an LNG tanker and its crew to the thermal effects of a large pool fire caused by a collision spill is estimated and methods of protecting the crew are considered. It is shown that the protection of ship and crew so that further deterioration of a damaged ship might be ameliorated, would require the design and installation of extraordinary insulation systems and life support assistance for the crew. Methods of salvaging or disposing of cargo from a damaged and disabled ship are evaluated, and it is concluded that if the cargo cannot be transferred to another (empty) LNG tanker because of lack of availability, then the burning of the cargo at a location somewhat distant from the disabled tanker appears to be a promising approach. Finally, the likelihood of the vapors from a spill being ignited due to the frictional impact of the colliding ships was examined. It is found that the heating of metal sufficient to ignite flammable vapors would occur during a collision, but it is questionable whether flammable vapor and air will, in fact, come in contact with the hot metal surfaces.

  13. Copyright 2000, Offshore Technology Conference This paper was prepared for presentation at the 2000 Offshore Technology Conference held in

    E-Print Network [OSTI]

    Byrne, Byron

    Copyright 2000, Offshore Technology Conference This paper was prepared for presentation at the 2000 Offshore Technology Conference held in Houston, Texas, 1­4 May 2000. This paper was selected by the author(s). Contents of the paper, as presented, have not been reviewed by the Offshore Technology

  14. Copyright 2002, Offshore Technology Conference This paper was prepared for presentation at the 2002 Offshore Technology Conference held in

    E-Print Network [OSTI]

    Knapp, Camelia Cristina

    Copyright 2002, Offshore Technology Conference This paper was prepared for presentation at the 2002 Offshore Technology Conference held in Houston, Texas U.S.A., 6­9 May 2002. This paper was selected by the author(s). Contents of the paper, as presented, have not been reviewed by the Offshore Technology

  15. Titre franais : L'externalisation offshore de systme d'information Titre anglais : Information Systems Offshore Outsourcing

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Titre français : L'externalisation offshore de système d'information Titre anglais : Information Systems Offshore Outsourcing De Dominique Geyer Dominique Geyer is Associate Professor in Financial Achats et de la Supply Chain). Résumé en français : L'externalisation offshore de système d

  16. Copyright 1999, Offshore Technology Conference This paper was prepared for presentation at the 1999 Offshore Technology Conference held in

    E-Print Network [OSTI]

    Byrne, Byron

    Copyright 1999, Offshore Technology Conference This paper was prepared for presentation at the 1999 Offshore Technology Conference held in Houston, Texas, 3­6 May 1999. This paper was selected by the author(s). Contents of the paper, as presented, have not been reviewed by the Offshore Technology

  17. Complex admixtures of clathrate hydrates in a water desalination method

    DOE Patents [OSTI]

    Simmons, Blake A. (San Francisco, CA); Bradshaw, Robert W. (Livermore, CA); Dedrick, Daniel E. (Berkeley, CA); Anderson, David W. (Riverbank, CA)

    2009-07-14T23:59:59.000Z

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  18. Internet Gambling Offshore: Caribbean Struggles over Casino Capitalism. Andrew F. Cooper. Basingstoke, U.K.: Palgrave Macmillan, 2011. xvii + 201 pp. (Cloth US$ 85.00)

    E-Print Network [OSTI]

    Maurer, Bill

    2013-01-01T23:59:59.000Z

    Reviews Internet Gambling Offshore: Caribbean Struggles overcrisis. Antigua hosted offshore gambling operations thatweaker than those against offshore gambling. Furthermore,

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  20. Numerical, Laboratory And Field Studies of Gas Production From Natural Hydrate Accumulations in Geologic Media

    E-Print Network [OSTI]

    Moridis, George J.; Kneafsey, Timothy J.; Kowalsky, Michael; Reagan, Matthew

    2006-01-01T23:59:59.000Z

    hydrate (Class 1W) or gas and hydrate (Class 1G). In Class 1Economic Geology of Natural Gas Hydrates, M. Max, A.H. John-of the thermal test of gas hydrate dissociation in the

  1. Depressurization-induced gas production from Class 1 and Class 2 hydrate deposits

    E-Print Network [OSTI]

    Moridis, George J.; Kowalsky, Michael

    2006-01-01T23:59:59.000Z

    hydrate (Class 1W) or gas and hydrate (Class 1G). In Class 1Class 1G (involving gas and hydrate in the HBL). In Class 2JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie

  2. Onderwijs en offshoring Offshore outsourcing is een trend die niet is tegen te houden. Hoe moeten universiteiten en HBO-instellingen hierop reageren? Volgens Roel Wieringa

    E-Print Network [OSTI]

    Wieringa, Roel

    Onderwijs en offshoring Offshore outsourcing is een trend die niet is tegen te houden. Hoe moeten internationaal karakter universiteiten' De discussie over offshoring laat een opmerkelijke consensus zien onder

  3. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    SciTech Connect (OSTI)

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01T23:59:59.000Z

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  4. OFF-THE-RECORD COMMUNICATION FOR JORDAN COVE ENERGY PROJECT, L.P., FE DKT. NO. 12-32-LNG

    Broader source: Energy.gov [DOE]

    Posting of Off-the-Record CommunicationThe documents linked below were sent to the Department of Energy (DOE) in reference to the Jordan Cove Energy Project, L.P., FE Dkt. No. 12-32-LNG proceeding....

