National Library of Energy BETA

Sample records for hybrid electric phev

  1. Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss092_malikopoulos_2012_p.pdf (922.92 KB) More Documents & Publications Autonomous Intelligent Hybrid Propulsion Systems The Meritor Dual Mode Hybrid Powertrain CRADA The Meritor Dual Mode Hybrid Powertrain CRADA

  2. Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program - DRAFT 3-29-07

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program DRAFT 3-29-07 Donald Karner Roberta Brayer Derek Peterson Mindy Kirkpatrick James Francfort March 2007 The Idaho National Laboratory is a U.S. Department of Energy National Laboratory Operated by Battelle Energy Alliance INL/EXT-01-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies

  3. PHEV Engine and Aftertreatment Model Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis System Simulations of Hybrid Electric Vehicles with Focus ...

  4. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    SciTech Connect (OSTI)

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung; Kao, Shih-Chieh; Tuttle, Mark A; Bhaduri, Budhendra L

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

  5. NREL: Transportation Research - Electric and Plug-In Hybrid Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) ... The fuel economy of medium- and heavy-duty EVs and PHEVs is ... Vehicle Operating Data Truck Platooning Truck Stop ...

  6. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  7. System Simulations of Hybrid Electric Vehicles with Focus on Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control. deer10_gao.pdf (6.28 MB) More Documents & Publications PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis PHEV Engine and

  8. Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation

    SciTech Connect (OSTI)

    Dashora, Yogesh; Barnes, J. Wesley; Pillai, Rekha S; Combs, Todd E; Hilliard, Michael R

    2012-01-01

    Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

  9. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  10. Do You Drive a Hybrid Electric Vehicle?

    Broader source: Energy.gov [DOE]

    In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one...

  11. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-in Hybrid Electric Vehicle Test Plan DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) (2.33 MB) More Documents & ...

  12. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  13. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energys (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  14. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  15. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History

    Broader source: Energy.gov [DOE]

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the...

  16. PHEVs Component Requirements and Efficiencies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption l100km Electrical Consumption Whkm Conventional Split HEV PHEV 8kWh Split Optimum Engine Power PHEV 12 kWh Series Thermostat Control PHEV 16 kWh Series ...

  17. Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids?

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (PEVs) include both battery electric vehicles (BEVs) which run only on electricity, and plug-in hybrid electric vehicles (PHEVs) which run on electricity and/or gasoline....

  18. The PHEV Charging Infrastructure Planning (PCIP) Problem

    SciTech Connect (OSTI)

    Dashora, Yogesh; Barnes, J. Wesley; Pillai, Rekha S; Combs, Todd E; Hilliard, Michael R; Chinthavali, Madhu Sudhan

    2010-01-01

    Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.

  19. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  20. PHEV Market Introduction Workshop Summary Report

    SciTech Connect (OSTI)

    Weber, Adrienne M; Sikes, Karen R

    2009-03-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately forty representatives from various stakeholder organizations. The event took place at the Hotel Helix in Washington, D.C. on December 1-2, 2008. The purpose of this workshop was to follow-up last year s PHEV Value Proposition Study, which showed that indeed, a viable and even thriving market for these vehicles can exist by the year 2030. This workshop aimed to identify immediate action items that need to be undertaken to achieve a successful market introduction and ensuing large market share of PHEVs in the U.S. automotive fleet.

  1. AVTA: PHEV Demand and Energy Cost Demonstration Report | Department...

    Broader source: Energy.gov (indexed) [DOE]

    report describes results from a demonstration with Tacoma Power on plug-in hybrid electric ... Tacoma PowerAVTA PHEV Demand and Energy Cost Demonstration Analysis Report - May 2010 ...

  2. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  3. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) (2.33 MB) More Documents & Publications AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing

  4. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  5. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards 2010...

  6. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  7. Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range

    Broader source: Energy.gov [DOE]

    For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric driving range that is drawn from a plug and...

