Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT  

SciTech Connect

The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer, and designed and built a larger, multi-cell stack electrolyzer. During FY08, SRNL continued SDE development, including development and successful testing of a three-cell electrolyzer stack with a rated capacity of 100 liters per hour. The HyS program for FY09 program will address improving SDE performance by focusing on preventing or minimizing sulfur deposition inside the cell caused by SO{sub 2} crossover, reduction of cell voltage for improved efficiency, an extension of cell operating lifetime. During FY09 a baseline technology development program is being conducted to address each of these issues. Button-cell (2-cm{sup 2}) and single cell (60-cm{sup 2}) SDEs will be fabricated and tested. A pressurized button-cell test facility will be designed and constructed to facilitate addition testing. The single cell test facility will be upgraded for unattended operation, and later for operation at higher temperature and pressure. Work will continue on development of the Gas Diffusion Electrode (GDE), or Gap Cell, as an alternative electrolyzer design approach that is being developed under subcontract with industry partner Giner Electrochemical Systems. If successful, it could provide an alternative means of preventing sulfur crossover through the proton exchange membrane, as well as the possibility for higher current density operation based on more rapid mass transfer in a gas-phase anode. Promising cell components will be assembled into membrane electrode assemblies (MEAs) and tested in the single cell test facility. Upon modification for unattended operation, test will be conducted for 200 hours or more. Both the button-cell and modified single cell facility will be utilized to demonstrate electrolyzer operation without sulfur build-up limitations, which is a Level 1 Milestone.

Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

2009-04-15T23:59:59.000Z

2

COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER  

SciTech Connect

Fiscal year 2008 studies in electrolyzer component development have focused on the characterization of membrane electrode assemblies (MEA) after performance tests in the single cell electrolyzer, evaluation of electrocatalysts and membranes using a small scale electrolyzer and evaluating the contribution of individual cell components to the overall electrochemical performance. Scanning electron microscopic (SEM) studies of samples taken from MEAs testing in the SRNL single cell electrolyzer test station indicates a sulfur-rich layer forms between the cathode catalyst layer and the membrane. Based on a review of operating conditions for each of the MEAs evaluated, we conclude that the formation of the layer results from the reduction of sulfur dioxide as it passes through the MEA and reaches the catalyst layer at the cathode-membrane interface. Formation of the sulfur rich layer results in partial delamination of the cathode catalyst layer leading to diminished performance. Furthermore we believe that operating the electrolyzer at elevated pressure significantly increases the rate of formation due to increased adsorption of hydrogen on the internal catalyst surface. Thus, identification of a membrane that exhibits much lower transport of sulfur dioxide is needed to reduce the quantity of sulfur dioxide that reaches the cathode catalyst and is reduced to produce the sulfur-rich layer. Three candidate membranes are currently being evaluated that have shown promise from preliminary studies, (1) modified Nafion{reg_sign}, (2) polybenzimidazole (PBI), and (3) sulfonated Diels Alder polyphenylene (SDAPP). Testing examined the activity for the sulfur dioxide oxidation of platinum (Pt) and platinum-alloy catalysts in 30 wt% sulfuric acid solution. Linear sweep voltammetry showed an increase in activity when catalysts in which Pt is alloyed with non-noble transition metals such as cobalt and chromium. However when Pt is alloyed with noble metals, such as iridium or ruthenium, the kinetic activity decreases. We recommend further testing to determine if these binary alloys will provide the increased reaction kinetic needed to meet the targets. We also plan to test the performance of these catalyst materials for both proton and sulfur dioxide reduction. The latter may provide another parameter by which we can control the reduction of sulfur dioxide upon transport to the cathode catalyst surface. A small scale electrolyzer (2 cm{sup 2}) has been fabricated and successfully installed as an additional tool to evaluate the effect of different operating conditions on electrolyzer and MEA performance. Currently this electrolyzer is limited to testing at temperatures up to 80 C and at atmospheric pressure. Selected electrochemical performance data from the single cell sulfur dioxide depolarized electrolyzer were analyzed with the aid of an empirical equation which takes into account the overpotential of each of the components. By using the empirical equation, the performance data was broken down into its components and a comparison of the potential losses was made. The results indicated that for the testing conditions of 80 C and 30 wt% sulfuric acid, the major overpotential contribution ({approx}70 % of all losses) arise from the slow reaction rate of oxidation of sulfur dioxide. The results indicate that in order to meet the target of hydrogen production at 0.5 A/cm{sup 2} at 0.6 V and 50 wt% sulfuric acid, identification of a better catalyst for sulfur dioxide oxidation will provide the largest gain in electrolyzer performance.

Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

2008-05-30T23:59:59.000Z

3

FY08 MEMBRANE CHARACTERIZATION REPORT FOR HYBRID SULFUR ELECTROLYZER  

SciTech Connect

This report summarizes results from all of the membrane testing completed to date at the Savannah River National Laboratory (SRNL) for the sulfur dioxide-depolarized electrolyzer (SDE). Several types of commercially-available membranes have been analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid (PFSA), sulfonated polyether-ketone-ketone (SPEKK), and polybenzimidazole membranes (PBI). Of these membrane types, the poly-benzimidazole membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Several experimental membranes have also been analyzed including hydrated sulfonated Diels-Alder polyphenylenes (SDAPP) membranes from Sandia National Laboratory, perfluorosulfonimide (PFSI) and sulfonated perfluorocyclobutyl aromatic ether (S-PFCB) prepared by Clemson University, hydrated platinum-treated PFSA prepared by Giner Electrochemical Systems (GES) and Pt-Nafion{reg_sign} 115 composites prepared at SRNL. The chemical stability, SO{sub 2} transport and ionic conductivity characteristics have been measured for several commercially available and experimental proton-conducting membranes. Commercially available PFSA membranes such as the Nafion{reg_sign} series exhibited excellent chemical stability and ionic conductivity in sulfur dioxide saturated sulfuric acid solutions. Sulfur dioxide transport in the Nafion{reg_sign} membranes varied proportionally with the thickness and equivalent weight of the membrane. Although the SO{sub 2} transport in the Nafion{reg_sign} membranes is higher than desired, the excellent chemical stability and conductivity makes this membrane the best commercially-available membrane at this time. Initial results indicated that a modified Nafion{reg_sign} membrane incorporating Pt nanoparticles exhibited significantly reduced SO{sub 2} transport. Reduced SO{sub 2} transport was also measured with commercially available PBI membrane and several experimental membranes produced at SNL and Clemson. These membranes also exhibit good chemical stability and conductivity in concentrated sulfuric acid solutions and, thus, serve as promising candidates for the SDE. Therefore, we recommend further testing of these membranes including electrolyzer testing to determine if the reduced SO{sub 2} transport eliminates the formation of sulfur-containing films at the membrane/cathode interface. SO{sub 2} transport measurements in the custom built characterization cell identified experimental limitations of the original design. During the last quarter of FY08 we redesigned and fabricated a new testing cell to overcome the previous limitations. This cell also offers the capability to test membranes under polarized conditions as well as test the performance of MEAs under selected electrolyzer conditions.

Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

2008-09-01T23:59:59.000Z

4

FISCAL YEAR 2006 REPORT ON ELECTROLYZER COMPONENT DEVELOPMENT FOR THE HYBRID SULFUR PROJECT  

SciTech Connect

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small volumetric footprint that is crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate different membrane and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid, sulfonated poly-etherketone-ketone, and poly-benzimidazole membranes. Of these membrane types, the poly-benzimidazole (PBI) membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Testing examined the activity and stability of platinum and palladium as electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by concentration of the sulfuric acid. Various cell configurations were examined with respect to the deposition of electrocatalyst and use of conductive carbon materials such as carbon cloth and carbon paper. Findings from these evaluations and the results of the membrane and electrocatalyst testing, we prepared three different membrane electrode assemblies (MEA) for electrolyzer testing. The first MEA consisted of a Nafion{reg_sign} membrane with platinum electrocatalyst deposited on carbon cloths, which were heat pressed onto the membrane, an assembly identical to those used in proton exchange membrane fuel cells. The second MEA also used a Nafion membrane with the electrocatalysts deposited directly onto the membrane. The third MEA proved similar to the second but utilized a PBI membrane in place of the Nafion{reg_sign} membrane. Tailor of the membrane and catalysts properties for the SDE system was concluded as a required step for the technology to move forward. It was also recommended the evaluation of the tested and new developed materials at conditions closer to the SDE operating conditions and for longer period of time.

Colon-Mercado, H; David Hobbs, D; Daryl Coleman, D; Amy Ekechukwu, A

2006-08-03T23:59:59.000Z

5

Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer  

E-Print Network (OSTI)

not consume fossil fuels or pro- duce CO2 while producing highly pure hydrogen.1-10 Gaseous SO2 fedTransport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur and Biological Systems Department, Albuquerque, New Mexico 87123, USA c Department of Materials Science

Weidner, John W.

6

CATALYST EVALUATION FOR A SULFUR DIOXIDE-DEPOLARIZED ELECTROLYZER  

SciTech Connect

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. Testing examined the activity and stability of platinum and palladium as the electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by the concentration of the sulfuric acid electrolyte.

Hobbs, D; Hector Colon-Mercado, H

2007-01-31T23:59:59.000Z

7

HYBRID SULFUR ELECTROLYZER DEVELOPMENT, NHI WORK PACKAGE N-SR07TC0301, FY07 FIRST QUARTER REPORT  

SciTech Connect

The proof of concept of SO2 electrolysis for the hybrid sulfur (HyS) process is the second priority research target of the DOE Nuclear Hydrogen Initiative's thermochemical program for FY07. The proof of concept of the liquid-phase option must be demonstrated at the single cell level for an extended run times (>100 hours). The rate of development of HyS will depend on the identification of a promising membrane or an alternative means for controlling sulfur formation. Once successful long-duration operation has been demonstrated, SRNL will develop a multi-cell stack that can be connected to the H2SO4 decomposer being developed by SNL for the S-I ILS for a Hybrid Sulfur Integrated Laboratory-Scale Experiment during FY 2008. During the first quarter of FY07, SRNL continued the component development and membrane development activities with the goal of identifying and characterizing improved electrodes, electrocatalysts, membranes and MEA configurations which could then be tested at larger scale in the SDE test facility. A modified glass cell was fabricated to allow measurements of sulfur dioxide (SO2) transport across membrane samples at elevated temperatures (up to 70 C). This testing also includes evaluating SO2 transport in different sulfuric acid concentrations (30-70 wt%). A new potentiostat/frequency analyzer was installed for determining ionic conductivity of membranes. This instrument enhances our capabilities to characterize membrane, electrocatalyst and MEA properties and performance. Continuing work from FY06, evaluations were preformed on various commercial and experimental membranes and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for sulfur dioxide transport as a function of acid strength including perfluorinated sulfonic acid (PFSA), sulfonated polyetherketone-ketone, and poly-benzimidazole (PBI) membranes. Experimental membranes from the sulfonated diels-alder polyphenylenes (SDAPP) and modified Nafion{reg_sign} 117 were evaluated for SO{sub 2} transport as well. These membranes exhibited reduced transport coefficient for SO{sub 2} transport without the loss in ionic conductivity.

Summers, W

2006-12-20T23:59:59.000Z

8

EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER  

SciTech Connect

The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

Hobbs, D.; Elvington, M.; Colon-Mercado, H.

2009-11-11T23:59:59.000Z

9

High Performance Electrolyzers for Hybrid Thermochemical Cycles  

SciTech Connect

Extensive electrolyzer testing was performed at the University of South Carolina (USC). Emphasis was given to understanding water transport under various operating (i.e., temperature, membrane pressure differential and current density) and design (i.e., membrane thickness) conditions when it became apparent that water transport plays a deciding role in cell voltage. A mathematical model was developed to further understand the mechanisms of water and SO2 transport, and to predict the effect of operating and design parameters on electrolyzer performance.

Dr. John W. Weidner

2009-05-10T23:59:59.000Z

10

RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION  

SciTech Connect

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

Hobbs, D.

2010-07-22T23:59:59.000Z

11

Hybrid Sulfur Thermochemical Process Development Annual Report  

SciTech Connect

The Hybrid Sulfur (HyS) Thermochemical Process is a means of producing hydrogen via water-splitting through a combination of chemical reactions and electrochemistry. Energy is supplied to the system as high temperature heat (approximately 900 C) and electricity. Advanced nuclear reactors (Generation IV) or central solar receivers can be the source of the primary energy. Large-scale hydrogen production based on this process could be a major contributor to meeting the needs of a hydrogen economy. This project's objectives include optimization of the HyS process design, analysis of technical issues and concerns, creation of a development plan, and laboratory-scale proof-of-concept testing. The key component of the HyS Process is the SO2-depolarized electrolyzer (SDE). Studies were performed that showed that an electrolyzer operating in the range of 500-600 mV per cell can lead to an overall HyS cycle efficiency in excess of 50%, which is superior to all other currently proposed thermochemical cycles. Economic analysis indicated hydrogen production costs of approximately $1.60 per kilogram for a mature nuclear hydrogen production plant. However, in order to meet commercialization goals, the electrolyzer should be capable of operating at high current density, have a long operating lifetime , and have an acceptable capital cost. The use of proton-exchange-membrane (PEM) technology, which leverages work for the development of PEM fuel cells, was selected as the most promising route to meeting these goals. The major accomplishments of this project were the design and construction of a suitable electrolyzer test facility and the proof-of-concept testing of a PEM-based SDE.

Summers, William A.; Buckner, Melvin R.

2005-07-21T23:59:59.000Z

12

Development of the Hybrid Sulfur Thermochemical Cycle  

SciTech Connect

The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

Summers, William A.; Steimke, John L

2005-09-23T23:59:59.000Z

13

Quantifying Individual Potential Contributions of the Hybrid Sulfur Electrolyzer  

E-Print Network (OSTI)

Computational Sciences Directorate, Savannah River National Laboratory, Aiken, South Carolina 29808, USA

Weidner, John W.

14

PHASE I SINGLE CELL ELECTROLYZER TEST RESULTS  

SciTech Connect

This document reports the results of Phase I Single Cell testing of an SO{sub 2}-Depolarized Water Electrolyzer. Testing was performed primarily during the first quarter of FY 2008 at the Savannah River National Laboratory (SRNL) using an electrolyzer cell designed and built at SRNL. Other facility hardware were also designed and built at SRNL. This test further advances this technology for which work began at SRNL in 2005. This research is valuable in achieving the ultimate goal of an economical hydrogen production process based on the Hybrid Sulfur (HyS) Cycle. The focus of this work was to conduct single cell electrolyzer tests to further develop the technology of SO{sub 2}-depolarized electrolysis as part of the HyS Cycle. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by water-splitting. Like all other sulfur-based cycles, HyS utilizes the high temperature thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both thermodynamic efficiency and hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. The anode and cathode are formed by spraying platinum containing catalyst on both sides of a Proton Exchange Membrane (PEM). In most testing the material of the PEM was NafionR. The electrolyzer cell active area can be as large as 54.8 cm{sup 2}. Feed to the anode of the electrolyzer is a sulfuric acid solution containing sulfur dioxide. The partial pressure of sulfur dioxide could be varied in the range of 1 to 6 atm (15 to 90 psia). Temperatures could be controlled in the range from ambient to 80 C. Hydrogen generated at the cathode of the cell was collected for the purpose of flow measurement and composition analysis. The test facility proved to be easy to operate, versatile, and reliable.

Steimke, J; Timothy Steeper, T

2008-08-05T23:59:59.000Z

15

CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO{sub 2}-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production  

SciTech Connect

Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO{sub 2}, followed by the electrolysis of aqueous SO{sub 2} to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO{sub 2}-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane electrode assembly (MEA) was fabricated and installed in the single cell electrolyzer (60 cm{sup 2} active cell area). Shakedown testing was conducted, and several modifications were made to the test facility equipment. Seven different MEAs were used during testing. Beginning on May 20, 2013, SRNL was able to test the SDE continuously for 1200 hours, including 1000 hours under power to generate hydrogen at an average rate of 10.8 liters per hour. The SDE was not removed or repaired during the 50-day test and was successfully restarted after each shutdown. The test was intentionally stopped after 1200 hours (1000 hours of hydrogen production) due to funding constraints. Post-test examination of the MEA using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Microanalysis (EDAX) showed no elemental sulfur deposits or sulfur layer inside the cell, thus successfully achieving the test goals. The results demonstrated that the SDE could be operated for extended periods without major performance degradation or the buildup of sulfur inside the MEA. Air Products conducted an assessment of the economic viability of the SDE based on the “as tested” design. The results indicated that the SDE faces significant economic obstacles in its current state. Further development and scale-up are necessary before the SDE is ready for commercialization.

Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.; Zahn, Steffen

2014-02-24T23:59:59.000Z

16

Microsoft PowerPoint - Stasser Electrolyzer Performance & Modeling.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

the Gas-Phase Hybrid Sulfur the Gas-Phase Hybrid Sulfur Electrolyzer Hybrid Sulfur Electrolyzer Workshop April 20, 2008 John A. Staser and John W. Weidner Center for Electrochemical Engineering Department of Chemical Engineering University of South Carolina Hydrogen Production * Water electrolysis * High-temperature * 40-50% efficient * Suitable for large-scale production * Significant materials concerns * Low-temperature * <40% efficient * Suitable for small, distributed systems * Thermochemical cycles * Combines high- and low-temperature steps * Low-temperature PEM electrolysis step * High-temperature decomposition and recycle * Lower voltage than water electrolysis * 40-50% efficient * Suitable for large-scale production * Ideally suited to nuclear and/or solar power stations Hybrid Sulfur (HyS) Process

17

THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE  

SciTech Connect

The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis). The effect of operation at higher anolyte concentrations on the flowsheet, and on the net thermal efficiency for a nuclear-heated HyS process, is examined and quantified.

Gorensek, M.; Summers, W.

2010-03-24T23:59:59.000Z

18

HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS  

SciTech Connect

Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

Gorensek, M.

2011-07-06T23:59:59.000Z

19

Method to prevent sulfur accumulation in membrane electrode assembly  

DOE Patents (OSTI)

A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

Steimke, John L; Steeper, Timothy J; Herman, David T

2014-04-29T23:59:59.000Z

20

HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING  

SciTech Connect

This second quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. Previous reports described development of a catalyst with the required selectivity and efficiency for producing sulfur dioxide from H{sub 2}S. In the laboratory, the catalyst was shown to be robust and stable in the presence of several intentionally added contaminants, including condensate from the pilot plant site. This report describes testing using the laboratory apparatus but operated at the pilot plant using the actual pilot plant gas, which contains far more contaminants than can be simulated in the laboratory. The results are very encouraging, with stable and efficient operation being obtained for a prolonged period of time.

Girish Srinivas; Steven C. Gebhard; David W. DeBerry

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING  

SciTech Connect

This final report describes the objectives, technical approach, results and conclusions for a project funded by the U.S. Department of Energy to test a hybrid sulfur recovery process for natural gas upgrading. The process concept is a configuration of CrystaTech, Inc.'s CrystaSulf{reg_sign} process which utilizes a direct oxidation catalyst upstream of the absorber tower to oxidize a portion of the inlet hydrogen sulfide (H{sub 2}S) to sulfur dioxide (SO{sub 2}) and elemental sulfur. This hybrid configuration of CrystaSulf has been named CrystaSulf-DO and represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day and more. This hybrid process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both onshore and offshore applications. CrystaSulf is a nonaqueous sulfur recovery process that removes H{sub 2}S from gas streams and converts it to elemental sulfur. In CrystaSulf, H{sub 2}S in the inlet gas is reacted with SO{sub 2} to make elemental sulfur according to the liquid phase Claus reaction: 2H{sub 2}S + SO{sub 2} {yields} 2H{sub 2}O + 3S. The SO{sub 2} for the reaction can be supplied from external sources by purchasing liquid SO{sub 2} and injecting it into the CrystaSulf solution, or produced internally by converting a portion of the inlet gas H{sub 2}S to SO{sub 2} or by burning a portion of the sulfur produced to make SO{sub 2}. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, the needed SO{sub 2} is produced by placing a bed of direct oxidation catalyst in the inlet gas stream to oxidize a portion of the inlet H{sub 2}S. Oxidation catalysts may also produce some elemental sulfur under these conditions, which can be removed and recovered prior to the CrystaSulf absorber. The CrystaSulf-DO process can utilize direct oxidation catalyst from many sources. Numerous direct oxidation catalysts are available from many suppliers worldwide. They have been used for H{sub 2}S oxidation to sulfur and/or SO{sub 2} for decades. It was believed at the outset of the project that TDA Research, Inc., a subcontractor, could develop a direct oxidation catalyst that would offer advantages over other commercially available catalysts for this CrystaSulf-DO process application. This project involved the development of several of TDA's candidate proprietary direct oxidation catalysts through laboratory bench-scale testing. These catalysts were shown to be effective for conversion of H{sub 2}S to SO{sub 2} and to elemental sulfur under certain operating conditions. One of these catalysts was subsequently tested on a commercial gas stream in a bench-scale reactor at CrystaTech's pilot plant site in west Texas with good results. However, commercial developments have precluded the use of TDA catalysts in the CrystaSulf-DO process. Nonetheless, this project has advanced direct oxidation catalyst technology for H{sub 2}S control in energy industries and led to several viable paths to commercialization. TDA is commercializing the use of its direct oxidation catalyst technology in conjunction with the SulfaTreat{reg_sign} solid scavenger for natural gas applications and in conjunction with ConocoPhillips and DOE for gasification applications using ConocoPhillips gasification technology. CrystaTech is commercializing its CrystaSulf-DO process in conjunction with Gas Technology Institute for natural gas applications (using direct oxidation catalysts from other commercial sources) and in conjunction with ChevronTexaco and DOE for gasification applications using ChevronTexaco's gasification technology.

Dennis Dalrymple

2004-06-01T23:59:59.000Z

22

CLOSE-OUT REPORT FOR HYS ELECTROLYZER COMPONENT DEVELOPMENT WORK AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect

The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 63.5 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H{sub 2}SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity. Testing examined the activity for the sulfur dioxide oxidation of platinum base electrocatalyst in 30 wt% sulfuric acid solution. Linear sweep voltammetry showed an increase in activity when catalysts in which Pt is alloyed with non-noble transition metals such as cobalt, chromium and iron. However when Pt is alloyed with noble metals, such as iridium or ruthenium, the kinetic activity as well as the stability decreases.

Colon-Mercado, H.; Elvington, M.; Hobbs, D.

2010-01-20T23:59:59.000Z

23

Characterization Testing of H20-SO2 Electrolyzer at Ambient Pressure  

SciTech Connect

This document reports work performed at the Savannah River National Laboratory (SRNL) that resulted in a major accomplishment by demonstrating the proof-of-concept of the use of a proton exchange membrane or PEM-type electrochemical cell to produce hydrogen via SO{sub 2}-depolarized water electrolysis. For the first time sulfur dioxide dissolved in liquid sulfuric acid was used to depolarize water electrolysis in a modern PEM cell. The use of such a cell represents a major step in achieving the ultimate goal of an economical hydrogen production process based on the Hybrid Sulfur (HyS) Cycle. The HyS Process is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by water-splitting. Like all other sulfur-based cycles, HyS utilizes the high temperature thermal decomposition of sulfuric acid to produce oxygen. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Sulfur dioxide is oxidized at the anode, producing sulfuric acid, that is sent to the acid decomposition portion of the cycle. The focus of this work was to conduct single cell electrolyzer tests in order to prove the concept of SO{sub 2}-depolarization and to determine how the results can be used to evaluate the performance of key components of the HyS Process. A test facility for conducting SO{sub 2}-depolarized electrolyzer (SDE) testing was designed, constructed and commissioned. The maximum cell current is 50 amperes, which is equivalent to a hydrogen production rate of approximately 20 liters per hour. The test facility was designed for operation at room temperature with pressures up to 2 bar. Feed to the anode of the electrolyzer can be water, sulfuric acid of various concentrations, or sulfuric acid containing dissolved sulfur dioxide. Provisions are included to allow variation of the operating pressure in the range of 1 to 2 bar. Hydrogen generated at the cathode of the cell can be collected for the purpose of flow measurement and composition analysis. The test facility proved to be easy to operate, versatile, and reliable. Two slightly different SDE's were designed, procured and tested. The first electrolyzer was based on a commercially available PEM water electrolyzer manufactured by Proton Energy Systems, Inc. (PES). The PES electrolyzer was built with Hastelloy B and Teflon wetted parts, a PEM electrolyte, and porous titanium electrodes. The second electrolyzer was assembled for SRNL by the University of South Carolina (USC). It was constructed with platinized carbon cloth electrodes, a Nafion 115 PEM electrolyte, carbon paper flow fields, and solid graphite back plates. Proof-of-concept testing was performed on each electrolyzer at near-ambient pressure and room temperature under various feed conditions. SDE operation was evidenced by hydrogen production at the cathode and sulfuric acid production at the anode (witnessed by the absence of oxygen generation) and with cell voltages substantially less than the theoretical reversible voltage for simple water electrolysis (1.23 V). Cell performance at low currents equaled or exceeded that achieved in the two-compartment cells built by Westinghouse Electric Corporation during the original development of the HyS Process. Performance at higher currents was less efficient due to mass transfer and hydraulic issues associated with the use of cells not optimized for liquid feed. Test results were analyzed to determine performance trends, improvement needs, and long-term SDE potential. The PES cell failed after several days of operation due to internal corrosion of the titanium electrodes in the presence of sulfuric acid. Although it was anticipated that the titanium would react in the presence of acid, the rapid deterioration of the electrodes was unexpected. The USC cell was constructed of carbon-based components and had excellent corrosion resistance. Howeve

Steimke, J

2005-07-29T23:59:59.000Z

24

Hybrid Microfabricated Device for Field Measurement of Atmospheric Sulfur Dioxide  

Science Journals Connector (OSTI)

It is also now generally agreed that forthcoming major volcanic eruptions will sensitively monitored for increasing sulfur gas emissions as indicated by increasing seismic activity. ... (12)?Fish, B. R.; Durham, J. L. Environ. ...

Shin-Ichi Ohira; Kei Toda; Shin-Ichiro Ikebe; Purnendu K. Dasgupta

2002-10-10T23:59:59.000Z

25

Final Report for project titled "New fluoroionomer electrolytes with high conductivity and low SO2 crossover for use in electrolyzers being developed for hydrogen production from nuclear power plants"  

SciTech Connect

Thermochemical water splitting cycles, using the heat of nuclear power plants, offer an alternate highly efficient route for the production of hydrogen. Among the many possible thermochemical cycles for the hydrogen production, the sulfur-based cycles lead the competition in overall energy efficiency. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce hydrogen. The Savannah River National Laboratory (SRNL) selected the fuel cell MEA design concept for the SDE in the HyS process since the MEA concept provides a much smaller cell footprint than conventional parallel plate technology. The electrolyzer oxidizes sulfur dioxide to form sulfuric acid at the anode and reduces protons to form hydrogen at the cathode. The overall electrochemical cell reaction consists of the production of H{sub 2}SO{sub 4} and H{sub 2}. There is a significant need to provide the membrane materials that exhibit reduced sulfur dioxide transport characteristics without sacrificing other important properties such as high ionic conductivity and excellent chemical stability in highly concentrated sulfuric acid solutions saturated with sulfur dioxide. As an alternative membrane, sulfonated Perfluorocyclobutyl aromatic ether polymer (sPFCB) were expected to posses low SO2 permeability due to their stiff backbones as well as high proton conductivity, improved mechanical properties. The major accomplishments of this project were the synthesis, characterizations, and optimizations of suitable electrolyzers for good SDE performance and higher chemical stability against sulfuric acid. SDE performance results of developed sPFCB polyelectrolytes have shown that these membranes exhibit good chemical stability against H{sub 2}SO{sub 4}.

Dennis W. Smith; Stephen Creager

2012-09-13T23:59:59.000Z

26

HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS  

SciTech Connect

This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

2009-05-12T23:59:59.000Z

27

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures  

SciTech Connect

Lithium-sulfur (Li-S) batteries have recently attracted extensive attention due to the high theoretical energy density and potential low cost. Even so, significant challenges prevent widespread adoption, including continuous dissolution and consumption of active sulfur during cycling. Here we present a fundamentally new design using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on the anode. The lithiated graphite placed in front of the lithium metal functions as an artificial self-regulated solid electrolyte interface (SEI) layer to actively control the electrochemical reaction while minimizing the deleterious side reactions on the surface and bulk lithium metal. Continuous corrosion and contamination of lithium anode by dissolved polysulfides is largely mitigated. Excellent electrochemical performance has been observed. Li-S cell incorporating the hybrid design retain a capacity of more than 800 mAh g-1 for 400 cycles, corresponding to only 11% fade and a Coulombic efficiency above 99%. This simple hybrid concept may also provide new lessons for protecting metal anodes in other energy storage devices.

Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D.; Lu, Dongping; Saraf, Laxmikant V.; Engelhard, Mark H.; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L.; Liu, Jun

2014-01-09T23:59:59.000Z

28

Electrolyzer Manufacturing Progress and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

29

PEM Electrolyzer Incorporating an Advanced  

E-Print Network (OSTI)

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane Monjid Hamdan Giner Electrochemical (Academic)­ Membrane Development Collaborations 3M Fuel Cell Components Program­ NSTF Catalyst & Membrane Entegris ­ Carbon Cell Separators Tokuyama ­ Low-Cost Membrane Prof. R. Zalosh (WPI) ­ Hydrogen Safety

30

Microsoft PowerPoint - Hobbs Electrolyzer Develop & Analytical Needs2.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Component Electrolyzer Component Development Summary David Hobbs April 20, 2009 SRNL-STI-2009-00263 HyS Electrolyzer Workshop and Information Exchange 2 History of HyS Process Development Patent for "Sulfur Cycle" issued to Westinghouse 1975 Two-compartment Diaphragm Cell Built 1977 Closed-loop Process Demonstration by (W) 1978 Solar-driven Process Design Completed by (W) 1983 Development "Hiatus" 1984-2003 New Process Design work by (W) 2004 Conceptual Design of HyS by SRNL 2005 Proof-of-Concept for PEM-based SDE 2005 Pressurized, Elevated Temperature SDE Testing 2006 Improved PEM Design; 100-hr Longevity Test; Multi-cell stack SDE 2007 Alternate Membrane & Catalyst Evaluations 2008 Anode Cathode Separator 2H + /H 2 O SO 2 /H 2 O/H 2 SO 4 H 2 SO 4 Anode Cathode Separator

31

METHOD TO PREVENT SULFUR ACCUMULATION INSIDE MEMBRANE ELECTRODE ASSEMBLY  

SciTech Connect

HyS is conceptually the simplest of the thermochemical cycles and involves only sulfur chemistry. In the HyS Cycle hydrogen gas (H{sub 2}) is produced at the cathode of the electrochemical cell (or electrolyzer). Sulfur dioxide (SO{sub 2}) is oxidized at the anode to form sulfuric acid (H{sub 2}SO{sub 4}) and protons (H{sup +}) as illustrated below. A separate high temperature reaction decomposes the sulfuric acid to water and sulfur dioxide which are recycled to the electrolyzers, and oxygen which is separated out as a secondary product. The electrolyzer includes a membrane that will allow hydrogen ions to pass through but block the flow of hydrogen gas. The membrane is also intended to prevent other chemical species from migrating between electrodes and undergoing undesired reactions that could poison the cathode or reduce overall process efficiency. In conventional water electrolysis, water is oxidized at the anode to produce protons and oxygen. The standard cell potential for conventional water electrolysis is 1.23 volts at 25 C. However, commercial electrolyzers typically require higher voltages ranging from 1.8 V to 2.6 V [Kirk-Othmer, 1991]. The oxidation of sulfur dioxide instead of water in the HyS electrolyzer occurs at a much lower potential. For example, the standard cell potential for sulfur dioxide oxidation at 25 C in 50 wt % sulfuric acid is 0.29 V [Westinghouse, 1980]. Since power consumption by the electrolyzers is equal to voltage times current, and current is proportional to hydrogen production, a large reduction in voltage results in a large reduction in electrical power cost per unit of hydrogen generated.

Steimke, J.; Steeper, T.; Herman, D.; Colon-Mercado, H.; Elvington, M.

