National Library of Energy BETA

Sample records for hybrid propulsion systems

  1. Advanced hybrid vehicle propulsion system study

    SciTech Connect (OSTI)

    Schwarz, R.

    1982-05-01

    Results of a study of an advanced heat engine/electric automotive hybrid propulsion system are presented. The system uses a rotary stratified charge engine and an ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system parameters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 l/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  2. Marine Hybrid Propulsion Market Revenue is anticipated to Reach...

    Open Energy Info (EERE)

    ferry operators are the major adopters of marine hybrid propulsion systems across the world. These vessels primarily operate in coastal areas and inland waterways, where emission...

  3. Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor

    E-Print Network [OSTI]

    Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion. This system provides the platform for characterizing the effects of varying said swirl angle on HRM

  4. Multi-Disciplinary Decision Making and Optimization for Hybrid Electric Propulsion Systems

    SciTech Connect (OSTI)

    Shoultout, Mohamed L. [University of Texas at Austin; Malikopoulos, Andreas [ORNL; Pannala, Sreekanth [ORNL; Chen, Dongmei [University of Texas at Austin

    2014-01-01

    In this paper, we investigate the trade-offs among the subsystems of a hybrid electric vehicle (HEV), e.g., the engine, motor, and the battery, and discuss the related im- plications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences.

  5. Mars mission performance enhancement with hybrid nuclear propulsion

    SciTech Connect (OSTI)

    Dagle, J.E.; Noffsinger, K.E. [Pacific Northwest Lab., Richland, WA (United States); Segna, D.R. [USDOE Richland Operations Office, WA (United States)

    1992-01-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  6. 2006-01-0443 Engine-in-the-Loop Testing for Evaluating Hybrid Propulsion

    E-Print Network [OSTI]

    Peng, Huei

    improvements are necessary for diesel propulsion systems to address the rapid escalation of fuel prices of the conventional and hybrid propulsion options provides detailed insight into fuel economy ­ emissions tradeoffs at the vehicle level. INTRODUCTION Diesel engines are particularly suited for medium-duty vehicles due

  7. Advanced hybrid nuclear propulsion Mars mission performance enhancement

    SciTech Connect (OSTI)

    Dagle, J.E.; Noffsinger, K.E.; Segna, D.R.

    1992-02-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  8. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  9. Detailed kinetic computations and experiments for the choice of a fuel-oxidiser couple for hybrid propulsion.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the heat diffusion in the solid. Time variations are possible in the system. The control of injection valve for hybrid propulsion. N. Gascoina* , P. Gillarda , A. Mangeota , A. Navarro-Rodrigueza a PRISME Institute of a solid reducer for hybrid propulsion is generally based on the quantity of gaseous combustible it can

  10. Propulsive options for a manned Mars transportation system

    SciTech Connect (OSTI)

    Braun, R.D.; Blersch, D.J.

    1989-01-01

    In this investigation, five potential manned Mars transportation systems are compared. These options include: (1) a single vehicle, chemically propelled (CHEM) option, (2) a single vehicle, nuclear thermal propulsion (NTP) option, (3) a single vehicle solar electric propulsion (SEP) option, (4) a single vehicle hybrid nuclear electric propulsion (NEP)/CHEM option, and (5) a dual vehicle option (NEP cargo spacecraft and CHEM manned vehicle). In addition to utilizing the initial vehicle weight in low-earth orbit as a measure of mission feasibility, this study addresses the major technological barriers each propulsive scenario must surpass. It is shown that instead of a single clearly superior propulsion system, each means of propulsion may be favored depending upon the specified program policy and the extent of the desired manned flight time. Furthermore, the effect which aerobraking and multiple transfer cycles have upon mission feasibility is considered. 18 refs.

  11. Enabling Green Energy and Propulsion Systems via Direct Noise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE propulsion systems Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research...

  12. Looking From A Hilltop: Automotive Propulsion System Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Looking From A Hilltop: Automotive Propulsion System Technology Looking From A Hilltop: Automotive Propulsion System Technology Outlook for global fuel economy requirements and...

  13. Autonomous Intelligent Hybrid Propulsion Systems

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Michael J. Alexander Propulsion Systems Research Lab,

    E-Print Network [OSTI]

    Papalambros, Panos

    along with the selection of motor performance curves such that maxi- mum energy efficiency is achievedMichael J. Alexander Propulsion Systems Research Lab, General Motors Technical Center, 330500 Mound Road, Warren, MI 48090 e-mail: michael.j.alexander@gm.com James T. Allison Department of Industrial

  15. Hybrid Systems Frits Vaandrager

    E-Print Network [OSTI]

    Vaandrager, Frits

    on these data, the computer may decide to turn on a heating system, switch off a pump, etc. When a dangerous1 Hybrid Systems Frits Vaandrager 1 Introduction Hybrid systems are systems that intermix discrete. The specification, design and analysis of hybrid systems require a synthesis of ideas, concepts, mathe­ matical

  16. Large-Eddy Simulation for Green Energy and Propulsion Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large-Eddy Simulation for Green Energy and Propulsion Systems PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: General Electric Allocation Program: INCITE Allocation...

  17. Enabling Green Energy and Propulsion Systems via Direct Noise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Umesh Paliath, GE Global Research; Joe Insley, Argonne National Laboratory Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI...

  18. A comparison of propulsion systems for potential space mission applications

    SciTech Connect (OSTI)

    Harvego, E.A.; Sulmeisters, T.K.

    1987-01-01

    A derivative of the NERVA nuclear rocket engine was compared with a chemical propulsion system and a nuclear electric propulsion system to assess the relative capabilities of the different propulsion system options for three potential space missions. The missions considered were (1) orbital transfer from low earth orbit (LEO) to geosynchronous earth orbit (GEO), (2) LEO to a lunar base, and (3) LEO to Mars. The results of this comparison indicate that the direct-thrust NERVA-derivative nuclear rocket engine has the best performance characteristics for the missions considered. The combined high thrust and high specific impulse achievable with a direct-thrust nuclear stage permits short operating times (transfer times) comparable to chemical propulsion systems, but with considerably less required propellant. While nuclear-electric propulsion systems are more fuel efficient than either direct-nuclear or chemical propulsion, they are not stand-alone systems, since their relatively low thrust levels require the use of high-thrust ferry or lander stages in high gravity applications such as surface-to-orbit propulsion. The extremely long transfer times and inefficient trajectories associated with electric propulsion systems were also found to be a significant drawback.

  19. Performance of a boundary layer ingesting propulsion system

    E-Print Network [OSTI]

    Plas, Angélique (Angélique Pascale)

    2006-01-01

    This thesis presents an assessment of the aerodynamic performance of an aircraft propulsion system, with embedded engines, in the presence of aircraft fuselage boundary layer ingestion (BLI). The emphasis is on defining ...

  20. Novel turbomachinery concepts for highly integrated airframe/propulsion systems

    E-Print Network [OSTI]

    Shah, Parthiv N

    2007-01-01

    Two novel turbomachinery concepts are presented as enablers to advanced flight missions requiring integrated airframe/propulsion systems. The first concept is motivated by thermal management challenges in low-to-high Mach ...

  1. Design tool needs for space nuclear propulsion systems

    SciTech Connect (OSTI)

    Klein, A.C. (Oregon State Univ., Corvallis (United States)); Lewis, B.R. (Atom Analysis, Inc., Portland, OR (United States))

    1992-01-01

    The interest in a return trip for humans to the moon and a pioneering voyage to Mars has rekindled interest in the use of nuclear reactors to provide propulsion for both piloted and robotic space vehicles. Two types of nuclear reactor-based propulsion systems are currently envisioned: nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The former relies on the direct heating and exhaust of a propellant within the core of the reactor, while the latter utilizes ion thruster engines for propulsion, and the nuclear reactor supplies the large amount of electrical power required to drive the engines. Another direct contrast between the NTP and NEP concepts is the length of reactor operation. The NTP nuclear rocket core is required to produce large amounts of thermal power for relatively short bursts (on the order of minutes to hours), and the NEP reactor core operates for a much longer period of time (on the order of days to months) with a steady-state electrical power output. The design of these types of nuclear reactor systems requires the use of specific analysis tools, some of which already exist and others that need considerable development. The general areas in which design tools are needed in the development of systems for space nuclear propulsion include the following: (1) neutronics design - both steady-state and transient applications including thermal feedback effects; (2) thermal-hydraulics design - again, both steady-state and transient applications with coupling to and from the neutronics design codes; (3) materials analysis tools - due to the high temperatures and high stresses required for efficient propulsion operation, increased importance will be placed on understanding the material responses; and (4) systems analysis - these codes allow optimizaiton of the entire propulsion system.

  2. Hybrid Systems State estimation for hybrid systems: applications

    E-Print Network [OSTI]

    Tomlin, Claire

    Hybrid Systems State estimation for hybrid systems: applications to aircraft tracking I. Hwang, H of a stochastic linear hybrid system, given only the continuous system output data, is studied. Well established techniques for hybrid estimation, known as the multiple model adaptive estimation algorithm

  3. High Power Electric Propulsion System for NEP: Propulsion and Trajectory Options

    SciTech Connect (OSTI)

    Koppel, Christophe R.; Duchemin, Olivier; Valentian, Dominique

    2006-01-20

    Recent US initiatives in Nuclear Propulsion lend themselves naturally to raising the question of the assessment of various options and particularly to propose the High Power Electric Propulsion Subsystem (HPEPS) for the Nuclear Electric Propulsion (NEP). The purpose of this paper is to present the guidelines for the HPEPS with respect to the mission to Mars, for automatic probes as well as for manned missions. Among the various options, the technological options and the trajectory options are pointed out. The consequences of the increase of the electrical power of a thruster are first an increase of the thrust itself, but also, as a general rule, an increase of the thruster performance due to its higher efficiency, particularly its specific impulse increase. The drawback is as a first parameter, the increase of the thruster's size, hence the so-called 'thrust density' shall be high enough or shall be drastically increased for ions thrusters. Due to the large mass of gas needed to perform the foreseen missions, the classical xenon rare gas is no more in competition, the total world production being limited to 20 -40 tons per year. Thus, the right selection of the propellant feeding the thruster is of prime importance. When choosing a propellant with lower molecular mass, the consequences at thruster level are an increase once more of the specific impulse, but at system level the dead mass may increase too, mainly because the increase of the mass of the propellant system tanks. Other alternatives, in rupture with respect to the current technologies, are presented in order to make the whole system more attractive. The paper presents a discussion on the thruster specific impulse increase that is sometime considered an increase of the main system performances parameter, but that induces for all electric propulsion systems drawbacks in the system power and mass design that are proportional to the thruster specific power increase (kW/N). The electric thruster specific impulse shall be optimized w.r.t. the mission. The trajectories taken into account in the paper are constrained by the allowable duration of the travel and the launcher size. The multi-arcs trajectories to Mars (using an optimized combination of chemical and Electric propulsion) are presented in detail. The compatibility with NEP systems that implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes fitting in with Ariane 5 or the Space Shuttle bay, is assessed.

  4. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  5. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Allen, G.C.

    1992-09-09

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  6. Remote hybrid power systems

    SciTech Connect (OSTI)

    Barley, C.D.; Winn, C.B. [Colorado State Univ., Fort Collins, CO (United States)

    1997-12-31

    This paper provides an overview of the emerging technology of remote, stand-alone electrical power systems featuring a renewable source (wind or photovoltaics [PV]) as well as a diesel generator, with or without an energy storage device. Other stand-alone power systems are discussed briefly, mainly to emphasize the domain of hybrid systems. The history of hybrid systems is reviewed, beginning with the first wind/diesel system in the late 1970s. Other topics include issues arising from the characteristics of diesel engine/generator sets; simple vs. complex systems; the various energy storage technologies that have been used or proposed; control strategies; modeling; optimization; and some {open_quotes}nuts & bolts{close_quotes} details. The bibliography includes over 130 references which are cited throughout the topical discussions. It is concluded that the technical feasibility of hybrid systems has been demonstrated through many prototype installations, and that areas for further improvements include higher reliability and more economical energy storage devices. 139 refs., 7 figs., 1 tab.

  7. Naval ship propulsion and electric power systems selection for optimal fuel consumption

    E-Print Network [OSTI]

    Sarris, Emmanouil

    2011-01-01

    Although propulsion and electric power systems selection is an important part of naval ship design, respective decisions often have to be made without detailed ship knowledge (resistance, propulsors, etc.). Propulsion and ...

  8. X-Ray Propulsor: Physical Principle for an Electromagnetic Propellantless Propulsion System

    E-Print Network [OSTI]

    Martins, Alexandre A

    2012-01-01

    In this work we are going to develop a physical model that explains how propulsion may be developed in a vacuum by the collision of electrons with an anode. Instead of using principles related to the conservation of mechanical momentum to achieve propulsion, like all the current propulsion systems do, the present system achieves propulsion by using principles related to the conservation of electromagnetic momentum. The complete physical model will be provided and comparison with preliminary experimental results will be performed. These results are important since they show that it is possible to achieve a radical different propulsion system with many advantages.

  9. Separate lubricating system for marine propulsion device

    SciTech Connect (OSTI)

    Matsumoto, K.

    1986-02-25

    This patent describes a lubricating system for a two-cycle internal combustion engine. This system consists of a relatively large remotely positioned lubricant storage tank a relatively small lubricant delivery tank positioned in proximity to the engine for delivering lubricant to its lubricating system and means responsive to the level of lubricant in the delivery tank for transferring lubricant to maintain a predetermined level of lubricant in the delivery tank. The improvement consists of means for providing a warning signal when the level of lubricant in the storage tank falls below a predetermined amount. The means for providing the warning signal operate further to discontinue the transfer of lubricant from the storage tank to the delivery tank. There also is a manual override for operating the means for transferring lubricant from the storage tank to the delivery tank under operator control even when the warning signal has been activated.

  10. Full fuel-cycle comparison of forklift propulsion systems.

    SciTech Connect (OSTI)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  11. Analysis of the Space Propulsion System Problem Using RAVEN

    SciTech Connect (OSTI)

    diego mandelli; curtis smith; cristian rabiti; andrea alfonsi

    2014-06-01

    This paper presents the solution of the space propulsion problem using a PRA code currently under development at Idaho National Laboratory (INL). RAVEN (Reactor Analysis and Virtual control ENviroment) is a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities. It is designed to derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures) and to perform both Monte- Carlo sampling of random distributed events and Event Tree based analysis. In order to facilitate the input/output handling, a Graphical User Interface (GUI) and a post-processing data-mining module are available. RAVEN allows also to interface with several numerical codes such as RELAP5 and RELAP-7 and ad-hoc system simulators. For the space propulsion system problem, an ad-hoc simulator has been developed and written in python language and then interfaced to RAVEN. Such simulator fully models both deterministic (e.g., system dynamics and interactions between system components) and stochastic behaviors (i.e., failures of components/systems such as distribution lines and thrusters). Stochastic analysis is performed using random sampling based methodologies (i.e., Monte-Carlo). Such analysis is accomplished to determine both the reliability of the space propulsion system and to propagate the uncertainties associated to a specific set of parameters. As also indicated in the scope of the benchmark problem, the results generated by the stochastic analysis are used to generate risk-informed insights such as conditions under witch different strategy can be followed.

  12. Hybrid Automata-based CEGAR for Rectangular Hybrid Systems

    E-Print Network [OSTI]

    Liberzon, Daniel

    Hybrid Automata-based CEGAR for Rectangular Hybrid Systems Pavithra Prabhakar, Sridhar Duggirala- example guided abstraction-refinement (CEGAR) for systems modelled as rectangular hybrid automata. The main difference, between our ap- proach and previous proposals for CEGAR for hybrid automata

  13. Global optimization of hybrid systems

    E-Print Network [OSTI]

    Lee, Cha Kun

    2006-01-01

    Systems that exhibit both discrete state and continuous state dynamics are called hybrid systems. In most nontrivial cases, these two aspects of system behavior interact to such a significant extent that they cannot be ...

  14. Hybrid spread spectrum radio system

    DOE Patents [OSTI]

    Smith, Stephen F. (London, TN) [London, TN; Dress, William B. (Camas, WA) [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  15. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect (OSTI)

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  16. Hybrid powertrain system

    DOE Patents [OSTI]

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  17. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  18. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, Donald M. (Lagrange, IL); He, Jianliang (Woodridge, IL); Johnson, Larry R. (Naperville, IL)

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  19. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  20. Efficiency Improvement in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration

    Broader source: Energy.gov [DOE]

    Hybridization of heavy-duty truck propulsion with thermoelectric generator and potential efficiency enhancement

  1. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    SciTech Connect (OSTI)

    Clark, J.S.

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  2. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  3. Hybrid solar lighting systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  4. Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish

    E-Print Network [OSTI]

    Wood, Robert

    Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish Kyu and fabrica- tion of a centimeter-scale propulsion system for a robotic fish. The key to the design are customized to provide the necessary work output for the microrobotic fish. The flexure joints, electrical

  5. Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems

    E-Print Network [OSTI]

    White, Daniel B., Jr

    2011-01-01

    High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

  6. Principles of Rotating Plasma in Plasma Propulsion Systems N. J. Fisch

    E-Print Network [OSTI]

    Principles of Rotating Plasma in Plasma Propulsion Systems N. J. Fisch Department of Astrophysical Sciences Princeton University 33rd International Electric Propulsion Conference (IEPC2013 in crossed electric and magnetic fields. This talk reviews at a tutorial level some of the interesting

  7. Control Engineering Practice 15 (2007) 149162 Hierarchical control of aircraft propulsion systems: Discrete

    E-Print Network [OSTI]

    Ray, Asok

    2007-01-01

    , and domain knowledge of gas turbine engine propulsion. ARTICLE IN PRESS wwwControl Engineering Practice 15 (2007) 149­162 Hierarchical control of aircraft propulsion systems: Discrete event supervisor approach Murat Yasar, Asok Rayà Mechanical and Nuclear Engineering Department

  8. Distributed Theorem Proving for Distributed Hybrid Systems

    E-Print Network [OSTI]

    Platzer, André

    system with a varying number of arbitrarily many cars. 1 Introduction Hybrid systems with joint discrete a multi-agent system, e.g., distributed car control systems. Such systems form distributed hybrid systemsDistributed Theorem Proving for Distributed Hybrid Systems David W. Renshaw, Sarah M. Loos

  9. Evaluation of the 2007 Toyota Camry Hybrid Synergy Drive System

    SciTech Connect (OSTI)

    Burress, T A; Coomer, C L; Campbell, S L; Seiber, L E; Marlino, L D; Staunton, R H; Cunningham, J P

    2008-04-15

    The U.S. Department of Energy (DOE) and American automotive manufacturers General Motors, Ford, and DaimlerChrysler began a five-year, cost-shared partnership in 1993. Currently, hybrid electric vehicle (HEV) research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. Under the FCVT program, support is provided through a three-phase approach [1] which is intended to: • Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry’s recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; • Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and • Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed in this area will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in hybrid electric, electric, and fuel-cell-powered vehicles.

  10. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. ); Todosow, M. )

    1992-09-22

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  11. Hybrid Systems: From Verification to Falsification

    E-Print Network [OSTI]

    Kavraki, Lydia E.

    Hybrid Systems: From Verification to Falsification Erion Plaku, Lydia E. Kavraki, and Moshe Y}@cs.rice.edu Abstract. We propose HyDICE, Hybrid DIscrete Continuous Exploration, a multi-layered approach for hybrid. The discrete search uses the discrete transitions of the hybrid system and coarse-grained decompositions

  12. Assessment of propfan propulsion systems for reduced environmental impact

    E-Print Network [OSTI]

    Peters, Andreas, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    Current aircraft engine designs tend towards higher bypass ratio, low-speed fan designs for improved fuel burn, reduced emissions and noise. Alternative propulsion concepts include counter-rotating propfans (CRPs) which ...

  13. Modeling and Analysis ofModeling and Analysis of Hybrid Control SystemsHybrid Control Systems

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Modeling and Analysis ofModeling and Analysis of Hybrid Control SystemsHybrid Control Systems Karl.kth.se/~kallej MOVEP 2006, Bordeaux, France Karl H. Johansson, Hybrid control systems, MOVEP, Bordeaux on commands and autonomous actions #12;Karl H. Johansson, Hybrid control systems, MOVEP, Bordeaux, 2006

  14. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid...

  15. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    SciTech Connect (OSTI)

    Lammert, M.

    2008-06-01

    This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

  16. Hybrid powertrain system

    DOE Patents [OSTI]

    Hughes, Douglas A. (Wixom, MI)

    2007-09-25

    A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

  17. Hybrid powertrain system

    DOE Patents [OSTI]

    Hughes, Douglas A.

    2006-08-01

    A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

  18. A verification framework for hybrid systems

    E-Print Network [OSTI]

    Mitra, Sayan

    2007-01-01

    Combining; discrete state transitions with differential equations, Hybrid system models provide an expressive formalism for describing software systems that interact with a physical environment. Automatically checking ...

  19. Hybrid slab-microchannel gel electrophoresis system

    DOE Patents [OSTI]

    Balch, Joseph W. (Livermore, CA); Carrano, Anthony V. (Livermore, CA); Davidson, James C. (Livermore, CA); Koo, Jackson C. (San Ramon, CA)

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  20. Hybrid chirped pulse amplification system

    DOE Patents [OSTI]

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  1. New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Eudy, L.

    2006-01-01

    This report focuses on the evaluation of compressed natural gas (CNG) and diesel hybrid electric bus propulsion systems in New York City Transit's transit buses.

  2. Hybrid spread spectrum radio system

    DOE Patents [OSTI]

    Smith, Stephen F. (London, TN); Dress, William B. (Camas, WA)

    2010-02-02

    Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.

  3. Quantum technologies with hybrid systems

    E-Print Network [OSTI]

    G. Kurizki; P. Bertet; Y. Kubo; K. Mølmer; D. Petrosyan; P. Rabl; J. Schmiedmayer

    2015-04-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for information processing, secure communication and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multi-tasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and the challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  4. Hybrid Geometric Reduction of Hybrid Systems Aaron D. Ames and Shankar Sastry

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Hybrid Geometric Reduction of Hybrid Systems Aaron D. Ames and Shankar Sastry Abstract-- This paper presents a unifying framework in which to carry out the hybrid geometric reduction of hybrid systems, generalizing classical reduction to a hybrid setting. I. INTRODUCTION The reduction of mechanical systems

  5. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    SciTech Connect (OSTI)

    Kajimura, Y. [Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Science and Technology Agency (JST), CREST 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012 (Japan); Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H. [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate school of Engineering Sciences, Kyushu University, Kasugakouen 6-1, Kasuga, Fukuoka 816-580 (Japan)

    2008-12-31

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction ({alpha}) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease {alpha} value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  6. Evaluation of 2005 Honda Accord Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Burress, T.A.; Marlino, L.D.