  8. Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

  9. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  10. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

    2009-08-01

    Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

  11. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  12. Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2012-01-01

    Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

  13. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  14. FY12 annual Report: PHEV Engine Control and Energy Management Strategy

    SciTech Connect (OSTI)

    Chambon, Paul H

    2012-05-01

    The objectives are: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; (2) Optimize integration of engine control strategies with hybrid supervisory control strategies in order to reduce cold start emissions and fuel consumption of PHEVs; and (3) Ensure that development of new vehicle technologies complies with existing emission standards.

  15. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  16. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy 2: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Estimates from the GREET model (see Argonne National Laboratory's information on GREET) show that passenger car PHEV10s produce about 29% fewer carbon emissions than a conventional vehicle, when plugged into an outlet connected to the typical U.S. grid. Even when PHEV10s are charged using power generated

  17. Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have system benefits - News Releases | NREL Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could have system benefits February 21, 2007 Xcel Energy today announced the results of a six-month study related to plug-in hybrid electric vehicles (PHEVs) and how an increase in their popularity may affect Colorado. The study found that PHEVs may result in a reduction of the overall expense of owning a vehicle and, with the help of smart-grid technologies, eliminate harmful

  18. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  19. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun; DeVault, Robert C

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major

  20. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malikopoulos, Andreas

    2014-03-31

    The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

  1. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  2. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas; Smith, David E

    2011-01-01

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  3. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  4. PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)

    SciTech Connect (OSTI)

    Newbauer, J.; Pesaran, A.

    2010-05-01

    Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

  5. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide

  6. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  7. DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development

  8. Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-12-01

    Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

  9. Advancing Transportation Through Vehicle Electrification - PHEV |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy arravt067_vss_bazzi_2012_o.pdf (1.95 MB) More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram 1500

  10. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  11. Impact of SiC Devices on Hybrid Electric and Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Zhang, Hui; Tolbert, Leon M; Ozpineci, Burak

    2008-01-01

    The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV) will benefit from their high-temperature capability, high-power density, and high efficiency. Moreover, the light weight and small volume will affect the whole power train system in a HEV, and thus performance and cost. In this work, the performance of HEVs is analyzed using PSAT (powertrain system analysis tool, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain models in order to study the impact of SiC devices on HEVs. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices are demonstrated by simulations. Not only the power loss in the motor controller but also those in other components in the vehicle powertrain are reduced. As a result, the system efficiency is improved and the vehicles consume less energy and emit less harmful gases. It also makes it possible to improve the system compactness with simplified thermal management system. For the PHEV, the benefits are more distinct. Especially, the size of battery bank can be reduced for optimum design.

  12. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity...

  13. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    SciTech Connect (OSTI)

    Sriramulu, Suresh; Stringfellow, Richard

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  14. Bi-Directional DC-DC Converter for PHEV Applications

    SciTech Connect (OSTI)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  15. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  16. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production

  17. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    Open Energy Info (EERE)

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  18. Electric and Hybrid Electric Vehicle Sales: December 2010 - June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. ...

  19. Advancing Transportation Through Vehicle Electrification - PHEV |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt067_vss_bazzi_2011_o.pdf (706.85 KB) More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Advancing Transportation Through Vehicle Electrification -

  20. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  1. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  2. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results

    SciTech Connect (OSTI)

    John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

    2009-09-01

    Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting “raw” fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such “raw” PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

  3. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    Our study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. Moreover, when workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Finally, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  4. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    Our study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. Moreover, when workplace charging is available, the optimalmore » electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Finally, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  5. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  6. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric

  7. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic

  8. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  9. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Gross, Thomas; Lin, Zhenhong; Sullivan, John; Cleary, Timothy; Ward, Jake

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  10. Hybrid Electric Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle Basics Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. Photo of the front and part of the side of a bus parked at the curb of a city street with

  11. Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Richard "Barney" Carlson; Matthew G. Shirk; Benjamin M. Geller