2009-06-22T23:59:59.000Z

32

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

33

Natural gas-assisted steam electrolyzer  

DOE Patents (OSTI)

An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

34

Novel Electrolyzer Applications: Providing More Than Just Hydrogen  

SciTech Connect

Hydrogen can be used for many different applications and can be integrated into many different system architectures. One of the methods for producing the hydrogen is to use an electrolyzer. This work explores the flexibility of electrolyzers to behave as responsive loads. Experimental tests were performed for a proton exchange membrane (PEM) and an alkaline electrolyzer to assess the operational flexibility of electrolyzers to behave as responsive loads. The results are compared to the operational requirements to participate in end-user facility energy management, transmission and distribution system support, and wholesale electricity market services. Electrolyzers begin changing their electricity demand within milliseconds of a set-point change. The settling time after a set-point change is on the order of seconds. It took 6.5 minutes for the PEM unit to execute a cold start and 1 minute to turn off. In addition, a frequency disturbance correction test was performed and electrolyzers were able to accelerate the speed that the grid frequency can be restored. Electrolyzers acting as demand response devices can respond sufficiently fast and for a long enough duration to participate in all of the applications explored. Furthermore, electrolyzers can be operated to support a variety of applications while also providing hydrogen for industrial processes, transportation fuel, or heating fuel. Additionally, favorable operating properties and a variety of potential system architectures showcase the flexibility of electrolyzer systems.

Eichman, J.; Harrison, K.; Peters, M.

2014-09-01T23:59:59.000Z

35

Refined understanding of sulfur amino acid nutrition in hybrid striped bass, Morone chrysops (male symbol) x M. saxatilis (female symbol)  

E-Print Network (OSTI)

to methionine supported the lowest responses. Inclusion of MHA or AlimetTM did not affect TAN excretion of HSB. These findings will aid in refining diet formulations for HSB to ensure adequate sulfur amino acid nutrition....

Kelly, Mark Christopher

2005-08-29T23:59:59.000Z

36

Sulfur Dioxide Crossover during the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer  

E-Print Network (OSTI)

and must be resup- plied. For example, researchers at the Savannah River National Laboratory SRNL have

Weidner, John W.

37

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

38

PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane  

SciTech Connect

The Department of Energy (DOE) has identified hydrogen production by electrolysis of water at forecourt stations as a critical technology for transition to the hydrogen economy; however, the cost of hydrogen produced by present commercially available electrolysis systems is considerably higher than the DOE 2015 and 2020 cost targets. Analyses of proton-exchange membrane (PEM) electrolyzer systems indicate that reductions in electricity consumption and electrolyzer stack and system capital cost are required to meet the DOE cost targets. The primary objective is to develop and demonstrate a cost-effective energy-based system for electrolytic generation of hydrogen. The goal is to increase PEM electrolyzer efficiency and to reduce electrolyzer stack and system capital cost to meet the DOE cost targets for distributed electrolysis. To accomplish this objective, work was conducted by a team consisting of Giner, Inc. (Giner), Virginia Polytechnic Institute & University (VT), and domnick hunter group, a subsidiary of Parker Hannifin (Parker). The project focused on four (4) key areas: (1) development of a high-efficiency, high-strength membrane; (2) development of a long-life cell-separator; (3) scale-up of cell active area to 290 cm2 (from 160 cm²); and (4) development of a prototype commercial electrolyzer system. In each of the key stack development areas Giner and our team members conducted focused development in laboratory-scale hardware, with analytical support as necessary, followed by life-testing of the most promising candidate materials. Selected components were then scaled up and incorporated into low-cost scaled-up stack hardware. The project culminated in the fabrication and testing of a highly efficient electrolyzer system for production of 0.5 kg/hr hydrogen and validation of the stack and system in testing at the National Renewable Energy Laboratory (NREL).

Hamdan, Monjid [Giner, Inc.] [Giner, Inc.

2013-08-29T23:59:59.000Z

39

Technology Brief: Analysis of Current-Day Commercial Electrolyzers  

SciTech Connect

This factsheet provides an overview of the current state of electrolytic hydrogen production technologies and an economic analysis of the processes and systems available as of December 2003. The operating specifications and hydrogen production costs of commercially available electrolyzers from five manufacturers, i.e., Stuart, Teledyne, Proton, Norsk Hydro, and Avalence, are compared.

Not Available

2004-09-01T23:59:59.000Z

40

2500-Hour High Temperature Solid-Oxide Electrolyzer Long Duration Test  

SciTech Connect

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This report will provide a summary of experimental results for this long duration test.

C. M. Stoots; J. E. O'Brien; K. G. Condie; L. Moore-McAteer; J. J. Hartvigsen; D. Larsen

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory  

SciTech Connect

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.

Carl Stoots; James O'Brien; Stephen Herring; Keith Condie; Lisa Moore-McAteer; Joseph J. Hartvigsen; Dennis Larsen

2009-11-01T23:59:59.000Z

42

Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer  

E-Print Network (OSTI)

be developed that provides efficient production of clean hydrogen. The methods existing today for large-scale produc- tion of hydrogen typically involve hydrocarbon reforming of natural gas or coal gasification% , the overall efficiency is 40%.7 Two issues remain, however, that make the future of this technology un

Weidner, John W.

43

Efficient reversible electrodes for solid oxide electrolyzer cells  

DOE Patents (OSTI)

An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A'yBO(3-.differential.), wherein 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, and 0.8.ltoreq.z.ltoreq.1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.

Elangovan, Singaravelu (South Jordan, UT); Hartvigsen, Joseph J. (Kaysville, UT)

2011-07-12T23:59:59.000Z

44

Offshore Sulfur Comes In  

Science Journals Connector (OSTI)

Offshore Sulfur Comes In ... "The deposit is a major new source of sulfur," say Hines H. Baker, president of Humble Oil, and Langbourne M. Williams, president of Freeport Sulphur. ... Humble's deposit, known as Grand Isle (Block 18), was discovered in the course of offshore oil exploration and it ranks among the most important sulfur discoveries of recent years. ...

1956-10-01T23:59:59.000Z

45

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Hybrid Sulfur Single Cell Testing Hybrid Sulfur Single Cell and Three Cell Stack John L. Steimke, Timothy Steeper and David Herman April 20, 2009 SRNL-STI-2009-00262 Hybrid Sulfur Electrolyzer Workshop, April 2009 2 SRNL-STI-2009-00262 Outline * Single cell stack electrolyzer testing Work to reduce or eliminate sulfur formation * Multi-cell stack electrolyzer testing * System upgrades * Future plans 3 SRNL-STI-2009-00262 Electrolyzer Cell Schematic Proton Exchange Membrane (PEM) H+ Porous platinized carbon anode Liquid flowfield Gas and liquid flowfield SO2, H2O and H2SO4 SO2, H2O and H2SO4 Porous platinized carbon cathode Hydrogen, H2O, SO2, S and maybe H2S + - H2O 4 SRNL-STI-2009-00262 Schematic of Single Cell Test Facility Water Reactant Vent Relief Valve Drain Pump Flush Water In + - Electrolyzer cell Rupture Disk Flush

46

POLYMER ELECTROLYTE MEMBRANE ELECTROLYZER OPERATION WITH VARYING INLET WATER FEED CONFIGURATIONS  

SciTech Connect

Proton Exchange Membrane (PEM) electrolysis is a potential alternative technology to crack water in specialty applications where a dry gas stream is needed, such as isotope production. One design proposal is to feed the cathode of the electrolyzer with vapor phase water. This feed configuration would allow isotopic water to be isolated on the cathode side of the electrolyzer and the isotope recovery system could be operated in a closed loop. Tests were performed to characterize the difference in the current-voltage behavior between a PEM electrolyzer operated with a cathode water vapor feed and with an anode liquid water feed. The cathode water vapor feed cell had a maximum limiting current density of 100 mA/cm2 at 70 C compared to a current density of 800 mA/cm2 for the anode liquid feed cell at 70 C. The limiting current densities for the cathode water vapor feed cell were approximately 3 times lower than predicted by a water mass transfer model. It is estimated that a cathode water vapor feed electrolyzer system will need to be between 8-14 times larger in active area or number of cells than an anode liquid feed system.

Fox, E

2008-09-12T23:59:59.000Z

47

Water Transport in Polymer Electrolyte Membrane Electrolyzers Used to Recycle Anhydrous HCl  

E-Print Network (OSTI)

is car- ried out in an electrolyzer similar to a H2-O2 polymer electrolyte membrane PEM fuel cell. The Du-coated Nafion 115 membrane was measured as a function of HCl flow rate and temperature at a constant cell 50% of the chlorine used in the chemical industry ends up as hydrogen chloride, a waste byproduct.2

Weidner, John W.

48

ADVANCED SULFUR CONTROL CONCEPTS  

SciTech Connect

Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

2003-01-01T23:59:59.000Z

49

Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

50

Sulfur-Graphene Oxide Nanocomposite Cathodes for Lithium/Sulfur...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Find More Like This Return to Search Sulfur-Graphene Oxide Nanocomposite Cathodes for LithiumSulfur Cells Lawrence Berkeley National...

51

Elemental sulfur recovery process  

DOE Patents (OSTI)

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

52

Chapter 11 - Sulfur Recovery  

Science Journals Connector (OSTI)

Abstract Sulfur is present in many raw industrial gases and in natural gas in the form of hydrogen sulfide. Sulfur removal facilities are located at the majority of oil and gas processing facilities throughout the world. The sulfur recovery unit does not make a profit for the operator but it is an essential processing step to allow the overall facility to operate, as the discharge of sulfur compounds to the atmosphere is severely restricted by environmental regulations. Concentration levels of H2S vary significantly depending upon their source. H2S produced from absorption processes, such as amine treating of natural gas or refinery gas, can contain 50–75% H2S by volume or higher. This chapter provides information about fundamentals of sulfur removal facilities in the natural gas industry.

Alireza Bahadori

2014-01-01T23:59:59.000Z

53

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents (OSTI)

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

1998-05-19T23:59:59.000Z

54

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents (OSTI)

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

1998-01-01T23:59:59.000Z

55

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents (OSTI)

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

1999-01-01T23:59:59.000Z

56

Bacterial Sulfur Storage Globules  

NLE Websites -- All DOE Office Websites (Extended Search)

by I. J. Pickering and G. N. George by I. J. Pickering and G. N. George Sulfur is essential for all life, but it plays a particularly central role in the metabolism of many anaerobic microorganisms. Prominent among these are the sulfide-oxidizing bacteria that oxidize sulfide (S2-) to sulfate (SO42-). Many of these organisms can store elemental sulfur (S0) in "globules" for use when food is in short supply (Fig. 1). The chemical nature of the sulfur in these globules has been an enigma since they were first described as far back as 1887 (1); all known forms (or allotropes) of elemental sulfur are solid at room temperature, but globule sulfur has been described as "liquid", and it apparently has a low density – 1.3 compared to 2.1 for the common yellow allotrope a-sulfur. Various exotic forms of sulfur have been proposed to explain these properties, including micelles (small bubble-like structures) formed from long-chain polythionates, but all of these deductions have been based upon indirect evidence (for example the density was estimated by flotation of intact cells), and many questions remained.

57

HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers  

SciTech Connect

PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

1997-12-31T23:59:59.000Z

58

Behavior of solid polymer membrane electrolyzers in use with highly tritiated water  

SciTech Connect

These days more and more modern electrolysis cells are operated with new solid polymer membranes. These membranes prevailing DuPont's Nafion{sup R} are not only used for electrolysis but as well for the wide spectrum of fuel cells due to their good mechanical and chemical stability and the high proton conductivity. For that reason it is intended to use these solid polymer membranes for the electrolyzer units in the ITER Water Detritiation System (WDS). The influence of Tritium during water electrolysis to the membrane material is still not sufficiently investigated. Therefore long-term experiments of solid polymer membranes were performed at Tritium Laboratory Karlsruhe (TLK). The chemical degradation and durability behavior of the used Nafion{sup R} 117 membrane are investigated in details under tritiated water conditions. For comparison a second cell was operated with demineralized water for the same period. In addition to the experimental rigs with single Nafion{sup R} membranes, two industrial electrolyzer units equipped with Nafion{sup R} membranes were operated during different tritium experiments at TLK. Before operation they had been modified to be compatible for tritium operation. After long operation period no degradation in the performance of the electrolyzers is observable. (authors)

Michling, R.; Cristescu, I.; Doerr, L. [Forschungszentrum Karlsruhe, Inst. for Technical Physics, Tritium Laboratory Karlsruhe, P.O. Box 3640, D-76021 Karlsruhe (Germany); Fanghaenel, T. [European Commission Joint Research Centre, Inst. for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Welte, S.; Wurster, W. [Forschungszentrum Karlsruhe, Inst. for Technical Physics, Tritium Laboratory Karlsruhe, P.O. Box 3640, D-76021 Karlsruhe (Germany)

2008-07-15T23:59:59.000Z

59

Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective  

SciTech Connect

Hydrogen production by electrochemical water electrolysis has received great attention as an alternative technology for energy conversion and storage. The oxygen electrode has a substantial effect on the performance and durability in water electrolyzers and reversible fuel cells because of its intrinsically slow kinetics for oxygen evolution/reduction and poor durability under harsh operating environments. To improve oxygen kinetics and durability of the electrode, extensive studies for highly active and stable oxygen electrocatalyst have been performed. However, due to the thermodynamic instability of transition metals in acidic media, noble metal compounds have been primarily utilized as electrocatalysts in water electrolyzers and reversible fuel cells. For water electrolyzer applications, single noble metal oxides such as ruthenium oxide and iridium oxide have been studied, and binary or ternary metal oxides have been developed to take synergestic effects of each component. On the other hand, a variety of bifunctional electrocatalysts with a combination of monofunctional electrocatalysts such as platinum for oxygen reduction and iridium oxide for oxygen evolution for reversible fuel cell applications have been mainly proposed. Practically, supported iridium oxide-on-platinum, its reverse type, and non-precious metal-supported platinum and iridium bifunctional electrocatalysts have been developed. Recent theoretical calculations and experimental studies in terms of water electrolysis and fuel cell technology suggest effective ways to cope with current major challenges of cost and durability of oxygen electrocatalysts for technical applications.

Park, Seh Kyu; Shao, Yuyan; Liu, Jun; Wang, Yong

2012-11-01T23:59:59.000Z

60

Martinez Sulfuric Acid Regeneration Plt Biomass Facility | Open Energy  

Open Energy Info (EERE)

Martinez Sulfuric Acid Regeneration Plt Biomass Facility Martinez Sulfuric Acid Regeneration Plt Biomass Facility Jump to: navigation, search Name Martinez Sulfuric Acid Regeneration Plt Biomass Facility Facility Martinez Sulfuric Acid Regeneration Plt Sector Biomass Facility Type Non-Fossil Waste Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Freeport Begins Offshore Sulfur Plant  

Science Journals Connector (OSTI)

Freeport Begins Offshore Sulfur Plant ... Discovered by Humble Oil & Refining, the sulfur deposit off Grand Isle is believed by industry observers to be one of the largest discovered in recent years. ...

1958-07-07T23:59:59.000Z

62

SULFUR POLYMER ENCAPSULATION.  

SciTech Connect

Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ({approx}$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not recommended for treatment of wastes containing high concentrations of nitrates because of potentially dangerous reactions between sulfur, nitrate, and trace quantities of organics. Recently, the process has been adapted for the treatment of liquid elemental mercury and mercury contaminated soil and debris.

KALB, P.

2001-08-22T23:59:59.000Z

63

Why sequence Alkaliphilic sulfur oxidizing bacteria for sulfur pollution  

NLE Websites -- All DOE Office Websites (Extended Search)

Alkaliphilic sulfur oxidizing Alkaliphilic sulfur oxidizing bacteria for sulfur pollution remediation? Burning sulfur-containing fuels, such as coal, oil, and natural gas, contributes significantly to global environmental problems, such as air pollution and acid rain, besides contributing to the loss of the ozone layer. One method of managing sulfur compounds released as byproducts from industrial processes is to scrub them out using chemical treatments and activated charcoal beds. A lower-cost solution relies on incorporating alkaliphic sulfur-oxidizing bacteria into biofilters to convert the volatile and toxic compounds into insoluble sulfur for easier removal. Discovered in the last decade, these bacteria have been found to thrive in habitats that span the full pH range. The bacteria could have applications

64

The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers  

SciTech Connect

Solid oxide fuel cells (SOFC) and electrolyzers (SOE) offer an attractive means for converting between electrical and chemical energy. Because they operate at high temperatures and are usually based on electrolytes that are oxygen-ion conducting ceramics, such as yttria-stabilized zirconia (YSZ), they are equally capable of converting between CO and CO2 as between H2 and H2O. When operated in the SOFC mode, they are able to operate on hydrocarbon fuels so long as there are no materials within the anode that can catalyze carbon formation. Compared to other types of electrolyzers, SOE can exhibit the highest efficiencies because the theoretical Nernst potential is lower at high temperatures and because the electrode overpotentials in SOE tend to be much lower. Finally, pure H2 can be produced without an external electrical source by electrolysis of steam at one electrode and oxidation of any fuel at the other electrode through a process known as Natural-Gas Assisted Steam Electrolysis. This final report describes results from studies of novel electrodes for SOE and SOFC prepared by infiltration methods.

Gorte, Raymond J.; Vohs, John M.

2014-03-26T23:59:59.000Z

65

It's Elemental - The Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine The Element Sulfur [Click for Isotope Data] 16 S Sulfur 32.065 Atomic Number: 16 Atomic Weight: 32.065 Melting Point: 388.36 K (115.21°C or 239.38°F) Boiling Point: 717.75 K (444.60°C or 832.28°F) Density: 2.067 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 16 Group Name: Chalcogen What's in a name? From the Sanskrit word sulvere and the Latin word sulphurium. Say what? Sulfur is pronounced as SUL-fer. History and Uses: Sulfur, the tenth most abundant element in the universe, has been known since ancient times. Sometime around 1777, Antoine Lavoisier convinced the rest of the scientific community that sulfur was an element. Sulfur is a

66

Why sequence purple sulfur bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

purple sulfur bacteria? purple sulfur bacteria? The process by which plants and some bacteria can convert light energy to sugar, or photosynthesis, is crucial to global food webs, and complicated. Very little is known about the photosynthetic bacteria in the purple sulfur bacteria group, which may represent one of the most primitive photosynthetic organisms and are capable of carbon fixation and sequestration in both light and dark conditions with the help of sulfur compounds. Purple sulfur bacteria are autotrophic and can synthesize organic compounds from inorganic sources. Researchers hope to learn more by sequencing nine type strains of purple sulfur bacteria that are found in freshwater, brackish and marine systems. The information would lead to a better understanding of the process of photosynthesis as well as the global

67

Microbial transformations of sulfur compounds  

Science Journals Connector (OSTI)

Oct 13, 1978 ... tains a large part of the chemical energy transferred ... ical energy is partly preserved in the bio- mass of .... ethanol to remove elemental sulfur.

2000-01-10T23:59:59.000Z

68

Enabling Science for Advanced Ceramic Membrane Electrolyzers Fernando H. Garzon, R. Mukundan, and Eric L. Brosha  

E-Print Network (OSTI)

compatible with solar furnace operating temperatures, offering potentially attractive integrated hybrid

69

Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes  

SciTech Connect

Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

2014-06-17T23:59:59.000Z

70

Présentation PowerPoint  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Electrolyzer Workshop - 20-21 April 2009 - 1 DEN/DANS/DPC/SCCME Characterization and optimization of materials for hybrid sulfur cycle electrolyser CEA Saclay R. Robin, N. Gruet Laboratory of Non Aqueous Corrosion DEN/DPC/SCCME Hybrid Sulfur Electrolyzer Workshop - 20-21 April 2009 - 2 DEN/DANS/DPC/SCCME Hybrid Sulfur Cycle Electrolyser - Schematic Diagram Electrochemical Step Electrochemical Step Oxidation of SO 2 and Reduction of proton SO 2 + 2 H H 2 2 O O → H H 2 2 + H 2 SO 4 Recycling Intermediate H 2 SO 4 SO 2 H 2 O O 2 SO 3 HTR H 2 H 2 O 900°C 100°C 600°C Thermochemical Thermochemical Step Step Thermal decomposition of H 2 SO 4 H 2 2 SO 4 4 → SO 3 3 + H 2 2 O SO 2 2 + ½ O O 2 2 Hybrid Sulfur Electrolyzer Workshop - 20-21 April 2009 - 3 DEN/DANS/DPC/SCCME Hybrid Sulfur Cycle Electrolyzer - Objective Main objective of the study

71

Sulfur minimization in bacterial leaching  

SciTech Connect

The production of sewage biosolids in Ontario in 1989 was estimated to be 7 million m{sup 3} of wet sludge per year. Of this amount, land application accounts for between 20 and 30% of the total. Unfortunately, the use of sewage biosolids on agricultural land is often prohibited because of heavy metal contamination of the biosolids. High cost and operational problems have made chemical methods of metal extraction unattractive. Consequently, microbiological methods of leaching of heavy metals have been studied for over a decade. A relatively simple microbiological process has been investigated in recent years in flask level experiments and recently in a semicontinuous system. The process exploits nonacidophilic and acidophilic indigenous thiobacilli to extract heavy metals from sewage biosolids. These thiobacilli use elemental sulfur as the energy source, producing sulfuric acid. However, the resulting decontaminated biosolids can cause environmental problems like acidification of the soil, when acid is generated from the residual sulfur in the biosolids. The present study examines the possibility of reducing the amount of sulfur added in batch and semicontinuous bacterial leaching systems, and maximizing sulfur oxidation efficiency, thereby reducing the residual sulfur in leached biosolids.

Seth, R.; Prasad, D.; Henry, J.G. [Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering

1996-11-01T23:59:59.000Z

72

Compilation of CFD Models of Various Solid Oxide Electrolyzers Analyzed at the Idaho National Laboratory  

SciTech Connect

Various three dimensional computational fluid dynamics (CFD) models of solid oxide electrolyzers have been created and analyzed at the Idaho National Laboratory since the inception of the Nuclear Hydrogen Initiative in 2004. Three models presented herein include: a 60 cell planar cross flow with inlet and outlet plenums, 10 cell integrated planar cross flow, and internally manifolded five cell planar cross flow. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) module adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, endothermic reaction, Ohmic heating, and change in local gas composition. Results are discussed for using these models in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production is reported herein. Contour plots and discussion show areas of likely cell degradation, flow distribution in inlet plenum, and flow distribution across and along the flow channels of the current collectors

Grant Hawkes; James O'Brien

2012-06-01T23:59:59.000Z

73

Hybrid Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Energy Integrated energy systems could improve fossil resource utilization, reduce greenhouse gas emissions and stabilize renewable energy contributions. These hybrid...

74

Sulfur capture in combination bark boilers  

SciTech Connect

A review of sulfur dioxide emission data for eight combination bark boilers in conjunction with the sulfur contents of the fuels reveals significant sulfur capture ranging from 10% to over 80% within the solid ash phase. Wood ash characteristics similar to activated carbon as well as the significant wood ash alkali oxide and carbonate fractions are believed responsible for the sulfur capture. Sulfur emissions from combination bark-fossil fuel firing are correlated to the sulfur input per ton of bark or wood residue fired.

Someshwar, A.V.; Jain, A.K. (National Council of the Paper Industry for Air and Stream Improvement, Gainesville, FL (United States))

1993-07-01T23:59:59.000Z

75

Molecular Structures of Polymer/Sulfur Composites for Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life. Molecular Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long...

76

Amylopectin Wrapped Graphene Oxide/Sulfur for Improved Cyclability of Lithium–Sulfur Battery  

Science Journals Connector (OSTI)

Amylopectin Wrapped Graphene Oxide/Sulfur for Improved Cyclability of Lithium–Sulfur Battery ... An amylopectin wrapped graphene oxide-sulfur composite was prepared to construct a 3-dimensionally cross-linked structure through the interaction between amylopectin and graphene oxide, for stabilizing lithium sulfur batteries. ...

Weidong Zhou; Hao Chen; Yingchao Yu; Deli Wang; Zhiming Cui; Francis J. DiSalvo; Héctor D. Abruña

2013-09-05T23:59:59.000Z

77

Sulfur: its clinical and toxicologic aspects  

Science Journals Connector (OSTI)

Although there is no known dietary requirement for inorganic sulfur, it is an essential element for all animal species in as much as they all require the sulfur-containing amino acid methionine. There are three predominate forms of organic sulfur in animals and humans: 1) the thiomethyl of methionine residues in protein; 2) the sulfhydryl disulfides of protein; and 3) the compounds containing ester or amide bound sulfates of glycosaminoglycans, steroids, and many xenobiotic metabolites. Thus, sulfur becomes an important constituent of amino acids, proteins, enzymes, vitamins and other biomolecules. Unlike mammalian species, plants can use inorganic sulfur and synthesize methionine from which are synthesized all the other important sulfur compounds. Hence, sulfur deficiency occurs mainly when plants are grown in sulfur-depleted soils and when humans and animals consume low-protein diets. In recent times, however, the increasing prevalence of refining petroleum and smelting sulfur compounds of metallic minerals into free metals are having a large impact on the balance of sulfur in the environment. Sulfur toxicity is associated mainly with high levels of the element and its toxic volatile substances in the environment. Sulfur dioxide (SO2), a major air pollutant, may adversely affect animal and human health by causing bronchitis, bronchoconstriction, and increased pulmonary resistance.

Lioudmila A Komarnisky; Robert J Christopherson; Tapan K Basu

2003-01-01T23:59:59.000Z

78

Two stage sorption of sulfur compounds  

DOE Patents (OSTI)

A two stage method for reducing the sulfur content of exhaust gases is disclosed. Alkali- or alkaline-earth-based sorbent is totally or partially vaporized and introduced into a sulfur-containing gas stream. The activated sorbent can be introduced in the reaction zone or the exhaust gases of a combustor or a gasifier. High efficiencies of sulfur removal can be achieved.

Moore, William E. (Manassas, VA)

1992-01-01T23:59:59.000Z

79

Why Sequence Sulfur-Oxidizing Bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-Oxidizing Bacteria? Sulfur-Oxidizing Bacteria? Several environmental problems, such as acid rain, biocorrosion, etc., are caused by sulfur compounds, such as sulfur dioxide (SO2) and hydrogen sulfide (H2S). A sustainable process to remove these sulfur compounds is the production of elemental sulfur from H2S-containing gas streams by the use of sulfide-oxidizing bacteria. In this process, H2S is absorbed into the alkaline solution in the scrubber unit, followed by the biological oxidation of H2S to elemental sulfur and the recycling of water. With this two-step process, a variety of gas streams (i.e., natural gas, synthesis gas, biogas, and refinery gas) can be treated. For the treatment of sulfate-containing waste streams, an extra step has to be introduced: the transformation of sulfate into H2S by sulfate-reducing bacteria. In

80

Hybrid Models  

Science Journals Connector (OSTI)

Up to this point, we have been discussing systems of equations involving continuous variables. In this chapter, we will discuss hybrid system behavior. Hybrid behavior involves not just continuous variables and e...

Michael Tiller Ph.D.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries 2011 DOE...

82

Improve reformer operation with trace sulfur removal  

SciTech Connect

Modern bimetallic reforming catalysts typically have feed specifications for sulfur of 0.5 to 1 wppm in the reformer naphtha carge. Sulfur in the raw naphtha is reduced to this level by naphtha hydrotreating. While most naphtha hydrotreating operations can usually obtain these levels without substantial problems. It is difficult to obtain levels much below 0.5 to 1 wppm with this process. Revamp of a constrained existing hydrotreater to reduce product sulfur slightly can be extremely costly typically entailing replacement or addition of a new reactor. At Engelhard the authors demonstrated that if the last traces of sulfur remaining from hydrotreating can be removed, the resulting ultra-low sulfur feed greatly improves the reformer operation and provides substantial economic benefit to the refiner. Removal of the remaining trace sulfur is accomplished in a simple manner with a special adsorbent bed, without adding complexity to the reforming operation.

McClung, R.G.; Novak, W.J.

1987-01-01T23:59:59.000Z

83

Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis  

E-Print Network (OSTI)

Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of ...

Lyons, J. R.

84

HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS  

SciTech Connect

The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

2003-11-01T23:59:59.000Z

85

Sulfur-Free Selective Pulping  

E-Print Network (OSTI)

Technoeconomic Appraisal," December 1991. 5. DOE Annual Report on Contract No. AC02-83CH10093, Bozell, J. J., Hames, B., Chum, H. L., Dimmel, D. R, Althen, E., Caldwell, P. L., Daube, Oxidation ;; Diels-Alder .. I I -Methanol .. ~ 5 I 3 (C~O) OCH... - Hydrogen 3 (Q-IP) # Q-I 3 o o ~ o 1 2 ~ (H) Lignin DMBQ =two OCH3 groups Anthraquinone MMBQ =one OCH3 group A. K, and Kuroda, K-I.,"Sulfur-free Selective Pulping," March 1992. 6. DOE Annual Report on Contrac No. DE-AC02-83CH10093, Bozell, J. J...

Dimmel, D. R.; Bozell, J. J.

86

Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake  

E-Print Network (OSTI)

promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

Borguet, Eric

87

Hybrid Vehicle Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Links Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Hybrid Vehicles and Manufacturers Acura ILX Hybrid Audi Q5 Hybrid BMW ActiveHybrid 3 ActiveHybrid 5 ActiveHybrid 7 Buick LaCrosse eAssist* Regal eAssist* Chevrolet Malibu Eco* Impala eAssist* Ford Fusion Hybrid Honda Accord Hybrid Civic Hybrid Honda CR-Z Honda Insight Hyundai Sonata Hybrid Infiniti M Hybrid Q50 Hybrid Q50 S Hybrid QX60 Hybrid Kia Optima Hybrid Lexus CT 200h Lexus ES 300h GS 450h LS 600h L RX 450h Lincoln MKZ Hybrid Mercedes-Benz Mercedes E400 Hybrid Nissan Pathfinder Hybrid Porsche Cayenne S Hybrid Subaru XV Crosstrek Hybrid Toyota Avalon Hybrid

88

Hybride Montagesysteme  

Science Journals Connector (OSTI)

Hybride Montagesysteme sind Einrichtungen zur Montage von Baugruppen und/oder Produkten, in denen Automatikstationen mit Handarbeitsplätzen kombiniert sind. Sie liegen hinsichtlich Stückzahl, Variantenvielfalt...

Edwin Lotter

2006-01-01T23:59:59.000Z

89

Hybride Montagesysteme  

Science Journals Connector (OSTI)

Hybride Montagesysteme sind Einrichtungen zur Montage von Baugruppen und/oder Produkten, in denen Automatikstationen mit Handarbeitsplätzen kombiniert sind. Sie liegen hinsichtlich Stückzahl, Variantenvielfalt...

Edwin Lotter

2012-01-01T23:59:59.000Z

90

Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g?1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

Ya Liu; Jinxin Guo; Jun Zhang; Qingmei Su; Gaohui Du

2015-01-01T23:59:59.000Z

91

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

High-Sulfur...FLUIDIZED-BED COMBUSTORS, COMBUSTION...MAY FLUE GAS DES S E...1971 ). High-sulfur...was brief. Natural gas became...overdependent on natural gas and oil to...elevated pressure with a downward...coals of high ash-fusion...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

92

Method of removal of sulfur from coal and petroleum products  

DOE Patents (OSTI)

A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

1995-01-01T23:59:59.000Z

93

Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of...

94

Additives and Cathode Materials for High-Energy Lithium Sulfur...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

95

Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Two kinds of graphene–sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ?5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene–sulfur composite (S–G mixture), sulfur shows larger and uneven size (50–200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S–G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium–sulfur (Li–S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g?1 with the sulfur utilization of 83.7% at a current density of 335 mA g?1. The capacity keeps above 720 mAh g?1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the “shuttle effect”, resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li–S batteries.

Jun Zhang; Zimin Dong; Xiuli Wang; Xuyang Zhao; Jiangping Tu; Qingmei Su; Gaohui Du

2014-01-01T23:59:59.000Z

96

Catalyst for elemental sulfur recovery process  

DOE Patents (OSTI)

A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

Flytzani-Stephanopoulos, M.; Liu, W.