    2006-09-11

    The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

  7. Abstract--A fish-like propulsion system seems to be an interesting and efficient alternative to propellers in small

    E-Print Network [OSTI]

    Papadopoulos, Evangelos

    1 Abstract--A fish-like propulsion system seems to be an interesting and efficient alternative. Finally there is a description of the control system implementation for the tail's motion. Index terms--Fish propulsion, underwater robot, fish design. I. INTRODUCTION LTHOUGH almost all marine vehicles use propellers

  8. A low-alpha nuclear electric propulsion system for lunar and Mars missions

    SciTech Connect (OSTI)

    Coomes, E.P.; Dagle, J.E.

    1992-01-01

    The advantages of using electric propulsion are well-known in the aerospace community. The high specific impulse and, therefore, lower propellant requirements make it a very attractive propulsion option for the Space Exploration Initiative (SEI). Recent studies have shown that nuclear electric propulsion (NEP) is not only attractive for the transport of cargo but that fast piloted missions to Mars are possible as well, with alphas on the order of 7.5 kg/kW. An advanced NEP system with a specific power (alpha) of 2.5 kg/kW or less would significantly enhance the manned mission option of NEP by reducing the trip time even further. This paper describes an advanced system that combines the PEGASUS Drive with systems of the Rotating Multimegawatt Boiling Liquid Metal (RMBLR) power system that was developed as part of the DOE multimegawatt program and just recently declassified. In its original configuration, the PEGASUS Drive was a 10-MWe propulsion system. The RMBLR was a 20-MW electric system. By combining the two, a second-generation PEGASUS Drive can be developed with an alpha less than 2.5 kg/kW. This paper will address the technology advancements incorporated into the PEGASUS Drive, the analysis of a fast piloted mission and an unmanned cargo transport Mars mission, and the integration of laser power beaming to provide surface power.

  9. System for controlling a hybrid energy system

    DOE Patents [OSTI]

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  10. Sensitivity analysis of oscillating hybrid systems

    E-Print Network [OSTI]

    Saxena, Vibhu Prakash

    2010-01-01

    Many models of physical systems oscillate periodically and exhibit both discrete-state and continuous-state dynamics. These systems are called oscillating hybrid systems and find applications in diverse areas of science ...

  11. Hybrid Cotangent Bundle Reduction of Simple Hybrid Mechanical Systems with Symmetry

    E-Print Network [OSTI]

    Ames, Aaron

    Hybrid Cotangent Bundle Reduction of Simple Hybrid Mechanical Systems with Symmetry Aaron D. Ames the notion of a simple hybrid mechanical system, which generalizes mechanical systems to include unilateral constraints on the configuration space. From such a system we obtain, explicitly, a simple hybrid system

  12. National Aeronautics and Space Administration In-Space propulSIon SyStemS roadmap

    E-Print Network [OSTI]

    Waliser, Duane E.

    National Aeronautics and Space Administration In-Space propulSIon SyStemS roadmap Technology Area Missions TA02-24 Acknowledgements TA02-24 #12;Foreword NASA's integrated technology roadmap, including both Roadmap, an integrated set of fourteen technology area roadmaps, recommending the overall technology

  13. MRI-based Microrobotic system for the Propulsion and Navigation of Ferromagnetic Microcapsules

    E-Print Network [OSTI]

    Boyer, Edmond

    MRI-based Microrobotic system for the Propulsion and Navigation of Ferromagnetic Microcapsules 3-D navigation of a microdevice in blood ves- sels, namely: (i) vessel path planner, (ii) magnetic, magnetic resonance imaging, minimally invasive interventions, real-time control Email address: antoine

  14. Mission analysis for hybrid thermionic nuclear reactor LEO-to-GEO transfer applications

    SciTech Connect (OSTI)

    Widman, F.W. Jr.; North, D.M. (Rockwell International/Rocketdyne Division, 6633 Canoga Avenue, Canoga Park, California 91303 (United States)); Choong, P.T.; Teofilo, V.L. (Lockheed Missiles and Space Company, Inc., 1111 Lockheed Way, Synnyvale, California 94088 (United States))

    1993-01-10

    This paper details the results of mission analyses concerning a hybrid STAR-C based system, which is based on a safe solid fuel form for high-temperature reactor core operation and a rugged planar thermionic energy converter for long-life steady-state electric power production. Hybrid power/propulsion system concepts are shown to offer superior performance capabilities for Low-Earth-Orbit (LEO) to Geosynchronous-Earth-Orbit (GEO) orbital transfer applications over chemical propulsion systems. A key feature of the hybrid power/propulsion system is that the propulsion system uses the on-board payload power system. Mission results for hybrid concepts using Nuclear Thermal Propulsion (NTP), Nuclear Electric Propulsion (NEP), and combination of NTP and NEP are discussed.

  15. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    SciTech Connect (OSTI)

    Clark, J.S.; George, J.A.; Gefert, L.P.; Doherty, M.P.; Sefcik, R.J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power.

  16. Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.

    2009-12-01

    Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

  17. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced, Energy- Efficient Hybrid Membrane System for Industrial Water Reuse New Hybrid Membrane System Utilizes Industrial Waste Heat to Power Water Purification Process As...

  18. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  19. 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  20. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  1. Advanced Methods Approach to Hybrid Powertrain Systems Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus...

  2. Hybrid systems process mixed wastes

    SciTech Connect (OSTI)

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  3. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    SciTech Connect (OSTI)

    Barnitt, R. A.

    2008-06-01

    The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

  4. Formal Verification of Hybrid Systems Rajeev Alur

    E-Print Network [OSTI]

    Alur, Rajeev

    , of the system un- der design, and performs extensive analysis with respect to correctness requirements-1-4503-0714-7/11/10 ...$5.00. mathematical model for design of embedded control systems is hybrid systems that combines for dynamical systems. Such models can capture both the controller -- the system under design, and the plant

  5. Reuse of hybrid car power systems

    E-Print Network [OSTI]

    Kirkby, Nicholas (Nicholas J.)

    2015-01-01

    Used hybrid car power systems are inexpensive and capable of tens of kilowatts of power throughput. This paper documents a process for using the second generation Toyota Prius inverter module to drive a three phase permanent ...

  6. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  7. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  8. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect (OSTI)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  9. Hybrid Routhian Reduction of Lagrangian Hybrid Systems Aaron D. Ames and Shankar Sastry

    E-Print Network [OSTI]

    Ames, Aaron

    Hybrid Routhian Reduction of Lagrangian Hybrid Systems Aaron D. Ames and Shankar Sastry Department,sastry}@eecs.berkeley.edu Abstract-- This paper extends Routhian reduction to a hybrid setting, i.e., to systems that display both with unilateral constraints on the set of admissible configurations. This naturally yields the notion of a hybrid

  10. Hybrid Systems with Finite Bisimulations Gerardo Lafferriere1

    E-Print Network [OSTI]

    Pappas, George J.

    Hybrid Systems with Finite Bisimulations Gerardo Lafferriere1 , George J. Pappas2 , and Shankar is one of the main approach- es to hybrid system analysis. Decidability questions for verification algo classes of planar hybrid systems. 1 Introduction Hybrid systems consist of finite state machines

  11. Modeling and Optimization of Hybrid Solar Thermoelectric Systems...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Modeling and Optimization of Hybrid Solar Thermoelectric Systems with Thermosyphons Citation Details In-Document Search Title: Modeling and Optimization of Hybrid...

  12. Manzanita Hybrid Power system Project Final Report

    SciTech Connect (OSTI)

    Trisha Frank

    2005-03-31

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit, and in 1995 the Tribe established the Manzanita Renewable Energy Office. Through the U.S. Department of Energy's Tribal Energy Program the Band received funds to install a hybrid renewable power system to provide electricity to one of the tribal community buildings, the Manzanita Activities Center (MAC building). The project began September 30, 1999 and was completed March 31, 2005. The system was designed and the equipment supplied by Northern Power Systems, Inc, an engineering company with expertise in renewable hybrid system design and development. Personnel of the National Renewable Energy Laboratory provided technical assistance in system design, and continued to provide technical assistance in system monitoring. The grid-connected renewable hybrid wind/photovoltaic system provides a demonstration of a solar/wind energy hybrid power-generating project on Manzanita Tribal land. During the system design phase, the National Renewable Energy Lab estimated that the wind turbine is expected to produce 10,000-kilowatt hours per year and the solar array 2,000-kilowatt hours per year. The hybrid system was designed to provide approximately 80 percent of the electricity used annually in the MAC building. The project proposed to demonstrate that this kind of a system design would provide highly reliable renewable power for community uses.

  13. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    SciTech Connect (OSTI)

    Borowski, S.K.

    1994-09-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  14. A comprehensive control strategy for integrated flight/propulsion systems

    E-Print Network [OSTI]

    Ray, Asok

    systems in advanced aircraft has attracted much attention because of ever increasing demand on enhancement in the vehicle operation envelope and compensates for potential unbalance and any other undesirable action Reber Building, University Park, PA 16802, USA. email: axr2@psu.edu applied for modelling and control

  15. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    SciTech Connect (OSTI)

    Myrabo, L.N.; Rosa, R.J.

    2004-03-30

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant 'Mercury' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a 'tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off and landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic 'mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond 'idle' power, or virtually 'disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely 'green' and independent of Earth's limited fossil fuel reserves.

  16. Approximate bisimulation for a class of stochastic hybrid systems

    E-Print Network [OSTI]

    Pappas, George J.

    , target tracking, robotics, and power systems [35]. The field of stochastic hybrid systems is a veryApproximate bisimulation for a class of stochastic hybrid systems (Invited Paper) Agung Julius of stochastic hybrid systems, namely, the jump linear stochastic systems (JLSS). The idea is based

  17. Control system for a hybrid powertrain system

    DOE Patents [OSTI]

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  18. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    SciTech Connect (OSTI)

    Powell, J.R.; Ludewig, H.; Horn, F.L.; Araj, K.; Benenati, R.; Lazareth, O.; Slovik, G.; Solon, M.; Tappe, W.; Belisle, J.

    1987-01-01

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ..delta..V missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined.

  19. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    SciTech Connect (OSTI)

    Noble, Robert J.; Amini, Rashied; Beauchamp, Patricia M.; Bennett, Gary L.; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; Fernandez, Yan R.; Grundy, Will; Khan, Mohammed Omair; King, David Q.; Lang, Jared; Meech, Karen J.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; Spilker, Thomas; West, John L.; ,

    2010-05-26

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  20. Preliminary assessment of high power, NERVA-class dual-mode space nuclear propulsion and power systems

    SciTech Connect (OSTI)

    Buksa, J.J.; Kirk, W.L.; Cappiello, M.W. (Nuclear Technology and Engineering Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (US))

    1991-01-05

    A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the ROVER reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.

  1. Reinforcement Learning Based Power Management for Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Reinforcement Learning Based Power Management for Hybrid Electric Vehicles Xue Lin 1 , Yanzhi Wang combustion engine (ICE) propelled vehicles, hybrid electric vehicles (HEVs) can achieve both higher fuel economy and lower pollution emissions. The HEV consists of a hybrid propulsion system containing one ICE

  2. New York City Transit Hybrid and CNG Transit Buses: Final Evaluation Results

    SciTech Connect (OSTI)

    Barnitt, R.; Chandler, K.

    2006-11-01

    This report describes the evaluation results for new Orion VII buses at NYCT with CNG propulsion and new hybrid propulsion.

  3. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    SciTech Connect (OSTI)

    George, J.A.

    1991-09-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  4. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH); Gale, Allan Roy (Livonia, MI)

    1999-01-01

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  5. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  6. Hybrid Energy System Modeling in Modelica

    SciTech Connect (OSTI)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  7. A bimodal power and propulsion system based on cermet fuel and heat pipe energy transport

    SciTech Connect (OSTI)

    Polansky, G.F. [Sandia National Labs., Albuquerque, NM (United States); Gunther, N.A. [Gunther (Norman A.), San Jose, CA (United States); Rochow, R.F. [Novatech, Lynchburg, VA (United States); Bixler, C.H. [Bixler (Charles H.), Mannford, OK (United States)

    1995-05-01

    Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal reactor system with performance potential to permit more than 70% of the instrumented payload of the Titan IV/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies.

  8. Verifying Hybrid Systems Modeled as Timed Automata: A Case Study?

    E-Print Network [OSTI]

    -Vaandrager timed automata model, of the Steam Boiler Controller problem, a hybrid systems benchmark. This pa- per

  9. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    SciTech Connect (OSTI)

    Vishal Patel

    2015-02-01

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predicted carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.

  10. Hybrid Dynamical Systems, or HDS: The Ultimate Switching Experience

    E-Print Network [OSTI]

    Branicky, Michael S.

    Hybrid Dynamical Systems, or HDS: The Ultimate Switching Experience Michael S. Branicky Laboratory concentrated on formalizing the notion of a hybrid system as switching among an indexed collection of dynamical give a quick overview of the area of hybrid systems. I also briefly review the formal definition

  11. Hybrid Systems: Review and Recent Progress Panos J. Antsaklis

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    Hybrid Systems: Review and Recent Progress Panos J. Antsaklis Department of Electrical Engineering of this volume focuses on hybrid dynamical systems, an area of research that has developed as a result communities. This chapter provides a broad-based introduction to hybrid systems and discusses a number

  12. Optimal Control of Switched Hybrid Systems: A Brief Survey

    E-Print Network [OSTI]

    Antsaklis, Panos

    Optimal Control of Switched Hybrid Systems: A Brief Survey Technical Report of the ISIS Group;1 Optimal Control of Switched Hybrid Systems: A Brief Survey Feng Zhu and Panos J. Antsaklis Department a few. The problem of determining optimal control laws for hybrid systems and in particular for switched

  13. Nonlinear Hybrid Dynamical Systems: Modeling, Optimal Control, and Applications

    E-Print Network [OSTI]

    Stryk, Oskar von

    Nonlinear Hybrid Dynamical Systems: Modeling, Optimal Control, and Applications Martin Buss1¨unchen, Germany Abstract. Nonlinear hybrid dynamical systems are the main focus of this paper. A modeling Introduction The recent interest in nonlinear hybrid dynamical systems has forced the merger of two very

  14. APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO

    E-Print Network [OSTI]

    APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. By MAHADEVAN Chapter Page 1. Introduction 1.1. Overview of hybrid ground source heat pump systems 1.2. Literature review 1.3. Thesis objective and scope 2. Optimal sizing of hybrid ground source heat pump system

  15. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01

    Common Passive and Hybrid Heating Cooling Systems Michael].THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

  16. Efficiency of Fish Propulsion

    E-Print Network [OSTI]

    Maertens, A P; Yue, D K P

    2014-01-01

    It is shown that the system efficiency of a self-propelled flexible body is ill-defined unless one considers the concept of quasi-propulsive efficiency, defined as the ratio of the power needed to tow a body in rigid-straight condition over the power it needs for self-propulsion, both measured for the same speed. Through examples we show that the quasi-propulsive efficiency is the only rational non-dimensional metric of the propulsive fitness of fish and fish-like mechanisms. Using two-dimensional viscous simulations and the concept of quasi-propulsive efficiency, we discuss the efficiency two-dimensional undulating foils. We show that low efficiencies, due to adverse body-propulsor hydrodynamic interactions, cannot be accounted for by the increase in friction drag.

  17. Reliability comparison of various nuclear propulsion configurations for Mars mission

    SciTech Connect (OSTI)

    Segna, D.R. [USDOE Richland Operations Office, WA (United States); Dagle, J.E. [Pacific Northwest Lab., Richland, WA (United States); Lyon, W.F. III [Westinghouse Hanford Co., Richland, WA (United States)

    1992-01-01

    Currently, trade-offs are being made among the various propulsion systems being considered for the Space Exploration Initiative (SEI) missions. It is necessary to investigate the reliability aspects as well as the efficiency, mass savings, and experience characteristics of the various configurations. Reliability is a very important factor for the SEI missions because of the long duration and because problems will be fixed onboard. The propulsion options that were reviewed consist of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP) and various configurations of each system. There were four configurations developed for comparison with the NTP as baselined in the Synthesis (1991): (1) NEP, (2) hybrid NEP/NTP, (3) hybrid with power beaming, and (4) NTP upper stage on the heavy lift launch vehicle (HLLV). The comparisons were based more or less on a qualitative review of complexity, stress levels and operations for each of the four configurations. Each configuration included a pressurized NEP and an NTP ascent stage propulsion system for the Mars mission.

  18. Hybrid Renewable Energy Systems for a Dynamically Positioned Buoy

    E-Print Network [OSTI]

    Wood, Stephen L.

    i Hybrid Renewable Energy Systems for a Dynamically Positioned Buoy by Robert Sean Pagliari ________________________ #12; ii We the undersigned committee hereby approve the attached thesis Hybrid Renewable Energy, College of Engineering #12; iii Abstract Hybrid Renewable Energy Systems for a Dynamically Positioned

  19. Benefits of battery-uItracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

    2012-01-01

    This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

  20. Propulsion System Materials Program semiannual progress report for April 1995 through September 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    Significant accomplishments in fabricating ceramic components for the DOE, NASA, and DOD advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a 5-year program plan was developed with extensive input from private industry. During the course of the Propulsion System Materials Program, remarkable progress has been made in the development of reliable structural ceramics. However, further work is needed to reduce the cost of ceramics to facilitate their commercial introduction, especially in the highly cost-sensitive automotive market. To this end, the direction of the Propulsion System Materials Program is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported to include near-term (5--10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned. The work elements are as follows: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, low-expansion ceramics, and testing and data base development.

  1. Reachability Analysis of Stochastic Hybrid Systems: A Biodiesel Production System

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    Reachability Analysis of Stochastic Hybrid Systems: A Biodiesel Production System Derek Riley problem because it provides a formal framework to analyze complex systems. Biodiesel production is a realistic biochemical process that can be modeled and analyzed using SHS methods. Analysis of a biodiesel

  2. HybridStore: An Efficient Data Management System for Hybrid Flash-Based Sensor Devices

    E-Print Network [OSTI]

    Baras, John S.

    HybridStore: An Efficient Data Management System for Hybrid Flash-Based Sensor Devices Baobing WangStore, a novel efficient resource- aware data management system for flash-based sensor devices to store and query, designing an efficient resource- aware data management system for flash-based sensor devices is a very

  3. Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems

    E-Print Network [OSTI]

    1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power OF HIGH POWER NUCLEAR ELECTRIC POWER AND PROPULSION SYSTEMS by Daniel B. White Jr. Submitted for the degree of Doctor of Philosophy in Aeronautics and Astronautics ABSTRACT High power nuclear electric

  4. Hybrid electric vehicle power management system

    DOE Patents [OSTI]

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  5. Self-learning control system for plug-in hybrid vehicles

    DOE Patents [OSTI]

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  6. Hybrid quantum-classical models as constrained quantum systems

    E-Print Network [OSTI]

    M. Radonjic; S. Prvanovic; N. Buric

    2012-06-07

    Constrained Hamiltonian description of the classical limit is utilized in order to derive consistent dynamical equations for hybrid quantum-classical systems. Starting with a compound quantum system in the Hamiltonian formulation conditions for classical behavior are imposed on one of its subsystems and the corresponding hybrid dynamical equations are derived. The presented formalism suggests that the hybrid systems have properties that are not exhausted by those of quantum and classical systems.

  7. Brayton power conversion system parametric design modelling for nuclear electric propulsion. Final report

    SciTech Connect (OSTI)

    Ashe, T.L.; Otting, W.D.

    1993-11-01

    The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy.

  8. Multiple pole electromagnetic propulsion system with separated ballistic guidance and electrical current contact surfaces

    DOE Patents [OSTI]

    Sims, Jr., James R. (Los Alamos, NM)

    2008-07-15

    An electromagnetic propulsion system is disclosed having separate rails for ballistic guidance and for carrying current. In this system, one or more pairs of ballistic guidance rails are provided, with each ballistic guidance rail having a pair of current carrying rails joined to it to form a combined rail. Each combined rail is separated electrically from adjacent combined rails by electrically insulating blocks. Each of the current carrying rails in a given combined rail pair have the same electrical polarity, and the polarities alternate between adjacent combined rails. Armatures contact current carrying rails to complete the circuit to generate the accelerating Lorentz force on the armatures. Bore riders on the sabot and/or projectile are in contact with the ballistic guide rails. Separation of the current carrying and ballistic guidance functions increases resistance of the system to rail movement and bending, as well as reduced wear/damage to the rails. In further embodiments, a circumferential over wrap providing compressive force on the rails further increases resistance of the system to rail movement and bending.

  9. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N.; Burress, B.A.; Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  10. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  11. Modular hybrid plasma reactor and related systems and methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patent Search Success Stories News Events Find More Like This Return to Search Modular hybrid plasma reactor and related systems and methods United States Patent Patent Number:...

  12. Modular hybrid plasma reactor and related systems and methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (27) Visual Patent Search Success Stories News Events Return to Search Modular hybrid plasma reactor and related systems and methods United States Patent Application ***...

  13. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect (OSTI)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  14. Definition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear Electric Propulsion and Power Systems

    E-Print Network [OSTI]

    Definition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear, expansion and screening of Nuclear Electric Propulsion and Power concepts capable of achieving planetary left blank 2 #12;Definition, Expansion and Screening of Architectures for Planetary Exploration Class

  15. Interchange Formats for Hybrid Systems: Review and Proposal

    E-Print Network [OSTI]

    Carloni, Luca

    and formal verification) and synthesis of hybrid systems, and we give a recommendation for an interchange to be powerful design representations for system- level design in particular for embedded controllers. The term: one would prefer to define a common model of computation for hybrid systems that should be used

  16. AN INTRODUCTION TO HYBRID SYSTEM MODELING, ANALYSIS, AND CONTROL

    E-Print Network [OSTI]

    Pappas, George J.

    AN INTRODUCTION TO HYBRID SYSTEM MODELING, ANALYSIS, AND CONTROL JOHN LYGEROS, GEORGE PAPPAS as models of large scale systems. We provide an overview of modeling, analysis, and controller synthesis automatically. Finally, we review a method for designing controllers for hybrid systems with reachability

  17. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for October 1998 Through March 1999

    SciTech Connect (OSTI)

    Johnson, R.D.

    1999-06-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.

  18. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. ); Silverstein, C.C. )

    1992-01-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  19. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect (OSTI)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1992-06-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  20. Lyapunov-Like Conditions for the Existence of Zeno Behavior in Hybrid and Lagrangian Hybrid Systems

    E-Print Network [OSTI]

    Ames, Aaron

    Lyapunov-Like Conditions for the Existence of Zeno Behavior in Hybrid and Lagrangian Hybrid Systems Andrew Lamperski and Aaron D. Ames Abstract-- Lyapunov-like conditions that utilize generaliza- tions configuration space, we utilize our Lyapunov-like conditions to obtain easily verifiable necessary

  1. Study of a heat rejection system for the Nuclear Electric Propulsion (NEP) spacecraft. Final report

    SciTech Connect (OSTI)

    Ernest, D.M.