    2001-11-01

    Primary Factors that Impact the Fuel Consumption of Plug-In Hybrid Electric Vehicles RICHARD ‘BARNEY’ CARLSON, MATTHEW G. SHIRK Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83415, USA richard.carlson@inl.gov Abstract Plug-in Hybrid Electric Vehicles (PHEV) have proven to significantly reduce petroleum consumption as compared to conventional internal combustion engine vehicles (ICE) by utilizing electrical energy for propulsion. Through extensive testing of PHEV’s, analysis has shown that the fuel consumption of PHEV’s is more significantly affected than conventional vehicles by either the driver’s input or by the environmental inputs around the vehicle. Six primary factors have been identified that significantly affect the fuel consumption of PHEV’s. In this paper, these primary factors are analyzed from on-road driving and charging data from over 200 PHEV’s throughout North America that include Hymotion Prius conversions and Hybrids Plus Escape conversions. The Idaho National Laboratory (INL) tests plug-in hybrid electric (PHEV) vehicles as part of its conduct of DOE’s Advanced Vehicle Testing Activity (AVTA). In collaboration with its 75 testing partners located in 23 states and Canada, INL has collected data on 191 PHEVs, comprised of 12 different PHEV models (by battery manufacturer). With more than 1 million PHEV test miles accumulated to date, the PHEVs are fleet, track, and dynamometer tested. Six Primary Factors The six primary factors that significantly impact PHEV fuel consumption are listed below. Some of the factors are unique to plug-in vehicles while others are common for all types of vehicles. 1. Usable Electrical Energy is dictated by battery capacity, rate of depletion as well as when the vehicle was last plugged-in. With less electrical energy available the powertrain must use more petroleum to generate the required power output. 2. Driver Aggressiveness impacts the fuel consumption of nearly all vehicles but

  12. Plug-in hybrid electric vehicles : How does one determine their potential for reducing U.S. oil dependence?

    SciTech Connect (OSTI)

    Vyas, A.; Santini, D.; Duoba, M.; Alexander, M.; Energy Systems; EPRI

    2008-09-01

    Estimation of the potential of plug-in hybrid electric vehicles (PHEV's) ability to reduce U.S. gasoline use is difficult and complex. Although techniques have been proposed to estimate the vehicle kilometers of travel (VKT) that can be electrified, these methods may be inadequate and/or inappropriate for early market introduction circumstances. Factors that must be considered with respect to the PHEV itself include (1) kWh battery storage capability; (2) kWh/km depletion rate of the vehicle (3) liters/km use of gasoline (4) average daily kilometers driven (5) annual share of trips exceeding the battery depletion distance (6) driving cycle(s) (7) charger location [i.e. on-board or off-board] (8) charging rate. Each of these factors is actually a variable, and many interact. Off the vehicle, considerations include (a) primary overnight charging spot [garage, carport, parking garage or lot, on street], (b) availability of primary and secondary charging locations [i.e. dwellings, workplaces, stores, etc] (c) time of day electric rates (d) seasonal electric rates (e) types of streets and highways typically traversed during most probable trips depleting battery charge [i.e. city, suburban, rural and high vs. low density]; (f) cumulative trips per day from charger origin (g) top speeds and peak acceleration rates required to make usual trips. Taking into account PHEV design trade-off possibilities (kW vs. kWh of battery, in particular), this paper attempts to extract useful information relating to these topics from the 2001 National Household Travel Survey (NHTS), and the 2005 American Housing Survey (AHS). Costs per kWh of PHEVs capable of charge depleting (CD) all-electric range (CDE, or AER) vs. those CD in 'blended' mode (CDB) are examined. Lifetime fuel savings of alternative PHEV operating/utilization strategies are compared to battery cost estimates.

  13. PHEV Battery Cost Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    es_02_barnett.pdf (615.99 KB) More Documents & Publications PHEV Battery Cost Assessment PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment

  14. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    SciTech Connect (OSTI)

    Sikes, Karen R; Hinds, Shaun; Hadley, Stanton W; McGill, Ralph N; Markel, Lawrence C; Ziegler, Richard E; Smith, David E; Smith, Richard L; Greene, David L; Brooks, Daniel L; Wiegman, Herman; Miller, Nicholas; Marano, Dr. Vincenzo

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  15. A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storage device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.