  5. Method for production of hydrocarbons from hydrates

    DOE Patents [OSTI]

    McGuire, Patrick L. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A method of recovering natural gas entrapped in frozen subsurface gas hydrate formations in arctic regions. A hot supersaturated solution of CaCl.sub.2 or CaBr.sub.2, or a mixture thereof, is pumped under pressure down a wellbore and into a subsurface hydrate formation so as to hydrostatically fracture the formation. The CaCl.sub.2 /CaBr.sub.2 solution dissolves the solid hydrates and thereby releases the gas entrapped therein. Additionally, the solution contains a polymeric viscosifier, which operates to maintain in suspension finely divided crystalline CaCl.sub.2 /CaBr.sub.2 that precipitates from the supersaturated solution as it is cooled during injection into the formation.

  6. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NY); Walsh, Michael M. (Fairfield, CT)

    2003-01-01T23:59:59.000Z

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  7. New Methane Hydrate Research: Investing in Our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed...

  8. Detection of gas hydrates by the measurement of instantaneous temperature

    E-Print Network [OSTI]

    Dinakaran, Srikanth

    1994-01-01T23:59:59.000Z

    Natural gas hydrates are icelike crystalline substances formed by gas molecules trapped in a water lattice. Suitable thermodynamic conditions and the presence of gas are required for the formation of natural gas hydrates in ocean sediments. Several...

  9. CHARACTERIZATION OF MIXED CO2-TBPB HYDRATE FOR REFRIGERATION APPLICATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in a dynamic loop and an Ostwald-de Waele model was obtained. Keywords: CO2, TBPB, mixed hydrates, solubility

  10. Dehydration of plutonium or neptunium trichloride hydrate

    DOE Patents [OSTI]

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24T23:59:59.000Z

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  11. Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report

    SciTech Connect (OSTI)

    None

    1999-09-21T23:59:59.000Z

    It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

  12. Videos of Experiments from ORNL Gas Hydrate Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gas hydrate research performed by the Environmental Sciences Division utilizes the ORNL Seafloor Process Simulator, the Parr Vessel, the Sapphire Cell, a fiber optic distributed sensing system, and Raman spectroscopy. The group studies carbon sequestration in the ocean, desalination, gas hydrates in the solar system, and nucleation and dissociation kinetics. The videos available at the gas hydrates website are very short clips from experiments.

  13. Paraffin deposition in offshore oil production

    E-Print Network [OSTI]

    Elphingstone, Gerald Mason

    2012-06-07T23:59:59.000Z

    PARAFFIN DEPOSITION IN OFFSHORE OIL PRODUCTION A Thesis by G E R A L D M A S O N E L P H I N G S T O N E J R . Submitted to the Office of Graduate Studies of Texas A & M Univers i ty in part ial fulfillment of the requirements for the degree... of M A S T E R O F S C I E N C E May 1995 Major Subject: Chemica l Engineering PARAFFIN DEPOSITION IN OFFSHORE OIL PRODUCTION A Thesis by G E R A L D M A S O N E L P H I N G S T O N E J R . Submitted to Texas A & M University in part ial...

  14. ,"Indiana Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved NaturalPriceLNG Storage Net

  15. Scira Offshore Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaScira Offshore Energy Jump to: navigation,

  16. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015Services »of(BENEFIT) -ArchivedGridOffshore Wind

  17. The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline com-

    E-Print Network [OSTI]

    Boyer, Edmond

    gas hydrates. Gas hydrates are crystalline com- pounds that are often encountered in oil and gas briefly present the hydrate crystalline structure and the role of hydrates in oil-and gas industry the industrial contexts where they appear, we shall cite : hydrate plugs obstructing oil- or gas

  18. The wind speed profile at offshore wind farm sites Bernhard Lange(1)

    E-Print Network [OSTI]

    Heinemann, Detlev

    The wind speed profile at offshore wind farm sites Bernhard Lange(1) , Søren E. Larsen(2) , Jørgen in Europe will come from offshore sites. The first large offshore wind farms are #12;currently being built feasibility of offshore wind power utilisation depends on the favourable wind conditions offshore compared

  19. Cours Titre Professeur Horaire Local LNG 1050 Ancien et moyen franais Philippe Leblond Jeu 13h00 16h00 B-4340 B-4295

    E-Print Network [OSTI]

    Parrott, Lael

    Cours Titre Professeur Horaire Local Local examen LNG 1050 Ancien et moyen français Philippe Leblond Jeu 13h00 à 16h00 B-4340 B-4295 LNG 1300 Dictionnaires : analyse de contenu Louise Dagenais Ven 13h00 à 16h00 B-4220 B-3290 LNG 1540 Notions de syntaxe Mireille Tremblay Mar 13h00 à 16h00 B-2245 B

  20. Cours Titre Professeur Horaire Local examen LNG 1050 Ancien et moyen franais Isabelle Delage-Bland Jeu 13h00 16h00 B-4265 B-4265

    E-Print Network [OSTI]