    1982-11-01

    Two different heat pipe radiator elements, one intended for use with the power conversion subsystem of the NASA funded nuclear electric propulsion (NEP) spacecraft, and one intended for use with the DOE funded space power advanced reactor (SPAR) system were tested and evaluated. The NEP stainless steel/sodium heat pipe was 4.42 meters long and had a 1 cm diameter. Thermal performance testing at 920 K showed a non-limited power level of 3560 watts, well in excess of the design power of 2600 watts. This test verified the applicability of screen arteries for use in long radiator heat pipes. The SPAR titanium/potassium heat pipe was 5.5 meters long and had a semicircular crossection with a 4 cm diameter. Thermal performance testing at 775 K showed a maximum power level of 1.86 kW, somewhat short of the desired 2.6 kW beginning of life design requirement. The reduced performance was shown to be the result of the inability of the evaporator wall wick (shot blasted evaporator wall) to handle the required liquid flow.

  2. Comparison of Hybrid Systems and Fluid Stochastic Petri Nets \\Lambda

    E-Print Network [OSTI]

    Tuffin, Bruno

    Comparison of Hybrid Systems and Fluid Stochastic Petri Nets \\Lambda Bruno Tuffin , Dong S. Chen Engineering Duke University, Durham, NC 27708­0291, U.S.A. Abstract. Hybrid Systems are models of interacting digital and continuous devices with applications in the control of aircraft, computers, or modern cars

  3. Performance Analysis of Manufacturing Systems Under Hybrid Control Policies

    E-Print Network [OSTI]

    Gershwin, Stanley B.

    is widely used in practice, and is seen as the \\state of the art" in lean manufacturing. We present severalPerformance Analysis of Manufacturing Systems Under Hybrid Control Policies by Asbjoern M. Bonvik of Manufacturing Systems Under Hybrid Control Policies by Asbjoern M. Bonvik Submitted to the Department

  4. Charge Allocation for Hybrid Electrical Energy Storage Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    Charge Allocation for Hybrid Electrical Energy Storage Systems Qing Xie1, Yanzhi Wang1, Younghyun Hybrid electrical energy storage (HEES) systems, composed of multiple banks of heterogeneous electrical to efficiently store and retrieve electrical energy while attaining performance metrics that are close

  5. Networked Architecture for Hybrid Electrical Energy Storage Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    Networked Architecture for Hybrid Electrical Energy Storage Systems Younghyun Kim, Sangyoung Park, pedram}@usc.edu ABSTRACT A hybrid electrical energy storage (HEES) system that consists of multiple, heterogeneous electrical energy storage (EES) elements is a promising solution to achieve a cost-effective EES

  6. Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems

    E-Print Network [OSTI]

    : Formal Verification, Abstraction, Model Checking, Hybrid Systems, Refinement, Counterexamples #12Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems Edmund Clarke a counterexample generated by the model checker. For hybrid systems, analysis of the counterexample requires

  7. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01

    Passive and Hybrid Heating Cooling Systems Michael]. Holtz,PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS Michael J.of passive and hybrid space heating and cooling systems are

  8. Ultracapacitors for Electric and Hybrid Vehicles - Performance Requirements, Status of the Technology, and R&D Needs

    E-Print Network [OSTI]

    Burke, Andrew F

    1995-01-01

    Pulse Power Devices in Electric Vehicle Propulsion Systems,the Tenth International Electric Vehicle Symposium (EVS-10),4. Burke, A.F. , Hybrid/Electric Vehicle Design Options and

  9. Wankel engine for hybrid powertrain

    SciTech Connect (OSTI)

    Butti, A.; Site, V.D.

    1995-12-31

    The Wankel engine is suited to be used to drive hybrid propulsion systems. The main disadvantage of hybrid propulsion systems is the complexity that causes a high weight and large dimensions. For these reason hybrid systems are more suitable for large size vehicle (buses, vans) rather than for small passenger cars. A considerable reduction of hybrid systems weight and dimensions can be obtained using a Wankel rotary engine instead of a conventional engine. The Wankel engine is light, compact, simple, and produces low noise and low vibrations. Therefore a Wankel engine powered hybrid system is suited to be used on small cars. In this paper a 1,000 kg parallel hybrid car with continuously variable transmission and a 6,000 kg series hybrid minibus both equipped with Wankel engines are considered. The Wankel engine works at steady state to minimize fuel consumption and exhaust emissions. The simulation of the behavior of these two vehicles during a ECE + EUDC test cycle is presented in order to evaluate the performances of the systems.

  10. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    SciTech Connect (OSTI)

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds to the complexity of the mission architecture.

  11. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  12. Analysis of Advanced Actinide-Fueled Energy Systems for Deep Space Propulsion Applications 

    E-Print Network [OSTI]

    Guy, Troy Lamar

    2011-02-22

    Collimator Reactor JANIS Java-based Nuclear Information Software JIMO Jupiter Icy Moons Orbiter LWR Light Water Reactor NASA National Aeronautics and Space Administration NDDEC Nuclear Driven Direct Energy Conversion NEP Nuclear Electric Propulsion... Metric T1/2: Half-Life 18 - 900 years A: Specific Activity 2.6 neutrons per neutron absorbed ?F: Fission Cross Section > U, Pu baseline...

  13. Proton corebeam system in the expanding solar wind: Hybrid simulations

    E-Print Network [OSTI]

    California at Berkeley, University of

    Proton corebeam system in the expanding solar wind: Hybrid simulations Petr Hellinger1,2 and Pavel 9 November 2011. [1] Results of a twodimensional hybrid expanding box simulation of a proton to a decrease of the ratio between the proton perpendicular and parallel temperatures as well as to an increase

  14. AT GUANTANAMO BAY: A HYBRID WIND-DIESEL SYSTEM

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND POWER AT GUANTANAMO BAY: A HYBRID WIND-DIESEL SYSTEM FOR THE US NAVY AT GUANTANAMO NAVAL BASE Laboratory and are actively developing what will be the world's largest wind-diesel hybrid electric plant. The pending installation of four 950-kW wind turbines to supplement the 22.8 MW diesel electricity plant

  15. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  16. HYDRODYNAMICS OF UNDULATORY PROPULSION GEORGE V. LAUDER

    E-Print Network [OSTI]

    Lauder, George V.

    of a quantitative nature. The combination of highresolution highspeed video systems, high powered continuous wave11 HYDRODYNAMICS OF UNDULATORY PROPULSION GEORGE V. LAUDER ERIC D. TYTELL I. Introduction II. Classical Modes of Undulatory Propulsion III. Theory of Undulatory Propulsion A. Resistive Models B

  17. Progress in colloid propulsion

    E-Print Network [OSTI]

    López Urdiales, Jóse Mariano, 1977-

    2004-01-01

    In the early decades of the Space Age, a great deal of work was put into the development of the Colloid Thruster as an electric propulsion system for spacecraft. In spite of the effort by the end of the 70s the programs ...

  18. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  19. Refinement of Hybrid Systems from Formal Models to Design Languages

    E-Print Network [OSTI]

    Cengarle, María Victoria

    of high-level design of a control system, it is highly desirable to use representations that accuratelyRefinement of Hybrid Systems from Formal Models to Design Languages Jan Romberg Systems & Software Abstract System-level design for discrete-continuous embedded systems is a complex and error- prone task

  20. Control system design for a parallel hybrid electric vehicle 

    E-Print Network [OSTI]

    Buntin, David Leighton

    1994-01-01

    This thesis addresses the design of control systems for a parallel hybrid electric drive train which is an alternative to conventional passenger vehicles. The principle components of the drive train are a small internal combustion engine...

  1. Bayesian regularisation methods in a hybrid MLP-HMM system

    E-Print Network [OSTI]

    Renals, Steve; MacKay, David

    1993-01-01

    We have applied Bayesian regularisation methods to multi-layer percepuon (MLP) training in the context of a hybrid MLP-HMM (hidden Markov model) continuous speech recognition system. The Bayesian framework adopted here ...

  2. The assessment of battery-ultracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    He, Yiou

    2014-01-01

    Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

  3. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  4. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect (OSTI)

    2012-01-04

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  5. Optimal Controllers for Hybrid Systems: Stability and Piecewise Linear Explicit Form

    E-Print Network [OSTI]

    Sontag, Eduardo

    of the heat exchange system [16] shows the potential of the method. Keywords: Hybrid systems, model predictiveOptimal Controllers for Hybrid Systems: Stability and Piecewise Linear Explicit Form A. Bemporad for hybrid sys- tems and investigate conditions for closed-loop stabil- ity. Hybrid systems are modeled

  6. Hybrid Statistical Model Checking Technique for Reliable Safety Critical Systems

    E-Print Network [OSTI]

    @cs.kaist.ac.kr Abstract--Reliability of safety critical systems such as nuclear power plants and automobiles has become1 Hybrid Statistical Model Checking Technique for Reliable Safety Critical Systems Youngjoo Kim a significant issue to our society. As more computing systems are utilized in these safety critical systems

  7. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    SciTech Connect (OSTI)

    N. D. Jerred; T. M. Howe; S. D. Howe; A. Rajguru

    2014-02-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.

  8. annual progress report Propulsion Materials

    E-Print Network [OSTI]

    Pennycook, Steve

    for Propulsion Materials Energy Efficiency and Renewable Energy Office of Vehicle Technologies Advanced Materials Agreement 13295 - Permanent Magnet Development for Automotive Traction Motors......... 55 PROJECT 18517 PROJECT 18519 ­ MATERIALS FOR CONTROL OF EXHAUST GASES AND ENERGY RECOVERY SYSTEMS

  9. annual progress report Propulsion Materials

    E-Print Network [OSTI]

    Pennycook, Steve

    Progress Report for Propulsion Materials Energy Efficiency and Renewable Energy Office of Vehicle - Permanent Magnet Development for Automotive Traction Motors......... 47 PROJECT 18518 - MATERIALS FOR HIGH)...................................................................... 193 PROJECT 18519 ­ MATERIALS FOR CONTROL OF EXHAUST GASES AND ENERGY RECOVERY SYSTEMS

  10. Design and evaluation of a nuclear-electric hybrid power/propulsion system 

    E-Print Network [OSTI]

    Keil, Ralph

    1989-01-01

    coating accommodates fission products recoil and provides for partial accommodation of fission gases. The second high density graphite coating provides strength to the coating and suppresses the absorption of acid into the fuel during the ZrC coating... process. Finally, the ZrC outer coating prevents fission gas release from the microsphere as well as fuel cracks resulting from collision. Fig. 5 shows a cross-sectional view of a fuel microsphere. Since the lowest achievable mass is the goal...

  11. Energy-Efficient Building HVAC Control Using Hybrid System LBMPC

    E-Print Network [OSTI]

    Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

    2012-01-01

    Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

  12. Heavy vehicle propulsion system materials program semi-annual progress report for October 1997 through March 1998

    SciTech Connect (OSTI)

    Johnson, D.R.

    1998-06-01

    The purpose of the Heavy Vehicle Propulsion System materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  13. Introduction to the Special Issue on Hybrid Systems Hybrid systems contain two distinct types of components, subsystems with continuous dynamics and subsystems

    E-Print Network [OSTI]

    Antsaklis, Panos

    to be analyzed and understood. Hybrid systems are central in the analysis and design of intelligent control the dynamic behavior of such hybrid systems. In this way it will be possible to develop control strategies. In recent years, the widespread use of digital machines has made hybrid systems very common. Whenever

  14. Reachability Analysis of a Biodiesel Production System Using Stochastic Hybrid Systems

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    Reachability Analysis of a Biodiesel Production System Using Stochastic Hybrid Systems Derek Riley defines the creation of biodiesel from soybean oil and methanol. Modeling and analyzing the biodiesel. In this paper we model a biodiesel production system as a stochastic hybrid system, and we present

  15. Deuterium microbomb rocket propulsion

    E-Print Network [OSTI]

    Friedwardt Winterberg

    2008-12-02

    Large scale manned space flight within the solar system is still confronted with the solution of two problems: 1. A propulsion system to transport large payloads with short transit times between different planetary orbits. 2. A cost effective lifting of large payloads into earth orbit. For the solution of the first problem a deuterium fusion bomb propulsion system is proposed where a thermonuclear detonation wave is ignited in a small cylindrical assembly of deuterium with a gigavolt-multimegampere proton beam, drawn from the magnetically insulated spacecraft acting in the ultrahigh vacuum of space as a gigavolt capacitor. For the solution of the second problem, the ignition is done by argon ion lasers driven by high explosives, with the lasers destroyed in the fusion explosion and becoming part of the exhaust.

  16. Hybrid Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls - BuildingofDepartmentHybird Geothemal-SolarHybrid

  17. Hybrid energy system cost analysis: San Nicolas Island, California

    SciTech Connect (OSTI)

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  18. Hydrogen atom as a quantum-classical hybrid system

    E-Print Network [OSTI]

    Fei Zhan; Biao Wu

    2013-02-15

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  19. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system

    E-Print Network [OSTI]

    Carolina, Rutgers, U. of South Florida, Fugro- GEOS, ROFFS, Orbimage, Shell, ExxonMobil. 0924-7963/$ - seeThe HYCOM (HYbrid Coordinate Ocean Model) data assimilative system Eric P. Chassignet a,, Harley E and basin-scale ocean hindcast, nowcast, and prediction system in the context of the Global Ocean Data

  20. Aircraft AC Generators: Hybrid System Modeling and Simulation

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    generator, phase-domain model, synchronous AC generator. I. INTRODUCTION The Integrated Drive Generator (IDG1 Aircraft AC Generators: Hybrid System Modeling and Simulation Ashraf Tantawy, Student Member--Integrated Drive Generators (IDGs) are the main source of electrical power for a number of critical systems

  1. Luminescence properties of the hybrid Si-Ni nanoparticles system

    E-Print Network [OSTI]

    Lalayan, A A; Movsesyan, H A

    2015-01-01

    The luminescence properties of the colloidal hybrid Si - Ni nanoparticles system fabricated in the pure water by pulsed laser ablation is considered. The red-shifted photoluminescence of this system because of the Stark effect in the Coulomb field of the charged Ni nanoparticles has been registered in the blue range of the spectrum.

  2. Hybrid Braking System for Non-Drive Axles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Braking System for Non-Drive Axles Hybrid Braking System for Non-Drive Axles A hybrid braking system is designed to conserve diesel fuel (or alternative fuels) by using...

  3. Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles Yanzhi, xuelin, pedram}@usc.edu, 2 {naehyuck}@elpl.snu.ac.kr ABSTRACT Photovoltaic (PV) energy harvesting system. Keywords Photovoltaic System, Hybrid Electric Vehicle, Photovoltaic Array Reconfiguration, Dynamic

  4. Hydraulic Hybrid Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,Fuel Cell Corporation JumpHybrid

  5. hybrid vehicle systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory Over 100 Years5/04 |3 The Retrieval ofHybrid

  6. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    SciTech Connect (OSTI)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical-based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payload’s communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods – the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.

  7. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  8. T E C H N I C A L N O T E Advantages of Natural Propulsive Systems

    E-Print Network [OSTI]

    Fish, Frank

    evolved a diversity of propulsive mechanisms correlated with their biological role, evolution- ary history as models for underwater vehicles (Anderson & Chhabra, 2002). The mechanism of propulsion used by animals is consid- ered a viable alternative to traditional marine propulsors. Indeed, aquatic an- imals

  9. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    DOE Patents [OSTI]

    Varatharajan, Balachandar (Cincinnati, OH); Ziminsky, Willy Steve (Simpsonville, SC); Yilmaz, Ertan (Albany, NY); Lacy, Benjamin (Greer, SC); Zuo, Baifang (Simpsonville, SC); York, William David (Greer, SC)

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  10. Approximate model checking of stochastic hybrid systems , J.-P. Katoen

    E-Print Network [OSTI]

    Abate, Alessandro

    -room heating system. 1 Introduction Stochastic hybrid systems are a broad and widely applicable classApproximate model checking of stochastic hybrid systems A. Abate , J.-P. Katoen , J. Lygeros , and M. Prandini§ Abstract A method for approximate model checking of stochastic hybrid systems

  11. Development of Integrated Motor Assist Hybrid System: Development of the 'Insight', a Personal Hybrid Coupe

    SciTech Connect (OSTI)

    Kaoru Aoki; Shigetaka Kuroda; Shigemasa Kajiwara; Hiromitsu Sato; Yoshio Yamamoto

    2000-06-19

    This paper presents the technical approach used to design and develop the powerplant for the Honda Insight, a new motor assist hybrid vehicle with an overall development objective of just half the fuel consumption of the current Civic over a wide range of driving conditions. Fuel consumption of 35km/L (Japanese 10-15 mode), and 3.4L/100km (98/69/EC) was realized. To achieve this, a new Integrated Motor Assist (IMA) hybrid power plant system was developed, incorporating many new technologies for packaging and integrating the motor assist system and for improving engine thermal efficiency. This was developed in combination with a new lightweight aluminum body with low aerodynamic resistance. Environmental performance goals also included the simultaneous achievement of low emissions (half the Japanese year 2000 standards, and half the EU2000 standards), high efficiency, and recyclability. Full consideration was also given to key consumer attributes, including crash safety performance, handling, and driving performance.

  12. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    of a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevin

  13. FY2011 Annual Progress Report for Propulsion Materials

    SciTech Connect (OSTI)

    Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.

    2011-12-01

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  14. BRNS Workshop Verification of Digital and Hybrid Systems

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    BRNS Workshop Verification of Digital and Hybrid Systems 7­11, January 1999, TIFR, Mumbai Advisory.K. Shyamasundar (TIFR, Chairman) K.C. Bhattacharjee (VSSC, Trivandrum) U. Chandra (BARC, Mumbai) V. Chandru (IISc., Bangalore) S.D. Dhodapkar (BARC, Mumbai) K. Karunakar (ADA, Bangalore) P.K. Pandya (TIFR, Mumbai) N. Raja

  15. Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit Abstract Recent interest in fuel cell fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical performance with experimental data is presented to demonstrate model validity. Introduction Fuel cell

  16. Borazine-boron nitride hybrid hydrogen storage system

    DOE Patents [OSTI]

    Narula, Chaitanya K. (Knoxville, TN) [Knoxville, TN; Simonson, J. Michael (Knoxville, TN) [Knoxville, TN; Maya, Leon (Knoxville, TN) [Knoxville, TN; Paine, Robert T. (Albuquerque, NM) [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  17. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    DOE Patents [OSTI]

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  18. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  19. Interchange Format for Hybrid Systems: Abstract Semantics

    E-Print Network [OSTI]

    Carloni, Luca

    used by the algorithms. Modelica, for instance, pro- vides a language for describing systems in terms

  20. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  1. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  2. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect (OSTI)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  3. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  4. ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS O. GERGAUD, G Abstract: Within the scope of full-scale energy modeling of a hybrid wind / photovoltaic system coupled-power hybrid wind/photovoltaic production system (20 ASE modules for a 2- kW polycrystalline silicon peak

  5. A methodology for optimal sizing of autonomous hybrid PV/wind system

    E-Print Network [OSTI]

    Boyer, Edmond

    A methodology for optimal sizing of autonomous hybrid PV/wind system S. Diaf 1* , D. Diaf2 , M paper presents a methodology to perform the optimal sizing of an autonomous hybrid PV/wind system system reliability requirements, with the lowest value of levelised cost of energy. Modelling a hybrid PV/wind

  6. Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power

    E-Print Network [OSTI]

    Teodorescu, Remus

    Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power approach to find two optimum energy storages (ESs) to build a hybrid system which is part of a virtual power plant. In this paper it means the combination of the hybrid energy storage system and wind power

  7. Abstraction and CounterexampleGuided Refinement in Model Checking of Hybrid Systems

    E-Print Network [OSTI]

    : Formal Verification, Abstraction, Model Checking, Hybrid Systems, Refinement, Counterexamples #12; 1Abstraction and Counterexample­Guided Refinement in Model Checking of Hybrid Systems Edmund Clarke a counterexample generated by the model checker. For hybrid systems, analysis of the counterexample requires

  8. HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+

    E-Print Network [OSTI]

    HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+ M.H. Khan, 74078, USA ABSTRACT This paper presents a simulation of a hybrid ground source heat pump system, performed using a new graphical user interface for HVACSIM+. Hybrid ground source heat pump systems

  9. Formal modeling and analysis of hybrid systems: A case study in multi-robot coordination

    E-Print Network [OSTI]

    the design phase. The formal analysis of the mixed digital-analog nature of hybrid systems r, and robots. Designing reliable hybrid systems is a challenging task. Control theoretic tools enable. A game-theoretic approach to designing controllers for hybrid systems with a hierarchical structure

  10. A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS

    E-Print Network [OSTI]

    conditioning (HVAC), and process heat. The system can be modularly configured for hybrid concentrating PVA 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter of America ABSTRACT A unique, linear, low-concentration, hybrid `micro- concentrator' (MCT) system concept

  11. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01

    AND HYBRID HEATING AND COOLING SYSTEMS Michael J. Holtzmost common passive cooling systems and a representativepassive space heating and cooling systems. It is based upon

  12. APPROXIMATE SIMULATION RELATIONS FOR HYBRID SYSTEMS 1

    E-Print Network [OSTI]

    Pappas, George J.

    . Pappas Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia, PA been introduced as a powerful tool for the approximation of discrete and continuous systems systems approximation. An example of application in the context of safety verification is shown. Keywords

  13. Boston University Physics Colloquium Microscale propulsion in biological and

    E-Print Network [OSTI]

    Mohanty, Raj

    Boston University Physics Colloquium Microscale propulsion in biological and engineered systems biological locomotion and engineered propulsion. In the first example, we examine swimming microorganisms the microstructure. In the second example, we examine engineered magnetic artificial microswimmers which can

  14. Performance of a hybrid ground-coupled heat pump system

    SciTech Connect (OSTI)

    Phetteplace, G.; Sullivan, W.

    1998-10-01

    In climates dominated by air conditioning, a few so-called hybrid ground-coupled heat pump (GCHP) systems have been built. The hybrid system uses both a ground-coupled heat exchanger and a cooling tower, thereby reducing the amount of ground-coupling heat exchanger necessary. Although this concept has been shown to be feasible, the performance of such a system has not been measured in detail. Since it may be possible to achieve significant performance improvements in such systems by modifying the design and operational practices, detailed performance monitoring of such systems is needed. This paper describes a project that has been undertaken to collect performance data from a hybrid GCHP system at Fort Polk, LA. This paper presents performance data for a period of about 22 months, including data from portions of two heating and cooling seasons. The energy input to the GCHPs themselves will be presented, as well as the energy rejected to the ground in the cooling mode and that extracted from the ground in the heating mode. Energy flows in the cooling tower also will be addressed, along with the power consumption of the circulating pumps and the cooling tower.

  15. Robust execution for stochastic hybrid systems

    E-Print Network [OSTI]

    Blackmore, Lars James Christopher

    2007-01-01

    Unmanned systems, such as Autonomous Underwater Vehicles (AUVs), planetary rovers and space probes, have enormous potential in areas such as reconnaissance and space exploration. However the effectiveness and robustness ...