  16. Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Honda Accord Hybrid 2013 Chevrolet Malibu Eco 2013 Ford Cmax Hybrid 2013 Honda CIvic Hybrid 2013 Volkswagen Jetta Hybrid 2011 Hyundai Sonata 2010 Ford Fusion Hybrid 2010 Honda CR-Z 2010 Honda Insight 2010 Mercedes S400h BlueHybrid 2010 Toyota Prius Plug-In Hybrid Electric Vehicles Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory

  17. 1997 hybrid electric vehicle specifications

    SciTech Connect (OSTI)

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  18. AVTA: Chrysler RAM PHEV Pickups

    Broader source: Energy.gov [DOE]

    Chrysler tested and deployed 140 demonstration Chrysler RAM plug-in hybrid electric pick-up trucks around the country.

  19. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  20. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  1. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon tiarravt062settle2010p.pdf More Documents & Publications Kentucky Hybrid Electric School Bus Program Kentucky Hybrid Electric School Bus Program Plug IN Hybrid Vehicle Bus...

  2. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid ...

  3. JV between Hybrid Electric and Mullen Motors | Open Energy Information

    Open Energy Info (EERE)

    Name: JV between Hybrid Electric and Mullen Motors Product: Joint Venture to develop a vehicle fitted with hybrid and lithium technologies References: JV between Hybrid Electric...

  4. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  5. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  6. Fuel Cell and Battery Electric Vehicles Compared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Level PHEVs Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H 2 Gen Innovations, Inc. Alexandria, Virginia Thomas@h2gen.com 1.0 Introduction Detailed computer simulations demonstrate that all-electric vehicles will be required to meet our energy security and climate change reduction goals 1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plug-in hybrid electric vehicles (PHEV's) both reduce greenhouse gas (GHG) emissions, but neither of

  7. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    SciTech Connect (OSTI)

    Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  8. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  9. PHEVs are More about the grid than the vehicles

    SciTech Connect (OSTI)

    2009-01-15

    Plug-in hybrid electric vehicles (PHEVs) could be used as an effective storage medium to absorb intermittent renewable energy when it is available. Charged vehicles can run on the stored energy when needed. A recent study by the Pacific Northwest National Laboratory concluded that some 73 percent of U.S. light vehicles can be supplied with the existing utility infrastructure in place, provided the charging was restricted to off-peak periods. That would reduce U.S. oil imports by 6.2 million barrels per day, roughly 52 percent of U.S. oil imports. The limiting factors increasingly appear to be on the utility side, for example, making sure that the vehicles are charged during off-peak hours at discounted prices.

  10. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  11. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at...

  12. PHEV Engine and Aftertreatment Model Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis Measurement and Characterization of Lean NOx Adsorber ...

  13. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  14. Hybrid power management system and method - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles & Fuels » Vehicles » Hybrid and Plug-In Electric Vehicle Basics Hybrid and Plug-In Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Text Version Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs)-also called electric drive vehicles collectively-use electricity either as their primary fuel or to improve the efficiency of

  15. Power Conversion Apparatus and Method for Hybrid Electric and Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Engines - Energy Innovation Portal Power Conversion Apparatus and Method for Hybrid Electric and Electric Vehicle Engines Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a solution to power source problems in hybrid electric vehicle (HEV) and electric vehicle (EV) engines. These engines typically use voltage source inverters. The conventional type of converter requires costly capacitors, has trouble with high

  16. Determining PHEV Performance Potential – User and Environmental Influences on A123 Systems’ Hymotion™ Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  17. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 2: Select Value Propositions/Business Model for Further Study