1995-01-24T23:59:59.000Z

97

Sulfur-graphene oxide material for lithium-sulfur battery cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-graphene oxide material for lithium-sulfur battery cathodes Sulfur-graphene oxide material for lithium-sulfur battery cathodes Theoretical specific energy and theoretical energy density Scanning electron micrograph of the GO-S nanocomposite June 2013 Searching for a safer, less expensive alternative to today's lithium-ion batteries, scientists have turned to lithium-sulfur as a possible chemistry for next-generation batteries. Li/S batteries have several times the energy storage capacity of the best currently available rechargeable Li-ion battery, and sulfur is inexpensive and nontoxic. Current batteries using this chemistry, however, suffer from extremely short cycle life-they don't last through many charge-discharge cycles before they fail. A research team led by Elton Cairns and Yuegang Zhang has developed a new

98

Phosphazene groups modified sulfur composites as active cathode materials for rechargeable lithium/sulfur batteries  

Science Journals Connector (OSTI)

A novel phosphazene groups modified sulfur composites cathode [triphosphazene sulfide composite (PS) or nitroaniline–triphosphazene disulfide composite (NPS)] which can give good affinity with electrolytes was...

J. D. Liu; S. Q. Zhang; S. B. Yang; Z. F. Shi; S. T. Zhang; L. K. Wu

2013-11-01T23:59:59.000Z

99

Microsoft PowerPoint - SRNL_20apr09.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2009 , 2009 Giner Electrochemical Systems, LLC Novel Approaches to the HyS SDE Anode Simon G. Stone Giner Electrochemical Systems, LLC April 20, 2009 April 20, 2009 Giner Electrochemical Systems, LLC Hybrid Sulfur Electrolyzers ('SDEs') S R N L U S C D O E P h I S B I R April 20, 2009 Giner Electrochemical Systems, LLC Narrow-Gap Anode for HyS Electrolyzer Objectives: * Demonstrate concept of NGA configuration for HyS electrolyzer * Determine i-V performance and SO 2 crossover characteristics * Project suitability of NGA approach for large scale application * US Publ. Pat. Appl. 2009/0045073 * SRNL Subcontract AC54775O April 20, 2009 Giner Electrochemical Systems, LLC Narrow-Gap Anode for HyS Electrolyzer * Employs a gas diffusion electrode

100

Energy Levels in Sulfur Nuclei  

Science Journals Connector (OSTI)

A study has been made of the proton groups from the reaction of 3.22-Mev deuterons with sulfur in the form, primarily, of H2S gas. The following Q values have been assigned to the reaction S32(dp)S33:6.48, 5.69, 4.58, 4.31, 3.63, 3.33, 2.60, 2.33, 2.06, 1.78, 1.37, 0.85, and 0.18 Mev, corresponding to the ground state and twelve excited states of S33. Four of these groups have been investigated for proton gamma-ray coincidences to confirm this assignment. The yield as a function of deuteron energy has been observed for the six highest energy groups and indication of the presence of some broad resonances found. A qualitative measurement of the variation with angle of relative yields of the groups has indicated a proton intensity distribution that is symmetric for some groups and asymmetric for others. The cross section for the reaction for 90° observation has been found to be 1.2 barns. The mass difference S33-S32 has been calculated to be 0.99963 mass unit.Two low intensity, high energy groups have been assigned to the reaction S33(dp)S34 with Q values of 8.67 and 7.85 Mev. This, together with the above observation, leads to a value of 1.99691 for the mass difference S34-S32.

Perry W. Davison

1949-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Steam reforming utilizing sulfur tolerant catalyst  

SciTech Connect

This patent describes a steam reforming process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of: adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalyst of platinum supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. It also describes a steam process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of steam to the hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalysts consisting essentially of iridium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. In addition a steam reforming process is described for converting hydrocarbon material to hydrogen gas in the presence of sulfur comprising adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity sulfur tolerant catalysts consisting essentially of palladium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina.

Setzer, H.J.; Karavolis, S.; Bett, J.A.S.

1987-09-15T23:59:59.000Z

102

The reaction kinetics of gasoline sulfur compounds: Catalytic mechanisms for sulfur reduction  

SciTech Connect

One of the key elements of reformulated gasoline is the reduction of the sulfur compounds produced by fluid catalytic cracking. This paper probes the reaction kinetics of refractory gasoline-range thiophene derivatives (thiophene, tetrahydrothiophene, and alkylthiophenes) in an effort to determine the mechanisms of sulfur compound cracking in the FCC unit. The gasoline-range sulfur compounds were analyzed using gas chromatography with an atomic emission detector. The authors` results show that the FCC catalysts affects the cracking of sulfur compounds through both hydrogen transfer and zeolite pore restriction mechanisms. An experimental FCC catalyst is shown to reduce gasoline sulfur content in the Davidson Circulating Riser (DCR{sup TM}) pilot unit. Model compound tests show that the activity of the catalyst is due to both its catalytic and adsorptive properties. Tetrahydrothiophene, which is produced from thiophenes by hydrogen transfer, is completely removed by the experimental catalyst.

Harding, R.H.; Gatte, R.R.; Albro, T.G.; Wormsbecher, R.F. [W.R. Grace & Co. Conn, Columbia, MD (United States)

1993-12-31T23:59:59.000Z

103

Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries...

104

An Aerosol Condensation Model for Sulfur Trioxide  

SciTech Connect

This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

Grant, K E

2008-02-07T23:59:59.000Z

105

Hybrid: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

106

Hybrid: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

107

Hybrid Mesons  

E-Print Network (OSTI)

The SU(3)_flavor constituent quark model has been quite successful to explain the properties as well as the observed spectrum of mesons with pseudoscalar and vector quantum numbers. Many radial and orbital excitations of quark-antiquark systems predicted by the model, however, have not yet been observed experimentally or assigned unambiguously. In addition, a much richer spectrum of mesons is expected from QCD, in which quarks interact which each other through the exchange of colored self-interacting gluons. Owing to this particular structure of QCD, configurations are allowed in which an excited gluonic field contributes to the quantum numbers J^{PC} of the meson. States with a valence color-octet qqbar' pair neutralized in color by an excited gluon field are termed hybrids. The observation of such states, however, is difficult because they will mix with ordinary qqbar' states with the same quantum numbers, merely augmenting the observed spectrum for a given J^{PC}. Since the gluonic field may carry quantum numbers other than 0^{++}, however, this can give rise to states with "exotic" quantum numbers J^{PC}=0^{--}, 0^{+-}, 1^{-+}, 2^{+-},... The lowest-lying hybrid multiplet is expected to contain a state with exotic quantum numbers J^{PC}=1^{-+}. The identification of such a state is considered a "smoking gun" for the observation of non-qqbar mesons. The search for hybrid states has been a central goal of hadron spectroscopy in the last 20 years. Ongoing and upcoming high-statistics experiments are expected to shed new light on the existence of such states in nature. In this paper, theoretical predictions for masses and decay modes as well as recent experimental evidence for hybrid meson states and future experimental directions are discussed.

Bernhard Ketzer

2012-08-25T23:59:59.000Z

108

Safety considerations for the use of sulfur in sulfur-modified pavement materials  

E-Print Network (OSTI)

on the surround1ng environment. As sulfur-modified paving materials were being developed, there was a corresponding concern for studying the amounts of gaseous emiss1ons that were generated. The Texas Trans- portat1on Inst1tute (TTI) was one of the first... organizations in the United States to become 1nvolved in the research and development of sulfur-modified pavements, Throughout 1ts laboratory stud1es TTI cont1nually mon1tored hydrogen sulf1de (H25) and sulfur d1oxide (502) em1ssions produced during mix...

Jacobs, Carolyn Yuriko

2012-06-07T23:59:59.000Z

109

Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline  

Energy.gov (U.S. Department of Energy (DOE))

Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of sulfur in gasoline (Tier 2 standards)....

110

ORIGINAL ARTICLE Sulfur oxidizers dominate carbon fixation  

E-Print Network (OSTI)

). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane by bacteria (especially, alpha-, gamma- and epsilon-proteobacteria) that likely participate in the oxidationORIGINAL ARTICLE Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark

Hansell, Dennis

111

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

...amounts of coal, because...Director-Mineral Re-sources...of Gas from Coal through a...on coals of high ash-fusion temperature...per ton of high-sulfur coal burned. Absorp-tion...particulate matter as well as...capable of remov-ing up to...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

112

Short communication Influence of molybdenum and sulfur on copper  

E-Print Network (OSTI)

Short communication Influence of molybdenum and sulfur on copper metabolism in sheep: comparison of molybdenum able to trigger the copper sulfur molybdenum interference in sheep was measured with either only) and 4 increasing molybdenum doses. The sulfur-molybdenum-copper interference was quantified

Paris-Sud XI, Université de

113

A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte  

Science Journals Connector (OSTI)

A novel sulfur/graphene nanosheet (S/GNS) composite was prepared ... ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. ... of irregularly interlaced nanosheet-li...

Yongguang Zhang; Yan Zhao; Zhumabay Bakenov

2014-03-01T23:59:59.000Z

114

A simple approach to synthesize nanosized sulfur/graphene oxide materials for high-performance lithium/sulfur batteries  

Science Journals Connector (OSTI)

We report on a simple and facile synthesis route for the sulfur/graphene oxide composite via ultrasonic mixing of the nano-sulfur and graphene oxide aqueous suspensions followed by a low-temperature heat treat...

Yongguang Zhang; Yan Zhao; Zhumabay Bakenov

2014-07-01T23:59:59.000Z

115

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability  

Science Journals Connector (OSTI)

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability ... The resulting graphene–sulfur composite showed high and stable specific capacities up to ?600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density. ...

Hailiang Wang; Yuan Yang; Yongye Liang; Joshua Tucker Robinson; Yanguang Li; Ariel Jackson; Yi Cui; Hongjie Dai

2011-06-24T23:59:59.000Z

116

High Resolution He-like Argon And Sulfur Spectra From The PSI ECRIT  

E-Print Network (OSTI)

We present new results on the X-ray spectroscopy of multicharged argon, sulfur and chlorine obtained with the Electron Cyclotron Resonance Ion Trap (ECRIT) in operation at the Paul Scherrer Institut (Villigen, Switzerland). We used a Johann-type Bragg spectrometer with a spherically-bent crystal, with an energy resolution of about 0.4 eV. The ECRIT itself is of a hybrid type, with a superconducting split coil magnet, special iron inserts which provides the mirror field, and a permanent magnetic hexapole. The high frequency was provided by a 6.4 GHz microwave emitter. We obtained high intensity X-ray spectra of multicharged F-like to He-like argon, sulfur and chlorine with one 1s hole. In particular, we observed the $1s2s^{3}S_1 \\to 1s^2^{1}S_0 M1$ and $1s2p^{3}P_2 \\to 1s^2^{1}S_0 M2$ transitions in He-like argon, sulfur and chlorine with unprecedented statistics and resolution. The energies of the observed lines are being determined with good accuracy using the He-like M1 line as a reference.

Trassinelli, M; Boucard, S; Covita, D S; Dos Santos, J M F; Gotta, D; Hirtl, A; Indelicato, P J; Le Bigot, E O; Leoni, B; Simons, L M; Stingelin, L; Veloso, J F C; Wasser, A; Zmeskal, J; Bigot, Eric-Olivier Le; Biri, Sandor; Boucard, Stephane; Covita, Daniel S.; Gotta, Detlev; Hirtl, Albert; Indelicato, Paul; Leoni, Bruno; Santos, Joaquim M.F. Dos; Simons, Leopold M.; Stingelin, Lucas; Trassinelli, Martino; Veloso, Joao F.C.A.; Wasser, Alfred; Zmeskal, Johann; ccsd-00003163, ccsd

2004-01-01T23:59:59.000Z

117

sulfur dioxide emissions | OpenEI  

Open Energy Info (EERE)

sulfur dioxide emissions sulfur dioxide emissions Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

118

Sulfur-isotope separation by distillation  

SciTech Connect

Sulfur-isotope separation by low-temperature distillation of hydrogen sulfide was studied in an 8-m, 25-mm diameter distillation column. Column temperature was controlled by a propane-propylene heat pipe. Column packing HETP was measured using nitric oxide in the column. The column was operated at pressures from 45 to 125 kPa. The relative volatility of S-32 vs. S-34 varied from 1.0008 to 1.0014.

Mills, T.R.

1982-01-01T23:59:59.000Z

119

Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract A sulfur/graphene composite is prepared by loading elemental sulfur into three-dimensional graphene (3D graphene), which is assembled using a metal ions assisted hydrothermal method. When used as cathode materials for lithium–sulfur (Li–S) batteries, the sulfur/graphene composite (S@3D-graphene) with 73 wt % sulfur shows a significantly enhanced cycling performance (>700 mAh g?1 after 100 cycles at 0.1C rate with a Coulombic efficiency > 96%) as well as high rate capability with a capacity up to 500 mAh g?1 at 2C rate (3.35 A g?1). The superior electrochemical performance could be attributed to the highly porous structure of three-dimensional graphene that not only enables stable and continue pathway for rapid electron and ion transportation, but also restrain soluble polysulfides and suppress the “shuttle effect”. Moreover, the robust structure of 3D graphene can keep cathode integrity and accommodate the volume change during high-rate charge/discharge processes, making it a promising candidate as cathode for high performance Li–S batteries.

Chunmei Xu; Yishan Wu; Xuyang Zhao; Xiuli Wang; Gaohui Du; Jun Zhang; Jiangping Tu

2015-01-01T23:59:59.000Z

120

Process for production of synthesis gas with reduced sulfur content  

DOE Patents (OSTI)

A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

F1 Hybrid  

Science Journals Connector (OSTI)

Abstract An F1 hybrid consists of crosses between populations, breeds, or cultivars between or within species. This meaning is often used in plant and animal breeding, where hybrids are commonly produced and chosen (‘artificially selected’) because they have desirable characteristics. This flow of genetic material between populations is often called hybridization. Mostly, F1 hybrids between diverse parentages give great vigor than hybrids between parents of same ancestry.

N.U. Khan

2013-01-01T23:59:59.000Z

122

Sulfide catalysts for reducing SO2 to elemental sulfur  

DOE Patents (OSTI)

A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

2001-01-01T23:59:59.000Z

123

Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Advanced Materials Find More Like This Return to Search LithiumSulfur Batteries Based on Doped Mesoporous Carbon Oak Ridge National Laboratory Contact ORNL About...

124

Analyses of sulfur-asphalt field trials in Texas  

E-Print Network (OSTI)

128 LIST OF FIGURES FIGURE PAGF Layout of SNPA sulfur bitumen binder pavem nt test ? U. S. Highway 69, Lufkin, Texas 15 Col 1oi d mi 1 1 furnished by SNPA for preparation of sul fur-asphalt emulsions View of mixing station showing sulfur... designed to investigate the advantage of using a colloid mill to prepare sulfur-asphalt binders as compared to comingling the asphalt and molten sulfur in a pipeline leading directly to the pug mill. After only six months of testing, the results...

Newcomb, David Edward

1979-01-01T23:59:59.000Z

125

Development of sulfur cathode material for Li-S batteries.  

E-Print Network (OSTI)

??M.S. Efforts were taken to fabricate a cathode material having Sulfur as the active material. First step is composed of identifying potential ways of fabricating… (more)

Dharmasena, Ruchira Ravinath, 1984-

2014-01-01T23:59:59.000Z

126

Project Profile: Baseload CSP Generation Integrated with Sulfur...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Related Links FAQs Contact Us Offices You are here Home Concentrating Solar Power Project Profile: Baseload CSP Generation Integrated with Sulfur-Based...

127

SULFUR-TOLERANT CATALYST FOR THE SOLID OXIDE FUEL CELL.  

E-Print Network (OSTI)

??JP-8 fuel is easily accessible, transportable, and has hydrogen content essential to solid oxide fuel cell (SOFC) operation. However, this syngas has sulfur content which… (more)

Bozeman, Joe Frank, III

2010-01-01T23:59:59.000Z

128

Fundamental Studies of Lithium-Sulfur Cell Chemistry  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Studies of Lithium-Sulfur Cell Chemistry PI: Nitash Balsara LBNL June 17, 2014 Project ID ESS224 This presentation does not contain any proprietary, confidential, or otherwise...

129

Abatement of Air Pollution: Control of Sulfur Compound Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abatement of Air Pollution: Control of Sulfur Compound Emissions Abatement of Air Pollution: Control of Sulfur Compound Emissions (Connecticut) Abatement of Air Pollution: Control of Sulfur Compound Emissions (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection These regulations set limits on the sulfur content of allowable fuels (1.0%

130

Sulfur removal and comminution of carbonaceous material  

DOE Patents (OSTI)

Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

Narain, N.K.; Ruether, J.A.; Smith, D.N.

1987-10-07T23:59:59.000Z

131

Sulfur removal and comminution of carbonaceous material  

DOE Patents (OSTI)

Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

Narain, Nand K. (Bethel Park, PA); Ruether, John A. (McMurray, PA); Smith, Dennis N. (Herminie, PA)

1988-01-01T23:59:59.000Z

132

Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle  

Science Journals Connector (OSTI)

...obviously influence the average isotope values. For the other data, samples...pp 87–105 . 19 Price FT Casagrande DJ ( 1991 ) Sulfur...coals. Geology of Fossil Fuels, Proc 30th Int Geol Congress...Jersey Pinelands and its effect on stream water chemistry...223 – 248 . 29 Price FT Shieh YN ( 1979 ) Fractionation...

Donald E. Canfield

2013-01-01T23:59:59.000Z

133

Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur.  

SciTech Connect

More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

NONE

1997-06-01T23:59:59.000Z

134

SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS  

SciTech Connect

We propose a process that uses sulfur dioxide from coal combustion as a raw material to synthesize polymeric ferric sulfate (PFS), a water treatment agent. The process uses sodium chlorate as an oxidant and ferrous sulfate as an absorbent. The major chemical mechanisms in this reaction system include oxidation, hydrolysis, and polymerization. Oxidation determines sulfur conversion efficiency while hydrolysis and polymerization control the quality of product. Many factors, including SO{sub 2} inlet concentration, flow rate of simulated flue gas, reaction temperature, addition rate of oxidant and stirring rate, may affect the efficiencies of SO{sub 2} removal. Currently, the effects of SO{sub 2} inlet concentration, the flow rate of simulated flue gas and addition rate of flue gas on removal efficiencies of SO{sub 2}, are being investigated. Experiments shown in this report have demonstrated that the conversion efficiencies of sulfur dioxide with ferrous sulfate as an absorbent are in the range of 60-80% under the adopted process conditions. However, the conversion efficiency of sulfur dioxide may be improved by optimizing reaction conditions to be investigated. Partial quality indices of the synthesized products, including Fe{sup 2+} concentration and total iron concentration, have been evaluated.

Robert C. Brown; Maohong Fan

2001-12-01T23:59:59.000Z

135

Lithium–sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance  

Science Journals Connector (OSTI)

Abstract In the past four years major improvement of the lithium sulfur battery technology has been reported. Novel carbon cathode materials offer high sulfur loading, sulfur utilization and cycle stability. An often neglected aspect is that sulfur loading and amount of electrolyte strongly impact the performance. In this paper, we demonstrate how the amount of electrolyte, sulfur loading, lithium excess and cycling rate influences the cycle stability and sulfur utilization. We chose vertically aligned carbon nanotubes (VA-CNT) as model system with a constant areal loading of carbon. For a high reproducibility, decreased weight of current collector and good mechanical adhesion of the VA-CNTs we present a layer transfer technique that enables a light-weight sulfur cathode. The sulfur loading of the cathode was adjusted from 20 to 80 wt.-%. Keeping the total amount of electrolyte constant and varying the C-rate, we are able to demonstrate that the capacity degradation is reduced for high rates, high amount of electrolyte and low sulfur loading. In addition idle periods in the cycling regiment and lower rates result in an increased degradation. We attribute this to the redox-reaction between reactive lithium and polysulfides that correlates with the cycling time, rather than cycle number.

Jan Brückner; Sören Thieme; Hannah Tamara Grossmann; Susanne Dörfler; Holger Althues; Stefan Kaskel

2014-01-01T23:59:59.000Z

136

Using ISC & GIS to predict sulfur deposition from coal-fired power plants  

E-Print Network (OSTI)

The goal of this research project was to determine if atmospheric sources have the potential of contributing significantly to the sulfur content of grazed forage. Sulfur deposition resulting from sulfur dioxide emissions from coal- fired power...

Lopez, Jose Ignacio

2012-06-07T23:59:59.000Z

137

Integrated boiler, superheater, and decomposer for sulfuric acid decomposition  

DOE Patents (OSTI)

A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

2010-01-12T23:59:59.000Z

138

HEALTH AND CLIMATE POLICY IMPACTS ON SULFUR EMISSION CONTROL  

E-Print Network (OSTI)

the climate and health effects of sulfate aerosol into an integrated-assessment model of fossil fuel emission warming and health simultaneously will support more stringent fossil fuel and sulfur controls control. Our simulations show that a policy that adjusts fossil fuel and sulfur emissions to address both

Russell, Lynn

139

Metal-sulfur type cell having improved positive electrode  

DOE Patents (OSTI)

An novel metal-sulfur type cell operable at a temperature of 200.degree. C. or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S).sub.y).sub.n wherein y=1 to 6; n=2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprisises one of more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associtated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

Dejonghe, Lutgard C. (Berkeley, CA); Visco, Steven J. (Berkeley, CA); Mailhe, Catherine C. (Berkeley, CA); Armand, Michel B. (St. Martin D'Uriage, FR)

1989-01-01T23:59:59.000Z

140

Mesoscale hybrid calibration artifact  

DOE Patents (OSTI)

A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

Tran, Hy D. (Albuquerque, NM); Claudet, Andre A. (Albuquerque, NM); Oliver, Andrew D. (Waltham, MA)

2010-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2011 CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries "This presentation does not contain any proprietary, confidential, or otherwise...

142

E-Print Network 3.0 - amoco sulfur recovery process Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Medicine 80 Sulfur and oxygen isotope composition of the atmosphere in Saxony (Germany) Tichomirowa et al. Summary: ? a) Mixing processes 12;Sulfur and oxygen isotope...

143

Hybrid armature projectile  

DOE Patents (OSTI)

A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

1993-03-02T23:59:59.000Z

144

Hybrid armature projectile  

DOE Patents (OSTI)

A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

Hawke, Ronald S. (Livermore, CA); Asay, James R. (Los Lunas, NM); Hall, Clint A. (Albuquerque, NM); Konrad, Carl H. (Albuquerque, NM); Sauve, Gerald L. (Berthoud, CO); Shahinpoor, Mohsen (Albuquerque, NM); Susoeff, Allan R. (Pleasanton, CA)

1993-01-01T23:59:59.000Z

145

High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle.  

SciTech Connect

A series of three pressurized sulfuric acid decomposition tests were performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control, (3) obtain multiple measurements of conversion as a function of temperature within a single experiment, and (4) assess rapid quenching to minimize corrosion of metallic components by undecomposed acid. All four of these objectives were successfully accomplished. This report documents the completion of the NHI milestone on high pressure H{sub 2}SO{sub 4} decomposition tests for the Sulfur-Iodine (SI) thermochemical cycle project. All heated sections of the apparatus, (i.e. the boiler, decomposer, and condenser) were fabricated from Hastelloy C276. A ceramic acid injection tube and a ceramic-sheathed thermocouple were used to minimize corrosion of hot liquid acid on the boiler surfaces. Negligible fracturing of the platinum on zirconia catalyst was observed in the high temperature decomposer. Temperature measurements at the exit of the decomposer and at the entry of the condenser indicated that the hot acid vapors were rapidly quenched from about 400 C to less than 20 C within a 14 cm length of the flow path. Real-time gas flow rate measurements of the decomposition products provided a direct measurement of acid conversion. Pressure in the apparatus was preset by a pressure-relief valve that worked well at controlling the system pressure. However, these valves sometimes underwent abrupt transitions that resulted in rapidly varying gas flow rates with concomitant variations in the acid conversion fraction.

Velasquez, Carlos E; Reay, Andrew R.; Andazola, James C.; Naranjo, Gerald E.; Gelbard, Fred

2005-09-01T23:59:59.000Z

146

Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3  

SciTech Connect

The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

1995-09-01T23:59:59.000Z

147

How Hybrids Work  

NLE Websites -- All DOE Office Websites (Extended Search)

How Hybrids Work How Hybrids Work Diagram of full hybrid vehicle components, including (1) an internal combustion engine, (2) an electric motor, (3) a generator, (4) a power split device, and (5) a high-capacity battery. Flash Animation: How Hybrids Work (Requires Flash 6.0 or higher) HTML Version: How Hybrids Work Hybrid-electric vehicles (HEVs) combine the benefits of gasoline engines and electric motors and can be configured to obtain different objectives, such as improved fuel economy, increased power, or additional auxiliary power for electronic devices and power tools. Some of the advanced technologies typically used by hybrids include Regenerative Braking. The electric motor applies resistance to the drivetrain causing the wheels to slow down. In return, the energy from the

148

Terpolymerization of ethylene, sulfur dioxide and carbon monoxide  

DOE Patents (OSTI)

This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

1981-01-01T23:59:59.000Z

149

Low Temperature Sorbents for removal of Sulfur Compounds from fluid feed Streams  

SciTech Connect

A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

Siriwardane, Ranjan

1999-09-30T23:59:59.000Z

150

Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams  

DOE Patents (OSTI)

A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

Siriwardane, Ranjani

2004-06-01T23:59:59.000Z

151

Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems1  

E-Print Network (OSTI)

HyLo 2006 Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems1 Andr´e Platzer2 Carnegie platzer@informatik.uni-oldenburg.de Abstract We introduce a hybrid variant of a dynamic logic for this extended hybrid dynamic logic. With the addition of satisfaction operators, this hybrid logic provides

Platzer, André

152

System for adding sulfur to a fuel cell stack system for improved fuel cell stability  

DOE Patents (OSTI)

A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

2013-08-13T23:59:59.000Z

153

Diesel Emissions Control-Sulfur Effects (DECSE) Program Status  

SciTech Connect

Determine the impact of fuel sulfur levels on emission control systems that could be implemented to lower emissions of NO{sub x} and PM from on-highway trucks in the 2002-2004 time frame.

None

1999-06-29T23:59:59.000Z

154

Sulfur meter for blending coal at Plant Monroe: Final report  

SciTech Connect

An on-line sulfur analyzer, installed at the Detroit Edison, Monroe Power station, was placed into service and evaluated for coal blending optimization to minimize the cost of complying with changing stack gas sulfur dioxide regulations. The project involved debugging the system which consisted of an /open quotes/as-fired/close quotes/ sampler and nuclear source sulfur analyzer. The system was initially plagued with mechanical and electronic problems ranging from coal flow pluggages to calibration drifts in the analyzer. Considerable efforts were successfully made to make the system reliable and accurate. On-line testing showed a major improvement in control of sulfur dioxide emission rates and fuel blending optimization equivalent to as much as $6 million in fuel costs at the time of the evaluation. 7 refs., 14 figs., 12 tabs.

Trentacosta, S.D.; Yurko, J.O.

1988-04-01T23:59:59.000Z

155

Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells  

SciTech Connect

One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode-supported SOFC button cells, it is seen that the long-term sulfur poisoning behavior of those cells indicate that there might be a second-stage slower degradation due to sulfur poisoning, which would last for a thousand hour or even longer. However, when using G-18 sealant from PNNL, the 2nd stage poisoning was effectively prohibited.

Lei Yang; Meilin Liu

2008-12-31T23:59:59.000Z

156

Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report  

SciTech Connect

This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

1995-06-01T23:59:59.000Z

157

Low temperature fracture evaluation of plasticized sulfur paving mixtures  

E-Print Network (OSTI)

May 1985 Major Subject: Civil Engineering LOW TEMPERATURE FRACTURE EVALUATION OF PLASTICIZED SULFUR PAVING MIXTURES A Thesis by KAMYAR MAHBOUB Approved as to style and content by: Dallas N. Li tie (Chai rman of Committee) Ro e . Lytto Member... modifications to the standard ASTM procedure. These modifications were required due to the nature of plasticized sulfur mixtures and asphalt cement mixtures. The J-integral version of Paris ' law was successfully used to characterize the fatigue...

Mahboub, Kamyar

2012-06-07T23:59:59.000Z

158

New & Upcoming Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Hybrids New & Upcoming Hybrids 2014 Model Year Vehicle EPA MPG Estimates Price (MSRP) Chevrolet Impala eAssist Large Car Chevrolet Impala eAssist Chart: City, 25; Highway, 35; Combined, 29 NA Infiniti Q50 Hybrid Compact Car Infiniti Q50 Hybrid Chart: City, 29; Highway, 36; Combined, 31 $43,950 Infiniti Q50 Hybrid AWD Compact Car Infiniti Q50 Hybrid AWD Chart: City, 28; Highway, 35; Combined, 30 $45,750 Infiniti Q50S Hybrid Compact Car Infiniti Q50S Hybrid Chart: City, 28; Highway, 34; Combined, 30 $46,350 Infiniti Q50S Hybrid AWD Compact Car Infiniti Q50S Hybrid AWD Chart: City, 27; Highway, 31; Combined, 28 $48,150 Infiniti QX60 Hybrid AWD Standard SUV Infiniti QX60 Hybrid AWD Chart: City, 25; Highway, 28; Combined, 26 NA Infiniti QX60 Hybrid FWD

159

Recent advances in lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithium–sulfur (Li–S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg?1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li–S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li–S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li–S cells, but also we cover some of our proposals for engineering of Li–S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li–S batteries in the near future.

Lin Chen; Leon L. Shaw

2014-01-01T23:59:59.000Z

160

Heat Transfer Characteristics of Sulfur and Sulfur Diluted with Hydrogen Sulfide Flowing Through Circular Tubes  

E-Print Network (OSTI)

is called the pumping-power advantage factor, and has the value 2. 5 x 10 for sodium. The only metals having a higher value of H are 13 lithium 7 and bismuth. Lithium 7 comprises 92. 5% of natural lithium, but the cost of separating it from lithium 6...-section for thermal neutrons being 0. 130 barns. For comparison, water has an absorption cross-section of 0. 58 barns for thermal neutrons (2) . Sulfur is not activated by exposure to neutron flux in such a way as to produce a radioactive isotope which...

Stone, Porter Walwyn

1960-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Corn Hybrids for Texas.  

E-Print Network (OSTI)

Stephenville ,J* 5.K'rbyvilb I0.Cbrkdb 15.Tanpk 2ODetiion 25.Wllothe TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST The Texas corn acreage planted to hybrids increased from less than 1 percent of the total acrea....1 in 1941 to 74.5 percent in 1953. Most of the present acreage is devoted to the newer, better-adaptt hybrids-Texas 26, 28 and 30. These new hybrids usually outyield the older Texas hybrids h!. least 10 percent. Corn is one of the most important...

Rogers, J. S.; McAfee, T. E.

1954-01-01T23:59:59.000Z

162

Polyaniline-modified cetyltrimethylammonium bromide-graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries  

Science Journals Connector (OSTI)

Conductive polymer coatings can boost the power storage capacity of lithium-sulfur batteries. We report here on the design and ... polyaniline (PANI)-modified cetyltrimethylammonium bromide (CTAB)-graphene oxide ...

Yongcai Qiu; Wanfei Li; Guizhu Li; Yuan Hou; Lisha Zhou; Hongfei Li…

2014-09-01T23:59:59.000Z

163

Effects of Plug-In Hybrid Electric Vehicles on Ozone Concentrations in Colorado  

Science Journals Connector (OSTI)

Effects of Plug-In Hybrid Electric Vehicles on Ozone Concentrations in Colorado ... Changes in PM10 and PM2.5 concentrations in Colorado (and most areas of the western U.S. outside California) were negligible. ... The biogenic, area, and mobile source inventories were provided by the National Park Service (17) based on an updated version of the Western Regional Air Partnership (WRAP) inventories from 2002 used for the Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) study. ...

Gregory L. Brinkman; Paul Denholm; Michael P. Hannigan; Jana B. Milford

2010-07-15T23:59:59.000Z

164

Formula Hybrid International Competition  

E-Print Network (OSTI)

Jack Ratta Media Center Acceleration Runs NASCAR Oval - Main Straight Tech. Inspection North Garage:00 4:00 5:00 6:00 7:00 8:00 9:00 Design Finals Group Photo NASCAR Oval - Main Straight Barbeque Hosted of the hybrid gasoline engine, there are more components to a hybrid drivetrain, including the electric motor

Carver, Jeffrey C.