  16. Multiobjective Search for the Management of a Hybrid Energy Storage System

    E-Print Network [OSTI]

    Noé, Reinhold

    Multiobjective Search for the Management of a Hybrid Energy Storage System Simon Boxnick, Stefan Kl objective search algorithm. The algorithm is designed for the management of a hybrid energy storage module-board hybrid energy storage system (HES) of the novel autonomous rail-bound vehicle RailCab developed

  17. Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems

    E-Print Network [OSTI]

    Greenhut, Andrew David

    2010-01-01

    Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

  18. Experiences from the Roadrunner petascale hybrid systems

    SciTech Connect (OSTI)

    Kerbyson, Darren J; Pakin, Scott; Lang, Mike; Sancho Pitarch, Jose C; Davis, Kei; Barker, Kevin J; Peraza, Josh

    2010-01-01

    The combination of flexible microprocessors (AMD Opterons) with high-performing accelerators (IBM PowerXCell 8i) resulted in the extremely powerful Roadrunner system. Many challenges in both hardware and software were overcome to achieve its goals. In this talk we detail some of the experiences in achieving performance on the Roadrunner system. In particular we examine several implementations of the kernel application, Sweep3D, using a work-queue approach, a more portable Thread-building-blocks approach, and an MPI on the accelerator approach.

  19. Optimization of a hybrid solar energy collector system 

    E-Print Network [OSTI]

    Shinkman, Alan M.

    1981-01-01

    OPTIMIZATION OF A HYBRID SOLAR ENERGY COLLECTOR SYSTEM A Thesis by ALAN M. SHI NEMAN Submitted to the Graduate College of Texas A&N University in partial fulfillment of the requirement for the degree MASTER OF SCIENCE May 1981 Major Subject...: (Chairman of Committee) (Member) (Member) (Me et) (Head o Department) May 1981 wmezg ABSTRACT The Structural Impact of Commodity Farm Programs on Farms in the Southern Texas High Plains. (May 1981) Christina Ray Shirley, B. S. , Illinois State...

  20. Blockade of Rabi oscillations in hybrid optomechanical systems

    E-Print Network [OSTI]

    Timo Holz; Ralf Betzholz; Marc Bienert

    2015-07-01

    In a hybrid optomechanical setup consisting of a two-level atom in a cavity with a pendular end-mirror, the interplay between the light field's radiation pressure on the mirror and the dipole interaction with the atom can lead to a blockade effect, which manifests itself in a suppression of Rabi oscillations in the atomic population. This effect is present when the system is in the single photon strong coupling regime and has an analogy in the photon blockade of optomechanics.

  1. SMR Handbook: Hybrid Energy Systems Involving SMRs

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton

    2014-09-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, SMRs offer new opportunities for increased use of clean nuclear energy for both electric and thermal applications in more locations – while still accommodating the desire to support renewable production sources. This chapter considers a scenario in which renewable generation would be tightly coupled with the nuclear generation source – behind the grid – to meet the grid demand as an integrated energy system while simultaneously producing other commodities with the available thermal energy.

  2. PROPULSION AND ENERGY 54 AEROSPACE AMERICA/DECEMBER 2005

    E-Print Network [OSTI]

    Walker, Mitchell

    PROPULSION AND ENERGY 54 AEROSPACE AMERICA/DECEMBER 2005 Electric propulsion Several significant advancements in electric propulsion (EP) systems and related technolo- gies occurred this year. Flight programs throughout the discharge and includes the effects of magnetic fields on the primary electrons. PRIMA is used

  3. Hybrid Electric Systems: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes the work EERE is doing in the areas of hybrid, plug-in hybrid, and all-electric vehicles.

  4. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    SciTech Connect (OSTI)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  5. Propulsion System Characterization for the SPHERES Formation Flight and Docking Testbed

    E-Print Network [OSTI]

    evaluating control algorithms. Performance variations resulting from manufacturing, system set- tings. This thesis leans heavily on work started by Simon Nolet. I am grateful for his guidance and in his debt

  6. Automatic design of the gravity-reducing propulsion system of the TALARIS Hopper Testbed

    E-Print Network [OSTI]

    Cañizales Díaz, Jorge (Jorge Luis)

    2012-01-01

    This thesis describes a Systems Engineering tool for automatic design, presents the results of its application to the problem of designing Earth-based reduced-gravity simulators, and compares the performance of the found ...

  7. The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power, Gas turbine, Hybrid, Solid Oxide Fuel Cell hal-00703135,version1-31May2012 Author manuscript

  8. The CU Aerospace / VACCO CubeSat High Impulse Propulsion System (CHIPS) offers a miniaturized and

    E-Print Network [OSTI]

    Carroll, David L.

    Aerospace's high-efficiency resistojet technology, VACCO Industries' compact frictionless valve technology. · Reliable, frictionless VACCO valve technology: · Valves tested to 200,000+ cold gas firings · System two-failure-tolerant against leakage · Life span: 2+ years from propellant load. · High-density & self-pressurizing R-134a

  9. A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System

    E-Print Network [OSTI]

    Popov, Branko N.

    A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System Godfrey those of high-energy battery systems such as lithium ion. Al- though advanced battery systems and double the performance of a battery/electrochemical capacitor-hybrid system has been developed. Simulation results

  10. Postdoc position: Hybrid Systems Theorem Proving Carnegie Mellon University, Computer Science Department

    E-Print Network [OSTI]

    Sandholm, Tuomas W.

    Postdoc position: Hybrid Systems Theorem Proving Carnegie Mellon University, Computer Science is to develop next-generation verification techniques for cyber- physical systems and hybrid systems. Our prover KeYmaera and have found application in the verification of cars, aircraft, railway systems

  11. A High Capacity Hybrid Fiberoptic/Wireless Communication System: An Overview W. D. Jemison1

    E-Print Network [OSTI]

    Herczfeld, Peter

    A High Capacity Hybrid Fiberoptic/Wireless Communication System: An Overview by W. D. Jemison1 , P This paper describes the development of a hybrid fiberoptic/wireless communications system. The system picocell. The system can support high-capacity (Gb/s) secure mobile communications for both military

  12. Time-Based Storage Bandwidth Allocation in Hybrid Storage Systems Rice University

    E-Print Network [OSTI]

    Time-Based Storage Bandwidth Allocation in Hybrid Storage Systems Hui Wang Rice University Peter for a hybrid storage system made up of both HDs and SSDs. To continue the example, suppose the HD has slicing treats the storage system as a black box and dedicates the system to a client for its time slice

  13. Dynamics in hybrid complex systems of switches and oscillators

    E-Print Network [OSTI]

    Dane Taylor; Elana J. Fertig; Juan G. Restrepo

    2013-08-09

    While considerable progress has been made in the analysis of large systems containing a single type of coupled dynamical component (e.g., coupled oscillators or coupled switches), systems containing diverse components (e.g., both oscillators and switches) have received much less attention. We analyze large, hybrid systems of interconnected Kuramoto oscillators and Hopfield switches with positive feedback. In this system, oscillator synchronization promotes switches to turn on. In turn, when switches turn on they enhance the synchrony of the oscillators to which they are coupled. Depending on the choice of parameters, we find theoretically coexisting stable solutions with either (i) incoherent oscillators and all switches permanently off, (ii) synchronized oscillators and all switches permanently on, or (iii) synchronized oscillators and switches that periodically alternate between the on and off states. Numerical experiments confirm these predictions. We discuss how transitions between these steady state solutions can be onset deterministically through dynamic bifurcations or spontaneously due to finite-size fluctuations.

  14. Adaptive hybrid optimal quantum control for imprecisely characterized systems

    E-Print Network [OSTI]

    D. J. Egger; F. K. Wilhelm

    2014-06-24

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the its input variables, the quantum system's parameters. We show how to overcome this by Adaptive Hybrid Optimal Control (Ad-HOC). This protocol combines open- and closed-loop optimal by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity measure with a gradient-free method. For typical settings in solid-state quantum information processing, Ad-Hoc enhances gate fidelities by an order of magnitude hence making optimal control theory applicable and useful.

  15. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH)

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  16. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014Conferenceof Energy Los2 1. Hybrid and Vehicle Systems

  17. Constructing Invariants for Hybrid Systems Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna

    E-Print Network [OSTI]

    Sankaranarayanan, Sriram

    Constructing Invariants for Hybrid Systems Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna Computer Science Department Stanford University Stanford, CA 94305-9045 {srirams

  18. Plug-In Hybrid Electric Vehicle Energy Storage System Design: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2006-05-01

    This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.

  19. Can Future Emissions Limits be Met with a Hybrid EGR System Alone...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of hybrid EGR system in terms of deliverable EGR-rate, airfuel ratio, pumping losses and fuel use, taking into account interaction between EGR and boosting technology. Control...

  20. An Optimization Framework for Dynamic Hybrid Energy Systems

    SciTech Connect (OSTI)

    Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis

    2014-03-01

    A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problem takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.

  1. A Review of Laser Ablation Propulsion

    SciTech Connect (OSTI)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-08

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  2. Computational Issues in Intelligent Control: Discrete-Event and Hybrid Systems

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    Computational Issues in Intelligent Control: Discrete-Event and Hybrid Systems Xenofon D discrete event and hybrid systems. Computational issues of various problems and al- gorithms concerning to address the control needs of complex systems that exhibit complicated dynamical behaviors. The design

  3. Verification of Hybrid Systems Based on Counterexample-Guided Abstraction Refinement

    E-Print Network [OSTI]

    Clarke, Edmund M.

    verification, abstraction transforms the inherently infinite state system into a finite-state model [7Verification of Hybrid Systems Based on Counterexample-Guided Abstraction Refinement Edmund Clarke1 generated by the model checker. For hybrid systems, analysis of the counterexample requires the computation

  4. Verification of Hybrid Systems Based on CounterexampleGuided Abstraction Refinement ?

    E-Print Network [OSTI]

    Theobald, Michael

    verification, abstraction transforms the inherently infinite state system into a finite­state model [7, 8Verification of Hybrid Systems Based on Counterexample­Guided Abstraction Refinement ? Edmund that eliminates a counterexample generated by the model checker. For hybrid systems, analy­ sis

  5. Multi-Layer Prefetching for Hybrid Storage Systems: Algorithms, Models, and Evaluations

    E-Print Network [OSTI]

    Qin, Xiao

    Multi-Layer Prefetching for Hybrid Storage Systems: Algorithms, Models, and Evaluations Mais Nijim1, Atlanta, GA, USA. Abstract: Parallel storage systems have been highly scalable and widely used in support, hybrid storage systems opt for a solution to fulfill a variety of demands such as large storage capacity

  6. Synthesizing Controllers for Hybrid Systems ? Deepak Kapur 1 and R.K. Shyamasundar 2

    E-Print Network [OSTI]

    Kapur, Deepak

    plant, a digital­analog guidance of transport systems, control of a robot, flexible manufacturing systems, etc., can benefit from the study of hybrid models. Design, analysis (verification) and synthesisSynthesizing Controllers for Hybrid Systems ? Deepak Kapur 1 and R.K. Shyamasundar 2 1 Department

  7. A Feasibility Study for Wind/Hybrid Power System Applications for New England Islands

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    A Feasibility Study for Wind/Hybrid Power System Applications for New England Islands Gabriel systems that presently provide electricity and heating to the islands also vary. Of particular note wind/hybrid systems. A feasibility study, carried out at the Renewable Energy Research Laboratory (RERL

  8. Efficiency-Driven Design Time Optimization of a Hybrid Energy Storage System with Networked Charge Transfer

    E-Print Network [OSTI]

    Pedram, Massoud

    Efficiency-Driven Design Time Optimization of a Hybrid Energy Storage System with Networked Charge efficiency for various problem setups and scales. Keywords--hybrid energy storage system; networked charge transfer interconnect; placement I. INTRODUCTION Energy storage systems (ESSs) store the excess energy

  9. Aalborg Universitet Performance of hybrid quad generation system consisting of solid oxide fuel cell

    E-Print Network [OSTI]

    Liso, Vincenzo

    ., & Liso, V. (2013). Performance of hybrid quad generation system consisting of solid oxide fuel cell oxide fuel cell system and absorption heat pump Irene Albacete Cachorroa ,Iulia Maria DarabanaAalborg Universitet Performance of hybrid quad generation system consisting of solid oxide fuel

  10. Cost-Effective Design of a Hybrid Electrical Energy Storage System for Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Cost-Effective Design of a Hybrid Electrical Energy Storage System for Electric Vehicles Di Zhu1 to the successful application of hybrid electrical energy storage (HEES) systems in electric vehi- cles (EVs energy storage system comprised of Li-ion batteries only. 1. INTRODUCTION Electric vehicles (EVs) have

  11. Control Valve Trajectories for SOFC Hybrid System Startup

    SciTech Connect (OSTI)

    Gorrell, Megan; Banta, Larry; Rosen, William; Restrepo, Bernardo; Tucker, David

    2012-07-01

    Control and management of cathode airflow in a solid oxide fuel cell gas turbine hybrid power system was analyzed using the Hybrid Performance (HyPer) hardware simulation at the National Energy Technology (NETL), U.S. Department of Energy. This work delves into previously unexplored operating practices for HyPer, via simultaneous manipulation of bypass valves and the electric load on the generator. The work is preparatory to the development of a Multi-Input, Multi-Output (MIMO) controller for HyPer. A factorial design of experiments was conducted to acquire data for 81 different combinations of the manipulated variables, which consisted of three air flow control valves and the electric load on the turbine generator. From this data the response surface for the cathode airflow with respect to bypass valve positions was analyzed. Of particular interest is the control of airflow through the cathode during system startup and during large load swings. This paper presents an algorithm for controlling air mass flow through the cathode based on a modification of the steepest ascent method.

  12. Hybrid computer simulation of atomic orbitals of one electron system 

    E-Print Network [OSTI]

    Balasubramanium, Prabaker

    1998-01-01

    quantum chemical wave equation. Generating this function is the unit level operation in molecular modeling. Therefore, analyzing the performance of the hybrid computer at this level will bring out the basic differences between hybrid computing and digital...

  13. Daniel Liberzon and A. Stephen Morse y a switched system, we mean a hybrid dynamical system

    E-Print Network [OSTI]

    Morse, A. Stephen

    . This article surveys recent developments in three basic problems regarding stability and design of switched industry, aircraft and air traffic control, switching power converters, and many other fields. The book 18C s Daniel Liberzon and A. Stephen Morse y a switched system, we mean a hybrid dynamical system

  14. System Simulations of Hybrid Electric Vehicles with Focus on Emissions

    Broader source: Energy.gov [DOE]

    Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control.

  15. Evaluation of systems and components for hybrid optical firing sets

    SciTech Connect (OSTI)

    Landry, M.J.; Rupert, J.W.; Mittas, A.

    1989-06-01

    High-energy density light appears to be a unique energy form that may be used to enhance the nuclear safety of weapon systems. Hybrid optical firing sets (HOFS) utilize the weak-link/strong-link exclusion region concept for nuclear safety; this method is similar to present systems, but uses light to transmit power across the exclusion region barrier. This report describes the assembling, operating, and testing of fourteen HOFS. These firing sets were required to charge a capacitor-discharge unit to 2.0 and 2.5 kV (100 mJ) in less than 1 s. First, we describe the components, the measurement techniques used to evaluate the components, and the different characteristics of the measured components. Second, we describe the HOFS studied, the setups used for evaluating them, and the resulting characteristics. Third, we make recommendations for improving the overall performance and suggest the best HOFS for packaging. 36 refs., 145 figs., 14 tabs.

  16. Combustion system for hybrid solar fossil fuel receiver

    DOE Patents [OSTI]

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  17. Propulsion Materials R&D | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area of Propulsion Materials is designed to identify and develop advanced materials and processes that improve powertrain system efficiency and reduce emissions. Cutting-edge...

  18. Integrated Mathematical Modeling Software Series of Vehicle Propulsion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mathematical Modeling Software Series of Vehicle Propulsion System: (1) Tractive Effort (T sub ew) of Vehicle Road WheelTrack Sprocket Integrated Mathematical Modeling Software...

  19. Safe Intersections: At the Crossing of Hybrid Systems and Verification Sarah M. Loos and Andre Platzer

    E-Print Network [OSTI]

    Platzer, André

    scenarios may be distributed hybrid systems [21] when there is a multi-agent situation with mul- tiple carsSafe Intersections: At the Crossing of Hybrid Systems and Verification Sarah M. Loos and Andr and risks in ground trans- portation, e.g., by making cars aware of their environment and regulating speed

  20. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  1. Models for Multi-Specie Chemical Reactions Using Polynomial Stochastic Hybrid Systems

    E-Print Network [OSTI]

    Hespanha, João Pedro

    Models for Multi-Specie Chemical Reactions Using Polynomial Stochastic Hybrid Systems Abhyudai for chemical reactions is presented. This is done by representing the population of various species involved in a chemical reaction as the continuous state of a polynomial Stochastic Hybrid System (pSHS). An important

  2. Improving the Yeast Three-Hybrid System for High-Throughput Target Discovery

    E-Print Network [OSTI]

    Bailey, Kyle

    2011-05-27

    -protein interactions. The yeast three-hybrid system is an attractive alternative that uses genetic tools to screen for protein-small molecule interactions in cellulo. This thesis describes efforts to improve the utility of the yeast three-hybrid system to screen...

  3. Fault tree construction of hybrid system requirements using qualitative formal method

    E-Print Network [OSTI]

    specifying requirements for software controlling hybrid systems and conducting safety analysis, engineersFault tree construction of hybrid system requirements using qualitative formal method Jang-Soo Leea , Sung-Deok Chab,* a Instrumentation and Control, Human Factors Division, Korea Atomic Energy Research

  4. On Control-Lyapunov Functions for Hybrid Time-Varying Systems Michael Malisoff and Frederic Mazenc

    E-Print Network [OSTI]

    Sontag, Eduardo

    On Control-Lyapunov Functions for Hybrid Time-Varying Systems Michael Malisoff and Fr´ed´eric Mazenc Abstract-- We explicitly construct strict input-to-state stable Lyapunov functions for time varying hybrid systems, in terms of given nonstrict Lyapunov functions and persistency of excitation

  5. Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double

    E-Print Network [OSTI]

    Noé, Reinhold

    Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double Layer storage for operation. High demands concerning power and energy density, small volume and weight is to combine storage technologies with complementary characteristics as a hybrid energy storage system. Thus

  6. Online Capable Optimized Planning of Power Split in a Hybrid Energy Storage System

    E-Print Network [OSTI]

    Noé, Reinhold

    Online Capable Optimized Planning of Power Split in a Hybrid Energy Storage System Karl Stephan, D-33095 Paderborn (Germany) {stille,romaus,boecker}@lea.upb.de Abstract--A hybrid energy storage system is an energy storage consisting of more than one type of energy storages combining

  7. A scalable and flexible hybrid energy storage system design and implementation

    E-Print Network [OSTI]

    Pedram, Massoud

    A scalable and flexible hybrid energy storage system design and implementation Younghyun Kim and flexibility. Detailed description on implementation of hybrid energy storage system prototype. Power conversion efficiency and energy storage element characteristics considered. a r t i c l e i n f o Article

  8. Short communication Optimization of hybrid ground coupled and air source heat pump systems

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

  9. STATE ESTIMATION OF SOFC/GT HYBRID SYSTEM USING UKF Rambabu Kandepu*, 1

    E-Print Network [OSTI]

    Foss, Bjarne A.

    STATE ESTIMATION OF SOFC/GT HYBRID SYSTEM USING UKF Rambabu Kandepu*, 1 , Biao Huang** , Bjarne.Imsland@sintef.no Abstract: A description of a Solid Oxide Fuel Cell (SOFC) combined Gas Turbine (GT) hybrid system is given reliability. One of the most promising fuel cell technologies is the Solid Oxide Fuel Cell (SOFC), due to its

  10. Simplest AB-Thermonuclear Space Propulsion and Electric Generator

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-19

    The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

  11. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  12. Supervisory Control of Hybrid Systems XENOFON D. KOUTSOUKOS, PANOS J. ANTSAKLIS, FELLOW, IEEE, JAMES A. STIVER, AND

    E-Print Network [OSTI]

    Antsaklis, Panos

    Supervisory Control of Hybrid Systems XENOFON D. KOUTSOUKOS, PANOS J. ANTSAKLIS, FELLOW, IEEE control of hybrid systems is in- troduced and discussed at length. Such control systems typically arise, in transportation sys- tems, and in communication networks. A functional architecture of hybrid control systems

  13. A novel hybrid (wind-photovoltaic) system sizing procedure

    SciTech Connect (OSTI)

    Hocaoglu, Fatih O.; Gerek, Oemer N.; Kurban, Mehmet

    2009-11-15

    Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

  14. Hybrid vehicle system studies and optimized hydrogen engine design

    SciTech Connect (OSTI)

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  15. Discussion on the Energy-Saving Potential of a Hybrid System in a Large Space Building in Different Areas 

    E-Print Network [OSTI]

    Liu, S.; Huang, C.

    2006-01-01

    The use of a hybrid ventilation system is promoted to decrease the annual energy consumption of air conditioning. The switch-point of temperature, which is related with weather conditions, is presented to control the hybrid system properly...

  16. Hybrid-drive implosion system for ICF targets

    DOE Patents [OSTI]

    Mark, James W. (Danville, CA)

    1988-01-01

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  17. Hybrid-drive implosion system for ICF targets

    DOE Patents [OSTI]

    Mark, J.W.K.

    1987-10-14

    Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

  18. High performance path following for marine vehicles using azimuthing podded propulsion

    E-Print Network [OSTI]

    Greytak, Matthew B. (Matthew Bardeen)

    2006-01-01

    Podded propulsion systems offer greater maneuvering possibilities for marine vehicles than conventional shaft and rudder systems. As the propulsion unit rotates about its vertical axis to a specified azimuth angle, the ...

  19. Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Ireland, J.; Cosgrove, J.

    2013-04-01

    This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

  20. Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER 

    E-Print Network [OSTI]

    Naveed, A.T.; Lee, E. J.; Kang, E. C.

    2006-01-01

    The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were...

  1. Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    from regenerative braking, or with scarce power capacity for fast acceleration. The experimental HEV to accept energy from regenerative braking. For this reason, hybrid systems use an auxiliary energy system

  2. Nuclear renewable oil shale hybrid energy systems : configuration, performance, and development pathways

    E-Print Network [OSTI]

    Curtis, Daniel Joseph

    2015-01-01

    Nuclear Renewable Oil Shale Systems (NROSS) are a class of large Hybrid Energy Systems in which nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and also provide flexible, ...

  3. Advancements of the Hybrid Method UF6 Container Inspection System

    SciTech Connect (OSTI)

    Mace, Emily K.; Orton, Christopher R.; Jordan, David V.; McDonald, Benjamin S.; Smith, Leon E.