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun

    2008-04-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007 served as the Task 1 Milestone for this study. Feedback from all five Workshop breakout sessions has been documented in a Workshop Summary Report, which can be found at www.sentech.org/phev. In this report, the project team compiled and presented a comprehensive list of potential value propositions that would later serve as a 'grab bag' of business model components in Task 2. After convening with the Guidance and Evaluation Committee and other PHEV stakeholders during the Workshop, several improvements to the technical approach were identified and incorporated into the project plan to present a more realistic and accurate case study and evaluation. The assumptions and modifications that will have the greatest impact on the case study selection process in Task 2 are described in more detail in this deliverable. The objective of Task 2 is to identify the combination of value propositions that is believed to be achievable by 2030 and collectively hold promise for a sustainable PHEV market by 2030. This deliverable outlines what the project team (with input from the Committee) has defined as its primary scenario to be tested in depth for the remainder of Phase 1. Plans for the second and third highest priority/probability business scenarios are also described in this deliverable as proposed follow up case studies in Phase 2. As part of each case study description, the proposed utility system (or subsystem), PHEV market segment, and facilities/buildings are defined.

  18. Impact of Driving Behavior on PHEV Fuel Consumption for Different...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications PHEV Control Strategy PHEVs Component Requirements and Efficiencies Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures and Aggressive ...

  19. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share

  20. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect (OSTI)

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper studies the role of public charging infrastructure in increasing PHEV s share of driving on electricity and the resulting petroleum use reduction. Using vehicle activity data obtained from the GPS-tracking household travel survey in Austin, Texas, gasoline and electricity consumptions of PHEVs in real world driving context are estimated. Driver s within-day recharging behavior, constrained by travel activities and public charger network, is modeled as a boundedly rational decision and incorporated in the energy use estimation. The key findings from the Austin dataset include: (1) public charging infrastructure makes PHEV a competitive vehicle choice for consumers without a home charger; (2) providing sufficient public charging service is expected to significantly reduce petroleum consumption of PHEVs; and (3) public charging opportunities offer greater benefits for PHEVs with a smaller battery pack, as within-day recharges compensate battery capacity.

  1. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Fleet Test and Evaluation Procedure (231.85 KB) ...

  2. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Vehicle ...

  3. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    SciTech Connect (OSTI)

    Wu, Xing; Dong, Jing; Lin, Zhenhong

    2014-01-01

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  4. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Chakravarthy, Veerathu K; Daw, C Stuart

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  5. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  6. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  7. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric ...

  8. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  9. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  10. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Bedir, Abdulkadir; Ozpineci, Burak; Tolbert, Leon M

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term

  11. Hybrid electric vehicle power management system

    SciTech Connect (OSTI)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  12. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (VTP) | Department of Energy Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options. 52723.pdf (1.06 MB) More Documents & Publications Sample Employee Newsletter Articles for Plug-In Electric

  13. Technical Challenges of Plug-In Hybrid Electric Vehicles and Impacts to the US Power System: Distribution System Analysis

    SciTech Connect (OSTI)

    Gerkensmeyer, Clint; Kintner-Meyer, Michael CW; DeSteese, John G.

    2010-01-01

    This report documents work conducted by Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE) to address three basic questions concerning how typical existing electrical distribution systems would be impacted by the addition of PHEVs to residential loads.

  14. Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative

  15. PHEV Control Strategy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    18_rousseau.pdf (1.4 MB) More Documents & Publications Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control PHEVs Component Requirements and Efficiencies Tradeoff Between Powertrain Complexity and Fuel Efficiency

  16. Hybrid Electric Systems: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes the work EERE is doing in the areas of hybrid, plug-in hybrid, and all-electric vehicles.