    Leclercq, Remi

    Local Cours Titre Professeur Horaire Local examen LNG 1050 Ancien et moyen français Isabelle Delage-Béland Jeu 13h00 à 16h00 B-4265 B-4265 LNG 1300 Dictionnaires : analyse de contenu Louise Dagenais Ven 13h00 à 16h00 B-4240 B-4240 LNG 1540 Notions de syntaxe Mireille Tremblay Mar 13h00 à 16h00 D-550 D-550

  1. Horns Rev Offshore Wind Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Farm Environmental Impact Assessment of Sea Bottom and Marine Biology #12 Design ApS 01.03.2000 #12;Bio/consult A/S Horns Rev. Offshore Wind Farm Doc. No. 1680-1-02-03-003 rev. 1........................................................................................................................................................... 36 #12;Bio/consult A/S ELSAM Horns Rev. Offshore Wind Farm Doc. No. 1680-1-02-03-003 rev. 1 Page 4

  2. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    conventional truck; the hydrogen fuel cell truck can improveconventional truck; the hydrogen fuel cell truck can improveLNG engines, fuel cell vehicles using hydrogen, and battery

  3. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect (OSTI)

    Jonkman, J.; Musial, W.

    2010-12-01T23:59:59.000Z

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  4. Comparative Assessment of Advanced Gay Hydrate Production Methods

    SciTech Connect (OSTI)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30T23:59:59.000Z

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  5. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01T23:59:59.000Z

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  6. Offshore Wind Market Acceleration Projects | Department of Energy

    Energy Savers [EERE]

    on wildlife and the marine environment, and mitigating the impact of offshore wind turbines on radar and other communication and navigation equipment. The links below will...

  7. University of Michigan Gets Offshore Wind Ready for Winter on...

    Energy Savers [EERE]

    Project Overview Positive Impact Understanding the impact of ice on offshore wind turbines. Modeling tool to analyze the ice buildup on wind turbine blades. Locations...

  8. Environmental Impacts Due to Fixed and Floating Offshore Wind Turbines.

    E-Print Network [OSTI]

    Brewer, Micah K

    2012-01-01T23:59:59.000Z

    ??As has been the case for onshore wind systems, the environmental effects of offshore wind farms are expected to play an important part of the… (more)

  9. Electrical transmission systems for large offshore wind farms.

    E-Print Network [OSTI]

    King, Rosemary Louise

    2011-01-01T23:59:59.000Z

    ??Simulations of switching transients were carried out in EMTP-RV. Overvoltages in offshore wind farms ranged from temporary over voltages to very fast front transients. Transient… (more)

  10. PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    monitoring birds, bats, and aquatic animals such as marine mammals, sea turtles, and fish in the offshore wind farm environment. Informed by monitoring results and research...

  11. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...

    Office of Environmental Management (EM)

    to Fishermen's Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical...

  12. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01T23:59:59.000Z

    and J. Trent (2013). Microalgae cultivation using offshoreJ. Trent, Harvesting Microalgae by Forward Osmosis. The Open5, 1943 (2012). E. W. Becker, Microalgae: Biotechnology and

  13. NREL: Wind Research - NREL Analyzes Floating Offshore Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    representatives regarding NREL's analysis of Statoil's Hywind II offshore floating wind turbine design. Statoil's Hywind II is a 6-MW turbine on a floating spar-buoy...

  14. Assessment of Ports for Offshore Wind Development in the United...

    Broader source: Energy.gov (indexed) [DOE]

    America, Inc. Page ii Document No. 700694-USPO-R-03 Assessment of Ports for Offshore Wind Development in the United States Issue: E Final CONTENTS EXECUTIVE SUMMARY...

  15. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Broader source: Energy.gov (indexed) [DOE]

    has developed a tool to estimate jobs and other economic impacts associated with offshore wind development in the United States. The modeling tool, which illustrates the potential...

  16. Offshore Wind Jobs and Economic Development Impacts in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Laboratory (NREL) at www.nrel.govpublications. Executive Summary Offshore wind has tremendous potential in the United States as a clean, renewable source of...

  17. New Report Highlights Trends in Offshore Wind with 14 Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the advanced stages of development- together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States. Further, this year's report...

  18. Offshore Wind Jobs and Economic Development Impacts in the United...

    Broader source: Energy.gov (indexed) [DOE]

    wind has tremendous potential in the United States as a clean, renewable source of electricity. This report uses the offshore wind Jobs and Economic Development Impacts (JEDI)...

  19. Obama Administration Hosts Great Lakes Offshore Wind Workshop...

    Office of Environmental Management (EM)

    wind development in the Great Lakes closer to fruition." "The country's vast offshore wind resources have the potential to dramatically reduce America's dependence on fossil...

  20. New DOE Modeling Tool Estimates Economic Benefits of Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    renewable power plants. The updated version allows users to better understand the potential regional economic impacts of offshore wind development. DOE is using the new...

  1. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Energy Savers [EERE]

    systems cost. Suzanne Tegen, National Renewable Energy Laboratory (NREL): Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios. This presentation...

  2. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    E-Print Network [OSTI]

    Moridis, George

    2008-01-01T23:59:59.000Z

    coexistence of aqueous, gas and hydrate phases in a cell (a deposit in which water, gas and hydrate are initially atequilibrium. The initial gas and hydrate saturations are S G

  3. Ben Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005

    E-Print Network [OSTI]

    Boyer, Edmond

    Ben Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005 1 Using several data sources for offshore wind of production. Nowadays, the resource is evaluated by interpolation of discrete measurements but offshore

  4. Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Unveils 41 New Offshore Wind Power R&D Projects Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects September 8, 2011 - 11:13am Addthis Chris Hart Offshore Wind Team...