    2011-07-17

    Safeguards inspectors currently visit uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution detectors on a limited number of cylinders taken to be representative of the plant’s cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute. Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter data (186 keV photons from 235U) and non-traditional, neutron-induced, high-energy gamma-ray signatures (3-8 MeV) with an array of collimated, medium-resolution scintillators. Previous work at PNNL (2010) demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term, unattended operations. This system aims to increase the number of inspected cylinders at higher accuracy and with lower cost than when compared to inspectors with hand-held instruments. Several measurement campaigns of 30B cylinder populations and a refined MCNP model will be reported. The MCNP model consists of per-gram basis vectors for the different uranium isotopes and several fill geometries, enabling fast generation of any UF6 enrichment level and multiple configurations. The refined model was used to optimize collimator design and detector configuration for the hybrid method. In addition, a new field prototype based on model results was utilized in a set of field measurements.

  4. Reversible work extraction in a hybrid opto-mechanical system

    E-Print Network [OSTI]

    Cyril Elouard; Maxime Richard; Alexia Auffèves

    2015-02-16

    With the progress of nano-technology, thermodynamics also has to be scaled down, calling for specific protocols to extract and measure work. Usually, such protocols involve the action of an external, classical field (the battery) of infinite energy, that controls the energy levels of a small quantum system (the calorific fluid). Here we suggest a realistic device to reversibly extract work in a battery of finite energy : a hybrid optomechanical system. Such devices consist in an optically active two-level quantum system interacting strongly with a nano-mechanical oscillator that provides and stores mechanical work, playing the role of the battery. We identify protocols where the battery exchanges large, measurable amounts of work with the quantum emitter without getting entangled with it. When the quantum emitter is coupled to a thermal bath, we show that thermodynamic reversibility is attainable with state-of-the-art devices, paving the road towards the realization of a full cycle of information-to-energy conversion at the single bit level.

  5. The MOTion trap: a hybrid atom-ion trap system for experiments in cold-chemistry and the production of cold polar molecular ions

    E-Print Network [OSTI]

    Sullivan, Scott Trevor

    2013-01-01

    interaction in the hybrid system, the self heating rate ismass dependent heating e?ects for the hybrid system of this

  6. HPIS3: Towards a High-Performance Simulator for Hybrid Parallel I/O and Storage Systems

    E-Print Network [OSTI]

    Sun, Xian-He

    HPIS3: Towards a High-Performance Simulator for Hybrid Parallel I/O and Storage Systems Bo Feng, data and supercomputing centers usually adopt a hybrid storage system, which consists of a combination of HDD and SSD I/O servers. However, hybrid I/O and storage systems have increased the complexity, making

  7. Hybrid Ground Source System Analysis and Tool Development

    Broader source: Energy.gov [DOE]

    Project objectives: 1. Compile filtered hourly data for three monitored hybrid installations. 2.Validate existing HyGCHP model. 3.Refine and enhance the HyGCHP model (usability / capability). 4. Demonstrate impact of actual hybrid installations. 5. Report lessons learned and impacts of HyGSHPs to design/engineering community.

  8. Modeling and Simulation of a Microgrid as a Stochastic Hybrid System

    E-Print Network [OSTI]

    Abate, Alessandro

    1 Modeling and Simulation of a Microgrid as a Stochastic Hybrid System Martin Strelec, Karel Macek, Alessandro Abate Abstract--Microgrids (MGs) are small-scale local energy grids. While dedicated to cover and on approximate dynamic programming) for typical challenges in MGs. Index Terms--Microgrids, Stochastic Hybrid

  9. Optimal control of a hybrid production/remanufacturing system using one shared resource

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal control of a hybrid production/remanufacturing system using one shared resource Lâm Laurent products into the materials planning is a key issue in reverse logistics. 1.2 Hybrid production-birth-death processes 1 Introduction 1.1 Reusing product returns There are several reasons why companies consider

  10. Hybrid Electrical Energy Storage Systems Massoud Pedram, Naehyuck Chang, Younghyun Kim, and Yanzhi Wang

    E-Print Network [OSTI]

    Pedram, Massoud

    Hybrid Electrical Energy Storage Systems Massoud Pedram, Naehyuck Chang, Younghyun Kim, and Yanzhi of EES element fulfills high energy density, high power delivery capacity, low cost per unit of storage Descriptors B.0 [General] General Terms Design Keywords Energy, Energy storage, Electrical storage, Hybrid

  11. Title of thesis: SCHEDULING IN ENERGY HARVESTING SYSTEMS WITH HYBRID ENERGY STORAGE

    E-Print Network [OSTI]

    Ulukus, Sennur

    ABSTRACT Title of thesis: SCHEDULING IN ENERGY HARVESTING SYSTEMS WITH HYBRID ENERGY STORAGE and Computer Engineering In wireless networks, efficient energy storage and utilization plays a vital role transmission with an energy harvesting trans- mitter which has hybrid energy storage with a perfect super

  12. Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage Systems*

    E-Print Network [OSTI]

    Pedram, Massoud

    Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage massimo.poncino@polito.it Abstract-- Hybrid electrical energy storage (HEES) systems consist of multiple banks of heterogeneous electrical energy storage (EES) elements that are connected to each other through

  13. Fuzzy Based Energy Management Control of A Hybrid Fuel Cell Auxiliary Power System

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    Fuzzy Based Energy Management Control of A Hybrid Fuel Cell Auxiliary Power System M. Godoy Simões1 Belfort-Montbéliard (France) Abstract -- This paper presents the analysis and design of a hybrid fuel cell battery auxiliary power unit (APU) for remote applications where a fuel cell is the main energy source

  14. Hybrid Probabilistic RoadMap -Monte Carlo Motion Planning for Closed Chain Systems with

    E-Print Network [OSTI]

    Han, Li

    Hybrid Probabilistic RoadMap - Monte Carlo Motion Planning for Closed Chain Systems with Spherical@clarku.edu Abstract-- In this paper we propose a hybrid Probabilistic RoadMap - Monte Carlo (PRM-MC) motion planner and connect a large number of robot configurations in order to build a roadmap that reflects the properties

  15. A development approach for nuclear thermal propulsion

    SciTech Connect (OSTI)

    Buden, D.

    1992-09-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an ``acceptable`` nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering.

  16. A development approach for nuclear thermal propulsion

    SciTech Connect (OSTI)

    Buden, D.

    1992-01-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an acceptable'' nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering.

  17. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    SciTech Connect (OSTI)

    Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

    2014-03-31

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  18. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  19. NASA's nuclear electric propulsion technology project

    SciTech Connect (OSTI)

    Stone, J.R.; Sovey, J.S. (NASA, Lewis Research Center, Cleveland, OH (United States))

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities. 33 refs.

  20. 28th Joint Propulsion Conference and Exhibit

    SciTech Connect (OSTI)

    Stone, J.R.; Sovey, J.S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt- and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  1. The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems

    E-Print Network [OSTI]

    The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 kWh. INTRODUCTION A diesel hybrid system, incorporating a battery and inverter, can often provide power at a lower

  2. Marine Hybrid Propulsion | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, search

  3. OpenEI Community - Marine Hybrid Propulsion

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorjaen TheGeothermalCostmaintenance March

  4. Nuclear thermal propulsion engine cost trade studies

    SciTech Connect (OSTI)

    Paschall, R.K. (Rocketdyne Division, Rockwell International Corporation, Mail Stop IB57, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

    1993-01-10

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp[gt]870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified.

  5. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    SciTech Connect (OSTI)

    Steven E. Aumeier

    2010-10-01

    As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: • economic stability – related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; • environmental sustainability – related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; • resource security – related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process applications is certainly not new, renewed interest in more tightly coupled energy product plants (such as HES) that meet the objectives outline above have gained additional interest recently, an interest likely sparked by sharpening energy security concerns. Studies have shown that non-nuclear integrated (hybrid) energy systems can have appealing attributes in terms of overall process efficiency, enhanced electric grid stability, renewable energy integration, and economic performance, and lifecycle greenhouse gas emissions. These attributes seem to be sufficiently compelling that several significant commercial investments in fossil-renewable HES are being made in the United States while the U.S. Defense Advanced Research Projects Agency (DARPA) has openly solicited information regarding nuclear energy integration schemes. The challenges of nuclear energy integration include myriad issues associated with the following RD&D areas, or “platforms”: • feedstock processing (e.g. bio-feedstock integration with coal, carbon feedstock extraction using nuclear energy); • heat / energy management (e.g. advanced heat exchangers, process design); • energy storage (e.g. H2 production, liquid fuels synthesis); • byproduct management (e.g. CO2 recycle approaches); • systems dynamics, integration and control (e.g. process dynamics analyses and optimization, advanced prognostics, diagnostics, variable time scale control and flow sheet optimization).

  6. A Hybrid Model Based and Statistical Fault Diagnosis System for Industrial Process 

    E-Print Network [OSTI]

    Lin, Chen-Han

    2014-11-21

    This thesis presents a hybrid model based and statistical fault diagnosis system, which applied on the nonlinear three-tank model. The purpose of fault diagnosis is generating and analyzing the residual to find out the fault occurrence. This fault...

  7. Design of a hybrid energy-generation system for autonomous kayaks

    E-Print Network [OSTI]

    Plumer, Kevin E. (Kevin Edward)

    2010-01-01

    The goal of this research is to design and analyze a series-hybrid energy-production system for an autonomous kayak. Currently these vehicles have limited range due to energy storage in lead acid batteries. Extending the ...

  8. Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System

    E-Print Network [OSTI]

    Saif, A.

    A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

  9. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov [DOE]

    GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.

  10. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOE Patents [OSTI]

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  11. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  12. Int. J. of Heavy Vehicle Systems, Vol. 11, Nos 3/4, 2004 372 Combined optimisation of design and power

    E-Print Network [OSTI]

    Papalambros, Panos

    there is a significant body of work related to hybrid passenger cars and light commercial trucks, there are many open of increased freight volume and commercial truck mileage, as well as an increased number of light trucks due and power management of the hydraulic hybrid propulsion system for the 6 × 6 medium truck Z. Filipi*, L

  13. 6.43.28 Hybrid Control Systems1 Karl Henrik Johansson, Dept. of Signals, Sensors & Systems, Royal Institute of Technology, 100 44

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    6.43.28 Hybrid Control Systems1 Karl Henrik Johansson, Dept. of Signals, Sensors & Systems, Royal-time system; Dynamical system; Control theory; Embedded soft- ware; Hierarchical control; Computer-controlled system; Discrete-event systems; Hybrid automata; Discontinuous control; Switched system; Supervisory

  14. Spectroscopy identification performance enhancement of a novel CZT/CsI hybrid system

    SciTech Connect (OSTI)

    Russ, W.; Nakazawa, D.; Hau, I.; Morichi, M.

    2011-07-01

    New hybrid spectroscopic systems directly combine spectra from detectors with very different energy resolutions, accommodating standard analyses of the output hybrid spectrum. Simulations of a hybrid system consisting of a 2 or 4 cm{sup 3} cadmium zinc telluride detector combined with a 32.8 cm{sup 3} CsI(Tl) were evaluated for identification performance. 29 nuclides of interest for security applications were simulated as singles and unique pairs, producing 435 spectral simulations at live times of 3, 10, 30, 100 and 300 seconds. The nuclides were modeled as point sources at 25 cm with activities that provide an interesting range of statistical significance for the range of counting times. Standard nuclide identification analyses were applied to the component detectors as well as the hybrid combination. Tallies of the results were used to calculate true and false identification rates. The hybrid system was shown to provide an identification performance benefit, consistently achieving performances closest to ideal relative to the separate component detectors. The hybrid approach enables the consideration of a greater variety of measurement system solutions in terms of cost and performance. (authors)

  15. Design, modeling and control of a hybrid machine system

    E-Print Network [OSTI]

    Zhang, WJ "Chris"

    .J. Zhang). Mechatronics 14 (2004) 1197­1217 #12;Keywords: Hybrid machine; Five-bar mechanism; Design.S. Guo c a Advanced Engineering Design Laboratory, Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada b School of Mechanical and Production Engineering

  16. Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts (Invited)

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts energy release from detonations for propulsion or as a power source.1a This interest actually predates. The possibility of practical propulsion and power generation systems was even met with skep- ticism.12

  17. JOURNAL OF PROPULSION AND POWER Vol. 22, No. 6, NovemberDecember 2006

    E-Print Network [OSTI]

    Dame, where he considers problems in reactive fluid mechanics, high-speed flows, propulsion, energeticJOURNAL OF PROPULSION AND POWER Vol. 22, No. 6, November­December 2006 Review of Multiscale to detonation-driven propulsion systems are discussed. It is suggested that a failure of most existing

  18. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    and works in an office building. U.S. naval nuclear propulsion plants use a pressurized-water reactor design that has two basic systems: the primary system and the secondary...

  19. On the Averaging of a Class of Hybrid Systems Luigi Iannelli

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    that are excited by high-frequency external signals. These systems arise in the modeling of switched power analysis, as well as in numerical simulation and verification. Here we study a class of hybrid systems of engineering. For control system design, a good model is one that is complex enough to capture the important

  20. Formal modeling and analysis of hybrid systems: A case study in multirobot coordination

    E-Print Network [OSTI]

    Alur, Rajeev

    controllers, medical equipment, micro­electro­mechanical systems, and robots. Designing reliable hybrid systems is a challenging task. Control theoretic tools enable the design of continuous controllers in a single mode of operation. While nonlinear switching controllers have been designed for systems with sev

  1. A Hybrid Feedback Regulator Approach to Control an Automotive Suspension System

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    A Hybrid Feedback Regulator Approach to Control an Automotive Suspension System Xenofon D synthe- sis approach using an automotive suspension system. Discrete abstrac- tions are used control synthesis is presented and an example of an automotive suspension system is used to illus- trate

  2. DOE/NREL Inner Mongolia PV/Wind Hybrid Systems Pilot Project: A Post-Installation Assessment

    SciTech Connect (OSTI)

    Stroup, K. K.

    2005-02-01

    This report assesses the Inner Mongolia Pilot Project, which disseminates wind-solar hybrid systems to a rural and remote population.

  3. Feasibility of MHD submarine propulsion

    SciTech Connect (OSTI)

    Doss, E.D. ); Sikes, W.C. )

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  4. Los Alamos hybrid environment: an integrated development/configuration management system

    SciTech Connect (OSTI)

    Cort, G.

    1984-01-01

    I present the details of a hybrid configuration management system that utilizes a commercial configuration management tool (Softool's Change and Configuration Control environment) to monitor and control the development of mission-critical software systems at the Los Alamos Weapons Neutron Research Facility. The hybrid system combines features of the VMS host operating system and elements of the tool environment to integrate a flexible development environment with a very powerful automated configuration management system. The features of this system are presented with particular emphasis on the benefits of the hybrid approach. The complementary nature of the constituent environments is described. Special attention is given the issues of operational tradeoffs, personnel interaction and utilization, management visibility and overall system performance. It is shown that by employing a special interface data structure, the hybrid environment supports a much higher level of automation (of both development and configuration management activities) than is realizable in either environment individually. Examples are provided to illustrate the extent to which development activities and all phases of configuration management can be automated under this system. It is shown that in the process of providing a rigorous configuration management environment, the system remains virtually transparent to software development personnel and actually enhances the programmer's capabilities.

  5. BULK POWER SYSTEM DYNAMICS AND CONTROL V, AUGUST 26-31, 2001, ONOMICHI, JAPAN Global Hybrid Control of Power Systems

    E-Print Network [OSTI]

    Guo, Yi

    BULK POWER SYSTEM DYNAMICS AND CONTROL V, AUGUST 26-31, 2001, ONOMICHI, JAPAN Global Hybrid Control| This paper presents an overview of recent results on an ap- proach to total control of power systems con- trol for voltage security of power systems, and same ideas for general control [1{6]. In arriving

  6. Hybrid control of networked embedded systems A. Balluchi, L. Benvenuti, S. Engell, T. Geyer, K.H. Johansson,

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Hybrid control of networked embedded systems A. Balluchi, L. Benvenuti, S. Engell, T. Geyer, K surveying the main theoretical control problems that have been treated in the hybrid systems setting: Control of power systems, industrial process control, design of automotive electronics and communication

  7. Aalborg Universitet Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    Aalborg Universitet Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems, R. E. (2014). Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems Storage Systems with Supercapacitors Cl´audio Pinto, Jorge V. Barreras, Ricardo de Castro, Erik Schaltz

  8. OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant; Gregory Nellis, Professor; Sanford Klein,

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    1 OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant, Madison, WI, United States Abstract: Hybrid ground-coupled heat pump systems (HyGCHPs) couple conventional ground- coupled heat pump (GCHP) equipment with supplemental heat rejection or extraction systems

  9. Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    )-investment in the generation facilities. Electrical energy storage (EES) systems can thus increase power reliabilityCharge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems ABSTRACT Electrical energy is high-quality form of energy, and thus it is ben- eficial to store

  10. LQ Optimal Control of Wind Turbines in Hybrid Power Systems N.A. Cutululis1

    E-Print Network [OSTI]

    LQ Optimal Control of Wind Turbines in Hybrid Power Systems N.A. Cutululis1 , H. Bindner1 , I. Munteanu2 , A. Bratcu2 , E. Ceanga2 , P. Soerensen1 1 Risø National Laboratory, Denmark Wind Energy Systems, Faculty of Electrical Engineering, "Dunrea de Jos" University of Galati, Abstract: Wind ­ diesel

  11. Adaptive Model Predictive Control of the Hybrid Dynamics of a Fuel Cell System.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adaptive Model Predictive Control of the Hybrid Dynamics of a Fuel Cell System. M. Fiacchini, T operation of a fuel cell system is presented. The aim of the control design is to guarantee that the oxygen control to a fuel cell plant is presented. The fuel cell, located in the laboratory of the Department

  12. Modelling of Stochastic Hybrid Systems with Applications to Accident Risk Assessment

    E-Print Network [OSTI]

    Del Moral , Pierre

    Modelling of Stochastic Hybrid Systems with Applications to Accident Risk Assessment #12;The SYSTEMS WITH APPLICATIONS TO ACCIDENT RISK ASSESSMENT DISSERTATION to obtain the doctor's degree promotor Prof. dr. A. Bagchi #12;Contents 1 Introduction 3 1.1 Accident risk assessment

  13. Comparative study of State Estimation of Fuel Cell Hybrid System Using UKF and EKF

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Cell (SOFC) combined with Gas Turbine (GT) hybrid system is described and system level modeling of the most promising fuel cell technologies is the Solid Oxide Fuel Cell (SOFC) due to its solid state design and internal reforming of gaseous fuels, in addition to its high efficiency. The SOFC converts the chemical

  14. Interim Human Factors Guidance for Hybrid and Digital I&C System

    SciTech Connect (OSTI)

    J.Naser, G.Morris

    2003-08-15

    OAK- B135 To help nuclear power plant operators and suppliers plan, specify, design and implement the modernization of control rooms and other HSI in a way that takes advantage of digital systems and HSI technologies, reflects practical constraints associated with modernizing existing control rooms and I&C systems, and addresses issues associated with hybrid control room HSI.

  15. Mechanically-mediated optical response in hybrid opto-electromechanical systems

    E-Print Network [OSTI]

    Cheng Jiang; Yuanshun Cui; Hongxiang Liu; Guibin Chen

    2014-04-15

    We theoretically investigate the analog of electromagnetically induced transparency, absorption and parametric amplification in a hybrid opto-electromechanical system consisting of an optical cavity and a microwave cavity coupled to a common nanomechanical resonator. When the two cavity modes are driven on their respective red sidebands by two pump beams and a probe beam is applied to the optical cavity to monitor the optical response of the hybrid system, we find that a transparency window appears in the probe transmission spectrum due to destructive interference. When the optical cavity is pumped on its blue sideband, the analog of electromagnetically induced absorption and parametric amplification occur due to constructive interference.

  16. Mechanically-mediated optical response in hybrid opto-electromechanical systems

    E-Print Network [OSTI]

    Jiang, Cheng; Liu, Hongxiang; Chen, Guibin

    2014-01-01

    We theoretically investigate the analog of electromagnetically induced transparency, absorption and parametric amplification in a hybrid opto-electromechanical system consisting of an optical cavity and a microwave cavity coupled to a common nanomechanical resonator. When the two cavity modes are driven on their respective red sidebands by two pump beams and a probe beam is applied to the optical cavity to monitor the optical response of the hybrid system, we find that a transparency window appears in the probe transmission spectrum due to destructive interference. When the optical cavity is pumped on its blue sideband, the analog of electromagnetically induced absorption and parametric amplification occur due to constructive interference.

  17. Summary Report of the INL-JISEA Workshop on Nuclear Hybrid Energy Systems

    SciTech Connect (OSTI)

    Antkowiak, M.; Ruth, M.; Boardman, R.; Bragg-Sitton, S.; Cherry, R.; Shunn, L.

    2012-07-01

    The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions--one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group.

  18. Optimal Control of Hybrid Systems in Air Traffic Applications

    E-Print Network [OSTI]

    Kamgarpour, Maryam

    2011-01-01

    optimal control of nonlinear dynamical systems [25, 26, 27].constrained nonlinear switched dynamical systems,” in Hybridwe focus on nonlinear switched dynamical systems. These

  19. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    DOE Patents [OSTI]

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  20. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    SciTech Connect (OSTI)

    Doherty, M.P. (NASA Lewis Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States))

    1993-01-10

    This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  1. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    SciTech Connect (OSTI)

    Doherty, M.P.

    1993-05-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  2. A "Hybrid" Approach for Synthesizing Optimal Controllers of Hybrid Systems: A Case Study of the Oil Pump Industrial Example

    E-Print Network [OSTI]

    Zhao, Hengjun; Kapur, Deepak; Larsen, Kim G

    2012-01-01

    In this paper, we propose an approach to reduce the optimal controller synthesis problem of hybrid systems to quantifier elimination; furthermore, we also show how to combine quantifier elimination with numerical computation in order to make it more scalable but at the same time, keep arising errors due to discretization manageable and within bounds. A major advantage of our approach is not only that it avoids errors due to numerical computation, but it also gives a better optimal controller. In order to illustrate our approach, we use the real industrial example of an oil pump provided by the German company HYDAC within the European project Quasimodo as a case study throughout this paper, and show that our method improves (up to 7.5%) the results reported in [3] based on game theory and model checking.

  3. Positive exchange bias and upward magnetic relaxation in a Fe-film/CoO-nanoparticle hybrid system

    E-Print Network [OSTI]

    Krishnan, Kannan M.