165

Hybrid Quantum Cloning Machine  

E-Print Network (OSTI)

In this work, we introduce a special kind of quantum cloning machine called Hybrid quantum cloning machine. The introduced Hybrid quantum cloning machine or transformation is nothing but a combination of pre-existing quantum cloning transformations. In this sense it creates its own identity in the field of quantum cloners. Hybrid quantum cloning machine can be of two types: (i) State dependent and (ii) State independent or Universal. We study here the above two types of Hybrid quantum cloning machines. Later we will show that the state dependent hybrid quantum-cloning machine can be applied on only four input states. We will also find in this paper another asymmetric universal quantum cloning machine constructed from the combination of optimal universal B-H quantum cloning machine and universal anti-cloning machine. The fidelities of the two outputs are different and their values lie in the neighborhood of ${5/6} $

Satyabrata Adhikari; A. K. Pati; Indranil Chakrabarty; B. S. Choudhury

2007-05-04T23:59:59.000Z

166

Hybrid Baryons in QCD  

SciTech Connect

We present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

Jozef J. Dudek, Robert G. Edwards

2012-03-01T23:59:59.000Z

167

ADDITIVE TESTING FOR IMPROVED SULFUR RETENTION: PRELIMINARY REPORT  

SciTech Connect

The Savannah River National Laboratory is collaborating with Alfred University to evaluate the potential for additives in borosilicate glass to improve sulfur retention. This preliminary report provides further background on the incorporation of sulfur in glass and outlines the experiments that are being performed by the collaborators. A simulated waste glass composition has been selected for the experimental studies. The first phase of experimental work will evaluate the impacts of BaO, PbO, and V{sub 2}O{sub 5} at concentrations of 1.0, 2.0, and 5.0 wt % on sulfate retention in simulated high level waste borosilicate glass. The second phase of experimental work will evaluate the effects of time at the melt temperature on sulfur retention. The resulting samples will be characterized to determine the amount of sulfur remaining as well as to identify the formation of any crystalline phases. The results will be used to guide the future selection of frits and glass forming chemicals in vitrifying Department of Energy wastes containing high sulfur concentrations.

Amoroso, J.; Fox, K.

2011-09-07T23:59:59.000Z

168

CX-010856: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cells such as sulfur dioxide depolarized electrolyzer, unitized regenerative fuel cells, fuel cells, or batteries. Major activities include synthesis, manufacture, and performing...

169

Hybrid Automata-based CEGAR for Rectangular Hybrid Systems  

E-Print Network (OSTI)

Hybrid Automata-based CEGAR for Rectangular Hybrid Systems Pavithra Prabhakar, Sridhar Duggirala- example guided abstraction-refinement (CEGAR) for systems modelled as rectangular hybrid automata. The main difference, between our ap- proach and previous proposals for CEGAR for hybrid automata

Liberzon, Daniel

170

PDF Approach Hybrid Methodology Validation DEVELOPMENT OF A HYBRID  

E-Print Network (OSTI)

PDF Approach Hybrid Methodology Validation DEVELOPMENT OF A HYBRID EULERIAN-LAGRANGIAN METHOD CNRS / INPT / UPS PhD Defense X. PIALAT Hybrid Eulerian-Lagrangian Method (HELM) #12;PDF Approach Hybrid Methodology Validation Introduction Gas-Particle Flows Applications pollutant dispersion

Paris-Sud XI, Université de

171

Hybrid Systems State estimation for hybrid systems: applications  

E-Print Network (OSTI)

Hybrid Systems State estimation for hybrid systems: applications to aircraft tracking I. Hwang, H of a stochastic linear hybrid system, given only the continuous system output data, is studied. Well established techniques for hybrid estimation, known as the multiple model adaptive estimation algorithm

Tomlin, Claire

172

HYBRID LIMIT CYCLES AND HYBRID POINCARE-BENDIXSON  

E-Print Network (OSTI)

HYBRID LIMIT CYCLES AND HYBRID POINCAR´E-BENDIXSON Slobodan N. Simi´c Department of Electrical regular hybrid systems with no branching (Simi´c et al., 2000a). The first one provides a condition for asymptotic stability of hybrid closed orbits in terms of contraction-expansion rates of resets and flows

Johansson, Karl Henrik

173

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

174

Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment  

NLE Websites -- All DOE Office Websites (Extended Search)

Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment DOE-funded research, in collaboration with Allison Buses and General Motors Corporation has led to the commercialization of a dramatically different hybrid transmission system for heavy-duty and light-duty applications. The Dual-Mode or Two-Mode hybrid system is an infinitely variable speed hybrid transmission that works with the engine and battery system and automatically chooses to operate in a parallel or series hybrid path to maximize efficiency and minimize emissions, fuel consumption and noise. Parallel and Series hybrid configurations are found on most hybrid vehicles today, both with their own pluses and minuses. The Dual- Mode/Two-Mode systems uses the positive characteristics from both systems to maximize fuel

175

Why sequence Sulfur cycling in the Frasassi aquifer?  

NLE Websites -- All DOE Office Websites (Extended Search)

sulfur cycling in the Frasassi aquifer? sulfur cycling in the Frasassi aquifer? The terrestrial subsurface remains one of the least explored microbial habitats on earth, and is critical for understanding pollutant migration and attenuation, subsurface processes such as limestone dissolution (affecting porosity), and the search for life elsewhere in the solar system and beyond. The deep and sulfidic Frasassi aquifer (of Ancona, Italy) has emerged as a model system for studying sulfur cycling in the terrestrial subsurface, and this sequencing project has relevance for developing applications for wastewater treatment and capabilities relevant for radionuclide, metal and organic pollutant remediation that can be applied at environments at DOE subsurface sites. Principal Investigators: Jennifer Macalady, Penn State University

176

Sodium/Phosphorus-Sulfur Cells II. Phase Equilibria  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Phase Equilibria II. Phase Equilibria Title Sodium/Phosphorus-Sulfur Cells II. Phase Equilibria Publication Type Journal Article Year of Publication 1996 Authors Ridgway, Paul L., Frank R. McLarnon, and John S. Newman Journal Journal of the Electrochemistry Society Volume 143 Issue 2 Pagination 412-417 Keywords 25 ENERGY STORAGE, 36 MATERIALS SCIENCE, ALUMINIUM OXIDES, equilibrium, performance, PHASE DIAGRAMS, PHOSPHIDES, PHOSPHORUS ADDITIONS, SODIUM COMPOUNDS, SODIUM SULFIDES, SODIUM-SULFUR BATTERIES Abstract Equilibrium open-circuit cell voltage data from a sodium/{beta}{double_prime}-alumina/phosphorus-sulfur cell utilizing P/S ratios of 0, 0.143, and 0.332 and a sodium atom fraction ranging from 0 to 0.4 were interpreted to construct ternary phase diagrams of the Na-P-S ternary system at 350 and 400 C.

177

Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results  

SciTech Connect

A global, self-consistent estimate of sulfur dioxide emissions over the last one and a half century were estimated by using a combination of bottom-up and best available inventory methods including all anthropogenic sources. We find that global sulfur dioxide emissions peaked about 1980 and have generally declined since this time. Emissions were extrapolated to a 1{sup o} x 1{sup o} grid for the time period 1850-2000 at annual resolution with two emission height levels and by season. Emissions are somewhat higher in the recent past in this new work as compared with some comprehensive estimates. This difference is largely due to our use of emissions factors that vary with time to account for sulfur removals from fossil fuels and industrial smelting processes.

Smith, Steven J.; Andres, Robert; Conception , Elvira; Lurz, Joshua

2004-01-25T23:59:59.000Z

178

Indication of Meissner Effect in Sulfur-Substituted Strontium Ruthenates  

E-Print Network (OSTI)

Ceramic samples of Sr2RuO(4-y)Sy (y=0.03-1.2) with intended isovalent substitution of oxygen by sulfur have been synthesized and explored in the temperature range 4-300K. It is found that at a range of optimum sulfur substitution the magnetic response of ceramic samples reveals large diamagnetic signal with amplitudes approaching comparability with that of the YBCO-superconductors. Contrary to a pure ceramic Sr2RuO4, if properly optimized, the resistivity of sulfur-substituted samples has a metallic behavior except at lower temperatures where an upturn occurs. Both synthesis conditions and results of measurements are reported. The Meissner effect may point to high-temperature superconductivity.

Gulian, Armen

2011-01-01T23:59:59.000Z

179

Selective catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly technical progress report No. 6, October--December 1993  

SciTech Connect

Elemental sulfur recovery from SO{sub 2}-containing gas stream is highly attractive as it produces a salable product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO{sub 2} with coke) and Claus plant (reaction of SO{sub 2} with H{sub 2}S over catalyst). This project will investigate a cerium oxide catalyst for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified in recent work at MIT as a superior catalyst for SO{sub 2} reduction by CO to elemental sulfur because its high activity and high selectivity to sulfur over COS over a wide temperature range (400--650{degree}C). The detailed kinetic and parametric studies of SO{sub 2} reduction planned in this work over various CeO{sub 2} formulations will provide the necessary basis for development of a very simplified process, namely that of a single-stage elemental sulfur recovery scheme from variable concentration gas streams. The potential cost- and energy-efficiency benefits from this approach can not be overstated. A first apparent application is treatment of a regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought ``Claus-alternative`` for coal-fired power plant applications.

Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

1993-12-31T23:59:59.000Z

180

Selective catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly technical progress report No. 4, April--June 1993  

SciTech Connect

Elemental sulfur recovery from SO{sub 2}-containing gas stream is highly attractive as it produces a salable product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO{sub 2} with coke) and Claus plant(reaction of SO{sub 2} with H{sub 2}S over catalyst). This project will investigate a cerium oxide catalyst for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified in recent work at MIT as a superior catalyst for SO{sub 2} reduction by CO to elemental sulfur because its high activity and high selectivity to sulfur over COS over a wide temperature range(400--650{degrees}C). The detailed kinetic and parametric studies of SO{sub 2} reduction planned in this work over various CeO{sub 2}-formulations will provide the necessary basis for development of a very simplified process, namely that of a single-stage elemental sulfur recovery scheme from variable concentration gas streams, The potential cost- and energy-efficiency benefits from this approach can not be overstated. A first apparent application is treatment of a regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought ``Claus-alternative`` for coal-fired power plant applications.

Liu, Wei; Flytzani-Stephanopoulos, M.; Sarofim, A.F.; Williams, R.S.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report  

SciTech Connect

The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

NONE

1997-01-01T23:59:59.000Z

182

Direct sulfur recovery during sorbent regeneration. Final report  

SciTech Connect

The objective of this research project was to improve the direct elemental sulfur yields that occur during the regeneration of SO{sub 2}-saturated MgO-vermiculite sorbents (MagSorbents) by examining three approaches or strategies. The three approaches were regeneration-gas recycle, high-pressure regeneration, and catalytic reduction of the SO{sub 2} gas using a new catalyst developed by Research Triangle Institute (RTI). Prior to the project, Sorbent Technologies Corporation (Sorbtech) had developed a sorbent-regeneration process that yielded directly a pure elemental sulfur product. In the process, typically about 25 to 35 percent of the liberated S0{sub 2} was converted directly to elemental sulfur. The goal of this project was to achieve a conversion rate of over 90 percent. Good success was attained in the project. About 90 percent or more conversion was achieved with two of the approaches that were examined, regeneration-gas recycle and use of the RTI catalyst. Of these approaches, regeneration-gas recycle gave the best results (essentially 100 percent conversion in some cases). In the regeneration-gas recycle approach, saturated sorbent is simply heated to about 750{degree}C in a reducing gas (methane) atmosphere. During heating, a gas containing elemental sulfur, water vapor, H{sub 2}S, S0{sub 2}, and C0{sub 2} is evolved. The elemental sulfur and water vapor in the gas stream are condensed and removed, and the remaining gas is recycled back through the sorbent bed. After several recycles, the S0{sub 2} and H{sub 2}S completely disappear from the gas stream, and the stream contains only elemental sulfur, water vapor and C0{sub 2}.

Nelson, S.G.; Little, R.C. [Sorbent Technologies Corp., Twinsburg, OH (United States)

1993-08-01T23:59:59.000Z

183

Heavy Hybrid mesons Masses  

E-Print Network (OSTI)

We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

F. Iddir; L. Semlala

2006-11-13T23:59:59.000Z

184

Hybrid adsorptive membrane reactor  

DOE Patents (OSTI)

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

2011-03-01T23:59:59.000Z

185

Extraction, separation, and analysis of high sulfur coal. Final report  

SciTech Connect

The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. [comps.

1992-05-31T23:59:59.000Z

186

Extraction, separation, and analysis of high sulfur coal  

SciTech Connect

The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. (comps.)

1992-05-31T23:59:59.000Z

187

Sulfur dioxide oxidation and plume formation at cement kilns  

SciTech Connect

Results of source sampling at the Glens Falls cement kiln in Glens Falls, N.Y., are reported for sulfur oxides, ammonia, hydrochloric acid, oxygen, and moisture content. The origin of a detached, high-opacity, persistent plume originating from the cement kiln stack is investigated. It is proposed that this plume is due to ammonium salts of SOx and sulfuric acid that have been formed in condensed water droplets in the plume by the pseudocatalytic action of ammonia. (1 diagram, 1 graph, 22 references, 7 tables)

Dellinger, B.; Grotecloss, G.; Fortune, C.R.; Cheney, J.L.; Homolya, J.B.

1980-10-01T23:59:59.000Z

188

Human hybrid hybridoma  

SciTech Connect

Hybrid hybridomas are obtained by fusion of two cells, each producing its own antibody. Several authors have reported the construction of murine hybrid hybridomas with the aim to obtain bispecific monoclonal antibodies. The authors have investigated, in a model system, the feasibility of constructing a human hybrid hybridoma. They fused two monoclonal cell lines: an ouabain-sensitive and azaserine/hypoxanthine-resistant Epstein-Barr virus-transformed human cell line that produces an IgG1kappa antibody directed against tetanus toxiod and an azaserine/hypoxanthine-sensitive and ouabain-resistant human-mouse xenohybrid cell line that produces a human IgG1lambda antibody directed against hepatitis-B surface antigen. Hybrid hybridoma cells were selected in culture medium containing azaserine/hypoxanthine and ouabain. The hybrid nature of the secreted antibodies was analyzed by means of two antigen-specific immunoassay. The results show that it is possible, with the combined use of transformation and xenohybridization techniques, to construct human hybrid hybridomas that produce bispecific antibodies. Bispecific antibodies activity was measured by means of two radioimmunoassays.

Tiebout, R.F.; van Boxtel-Oosterhof, F.; Stricker, E.A.M.; Zeijlemaker, W.P.

1987-11-15T23:59:59.000Z

189

Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tier 2 Vehicle and Tier 2 Vehicle and Gasoline Sulfur Program to someone by E-mail Share Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Facebook Tweet about Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Twitter Bookmark Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Google Bookmark Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Delicious Rank Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Digg Find More places to share Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tier 2 Vehicle and Gasoline Sulfur Program

190

Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR System Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR System effect and performance...

191

Revisit Carbon/Sulfur Composite for Li-S Batteries. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Revisit CarbonSulfur Composite for Li-S Batteries. Revisit CarbonSulfur Composite for Li-S Batteries. Abstract: To correlate the carbon properties e.g. surface area and porous...

192

A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts  

E-Print Network (OSTI)

Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

Tang, Hairong

2005-01-01T23:59:59.000Z

193

System for adding sulfur to a fuel cell stack system for improved fuel cell stability  

DOE Patents (OSTI)

A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

Mukerjee, Subhasish (Pittsford, NY); Haltiner, Jr., Karl J (Fairport, NY); Weissman, Jeffrey G. (West Henrietta, NY)

2012-03-06T23:59:59.000Z

194

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel Ultra-Low Sulfur diesel Update & Future Light Duty Diesel Presentation given at DEER 2006, August 20-24, 2006, Detroit,...

195

Sulfur Degassing From Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts  

E-Print Network (OSTI)

of sulfur in magmas owes much to its multiple valence states (-II, 0, IV, VI), speciation (e.g., S2, H2S, SO on the redox chemistry of sulfur: by reducing sulfur, thiosulfate, sulfite and sulfate to H2S, or oxidizing sulfur and H2S to sulfate (e.g., Takano et al. 1997; Amend and Shock 2001; Shock et al. 2010

Boyer, Edmond

196

Sulfur-deactivated steam reforming of gasified biomass  

SciTech Connect

The effect of hydrogen sulfide on the stream reforming of methane has been studied. Methane is the most difficult component to convert by steam reforming in the mixture of hydrocarbons, which is produced in biomass gasification. Two catalysts were subjected to hydrogen sulfide levels up to 300 ppm so as to study the effect of sulfur on their deactivation. These catalysts were the C11-9-061, from United Catalyst Inc., and the HTSR1, from Haldor Topsoee. The activation energy of the sulfur-deactivated steam-reforming reaction was calculated to be 280 and 260 kJ/mol, for each catalyst, respectively. The high values most probably originate from the fact that the degree of sulfur coverage of the nickel surface is close to 1 for these experiments. Even under these severe conditions, steam reforming of methane is possible without any carbon formation. The HTSR1 catalyst exhibits a very high sulfur-free activity, resulting in a performance in the presence of hydrogen sulfide higher than that for the C11-9-061 catalyst. By using the HTSR1 catalyst, the reactor temperature can be lowered by 60 C in order to reach comparable levels of conversion.

Koningen, J.; Sjoestroem, K. [Kungl Tekniska Hoegskolan, Stockholm (Sweden)] [Kungl Tekniska Hoegskolan, Stockholm (Sweden)

1998-02-01T23:59:59.000Z

197

Effect of sulfur on heavy duty diesel engine lubricants  

SciTech Connect

Diesel engine exhaust legislation has become quite onerous for heavy duty engines. Yet, these high thermal efficiency engines continue to meet lower exhaust particulate and NOx emissions limits, due to new engine designs and the complementary engine oil performance requirements of the API service categories. In addition, the EPA has mandated changes in on-highway diesel fuel to help meet particulate emissions regulations. On October 1, 1993, when the EPA outlawed high sulfur fuels for on-highway use, the development of the API CG-4 engine oil performance specification was already in progress. All the new diesel engine tests in the category were therefore designed to run with low (< 0.05% wt.) sulfur fuel. In some engine tests, this new fuel improved some lubricant performance characteristics and degraded others. An engine oil specification for low sulfur fuel brings new challenges to developing future specifications for diesel engine oils. Both higher and lower lubricant additive treat rate products, high performance single grade oils, and formulations to meet world-wide specifications become viable. This paper discusses the results of a diesel engine oil technology that performs well with the new, low sulfur fuel in both engine tests and in the field.

Hayden, T.E. [Texaco Fuels and Lubricants Research Dept., Beacon, NY (United States)

1996-12-01T23:59:59.000Z

198

Revisit Carbon/Sulfur Composite for Li-S Batteries  

SciTech Connect

To correlate the carbon properties e.g. surface area and porous structure, with the electrochemical behaviors of carbon/sulfur (C/S) composite cathodes for lithium-sulfur (Li-S) batteries, four different carbon frameworks including Ketjen Black (KB, high surface area and porous), Graphene (high surface area and nonporous), Acetylene Black (AB, low surface area and nonporous) and Hollow Carbon Nano Sphere (HCNS, low surface area and porous) are employed to immobilize sulfur (80 wt.%). It has been revealed that high surface area of carbon improves the utilization rate of active sulfur and decreases the real current density during the electrochemical reactions. Accordingly, increased reversible capacities and reduced polarization are observed for high surface area carbon hosts such as KB/S and graphene/S composites. The porous structure of KB or HCNS matrix promotes the long-term cycling stability of C/S composites but only at relatively low rate (0.2 C). Once the current density increases, the pore effect completely disappears and all Li-S batteries show similar trend of capacity degradation regardless of the different carbon hosts used in the cathodes. The reason has been assigned to the formation of reduced amount of irreversible Li2S on the cathode as well as shortened time for polysulfides to transport towards lithium anode at elevated current densities. This work provides valuable information for predictive selection on carbon materials to construct C/S composite for practical applications from the electrochemical point of view.

Zheng, Jianming; Gu, Meng; Wagner, Michael J.; Hays, Kevin; Li, Xiaohong S.; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-07-23T23:59:59.000Z

199

Workshop on sulfur chemistry in flue gas desulfurization  

SciTech Connect

The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

Wallace, W.E. Jr.

1980-05-01T23:59:59.000Z

200

Auction design and the market for sulfur dioxide emissions  

E-Print Network (OSTI)

Title IV of the Clean Air Act Amendments of 1990 created a market for electric utility emissions of sulfur dioxide (SO2). Recent papers have argued that flaws in the design of the auctions that are part of this market have ...

Joskow, Paul L.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sulfur tolerant molten carbonate fuel cell anode and process  

DOE Patents (OSTI)

Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

Remick, Robert J. (Naperville, IL)

1990-01-01T23:59:59.000Z

202

Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil  

DOE Patents (OSTI)

The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

2014-07-08T23:59:59.000Z

203

Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase  

E-Print Network (OSTI)

Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase Mercury: Sulfur was impregnated onto activated carbon fibers ACFs through H2S oxidation catalyzed by the sorbent CE Database subject headings: Activated carbon; Sulfur; Mercury; Hydrogen sulfides; Oxidation

Borguet, Eric

204

Sulfur-induced greenhouse warming on early Mars Sarah Stewart Johnson,1  

E-Print Network (OSTI)

and 500 mbar CO2 with varying abundances of H2O and sulfur volatiles (H2S and SO2 mixing ratios of 10Ã?3Sulfur-induced greenhouse warming on early Mars Sarah Stewart Johnson,1 Michael A. Mischna,2 melting model, we obtain a high sulfur solubility, approximately 1400 ppm, in Martian mantle melts. We

Zuber, Maria

205

Plug-in Hybrid Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Links Plug-in Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Plug-in Hybrid Vehicles and Manufacturers Chevrolet Volt Official site for the Chevrolet Volt Cadillac ELR Official site for the Cadillac ELR (arriving early 2014) Ford C-MAX Energi Plug-in Hybrid Official site for the C-MAX Energi Plug-in Hybrid Ford Fusion Energi Plug-in Hybrid Official site for the Fusion Energi Plug-in Hybrid Honda Accord Plug-in Official site for the Honda Accord Plug-in Hybrid Toyota Prius Plug-in Official site for the Toyota Prius Plug-in Hybrid Plug-in-Related Information and Tools

206

SolarHybrid AG | Open Energy Information  

Open Energy Info (EERE)

SolarHybrid AG Jump to: navigation, search Name: SolarHybrid AG Place: Germany Sector: Solar Product: Germany-based solar thermal hybrid product manufacturer References:...

207

Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur. Fifth quarterly technical progress report, December 1996  

SciTech Connect

More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

NONE

1996-12-01T23:59:59.000Z

208

Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur. Sixth quarterly technical progress report, January - March 1997  

SciTech Connect

More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

NONE

1997-03-01T23:59:59.000Z

209

Enhanced electrochemical performance by wrapping graphene on carbon nanotube/sulfur composites for rechargeable lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract A novel graphene-wrapped carbon nanotube/sulfur structure was designed to improve the electrochemical performance of the lithium–sulfur (Li–S) batteries. Owing to the introduction of the reduced graphene oxide (rGO) with the aim to restrain the polysulfide anions diffusion phenomenon, increase the overall electronic conductivity of the electrode and accommodate volume expansion between the delithiated S and lithiated Li2S phases, the resulted graphene-wrapped carbon nanotube/sulfur (S/CNT@rGO) composite makes the cycling performance of the Li–S batteries better than that without rGO. The S/CNT@rGO composite showed an initial discharge capacity of ~1299 mA h g?1 at 0.2 C rate. After 100 cycles of charge/discharge, the S/CNT@rGO composite retained a high specific capacity of ~670 mA h g?1, much higher than that without rGO (graphene-wrapped carbon nanotube/sulfur composite could be a promising cathode material for high-rate performance Li–S batteries.

Yishan Wu; Chunmei Xu; Jinxin Guo; Qingmei Su; Gaohui Du; Jun Zhang

2014-01-01T23:59:59.000Z

210

Strong Sulfur Binding with Conducting Magneli-Phase TinO2n-1 Nanomaterials for Improving Lithium-Sulfur Batteries  

E-Print Network (OSTI)

will go through a series of soluble intermediate higher-order polysulfides (Li2S8, Li2S6, and Li2S4 of Li2S2, Li2S, and sulfur.6-8 In order to solve these challenges, there have been recent developmentsStrong Sulfur Binding with Conducting Magneli-Phase TinO2n-1 Nanomaterials for Improving Lithium-Sulfur

Cui, Yi

211

"Hybrid" Black Holes  

E-Print Network (OSTI)

We discuss a solution of the Einstein equations, obtained by gluing the external Kerr metric and the internal Weyl metric, describing an axisymmetric static vacuum distorted black hole. These metrics are glued at the null surfaces representing their horizons. For this purpose we use the formalism of massive thin null shells. The corresponding solution is called a "hybrid" black hole. The massive null shell has an angular momentum which is the origin of the rotation of the external Kerr spacetime. At the same time, the shell distorts the geometry inside the horizon. The inner geometry of the "hybrid" black hole coincides with the geometry of the interior of a non-rotating Weyl-distorted black hole. Properties of the "hybrid" black holes are briefly discussed.

Valeri P. Frolov; Andrei V. Frolov

2014-12-30T23:59:59.000Z

212

Sulfur-tolerant anode materials for solid oxide fuel cell application  

SciTech Connect

This paper summarizes the degradation mechanisms for SOFC anodes in the presence of sulfur and recent developments in sulfur-tolerant anodes. There are two primary sulfur-degradation mechanisms for the anode materials: physical absorption of sulfur that blocks the hydrogen reaction sites, and chemical reaction that forms nickel sulfide. The sulfur-tolerant anodes are categorized into three kinds of materials: thiospinels and metal sulfides, metal cermets, and mixed ionic and electronic conductors. Each material has its own advantages and disadvantages, and the combined application of available materials to serve as different functional components in anodes through proper design may be effective to achieve a balance between stability and performance.

Gong, M. (West Virginia University, Morgantown, WV); Liu, X. (West Virginia University, Morgantown, WV); Trembly, J.; Johnson, C.

2007-06-01T23:59:59.000Z

213

Sulfur tolerant anode materials. Quarterly report, October 1--December 31, 1987  

SciTech Connect

The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

Not Available

1988-02-01T23:59:59.000Z

214

Sulfur tolerant anode materials. Quarterly report, January 1--March 31, 1988  

SciTech Connect

The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

Not Available

1988-05-01T23:59:59.000Z

215

Method of burning sulfur-containing fuels in a fluidized bed boiler  

DOE Patents (OSTI)

A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

Jones, Brian C. (Windsor, CT)

1982-01-01T23:59:59.000Z

216

Flue-gas sulfur-recovery plant for a multifuel boiler  

SciTech Connect

In October 1991, a Finnish fluting mill brought on stream a flue-gas desulfurization plant with an SO{sub 2} reduction capacity of 99%. The desulfurization plant enabled the mill to discontinue the use of its sulfur burner for SO{sub 2} production. The required makeup sulfur is now obtained in the form of sulfuric acid used by the acetic acid plant, which operates in conjunction with the evaporating plant. The mill`s sulfur consumption has decreased by about 6,000 tons/year (13.2 million lb/year) because of sulfur recycling.

Miettunen, J. [Tampella Power Inc., Tampere (Finland); Aitlahti, S. [Savon Sellu Oy, Kuopio (Finland)

1993-12-01T23:59:59.000Z

217

Selective catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly technical progress report No. 6, October 1993--December 1993  

SciTech Connect

Elemental sulfur recovery from SO{sub 2}-containing gas stream is highly attractive as it produces a salable product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO{sub 2} with coke) and Claus plant (reaction of SO{sub 2} with H{sub 2}S over catalyst). This project will investigate a cerium oxide catalyst for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified in recent work at MIT as a superior catalyst for SO{sub 2} reduction by CO to elemental sulfur because its high activity and high selectivity to sulfur over COS over a wide temperature range(400-650 {degrees}C). The detailed kinetic and parametric studies of SO{sub 2} reduction planned in this work over various CeO{sub 2}-formulations will provide the necessary basis for development of a very simplified process, namely that of a single-stage elemental sulfur recovery scheme from variable concentration gas streams. The potential cost- and energy-efficiency benefits from this approach can not be overstated. A first apparent application is treatment of a regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought {open_quotes}Claus-alternative{close_quotes} for coal-fired power plant applications.

Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

1996-01-01T23:59:59.000Z

218

Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997  

SciTech Connect

The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

NONE

1997-12-31T23:59:59.000Z

219

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

220

Diagnostics for hybrid reactors  

SciTech Connect

The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

Orsitto, Francesco Paolo [ENEA Unita' Tecnica Fusione , Associazione ENEA-EURATOM sulla Fusione C R Frascati v E Fermi 45 00044 Frascati (Italy)

2012-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electrolyzer Manufacturing Progress and Challenges  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

222

Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights  

SciTech Connect

Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

Suljo Linic

2008-12-31T23:59:59.000Z

223

In situ Observation of Sulfur in Living Mammalian Cells: Uptake of Taurine  

NLE Websites -- All DOE Office Websites (Extended Search)

In situ Observation of Sulfur in Living In situ Observation of Sulfur in Living Mammalian Cells: Uptake of Taurine into MDCK Cells Sulfur is essential for life. It plays important roles in the amino acids methionine and cysteine, and has a structural function in disulfide bonds. As a component of iron-sulfur clusters it takes part in electron and sulfur transfer reactions.1 Glutathione, a sulfur-containing tripeptide, is an important part of biological antioxidant systems.2 Another example for the biological relevance of sulfur is the amino acid taurine, which is present in high concentrations in algae and the animal kingdom. Taurine has been implicated in a range of physiological phenomena, but its osmolytic role in cell volume regulation has been studied in greatest detail.3 In situ information on sulfur is rare despite its important biological role. This is due to the fact that sulfur is not easily accessible with most biophysical techniques. In recent years, sulfur x-ray absorption spectroscopy (XAS) has become increasingly important in the study of sulfur species in biological systems.4 The near-edge region of the XAS spectrum is a sensitive probe of electronic structure and hence chemical form.5

224

SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Generation CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage to someone by E-mail Share SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Facebook Tweet about SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Twitter Bookmark SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Google Bookmark SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Delicious Rank SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Digg Find More places to share SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on

225

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification  

SciTech Connect

Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

2012-06-20T23:59:59.000Z

226

Federal Tax Credits for Hybrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrids Hybrids Hybrid Vehicle Photo Federal tax credit up to $3,400! Hybrids purchased or placed into service after December 31, 2005 may be eligible for a federal income tax credit of up to $3,400. Credit amounts begin to phase out for a given manufacturer once it has sold over 60,000 eligible vehicles. Vehicles purchased after December 31, 2010 are not eligible for this credit. The information below is provided for those filing amended tax returns for previous years. BMW Chrysler/Dodge Ford Brands GM Brands Honda Mazda Mercedes Nissan Porsche Toyota/Lexus 2011 Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% BMW Jan. 1, 2006 TBD TBD Jan. 1, 2011 BMW ActiveHybrid 750i 2011 BMW ActiveHybrid 750i $900 -- -- $0 BMW ActiveHybrid 750Li 2011 BMW ActiveHybrid 750Li $900 -- -- $0

227

Hybridization and the Typological Paradigm  

E-Print Network (OSTI)

of hybridization events, which also have a significant role in ecological adaptation. One explanation of increased hybridization in some areas and not others is that stress from parasites results in selection for an increase of novel genotypes. Two swordtail...

Carlson, Charles

2012-02-14T23:59:59.000Z

228

LANL debuts hybrid garbage truck  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid garbage truck LANL debuts hybrid garbage truck The truck employs a system that stores energy from braking and uses that pressure to help the truck accelerate after each...