  5. A Probabilistic Deformation Demand Model and Fragility Estimates for Asymmetric Offshore Jacket Platforms

    E-Print Network [OSTI]

    Fallon, Michael Brooks

    2012-11-12T23:59:59.000Z

    Interest in evaluating the performance and safety of offshore oil and gas platforms has been expanding due to the growing world energy supply and recent offshore catastrophes. In order to accurately assess the reliability of an offshore platform...

  6. Apports des rseaux baysiens pour la sret et la mise en scurit des infrastructures ptrolires offshore

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    offshore Contributions of Bayesian networks for safety and security of offshore oil infrastructures Xavier.000 champs offshore, impliquant chacun d'une part un ensemble d'Ă©quipements pour extraire, traiter et stocker

  7. UNDERLYING MOTIVATIONS FOR DELAWARE PUBLIC PARTICIPATION IN SUPPORT OF OFFSHORE WIND

    E-Print Network [OSTI]

    Firestone, Jeremy

    UNDERLYING MOTIVATIONS FOR DELAWARE PUBLIC PARTICIPATION IN SUPPORT OF OFFSHORE WIND: IMPLICATIONS PARTICIPATION IN SUPPORT OF OFFSHORE WIND: IMPLICATIONS FOR STATE ENERGY POLICY by Jacqueline D Piero Approved ................................................................................................. 3 Offshore wind: a new option in the United States.............................................. 4

  8. Support for Offshore Oil and Gas Drilling among the California Public

    E-Print Network [OSTI]

    Smith, Eric R.A.N.

    2003-01-01T23:59:59.000Z

    005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

  9. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    SciTech Connect (OSTI)

    Rack, Frank R.; Dickens, Gerald; Ford, Kathryn; Schroeder, Derryl; Storms, Michael

    2002-08-01T23:59:59.000Z

    The primary accomplishment of the JOI Cooperative Agreement with DOE/NETL in this quarter was the preparation of tools and measurement systems for deployment, testing and use on ODP Leg 204, which will study hydrate deposits on Hydrate Ridge, offshore Oregon. Additional accomplishments were related to the postcruise evaluation of tools and measurements systems used on ODP Leg 201 along the Peru margin from January through March, 2002. The operational results from the use of the Pressure Core Sampler (PCS) tool and the PCS Gas Manifold on ODP Leg 201 are evaluated in this progress report in order to prepare for the upcoming deployments on ODP Leg 204 in July, 2002. The PCS was deployed 17 times during ODP Leg 201 and successfully retrieved cores from a broad range of lithologies and sediment depths along the Peru margin. Eleven deployments were entirely successful, collecting between 0.5 and 1.0 meters of sediment at greater than 75% of hydrostatic pressure. The PCS gas manifold was used in conjunction with the Pressure Core Sampler (PCS) throughout ODP Leg 201 to measure the total volume and composition of gases recovered in sediment cores associated with methane gas hydrates. The FUGRO Pressure Corer (FPC), one of the HYACE/HYACINTH pressure coring tools, was also deployed on the D/V JOIDES Resolution during ODP Legs 201 to field-test this coring system at three shallow-water sites located offshore Peru. The field-testing of these tools provides a corollary benefit to DOE/NETL at no cost to this project. The testing of these tools on the D/V JOIDES Resolution was negotiated as part of a cooperative agreement between JOI/ODP and the HYACINTH partners. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were used extensively during ODP Leg 201. The data obtained from the successful deployments of these tools is still being evaluated by the scientists and engineers involved in this testing; however, preliminary results are presented in this report. An infrared-thermal imaging system (IR-TIS) was deployed for the first time on ODP Leg 201. This system was used to identify methane hydrate intervals in the recovered cores. Initial discussions of these experiments are provided in this report. This report is an overview of the field measurements made on recovered sediment cores and the downhole measurements made during ODP Leg 201. These results are currently being used to incorporate the ''lessons learned'' from these deployments to prepare for a dedicated ODP leg to study the characteristics of naturally-occurring hydrates in the subsurface environment of Hydrate Ridge, offshore Oregon during ODP Leg 204, which will take place from July through September, 2002.

  10. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermen’s Energy LLC to construct and operate up to five 5.0 MW wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  11. FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION

    E-Print Network [OSTI]

    Firestone, Jeremy

    FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION 2010 Amardeep Dhanju All Rights Reserved #12;FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT

  12. E-Print Network 3.0 - atividades offshore da Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offshore da Search Powered by Explorit Topic List Advanced Search Sample search results for: atividades offshore da Page: << < 1 2 3 4 5 > >> 1 Ministrio da Educao UNIVERSIDADE...

  13. E-Print Network 3.0 - annual offshore technology Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offshore technology Search Powered by Explorit Topic List Advanced Search Sample search results for: annual offshore technology Page: << < 1 2 3 4 5 > >> 1 A review of the...