    Positive exchange bias and upward magnetic relaxation in a Fe-film/CoO- nanoparticle hybrid system exchange bias and upward magnetic relaxation in a Fe-film/CoO-nanoparticle hybrid system Wei Zhang) Heat-induced damping modification in yttrium iron garnet/platinum hetero-structures Appl. Phys. Lett

  4. Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    E-Print Network [OSTI]

    Howison, Mark

    2010-01-01

    W. , and Childs, H. (2010) MPI-hybrid parallelism for volumeHybrid Parallelism for Volume Rendering on Large, Multi-corecharacteristics of “hybrid” parallel program- ming and

  5. Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    E-Print Network [OSTI]

    Howison, Mark

    2010-01-01

    Hybrid Parallelism for Volume Rendering on Large, Multi-corendings indicate that the hybrid-parallel implementation, atpassing against a “hybrid” parallel im- plementation, which

  6. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    SciTech Connect (OSTI)

    Wang, Shaojie; Ellis, Dan

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  7. Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System

    SciTech Connect (OSTI)

    Burress, Timothy A; Campbell, Steven L; Coomer, Chester; Ayers, Curtis William; Wereszczak, Andrew A; Cunningham, Joseph Philip; Marlino, Laura D; Seiber, Larry Eugene; Lin, Hua-Tay

    2011-03-01

    Subsystems of the 2010 Toyota Prius hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies Program (VTP) not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.

  8. Nuclear Electric Propulsion Technology Panel findings and recommendations

    SciTech Connect (OSTI)

    Doherty, M.P.

    1992-01-01

    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.

  9. Jet propulsion without inertia

    E-Print Network [OSTI]

    Saverio E. Spagnolie; Eric Lauga

    2010-05-04

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increases as the body becomes more oblate, and limits to approximately 162% in the case of a flat plate swimming along its axis of symmetry. Our results are discussed in the light of slime extrusion mechanisms occurring in many cyanobacteria.

  10. NASA's progress in nuclear electric propulsion technology

    SciTech Connect (OSTI)

    Stone, J.R.; Doherty, M.P.; Peecook, K.M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed. 19 refs.

  11. NASA's progress in nuclear electric propulsion technology

    SciTech Connect (OSTI)

    Stone, J.R.; Doherty, M.P.; Peecook, K.M.

    1993-06-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  12. Propulsion considerations for supersonic oblique flying wings

    E-Print Network [OSTI]

    Shinagawa, Yuto

    2006-01-01

    Propulsion considerations unique to the supersonic oblique flying wing, including cycle selection, sizing, and integration were investigated via the development and interrogation of aerodynamic and propulsive synthesis ...

  13. Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering Strategy

    E-Print Network [OSTI]

    Pedram, Massoud

    energy price during peak hours for residential users. Moreover, recent research on smart grid proposesDesigning a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering companies generally raise electrical energy price during periods of high load demand. A grid

  14. Stresa, Italy, 26-28 April 2006 THERMOELECTRIC AND MICROBATTERY HYBRID SYSTEM WITH ITS POWER

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    change depending on the outside conditions) and required by the thin film solid state battery developed. It consists in hybriding an energy storage system (thin film solid state battery control charge of the battery by the thermogenerator and discharge of the battery by the load, i

  15. STOCHASTIC HYBRID SYSTEMS WITH RENEWAL TRANSITIONS: MOMENT ANALYSIS WITH APPLICATION TO

    E-Print Network [OSTI]

    Hespanha, João Pedro

    STOCHASTIC HYBRID SYSTEMS WITH RENEWAL TRANSITIONS: MOMENT ANALYSIS WITH APPLICATION TO NETWORKED of the state at transition times. As surveyed in [1], various models of SHSs [2], [3], [4] have been proposed that combines the transition times and the discrete mode is typically called a Markov renewal process [9], which

  16. Hybrid Generation Systems Planning Expansion Forecast: A Critical State of the Art Review

    E-Print Network [OSTI]

    Brest, Université de

    renewable energy resources are random and weather/climatic conditions-dependant. In this challenging context technical and economical constraints. Index Terms--Hybrid energy systems, renewable power generation-friendly nature (i.e. renewable energies). Although renewable energy penetration in electricity is expected

  17. A HYBRID INTELLIGENT SYSTEM FOR FORMULATION OF BCS CLASS II DRUGS IN HARD GELATIN CAPSULES

    E-Print Network [OSTI]

    Peng, Yun

    A HYBRID INTELLIGENT SYSTEM FOR FORMULATION OF BCS CLASS II DRUGS IN HARD GELATIN CAPSULES Gunjan in hard gelatin cap- sules. Several significant challenges are involved in drug- formulation: the active of drug formulations for hard gelatin capsules can present significant challenges [4]. Some

  18. GAS ANALYSIS SYSTEM COMPOSED OF A SOLID-STATE SENSOR ARRAY AND HYBRID NEURAL NETWORK

    E-Print Network [OSTI]

    Osowski, Stanislaw

    1 GAS ANALYSIS SYSTEM COMPOSED OF A SOLID-STATE SENSOR ARRAY AND HYBRID NEURAL NETWORK STRUCTURE of the solid state sensor array used for the gas analysis. The applied neural network is composed of two parts of the gas components. The obtained results have shown that the array of partially selective sensors

  19. Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study

    E-Print Network [OSTI]

    Wierman, Adam

    Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang with photovoltaic (PV) arrays, wind turbines, and battery storage is designed based on empirical weather and load with renewable resources such as solar and wind power, supplemented with battery storage in a case study. One

  20. Lessons Learned IKEA Furniture Store Hybrid GSHP System Lessons Learned IKEA Furniture Store

    E-Print Network [OSTI]

    packaged WA heat pumps, 1.5 to 6.0 tons · Twenty six hydronic air handlers ­ 1,000 to 18,400 cfm; 24, or when conditions permit · Ice to supplement heat pumps to moderate SCWT (supply chilled water loop to scavenge waste heat 7 #12;Lessons Learned ­ IKEA Furniture Store Hybrid GSHP System Mechanical

  1. Center for Sustainability Hybrid Renewable Energy Systems (HyRES) Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    TODAY Center for Sustainability Hybrid Renewable Energy Systems (HyRES) Laboratory Hydrogen fueling State's Center for Sustainability. www.engr.psu.edu/cfs Current Sponsors U.S. Department of Energy (NREL) National Electrical Contracting Association West Penn Power Sustainable Energy Fund Sustainable Energy Fund

  2. Optimal Buffer Management Using Hybrid Systems Wei Zhang and Jianghai Hu

    E-Print Network [OSTI]

    Zhang, Wei

    with some heuristic schemes. I. INTRODUCTION Dynamic buffer management (DBM) is an effective power general DBM problem, where the component to be controlled has multiple power modes. Since different power as a piecewise-constant hybrid system, or more accurately, a multi-rate automata [7]. The DBM problem is thus

  3. DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    regenerative braking, or with scarce power capacity for fast acceleration. The ratings of the ultracapacitor, regenerative braking is disconnected from the main computer of the traction drive system, and the battery", "Regenerative Braking". 1. Introduction Throughout the years hybrid vehicles have proofed themselves the shorter

  4. 1. PMU Based RAS for a Hybrid AC/DC System 1.1. Project Team

    E-Print Network [OSTI]

    Li, Husheng

    1. PMU Based RAS for a Hybrid AC/DC System 1.1. Project Team Primary Thrust: Modeling Secondary to be detected more quickly allowing less severe action. This effort focuses on PMU driven response-based RAS from PMU units. The project goals break down into three efforts: · Investigating the possibility

  5. Model Predictive Control for Starvation Prevention in a Hybrid Fuel Cell System1

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Model Predictive Control for Starvation Prevention in a Hybrid Fuel Cell System1 Ardalan Vahidi 2 current is drawn from a fuel cell, it is critical that the reacted oxygen is replenished rapidly. We formulate distribution of current demand between the fuel cell and the auxiliary source

  6. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions

    E-Print Network [OSTI]

    Minnesota, University of

    Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin

  7. A Hybrid Energy System Using Cascaded H-bridge Converter , Zhong Du2

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Dept. of ECE, North Carolina State University, Raleigh, NC 27695, zdu@ncsu.edu 3 Dept. of ECE schemes were developed to extract maximum wind power and charge/discharge the battery with fast dynamics proposes a hybrid energy system to integrate the variable-speed wind turbine, fuel cell, and battery using

  8. Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based on

    E-Print Network [OSTI]

    Noé, Reinhold

    Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based are used as energy storage. The size of the battery depends not only on the driving range, but also Deterministic Dynamic Programming. To determine an energy management to control the power flows to the storage

  9. Design and Implementation of a Hybrid Energy Supply System for Railway Vehicles

    E-Print Network [OSTI]

    Elsässer, Robert

    of Paderborn, Germany Abstract- An energy supply system based on a hybrid energy storage unit combined technologies make these devices effectively to be employed as energy storage element in electric vehicles and ultracapacitor High energy density batteries are usually applied as the primary energy storage component

  10. Optimal design of hybrid separation systems for in-plant waste reduction

    SciTech Connect (OSTI)

    Hamad, A.A.; Crabtree, E.W.; El-Halwagi, M.M.; Garrison, G.W.

    1996-12-31

    A general procedure for using hybrid separation systems to prevent pollution is presented. The design procedure integrates segregation, interception, and recycle. A systematic method developed to identify the optimal design combination is illustrated through a case study. The case study presented is the removal of cresol from aqueous wastes in a tricresyl phosphate plant. 21 refs., 4 figs.

  11. Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications

    E-Print Network [OSTI]

    Pedram, Massoud

    Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications Donghwa Shin, Younghyun--Modern batteries (e.g., Li-ion batteries) provide high discharge efficiency, but the rate capacity effect in these batteries drastically decreases the discharge efficiency as the load current increases. Electric double

  12. Observation of a phononic Mollow triplet in a hybrid spin-nanomechanical system

    E-Print Network [OSTI]

    Benjamin Pigeau; Sven Rohr; Laure Mercier de Lépinay; Arnaud Gloppe; Vincent Jacques; Olivier Arcizet

    2015-02-25

    Reminiscent of the bound character of a qubit's dynamics confined on the Bloch sphere, the observation of a Mollow triplet in the resonantly driven qubit fluorescence spectrum represents one of the founding signatures of Quantum Electrodynamics. Here we report on its observation in a hybrid spin-nanomechanical system, where a Nitro-gen Vacancy spin qubit is magnetically coupled to the vibrations of a Silicon Carbide nanowire. A resonant microwave field turns the originally parametric hybrid interac-tion into a resonant process, where acoustic phonons are now able to induce transitions between the dressed qubit states, leading to synchronized spin-oscillator dynamics. We further explore the vectorial character of the hybrid coupling to the bidimensional de-formations of the nanowire. The demonstrated microwave assisted synchronization of the spin-oscillator dynamics opens novel perspectives for the exploration of spin-dependent forces, the key-ingredient for quantum state transfer.

  13. Hybrid lean premixing catalytic combustion system for gas turbines

    DOE Patents [OSTI]

    Critchley, Ian L.

    2003-12-09

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  14. Hybrid metal organic scintillator materials system and particle detector

    DOE Patents [OSTI]

    Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

    2011-07-26

    We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

  15. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the grid in remote locations. | Photo courtesy of Dave Parsons. Off-Grid or Stand-Alone Renewable Energy Systems Whether a home solar electric system will work for you depends on...

  16. Hybrid powertrain system including smooth shifting automated transmission

    DOE Patents [OSTI]

    Beaty, Kevin D.; Nellums, Richard A.

    2006-10-24

    A powertrain system is provided that includes a prime mover and a change-gear transmission having an input, at least two gear ratios, and an output. The powertrain system also includes a power shunt configured to route power applied to the transmission by one of the input and the output to the other one of the input and the output. A transmission system and a method for facilitating shifting of a transmission system are also provided.

  17. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  18. Berry phase and Hannay’s angle in the Born–Oppenheimer hybrid systems

    SciTech Connect (OSTI)

    Liu, H.D. [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)] [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Yi, X.X. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Fu, L.B., E-mail: lbfu.iapcm@gmail.com [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084 (China)

    2013-12-15

    In this paper, we investigate the Berry phase and Hannay’s angle in the Born–Oppenheimer (BO) hybrid systems and obtain their algebraic expressions in terms of one form connection. The semiclassical relation of Berry phase and Hannay’s angle is discussed. We find that, besides the usual connection term, the Berry phase of quantum BO composite system also contains a novel term brought forth by the coupling induced effective gauge potential. This quantum modification can be viewed as an effective Aharonov–Bohm effect. Moreover, the similar phenomenon is founded in Hannay’s angle of classical BO composite system, which indicates that the Berry phase and Hannay’s angle possess the same relation as the usual one. An example is used to illustrate our theory. This scheme can be used to generate artificial gauge potentials for neutral atoms. Besides, the quantum–classical hybrid BO system is also studied to compare with the results in full quantum and full classical composite systems. -- Highlights: •We have derived the Berry phase and Hannay’s angle in BO hybrid systems. •The Berry phase contains a novel term brought by the effective gauge potential. •This mechanism can be used to generate artificial gauge potentials for neutral atoms. •The relation between Hannay’s angles and Berry phases is established.

  19. Hybrid Zinc Phthalocyanine/Zinc Oxide System for Photovoltaic De-vices: a DFT and TDDFPT Theoretical Investigation

    E-Print Network [OSTI]

    Giannozzi, Paolo

    Hybrid Zinc Phthalocyanine/Zinc Oxide System for Photovoltaic De- vices: a DFT and TDDFPT in the functioning of hybrid photovoltaic devices. The molecule-surface interactions are also characterized-inorganic photovoltaic devices (OPV and HPV, respectively) have received enormous re- search attention in the last years

  20. Engineering Challenges in Antiproton Triggered Fusion Propulsion

    SciTech Connect (OSTI)

    Cassenti, Brice [Department. of Engineering and Science, Rensselaer Polytechnic Institute, 275 Windsor Avenue, Hattford, CT 06120 (United States); Kammash, Terry [Nuclear Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-01-21

    During the last decade antiproton triggered fusion propulsion has been investigated as a method for achieving high specific impulse, high thrust in a nuclear pulse propulsion system. In general the antiprotons are injected into a pellet containing fusion fuel with a small amount of fissionable material (i.e., an amount less than the critical mass) where the products from the fission are then used to trigger a fusion reaction. Initial calculations and simulations indicate that if magnetically insulated inertial confinement fusion is used that the pellets should result in a specific impulse of between 100,000 and 300,000 seconds at high thrust. The engineering challenges associated with this propulsion system are significant. For example, the antiprotons must be precisely focused. The pellet must be designed to contain the fission and initial fusion products and this will require strong magnetic fields. The fusion fuel must be contained for a sufficiently long time to effectively release the fusion energy, and the payload must be shielded from the radiation, especially the excess neutrons emitted, in addition to many other particles. We will review the recent progress, possible engineering solutions and the potential performance of these systems.

  1. Hybrid robust predictive optimization method of power system dispatch

    DOE Patents [OSTI]

    Chandra, Ramu Sharat (Niskayuna, NY); Liu, Yan (Ballston Lake, NY); Bose, Sumit (Niskayuna, NY); de Bedout, Juan Manuel (West Glenville, NY)

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  2. A 10kW photovoltaic/hybrid system for Pinnacles National Monument

    SciTech Connect (OSTI)

    Ball, T.J. [Applied Power Corp., Lacey, WA (United States); DeNio, D. [National Park Service, Denver, CO (United States). Denver Service Center

    1997-12-31

    Visitors to the Chaparral area of the Pinnacles National Monument now can enjoy this beautiful section of the park without the constant drone of diesel generators, thanks to a recently installed photovoltaic/hybrid system. Electrical power had been supplied by two 100 KW diesel generators operating 24 hours per day. The diesels were running lightly loaded resulting in poor efficiency and high operating cost. Applied Power Corporation under contract with the National Park Service designed and supplied a 10 KW photovoltaic array, 200 KW hr battery bank and 24 KW of inverters to power the maintenance facility, visitor center and ranger residences. A new 20 KW propane generator was installed to provide supplemental power, totally eliminating the storage and transport of diesel fuel at this site. The Pinnacles PV/Hybrid system was brought on line in early 1996 and the park is now benefiting from the cost savings associated with the system.

  3. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume III. Appendices

    SciTech Connect (OSTI)

    None

    1980-01-01

    The overall, long term objective of the Solar Central Receiver Hybrid Power System is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumpton, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains appendices to the conceptual design and systems analysis studies gien in Volume II, Books 1 and 2. (WHK)

  4. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  5. Fluidic electrodynamics: Approach to electromagnetic propulsion

    SciTech Connect (OSTI)

    Martins, Alexandre A.; Pinheiro, Mario J. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.92.43 (Portugal); Department of Physics and Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.93.22 (Portugal)

    2009-03-16

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  6. Fast Track'' nuclear thermal propulsion concept

    SciTech Connect (OSTI)

    Johnson, R.A.; Zweig, H.R. (Rocketdyne Division, Rockwell International Corporation, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States)); Cooper, M.H.; Wett, J. Jr. (Westinghouse Electric Corporation, Post Office Box 158, Madison, Pennsylvania 15663 (United States))

    1993-01-10

    The objective of the Space Exploration Initiative ( America at the Threshold...,'' 1991) is the exploration of Mars by man in the second decade of the 21st century. The NASA Fast Track'' approach (NASA-LeRC Presentation, 1992) could accelerate the manned exploration of Mars to 2007. NERVA-derived nuclear propulsion represents a viable near-term technology approach to accomplish the accelerated schedule. Key milestones in the progression to the manned Mars mission are (1) demonstration of TRL-6 for the man-rateable system by 1999, (2) a robotic lunar mission by 2000, (3) the first cargo mission to Mars by 2005, and (4) the piloted Mars mission in 2007. The Rocketdyne-Westinghouse concept for nuclear thermal propulsion to achieve these milestones combines the nuclear reactor technology of the Rover/NERVA programs and the state-of-the-art hardware designs from hydrogen-fueled rocket engine successes like the Space Shuttle Main Engine (SSME).

  7. An Analysis of Hybrid Life Support Systems for Sustainable Habitats

    E-Print Network [OSTI]

    Shaw, Margaret Miller

    2014-01-01

    The design of sustainable habitats on Earth, on other planetary surfaces, and in space, has motivated strategic planning with respect to life support (LS) system technology development and habitat design. Such planning ...

  8. Hybrid energy storage systems utilizing redox active organic compounds

    DOE Patents [OSTI]

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  9. Hybrid membrane--PSA system for separating oxygen from air

    DOE Patents [OSTI]

    Staiger, Chad L. (Albuquerque, NM); Vaughn, Mark R. (Albuquerque, NM); Miller, A. Keith (Albuquerque, NM); Cornelius, Christopher J. (Blackburg, VA)

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  10. : Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems

    E-Print Network [OSTI]

    Platzer, André

    A major task of computer science is to program objects of our physical world: cars, trains, airplanes look at a satellite with position x trying to leave the solar system, avoiding planets. To simplify

  11. BATMAN: Maximizing Bandwidth Utilization of Hybrid Memory Systems

    E-Print Network [OSTI]

    Qureshi, Moinuddin K.

    ) compared to commodity DRAM (i.e. DDR3, and DDR4 [4, 5]). Therefore, they are un- able to completely replace-Memory System or a Tiered-Memory System. 0 20 40 60 80 25 50 75 100 125 150 175 Latency(ns) Bandwidth (GB/s) DDR4(2014) HBM(2014) HMC(2014) HBM HMC DDR3 DDR4 DDR3(2013) Fig. 1. Latency and bandwidth

  12. Propulsion engineering study for small-scale Mars missions

    SciTech Connect (OSTI)

    Whitehead, J.

    1995-09-12

    Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardware mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.

  13. International Multi-Conference on Systems, Signals & Devices

    E-Print Network [OSTI]

    Systems 60 Ahmed Masmoudi Papers Magnetic field calculation under EHV transmission lines for more: an Attempt to Improve the Cost-effectiveness, the Compactness and the Re- liability of Hybrid Propulsion coevolutionary algorithms with transmission constraints 72 Ahmed Amine Ladjici and Mohamed Boudour A general

  14. A hybrid inventory management system respondingto regular demand and surge demand

    SciTech Connect (OSTI)

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

  15. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  16. Nuclear Propulsion in Space (1968)

    SciTech Connect (OSTI)

    2012-06-23

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  17. Nuclear Propulsion in Space (1968)

    ScienceCinema (OSTI)

    None

    2014-06-17

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  18. Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    SciTech Connect (OSTI)

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2010-07-12

    This work studies the performance and scalability characteristics of"hybrid'"parallel programming and execution as applied to raycasting volume rendering -- a staple visualization algorithm -- on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  19. MPI-hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    SciTech Connect (OSTI)

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2010-03-20

    This work studies the performance and scalability characteristics of"hybrid'" parallel programming and execution as applied to raycasting volume rendering -- a staple visualization algorithm -- on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  20. Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    SciTech Connect (OSTI)

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2010-06-14

    This work studies the performance and scalability characteristics of"hybrid" parallel programming and execution as applied to raycasting volume rendering -- a staple visualization algorithm -- on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  1. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOE Patents [OSTI]

    Ko, Suk M. (Huntsville, AL)

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  2. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  3. A notion of passivity for hybrid systems Milos Zefran

    E-Print Network [OSTI]

    Sontag, Eduardo

    on linear circuit the- ory was used for stability analysis in [7]. The most general stability results of hap- tic displays interacting with linear [5] and passive [6] en- vironments. Passivity analysis based Introduction In this paper we are primarily concerned with the stability analysis of systems that involve

  4. Hybrid Energy Storage System Integration For Vehicles , Hai Zhou

    E-Print Network [OSTI]

    Zhou, Hai

    . Existing in-vehicle Lithium-ion battery systems are bulky, expensive, and unre- liable. Energy storage- plementary energy storage technologies, e.g., Lithium-ion batteries and ultracapacitors. Using physical-drive vehicles. Based on an ESS modeling solution that considers major run-time and long-term battery effects

  5. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  6. Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

    2002-01-01

    In one aspect, the invention encompasses a method of chemically converting a first material to a second material. A first plasma and a second plasma are formed, and the first plasma is in fluid communication with the second plasma. The second plasma comprises activated hydrogen and oxygen, and is formed from a water vapor. A first material is flowed into the first plasma to at least partially ionize at least a portion of the first material. The at least partially ionized first material is flowed into the second plasma to react at least some components of the first material with at least one of the activated hydrogen and activated oxygen. Such converts at least some of the first material to a second material. In another aspect, the invention encompasses a method of forming a synthetic gas by flowing a hydrocarbon-containing material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of degrading a hydrocarbon-containing material by flowing such material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of releasing an inorganic component of a complex comprising the inorganic component and an other component, wherein the complex is flowed through a hybrid-plasma system.

  7. An Excursion-Theoretic Approach to Stability of Discrete-Time Stochastic Hybrid Systems

    SciTech Connect (OSTI)

    Chatterjee, Debasish, E-mail: chatterjee@control.ee.ethz.ch [ETH Zuerich, ETL I19 (Switzerland); Pal, Soumik, E-mail: soumik@math.washington.edu [University of Washington, Department of Mathematics (United States)

    2011-04-15

    We address stability of a class of Markovian discrete-time stochastic hybrid systems. This class of systems is characterized by the state-space of the system being partitioned into a safe or target set and its exterior, and the dynamics of the system being different in each domain. We give conditions for L{sub 1}-boundedness of Lyapunov functions based on certain negative drift conditions outside the target set, together with some more minor assumptions. We then apply our results to a wide class of randomly switched systems (or iterated function systems), for which we give conditions for global asymptotic stability almost surely and in L{sub 1}. The systems need not be time-homogeneous, and our results apply to certain systems for which functional-analytic or martingale-based estimates are difficult or impossible to get.