229

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

230

Hybrid Quantum Computation  

E-Print Network (OSTI)

We present a hybrid model of the unitary-evolution-based quantum computation model and the measurement-based quantum computation model. In the hybrid model part of a quantum circuit is simulated by unitary evolution and the rest by measurements on star graph states, thereby combining the advantages of the two standard quantum computation models. In the hybrid model, a complicated unitary gate under simulation is decomposed in terms of a sequence of single-qubit operations, the controlled-Z gates, and multi-qubit rotations around the z-axis. Every single-qubit- and the controlled-Z gate are realized by a respective unitary evolution, and every multi-qubit rotation is executed by a single measurement on a required star graph state. The classical information processing in our model only needs an information flow vector and propagation matrices. We provide the implementation of multi-control gates in the hybrid model. They are very useful for implementing Grover's search algorithm, which is studied as an illustrating example.

Arun Sehrawat; Daniel Zemann; Berthold-Georg Englert

2010-08-06T23:59:59.000Z

231

Hybrid Transmission Corridor study  

SciTech Connect

Hybrid Transmission Corridors are areas where High Voltage Alternating Current (HVAC) transmission lines and High Voltage Direct Current (HVDC) transmission lines exist in close proximity of each other. Because of the acceptance of HVDC as a means of transporting electric power over long distances and the difficulties associated with obtaining new right-of-ways, HVDC lines may have to share the same transmission corridor with HVAC lines. The interactions between conductors energized with different types of voltages causes changes in the electrical stresses applied to the conductors and insulators. As a result, corona phenomena, field effects and insulation performance can be affected. This report presents the results of an investigation of the HVAC-HVDC interaction and its effect on corona and AC and DC electric field phenomena. The method of investigation was based on calculation methods developed at the EPRI High Voltage Transmission Research Center (HVTRC) and supported by the results of full and reduced-scale line tests. Also, a survey of existing hybrid corridors is given along with the results of measurements made at one of those corridors. A number of examples in which an existing AC corridor may be transformed into a hybrid corridor are discussed. The main result of the research is an analytical/empirical model for predicting the electrical/environmental performance of hybrid corridors, a definition of ACDC interaction and a set of criteria for specifying when the interaction becomes significant, and a set of design rules.

Clairmont, B.A.; Johnson, G.B.; Zaffanella, L.E. (General Electric Co., Lenox, MA (United States))

1992-06-01T23:59:59.000Z

232

Hybrid Neural Systems Stefan Wermter  

E-Print Network (OSTI)

Hybrid Neural Systems Stefan Wermter Ron Sun Springer, Heidelberg, New York January 2000 #12; Preface The aim of this book is to present a broad spectrum of current research in hybrid neural systems, and advance the state of the art in neural networks and arti#12;cial intelligence. Hybrid neural systems

Varela, Carlos

233

Sulfur Lamps-The Next Generation of Efficient Light?  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Sulfur Lamps-The Next Generation of Efficient Light? The figure above is a schematic of the system installed at the National Air and Space Museum and the DOE headquarters in Washington, D.C., Light from the sulfur lamp is focused by a parabolic reflector so that it enters the light pipe within a small angular cone. Light travels down the pipe, reflecting off the prismatic film (A) that lines the outer acrylic tube. The prismatic film reflects the light through total internal reflection (C), an intrinsically efficient process. Some of the light striking the film (at A) is not reflected and "leaks out" of the pipe walls (B), giving the pipe a glowing appearance. A light ray that travels all the way down the pipe will strike the mirror at the end (D) and return back up the pipe.

234

Cost-cutting for offshore sulfur recovery processes studied  

SciTech Connect

An increasing portion of future US gas supply is likely to come from offshore, primarily Gulf of Mexico. Because this gas can be sour, the industry has sought lower cost H{sub 2}S-removal/recovery processes for treating it. Usually the gas contains < 5 tons/day (tpd) of sulfur. A study to compare several emerging sulfur-removal/recovery processes against a baseline Amine/LO-CAT II process has indicated that some emerging processes, though not yet commercialized, show considerable potential for reducing costs. Specifically, the major findings were that Double Loop and CrystaSulf, developed by Radian International LLC, Austin, were the least expensive capital-cost processes by a significant margin and that Marathon Oil Co.`s Hysulf`s cost has the potential to compete with Double Loop and CrystaSulf.

Quinlan, M.P.; Echterhoff, L.W. [M.W. Kellogg Co., Houston, TX (United States); Leppin, D.; Meyer, H.S. [Gas Research Inst., Chicago, IL (United States)

1997-07-21T23:59:59.000Z

235

Method of making sulfur-resistant composite metal membranes  

DOE Patents (OSTI)

The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

Way, J. Douglas (Boulder, CO) [Boulder, CO; Lusk, Mark (Golden, CO) [Golden, CO; Thoen, Paul (Littleton, CO) [Littleton, CO

2012-01-24T23:59:59.000Z

236

Availability of heavy fuel oils by sulfur level, September 1981  

SciTech Connect

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held, refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 2 figures, 13 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

237

Can a Hybrid Save Me Money?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can a Hybrid Save Me Money? Can a Hybrid Save Me Money? Step 1: Show me a hybrid. I want to compare... 2013 Acura ILX Hybrid 2013 Acura ILX Hybrid Tech Pkg 2014 Buick LaCrosse eAssist 2013 Cadillac Escalade Hybrid 2WD 2013 Cadillac Escalade Hybrid 4WD 2013 Chevrolet Malibu Eco 2SA 2013 Ford Fusion Hybrid 2013 Ford Fusion Hybrid Titanium 2013 GMC Yukon Denali Hybrid 2WD 2013 GMC Yukon Denali Hybrid 4WD 2013 Honda Insight 2013 Honda Civic Hybrid 2013 Honda Civic Hybrid w/ Nav 2013 Hyundai Sonata Hybrid 2013 Hyundai Sonata Hybrid Limited 2013 Infiniti M35h 2014 Infiniti Q50 Hybrid Premium 2014 Infiniti Q50 Hybrid Premium AWD 2013 Kia Optima Hybrid 2013 Lexus ES 300h 2013 Lexus GS 450h 2013 Lincoln MKZ Hybrid 2013 Toyota Avalon Hybrid XLE Touring 2013 Toyota Avalon Hybrid Limited 2014 Toyota Camry Hybrid LE 2014 Toyota Camry Hybrid XLE 2013 Toyota Highlander Hybrid 4WD 2013 Toyota Prius c One 2013 Toyota Prius Two

238

More Economical Sulfur Removal for Fuel Processing Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

enabled TDA to develop and commercialize its direct oxidation process-a simple, catalyst-based system for removing sulfur from natural gas and petroleum-that was convenient and economical enough for smaller fuel processing plants to use. TDA Research, Inc. (TDA) of Wheat Ridge, CO, formed in 1987, is a privately-held R&D company that brings products to market either by forming internal business

239

Structure of Chemisorbed Sulfur on a Pt(111) Electrode  

Science Journals Connector (OSTI)

Contribution from the Department of Chemistry, University of Illinois and Frederick Seitz Materials Research Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, and Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada ... Sulfur was deposited from aqueous sulfide and bisulfide media on Pt(111), and the interrogations were conducted by low electron energy diffraction (LEED), Auger electron spectroscopy (AES), and core-level electron energy loss spectroscopy (CEELS). ...

Y.-E. Sung; W. Chrzanowski; A. Zolfaghari; G. Jerkiewicz; A. Wieckowski

1997-01-08T23:59:59.000Z

240

Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes  

E-Print Network (OSTI)

HYDROGEN AND SULFUR PRODUCTION FROM HYDROGEN SULFIDE WASTES? John B.L. Harkness and Richard D. Doctor, Argonne National Laboratory, Argonne. IL ABSTRACT A new hydrogen sulfide waste-treatment process that uses microwave plasma... to be economically competitive. In addition, the experiments show-that. typical refinery acid-gas streams are compatible with the plasma process and that all by-products can be treated with existing technology. BACKGROUND In 1987, Argonne staff found the first...

Harkness, J.; Doctor, R. D.

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Extraction, separation, and analysis of high sulfur coal  

SciTech Connect

Coal Reaction Study: The results of the reaction of aqueous cupric chloride with Illinois {number sign}6 coal are listed on page 21. These results indicate that the oxidative desulfurization of coal with cupric chloride is more complex and less effective than previously reported. Although almost all the pyritic and sulfate sulfur are removed from the coal, the organic sulfur is actually reported to have increased. This may be due to an actual increase in the organic sulfur through a side reaction of the pyrite, or it may be caused by inaccuracy of the ASTM method when large proportions of chloro substituents are present. The amount of chlorine added to the coal (from 0 to 3.18%) is quite large and counterproductive. Most importantly, the amount of non-combustible ash has increased from 15.48 to 51.21%, most likely in the form of copper. This will dramatically decrease both the efficiency of combustion in terms of altering the heat capacity of the coal as well as decrease the amount of energy produced per ton of coal. As a result, it is quite evident that this method of desulfurization needs some modification prior to further exploitation.

Olesik, S. (comp.)

1990-01-01T23:59:59.000Z

242

Removal of nitrogen and sulfur from oil-shale  

SciTech Connect

This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

Olmstead, W.N.

1986-01-28T23:59:59.000Z

243

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

SciTech Connect

The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

2002-09-20T23:59:59.000Z

244

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

Gary M. Blythe

2001-11-06T23:59:59.000Z

245

Advanced product recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Third quarterly technical progress report  

SciTech Connect

More than 170 wet scrubber systems applied to 72,000 MW of US, coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed form the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. Arthur D. Little, Inc., together with its industry and commercialization advisor, Engelhard Corporation, and its university partner, Tufts, plans to develop and scale-up an advanced, byproduct recovery technology that is a direct, catalytic process for reducing sulfur dioxide to elemental sulfur. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, they have planned a structured program including: market/process/cost/evaluation; lab-scale catalyst preparation/optimization studies; lab-scale, bulk/supported catalyst kinetic studies; bench-scale catalyst/process studies; and utility review. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning.

NONE

1996-07-01T23:59:59.000Z

246

ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION  

SciTech Connect

A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

Gorensek, M.; Edwards, T.

2009-06-11T23:59:59.000Z

247

Full Hybrid: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

highlighted Stop/Start button banner graphic: blue bar highlighted Stop/Start button banner graphic: blue bar subbanner graphic: gray bar Overview Button highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button OVERVIEW Full hybrids use a gasoline engine as the primary source of power, and an electric motor provides additional power when needed. In addition, full hybrids can use the electric motor as the sole source of propulsion for low-speed, low-acceleration driving, such as in stop-and-go traffic or for backing up. This electric-only driving mode can further increase fuel efficiency under some driving conditions. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection.

248

Pulsed hybrid field emitter  

DOE Patents (OSTI)

A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

Sampayan, Stephen E. (Manteca, CA)

1998-01-01T23:59:59.000Z

249

Full Hybrid: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button OVERVIEW Full hybrids use a gasoline engine as the primary source of power, and an electric motor provides additional power when needed. In addition, full hybrids can use the electric motor as the sole source of propulsion for low-speed, low-acceleration driving, such as in stop-and-go traffic or for backing up. This electric-only driving mode can further increase fuel efficiency under some driving conditions. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection.

250

Corn Hybrids for Texas.  

E-Print Network (OSTI)

of legumes Hybrids time1 nitrogen2 , Soil areas --,- East Texas Timber Country Loams and sandy loams Sandy soils Gulf Coast Prairie Blackland Loams and sandy loams Blackland Prairie Blackland Mixed land Grand Prairie Blackland Mixed land West....32 indica sweetclovers ~eb. 15- Mar. 1 Rio Grande Plain Blackland Sands and sandy loams Lower Rio Grande Valley and Winter Garden dist. (under irrigation) Clays and loans Sands and sandy loams Rolling Plains Clay loams Sands and sandy loams...

Rogers, J. S.; Bockholt, A. J.; Collier, J. W.

1957-01-01T23:59:59.000Z

251

Save with Hybrid Refrigeration  

E-Print Network (OSTI)

SAVE WITH HYBRID REFRIGERATION Cheng-Wen (Wayne) Chung, P.E. Fluor Engineers, Inc. Irvine, California ABSTRACT Two level demand makes it possible to use two systems for refrigeration and save energy and money. An example of this type... of refrigeration, consisting of an ammonia absorption refrigeration (AAR) unit and a mechanical compression refrigera tion (MCR) unit, is presented in this article. This paper will briefly describe process configur ation, advantages and utility consumption...

Chung, C. W.

252

Solvent Tuning of Properties of Iron-Sulfur Clusters in Proteins  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvent Tuning of Properties of Solvent Tuning of Properties of Iron-Sulfur Clusters in Proteins Figure 1. Schematic repre-sentation of the common active-site iron-sulfur cluster structural motif. Proteins containing Fe4S4 iron-sulfur clusters are ubiquitous in nature and catalyze one-electron transfer processes. These proteins have evolved into two classes that have large differences in their electrochemical potentials: high potential iron-sulfur proteins (HiPIPs) and bacterial ferredoxins (Fds). The role of the surrounding protein environment in tuning the redox potential of these iron sulfur clusters has been a persistent puzzle in biological electron transfer [1]. Although HiPIPs and Fds have the same iron sulfur structural motif - a cubane-type structure - (Figure 1), there are large differences in their electrochemical

253

SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage General Atomics logo Graphic of a diagram of squares and circles connected by arrows. Sulfur-based TES can compensate for diurnal and seasonal insolation fluctuations. General Atomics, under the Baseload CSP FOA, is demonstrating the engineering feasibility of using a sulfur-based thermochemical cycle to store heat from a CSP plant and support baseload power generation. Approach There are three main project objectives under this award: Study the sulfur generating disproportionation reaction and develop it into a practical engineering process step. Carry out preliminary process components design and experimental validation. The engineering data will be used for process integration between the CSP plant, the sulfur processing and storage plant, and the electricity generation unit.

254

doi:10.1016/j.gca.2005.02.002 Sulfur diffusion in basaltic melts  

E-Print Network (OSTI)

doi:10.1016/j.gca.2005.02.002 Sulfur diffusion in basaltic melts CARMELA FREDA,1, * DON R. BAKER,1,2 February 3, 2005) Abstract--We measured the diffusion coefficients of sulfur in two different basaltic for sulfur diffusion in anhydrous basalts: D 2.19 10 4 exp 226.3 58.3 RT where D is the diffusion coefficient

Long, Bernard

255

Microsoft Word - Vapor Phase Elemental Sulfur Tech Brief DRAFT bbl 08-24.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

AT A GLANCE AT A GLANCE ï‚· eliminates excavation expense ï‚· applicable to large or small sites ï‚· straightforward deployment ï‚· uses heat to distribute sulfur throughout a soil ï‚· mercury reacts with sulfur to form immobile and insoluble minerals ï‚· patent applied for TechBrief Vapor Phase Elemental Sulfur Amendment for Sequestering Mercury in Contaminated Soil Scientists at the Savannah River National Laboratory (SRNL) have identified a method of targeting mercury in contaminated soil zone by use of sulfur vapor heated gas. Background Mercury contamination in soil is a common problem in the environment. The most common treatment is excavation - a method that works well for small sites where the

256

Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 04, 2011 Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR System DEER CONFERENCE 2011 Outline Introduction Zeolite-based SCR behavior -...

257

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Gasoline and Diesel Fuel Update (EIA)

200 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

258

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Gasoline and Diesel Fuel Update (EIA)

200 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

259

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration Petroleum Marketing Annual 1995 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

260

E-Print Network 3.0 - aqueous sulfuric acid Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

TRACE ATMOSPHERIC CONSTITUENTS Summary: . Reactions of Sulfur(IV) with Transition-Metal Ions in Aqueous Solutions Robert E. Huie and Norman C... . Peterson 3. Catalytic...

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

E-Print Network 3.0 - aqueous organic sulfur Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

TRACE ATMOSPHERIC CONSTITUENTS Summary: . Reactions of Sulfur(IV) with Transition-Metal Ions in Aqueous Solutions Robert E. Huie and Norman C... . Peterson 3. Catalytic...

262

E-Print Network 3.0 - ashless low-sulfur fuel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Blendstocks for Low Sulfur Diesel Fuel in PADD III . . . . . . . . . . . . . . . . 17... markets for low ... Source: Oak Ridge National Laboratory, Center for Transportation...

263

E-Print Network 3.0 - aromatic sulfur heterocycles Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale Summary: . Polycyclic aromatic sulfur heterocycles IV. Determination of polycyclic...

264

Portable instrument and method for detecting reduced sulfur compounds in a gas  

DOE Patents (OSTI)

A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.

Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.

1983-06-01T23:59:59.000Z

265

Assessing Potential Acidification of Marine Archaeological Wood Based on Concentration of Sulfur Species  

SciTech Connect

The presence of sulfur in marine archaeological wood presents a challenge to conservation. Upon exposure to oxygen, sulfur compounds in waterlogged wooden artifacts are being oxidized, producing sulfuric acid. This speeds the degradation of the wood, potentially damaging specimens beyond repair. Sulfur K-edge x-ray absorption spectroscopy was used to identify the species of sulfur present in samples from the timbers of the Mary Rose, a preserved 16th century warship known to undergo degradation through acidification. The results presented here show that sulfur content varied significantly on a local scale. Only certain species of sulfur have the potential to produce sulfuric acid by contact with oxygen and seawater in situ, such as iron sulfides and elemental sulfur. Organic sulfurs, such as the amino acids cysteine and methionine, may produce acid but are integral parts of the wood's structure and may not be released from the organic matrix. The sulfur species contained in the sample reflect the exposure to oxygen while submerged, and this exposure can differ greatly over time and position. A better understanding of the species pathway to acidifications required, along with its location, in order to suggest a more customized and effective preservation strategy. Waterlogged archaeological wood, frequently in the form of shipwrecks, is being excavated for historical purposes in many countries around the world. Even after extensive efforts towards preservation, scientists are discovering that accumulation of sulfate salts results in acidic conditions on the surfaces of the artifacts. Sulfuric acid degrades structural fibers in the wood by acid hydrolysis of cellulose, accelerating the decomposition of the ship timbers. Determining the sulfur content of waterlogged wood is now of great importance in maritime archaeology. Artifact preservation is often more time consuming and expensive than the original excavation; but it is key to the availability of objects for future study as well as maintaining the integrity of historical data and preserving the value of museum pieces. Sulfur occurs in a wide number of oxidation states from -2 to +6, and appears in numerous organic and inorganic compounds in nature. However, it is a very minor component of wood. Sulfur K-edge x-ray absorption spectroscopy (XAS) is a valuable technique because it has the ability to detect very low concentrations of sulfur in the specimen. XAS is also sensitive to differences in oxidation states, as well as long and short range order in molecules.

Not Available

2011-06-22T23:59:59.000Z

266

Sulfur behavior in the Sasol-Lurgi fixed-bed dry-bottom gasification process  

SciTech Connect

This article reports on the findings of a study regarding the sulfur behavior across a Sasol-Lurgi gasifier. This was undertaken to understand the behavior of the various sulfur-bearing components in the coal, as they are exposed to the conditions in the gasifier. In this study, conventional characterization techniques were employed to monitor the behavior of sulfur-bearing mineral matter across the gasifier. It was observed from the study that the sulfur-bearing mineral (pyrite) in the coal structure undergoes various changes with pyrite being transformed to pyrrhotite and then to various oxides of iron with the subsequent loss of sulfur to form H{sub 2}S. A low proportion of the sulfur species including the organically associated sulfur was encapsulated by a melt that was formed by the interaction between kaolinite and fluxing minerals (pyrite, calcite, and dolomite/ankerite) present in the coal at elevated temperatures and pressure, thereby ending up in the ash. The remaining small proportions of sulfur-bearing mineral matter including pyrite and organically bound sulfur in the unburned carbon in the carbonaceous shales also report to the ash. 18 refs., 8 figs., 2 tabs.

M. Pat Skhonde; R. Henry Matjie; J. Reginald Bunt; A. Christien Strydom; H. Schobert [Sasol Technology R& amp; D, Sasolburg (South Africa)

2009-01-15T23:59:59.000Z

267

Status of Heavy Vehicle Diesel Emission Control Sulfur Effects (DECSE) Test Program  

SciTech Connect

DECSE test program is well under way to providing data on effects of sulfur levels in diesel fuel on performance of emission control technologies.

George Sverdrup

1999-06-07T23:59:59.000Z

268

Sulfur-tolerant natural gas reforming for fuel-cell applications.  

E-Print Network (OSTI)

??An attractive simplification of PEM-FC systems operated with natural gas would be the use of a sulfur tolerant reforming catalyst, but such a catalyst has… (more)

Hennings, Ulrich

2010-01-01T23:59:59.000Z

269

E-Print Network 3.0 - absorbing sulfur dioxide Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

provides some chemicals which are incompatible with other compounds. Summary: Potassium carbon tetrachloride, carbon dioxide, water Potassium chlorate sulfuric and other acids...

270

E-Print Network 3.0 - ambient sulfur dioxide Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

provides some chemicals which are incompatible with other compounds. Summary: Potassium carbon tetrachloride, carbon dioxide, water Potassium chlorate sulfuric and other acids...

271

E-Print Network 3.0 - africa sulfur isotope Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: africa sulfur isotope Page: << < 1 2 3 4 5 > >> 1 Geobiology (2006), 4, 191201 2006 The...

272

Sulfur barrier for use with in situ processes for treating formations  

DOE Patents (OSTI)

Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. Sulfur may be introduced into one or more wellbores located inside a perimeter of a treatment area in the formation having a permeability of at least 0.1 darcy. At least some of the sulfur is allowed to move towards portions of the formation cooler than the melting point of sulfur to solidify the sulfur in the formation to form the barrier.

Vinegar, Harold J. (Bellaire, TX); Christensen, Del Scot (Friendswood, TX)

2009-12-15T23:59:59.000Z

273

SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS  

SciTech Connect

The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

Gary M. Blythe; Richard McMillan

2002-03-04T23:59:59.000Z

274

SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS  

SciTech Connect

The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

Gary M. Blythe; Richard McMillan

2002-07-03T23:59:59.000Z

275

SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS  

SciTech Connect

The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

Gary M. Blythe; Richard McMillan

2002-02-04T23:59:59.000Z

276

Central Appalachia: Production potential of low-sulfur coal  

SciTech Connect

The vast preponderance of eastern US low sulfur and 1.2-lbs SO{sub 2}/MMBtu compliance coal comes from a relatively small area composed of 14 counties located in eastern Kentucky, southern West Virginia and western Virginia. These 14 counties accounted for 68% of all Central Appalachian coal production in 1989 as well as 85% of all compliance coal shipped to electric utilities from this region. A property-by-property analysis of total production potential in 10 of the 14 counties (Floyd, Knott, Letcher, Harlan, Martin and Pike in Kentucky and Boone, Kanawha, Logan and Mingo in West Virginia) resulted in the following estimates of active and yet to be developed properties: (1) total salable reserves for all sulfur levels were 5.9 billion tons and (2) 1.2-lbs. SO{sub 2}/MMBtu compliance'' reserves totaled 2.38 billion tons. This potential supply of compliance coal is adequate to meet the expanded utility demand expected under acid rain for the next 20 years. Beyond 2010, compliance supplies will begin to reach depletion levels in some areas of the study region. A review of the cost structure for all active mines was used to categorize the cost structure for developing potential supplies. FOB cash costs for all active mines in the ten counties ranged from $15 per ton to $35 per ton and the median mine cost was about $22 per ton. A total of 47 companies with the ability to produce and ship coal from owned or leased reserves are active in the ten-county region. Identified development and expansion projects controlled by active companies are capable of expanding the region's current production level by over 30 million tons per year over the next twenty years. Beyond this period the issue of reserve depletion for coal of all sulfur levels in the ten county region will become a pressing issue. 11 figs., 12 tabs.

Watkins, J. (Hill and Associates, Inc., Annapolis, MD (United States))

1991-09-01T23:59:59.000Z

277

Sulfur polymer cement for macroencapsulation of mixed waste debris  

SciTech Connect

In FY 1997, the US DOE Mixed Waste Focus Area (MWFA) sponsored a demonstration of the macroencapsulation of mixed waste debris using sulfur polymer cement (SPC). Two mixed wastes were tested--a D006 waste comprised of sheets of cadmium and a D008/D009 waste comprised of lead pipes and joints contaminated with mercury. The demonstration was successful in rendering these wastes compliant with Land Disposal Restrictions (LDR), thereby eliminating one Mixed Waste Inventory Report (MWIR) waste stream from the national inventory.

Mattus, C.H.

1998-06-01T23:59:59.000Z

278

Removal of sulfur and nitrogen containing pollutants from discharge gases  

DOE Patents (OSTI)

Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

Joubert, James I. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

279

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

280

Fiber reinforced hybrid phenolic foam.  

E-Print Network (OSTI)

??Hybrid composites in recent times have been developed by using more than one type of fiber reinforcement to bestow synergistic properties of chosen filler and… (more)

Desai, Amit

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hybrid solar lighting systems and components  

DOE Patents (OSTI)

A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

2007-06-12T23:59:59.000Z

282

Hybrid solar lighting distribution systems and components  

DOE Patents (OSTI)

A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

2011-07-05T23:59:59.000Z

283

Hybrid Computer Architectures Motivations for Research  

E-Print Network (OSTI)

architecture. Thus, Hy-C will provide the infrastructure necessary to evaluate the potential of hybrid computing. The tools will facilitate research in hybrid computing. Our Hy-C infrastructure design reliesHybrid Computer Architectures Motivations for Research What Is a Hybrid Processor? Hybrid

Mohanty, Saraju P.

284

Hybrid Dissymmetrical Colloidal Particles  

Science Journals Connector (OSTI)

Centre de Recherche Paul Pascal, CNRS, 115, avenue du Dr Schweitzer, 33600 Pessac, France, Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, 87, avenue du Dr Schweitzer, 33608 Pessac Cedex, France, Laboratoire de Chimie et Procédés de Polymérisation, CNRS?CPE Lyon, Bâtiment 308 F, 43, boulevard du 11 novembre 1918, BP 2077, 69616 Villeurbanne Cedex, France, and Laboratoire des IMRCP, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France ... After this step was completed, the suspension was transferred into a thermostated reactor and the monomer was introduced. ... On one hand, the resistance to some solvents of our hybrid particles could be improved cross-linking the polymer nodules. ...

Stéphane Reculusa; Céline Poncet-Legrand; Adeline Perro; Etienne Duguet; Elodie Bourgeat-Lami; Christophe Mingotaud; Serge Ravaine

2005-05-27T23:59:59.000Z

285

ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP  

SciTech Connect

Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Mack Trucks Inc.), a filter recycler (American Wastes Industries), and a low-sulfur fuel supplier (Equilon, a joint venture between Shell and Texaco).

Ron Rohrbach; Gary Zulauf; Tim Gavin

2003-04-01T23:59:59.000Z

286

Availability of heavy fuel oils by sulfur levels, February 1981  

SciTech Connect

This monthly report includes a narrative analysis of the status of the United States' total new supply of heavy fuel oils, with an emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country or origin, and by importing state. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. The December issue repeats the seven major tables with final data in all categories for the previous calendar year. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. 2 figs., 13 tabs.

Wolfrey, J.

1981-10-15T23:59:59.000Z

287

Availability of heavy fuel oils by sulfur levels, March 1981  

SciTech Connect

This monthly report includes a narrative analysis of the status of the United States' total new supply of heavy fuel oils, with an emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country of origin, and by importing state. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. The December issue repeats the seven major tables with final data in all categories for the previous calendar year. This report was previously published by the Bureau of Mines in the Minerals Industries Survey Series under the same title. 2 figs., 13 tabs.

Wolfrey, J.

1981-10-15T23:59:59.000Z

288

Availability of heavy fuel oils by sulfur level, August 1981  

SciTech Connect

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 1 figure, 14 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

289

Availability of heavy fuel oils by sulfur level, October 1981  

SciTech Connect

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterbone movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 1 figure, 14 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

290

Extracellular iron-sulfur precipitates from growth of Desulfovibrio desulfuricans  

SciTech Connect

The authors have examined extracellular iron-bearing precipitates resulting from the growth of Desulfovibrio desulfuricans in a basal medium with lactate as the carbon source and ferrous sulfate. Black precipitates were obtained when D. desulfuricans was grown with an excess of FeSO{sub 4}. When D. desulfuricans was grown under conditions with low amounts of FeSO{sub 4}, brown precipitates were obtained. The precipitates were characterized by iron K-edge XAFS (X-ray absorption fine structure), {sup 57}Fe Moessbauer-effect spectroscopy, and powder X-ray diffraction. Both were noncrystalline and nonmagnetic (at room temperature) solids containing high-spin Fe(III). The spectroscopic data for the black precipitates indicate the formation of an iron-sulfur phase with 6 nearest S neighbors about Fe at an average distance of 2.24(1) {angstrom}, whereas the brown precipitates are an iron-oxygen-sulfur phase with 6 nearest O neighbors about Fe at an average distance of 1.95(1) {angstrom}.

Antonio, M. R.; Tischler, M. L.; Witzcak, D.

1999-12-20T23:59:59.000Z

291

Demonstration of Mixed Waste Debris Macroencapsulation Using Sulfur Polymer Cement  

SciTech Connect

This report covers work performed during FY 1997 as part of the Evaluation of Sulfur Polymer Cement Fast-Track System Project. The project is in support of the ``Mercury Working Group/Mercury Treatment Demonstrations - Oak Ridge`` and is described in technical task plan (TTP) OR-16MW-61. Macroencapsulation is the treatment technology required for debris by the U.S. Environmental Protection Agency Land Disposal Restrictions (LDR) under the Resource Conservation and Recovery Act. Based upon the results of previous work performed at Oak Ridge, the concept of using sulfur polymer cement (SPC) for this purpose was submitted to the Mixed Waste Focus Area (MWFA). Because of the promising properties of the material, the MWFA accepted this Quick Win project, which was to demonstrate the feasibility of macroencapsulation of actual mixed waste debris stored on the Oak Ridge Reservation. The waste acceptance criteria from Envirocare, Utah, were chosen as a standard for the determination of the final waste form produced. During this demonstration, it was shown that SPC was a good candidate for macroencapsulation of mixed waste debris, especially when the debris pieces were dry. The matrix was found to be quite easy to use and, once the optimum operating conditions were identified, very straightforward to replicate for batch treatment. The demonstration was able to render LDR compliant more than 400 kg of mixed wastes stored at the Oak Ridge National Laboratory.

Mattus, C.H.

1998-07-01T23:59:59.000Z

292

Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis  

E-Print Network (OSTI)

The oxidation of SO[subscript 2] to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to ...

Harris, E.

293

A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries  

Science Journals Connector (OSTI)

Sulfur-reduced graphene oxide composite (SGC) materials with uniformly dispersed sulfur on reduced graphene oxide sheets have been prepared by a ... the simultaneous oxidation of sulfide and reduction of graphene

Hui Sun; Gui-Liang Xu; Yue-Feng Xu; Shi-Gang Sun; Xinfeng Zhang…

2012-10-01T23:59:59.000Z

294

Essays On Hybrid Bundle Pricing  

E-Print Network (OSTI)

Increasingly, firms are offering hybrid bundles — products that combine both good(s) and service(s). Some hybrid bundles, such as TiVo that combines a DVR and recording management are more visible, while some, such as GE‘s Powerplant System...

Meyer, Jeffrey Dean

2011-10-21T23:59:59.000Z

295

Hybrid spread spectrum radio system  

DOE Patents (OSTI)

Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

Smith, Stephen F. (London, TN) [London, TN; Dress, William B. (Camas, WA) [Camas, WA

2010-02-09T23:59:59.000Z

296

Separation and Detection of Sulfur-Containing Anions Using Single-Column Ion Chromatography  

Science Journals Connector (OSTI)

......principal sulfur-containing anions in oil shale retort by-product waters are separated...electrochemical detection in some of the oil shale retort by-product water matrices...principal sulfur-containing anions in oil shale retort by-product waters are separated......

Richard E. Poulson; Harry M. Borg

1987-09-01T23:59:59.000Z

297

Quantitative Determination of Aliphatic Sulfur-Containing Additives by Pyrolysis-Gas Chromatography  

Science Journals Connector (OSTI)

......pyrolysis (7), infrared (8), combustion to SO4 = with subsequent determination...Drushel. The Analytical Chemistry of Sulfur and Its Compounds...London, p. 358. Sulfur in Coal and Coke by the Bomb Washing...organic materials by oxygen bomb combustion. Anal. Chem. 33:1760......