  14. Transient Studies in Large Offshore Wind Farms, Taking Into Account Network Breaker Interaction

    E-Print Network [OSTI]

    Bak, Claus Leth

    Transient Studies in Large Offshore Wind Farms, Taking Into Account Network Breaker Interaction studies in offshore wind farms, PSCAD. I. INTRODUCTION IN OWF applications, the consequences of component

  15. E-Print Network 3.0 - adjacent offshore area Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offshore area Search Powered by Explorit Topic List Advanced Search Sample search results for: adjacent offshore area Page: << < 1 2 3 4 5 > >> 1 Travel Characteristics of Marine...

  16. E-Print Network 3.0 - activity-based costing offshore Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Global Value Chain Summary: The Offshore Services Global Value Chain ECONOMIC UPGRADING AND WORKFORCE DEVELOPMENT Karina... & COMPETITIVENESS 12;The Offshore Services...

  17. Offshore Wind Park Connection to an HVDC Platform, without using an AC Collector Platform.

    E-Print Network [OSTI]

    Ahmad, Haseeb

    2012-01-01T23:59:59.000Z

    ?? This thesis investigates the comparison between two different alternating current topologies of an offshore wind farms connection to an offshore high voltage direct current… (more)

  18. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photoInterconnectionTheOffshore

  19. Federal Offshore Gulf of Mexico Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. FORFederal Offshore

  20. Offshore Wind Power USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1EnergyFederalaimsOffshore Wind Power

  1. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010)Pty LtdIntergovernmentalOffshore

  2. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034C.Marketing LLC:Area1 Articles aboutMarket81Offshore

  3. Comparison of Kinetic and Equilibrium Reaction Models in Simulating the Behavior of Gas Hydrates in Porous Media

    E-Print Network [OSTI]

    Kowalsky, Michael B.; Moridis, George J.

    2006-01-01T23:59:59.000Z

    rate constant of methane gas hydrate decomposition, CanadianAdvances in the Study of Gas Hydrates, C. Taylor , J. Qwan,International Conference on Gas Hydrates, Trondheim, Norway,

  4. Evaluation of the Gas Production Potential of Marine Hydrate Deposits in the Ulleung Basin of the Korean East Sea

    E-Print Network [OSTI]

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol, Yongkoo; Zhang, Keni

    2007-01-01T23:59:59.000Z

    indicators for natural gas hydrates in shallow sediments ofInternational Symposium on Gas Hydrate Technology, Seoul,International Symposium on Gas Hydrate Technology, Seoul,

  5. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments

    E-Print Network [OSTI]

    Rutqvist, J.

    2014-01-01T23:59:59.000Z

    Toward Production from Gas Hydrates: Current Status,Facing Gas Production From Gas-Hydrate Deposits. Society ofConference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland,

  6. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    E-Print Network [OSTI]

    Seol, Yongkoo

    2010-01-01T23:59:59.000Z

    Formation of natural gas hydrates in marine sediments 1.Conceptual model of gas hydrate growth conditioned by hostPotential effects of gas hydrate on human welfare, Proc.

  7. Numerical studies of gas production from several CH4-hydrate zones at the Mallik Site, Mackenzie Delta, Canada

    E-Print Network [OSTI]

    Moridis, George J.; Collett, Timothy S.; Dallimore, Scott R.; Satoh, Tohru; Hancock, Steven; Weatherill, Brian

    2002-01-01T23:59:59.000Z

    JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenziepermafrost- associated gas hydrate accumulation in theTerritories, Canada. A gas hydrate research well was drilled

  8. Wave Models for Offshore Wind Turbines Puneet Agarwal

    E-Print Network [OSTI]

    Manuel, Lance

    Wave Models for Offshore Wind Turbines Puneet Agarwal§ and Lance Manuely Department of Civil for estimating loads on the support structure (monopile) of an offshore wind turbine. We use a 5MW utility-scale wind turbine model for the simulations. Using, first, the sim- pler linear irregular wave modeling

  9. Taming Hurricanes With Arrays of Offshore Wind Turbines

    E-Print Network [OSTI]

    Firestone, Jeremy

    Taming Hurricanes With Arrays of Offshore Wind Turbines Mark Z. Jacobson Cristina Archer, Willet #12;Representation of a vertically-resolved wind turbine in model Lines are model layers) or 50 m/s (destruction) speed. Can Walls of Offshore Wind Turbines Dissipate Hurricanes? #12;Katrina

  10. DISTRIBUTED OPTIMIZATION AND CONTROL OF OFFSHORE OIL PRODUCTION: THE INTELLIGENT

    E-Print Network [OSTI]

    Foss, Bjarne A.

    DISTRIBUTED OPTIMIZATION AND CONTROL OF OFFSHORE OIL PRODUCTION: THE INTELLIGENT PLATFORM Michael R to distributed optimization and control of offshore oil production systems. The model incorporates a complex pipeline network. Oil and gas production systems are represented as a network of connected hierarchical

  11. Energy Efficient Pump Control for an Offshore Oil Processing System

    E-Print Network [OSTI]

    Yang, Zhenyu

    Energy Efficient Pump Control for an Offshore Oil Processing System Zhenyu Yang Kian Soleiman Bo, Denmark. Abstract: The energy efficient control of a pump system for an offshore oil processing system is investigated. The seawater is lifted up by a pump system which consists of three identical centrifugal pumps

  12. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01T23:59:59.000Z

    offshore wastewater outfalls and CO 2 sources, such as near-shore power plants,offshore placement allows the system to be in close proximity to wastewater treatment plantsoffshore in protected bays (21, 37-39) (Figure 1.1). During operation, treated final plant

  13. Multistage Stochastic Programming Approach for Offshore Oilfield Infrastructure Planning

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Multistage Stochastic Programming Approach for Offshore Oilfield Infrastructure Planning under is implemented in the GAMS grid computing environment. Computational results on a variety of oilfield development cycle of a typical offshore oilfield project consists of the following five steps: (1) Exploration

  14. International Collaboration on Offshore Wind Energy Under IEA Annex XXIII

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Lemming, J.