  8. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect (OSTI)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  9. Performance of a small solar-powered hybrid membrane system for remote communities under varying feedwater salinities 

    E-Print Network [OSTI]

    Schäfer, Andrea; Remy, C.; Richards, B.S.

    2004-01-01

    An estimated 1 billion people are living both without access to clean drinking water or electricity. The small photovoltaic (PV)-powered hybrid membrane system described here is designed to address the plight of some ...

  10. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system 

    E-Print Network [OSTI]

    Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

    2008-01-01

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration – nanofiltration / reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating ...

  11. Magnetized target fusion and fusion propulsion.

    SciTech Connect (OSTI)

    Kirkpatrick, R. C. (Ronald C.)

    2001-01-01

    Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion conditions is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion.

  12. Hybrid Power System Simulation Model | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergyHyEnergy Systems

  13. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  14. Hybrid Power Test Bed

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    This document describes efforts by the National Renewable Energy Laboratory to simulate hybrid power systems. Hybrid power systems combine multiple power sources such as wind turbines, photovoltaic (PV) arrays, diesel generators, and battery storage systems. They typically are used in remote areas, away from major electric grids. The Hybrid Power Test Bed is designed to assist the U.S. wind industry in developing and testing hybrid power generation systems. Test bed capabilities, features, and equipment are described.

  15. Hybrid Compton camera/coded aperture imaging system

    DOE Patents [OSTI]

    Mihailescu, Lucian (Livermore, CA); Vetter, Kai M. (Alameda, CA)

    2012-04-10

    A system in one embodiment includes an array of radiation detectors; and an array of imagers positioned behind the array of detectors relative to an expected trajectory of incoming radiation. A method in another embodiment includes detecting incoming radiation with an array of radiation detectors; detecting the incoming radiation with an array of imagers positioned behind the array of detectors relative to a trajectory of the incoming radiation; and performing at least one of Compton imaging using at least the imagers and coded aperture imaging using at least the imagers. A method in yet another embodiment includes detecting incoming radiation with an array of imagers positioned behind an array of detectors relative to a trajectory of the incoming radiation; and performing Compton imaging using at least the imagers.

  16. Modular hybrid plasma reactor and related systems and methods

    DOE Patents [OSTI]

    Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.

    2010-06-22

    A device, method and system for generating a plasma is disclosed wherein an electrical arc is established and the movement of the electrical arc is selectively controlled. In one example, modular units are coupled to one another to collectively define a chamber. Each modular unit may include an electrode and a cathode spaced apart and configured to generate an arc therebetween. A device, such as a magnetic or electromagnetic device, may be used to selectively control the movement of the arc about a longitudinal axis of the chamber. The arcs of individual modules may be individually controlled so as to exhibit similar or dissimilar motions about the longitudinal axis of the chamber. In another embodiment, an inlet structure may be used to selectively define the flow path of matter introduced into the chamber such that it travels in a substantially circular or helical path within the chamber.

  17. Analysis of the spectroscopy of a hybrid system composed of a superconducting flux qubit and diamond NV centers

    E-Print Network [OSTI]

    H. Cai; Y. Matsuzaki; K. Kakuyanagi; H. Toida; X. Zhu; N. Mizuochi; K. Nemoto; K. Semba; W. J. Munro; S. Saito; H. Yamaguchi

    2015-05-28

    A hybrid system that combines the advantages of a superconducting flux qubit and an electron spin ensemble in diamond is one of the promising devices to realize quantum information processing. Exploring the properties of the superconductor diamond system is essential for the efficient use of this device. When we perform spectroscopy of this system, significant power broadening is observed. However, previous models to describe this system are known to be applicable only when the power broadening is negligible. Here, we construct a new approach to analyze this system with strong driving, and succeed to reproduce the spectrum with the power broadening. Our results provide an efficient way to analyze this hybrid system.

  18. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  19. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

    SciTech Connect (OSTI)

    Ayers, C.W.

    2004-11-23

    Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  20. SIMES: A Simulator for Hybrid Electrical Energy Storage Systems Siyu Yue, Di Zhu, Yanzhi Wang, and Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    SIMES: A Simulator for Hybrid Electrical Energy Storage Systems Siyu Yue, Di Zhu, Yanzhi Wang Electrical Energy Storage System, Simulator 1. Introduction An electrical energy storage (EES) system to store a higher grade of energy compared to other energy storage systems since electrical energy has

  1. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  2. Static potential for the quark-antiquark-gluon hybrid system in lattice QCD

    E-Print Network [OSTI]

    Marco Cardoso; Pedro Bicudo; Orlando Oliveira

    2007-10-09

    The static gluon-quark-antiquark interaction is investigated using lattice QCD techniques. A Wilson loop adequate to the static hybrid three-body system is developed and, using a $24^3 \\times 48$ periodic lattice with $\\beta = 6.2$, the potential energy of the system is measured for different geometries. For the medium range behaviour, when the quarks are far apart, we find a string tension which is compatible with two fundamental strings. On the other hand, when the quark and antiquark are nearby, the string tension is larger than two fundamental strings and is compatible with the Casimir scaling.

  3. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    None

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  4. Ultrahigh Specific Impulse Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Anne Charmeau; Brandon Cunningham; Samim Anghaie

    2009-02-09

    Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

  5. Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems

    SciTech Connect (OSTI)

    Chen W.; De Geronimo G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

    2011-11-15

    We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

  6. Initial results from the operation of village hybrid systems in Chile

    SciTech Connect (OSTI)

    Holz, R.; Baring-Gould, E.I.; Corbus, D. [and others

    1997-08-01

    The government of Chile has undertaken a rural electrification program to electrify 75% of the population by the year 2000. Renewable energy is considered within this program, and its application facilitated through a technical cooperation agreement between Chile`s national energy commission (CNE) and the U.S. Department of Energy. In order to introduce isolated mini-grid hybrid wind-energy systems into Chile, three pilot projects were implemented in Region IX. The goal of the pilot systems is to establish renewables as a viable option for rural electrification in the Chilean context. In this paper we report on the first six months of three pilot projects. Presented as background information are brief descriptions of the power systems, data acquisition systems, and the operation and maintenance (O&M) protocols. Analyses of loads, component performance, system operation, and balance of payments for O&M are the primary points presented. Important lessons learned and future plans are also discussed.

  7. hStorage-DB: Heterogeneity-aware Data Management to Exploit the Full Capability of Hybrid Storage Systems

    E-Print Network [OSTI]

    Chen, Feng

    .a.chen}@intel.com ABSTRACT As storage systems become increasingly heterogeneous and complex, it adds burdens on DBAs, causing storage system, so that every request will be served with a suitable storage device. With hStorage-DB, we but is particularly impor- tant for a hybrid storage system. To show the effectiveness of hStorage-DB, we have

  8. Adapt-Traf: An adaptive multiagent road traffic management system based on hybrid ant-hierarchical fuzzy model

    E-Print Network [OSTI]

    Casillas Barranquero, Jorge

    of the energy consumption, and others. Road traffic management consists on improving the traffic fluency on roadAdapt-Traf: An adaptive multiagent road traffic management system based on hybrid ant systems Ant colony Hierarchical fuzzy system Traffic simulation a b s t r a c t Usually, road networks

  9. M. Bahrami ENSC 461 (S 11) Jet Propulsion Cycle 1 Ideal JetPropulsion Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami ENSC 461 (S 11) Jet Propulsion Cycle 1 Ideal JetPropulsion Cycle Gas-turbine engines. Aircraft gas turbines operate on an open cycle called jet-propulsion cycle. Some of the major differences between the gas-turbine and jet-propulsion cycles are: gases are expanded in the turbine to a pressure

  10. Order to Disorder Transitions in Hybrid Intelligent Systems: a Hatch to the Interactions of Nations -Governments

    E-Print Network [OSTI]

    Owladeghaffari, Hamed

    2008-01-01

    In this study, under general frame of MAny Connected Intelligent Particles Systems (MACIPS), we reproduce two new simple subsets of such intelligent complex network, namely hybrid intelligent systems, involved a few prominent intelligent computing and approximate reasoning methods: self organizing feature map (SOM), Neuro-Fuzzy Inference System and Rough Set Theory (RST). Over this, we show how our algorithms can be construed as a linkage of government-society interaction, where government catches various fashions of behavior: solid (absolute) or flexible. So, transition of such society, by changing of connectivity parameters (noise) from order to disorder is inferred. Add to this, one may find an indirect mapping among finical systems and eventual market fluctuations with MACIPS.

  11. 2011 International Workshop on Detonation for Propulsion November 14-15, 2011

    E-Print Network [OSTI]

    Texas at Arlington, University of

    on detonation waves related to propulsion is presented in this paper. A brief historical review of the early detonation wave engines (RDE) are reviewed. System integration studies for both PDE- and RDE-based propulsion of detonation waves to hypersonic flow simulation and power generation. Introduction Pulse Detonation Engine

  12. JET PROPULSION WITHOUT INERTIA Saverio E. Spagnolie

    E-Print Network [OSTI]

    in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia://www.ima.umn.edu #12;Jet propulsion without inertia Saverio E. Spagnolie and Eric Lauga Department of MechanicalJET PROPULSION WITHOUT INERTIA By Saverio E. Spagnolie and Eric Lauga IMA Preprint Series # 2322

  13. Method of converting an existing vehicle powertrain to a hybrid powertrain system

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    2001-12-25

    A method of converting an existing vehicle powertrain including a manual transmission to a hybrid powertrain system with an automated powertrain transmission. The first step in the method of attaching a gear train housing to a housing of said manual transmission, said gear train housing receiving as end of drive shaft of said transmission and rotatably supporting a gear train assembly. Secondly, mounting an electric motor/generator to said gear train housing and attaching a motor/generator drive shaft of said electric motor/generator to said gear train assembly. Lastly, connecting an electro-mechanical clutch actuator to a friction clutch mechanism of said manual transmission.

  14. Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals

    SciTech Connect (OSTI)

    Anglart, Henryk [Div. of Nuclear Technology, School of Engineering Sciences, Royal Institute of Technology Roslagstullsbacken 21, 106-91 Stockholm (Sweden)

    2012-06-19

    This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

  15. In-service performance and behavior characterization of the hybrid composite bridge system - a case study

    E-Print Network [OSTI]

    John M. Civitillo; Devin K. Harris; Amir Gheitasi; Mark Saliba; Bernard L. Kassner

    2014-09-08

    The Hybrid Composite Beam (HCB) system is an innovative structural technology that has been recently used in bridge construction within the U.S. transportation network. In this system, the superstructure consists of a conventional reinforced concrete deck supported by Hybrid Composite Beams. Each beam is comprised of a glassfiber reinforced polymer (FRP) box shell containing a tied parabolic concrete arch. Inclined stirrups provide shear integrity and enforce composite action between the HCBs and the concrete deck. This paper focuses on evaluating the in-service performance of a newly constructed HCB bridge superstructure located on Route 205 in Colonial Beach, Virginia. A live load test was conducted using tandem axle dump trucks under both quasi-static and dynamic conditions. Results obtained from the experimental investigation were used to determine three key behavior characteristics. Dynamic amplification and lateral load distribution were found to be reasonable in comparison to the assumed design values. The testing program also included internal and external measurement systems to help characterize the load sharing behavior of the HCB on an element level. The main load carrying elements are the deck in compression and the steel ties in tension, and the FRP shell did not act compositely with the internal components.

  16. Large Hybrid Energy Systems for Making Low CO2 Load-Following Power and Synthetic Fuel

    SciTech Connect (OSTI)

    Robert S. Cherry; Richard D. Boardman; Steven Aumeier

    2012-02-01

    Hybrid energy systems using nuclear heat sources can economically produce load-following electrical power by exploiting the surplus generation capacity available at night or seasonally to make synthetic fuel. Vehicle fuel is the only current energy use large enough to absorb all the energy capacity that might be diverted from the power industry, and its ease of storage obviates problems with discontinuous synfuel production. The potential benefits and challenges of synfuels integration are illustrated by the production of methanol from natural gas (as a source of carbon) using steam from a light water nuclear power reactor which is assumed to be available in accord with a year's worth of power demand data. Methanol's synthesis process is easily adapted to using 300 C heat from a light water reactor and this simple compound can be further processed into gasoline, biodiesel, or dimethyl ether, fuels which can be used with the current vehicle fleet. A supplemental feed to the methanol process of natural gas (for energy) allows operation at constant full rate when the nuclear heat is being used to produce electrical power. The higher capital costs of such a system are offset by a lower cost of heat and power production from a large base load type of plant and by reduced costs associated with much lower CO2 emissions. Other less tangible economic benefits of this and similar hybrid systems include better use of natural resource for fuels and greater energy services security from the domestic production of vehicle fuel.

  17. Determining System Parameters for Optimal Performance of Hybrid DS/FFH Spread-Spectrum

    SciTech Connect (OSTI)

    Ma, Xiao [ORNL; Olama, Mohammed M [ORNL; Kuruganti, Phani Teja [ORNL; Smith, Stephen Fulton [ORNL; Djouadi, Seddik M [ORNL

    2012-01-01

    In recent years there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications, particularly in the Smart Grid, in addition to their use in military communications because they accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct sequence (DS) modulation with "fast" frequency hopping (FFH), denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. In this paper, an optimization problem is formulated that maximizes the DS/FFH communication system performance in terms of probability of bit error and solves for the system design parameters. The objective function is non-convex and can be solved by applying the Karush-Kuhn-Tucker conditions. System design parameters of interest are the length of the DS code sequence, number of frequency hopping channels, number of channels corrupted by wide-band jamming, and number of hops per bit. The proposed formulation takes into account the effects from wide-band and partial-band jamming, multi-user interference and/or varying degrees of Rayleigh and Rician multipath fading. Numerical results are presented to demonstrate the method s viability.

  18. Mesoscale hybrid calibration artifact

    SciTech Connect (OSTI)

    Tran, Hy D. (Albuquerque, NM); Claudet, Andre A. (Albuquerque, NM); Oliver, Andrew D. (Waltham, MA)

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  19. A Propellantless Propulsion Experiment Design and Testing Plan

    SciTech Connect (OSTI)

    Goodwin, David P. [United States Department of Energy, Office of High Energy Physics, SC-20/Germantown Building, 1000 Independence Ave SW, Washington, D.C. 20585-1290 (United States)

    2004-02-04

    A propellantless propulsion experiment design and testing plan are described. The concept was initially presented during the Space Technology and Applications International Forum of 2001 and the experiment was initially presented during the Joint Propulsion Conference of 2001. New information is provided on how the experiment relates to the Human Exploration of Development of Space, the results of peer reviews, a cost estimate performed by a major U.S. aerospace company, and an alternative magnet design to reduce the cost of the experiment and potentially improve the reliability of the system. Recent improvements in high power solid state switches and superconducting magnets may have made propellantless propulsion possible. Propulsion may occur during the non-steady state ramp-up of a very rapidly pulsed, high power magnet. Propulsion would not occur after the first 100 nanoseconds of each pulse, since the magnetic field will have reached steady state. The United States Department of Energy Office of High Energy Physics provided some of the funding for the developed a no maintenance superconducting magnet that can carry 2,000 amperes per square millimeter and a switch which can provide 100 nanosecond ramp-ups at a rate of 0.4 megahertz, and at 9,000 volts and 30 amperes.

  20. Reliability Analysis of Electric Power Systems Using an Object-oriented Hybrid Modeling Approach

    E-Print Network [OSTI]

    Schläpfer, Markus; Kröger, Wolfgang

    2012-01-01

    The ongoing evolution of the electric power systems brings about the need to cope with increasingly complex interactions of technical components and relevant actors. In order to integrate a more comprehensive spectrum of different aspects into a probabilistic reliability assessment and to include time-dependent effects, this paper proposes an object-oriented hybrid approach combining agent-based modeling techniques with classical methods such as Monte Carlo simulation. Objects represent both technical components such as generators and transmission lines and non-technical components such as grid operators. The approach allows the calculation of conventional reliability indices and the estimation of blackout frequencies. Furthermore, the influence of the time needed to remove line overloads on the overall system reliability can be assessed. The applicability of the approach is demonstrated by performing simulations on the IEEE Reliability Test System 1996 and on a model of the Swiss high-voltage grid.

  1. Dynamics of quantum-classical hybrid systems: Effect of matter-wave pressure

    SciTech Connect (OSTI)

    Shen, J. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Huang, X. L. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Yi, X. X. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Centre for Quantum Technologies and Department of Physics, National University of Singapore, Singapore 117543 (Singapore); Wu Chunfeng; Oh, C. H. [Centre for Quantum Technologies and Department of Physics, National University of Singapore, Singapore 117543 (Singapore)

    2010-12-15

    Radiation pressure affects the kinetics of a system exposed to radiation and it constitutes the basis of laser cooling. In this article, we study matter-wave pressure through examining the dynamics of a quantum-classical hybrid system. The quantum and classical subsystems are affected mutually via a changing boundary condition. Two systems, that is, an atom and a Bose-Einstein condensate (BEC), are considered as the quantum subsystems, while an oscillating wall is taken as the classical subsystem. We show that the classical subsystem would experience a force proportional to Q{sup -3} from the quantum atom, where Q denotes the distance between the two walls, whereas it acquires an additional force proportional to Q{sup -2} from the BEC due to the atom-atom interaction in the BEC. These forces can be understood as the matter-wave pressure.

  2. Systems and Control Letters (special issue on hybrid systems), vol. 38, pp. 167-177, Nov 1999 1 Logic-based switching control of a nonholonomic

    E-Print Network [OSTI]

    Liberzon, Daniel

    Systems and Control Letters (special issue on hybrid systems), vol. 38, pp. 167-177, Nov 1999 1 Logic-based switching control of a nonholonomic system with parametric modeling uncertainty #3; Jo~ao P is concerned with control of nonholonomic systems in the presence of parametric modeling uncertainty. The speci

  3. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOE Patents [OSTI]

    Murty, Balarama Vempaty (West Bloomfield, MI)

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  4. Hybrid Control in Air Traffic Management Systems \\Lambda S. Sastry, G. Meyer y , C. Tomlin, J. Lygeros, D. Godbole and G. Pappas

    E-Print Network [OSTI]

    Pappas, George J.

    Hybrid Control in Air Traffic Management Systems \\Lambda S. Sastry, G. Meyer y , C. Tomlin, J Center, we have be­ gun the study of hierarchical, hybrid control systems in the framework of air traffic. Technological advances that make a more advanced air traffic control system a reality include the availability

  5. Hybrid Network Simulation for the ATLAS Trigger and Data Acquisition (TDAQ) System

    E-Print Network [OSTI]

    Bonaventura, Matias Alejandro; The ATLAS collaboration; Castro, Rodrigo Daniel; Foguelman, Daniel Jacob

    2015-01-01

    The poster shows the ongoing research in the ATLAS TDAQ group in collaboration with the University of Buenos Aires in the area of hybrid data network simulations. he Data Network and Processing Cluster filters data in real-time, achieving a rejection factor in the order of 40000x and has real-time latency constrains. The dataflow between the processing units (TPUs) and Readout System (ROS) presents a “TCP Incast”-type network pathology which TCP cannot handle it efficiently. A credits system is in place which limits rate of queries and reduces latency. This large computer network, and the complex dataflow has been modelled and simulated using a PowerDEVS, a DEVS-based simulator. The simulation has been validated and used to produce what-if scenarios in the real network. Network Simulation with Hybrid Flows: Speedups and accuracy, combined • For intensive network traffic, Discrete Event simulation models (packet-level granularity) soon becomes prohibitive: Too high computing demands. • Fluid Flow simul...

  6. Calcium manganate: A promising candidate as buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems

    SciTech Connect (OSTI)

    Zhao, Pengjun; Wang, Hongguang; Kong, Wenwen; Xu, Jinbao Wang, Lei; Ren, Wei; Bian, Liang; Chang, Aimin

    2014-11-21

    We have systematically studied the feasibility of CaMnO{sub 3} thin film, an n-type perovskite, to be utilized as the buffer layer for hybrid halide perovskite photovoltaic-thermoelectric device. Locations of the conduction band and the valence band, spontaneous polarization performance, and optical properties were investigated. Results indicate the energy band of CaMnO{sub 3} can match up well with that of CH{sub 3}NH{sub 3}PbI{sub 3} on separating electron-hole pairs. In addition, the consistent polarization angle helps enlarge the open circuit voltage of the composite system. Besides, CaMnO{sub 3} film shows large absorption coefficient and low extinction coefficient under visible irradiation, demonstrating high carrier concentration, which is beneficial to the current density. More importantly, benign thermoelectric properties enable CaMnO{sub 3} film to assimilate phonon vibration from CH{sub 3}NH3PbI{sub 3}. All the above features lead to a bright future of CaMnO{sub 3} film, which can be a promising candidate as a buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems.

  7. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    SciTech Connect (OSTI)

    D. Ray Johnson; Sidney Diamond

    2000-06-19

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given.

  8. Concentrating Solar Power Hybrid System Study: Cooperative Research and Development Final Report, CRADA Number CRD-13-506

    SciTech Connect (OSTI)

    Turchi, C.

    2014-09-01

    The purpose of this PTS is to collaboratively leverage the collective resources at General Electric Global Research (GEGRC) and National Renewable Energy Laboratories (NREL) in the areas of concentrating solar power hybrid systems to advance state-of-the-art concentrating solar and conventional power generation system integration.

  9. 2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    pumps Condensing gas and oil boilers DHW tanks Solar panels Under floor heating Installation equipment#12;2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the renovation market Dipl.-Ing. Volker Weinmann ROTEX Heating Systems GmbH #12;3 15.10.2013 Van D. Baxter

  10. Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric@elpl.snu.ac.kr Abstract--To improve the cycle efficiency and peak output power density of energy storage systems in electric vehicles (EVs), supercapacitors have been proposed as auxiliary energy storage elements

  11. Energy Management of DVS-DPM Enabled Embedded Systems Powered by Fuel Cell-Battery Hybrid Source

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    Energy Management of DVS-DPM Enabled Embedded Systems Powered by Fuel Cell-Battery Hybrid Source a policy to maximize the operational lifetime of a DVS-DPM enabled embedded system powered by a fuel cell of the fuel cell (FC), and that the fuel consumption can be minimized by a combination of a load en- ergy

  12. Application of system safety framework in hybrid socio-technical environment of Eurasia

    E-Print Network [OSTI]

    Abdymomunov, Azamat

    2011-01-01

    The political transformation and transition of post-Soviet societies have led to hybrid structures in political, economic and technological domains. In such hybrid structures the roles of government, state enterprise, ...