J.W. Sinclair; L. Schall; N.T. Crabb

1980-01-01T23:59:59.000Z

298

The sulfur content of volcanic gases on Mars Fabrice Gaillard, a  

E-Print Network (OSTI)

principles, we model here the likely sulfur contents of (1) the martian and terrestrial mantles and (2 a denser atmosphere are shown to be dominated by CO ± CO2 and H2 ± H2O species, depending on fO2, sulfur by H2S, which should have favored the acidification of any persistent water layer. The calculated

Boyer, Edmond

299

Evidence for a Plasma Core during Multibubble Sonoluminescence in Sulfuric Acid  

E-Print Network (OSTI)

.g., SOx, trace amounts of H2S, and elemental sulfur)7 are either highly soluble or solids. Prior MBSL to be problematic. These volatile products can have limited solubility in the liquid and therefore accumulate for the generation of higher temperatures during cavitation. Sulfuric acid is one such liquid because it has a very

Suslick, Kenneth S.

300

Hybrids Plus | Open Energy Information  

Open Energy Info (EERE)

Hybrids Plus Hybrids Plus Jump to: navigation, search Name Hybrids Plus Address 3245 Prarie Ave Place Boulder, Colorado Zip 80301 Sector Vehicles Product Plug in Electric Hybrid Vehicle conversions, chargers, battery systems Website http://www.eetrex.com/ Coordinates 40.022143°, -105.250981° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.022143,"lon":-105.250981,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Challenges for Inverted Hybrid Inflation  

E-Print Network (OSTI)

Inverted hybrid inflation (in which the inflaton field slowly rolls away from the origin, giving a spectral index $n\\lsim 1$) is an appealing variant of the more usually studied hybrid model. Analysing the model alongside the ordinary hybrid case, we show that, in order to provide the correct density perturbations consistent with the COBE measurements, the dimensionless coupling constants of the inverted hybrid potential must be very small indeed. For example, the quartic coupling in a typical such potential is found to be $\\lsim 10^{-12}$. A supersymmetric model of inverted hybrid inflation, which does not involve the troublesome quartic coupling is found to lead to a potential which is unbounded from below.

S. F. King; J. Sanderson

1997-07-11T23:59:59.000Z

302

Toxicology Studies on Lewisite and Sulfur Mustard Agents: Subchronic Toxicity of Sulfur Mustard (HD) In Rats Final Report  

SciTech Connect

Occupational health standards have not been established for sulfur mustard [bis(2- chlorethyl)-sulfide], a strong alkylating agent with known mutagenic properties. Seventytwo Sprague-Dawley rats of each sex, 6-7 weeks old, were divided into six groups (12/group/ sex) and gavaged with either 0, 0.003 , 0.01 , 0.03 , 0.1 or 0.3 mg/kg of sulfur mustard in sesame oil 5 days/week for 13 weeks. No dose-related mortality was observed. A significant decrease (P ( 0.05) in body weight was observed in both sexes of rats only in the 0.3 mg/kg group. Hematological evaluations and clinical chemistry measurements found no consistent treatment-related effects at the doses studied. The only treatment-related lesion associated with gavage exposure upon histopathologic evaluation was epithelial hyperplasia of the forestomach of both sexes at 0.3 mg/kg and males at 0.1 mg/kg. The hyperplastic change was minimal and characterized by cellular disorganization of the basilar layer, an apparent increase in mitotic activity of the basilar epithelial cells, and thickening of the epithelial layer due to the apparent increase in cellularity. The estimated NOEL for HD in this 90-day study is 0.1 mg/kg/day when administered orally.

Sasser, L. B.; Miller, R. A.; Kalkwarf, D, R.; Buschbom, R. L.; Cushing, J. A.

1989-06-30T23:59:59.000Z

303

Population, Economy and Energy Use’s Influence on Sulfur Emissions in the United States Since 1900  

E-Print Network (OSTI)

This paper seeks to identify how changes in population, economic activity, and energy use have influenced sulfur emissions during this century. A linear model is presented which characterizes sulfur emissions as the product of these driving forces...

Kissock, J. K.; Husar, R. B.

304

Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation  

E-Print Network (OSTI)

The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test and is most commonly used. Sulfur hexafluoride use has ...

Guffey, Eric J. (Eric Jemison)

2011-01-01T23:59:59.000Z

305

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast

306

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will Convert Northeast Home Heating Oil Reserve to Ultra Low Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast Home Heating Oil Reserve, a total of approximately 2 million barrels, and

307

Direct determination of organic and inorganic sulfur in coal by controlled oxidation  

SciTech Connect

The overall objective of this project is to develop an analytical method to directly measure the forms of organic sulfur in coal. The method will provide a route to monitor the effectiveness of coal preparation research directed toward removal of organic sulfur in coal. The approach involves subjecting diluted coal samples simultaneously to an oxygen flow and a linear increase in temperature. Distinctive sulfur dioxide evolution patterns are observed among coals of different rank and between raw and treated coals. Assignments have been made relating each specific sulfur dioxide evolution to the non-aromatic organic, aromatic organic, and inorganic sulfur present in coals and treated coals. Work is progressing on schedule to optimize experimental conditions and to improve the efficiency of the controlled-atmosphere programmed-temperature oxidation (CAPTO) method by developing a multiple sample instrumental system.

LaCount, R.B.

1992-01-01T23:59:59.000Z

308

Direct determination of organic and inorganic sulfur in coal by controlled oxidation  

SciTech Connect

The overall objective of this project is to develop an analytical method to directly measure the forms of organic sulfur in coal. The method will provide a route to monitor the effectiveness of coal preparation research directed toward removal of organic sulfur in coal. The approach involves subjecting diluted coal samples simultaneously to an oxygen flow and a linear increase in temperature. Distinctive sulfur dioxide evolution patterns are observed among coals of different rank and between raw and treated coals. Assignments have been made relating each specific sulfur dioxide evolution to the non-aromatic organic, aromatic organic, and inorganic sulfur present in coals and treated coals. Work is progressing on schedule to optimize experimental conditions and to improve the efficiency of the controlled-atmosphere programmed-temperature oxidation (CAPTO) method by developing a multiple sample instrumental system.

LaCount, R.B.

1992-12-31T23:59:59.000Z

309

US Hybrid Corp | Open Energy Information  

Open Energy Info (EERE)

power conversion components for electric and hybrid vehicles, as well as renewable energy generation and storage. References: US Hybrid Corp1 This article is a stub. You...

310

Advanced Hybrid Water Heater using Electrochemical Compressor...  

Energy Savers (EERE)

Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

311

Hybrid Silicon Nanocone–Polymer Solar Cells  

Science Journals Connector (OSTI)

Hybrid Silicon Nanocone–Polymer Solar Cells ... In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. ...

Sangmoo Jeong; Erik C. Garnett; Shuang Wang; Zongfu Yu; Shanhui Fan; Mark L. Brongersma; Michael D. McGehee; Yi Cui

2012-04-30T23:59:59.000Z

312

Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

with hybrid rotaxanes, in which inorganic rings encircle the organic axles. The hybrid architecture greatly increases their range of useful physical properties, such as the...

313

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

314

Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoparticles: A Hybrid Nanostructure To Increase Stability And Surface Reactivity Of Nano-crystalline Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure To Increase...

315

Maryland Hybrid Truck Goods Movement Initiative | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-- Washington D.C. tiarravt063rice2010p.pdf More Documents & Publications Maryland Hybrid Truck Goods Movement Initiative Maryland Hybrid Truck Goods Movement Initiative...

316

Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Wednesday, 26 August 2009 00:00 Rotaxanes are...

317

Hybrid Thin Film Deposition System | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Thin Film Deposition System Hybrid Thin Film Deposition System Only available at EMSL, the Discovery Deposition System has been customized to be a fully automated...

318

Effect of Sulfur Compounds and Higher Homologues of Methane on Hydrogen Cyanide Production by the Andrussow Method  

Science Journals Connector (OSTI)

The influence of sulfur compounds, higher homologues of methane on the parameters ofoxidative ammonolysis of methane was studied.

N. V. Trusov

2001-10-01T23:59:59.000Z

319

Sulfur dioxide and nitrogen dioxide levels inside and outside homes and the implications on health effects research  

Science Journals Connector (OSTI)

Sulfur dioxide and nitrogen dioxide levels inside and outside homes and the implications on health effects research ...

John D. Spengler; Benjamin G. Ferris Jr.; Douglas W. Dockery; Frank E. Speizer

1979-10-01T23:59:59.000Z

320

Hybrid powertrain controller  

DOE Patents (OSTI)

A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

Jankovic, Miroslava (Birmingham, MI); Powell, Barry Kay (Belleville, MI)

2000-12-26T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

Stanley Miller; Rich Gebert; William Swanson

1999-11-01T23:59:59.000Z

322

Hybrid dark energy  

E-Print Network (OSTI)

Extending previous results [Phys. Rev. Lett. 97, 081301 (2006)], we explore the cosmological implications of a new quintessence scenario driven by a slow rolling homogeneous scalar field whose equation of state behaved as freezing over the entire cosmic evolution, is approaching -1 today, but will become thawing in the near future, thereby driving the Universe to an eternal deceleration. We argue that such a mixed behavior, named \\emph{hybrid}, may reconcile the slight preference of current observational data for freezing potentials with the impossibility of defining observables in the String/M-theory context due to the existence of a cosmological event horizon in asymptotically de Sitter universes as, e.g., pure freezing scenarios.

J. S. Alcaniz; R. Silva; F. C. Carvalho; Zong-Hong Zhu

2008-07-16T23:59:59.000Z

323

2011 Hyundai Sonata Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata Hybrid Hyundai Sonata Hybrid Test cell location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture P2 HEV Vehicle Dynamometer Input Document date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3750 26.8 Target B [lb/mph] Target C [lb/mph^2] 0.15 0.0145 Revision number 3 Notes: Test Fuel Information Fuel type EPA Tier II EEE Gasoline Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.742 18202 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y c l e D i s t a n c e [ m i ] C

324

A hybrid power plant (Solar–Wind–Hydrogen) model based in artificial intelligence for a remote-housing application in Mexico  

Science Journals Connector (OSTI)

World fossil fuel reserve is expected to be exhausted in coming few decades. Therefore, the decentralization of energy production requires the design and integration of different energy sources and conversion technologies to meet the power demand for single remote housing applications in a sustainable way under various weather conditions. This work focuses on the integration of photovoltaic (PV) system, micro-wind turbine (WT), Polymeric Exchange Membrane Fuel Cell (PEM-FC) stack and PEM water electrolyzer (PEM-WE), for a sustained power generation system (2.5 kW). The main contribution of this work is the hybridization of alternate energy sources with the hydrogen conversion systems using mid-term and short-term storage models based in artificial intelligence techniques built from experimental data (measurements obtained from the site of interest), this models allow to obtain better accuracy in performance prediction (PVMSE = 8.4%, PEM-FCMSE = 2.4%, PEM-WEMSE = 1.96%, GSRMSE = 7.9%, WTMSE = 14%) with a practical design and dynamic under intelligent control strategies to build an autonomous system.

A.U. Chávez-Ramírez; V. Vallejo-Becerra; J.C. Cruz; R. Ornelas; G. Orozco; R. Muñoz-Guerrero; L.G. Arriaga

2013-01-01T23:59:59.000Z

325

Effects of Sulfur Dioxide on Formation of Fishy Off-Odor and Undesirable Taste in Wine Consumed with Seafood  

Science Journals Connector (OSTI)

Effects of Sulfur Dioxide on Formation of Fishy Off-Odor and Undesirable Taste in Wine Consumed with Seafood ... These results suggest that sulfur dioxide in wine participated in degradation of unsaturated fatty acids, causing an increase in undesirable taste and fishy off-odor in wine and seafood pairings. ... Wine; seafood; fishy off-odor; undesirable taste; unsaturated fatty acids; sulfur dioxide ...

Akiko Fujita; Atsuko Isogai; Michiko Endo; Hitoshi Utsunomiya; Shigeyoshi Nakano; Hiroshi Iwata

2010-03-10T23:59:59.000Z

326

Extraction, separation, and analysis of high sulfur coal  

SciTech Connect

The work completed this past quarter has centered around the further study and characterization of the selective desulfurization of coal through the oxidative interaction of aqueous copper chloride. The reaction of the CuCl{sub 2} with the particular model compounds is conducted at a series of reaction times and reaction temperatures. The reaction times studied were 1, 3, 6, 12, and 24 hours. The reaction temperatures studied were 50, 130, 210, and 295{degree}C. After the reaction, the organic compounds were extracted with methylene chloride. These products were then analyzed via GC/IRD/MS and SFC/SCD (sulfur chemiluminescence detector). Model Coal Compounds reacted include: tetrahydrothiophene, methyl p-tolyl sulfide, cyclohexyl mercaptan, and thiophenol. At 130{degree}C, in addition to these compounds reacting, reactions were also detected for phenyl sulfide and benzo(b)thiophene. 14 figs.

Olesik, S. (comp.)

1990-01-01T23:59:59.000Z

327

HYBRID LOGICS Carlos Areces and Balder ten Cate  

E-Print Network (OSTI)

14 HYBRID LOGICS Carlos Areces and Balder ten Cate 1 What are Hybrid Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828 2.3 Very Expressive Hybrid Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 This chapter provides a modern overview of the field of hybrid logic. Hybrid logics are ex

Sattler, Ulrike

328

HYBRID LOGICS Carlos Areces and Balder ten Cate  

E-Print Network (OSTI)

14 HYBRID LOGICS Carlos Areces and Balder ten Cate 1 What are Hybrid Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Very Expressive Hybrid Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 This chapter provides a modern overview of the field of hybrid logic. Hybrid logics are ex

ten Cate, Balder

329

Hybrid Charmonium and the $?-?$ Puzzle  

E-Print Network (OSTI)

Using the method of QCD Sum Rules, we estimate the energy of the lowest hybrid Charmonium state, and find it to be at the energy of the $\\Psi'(2S)$ state, about 600 Mev above the $J/\\Psi(1S)$ state. Since our solution is not consistent with a pure hybrid at this energy, we conclude that the $\\Psi'(2S)$ state is probably an admixed $c \\bar{c}$ and hybrid $c \\bar{c}g$ state. From this conjecture we find a possible explanation of the famous $\\rho-\\pi$ puzzle.

Leonard S. Kisslinger; Diana Parno; Seamus Riordan

2008-05-13T23:59:59.000Z

330

Triplex in-situ hybridization  

DOE Patents (OSTI)

Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

Fresco, Jacques R. (Princeton, NJ); Johnson, Marion D. (East Windsor, NJ)

2002-01-01T23:59:59.000Z

331

Hybrid codes: Methods and applications  

SciTech Connect

In this chapter we discuss hybrid'' algorithms used in the study of low frequency electromagnetic phenomena, where one or more ion species are treated kinetically via standard PIC methods used in particle codes and the electrons are treated as a single charge neutralizing massless fluid. Other types of hybrid models are possible, as discussed in Winske and Quest, but hybrid codes with particle ions and massless fluid electrons have become the most common for simulating space plasma physics phenomena in the last decade, as we discuss in this paper.

Winske, D. (Los Alamos National Lab., NM (USA)); Omidi, N. (California Univ., San Diego, La Jolla, CA (USA))

1991-01-01T23:59:59.000Z

332

Three-Dimensional Flower-Shaped Activated Porous Carbon/Sulfur Composites as Cathode Materials for Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

After the active sulfur impregnation, both the FESEM images (Figure 1e,f) and TEM images (Figure 2c) of the FA-PC/S composite demonstrate a flower-shaped 3D superstructure similar to the original FA-PC material. ... Early on, carbonaceous materials dominated the anode and hence most of the possible improvements in the cell were anticipated at the cathode terminal; on the other hand, major developments in anode materials made in the last portion of the decade with the introduction of nanocomposite Sn/C/Co alloys and Si-C composites have demanded higher capacity cathodes to be developed. ... The photodecompn. of methyl orange indicates that such ZnO superstructures possess excellent photocatalytic activity. ...

Lan Zhou; Tao Huang; Aishui Yu

2014-09-19T23:59:59.000Z

333

Hybrid Systems: From Verification to Falsification  

E-Print Network (OSTI)

Hybrid Systems: From Verification to Falsification Erion Plaku, Lydia E. Kavraki, and Moshe Y}@cs.rice.edu Abstract. We propose HyDICE, Hybrid DIscrete Continuous Exploration, a multi­layered approach for hybrid. The discrete search uses the discrete transitions of the hybrid system and coarse­grained decompositions

Vardi, Moshe Y.

334

Hybrid Abstractions that Preserve Timed Languages  

E-Print Network (OSTI)

Hybrid Abstractions that Preserve Timed Languages Paulo Tabuada1 and George J. Pappas2 1 Instituto@ee.upenn.edu Abstract. In this paper we consider the problem of extracting an ab- straction from a hybrid control system that determine when trajectories of the original hybrid system can be generated by the abstracted hybrid system

Pappas, George J.

335

VLA HYBRID CONFIGURATIONS A Critical Look  

E-Print Network (OSTI)

VLA HYBRID CONFIGURATIONS A Critical Look Barry Clark EVLA Memo 180 July 2014 The VLA hybrid weeks (plus the two week hybrid), whereas going directly from one main configuration to another could 4.5%. 2. The time requests in the hybrid configuration are heavily weighted to the galactic center

Groppi, Christopher

336

Hybrid Systems: From Verification to Falsification  

E-Print Network (OSTI)

Hybrid Systems: From Verification to Falsification Erion Plaku, Lydia E. Kavraki, and Moshe Y}@cs.rice.edu Abstract. We propose HyDICE, Hybrid DIscrete Continuous Exploration, a multi-layered approach for hybrid. The discrete search uses the discrete transitions of the hybrid system and coarse-grained decompositions

Kavraki, Lydia E.

337

Handoff Notification in Wireless Hybrid Networks  

Science Journals Connector (OSTI)

Hybrid networks composed of a wireless infrastructure network providing Internet access to an underlying...

Guillaume Chelius; Claude Chaudet

2005-01-01T23:59:59.000Z

338

GAL4 Two-Hybrid Vectors Handbook  

E-Print Network (OSTI)

MATCHMAKER GAL4 Two-Hybrid Vectors Handbook (PT3062-1) Information Supplement for: Catalog # Product K1605-1 MATCHMAKER Two-Hybrid System K1604-1 MATCHMAKER Two-Hybrid System 2 (many) MATCHMAKER Libraries FOR RESEARCH USE ONLY (PR6X890) #12;MATCHMAKER GAL4 Two-Hybrid Vectors Handbook CLONTECH

Erickson, F. Les

339

HYBRID SPECIATION IN WILD SUNFLOWERS1  

E-Print Network (OSTI)

HYBRID SPECIATION IN WILD SUNFLOWERS1 Loren H. Rieseberg2 ABSTRACT Hybrid speciation refers to the establishment of novel hybrid genotypes that are reproductively isolated from their parental species, in some instances new hybrid species arise and become reproductively isolated without a change

Rieseberg, Loren

340

NREL: Learning - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles Hybrid Electric Vehicles Photo of the front and part of the side of a bus parked at the curb of a city street with tall buildings in the background. This diesel hybrid electric bus operated by the Metropolitan Transit Authority, New York City Transit, was part of a test study that recently investigated the fuel efficiency and reliability of these buses. Credit: Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. HEVs are powered by two energy sources: an energy conversion unit, such as

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Global optimization of hybrid systems  

E-Print Network (OSTI)

Systems that exhibit both discrete state and continuous state dynamics are called hybrid systems. In most nontrivial cases, these two aspects of system behavior interact to such a significant extent that they cannot be ...

Lee, Cha Kun

2006-01-01T23:59:59.000Z

342

Hybrid Fuel Cell Technology Overview  

SciTech Connect

For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

None available

2001-05-31T23:59:59.000Z

343

Hybrid Zero-capacity Channels  

E-Print Network (OSTI)

There are only two known kinds of zero-capacity channels. The first kind produces entangled states that have positive partial transpose, and the second one - states that are cloneable. We consider the family of 'hybrid' quantum channels, which lies in the intersection of the above classes of channels and investigate its properties. It gives rise to the first explicit examples of the channels, which create bound entangled states that have the property of being cloneable to the arbitrary finite number of parties. Hybrid channels provide the first example of highly cloneable binding entanglement channels, for which known superactivation protocols must fail - superactivation is the effect where two channels each with zero quantum capacity having positive capacity when used together. We give two methods to construct a hybrid channel from any binding entanglement channel. We also find the low-dimensional counterparts of hybrid states - bipartite qubit states which are extendible and possess two-way key.

Sergii Strelchuk; Jonathan Oppenheim

2012-07-04T23:59:59.000Z

344

Genomics of isolation in hybrids  

Science Journals Connector (OSTI)

...edited by Patrik Nosil and Jeffrey L. Feder Genomics of isolation in hybrids Zachariah Gompert...limitations to the study of the speciation genomics. Further progress in understanding the genomics of speciation will require large-scale...

2012-01-01T23:59:59.000Z

345

On hybrid control of complex systems: Sur la commande hybride des systmes  

E-Print Network (OSTI)

On hybrid control of complex systems: a survey Sur la commande hybride des syst·mes complexes a brief overview of hybrid control systems is given and an introduction to several approaches in hybrid to hybrid control. RESUME. L'objectif de cet article est de prZsenter un Ztat de l'art des travaux relatifs

Koutsoukos, Xenofon D.

346

Hybrid Geometric Reduction of Hybrid Systems Aaron D. Ames and Shankar Sastry  

E-Print Network (OSTI)

Hybrid Geometric Reduction of Hybrid Systems Aaron D. Ames and Shankar Sastry Abstract-- This paper presents a unifying framework in which to carry out the hybrid geometric reduction of hybrid systems, generalizing classical reduction to a hybrid setting. I. INTRODUCTION The reduction of mechanical systems

Sastry, S. Shankar

347

Full Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Low Speed button Cruising button Passing button Braking button Stopped button highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Battery (highlighted): The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery powers the vehicle at low speeds, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection.

348

Method for Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestering Carbon Dioxide and Sulfur Dioxide Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,922,792 entitled "Method for Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams." Disclosed in this patent is the invention of a neutralization/sequestration method that concomitantly treats bauxite residues from aluminum production processes, as well as brine wastewater from oil and gas production processes. The method uses an integrated approach that coincidentally treats multiple industrial waste by-product streams. The end results include neutralizing caustic

349

Method of making a current collector for a sodium/sulfur battery  

DOE Patents (OSTI)

This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.

Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.

1987-03-10T23:59:59.000Z

350

The effect of sulfate sulfur on the yield and chemical composition of oats, vetch, and turnips  

E-Print Network (OSTI)

with sulfur and gypsum applications to alfalfa in Washington and Oregon. Subsequent vork showed that a large part of the ali'alfa land in Oregon vas deficient in sulfur. Experiments conducted over a period of several years on various soil types in southern... Oregon showed that, yields of ali'alf'a and cover crops could be increased from 50 percent to 1000 percent by the use of various fertilissrs containing sulfur (35). Other workers in Oregon ob- tained similar results with crops other than legumes...

Gipson, Jack Rogers

2012-06-07T23:59:59.000Z

351

Energy Dispersive X-ray Fluorescence Analysis of Sulfur in Biomass  

Science Journals Connector (OSTI)

An energy dispersive X-ray fluorescence (ED-XRF) spectroscopy method was developed to analyze low ppm level sulfur (S) in biomass feedstocks and in subsequent residues from pretreatment reactions. ... Representative biomass feedstocks and pretreatment residues were analyzed for S. ... The goal of this project was to determine whether an energy dispersive X-ray fluorescence (ED-XRF) spectroscopy method is effective in conducting sulfur analysis of woody biomass feedstocks at an appropriately useful sensitivity, especially when used to effectively monitor the extent of sulfur removal after biomass pretreatment reactions. ...

J. Michael Robinson; Staci R. Barrett; Kevin Nhoy; Rajesh K. Pandey; Joseph Phillips; Oscar M. Ramirez; Richard I. Rodriguez

2009-03-06T23:59:59.000Z

352

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

1984-01-01T23:59:59.000Z

353

High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1982-07-07T23:59:59.000Z

354

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1984-06-19T23:59:59.000Z

355

Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)  

Reports and Publications (EIA)

On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

2006-01-01T23:59:59.000Z

356

Secondary Capture of Chlorine and Sulfur during Thermal Conversion of Biomass  

Science Journals Connector (OSTI)

Secondary Capture of Chlorine and Sulfur during Thermal Conversion of Biomass ... Six biomasses with different chemical compositions ... ... Therefore, different types of woody biomass and biomass residues (shells) were thermochemically converted in an atmospheric flow ... ...

Jacob N. Knudsen; Peter A. Jensen; Weigang Lin; Kim Dam-Johansen

2005-02-10T23:59:59.000Z

357

Structural analysis of sulfur in natural rubber using X-ray absorption near-edge spectroscopy  

Science Journals Connector (OSTI)

The opportunity to employ X-ray absorption near-edge spectroscopy techniques to investigate the alteration of the structural properties of sulfur in various vulcanized rubber sheets is presented.

Pattanasiriwisawa, W.

2008-07-11T23:59:59.000Z

358

Cost-benefit analysis of ultra-low sulfur jet fuel  

E-Print Network (OSTI)

The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

Kuhn, Stephen (Stephen Richard)

2010-01-01T23:59:59.000Z

359

Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and...  

Gasoline and Diesel Fuel Update (EIA)

EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type Energy Information Administration ...

360

E-Print Network 3.0 - aromatic sulfur compounds Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale Summary: . It has been also shown that most of the sulfur compounds in oil shale are...

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Infrared and Raman Spectra of a Sulfur-resistant Methanation Catalyst  

Science Journals Connector (OSTI)

The infrared and Raman spectra of a sulfur-resistant NiO/Cr2O3/MgSiO3 methanation catalyst are presented and compared to the spectra of the catalyst...

Stencel, J M; Bradley, E B; Brown, Fred R

1980-01-01T23:59:59.000Z

362

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 1  

SciTech Connect

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim data report summarizes results as of August, 1999, on the status of the test programs being conducted on three technologies: lean-NO{sub x} catalysts, diesel particulate filters and diesel oxidation catalysts.

DOE; ORNL; NREL; EMA; MECA

1999-08-15T23:59:59.000Z

363

The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India  

E-Print Network (OSTI)

High-frequency atmospheric measurements of methane (CH[subscript 4]), nitrous oxide (N[subscript 2]O) and sulfur hexafluoride (SF[subscript 6]) from Darjeeling, India are presented from December 2011 (CH[subscript 4])/March ...

Chatterjee, A.

364

Effective hydrogen generation and resource circulation based on sulfur cycle system  

SciTech Connect

For the effective hydrogen generation from H{sub 2}S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, “system integration” to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H{sub 2}S which is the original materials for hydrogen generation. By using this “system integration”, the sulfur cycle system for the new energy generation can be constructed.

Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki [Graduate School of Environmental Studies, Tohoku University 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)

2013-12-10T23:59:59.000Z

365

Project Profile: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage  

Energy.gov (U.S. Department of Energy (DOE))

General Atomics, under the Baseload CSP FOA, is demonstrating the engineering feasibility of using a sulfur-based thermochemical cycle to store heat from a CSP plant and support baseload power...

366

Electronic Transitions in Sulfur-Centered Radicals by Means of MSX? Calculations  

Science Journals Connector (OSTI)

Highly reactive sulfur-centered radicals, which play an important role in air pollution and in biological systems, are usually idientified by their UV/visible absorption and/or ESR spectra. Spectral informatio...

Maurizio Guerra

1990-01-01T23:59:59.000Z

367

Physicochemical aspects of the adsorption of sulfur dioxide by carbon adsorbents  

Science Journals Connector (OSTI)

Literature data on the chemistry of the adsorption of sulfur dioxide on carbon adsorbents are surveyed and described systematically. The influence of various factors (the nature of the carbon matrix, the activation method, the chemistry of the adsorbent surfaces, temperature, the composition of the gas stream, etc.) on the sorption of SO2 by activated carbons and semicokes is examined. The possible ways in which sulfur dioxide interacts with the carbon surface are discussed. The bibliography includes 128 references.

Sergey A Anurov

1996-01-01T23:59:59.000Z

368

Sulfur resistance of Group VIII transition metal promoted nickel catalysts for synthesis gas methanation  

E-Print Network (OSTI)

SULFUR RESISTANCE OF GROUP VIII TRANSITION METAL PROMOTED NICKEL CATALYSTS FOR SYNTHESIS GAS METHANATION A Thesis by KELLEE HALL HAMLIN Submitted to the Graduate College of Texas AgrM University in partial fulfillment of the requirement...: Aydin Akger n (Chairman of Co 'ttee) Ahme M. Gadalla (Member) Michael . Rosynek (Member) aries D. Holland . ( ead of Department) May 1986 ABSTRACT Sulfur Resistance of Group VIII Transition Metal Promoted Nickel Catalysts For Synthesis Gas...

Hamlin, Kellee Hall

2012-06-07T23:59:59.000Z

369

The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota  

SciTech Connect

Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced - Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.

Anderson, iain J.; Dharmarajan, Lakshmi; Rodriguez, Jason; Hooper, Sean; Porat, Iris; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Sun, Hui; Land, Miriam; Lapidus, Alla; Lucas, Susan; Barry, Kerrie; Huber, Harald; Zhulin, Igor B.; Whitman, William B.; Mukhopadhyay, Biswarup; Woese, Carl; Bristow, James; Kyrpides, Nikos

2008-09-05T23:59:59.000Z

370

A Mathematical Model for a LithiumSulfur Cell Karthikeyan Kumaresan,a,  

E-Print Network (OSTI)

S8 l is reduced to S2- in steps. For example, S8 l is reduced to S8 2- , then to S6 2- , S4 2- , S2,4 Figure 1 presents a typical experimental discharge profile at a C/50 rate C = 2.5 Ah . The lithium/sulfur Development The schematic of the lithium/sulfur cell modeled in this work is shown in Fig. 2. The cell is made

371

Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production  

SciTech Connect

The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

2010-05-01T23:59:59.000Z

372

Experimental and computational investigations of sulfur-resistant bimetallic catalysts for reforming of biomass gasification products  

SciTech Connect

A combination of density functional theory (DFT) calculations and experimental studies of supported catalysts was used to identify H{sub 2}S-resistant biomass gasification product reforming catalysts. DFT calculations were used to search for bimetallic, nickel-based (1 1 1) surfaces with lower sulfur adsorption energies and enhanced ethylene adsorption energies. These metrics were used as predictors for H{sub 2}S resistance and activity toward steam reforming of ethylene, respectively. Relative to Ni, DFT studies found that the Ni/Sn surface alloy exhibited enhanced sulfur resistance and the Ni/Ru system exhibited an improved ethylene binding energy with a small increase in sulfur binding energy. A series of supported bimetallic nickel catalysts was prepared and screened under model ethylene reforming conditions and simulated biomass tar reforming conditions. The observed experimental trends in activity were consistent with theoretical predictions, with observed reforming activities in the order Ni/Ru > Ni > Ni/Sn. Interestingly, Ni/Ru showed a high level of resistance to sulfur poisoning compared with Ni. This sulfur resistance can be partly explained by trends in sulfur versus ethylene binding energy at different types of sites across the bimetallic surface.

Rangan, Meghana; Yung, Matthew M.; Medlin, J. William (NREL); (Colorado)

2011-11-17T23:59:59.000Z

373

Unusual refinery boiler tube failures due to corrosion by sulfuric acid induced by steam leaks  

SciTech Connect

Corrosion by sulfuric acid in boilers is a low probability event because gas temperature and metal temperature of boiler tubes are high enough to avoid the condensation of sulfuric acid from flue gases. This degradation mechanism is frequently considered as an important cause of air preheaters materials degradation, where flue gases are cooled by heat transfer to the combustion air. Corrosion is associated to the presence of sulfuric acid, which condensates if metal temperature (or gas temperature) is below of the acid dew point. In economizer tubes, sulfuric acid corrosion is an unlikely event because flue gas and tube temperatures are normally over the acid dewpoint. In this paper, the failure analysis of generator tubes (similar to the economizer of bigger boilers) of two small oil-fired subcritical boilers is reported. It is concluded that sulfuric acid corrosion was the cause of the failure. The sulfuric acid condensation was due to the contact of flue gases containing SO{sub 3} with water-steam spray coming from leaks at the interface of rolled tube to the drum. Considering the information gathered from these two cases studied, an analysis of this failure mechanism is presented including a description of the thermodynamics condition of water leaking from the drum, and an analysis of the factors favoring it.