    2005-11-01T23:59:59.000Z

    This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

  15. Offshore Wind Power Experiences, Potential and Key Issues for

    E-Print Network [OSTI]

    Offshore Wind Power Experiences, Potential and Key Issues for Deployment Jørgen Lemming, Poul Erik-Erik Clausen Title: Offshore Wind Power Experiences, Potential and Key Issues for Deployment Division: VEA, SYS Risø-R-1673(EN) January 2008 Abstract: Wind power has been growing at spectacular rates. Today

  16. Improvement of Offshore Wind Resource Modeling in the Mid-

    E-Print Network [OSTI]

    Firestone, Jeremy

    Improvement of Offshore Wind Resource Modeling in the Mid- Atlantic Bight Wind Energy Symposium Sienkiewicz , Chris Hughes 26 February 2013 #12;Improving Atmospheric Models for Offshore Wind Resource Interaction Tower ­ 23 m NOAA Buzzard's Bay Tower ­ 25 m Cape Wind Tower (60 m from 2003-2011; just platform

  17. Methane Hydrate Field Studies | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMay 20Field Studies Methane Hydrate Field

  18. Methane Hydrate Production Feasibility | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMay 20Field Studies Methane Hydrate

  19. International Conference on Gas Hydrates May 19-23, 2002, Yokohama

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    4th International Conference on Gas Hydrates May 19-23, 2002, Yokohama Cold Flow Hydrate Technology an opportunity for flow assurance in deepwater production of oil and gas. Hydrate R&D in the Natural Gas Hydrate exchange and reactor units. Introduction Hydrates form when liquid water and natural gas are in contact

  20. Pressurized release of liquefied fuel gases (LNG and LPG). Topical report, May 1993-February 1996

    SciTech Connect (OSTI)

    Atallah, S.; Janardhan, A.

    1996-02-01T23:59:59.000Z

    This report is an important contribution to the behavior of pressurized liquefied gases when accidentally released into the atmosphere. LNG vehicle fueling stations and LPG storage facilities operate at elevated pressures. Accidental releases could result in rainout and the formation of an aerosol in the vapor cloud. These factors must be considered when estimating the extent of the hazard zone of the vapor cloud using a heavier-than-air gas dispersion model such as DEGADIS (or its Windows equivalent DEGATEC). The DOS program PREL has been incorporated in the Windows program LFGRISK.

  1. ,"Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotalPrice (Dollars perLNG

  2. ,"Alaska Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (BillionShare of TotalCrudeTotalLNG Storage

  3. ,"Arkansas Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved ReservesPricePrice (Dollars per Thousand CubicLNG

  4. ,"Georgia Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio" ,"FullUtah"Wyoming",,,"07,6.LNG

  5. ,"Idaho Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved NaturalPrice (Dollars per ThousandLNG

  6. ,"Illinois Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved NaturalPrice (Dollars+ LeasePriceLNG

  7. ,"Louisiana Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)" ,"Click worksheetDryCrude Oil +PriceLNG

  8. ,"Massachusetts Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"Shale ProvedWellhead Price (Dollars perLNG

  9. ,"Minnesota Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"Shale ProvedWellheadNetShale ProvedLNG Storage

  10. ,"Nevada Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"ShaleCoalbedShaleLNG Storage Net Withdrawals

  11. ,"New Mexico Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice Sold to Electric PowerCoalbedConsumptionLNG Storage

  12. ,"Oregon Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShaleVolumeGas, WetLNG Storage

  13. ,"Pennsylvania Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPriceCoalbed Methane Proved Reserves (Billion Cubic+PriceLNG

  14. How to Obtain Authorization to Import and/or Export Natural Gas and LNG |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History On7,How GasHow

  15. Pangea LNG (North America) Holdings, LLC - 14-002-CIC (FE Dkt. No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava,Pacific1of PageHYDROGEN H12-184-LNG New

  16. Pangea LNG (North America) Holdings, LLC - 14-003-CIC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava,Pacific1of PageHYDROGEN H12-184-LNG

  17. SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving Loan FundsDepartment of Energy MAGNOLIA LNG-

  18. SEMI-ANNUAL REPORTING REQUIREMENTS (LNG EXPORTERS) 2010-2015 DOCKETS |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015DepartmentDepartment ofSoft CostsDepartment of Energy

  19. LNG Exports by Vessel out of the U.S. Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2 LNG Annual Report -ofout

  20. LNG Imports by Truck into the U.S. Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2 LNG Annual Report

  1. LNG Imports by Vessel into the U.S. Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2 LNG Annual ReportVessel

  2. ,"Rhode Island Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per Thousand Cubic Feet)"NigeriaTheMarch3PriceLNG