  13. Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations

    Broader source: Energy.gov [DOE]

    Results of simulations of LDD hybrid vehicle under hybrid drive cycle conditions in PSAT show the potential impact of urea-SCR NOx controls on HEVs and PHEVs powered by lean-burn engines.

  14. Letter box line blackener for the HDTV/conventional-analog hybrid system

    DOE Patents [OSTI]

    Wysocki, Frederick J.; Nickel, George H.

    2006-07-18

    A blackener for letter box lines associated with a HDTV/conventional-analog hybrid television transmission where the blackener counts horizontal sync pulses contained in the HDTV/conventional-analog hybrid television transmission and determines when the HDTV/conventional-analog hybrid television transmission is in letter-box lines: if it is, then the blackener sends substitute black signal to an output; and if it is not, then the blackener sends the HDTV/conventional-analog hybrid television transmission to the output.

  15. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  16. Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised

    SciTech Connect (OSTI)

    Ayers, C.W.; Hsu, J.S.; Marlino, L.D.; Miller, C.W.; Ott, G.W., Jr.; Oland, C.B.; Burress, T.A.

    2007-07-31

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  17. Optically promoted bipartite atomic entanglement in hybrid metallic carbon nanotube systems

    SciTech Connect (OSTI)

    Gelin, M. F. [Department of Chemistry, Technische Universität München, D-85747 Garching (Germany)] [Department of Chemistry, Technische Universität München, D-85747 Garching (Germany); Bondarev, I. V.; Meliksetyan, A. V. [Department of Physics, North Carolina Central University, Durham, North Carolina 27707 (United States)] [Department of Physics, North Carolina Central University, Durham, North Carolina 27707 (United States)

    2014-02-14

    We study theoretically a pair of spatially separated extrinsic atomic type species (extrinsic atoms, ions, molecules, or semiconductor quantum dots) near a metallic carbon nanotube, that are coupled both directly via the inter-atomic dipole-dipole interactions and indirectly by means of the virtual exchange by resonance plasmon excitations on the nanotube surface. We analyze how the optical preparation of the system by using strong laser pulses affects the formation and evolution of the bipartite atomic entanglement. Despite a large number of possible excitation regimes and evolution pathways, we find a few generic scenarios for the bipartite entanglement evolution and formulate practical recommendations on how to optimize and control the robust bipartite atomic entanglement in hybrid carbon nanotube systems.

  18. Department of Aeronautics and Astronautics Field Exam on Space Propulsion

    E-Print Network [OSTI]

    de Weck, Olivier L.

    and to the wall heat flux that may require active cooling. (c) Changes to the engine mass/power ratio (the !engine with power level P. · The fraction of the lost power (1-)P that is deposited on the wall is also nearly a spacecraft (payload/structure + propulsion/power system + propellant) hovering during a time ! at a constant

  19. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    SciTech Connect (OSTI)

    Frischauf, Norbert [QASAR Technologie(s) GmbH, Johann Gottekgasse 39, A-1230, Vienna (Austria); Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias [QASAR Technologie(s) GmbH, Johann Gottekgasse 39, A-1230, Vienna (Austria); Koudelka, Otto [Institute of Communication Networks and Satellite Communication, Graz University of Technology, Inffeldgasse 12/I, A-8010 Graz (Austria)

    2006-07-01

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  20. Hybrid Identities

    E-Print Network [OSTI]

    Montclair, Sani

    2012-01-01

    Hybrid Identity; Family, Photography and History in Colonialintersectional politics of hybrid identity is the primarycreated a distinctively hybrid culture, one where language,

  1. Heavy Vehicle Propulsion Materials Program

    SciTech Connect (OSTI)

    Diamond, S.; Johnson, D.R.

    1999-04-26

    The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications.

  2. Method and apparatus for effecting light-off of a catalytic converter in a hybrid powertrain system

    DOE Patents [OSTI]

    Roos, Bryan Nathaniel; Spohn, Brian L

    2013-07-02

    A powertrain system includes a hybrid transmission and an internal combustion engine coupled to an exhaust aftertreatment device. A method for operating the powertrain system includes operating the hybrid transmission to generate tractive torque responsive to an operator torque request with the internal combustion engine in an engine-off state so long as the tractive torque is less than a threshold. The internal combustion engine is operated in an engine-on state at preferred operating conditions to effect light-off of the exhaust aftertreatment device and the hybrid transmission is coincidentally operated to generate tractive torque responsive to the operator torque request when the operator torque request exceeds the threshold. The internal combustion engine is then operated in the engine-on state to generate tractive torque responsive to the operator torque request.

  3. HYBRID LIMIT CYCLES AND HYBRID POINCARE-BENDIXSON

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    HYBRID LIMIT CYCLES AND HYBRID POINCAR´E-BENDIXSON Slobodan N. Simi´c Department of Electrical regular hybrid systems with no branching (Simi´c et al., 2000a). The first one provides a condition for asymptotic stability of hybrid closed orbits in terms of contraction-expansion rates of resets and flows

  4. Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste

    SciTech Connect (OSTI)

    Datskos, Panos G.; Sepaniak, Michael J.

    2004-06-01

    Our multifaceted research program is aimed at the fundamental and practical development of hybrid micro-electro-mechanical-systems (MEMS) that integrates several elements of chemical selectivity and sensor function. We are developing MEMS sensors that combine chemimechanical transduction, and surface enhanced Raman spectroscopy (SERS) and radiation detection. One of our goals is to develop highly effective methods of immobilizing a wide variety of molecular and ionic recognition phases onto micromechanical surfaces. We have introduced fundamentally new modes of adsorbate-induced surface stress through nano-structuring of microcantilever surfaces; the responsivity for has increased by over two-orders of magnitude over previously existing technological approaches. Noble metal nanostructures similar to those that enhance chemi-mechanical transduction exhibit substantial Raman enhancement factors.

  5. Training Hybrid Neuro-Fuzzy System to Infer Permeability in Wells on Maracaibo Lake, Venezuela

    E-Print Network [OSTI]

    Hurtado, Nuri; Torres, Julio

    2014-01-01

    The high accuracy on inferrring of rocks properties, such as permeability ($k$), is a very useful study in the analysis of wells. This has led to development and use of empirical equations like Tixier, Timur, among others. In order to improve the inference of permeability we used a hybrid Neuro-Fuzzy System (NFS). The NFS allowed us to infer permeability of well, from data of porosity ($\\phi$) and water saturation ($Sw$). The work was performed with data from wells VCL-1021 (P21) and VCL-950 (P50), Block III, Maracaibo Lake, Venezuela. We evaluated the NFS equations ($k_{P50,i}(\\phi_i,Sw_i)$) with neighboring well data ($P21$), in order to verify the validity of the equations in the area. We have used ANFIS in MatLab.

  6. A Hybrid Redox-Supercapacitor System with Anionic Catholyte and Cationic Anolyte

    SciTech Connect (OSTI)

    Wang, B; Macia-Agullo, JA; Prendiville, DG; Zheng, X; Liu, D; Zhang, Y; Boettcher, SW; Ji, X; Stucky, GD

    2014-04-11

    A significant challenge for energy storage technologies is to realize battery-level energy density and capacitor-level durability and power density in one device. By introducing an electrolyte composed of an anionic catholyte and a cationic anolyte into a symmetric carbon-based supercapacitor configuration, a hybrid electrochemical battery-supercapacitor system using soluble redox species delivers significantly improved energy density from 20 to 42 W.h/kg (based on the electrode mass) and stable capacities for > 10(4) cycles. The ionic species formed in the electrolyte are studied by UV-Vis, Raman and mass spectroscopy to probe the energy storage mechanism. The strategy is general and may provide a route to critically-needed fast-charging devices with both high energy density and power. (C) 2014 The Electrochemical Society. All rights reserved.

  7. 1176 IEEE Transactions on Consumer Electronics , Vol. 58, No. 4, November 2012 Two Hybrid Positioning System Design

    E-Print Network [OSTI]

    Kavehrad, Mohsen

    Positioning System Design Techniques with Lighting LEDs and Ad-hoc Wireless Network Yong Up Lee, IEEE Senior in various fields, in order to contrive a new service from a hybrid of LED lighting and wireless technology lighting LEDs and indoor wireless networking has recently started [7-8]. Positioning is mostly used

  8. Optimal Design of a PV/Fuel Cell Hybrid Power System for the City of Brest in France

    E-Print Network [OSTI]

    Brest, Université de

    . Keywords--Hybrid power system, renewable energy, fuel cell, photovoltaic, generation unit sizing, energy% every year: This yield to urge the use of renewable energies. To today the use of renewable sources in energy production is still small compared to non-renewable energy sources such as fuel fossil and nuclear

  9. Hybrid solid state laser system using a neodymium-based master oscillator and an ytterbium-based power amplifier

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Marshall, Christopher D. (Livermore, CA); Powell, Howard T. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2001-01-01

    In a master oscillator-power amplifier (MOPA) hybrid laser system, the master oscillator (MO) utilizes a Nd.sup.3+ -doped gain medium and the power amplifier (PA) utilizes a diode-pumped Yb.sup.3+ -doped material. The use of two different laser gain media in the hybrid MOPA system provides advantages that are otherwise not available. The Nd-doped gain medium preferably serves as the MO because such gain media offer the lowest threshold of operation and have already been engineered as practical systems. The Yb-doped gain medium preferably serves in the diode-pumped PA to store pump energy effectively and efficiently by virtue of the long emission lifetime, thereby reducing diode pump costs. One crucial constraint on the MO and PA gain media is that the Nd and Yb lasers must operate at nearly the same wavelength. The 1.047 .mu.m Nd:YLF/Yb:S-FAP [Nd:LiYF.sub.4 /Yb:Sr.sub.5 (PO.sub.4).sub.3 F] hybrid MOPA system is a preferred embodiment of the hybrid Nd/Yb MOPA.

  10. Extending the Lifetime of Fuel Cell Based Hybrid Systems* Jianli Zhuo1, Chaitali Chakrabartil, Naehyuck Chang2, Sarma Vrudhula3

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    34.1 Extending the Lifetime of Fuel Cell Based Hybrid Systems* Jianli Zhuo1, Chaitali Chakrabartil@asu.edu ABSTRACT for portable applications. Fuel cells have very high energy densities Fuel cells are clean power densities and lifetimes compared to batteries. However, fuel cells

  11. Wales, Alaska High Penetration Wind-Diesel Hybrid Power System: Theory of Operation

    SciTech Connect (OSTI)

    Drouilhet, S.; Shirazi, M.

    2002-05-01

    To reduce the cost of rural power generation and the environmental impact of diesel fuel usage, the Alaska Energy Authority (AEA), Kotzebue Electric Association (KEA, a rural Alaskan utility), and the National Renewable Energy Laboratory (NREL), began a collaboration in late 1995 to implement a high-penetration wind-diesel hybrid power system in a village in northwest Alaska. The project was intended to be both a technology demonstration and a pilot for commercial replication of the system in other Alaskan villages. During the first several years of the project, NREL focused on the design and development of the electronic controls, the system control software, and the ancillary components (power converters, energy storage, electric dump loads, communications links, etc.) that would be required to integrate new wind turbines with the existing diesels in a reliable highly automated system. Meanwhile, AEA and KEA focused on project development activities, including wind resource assessment, site selection and permitting, community relationship building, and logistical planning. Ultimately, the village of Wales, Alaska, was chosen as the project site. Wales is a native Inupiat village of approximately 160 inhabitants, with an average electric load of about 75 kW.

  12. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment

    SciTech Connect (OSTI)

    Traverso, P. J., E-mail: pjt0002@auburn.edu; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Goforth, M. M.; Loch, S. D.; Pearce, A. J.; Cianciosa, M. R. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)

    2014-11-15

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum system through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#? 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19}?m{sup ?3} dependent upon operational scenario.

  13. Lightweighting and Propulsion Materials Roadmapping Workshop...

    Energy Savers [EERE]

    Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  14. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    passive and hybrid space heating systems. Space Cooling Aand hybrid solar heating and cooling systems. Experimentspassive, and hybrid systems for heating, cooling, and

  15. The design and feasibility of a 10 mN chemical space propulsion thruster

    E-Print Network [OSTI]

    Bruccoleri, Alexander Robert

    2009-01-01

    This thesis discusses the design of a ten milli Newton chemical propulsion system for providing approximately 200 m/s delta velocity to a five kg satellite. The nozzle is the focus of the experimental work, which involves ...

  16. Fabrication and characterization of sintered porous glass emitters for electrospray propulsion

    E-Print Network [OSTI]

    Xie, Julie

    2014-01-01

    Ionic electrospray thrusters are promising candidates for CubeSat propulsion systems in space, due to their low power requirement and small form factor. Current technology has demonstrated thrust levels of 10 - 40[mu]N, ...

  17. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    SciTech Connect (OSTI)

    Figueiredo, J.

    2014-11-15

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  18. Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes

  19. Ammonia Production and Utilization in a Hybrid LNT+SCR System

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL] [ORNL; Parks, II, James E [ORNL

    2009-01-01

    A hybrid LNT+SCR system is used to control NOx from a light-duty diesel engine with in-cylinder regeneration controls. A diesel oxidation catalyst and diesel particulate filter are upstream of the LNT and SCR catalysts. Ultraviolet (UV) adsorption spectroscopy performed directly in the exhaust path downstream of the LNT and SCR catalysts is used to characterize NH3 production and utilization in the system. Extractive exhaust samples are analyzed with FTIR and magnetic sector mass spectrometry (H2) as well. Furthermore, standard gas analyzers are used to complete the characterization of exhaust chemistry. NH3 formation increases strongly with extended regeneration (or over regeneration ) of the LNT, but the amount of NOx reduction occurring over the SCR catalyst is limited by the amount of NH3 produced as well as the amount of NOx available downstream of the LNT. Control of lean-rich cycling parameters enables control of the ratio of NOx reduction between the LNT and SCR catalysts. During lean-rich cycling, fuel penalties are similar for either LNT dominant or LNT with supplemental SCR NOx reduction. However, stored NH3 after multiple lean-rich cycles can enable continued NOx reduction by the SCR after lean-rich cycling stops; thus, requirements for active regeneration of the LNT+SCR system can be modified during transient operation.

  20. Electric and Hybrid Vehicles Program. Seventeenth annual report to Congress for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This program, in cooperation with industry, is conducting research, development, testing, and evaluation activities to develop the technologies that would lead to production and introduction of low-and zero-emission electric and hybrid vehicles into the Nation`s transportation fleet. This annual report describes program activities in the areas of advanced battery, fuel cell, and propulsion systems development. Testing and evaluation of new technology in fleet site operations and laboratories are also provided. Also presented is status on incentives (CAFE, 1992 Energy Policy Act) and use of foreign components, and a listing of publications by DOE, national laboratories, and contractors.

  1. Electric and Hybrid Vehicles Program. Sixteenth annual report to Congress for fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report describes the progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY 1992. Detailed descriptions are provided of program activities during FY 1992 in the areas of battery, fuel cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. This Annual Report also contains a status report on incentives and use of foreign components, as well as a list of publications resulting from the DOE program.

  2. MODEL AND ALGORITHM EVALUATION FOR THE HYBRID UF6 CONTAINER INSPECTION SYSTEM

    SciTech Connect (OSTI)

    McDonald, Benjamin S.; Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; Smith, Leon E.; Wittman, Richard S.

    2011-06-14

    ABSTRACT Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter (186 keV photons from U-235) data and non-traditional, neutron-induced, high-energy gamma-signatures (3-8.5 MeV) with an array of collimated, medium-resolution scintillators. Previous (2010) work at PNNL demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term unattended operations. We used Monte Carlo modeling with MCNP5 to support system design (e.g., number and configuration of detector arrays, and design of iron/poly collimators for enhanced (n,?) conversion) and enrichment algorithm development. We developed a first-generation modeling framework in 2010. These tools have since been expanded, refined and benchmarked against field measurements with a prototype system of a 30B cylinder population (0.2 to 4.95 weight % U-235). The MCNP5 model decomposes the radiation transport problem into a linear superposition of “basis spectra” representing contributions from the different uranium isotopes and gamma-ray generation mechanisms (e.g. neutron capture). This scheme accommodates fast generation of “virtual assay signatures” for arbitrary enrichment, material age, and fill variations. Ongoing (FY-2011) refinements to the physics model include accounting for generation of bremsstrahlung photons, arising primarily from the beta decay of Pa-234m, a U-238 daughter. We are using the refined model to optimize collimator design for the hybrid method. The traditional assay method benefits from a high degree of collimation (to isolate each detector’s field-of-view) and relatively small detector area, while the non-traditional method benefits from a wide field-of-view, i.e. less collimation and larger detectors. We implement the enrichment-meter method by applying a square-wave digital filter to a raw spectrum and extracting the 186-keV peak area directly from the convolute spectrum. Ongoing enhancements to this approach include mitigating a systematic peak-area measurement deficit arising from curvature in the spectrum continuum shape. An optimized system prototype based on model results is utilized in a new set of 2011 field measurements, and model and measurement enrichment assay uncertainties are compared.

  3. Propulsion in a viscoelastic fluid

    E-Print Network [OSTI]

    Eric Lauga

    2007-03-21

    Flagella beating in complex fluids are significantly influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway mucus and the motion of spermatozoa in the mucus-filled female reproductive tract. We consider the simplest model of such propulsion and transport in a complex fluid, a waving sheet of small amplitude free to move in a polymeric fluid with a single relaxation time. We show that, compared to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta) ]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number for the wave motion, product of the wave frequency by the fluid relaxation time. Similar expressions are derived for the rate of work of the sheet and the mechanical efficiency of the motion. These results are shown to be independent of the particular nonlinear constitutive equations chosen for the fluid, and are valid for both waves of tangential and normal motion. The generalization to more than one relaxation time is also provided. In stark contrast with the Newtonian case, these calculations suggest that transport and locomotion in a non-Newtonian fluid can be conveniently tuned without having to modify the waving gait of the sheet but instead by passively modulating the material properties of the liquid.

  4. Hybrid-electric propulsion for automotive and aviation applications

    E-Print Network [OSTI]

    Friedrich, C.; Robertson, P. A.

    2014-12-30

    on the CFM56-7 turbofan engine with an electric boost on the low pressure fan, is then implemented in Simulink. The Simulink code itself is simplified during take-off and landing; due to the relationship of the altitude and the performance... to a volatile oil price. In the United States for example, within the overall transportation sector, which accounted for 28 % of the primary energy consumption in 2010, the aviation fleet accounted for 9.4 % of this sector, as shown in Figure 1...

  5. TOWARDS HYBRID SWIMMING MICROROBOTS: BACTERIA ASSISTED PROPULSION OF POLYSTYRENE BEADS

    E-Print Network [OSTI]

    Sitti, Metin

    they are capable of converting chemical energy to electrical or mechanical energy very efficiently. The main Behkam and Metin Sitti Abstract-- Compactness and efficiency of biomotors makes them superior to man to work with due to complications associated with their isolation and reconstitution. To circumvent

  6. Marine Hybrid Propulsion Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, search

  7. OpenEI Community - Marine Hybrid Propulsion Market

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorjaen TheGeothermalCostmaintenance March

  8. Ablative Laser Propulsion: An Update, Part II

    SciTech Connect (OSTI)

    Pakhomov, Andrew V.; Lin Jun; Thompson, M. Shane

    2004-03-30

    This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the experimental technique developed for determination of specific impulses from plasma plume imaging with an intensified CCD camera.

  9. Ablative Laser Propulsion: An Update, Part I

    SciTech Connect (OSTI)

    Pakhomov, Andrew V.; Cohen, Timothy; Lin Jun; Thompson, M. Shane; Herren, Kenneth A.

    2004-03-30

    This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the newest results of our experimental study of specific impulses and coupling coefficients achieved by double-pulsed ablation of graphite, aluminum, copper and lead targets.

  10. OBLIQUE DETONATIONS: THEORY AND PROPULSION APPLICATIONS

    E-Print Network [OSTI]

    OBLIQUE DETONATIONS: THEORY AND PROPULSION APPLICATIONS Joseph M. Powers1 University of Notre Dame accelerator and the oblique detona- tion wave engine. Additionally, it is the generic two of both oblique det- onations and their application to propulsion devices. The plan of this paper

  11. Jet propulsion without inertia Saverio E. Spagnoliea

    E-Print Network [OSTI]

    Lauga, Eric

    fluid through pores at its surface. We consider this mechanism of jet propulsion without inertiaJet propulsion without inertia Saverio E. Spagnoliea and Eric Laugab Department of Mechanical corrected 23 August 2010 A body immersed in a highly viscous fluid can locomote by drawing in and expelling

  12. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect (OSTI)

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  13. Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report This report...

  14. Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII...

    Office of Scientific and Technical Information (OSTI)

    Conference: Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII-1) Citation Details In-Document Search Title: Hydrogen peroxide propulsion for smaller satellites...

  15. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces...

  16. Controllability of optical bistability, cooling and entanglement in hybrid cavity optomechanical systems by nonlinear atom-atom interaction

    E-Print Network [OSTI]

    A. Dalafi; M. H. Naderi; M. Soltanolkotabi

    2013-04-17

    We investigate the effects of atomic collisions as well as optomechanical mirror-field coupling on the optical bistability in a hybrid system consisting of a Bose-Einstein condensate inside a driven optical cavity with a moving end mirror. It is shown that the bistability of the system can be controlled by the s-wave scattering frequency which can provide the possibility of realizing a controllable optical switch. On the other hand, by studying the effect of the Bogoliubov mode, as a secondary mechanical mode relative to the mirror vibrations, on the cooling process as well as the bipartite mirror-field and atom-field entanglements we find an interpretation for the cooling of the Bogoliubov mode. The advantage of this hybrid system in comparison to the bare optomecanical cavity with a two-mode moving mirror is the controllability of the frequency of the secondary mode through the s-wave scattering interaction.

  17. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    SciTech Connect (OSTI)

    da Silva, R.M.; Fernandes, J.L.M.

    2010-12-15

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

  18. Abstract--Experimental analyses of propulsion in freely-swimming fishes have led to the development of self-propelling

    E-Print Network [OSTI]

    Lauder, George V.

    predictions of propulsive forces and fluid flows [5], [6], and the development of biorobotic systemsAbstract--Experimental analyses of propulsion in freely- swimming fishes have led of the robotic fins, it was shown that subtle changes to the kinematics and/or the mechanical properties of fin

  19. Hybrid Publicly Verifiable Computation James Alderman

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Hybrid Publicly Verifiable Computation James Alderman , Christian Janson, Carlos Cid , and Jason introduce Hybrid PVC (HPVC) which, with a single setup stage, provides a flexible solution to outsourced for such systems. Keywords-- Hybrid Publicly Verifiable Computation, Verifiable Delegable Computation, Dual

  20. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume I. Executive summary

    SciTech Connect (OSTI)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. A summary of results of Phase I is given in this volume. (WHK)