Lopez-Lopez, D.; Wong-Moreno, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

1998-12-31T23:59:59.000Z

374

Neutron diagnostics for mirror hybrids  

SciTech Connect

Fusion-fission (FuFi) hybrids will need instrumentation to diagnose the deuteriumtritium plasma, whose 14-MeV neutron emission is the driver of the sub-critical fission core. While the fission neutron yield rate (Y{sub fi} and hence power P{sub fi}) can be monitored with standard instrumentation, fusion plasmas in hybrids require special diagnostics where the determination of Y{sub th} ({proportional_to}P{sub fu}) is a challenge. Information on Y{sub fu} is essential for assessing the fusion plasma performance which together with Y{sub fi} allows for the validation of the neutron multiplication factor (k) of the subcritical fission core. Diagnostics for hybrid plasmas are heuristically discussed with special reference to straight field line mirror (SFLM). Relevant DT plasma experience from JET and plans for ITER in the main line of fusion research were used as input. It is shown that essential SFLM plasma information can potentially be obtained with proposed instrumentation, but the state of the hybrid plasma must be predictably robust as derived from fully diagnosed dedicated experiments without interface restrictions of the hybrid application.

Kaellne, Jan; Noack, Klaus; Agren, Olov; Gorini, Giuseppe; Tardocchi, Marco; Grosso, Giovanni [Department of Engineering Sciences, Uppsala University, Box 256, SE-751 21 Uppsala (Sweden); Universita degli Studi di Milano - Bicocca, Dip. di Fisica 'G. Occhialini', Piazza della Scienza 3, 20126, Milan (Italy)

2012-06-19T23:59:59.000Z

375

Manufacturing and testing VLPC hybrids  

SciTech Connect

To insure that the manufacture of VLPC devices is a reliable, cost-effective technology, hybrid assembly procedures and testing methods suitable for large scale production have been developed. This technology has been developed under a contract from Fermilab as part of the D-Zero upgrade program. Each assembled hybrid consists of a VLPC chip mounted on an AlN substrate. The VLPC chip is provided with bonding pads (one connected to each pixel) which are wire bonded to gold traces on the substrate. The VLPC/AlN hybrids are mated in a vacuum sealer using solder preforms and a specially designed carbon boat. After mating, the VLPC pads are bonded to the substrate with an automatic wire bonder. Using this equipment we have achieved a thickness tolerance of {+-}0.0007 inches and a production rate of 100 parts per hour. After assembly the VLPCs are tested for optical response at an operating temperature of 7K. The parts are tested in a custom designed continuous-flow dewar with a capacity 15 hybrids, and one Lake Shore DT470-SD-11 calibrated temperature sensor mounted to an AlN substrate. Our facility includes five of these dewars with an ultimate test capacity of 75 parts per day. During the course of the Dzero program we have assembled more than 4,000 VLPC hybrids and have tested more than 2,500 with a high yield.

Adkins, L. R.; Ingram, C. M.; Anderson, E. J. [Guidance, Navigation and Sensors, Boeing (United States)

1998-11-09T23:59:59.000Z

376

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

377

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

378

Hybrid and Advanced Air Cooling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Advanced Air Cooling Hybrid and Advanced Air Cooling Hybrid and Advanced Air Cooling presentation at the April 2013 peer review meeting held in Denver, Colorado....

379

MagLab - MagLab Dictionary: Hybrid Magnet (Transcript)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Magnet As explained by Scott Hannahs, DC Facilities & Instrumentation director. Hybrid magnet The lab's world-record 45 tesla hybrid magnet. The premier magnet system at the...

380

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic...

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

382

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

383

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

384

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

385

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

386

Optical Hybrid Quantum Information Processing  

E-Print Network (OSTI)

Historically, two complementary approaches to optical quantum information processing have been pursued: qubits and continuous-variables, each exploiting either particle or wave nature of light. However, both approaches have pros and cons. In recent years, there has been a significant progress in combining both approaches with a view to realizing hybrid protocols that overcome the current limitations. In this chapter, we first review the development of the two approaches with a special focus on quantum teleportation and its applications. We then introduce our recent research progress in realizing quantum teleportation by a hybrid scheme, and mention its future applications to universal and fault-tolerant quantum information processing.

Shuntaro Takeda; Akira Furusawa

2014-04-09T23:59:59.000Z

387

Comparison of Comprehensive Two-Dimensional Gas Chromatography Coupled with Sulfur-Chemiluminescence Detector to Standard Methods for Speciation of Sulfur-Containing Compounds in Middle Distillates  

Science Journals Connector (OSTI)

......in seconds). The general elution profile was...sulfur-specific analysis of diesel oils. Comparison...different types of diesel oils by XRF and GC...and LCO, light cycle gasoil. Figure 2...components in a light cycle oil of catalytic...compounds in gasoline and diesel range process streams......

Rosario Ruiz-Guerrero; Colombe Vendeuvre; Didier Thiébaut; Fabrice Bertoncini; Didier Espinat

2006-10-01T23:59:59.000Z

388

Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor  

Science Journals Connector (OSTI)

...polysulfide reduction/geothermal biolog/evolution...appears to be an energy-conserving reaction...The publication costs of this article...sulfur-rich, geothermal environ- ments...fact, represent an energy- conserving reaction...the Department of Energy (FG09-88ER13901...

K Ma; R N Schicho; R M Kelly; M W Adams

1993-01-01T23:59:59.000Z

389

Comparison of Comprehensive Two-Dimensional Gas Chromatography Coupled with Sulfur-Chemiluminescence Detector to Standard Methods for Speciation of Sulfur-Containing Compounds in Middle Distillates  

Science Journals Connector (OSTI)

......discussed later (16,19). For straight-run samples (SR1 and SR2, Figures...identification of C4 and C5DBTs). For straight-run samples (SR1 and SR2), the...analysis of sulfur com- pounds in gasoline range petroleum products with......

Rosario Ruiz-Guerrero; Colombe Vendeuvre; Didier Thiébaut; Fabrice Bertoncini; Didier Espinat

2006-10-01T23:59:59.000Z

390

FINAL REPORT ON GDE GAP CELL  

SciTech Connect

A project has been undertaken to develop an electrochemical cell and support equipment for evaluation of a gas diffusion electrode-based, narrow-electrolyte-gap anode for SO{sub 2} oxidation in the hydrogen production cycle of the hybrid sulfur (HyS) process. The project supported the HyS development program at the Savannah River National Lab (SRNL). The benefits of using a gas diffusion electrode in conjunction with the narrow anolyte gap are being determined through electrochemical polarization testing under a variety conditions, and by comparison to results produced by SRNL and others using anode technologies that have no anolyte gap. These test results indicate that the NGA cell has low resistance suitable for use in the HyS electrolyzer, exhibits good efficiency at high current densities compared to the direct feed HyS electrolyzer, and indicates robust performance in extended testing over 65 hours. Seepage episodes were mostly caused by port clogging, which can be mitigated in future designs through minor modifications to the hardware. Significant reductions in sulfur crossover have not yet been demonstrated in the NGA configuration compared to in-house direct feed testing, but corroborative sulfur layer analysis is as yet incomplete. Further testing in a single-pass anolyte configuration is recommended for complete evaluation of steady-state electrochemical efficiency and SO{sub 2} crossover in the narrow gap configuration.

Herman, D.; Summers, W.; Danko, E.

2009-09-28T23:59:59.000Z

391

Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities  

U.S. Energy Information Administration (EIA) Indexed Site

(Percent) (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 1.43 1.38 1.41 1.43 1.47 1.42 1985-2013 PADD 1 0.75 0.73 0.69 0.68 0.73 0.68 1985-2013 East Coast 0.67 0.66 0.61 0.63 0.66 0.57 1985-2013 Appalachian No. 1 2.0 1.72 1.52 1.40 1.55 1.74 1985-2013 PADD 2 1.42 1.34 1.44 1.46 1.61 1.49 1985-2013 Ind., Ill. and Ky. 1.45 1.36 1.47 1.56 1.75 1.67 1985-2013 Minn., Wis., N. Dak., S. Dak. 2.33 2.11 2.18 2.03 2.01 1.69 1985-2013 Okla., Kans., Mo. 0.89 0.89 0.92 0.82 0.87 0.85 1985-2013 PADD 3 1.54 1.48 1.51 1.52 1.54 1.48 1985-2013

392

Isotope shift in the sulfur electron affinity: Observation and theory  

SciTech Connect

The sulfur electron affinities {sup e}A(S) are measured by photodetachment microscopy for the two isotopes {sup 32}S and {sup 34}S (16 752.975 3(41) and 16 752.977 6(85) cm{sup -1}, respectively). The isotope shift in the electron affinity is found to be more probably positive, {sup e}A({sup 34}S)- {sup e}A({sup 32}S) =+0.0023(70) cm{sup -1}, but the uncertainty allows for the possibility that it may be either ''normal''[{sup e}A({sup 34}S) > {sup e}A({sup 32}S)] or ''anomalous''[{sup e}A({sup 34}S) < {sup e}A({sup 32}S)]. The isotope shift is estimated theoretically using elaborate correlation models, monitoring the electron affinity and the mass polarization term expectation value. The theoretical analysis predicts a very large specific mass shift (SMS) that counterbalances the normal mass shift (NMS) and produces an anomalous isotope shift {sup e}A({sup 34}S)- {sup e}A({sup 32}S) =-0.0053(24) cm{sup -1}, field shift corrections included. The total isotope shift can always be written as the sum of the NMS (here +0.0169 cm{sup -1}) and a residual isotope shift (RIS). Since the NMS has nearly no uncertainty, the comparison between experimental and theoretical RIS is more fair. With respective values of -0.0146(70) cm{sup -1} and -0.0222(24) cm{sup -1}, these residual isotope shifts are found to agree within the estimated uncertainties.

Carette, Thomas; Scharf, Oliver; Godefroid, Michel [Chimie Quantique et Photophysique, Universite Libre de Bruxelles - CP160/09, B-1050 Brussels (Belgium); Drag, Cyril; Blondel, Christophe; Delsart, Christian [Laboratoire Aime-Cotton, CNRS, Universite Paris-sud, F-91405 Orsay cedex (France); Froese Fischer, Charlotte [National Institute of Standards and Technology Gaithersburg, Maryland 20899-8420 (United States)

2010-04-15T23:59:59.000Z

393

The solubility of sulfur hexafluoride in water and seawater  

Science Journals Connector (OSTI)

The concentration of sulfur hexafluoride (SF6) in the atmosphere has been rapidly increasing during the past several decades. This long-lived compound enters the surface ocean by air–sea gas exchange and is potentially a very useful transient tracer for studying ocean circulation and mixing. SF6 has also been directly injected into the ocean at a minimal number of locations as a part of deliberate tracer release experiments to study gas exchange and sub-surface mixing rates. In this study, laboratory measurements of the solubility of SF6 in water and seawater were made over the temperature range of ??0.5°C to 40°C. Volumes of water and seawater held at constant temperature in glass chambers were equilibrated with a gas mixture containing SF6 and CFC-12 (CF2Cl2) at parts-per-trillion levels in nitrogen. Small volume water samples were analyzed by electron capture gas chromatography. Using the method of least squares, equations previously used in describing gas solubility as a function of temperature and salinity were fit to the SF6 and CFC-12 measurements. The CFC-12 results were in good agreement with previous work, while substantial differences were found between these SF6 results and those reported in earlier studies. The mean error for the analytical measurements is estimated to be ?0.5%. Based on errors in the fits and the analytical errors, we estimate the overall accuracy of the SF6 solubility function to be of the order of 2%. The results from this work should be useful in determining equilibrium concentrations for SF6 in ocean observation and modeling studies.

John L Bullister; David P Wisegarver; Frederick A Menzia

2002-01-01T23:59:59.000Z

394

A hybrid life-cycle inventory for multi-crystalline silicon PV module manufacturing in China  

Science Journals Connector (OSTI)

China is the world's largest manufacturer of multi-crystalline silicon photovoltaic (mc-Si PV) modules, which is a key enabling technology in the global transition to renewable electric power systems. This study presents a hybrid life-cycle inventory (LCI) of Chinese mc-Si PV modules, which fills a critical knowledge gap on the environmental implications of mc-Si PV module manufacturing in China. The hybrid LCI approach combines process-based LCI data for module and poly-silicon manufacturing plants with a 2007 China IO-LCI model for production of raw material and fuel inputs to estimate 'cradle to gate' primary energy use, water consumption, and major air pollutant emissions (carbon dioxide, methane, sulfur dioxide, nitrous oxide, and nitrogen oxides). Results suggest that mc-Si PV modules from China may come with higher environmental burdens that one might estimate if one were using LCI results for mc-Si PV modules manufactured elsewhere. These higher burdens can be reasonably explained by the efficiency differences in China's poly-silicon manufacturing processes, the country's dependence on highly polluting coal-fired electricity, and the expanded system boundaries associated with the hybrid LCI modeling framework. The results should be useful for establishing more conservative ranges on the potential 'cradle to gate' impacts of mc-Si PV module manufacturing for more robust LCAs of PV deployment scenarios.

Yuan Yao; Yuan Chang; Eric Masanet

2014-01-01T23:59:59.000Z

395

How Plug-in Hybrids Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

How Plug-in Hybrids Save Money How Plug-in Hybrids Save Money Plug-in hybrid recharging Plug-in hybrids reduce fuel costs by Using high-capacity batteries that allow them to operate on electricity from the outlet for significant distances-electricity typically costs less than half as much as gasoline Using a larger electric motor that typically allows the vehicle to use electricity at higher speeds than regular hybrids Using regenerative braking to recover energy typically wasted when you apply the brakes Plug-in hybrid designs differ, and your driving habits, especially the distance you drive between re-charging, can have a big effect on your fuel bill. My Plug-in Hybrid Calculator estimates gasoline and electricity costs for any available plug-in hybrid using your driving habits and fuel costs.

396

Summing Finite Series?A Hybrid Approach  

Science Journals Connector (OSTI)

......Finite Series-A Hybrid Approach OLIVER ANDERSON AFIMA Department of Management Science, Pennsylvania State...Series--A Hybrid Approach OLIVER ANDERSON, AFIMA Department of Management Science, Pennsylvania State......

OLIVER ANDERSON

1987-01-01T23:59:59.000Z

397

The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision  

SciTech Connect

The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies. The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.

Savage, R.L.; Lazarov, L.K.; Prudich, M.E.; Lange, C.A.; Kumar, N.

1994-03-10T23:59:59.000Z

398

Effects of Fuel Sulfur Content and Diesel Oxidation Catalyst on PM Emitted from Light-Duty Diesel Engine  

Science Journals Connector (OSTI)

This work aims at the particle number concentrations and size distributions, sulfate and trace metals emitted from a diesel engine fueled with three different sulfur content fuels, operating with and without DOC. ... Figure 2. Sulfate emission rate and fuel consumption as a function of sulfur content at engine speed of 2690 rpm. ... Thus, the use of low metal fuels and lubricating oil is as important to the environment and human health as low sulfur fuels, especially for engines with after-treatment devices. ...

Hong Zhao; Yunshan Ge; Xiaochen Wang; Jianwei Tan; Aijuan Wang; Kewei You

2010-01-05T23:59:59.000Z

399

TUDE DE L'ABSORPTION ULTRAVIOLETTE DU SULFURE DE CARBONE Par Mlles ODETTE AMIOT et HENRIETTE MARSAC.  

E-Print Network (OSTI)

dilué de plus en plus le sulfure de carbone dans un solvant inactif. Nous avons choisi l'hexane, liquide montage par autocollimation. 2. Purification du sulfure de carbone et prépa- ration des solutions. - On sait que le sulfure de car- bone est un liquide altérable et qu'il se décompose à la lumière avec

Boyer, Edmond

400

A Hybrid Denotational Semantics for Hybrid Olivier Bouissou and Matthieu Martel  

E-Print Network (OSTI)

A Hybrid Denotational Semantics for Hybrid Systems Olivier Bouissou and Matthieu Martel 1 CEA LIST. In this article, we present a model and a denotational se- mantics for hybrid systems. Our model is designed analysis, or to analyze the whole hybrid system made of the continuous environment and the discrete program

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Are hybrid species more fit than ancestral parent species in the current hybrid species habitats?  

E-Print Network (OSTI)

Are hybrid species more fit than ancestral parent species in the current hybrid species habitats? L Columbia, Vancouver, BC, Canada Introduction Hybridization is receiving renewed attention as an important). For homoploid hybridization in plants, where chromosome number remains the same, models and empirical evi- dence

Rieseberg, Loren

402

Hybrid Zones and Sexual Selection 503 HYBRID ZONES AND SEXUAL SELECTION: INSIGHTS FROM  

E-Print Network (OSTI)

Hybrid Zones and Sexual Selection 503 HYBRID ZONES AND SEXUAL SELECTION: INSIGHTS FROM THE AWASH BABOON HYBRID ZONE (Papio hamadryas anubis x P. h. hamadryas) Thore J. Bergman and Jacinta C. Beehner, have focused on the impact of sexual selection on populations of naturally occurring hybrid animals

403

Hybrid mesons and auxiliary fields  

E-Print Network (OSTI)

Hybrid mesons are exotic mesons in which the color field is not in the ground state. Their understanding deserves interest from a theoretical point of view, because it is intimately related to nonperturbative aspects of QCD. Moreover, it seems that some recently detected particles, such as the $\\pi_1(1600)$ and the Y(4260), are serious hybrid candidates. In this work, we investigate the description of such exotic hadrons by applying the auxiliary fields technique to the widely used spinless Salpeter Hamiltonian with appropriate linear confinement. Instead of the usual numerical resolution, this technique allows to find simplified analytical mass spectra and wave functions of the Hamiltonian, which still lead to reliable qualitative predictions. We analyse and compare two different descriptions of hybrid mesons, namely a two-body $q\\bar q$ system with an excited flux tube, or a three-body $q\\bar q g$ system. We also compute the masses of the $1^{-+}$ hybrids. Our results are shown to be in satisfactory agreement with lattice QCD and other effective models.

Fabien Buisseret; Vincent Mathieu

2006-07-07T23:59:59.000Z

404

Hybrid Ockhamist Temporal Logic Patrick Blackburn  

E-Print Network (OSTI)

Hybrid Ockhamist Temporal Logic Patrick Blackburn INRIA, Lorraine Campus Scientifique, BP 239 Nancy Johannesburg, South Africa vfg@na.rau.ac.za Abstract We introduce hybrid Ockhamist temporal logic, which combines the mechanisms of hybrid logic with Ockhamist semantics by employing nominals, satisfaction

Goranko, Valentin

405

Hybrid Model Structures Aaron David Ames  

E-Print Network (OSTI)

Hybrid Model Structures by Aaron David Ames B.A. (University of St. Thomas) 2001 B.S. (University of California, Berkeley Fall 2006 #12;Hybrid Model Structures Copyright 2006 by Aaron David Ames #12;Abstract Hybrid Model Structures by Aaron David Ames Masters of Arts in Mathematics University of California

Ames, Aaron

406

Hybrid organicinorganic materials for photonic applications  

E-Print Network (OSTI)

Hybrid organic­inorganic materials for photonic applications Partha P. Banerjee,1,* Dean R. Evans,2 18015, USA *pbanerjee1@udayton.edu Abstract: This novel joint feature issue on "Hybrid organic that this feature issue encourages and stimulates further research to into hybrid materials with enhanced linear

Gilchrist, James F.

407

Hybrid Diverter Sheath Model Jeff Hammel  

E-Print Network (OSTI)

Hybrid Diverter Sheath Model Jeff Hammel Plasma Theory and Simulation Group APS ­ Division using a particle-fluid hybrid model. Electrons are modeled as an inertia-less (Boltzmann) fluid gyrokinetic code. The modeling methodology for the iterative nonlinear solver is presented. The hybrid model

Wurtele, Jonathan

408

Hybrid organicinorganic materials for novel photonic applications  

E-Print Network (OSTI)

Hybrid organic­inorganic materials for novel photonic applications Partha P. Banerjee,1, * Dean R. ID 192915); published 31 July 2013 This novel joint feature issue on "Hybrid organic that this feature issue encourages and stim- ulates further research into hybrid materials with enhanced linear

Gilchrist, James F.

409

Hybrid Signcryption Schemes With Outsider Security  

E-Print Network (OSTI)

Hybrid Signcryption Schemes With Outsider Security (Extended Abstract) Alexander W. Dent.dent@rhul.ac.uk Abstract. This paper expands the notion of a KEM­DEM hybrid en- cryption scheme to the signcryption setting by introducing the notion of a signcryption KEM, a signcryption DEM and a hybrid signcryption scheme. We present

Dent, Alexander W.

410

The Path Exchange Method for Hybrid LCA  

Science Journals Connector (OSTI)

The Path Exchange Method for Hybrid LCA ... A new Hybrid LCA method based on Structural Path Analysis is developed, which is less labor- and data-intensive than previous approaches. ... Hybrid techniques for Life-Cycle Assessment (LCA) provide a way of combining the accuracy of process analysis and the completeness of input?output analysis. ...

Manfred Lenzen; Robert Crawford

2009-09-24T23:59:59.000Z

411

Nanostructure and Bioactivity of Hybrid Aerogels  

Science Journals Connector (OSTI)

Nanostructure and Bioactivity of Hybrid Aerogels ... Several CaO?SiO2?PDMS hybrid sono-aerogels were investigated. ... Hybrid sono-aerogels in the CaO?SiO2?poly(dimethyl siloxane) (PDMS) system with low density and high surface area and pore volume were investigated to be used as biomaterials. ...

Antonio J. Salinas; María Vallet-Regí; José A. Toledo-Fernández; Roberto Mendoza-Serna; Manuel Piñero; Luis Esquivias; Julio Ramírez-Castellanos; José M. González-Calbet

2008-12-03T23:59:59.000Z

412

UNDERSTANDING OF CATALYST DEACTIVATION CAUSED BY SULFUR POISONING AND CARBON DEPOSITION IN STEAM REFORMING OF LIQUID HYDROCARBON FUELS.  

E-Print Network (OSTI)

??The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production.… (more)

Xie, Chao

2011-01-01T23:59:59.000Z

413

Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation .  

E-Print Network (OSTI)

??The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test… (more)

Guffey, Eric J. (Eric Jemison)

2011-01-01T23:59:59.000Z

414

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

world-best-practice-energy- intensity-values-selected-World Best Practice Energy Intensity Values for Selectedof the Targets for Energy Intensity and Sulfur Dioxide in

Zhou, Nan

2013-01-01T23:59:59.000Z

415

The development of autocatalytic structural materials for use in the sulfur-iodine process for the production of hydrogen .  

E-Print Network (OSTI)

??The Sulfur-Iodine Cycle for the thermochemical production of hydrogen offers many benefits to traditional methods of hydrogen production. As opposed to steam methane reforming -… (more)

Miu, Kevin (Kevin K.)

2006-01-01T23:59:59.000Z

416

Toward Understanding the Effect of Nuclear Waste Glass Composition of Sulfur Solubility  

SciTech Connect

The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.

Vienna, John D.; Kim, Dong-Sang; Muller, I. S.; Kruger, Albert A.; Piepel, Gregory F.

2014-02-13T23:59:59.000Z

417

Process for alternately steam reforming sulfur containing hydrocarbons that vary in oxygen content  

SciTech Connect

In the hydrotreating and steam reforming of an oxygen and sulfur bearing hydrocarbon fuel, the oxygen is first removed in an oxidizer containing a bed of platinum catalyst, the inlet temperature being well below 1000/sup 0/F and preferably on the order of 300/sup 0/F. The sulfur in the fuel does not harm the oxidizer catalyst and may be removed downstream by known hydrodesulfurization techniques prior to reforming. A process is described for removing oxygen from an oxygen and sulfur bearing hydrocarbon fuel, such as peak shared natural gas, upstream in the process so that sulfur can be removed later. The fuel and some hydrogen are introduced into an oxidizer at a temperature of 350/sup 0/F or less down to the minimum ignition temperature. The oxidizer consists of a platinum bed catalyst which catalyzes the oxidation of the oxygen to water with accompanying heat release to raise the exit gas temperature to less than 650/sup 0/F. The temperature desorbs the sulfur from the catalyst, and the exit gases are passed downstream to nickel subsulfide or molybdenum desfulfide catalysts where the hydrosulfurization process takes place. (BLM)

Lesieur, R.R.; Setzer, H.J.; Hawkins, J.R.

1980-01-01T23:59:59.000Z

418

Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane  

SciTech Connect

It has been observed that carbon-free steam reforming of methane can be obtained on a partly sulfur-passivated nickel catalyst under conditions which, without the presence of sulfur, would result in formation of whisker carbon. This effect has been studied by means of kinetic experiments and thermogravimetry. The kinetic data can be explained by simple blockage of the surface as reflected in the observed kinetic orders and activation energy. The studies of carbon formation confirm a threshold coverage of about 70% of full coverage below which the inhibition of carbon is not effective. Above this coverage, amorphous carbon structures may be formed at a very high carbon potentials. The retarding effect of sulfur on carbon formation is a dynamic phenomenon. Sulfur inhibits the rate of carbon formation more than the rate of the reforming reactions. The effects are explained by assuming that a large ensemble is involved in the nucleation of carbon, whereas the reforming reaction can proceed on the small ensembles left a high sulfur coverages. 6 figures, 6 tables.

Rostrup-Nielsen, J.R.

1984-01-01T23:59:59.000Z

419

Sulfur transformations in early diagenetic sediments from the Bay of Concepcion, off Chile  

SciTech Connect

Despite the recognition that both organic sulfur and pyrite form during the very early stages of diagenesis, and that the amount of H{sub 2}S generated in bacterial sulfate reduction primarily limits their formation, the mechanisms and the active species involved still are not clear. In this study, we quantified the major forms of sulfur distributed in sediments to assess the geochemical mechanisms involved in these transformations. XANES spectroscopy, together with elemental analysis, were used to measure sulfur speciation in the organic-rich sediments from the Bay of Concepcion, Chile. Organic polysulfides constituted the major fraction of the organic sulfur, and occurred maximally just below the sediment surface (1--3 cm), where intermediates from H{sub 2}S oxidation were likely to be generated most abundantly. Sulfonates, which could be formed through the reactions of sulfate and thiosulfate, also showed a sub-surface maximum in the vicinity of the ``oxic-anoxic interface``. These results strongly suggest a geochemical origin for organic polysulfides and sulfonates, and illustrate that intermediates from H{sub 2}S oxidation play a dominant role in incorporating sulfur into organic matter. Pyrite was absent in the surficial layer, and first appeared just below the H{sub 2}S maximum, where organic polysulfides began to decrease in abundance. From these results, we argue, that an iron monosulfide precursor formed first from reactions with H{sub 2}S, and then reacts with organic polysulfides, completing the synthesis of pyrite in the sediment column.

Vairavamurth, M.A.; Wang, Shengke; Khandelwal, B.; Manowitz, B. [Brookhaven National Lab., Upton, NY (United States); Ferdelman, T.; Fossing, H. [Max Plank Institute for Marine Microbiology, Bremen (Germany). Dept. of Biogeochemistry

1995-04-01T23:59:59.000Z

420

Computational studies of experimentally observed structures of sulfur on metal surfaces  

SciTech Connect

First-principles electronic structure calculations were carried out to examine the experimentally observed structures of sulfur on close packed surfaces of a number of important metals - Ag(111), Cu(111), Ni(111), Pt(111), Rh(111), Re(0001) and Ru(0001). At low coverages ({le} 1/3 ML), the prediction is consistent with the typical pattern of preferred sulfur occupancy of threefold hollow sites, notably the fcc site on the (111) surfaces and the hcp site on the (0001) surfaces. Theoretical confirmation for the existence of pure sulfur overlayer phases on Pt(111), Rh(111), Re(0001) and Ru(0001) at higher coverages (> 1/3 ML) was provided. For the ({radical}7 x {radical}7) phase seen on Ag(111), the most preferred structure identified for adsorbed S trimer consists of an S atom on the top site bonded to two S atoms situated on the nearest neighbor off-bridge site positions. Among the different densely packed mixed sulfur-metal overlayer models suggested for the ({radical}7 x {radical}7) phase on Cu(111), the structure which consists of metal and S atoms in a hexagonal-like arrangement on the top substrate was found to be the most energetically favorable. For the (5{radical}3 x 2) phase on Ni(111), the calculations confirm the existence of clock-reconstructed top layer metal atoms onto which sulfur atoms are adsorbed.

Alfonso, Dominic

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Copyright 2013 Gaia Geothermal, LLC 1Hybrid Design Slide 1.1 -Hybrid Design with the New GLD  

E-Print Network (OSTI)

Copyright © 2013 ­ Gaia Geothermal, LLC 1Hybrid Design ­ Slide 1.1 - Hybrid Design Geothermal, LLC 2Hybrid Design ­ Slide 1.1 - The new hybrid design tool in GLD provides: · Precision peak;Copyright © 2013 ­ Gaia Geothermal, LLC 3Hybrid Design ­ Slide 1.1 - In previous versions of GLD, the hybrid

422

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

423

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

424

,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","9/2013","1/15/1985" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_crq_a_epc0_ycs_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_crq_a_epc0_ycs_pct_m.htm" ,"Source:","Energy Information Administration"

425

Sodium/Phosphorus-Sulfur Cells I. Cell Performance Paul L. Ridgway,  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium/Phosphorus-Sulfur Cells Sodium/Phosphorus-Sulfur Cells I. Cell Performance Paul L. Ridgway, Frank R. McLarnon, and Elton J. Cairns* Energy and Environment Division, Lawrence Berkeley National Laboratory, and Department of Chemical Engineering, University of California, Berkeley, California 94720, USA ABSTRACT Sodium/°-alumina/phosphorus-sulfur cells utilizing P/S ratios of 0, 0.143, 0.332, and 1.17 at temperatures from 350 to 500°C were studied by measurement of the equilibrium cell voltages at open circuit, and the steady-state cell voltages at current densities up to 70 mA/cm2. States of charge, represented by sodium atom fraction in the P-S electrode, ranged from 0 to 0.4. Open-circuit voltages up to 2.65 V were measured. Theoretical specific energies up to 825 Wh/kg were cal-

426

Electrochemical separation and concentration of sulfur containing gases from gas mixtures  

DOE Patents (OSTI)

A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

1981-01-01T23:59:59.000Z

427

Sulfur isotopes related to sedimentation conditions for metalliferous black shales of Pennsylvanian Age  

SciTech Connect

Sulfur isotope composition were determined for pyrite and sphalerite grains isolated from 8 metalliferous Missourian, Desmoinesian, and Atokan black shales from Missouri, Illinois, Kansas, and Indiana. The younger Missourian shales from the Forest City and Illinois basins contain consistently light sulfur as expected for euxinic conditions, but sulfides from the older shales show heavier and more erratic sulfur values. These isotope patterns suggest that younger shales accumulated slowly offshore, although older shales may have been deposited more quickly in shallower water. Isotope values, which also correlate with heavy metal patterns (e.g., higher molybdenum values for the eastern most older shales), may therefore reflect gradually deepening conditions for the epicontinental Pennsylvanian seas of the US Mid-Continent.

Coveney, R.M. Jr.; Shaffer, N.R.

1985-02-01T23:59:59.000Z

428

Evaluation of sulfur-reducing microorganisms for organic desulfurization. [Pyrococcus furiosus  

SciTech Connect

Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

Miller, K.W.

1991-01-01T23:59:59.000Z

429

Computational Study of Sulfur–nickel Interactions: A New S–Ni Phase Diagram  

SciTech Connect

Prediction of the interactions between H2S-contaminated hydrogen fuel and Ni surfaces under conditions similar to those for solid oxide fuel cell (SOFC) operation using DFT (density function theory) calculations (with thermodynamic corrections) has resulted in a new S–Ni phase diagram, which suggests the existence of an intermediate state between clean Ni surfaces and nickel sulfides – sulfur atoms adsorbed on Ni surfaces. This prediction is consistent with many experimental observations relevant to sulfur poisoning of Nibased anodes in SOFCs, which cannot be explained using the existing S–Ni bulk phase diagram from classical thermodynamics. The accurate prediction of the adsorption phase is vital to a fundamental understanding of the sulfur poisoning mechanism of Ni-based anodes under SOFC operating conditions.