  3. ,"Tennessee Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to9"3LNG Storage Net

  4. ,"Virginia Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in NonproducingU.S.Summary"LNG Storage Net

  5. ,"Washington Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in NonproducingU.S.Summary"LNGShale ProvedLNG Storage

  6. ,"Wisconsin Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural GasPlant Liquids,Shale Provedf.LNG Storage

  7. Strom Inc, FE Dkt. No. 14-57-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization ofDepartmentRegimes |Regimes |7-LNG

  8. SEMI-ANNUAL REPORTS FOR DOMINION COVE POINT, LP - DKt. NO. 11-115-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT. NO. 14-98-LNG3365 | DepartmentFE

  9. SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT. NO. 14-98-LNG3365 |LLC - FE DKT.LLC -3290-

  10. Development of Alaskan gas hydrate resources. Final report

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01T23:59:59.000Z

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  11. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia

    Broader source: Energy.gov [DOE]

    DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

  12. Oxford University Civil Engineering Novel Foundations for Offshore Wind FarmsNovel Foundations for Offshore Wind Farms

    E-Print Network [OSTI]

    Houlsby, Guy T.

    Oxford University Civil Engineering Novel Foundations for Offshore Wind FarmsNovel Foundations for Offshore Wind Farms Prof. Guy Houlsby, Dr Byron Byrne, Dr Chris Martin Oxford University #12;Oxford each turbine does not generate all the time, say 3000) #12;Oxford University Civil Engineering Wind

  13. Natural gas hydrates - issues for gas production and geomechanical stability

    E-Print Network [OSTI]

    Grover, Tarun

    2008-10-10T23:59:59.000Z

    occurring at the field. Further, the controlling parameters for hydrate dissociation in porous media are quantified and a sensitivity study is presented. Chapter VI presents the results of a simulation experiment done to evaluate the performance of a..., the location iv of perforations and the gas hydrate saturation to be important parameters for gas production at the Messoyakha. Second, I simulated the gas production using a hydraulic fracture in hydrate bearing sediments. The simulation results showed...

  14. angiogenesis vascularity hydration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. Introduction Cementpaste,the binding phaseof concrete Bentz, Dale P. 177 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  15. aluminum hydration effects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. Introduction Cementpaste,the binding phaseof concrete Bentz, Dale P. 258 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  16. Energy Department Expands Research into Methane Hydrates, a Vast...

    Broader source: Energy.gov (indexed) [DOE]

    separate project funded by the EU through Universities of Bremen (Germany) and Tromso (Norway), will assess the response of methane hydrates to environmental changes at the...

  17. Method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, Jr., Earle D. (Golden, CO)

    1995-01-01T23:59:59.000Z

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

  18. Method for the photocatalytic conversion of gas hydrates

    DOE Patents [OSTI]

    Taylor, Charles E. (Pittsburg, PA); Noceti, Richard P. (Pittsburg, PA); Bockrath, Bradley C. (Bethel Park, PA)

    2001-01-01T23:59:59.000Z

    A method for converting methane hydrates to methanol, as well as hydrogen, through exposure to light. The process includes conversion of methane hydrates by light where a radical initiator has been added, and may be modified to include the conversion of methane hydrates with light where a photocatalyst doped by a suitable metal and an electron transfer agent to produce methanol and hydrogen. The present invention operates at temperatures below 0.degree. C., and allows for the direct conversion of methane contained within the hydrate in situ.

  19. Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests

    SciTech Connect (OSTI)

    Cha, Jong-Ho [ORISE; Seol, Yongkoo [U.S. DOE

    2013-01-01T23:59:59.000Z

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from ?2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  20. Hydration-dependent dynamics of deeply cooled water under strong confinement

    E-Print Network [OSTI]

    Bertrand, C. E.

    We have measured the hydration-level dependence of the single-particle dynamics of water confined in the ordered mesoporous silica MCM-41. The dynamic crossover observed at full hydration is absent at monolayer hydration. ...

  1. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    E-Print Network [OSTI]

    Reagan, M.

    2012-01-01T23:59:59.000Z

    Potential distribution of methane hydrate in the world'sisotopic evidence for methane hydrate instability duringHendy, L.L. , and R.J. Behl, Methane hydrates in quaternary

  2. Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations

    E-Print Network [OSTI]

    Kneafsey, T.

    2012-01-01T23:59:59.000Z

    S.S.H. , 1987. Kinetics of Methane Hydrate Decomposition,T. J. , et al. (2007), Methane Hydrate Formation andCharting the future of methane hydrate research in the

  3. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    E-Print Network [OSTI]

    Boswell, R.D.

    2010-01-01T23:59:59.000Z

    Advances in the Study of Gas Hydrates. Kluwer, New York, pp.and quantification of gas hydrates using rock physics andand Salt Inhibition of Gas Hydrate Formation in the Northern

  4. Comparison of kinetic and equilibrium reaction models in simulating gas hydrate behavior in porous media

    E-Print Network [OSTI]

    Kowalsky, Michael B.; Moridis, George J.