  17. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W

    2006-11-01

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging

  18. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOE Patents [OSTI]

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  19. Fact #939: August 22, 2016 All-Electric Vehicle Ranges Can Exceed Those of

    Broader source: Energy.gov (indexed) [DOE]

    Some Gasoline Vehicles | Department of Energy Although most electric vehicles (EV) have shorter ranges than gasoline vehicles, there are EVs with ranges equal to or greater than some gasoline-powered models. For the 2016 model year (MY) the maximum range for an all-electric vehicle (AEV) is 294 miles while the minimum range for a gasoline model is 240 miles. Plug-in hybrid electric vehicles (PHEV) use both gasoline and electricity drawn from the grid. The all-electric range of PHEV models

  20. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 Plug-in electric vehicles (PEVs) include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The first mass marketed PEVs were introduced in 2010 with the Nissan Leaf, which is a BEV, and the Chevrolet Volt, which is a PHEV. After four years of sales, California had the most PEV registrations of any

  1. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect (OSTI)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  2. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on ... could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles ...

  3. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR

    SciTech Connect (OSTI)

    Markel, T.; Wipke, K.

    2001-01-01

    Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

  4. Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Gonder, J.; Keyser, M.

    2009-04-01

    Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

  5. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  6. Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-04-01

    This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

  7. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use advanced power electronics and electric motors that face barriers because their subcomponents have specific material limitations. Novel propulsion materials

  8. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt067bazzi2010p.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV

  9. A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2010-01-01

    This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

  10. AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chevrolet Volt PHEV Downloadable Dynamometer Database Reports AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database Reports The Vehicle Technologies Office's Advanced ...

  11. AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toyota Prius PHEV Downloadable Dynamometer Database Reports AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database Reports The Vehicle Technologies Office's Advanced ...

  12. Argonne Facilitation of PHEV Standard Testing Procedure (SAE...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications SAE Standards Development HEV, PHEV, EV Test Standard Development and Validation Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures and ...

  13. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program, ...

  14. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect (OSTI)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  15. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  16. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  17. PHEV Engine Cold Start Emissions Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold Start Emissions Management PHEV Engine Cold Start Emissions Management Coordination of engine and powertrain supervisory control strategies to minimize cold start emissions p-05_chambon.pdf (369.94 KB) More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy

  18. Case Study: Ebus Hybrid Electric Buses and Trolleys

    SciTech Connect (OSTI)

    Barnitt, R.

    2006-07-01

    Evaluation focuses on the demonstration of hybrid electric buses and trolleys produced by Ebus Inc. at the Indianapolis Transportation Corporation and the Knoxville Area Transit.

  19. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions (3.06 MB) More Documents & Publications Alternative Transportation ...

  20. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations ...

  1. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS

  2. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss013_chambon_2012_p.pdf (1.22 MB) More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy PHEV Engine Cold Start Emissions Management

  3. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Hadley, Stanton W; McGill, Ralph N; Cleary, Timothy

    2010-07-01

    costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

  4. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity » Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. According to many renewable energy experts,

  5. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es111_gallagher_2012_o.pdf (1.1 MB) More Documents & Publications Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes PHEV Battery Cost Assessment EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects

  6. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future. ...

  7. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric Vehicle Basics Find the best electric car to meet your needs! Search for makes and models, learn about electric vehicle (EV) charging stations, find tax incentives, explore how an EV can save you money, and discover other benefits of EVs. EV Everywhere is a Clean Energy Grand

  8. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles | Department of Energy Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Presented at the U.S. Department of EnergyLight Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. wtw_analysis_phevs.pdf (272.71 KB) More Documents & Publications Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles System

  9. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  10. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  11. NREL: Learning - Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Series design-In this design, the primary engine is connected to a generator that produces electricity. The electricity charges the batteries, which drive an electric motor that ...

  12. Hybrid and Electric Traction Motor | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A World-Class Traction Motor for Hybrid and Electric Vehicles Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) A World-Class Traction Motor for Hybrid and Electric Vehicles Engineers at GE Global Research are advancing motor technology that could have a substantial impact on hybrid and electric vehicles (EVs) of the

  13. Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report traces the connections between DOE energy storage research and downstream energy storage systems used in hybrid electric, plug-in hybrid electric, and fully electric vehicles.

  14. ETA-HTP02 Hybrid Electric Vehicle Acceleration, Gradeability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Hybrid Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure" ... 8 5.3 Gradeability Limit 9 5.3.1 Limit By Test 9 5.3.2 Limit By Analysis 10 5.4 ...