Wang, Jeng-Han; Liu, Meilin

2007-06-22T23:59:59.000Z

430

U.S. Coal Reserves: An Update by Heat and Sulfur Content  

Gasoline and Diesel Fuel Update (EIA)

2) 2) Distribution Category UC-98 U.S. Coal Reserves: An Update by Heat and Sulfur Content February 1993 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 Energy Information Administration/ U.S. Coal Reserves: An Update by Heat and Sulfur Content ii This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Energy Information Administration/ U.S. Coal Reserves: An Update by Heat and Sulfur Content iii Contacts This report was prepared by the staff of the Energy

431

Sulfur capture by oil shale ashes under atmospheric and pressurized FBC conditions  

SciTech Connect

When oil shale contains large quantities of limestone, a significant auto-absorption of sulfur is possible under suitable conditions. The sulfur capture by oil shale ashes has been studied using a pressurized thermogravimetric apparatus. The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. The Ca/S molar ratios in the two oil shales studied were 8 (Estonian) and 10 (Israeli). The samples were first burned in a gas atmosphere containing O{sub 2} and N{sub 2} (and CO{sub 2} if pressurized). After the combustion step, SO{sub 2} was added and sulfation started. The results with the oil shales were compared to those obtained with an oil shale cyclone ash from the Narva power plant in Estonia. In general, the results from the sulfur capture experiments under both atmospheric and pressurized conditions showed that the oil shale cannot only capture its own sulfur but also significant amounts of additional sulfur of another fuel if the fuels are mixed together. For example from the runs at atmospheric pressure, the conversion of CaO to CaSO{sub 4} was about 70% for Israeli oil shale and about 55% for Estonian oil shale (850 C). For the cyclone ash the corresponding conversion was about 20%. In comparison it could be mentioned that under the same conditions the conversions of natural limestones are about 30%. The reason the cyclone ash was a poor sulfur absorbent was probably due to its temperature history. In Narva the oil shale was burned at a significantly higher temperature (1,400 C) than was used in the experiments (750 C and 850 C). This caused the ash to sinter and the reactive surface area of the cyclone ash was therefore decreased.

Yrjas, K.P.; Hupa, M. [Aabo Akademi Univ., Turku (Finland). Dept. of Chemical Engineering; Kuelaots, I.; Ots, A. [Tallinn Technical Univ. (Estonia). Thermal Engineering Dept.

1995-12-31T23:59:59.000Z

432

The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992  

SciTech Connect

In developing the new Ohio University procedure the thermodynamic limitations of the reactions for removal of both pyritic and organic sulfur from coal at 400--600{degrees}C were studied using copper as a very strong H{sub 2}S-acceptor. Copper serves as a catalyst for ethanol dehydrogenation to form nascent hydrogen. Copper also serves as a scavenger to form copper sulfide from the hydrogen sulfide evolved during the reaction. Copper sulfide in turn serves as a catalyst for organic sulfur hydrodesulfurization reactions. If the coal to be desulfurized contains pyrite (FeS{sub 2}) or FeS, the copper scavenger effect reduces any back reaction of hydrogen sulfide with the iron and increases the removal of sulfur from the carbonaceous material. The desired effect of using copper can be achieved by using copper or copper containing alloys as materials of construction or as liners for a regenerable reactor. During the time period that Ohio Coal Development Office supported this work, small scale (560 grams) laboratory experiments with coals containing about 3.5% sulfur have achieved up to 90% desulfurization at temperatures of 500{degrees}C when using a copper reactor. Results from the autoclave experiments have identified the nature of the chemical reactions taking place. Because the process removes both pyritic and organic sulfur in coal, the successful scale up of the process would have important economic significance to the coal industry. Even though this and other chemical processes may be relatively expensive and far from being commercial, the reason for further development is that this process may hold the promise of achieving much greater sulfur reduction and of producing a cleaner coal than other methods. This would be especially important for small or older power plants and industrial boilers.

Not Available

1993-04-15T23:59:59.000Z

433

Hybrid Inflation Exit through Tunneling  

E-Print Network (OSTI)

For hybrid inflationary potentials, we derive the tunneling rate from field configurations along the flat direction towards the waterfall regime. This process competes with the classically rolling evolution of the scalar fields and needs to be strongly subdominant for phenomenologically viable models. Tunneling may exclude models with a mass scale below 10^12 GeV, but can be suppressed by small values of the coupling constants. We find that tunneling is negligible for those models, which do not require fine tuning in order to cancel radiative corrections, in particular for GUT-scale SUSY inflation. In contrast, electroweak scale hybrid inflation is not viable, unless the inflaton-waterfall field coupling is smaller than approximately 10^-11.

Bjorn Garbrecht; Thomas Konstandin

2006-10-24T23:59:59.000Z

434

Witnessing entanglement in hybrid systems  

E-Print Network (OSTI)

We extend the definition of entanglement witnesses based on structure factors to the case in which the position of the scatterers is quantized. This allows us to study entanglement detection in hybrid systems. We provide several examples that show how these extra degrees of freedom affect the detection of entanglement by directly contributing to the measurement statistics. We specialize the proposed witness operators for a chain of trapped ions. Within this framework, we show how the collective vibronic state of the chain can act as an undesired quantum environment and how ions quantum motion can affect the entanglement detection. Finally, we investigate some specific cases where the method proposed leads to detection of hybrid entanglement.

Massimo Borrelli; Matteo Rossi; Chiara Macchiavello; Sabrina Maniscalco

2014-04-24T23:59:59.000Z

435

Hybrid quantum repeater with encoding  

E-Print Network (OSTI)

We present an encoded hybrid quantum repeater scheme using qubit-repetition and Calderbank-Shor-Steane codes. For the case of repetition codes, we propose an explicit implementation of the quantum error-correction protocol. Moreover, we analyze the entangled-pair distribution rate for the hybrid quantum repeater with encoding and we clearly identify a triple trade-off between the efficiency of the codes, the memory decoherence time, and the local gate errors. Finally, we show that in the presence of reasonable imperfections our system can achieve rates of roughly 24 Hz per memory for 20 km repeater spacing, a final distance of 1280 km, and a final fidelity of about 0.95.

Nadja K. Bernardes; Peter van Loock

2011-05-18T23:59:59.000Z

436

Hybrid powertrain for light aircraft  

Science Journals Connector (OSTI)

In this paper, we evaluate the possibility of employing a hybrid powertrain to propel a light aircraft. The work suggests that the incorporation of a hybrid powertrain has little effect on fuel consumption for a light aircraft operating in a condition of straight and level cruise. However, there is a potential decrease in fuel consumption when a light aircraft operates either in climb or when manoeuvring over a conventionally powered aircraft. This is due to three main factors, namely, the energy harvested during descent by a windmilling propeller, the engine being switched off during descent and the fact that the air/fuel mixture does not have to be enriched during climbing phases. Estimating the potential fuel savings is obviously mission dependent, however, an unshrouded propeller could harvest enough energy to provide 39% of the excess power required for climbing. This figure could be significantly increased by use of a shrouded propeller.

John Olsen; John R. Page

2014-01-01T23:59:59.000Z

437

Planar slot coupled microwave hybrid  

DOE Patents (OSTI)

A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

Petter, Jeffrey K. (Williston, VT)

1991-01-01T23:59:59.000Z

438

Sulfur determination in blood from inhabitants of Brazil using neutron activation analysis  

SciTech Connect

In this study the NAA technique was applied to analyze sulfur in blood from inhabitants of Brazil for the proposition of an indicative interval. The measurements were performed considering lifestyle factors (non-smokers, non-drinkers and no history of toxicological exposure) of Brazilian inhabitants. The influence of gender was also investigated considering several age ranges (18-29, 30-39, 40-49, >50 years). These data are useful in clinical investigations, to identify or prevent diseases caused by inadequate sulfur ingestion and for nutritional evaluation of Brazilian population.

Oliveira, Laura C.; Zamboni, Cibele B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP) Av. Professor Lineu Prestes 2242 05508-000 Sao Paulo, SP (Brazil)

2013-05-06T23:59:59.000Z

439

Bioprocessing of High-sulfur Crudes Via Appliaction of Critical Fluid Biocatalysis  

SciTech Connect

This experimental research project investigated protein-based biocatalysis in supercritical fluid solvents as an integrated process approach to catalyze the removal of sulfur atoms from crude oils and fuels. The work focused on the oxidation of model sulfur-containing compounds in supercritical reaction media and included three major tasks: microbiological induction experiments, proteincatalyzed biooxidation in supercritical solvents, and a work-in-kind cooperative research and development agreement (CRADA). This work demonstrated that the biooxidation reaction could be improved by an order-of-magnitude by carrying out the reaction in emulsions in supercritical fluids.

Ginosar, Daniel Michael; Bala, Greg Alan; Anderson, Raymond Paul; Fox, Sandra Lynn; Stanescue, Marina A.

2002-05-01T23:59:59.000Z

440

Structural and Functional Studies on Human Mitochondrial Iron-Sulfur Cluster Biosynthesis  

E-Print Network (OSTI)

. (2003) Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Curr. Opin. Chem. Biol. 7, 166-173]. 3 as the nitrogen-fixation (NIF) machinery (8). The NIF pathway is often a specialized assembly system... of Fe?S Cluster Biogenesis in Human Mitochondria Name Essential in yeast Yeast homologs Bacterial homologs Proposed function & protein interactions Nfs1 Yes Nfs1 IscS, NifS, SufS Cysteine desulfurase, sulfur donor, Interacts with Isd11, Isu2...

Tsai, Chi-Lin

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NO[sub x] reduction by sulfur tolerant coronal-catalytic apparatus and method  

DOE Patents (OSTI)

This invention presents an NO[sub x] environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO[sub x] reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO[sub x] bearing gas stream at a minimum of at least about 75 watts/cubic meter. 7 figs.

Mathur, V.K.; Breault, R.W.; McLarnon, C.R.; Medros, F.G.

1992-09-15T23:59:59.000Z

442

NO.sub.x reduction by sulfur tolerant coronal-catalytic apparatus and method  

DOE Patents (OSTI)

This invention presents an NO.sub.x environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO.sub.x reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO.sub.x bearing gas stream at a minimum of at least about 75 watts/cubic meter.

Mathur, Virendra K. (Durham, NH); Breault, Ronald W. (Kingston, NH); McLarnon, Christopher R. (Exeter, NH); Medros, Frank G. (Waltham, MA)

1993-01-01T23:59:59.000Z

443

NO.sub.x reduction by sulfur tolerant coronal-catalytic apparatus and method  

DOE Patents (OSTI)

This invention presents an NO.sub.x environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO.sub.x reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO.sub.x bearing gas stream at a minimum of at least about 75 watts/cubic meter.

Mathur, Virendra K. (Durham, NH); Breault, Ronald W. (Kingston, NH); McLarnon, Christopher R. (Exeter, NH); Medros, Frank G. (Waltham, MA)

1992-01-01T23:59:59.000Z

444

Sulfur adsorption on nickel(100) and its effect on carbon monoxide, nitric oxide, and deuterium chemisorption  

SciTech Connect

The adsorption of CO, NO, and D/sub 2/ was studied on clean and sulfided Ni(100) near 100K using Auger electron spectroscopy, thermal desorption spectroscopy, X-ray and ultraviolet photoelectron spectroscopies, and work function change measurements. The evidence suggests that sulfur's effects are predominantly steric in nature. Weak, short-range (approx.4 angstrom) electrostatic effects are also present, due to charge transfer of about 0.04 of an electron from nickel to sulfur. The blocking effect of S on the adsorption of each gas at various temperatures is discussed.

Hardegree, E.L.

1985-01-01T23:59:59.000Z

445

Sulfur Behavior in the Sasol?Lurgi Fixed-Bed Dry-Bottom Gasification Process  

Science Journals Connector (OSTI)

This article reports on the findings of a study regarding the sulfur behavior across a Sasol?Lurgi gasifier. ... (2) This ash, referred to as “coarse ash”, is a combination of red and white to gray sintered clinkers with heterogeneous texture varying from fine material to large irregularly shaped aggregates of sizes ranging from 4 to 75 mm. ... South African coals that are used for the Sasol?Lurgi gasification process are normally low-grade medium rank C (bituminous) coal with a total sulfur content of approximately 1?2 wt %, on an as-received basis. ...

M. Pat Skhonde; R. Henry Matjie; J. Reginald Bunt; A. Christien Strydom; Herold Schobert

2008-12-05T23:59:59.000Z

446

Thermodynamic Investigation of Carbon Deposition and Sulfur Evolution in Chemical Looping Combustion with Syngas  

Science Journals Connector (OSTI)

Thermodynamic Investigation of Carbon Deposition and Sulfur Evolution in Chemical Looping Combustion with Syngas ... Chemical looping combustion (CLC) with syngas, a synthesized gas mixture of CO, H2, CO2, H2O(g), N2, and H2S, was investigated using thermodynamic simulation, with focus on carbon deposition and sulfur evolution in CLC. ... Abad, A.; Garcia-Labiano, F.; de Diego, L. F.; Gayan, P.; Adanez, J. Reduction kinetics of Cu-,Ni-, and Fe-based oxygen carriers using syngas (CO+H2) for chemical-looping combustion Energy Fuels 2007 21 4 1854 1858 ...

Baowen Wang; Rong Yan; Dong Ho Lee; David Tee Liang; Ying Zheng; Haibo Zhao; Chuguang Zheng

2008-02-16T23:59:59.000Z

447

NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR  

SciTech Connect

Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char.

Dr. Bert Zauderer

1999-03-15T23:59:59.000Z

448

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Compositional Variation Within Hybrid Nanostructures Compositional Variation Within Hybrid Nanostructures Print Wednesday, 29 September 2010 00:00 The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

449

Preheating in Supersymmetric Hybrid Inflation  

E-Print Network (OSTI)

We study preheating in a general class of supersymmetric hybrid inflation model. Supersymmetry leads to only one coupling constant in the potential and thus only one natural frequency of oscillation for the homogeneous fields, whose classical evolution consequently differs from that of a general (non-supersymmetric) hybrid model. We emphasise the importance of mixing effects in these models which can significantly change the rate of production of particles. We perform a general study of the rate of production of the particles associated with the homogeneous fields, and show how preheating is efficient in producing these quanta. Preheating of other particle species will be model dependent, and in order to investigate this we consider a realistic working model of supersymmetric hybrid inflation which solves the strong-CP problem via an approximate Peccei-Quinn symmetry, which was proposed by us previously. We study axion production in this model and show that properly taking into account the mixing between the fields suppresses the axion production, yet enhances the production of other particles. Finally we demonstrate the importance of backreaction effects in this model which have the effect of shutting off axion production, leaving the axion safely within experimental bounds.

M. Bastero-Gil; S. F. King; J. Sanderson

1999-04-13T23:59:59.000Z

450

Shear viscosity in hybrid stars  

Science Journals Connector (OSTI)

A study of the shear viscosity of hadrons and quarks in hybrid stars has been performed in the framework of the microscopic transport theory. The neutron-star structure has been determined employing the equation of state from the Brueckner theory with three-body force for the hadron phase, and the equation of state from the MIT bag model for the deconfined quark phase. The nucleon-nucleon cross sections in dense matter have been consistently calculated from the Brueckner G matrix, whereas for the quark-quark cross sections the perturbative QCD has been adopted. Despite that the quark contribution to the shear viscosity is quite small at low temperature, the transition to the deconfined phase makes the equation of state much softer with the result that the baryon viscosity turns out to be enhanced instead of reduced in hybrid stars. The damping time scale of r-modes due to the shear viscosity has been evaluated for several stable configurations of a hybrid star and compared with the neutron-star spin-down time scale induced by the emission gravitation radiation from the r-modes. The enhancement of the total viscosity makes the viscosity time scale comparable with the gravitation radiation one at low temperature.

D. Jaccarino; S. Plumari; V. Greco; U. Lombardo; A. B. Santra

2012-05-03T23:59:59.000Z

451

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment  

E-Print Network (OSTI)

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

452

subm. to Surf. Sci. Ab initio molecular dynamics study of H2 adsorption on sulfur-and chlorine-covered  

E-Print Network (OSTI)

subm. to Surf. Sci. Ab initio molecular dynamics study of H2 adsorption on sulfur- and chlorine/Germany The adsorption of molecular hydrogen on sulfur- and chlorine-covered Pd(100) in a (2Ã?2) geometry is studied by ab initio molecular dynamics simulations. The potential energy surfaces of H2/S(2 Ã? 2)/Pd(100) and H2/Cl(2

Ulm, Universität

453

Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area  

Science Journals Connector (OSTI)

Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area ... Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. ...

Ling Tao; David Fairley; Michael J. Kleeman; Robert A. Harley

2013-08-14T23:59:59.000Z

454

Sulfur Emissions from Volcanic A c t i v i t y i n 1985 and 1990 Carmen M. Benkovitz and M. A l t a f Mubaraki  

E-Print Network (OSTI)

APPENDIX C Sulfur Emissions from Volcanic A c t i v i t y i n 1985 and 1990 Carmen M. Benkovitz). Global estimates o f anthropogenic emissions o f sulfur f o r 1985 are approximately 65 Tg S y-l (Benkovi Anthropogenic Sulfur Emissions f o r 1985 and 1990 i n t h i s report). Sulfur from biogenic sources i s emitted

455

HIGH TEMPERATURE ELECTROLYZER MATERIALS PROJECT GOAL  

E-Print Network (OSTI)

with compatible electrodes to develop reversible solid oxide fuel cells for low-cost, high efficient power and solid oxide fuel cells. Notable reversible fuel cell achievements have been demonstrated by Proton of traditional oxide ion conductor-based solid oxide fuel cell (SOFC) materials. [2 ,3 ,4 ] Significantly

Mease, Kenneth D.

456

Sulfur in the Timbers of Henry VIII's Warship Mary Rose: Synchrotrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur in the Timbers of Henry Sulfur in the Timbers of Henry VIII's Warship Mary Rose: Synchrotrons Illuminate Conservation Concerns Magnus Sandström,1 Farideh Jalilehvand,2 Emiliana Damian,1 Yvonne Fors,1 Ulrik Gelius,3 Mark Jones,4 and Murielle Salomé5 1Structural Chemistry, Stockholm University, Sweden 2Department of Chemistry, University of Calgary, Alberta, Canada 3Department of Physics, Uppsala University, Sweden 4The Mary Rose Trust, HM Naval Base, Portsmouth, UK 5European Synchrotron Radiation Facility (ESRF), Grenoble, France Figure 1.The starboard side of the Mary Rose (about ½ of the hull, ~280 tons oak timbers) is since 1994 being sprayed with an aqueous solution of PEG 200. Figure 2. Sulfur K-edge XANES spectrum of Mary Rose oak core surface (0-3 mm). Standard spectra used for model fitting: 1 (solution), 1' (solid) disulfides R-SS-R (cystine with peaks at 2472.7 and 2474.4 eV); 45%; 2: Thiols R-SH (cysteine, 2473.6 eV) 23%; 3: Elemental sulfur (S8 in xylene 2473.0 eV) 10%; 4: Sulfoxide R(SO)R' (methionine sulfoxide, 2476.4 eV) 5%; 5: Sulfonate R-SO3- (methyl sulfonate, 2481.2 eV) 10%; 6: Sulfate SO42- (sodium sulfate, 2482.6 eV) 7%.

457

Sonic enhanced ash agglomeration and sulfur capture. Technical progress report, January 1995--March 1995  

SciTech Connect

This program is focused on the process for bimodal ash agglomeration and simultaneous sulfur capture for the development of coal fired combustion gas turbines. The process also accommodates injection of alkali gettering materials. During this period, further dismantling of the existing bimodal test unit was performed. The design of a revised process development unit and hot gas cleanup unit have been completed.

NONE

1995-07-01T23:59:59.000Z

458

Sorbent utilization prediction methodology: sulfur control in fluidized-bed combustors  

SciTech Connect

The United States Government has embarked on an ambitious program to develop and commercialize technologies to efficiently extract energy from coal in an environmentally acceptable manner. One of the more promising new technologies for steam and power generation is the fluidized-bed combustion of coal. In this process, coal is burned in a fluidized bed composed mainly of calcined limestone sorbent. The calcium oxide reacts chemically to capture the sulfur dioxide formed during the combustion and to maintain the stack gas sulfur emissions at acceptable levels. The spent sulfur sorbent, containing calcium sulfate, is a dry solid that can be disposed of along with coal ash or potentially used. Other major advantages of fluidized-bed combustion are the reduction in nitrogen oxide emissions because of the relatively low combustion temperatures, the capability of burning wide varieties of fuel, the high carbon combustion efficiencies, and the high heat-transfer coefficients. A key to the widespread commercialization of fluidized-bed technology is the ability to accurately predict the amount of sulfur that will be captured by a given sorbent. This handbook meets this need by providing a simple, yet reliable, user-oriented methodology (the ANL method) that allows performance of a sorbent to be predicted. The methodology is based on only three essential sorbent parameters, each of which can be readily obtained from standardized laboratory tests. These standard tests and the subsequent method of data reduction are described in detail.

Fee, D.C.; Wilson, W.I.; Shearer, J.A.; Smith, G.W.; Lenc, J.F.; Fan, L.S.; Myles, K.M.; Johnson, I.

1980-09-01T23:59:59.000Z

459

Mercury and Sulfur Dynamics in the SPRUCE Experiment Brandy Toner1  

E-Print Network (OSTI)

Mercury and Sulfur Dynamics in the SPRUCE Experiment Brandy Toner1 , Randy Kolka2 , Steve Sebestyen will lead studies assessing the influence of SPRUCE treatments on the cycling of THg, MeHg and S. Mercury. Mercury levels are determined by complex interactions between deposition, chemical transformation

460

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Gasoline and Diesel Fuel Update (EIA)

80.8 75.7 76.2 67.5 71.8 77.4 83.7 75.0 64.4 See footnotes at end of table. 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District 242 Energy Information...

Note: This page contains sample records for the topic "hybrid sulfur electrolyzer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Annual Energy Outlook 2012 (EIA)

74.4 73.3 70.4 60.5 69.0 71.9 77.8 71.0 60.5 See footnotes at end of table. 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District 242 Energy Information...

462

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification  

Science Journals Connector (OSTI)

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification ... National Bioenergy Center, National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401, United States ... Similar activation energies (9-10 kcal/mol) were measured for ZnO and Zn-Ti-O sulfidation. ...

Abhijit Dutta; Singfoong Cheah; Richard Bain; Calvin Feik; Kim Magrini-Bair; Steven Phillips

2012-05-23T23:59:59.000Z

463

Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same  

DOE Patents (OSTI)

The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

Way, J. Douglas; Hatlevik, Oyvind

2014-07-15T23:59:59.000Z

464

Apparatus for Determining Sulfur in Organic Compounds by Means of Gas Chromatography  

Science Journals Connector (OSTI)

......fuel, crude oil, and various grades of coal. However, our experience with the method...in the Schiiniger flask. The complete combustion of sulfur in pure oxygen is readily effected...moles origin- ally present. Classical chemistry allows one to cal- culate the percentage......

Philipp W. H. Schuessler

1969-12-01T23:59:59.000Z

465

Reserves and potential supply of low-sulfur Appalachian coal. Final report  

SciTech Connect

This project has two objectives. The first is to develop and test a methodology for determining economically mineable reserves of low-sulfur Appalachian coal. The second is to appraise the potential supply response to a very large increase in demand for low-sulfur Appalachian coal. The reserve determination procedure developed in the project applies criteria similar to those employed by mining engineers in assessing the commercial feasibility of mining properties. The procedure is relatively easy to apply, could be used to develop reserve estimates for a large sample of mining blocks for under $500,000, and produces reserve estimates very different from those produced from the criteria that have been used by the United States Bureau of Mines: with the more rigorous method developed in this project surface mineable reserves are much larger and deep mineable reserves are less than with the Bureau of Mines method. The appraisal of potential low-sulfur coal supply response assessed excess capacity, coal mining company outlook on reserves, and coal quality requirements. The appraisal concluded that ample coal meeting most buyers' requirements will probably be available in the near or long term at a price under $45 in 1984 dollars. However, coal quality requirements may prove a constraint for some buyers, and an upward surge in prices would probably occur in the event of legislation imposing requirements leading to greatly increased low-sulfur coal demand. 14 refs., 24 figs., 15 tabs.

Hughes, W.R.

1986-09-01T23:59:59.000Z

466

Two-dimensional kinetics of binary nucleation in sulfuric acidwater mixtures  

E-Print Network (OSTI)

. INTRODUCTION Binary homogeneous nucleation is a mechanism for gas- to-particle conversion that can result in significant rates of new particle formation even if both components are under- saturated in the gas phase. An important example is the at- mospheric production of sulfuric acid in the presence of am- bient water vapor

467

Sulfur-Selective Detection with the FPD: Current Enigmas, Practical Usage, and Future Directions  

Science Journals Connector (OSTI)

......flame species may be a factor. However, such absorption losses are probably not significant except when the sulfur levels ex ceed several tens of nanograms, since the known flame species have relatively low gas-phase molar absorptivities at the typical......

S.O. Farwell; C.J. Barinaga

1986-11-01T23:59:59.000Z

468

Ensemble Forecasting of Volcanic Sulfur Emissions in Hawai'i Andre Pattantyus and Steven Businger  

E-Print Network (OSTI)

of Hawai'i. The probabilistic forecast products show uncertainty in pollutant concentrations of pollution known as "vog" after volcanic smog. Prevailing northeast trade winds in Hawaii advectEnsemble Forecasting of Volcanic Sulfur Emissions in Hawai'i Andre Pattantyus and Steven Businger

Businger, Steven

469

Sandwich-Type Functionalized Graphene Sheet-Sulfur Nanocomposite for Rechargeable Lithium Batteries  

SciTech Connect

A sandwich structured graphene sheet-sulfur (GSS) nanocomposite was synthesized as the cathode material for lithium-sulfur batteries. The structure has a layer of graphene stacks and a layer of sulfur nanoparticles integrated into a three-dimensional architecture. This GSS nanoscale layered composite, making use of the efficient physical and electrical contact between sulfur and the large surface area, highly conductive graphene, provides a high loading of active materials of ~70 wt%, a high tape density of ~0.92 g?cm-3, and a high power with a reversible capacity of ~505 mAh?g-1 (~464 mAh?cm-3) at a current density of 1,680 mA?g-1 (1C). When coated with a thin layer of cation exchange Nafion film, the migration of dissolved polysulfide anions from the GSS nanocomposite was effectively alleviated, leading to a good cycling stability of 75% capacity retention over 100 cycles. This sandwich-structured composite conceptually provides a new strategy for designing electrodes in energy storage applications.

Cao, Yuliang; Li, Xiaolin; Aksay, Ilhan A.; Lemmon, John P.; Nie, Zimin; Yang, Zhenguo; Liu, Jun

2011-03-30T23:59:59.000Z

470

Sulfur in peridotites and gabbros at Lost City (30N, MAR): Implications for hydrothermal alteration  

E-Print Network (OSTI)

minerals in samples from near the base of hydrothermal carbonate towers at Lost City show d34 S valuesSulfur in peridotites and gabbros at Lost City (30°N, MAR): Implications for hydrothermal of serpentinized peridotites and gabbros beneath the Lost City Hydrothermal Field at the southern face

Gilli, Adrian

471

The effects of gas-to-oil rate in ultra low sulfur diesel hydrotreating  

Science Journals Connector (OSTI)

Hydrotreating has become a critical refining process as fuel sulfur specifications are tightened around the world. Recently, refiners in the United States have been learning how to optimize the performance of ultra low sulfur diesel (ulsd) hydrotreaters. The gas-to-oil feed rate ratio is known to be an important variable in this respect. It is well known that the gas-to-oil rate must be kept high enough to maintain the desired hydrogen partial pressure through the hydrotreating reactor, and to minimize the inhibiting effect of hydrogen sulfide. A lesser-known effect is the effect of gas-to-oil rate on the vapor–liquid equilibrium in the reactor. Changing the gas-to-oil rate alters the distribution of reactants between vapor and liquid in a way that changes the relative reaction rates of different sulfur compounds. This paper presents some pilot plant data and analysis showing this effect of phase equilibrium in deep diesel desulfurization. The effect can be modeled using the Frye–Mosby equation, which accounts for the effects of feed vaporization and phase equilibrium on the reaction rates of individual sulfur compounds in a trickle bed hydrotreater.

George Hoekstra

2007-01-01T23:59:59.000Z

472

Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor  

E-Print Network (OSTI)

monitoring, solid-oxide fuel cells, and coal gasification, require operation at much higher temperatures thanSulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor Yung Ho to hydrogen sulfide, even in the presence of hydrogen or oxygen at partial pressures of 20­600 times greater

Tobin, Roger G.

473

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network (OSTI)

,2 operated by fuel cells. Unfortunately, the lack of infrastructure, such as a network of hydrogen refueling of hydrogen sulfide (H2S), which poisons the anode in the fuel cell stack, leading to low SOFC efficiencyPerformance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel

Azad, Abdul-Majeed

474

Coral-Associated Bacteria and Their Role in the Biogeochemical Cycling of Sulfur  

Science Journals Connector (OSTI)

...the climate-changing gas, dimethyl sulphide...bacterial communities from natural and aquarium environments...dimethylsulfide and the natural sulfur cycle. Nature...New perspective on the natural microbial word: molecular microbial ecology. ASM News 62: 463-470. 45 Reshelf...

Jean-Baptiste Raina; Dianne Tapiolas; Bette L. Willis; David G. Bourne

2009-04-03T23:59:59.000Z

475

Use of Personal-Indoor-Outdoor Sulfur Concentrations to Estimate the Infiltration Factor and Outdoor Exposure Factor for Individual Homes and Persons  

Science Journals Connector (OSTI)

Use of Personal-Indoor-Outdoor Sulfur Concentrations to Estimate the Infiltration Factor and Outdoor Exposure Factor for Individual Homes and Persons ... Indoor?outdoor comparisons of sulfur concentrations thus provide a direct way to estimate Finf for each individual home. ... Of 36 homes, 22 had intercepts not significantly different from zero, indicating no apparent source of sulfur in the home. ...

Lance Wallace; Ron Williams

2005-01-26T23:59:59.000Z

476

Hybrid States from Constituent Glue Model  

E-Print Network (OSTI)

The hybrid meson is one of the most interesting new hadron specie beyond the naive quark model. It acquire a great attention both from the theoretical and experimental efforts. Many good candidates have been claimed to be observed, but there is no absolute confirmation about existence of hybrid mesons. In the present work we propose new calculations of the masses and decay widths of the hybrid mesons in the context of constituent gluon model.

F. Iddir; L. Semlala

2007-10-29T23:59:59.000Z

477

Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

Eskandari Halvaii, Ali

2012-07-16T23:59:59.000Z

478

Issue 5: High Interest in Hybrid Cars  

E-Print Network (OSTI)

Survey of Oregon Hybrid Gas-Electric Car Owners. July. U.S.of a qualifying gas-electric car, but because this is a

Ong, Paul M.; Haselhoff, Kim

2005-01-01T23:59:59.000Z

479

Power Consumption of Hybrid Optical Switches  

Science Journals Connector (OSTI)

Two realization options of hybrid optical switches are evaluated with regard to power consumption. Both switches show improved energy efficiency in comparison to a pure packet...

Aleksic, Slavi?a

480

Hybrid Performance of the Pierre Auger Observatory  

E-Print Network (OSTI)

A key feature of the Pierre Auger Observatory is its hybrid design, in which ultra high energy cosmic rays are detected simultaneously by fluorescence telescopes and a ground array. The two techniques see air showers in complementary ways, providing important cross-checks and measurement redundancy. Much of the hybrid capability stems from the accurate geometrical reconstruction it achieves, with accuracy better than either the ground array detectors or a single telescope could achieve independently. We have studied the geometrical and longitudinal profile reconstructions of hybrid events. We present the results for the hybrid performance of the Observatory, including trigger efficiency, energy and angular resolution, and the efficiency of the event selection.

B. R. Dawson; for the Pierre Auger Collaboration

2007-06-08T23:59:59.000Z