    2006-01-01T23:59:59.000Z

    with Diapirism and Gas Hydrates at the Head of the Cape FearSea-Level Low Stands Above Gas Hydrate-Bearing Sediments.rate constant of methane gas hydrate decomposition. Canadian

  5. Estimation of composite thermal conductivity of a heterogeneous methane hydrate sample using iTOUGH2

    E-Print Network [OSTI]

    Gupta, Arvind; Kneafsey, Timothy J.; Moridis, George J.; Seol, Yongkoo; Kowalsky, Michael B.; Sloan Jr., E.D.

    2006-01-01T23:59:59.000Z

    International Conference on Gas Hydrates, Trondheim, Norway,Challenges for the future/gas hydrates, NYAS 912, 304, 2000.C. , Thermal state of the gas hydrate reservoir, natural gas

  6. Development of a Numerical Simulator for Analyzing the Geomechanical Performance of Hydrate-Bearing Sediments

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01T23:59:59.000Z

    J. Mienert. 2004. Effect of gas hydrates melting on seafloorInternational Conference on Gas Hydrates, Trondheim, Norway,A Documented Example of Gas Hydrate Saturated Sand in the

  7. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production

    E-Print Network [OSTI]

    Rutqvist, J.

    2009-01-01T23:59:59.000Z

    Conference on Gas Hydrates (ICGH 2008), Vancouver, BritishGSC et al. Mallik 5L-38 gas hydrate production research wellfrom the Mallik 2002 Gas Hydrate Production Research Well

  8. The dynamic response of oceanic hydrate deposits to ocean temperature change

    E-Print Network [OSTI]

    Reagan, Matthew T.

    2008-01-01T23:59:59.000Z

    Moridis, G.J. (2007), Oceanic gas hydrate instability andand salt inhibition of gas hydrate formation in the northernI.R. (1999), Thermogenic gas hydrates and hydrocarbon gases

  9. Basin scale assessment of gas hydrate dissociation in response to climate change

    E-Print Network [OSTI]

    Reagan, M.

    2012-01-01T23:59:59.000Z

    Moridis GJ. Oceanic gas hydrate instability and dissociationKA. Potential effects of gas hydrate on human welfare, Proc.WS. A review of methane and gas hydrates in the dynamic,

  10. Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits

    E-Print Network [OSTI]

    Reagan, Matthew

    2009-01-01T23:59:59.000Z

    a) temperature, (b) gas and hydrate phase saturations, and (A Documented Example of Gas Hydrate Saturated Sand in theMakogon, Y.F. , “Gas hydrates: frozen energy,” Recherche 18(

  11. The Use of Horizontal Wells in Gas Production from Hydrate Accumulations

    E-Print Network [OSTI]

    Moridis, George J.

    2008-01-01T23:59:59.000Z

    E.D. Toward Production From Gas Hydrates: Current Status,International Conference on Gas Hydrates, Trondheim, Norway,for Gas Production from Gas Hydrate Reservoirs, J. Can. Pet.

  12. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    E-Print Network [OSTI]

    Reagan, M.

    2012-01-01T23:59:59.000Z

    V.A. Soloviev, Submarine Gas Hydrates. St. Petersburg, 1998.and stability of gas hydrate-related bottom-simulatingPotential effects of gas hydrate on human welfare, Proc.

  13. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    E-Print Network [OSTI]

    Reagan, Matthew T.

    2008-01-01T23:59:59.000Z

    Potential effects of gas hydrate on human welfare. Proc.W.S. A review of methane and gas hydrates in the dynamic,Geology of Natural Gas Hydrates, M. Max, A.H. Johnson, W.P.

  14. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    Draft EA: Public Comment Period Ends 04/03/15DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  15. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    E-Print Network [OSTI]

    Rees, E.V.L.

    2012-01-01T23:59:59.000Z

    K. and McDonald, T. , Gas Hydrates of the Middle Americaet al. , Indian National Gas Hydrate Program Expedition 01et al. , Drilling Gas Hydrates on Hydrate Ridge, Cascadia

  16. Offshore Wind Farms – the Impact on Wind Farm Planning and Cost of Generation

    E-Print Network [OSTI]

    Jacob Ladeburg; Sanja Lutzeyer

    rates of planning and construction of new wind farms. Offshore wind farms typically offer the benefits

  17. Title MULTI-TERMINAL VSC HVDC CONNECTION OF OFFSHORE WIND FARMS

    E-Print Network [OSTI]

    Contact Person Jef Beerten

    additional advantages over AC cables when the connection of offshore wind farms is considered, since it

  18. Offshore Wind Power: Science, engineering, and policy MAST 628-010, Fall 2008

    E-Print Network [OSTI]

    Firestone, Jeremy

    Offshore Wind Power: Science, engineering, and policy MAST 628-010, Fall 2008 Revised 10 October@udel.edu Class web site with lecture notes: www.udel.edu/sakai UD offshore wind research: http, plan, regulate, and develop offshore wind resources for large-scale power production. Offshore wind

  19. Research on Offshore Foundations: Papers at the International Symposium on Frontiers in

    E-Print Network [OSTI]

    Byrne, Byron

    Research on Offshore Foundations: Papers at the International Symposium on Frontiers in Offshore@eng.ox.ac.uk http://www-civil.eng.ox.ac.uk/ #12;Research on Offshore Foundations: Papers at the International Symposium on Frontiers in Offshore Geotechnics Perth, Australia, 2005 G.T. Houlsby, C.M. Martin, B.W. Byrne

  20. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.