  15. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System...

    Office of Scientific and Technical Information (OSTI)

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of ...

  16. Route-Based Control of Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  17. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    The following set of reports (part of the medium and heavy-duty truck data) describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks developed ...

  18. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    The following set of reports (part of the medium and heavy-duty truck data) describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was ...

  19. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    2013-12-31

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  20. JCS PHEV System Development-USABC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JCS PHEV System Development-USABC JCS PHEV System Development-USABC 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es005_judes_2013_p.pdf (427.29 KB) More Documents & Publications JCS PHEV System Development-USABC JCS PHEV System Development-USABC FY 2012 Annual Progress Report for Energy Storage R&D

  1. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on

  2. A High-Performance PHEV Battery Pack | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es002_alamgir _2011_p.pdf (628.94 KB) More Documents & Publications A High-Performance PHEV Battery Pack A High-Performance PHEV Battery Pack Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV

  3. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss013_chambon_2011_o.pdf (625.36 KB) More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy PHEV Engine Cold Start Emissions Management

  4. USABC HEV and PHEV Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es003_yoon_2011_p.pdf (906.9 KB) More Documents & Publications USABC LEESS and PHEV Programs Review of A123s HEV and PHEV USABC Programs USABC HEV and PHEV Programs

  5. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  6. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  7. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  8. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  9. Analysis of data from electric and hybrid electric vehicle student competitions

    SciTech Connect (OSTI)

    Wipke, K.B.; Hill, N.; Larsen, R.P.

    1994-01-01

    The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

  10. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Delicious Rank Alternative

  11. Electromagnetic Acceleration Characteristics of Laser-Electric Hybrid Thrusters

    SciTech Connect (OSTI)

    Sasaki, Koki; Takeda, Akihito; Horisawa, Hideyuki; Kimura, Itsuro

    2006-05-02

    A fundamental study on a laser-electric hybrid thruster was conducted, in which laser-induced plasmas were generated through laser beam irradiation on to a solid target and accelerated by electrical means instead of direct acceleration using only a laser beam. As two typical cases of the hybrid propulsion systems, a feasibility study on electrostatic acceleration mode and electromagnetic acceleration mode of the laser ablation plasma were conducted including thrust performance tests with a torsion-balance, ion current measurements, and ICCD camera observations. It was confirmed that the thrust performances could be improved with electric energy inputs.

  12. Hybrid opto-electric manipulation in microfluidics - opportunities and challenges

    SciTech Connect (OSTI)

    Kumar, Aloke [ORNL; Williams, Stuart J. [University of Louisville, Louisville; Chuang, Han-sheng [University of Pennsylvania; Green, Nicolas [University of Southampton, England; Wereley, Steven G. [Purdue University

    2011-01-01

    Hybrid opto-electric manipulation in microfluidics/nanofluidics refers to a set of technologies that employ both optical and electrical forces to achieve particle or fluid manipulation at the micro and nano scale. These technologies, which have emerged primarily over the last decade, have provided a revolutionary and fresh perspective at fundamental electrokinetic processes, as well as have engendered a novel applications and devices. Hybrid opto-electric techniques have been utilized to manipulate objects ranging in diversity from millimeter-sized droplets to nano-particles. This review article discusses the underlying principles, applications and future perspectives of various techniques that have emerged over the last decade under a unified umbrella.

  13. FY11 annual Report: PHEV Engine Control and Energy Management Strategy

    SciTech Connect (OSTI)

    Chambon, Paul H

    2011-10-01

    Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to

  14. ETA-HTP05 - Hybrid Electric Vehicle Rough Road Course Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Hybrid Electric Vehicle Rough Road Course Test" Prepared by Electric Transportation ... Appendices Appendix A - Electric Vehicle Rough Road Test Data Sheet 11 Appendix B - ...

  15. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Broader source: Energy.gov (indexed) [DOE]

    Mini-Van PHEV DOE Funded Project | Department of Energy vss063_bazzi_2012_o.pdf (2.37 MB) More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Advancing Transportation Through Vehicle Electrification -

  16. The Impact of Electric Passenger Transport Technology under an Economy-Wide Climate Policy in the United States: Carbon Dioxide Emissions, Coal Use, and Carbon Dioxide Capture and Storage

    SciTech Connect (OSTI)

    Wise, Marshall A.; Kyle, G. Page; Dooley, James J.; Kim, Son H.

    2010-03-01

    Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratory’s MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions.

  17. NREL: Transportation Research - Hybrid Electric Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an energy storage system, and an electric motor to achieve a combination of emissions, ... This collected energy is used to propel the vehicle during normal drive cycles. The ...

  18. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Fleet Test and Evaluation Procedure (231.85 KB) HEVAmerica Technical Specifications (164.3 KB) HEV Baseline Test Sequence (46.65 KB) HEV End of Life Test Sequence (29.89 KB) ETA-HTP01 Implementation of SAE Standard J1263 February 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques (118.71 KB) ETA-HTP02 Implementation

  19. Electric machine for hybrid motor vehicle

    SciTech Connect (OSTI)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  20. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicles 2014 BMW i3-REX 2013 Chevrolet Volt 2013 Ford Cmax Energi 2013 Ford Fusion Energi 2013 Toyota Prius 2012 Chevrolet Volt 2012 Toyota Prius Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory Argonne National Laboratory Energy Systems Research Facilities Publications News Research Advanced Materials and

  1. Benefits and Challenges of Achieving a Mainstream Market for Electric Vehicles

    SciTech Connect (OSTI)

    Ungar, Edward; Mueller, Howard; Smith, Brett

    2010-08-01

    The Plug-in Hybrid electric Vehicle (PHEV) Market Introduction Study Final Report identified a range of policies, incentives and regulations designed to enhance the probability of success in commercializing PHEVs as they enter the automotive marketplace starting in 2010. The objective of the comprehensive PHEV Value Proposition study, which encompasses the PHEV Market Introduction Study, is to better understand the value proposition that PHEVs (as well as other plug-in electric vehicle platforms - PEVs) provide to the auto companies themselves, to the consumer and to the public at large as represented by the government and its public policies. In this report we use the more inclusive term PEVs, to include PHEVs, BEVs (battery electric vehicles that operate only on battery) and EREVs (extended range electric vehicles that combine battery electric vehicles with an internal combustion engine that charges the battery as needed). The objective of Taratec's contribution to Phase 2 of the PHEV Value Proposition Study is to develop a clear understanding of the benefits of PEVs to three stakeholders - auto original equipment manufacturers (OEMs), utilities, and the government - and of the technical and commercial challenges and risks to be overcome in order to achieve commercial success for these vehicles. The goal is to understand the technical and commercial challenges in moving from the 'early adopters' at the point of market introduction of these vehicles to a 'sustainable' mainstream market in which PEVs and other PEVs represent a normal, commercially available and attractive vehicle to the mainstream consumer. For the purpose of this study, that sustainable market is assumed to be in place in the 2030 timeframe. The principal focus of the study is to better understand the technical and commercial challenges in the transition from early adopters to a sustainable mainstream consumer market. Effectively, that translates to understanding the challenges to be overcome

  2. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  3. United Parcel Service Evaluates Hybrid Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This fact sheet describes how the National Renewable Energy Laboratory's Fleet Test and Evaluation team evaluated the 12-month, in-service performance of six Class 4 hybrid electric delivery vans - fueled by regular diesel - and six comparable conventional diesel vans operated by the United Parcel Service.

  4. USABC LEESS and PHEV Programs | Department of Energy

    Office of Environmental Management (EM)

    USABC LEESS and PHEV Programs USABC LEESS and PHEV Programs 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es003_pinnell_2012_p.pdf (2.13 MB) More Documents & Publications USABC HEV and PHEV Programs Overview and Progress of United States Advanced Battery Research (USABC) Activity FY 2011 Annual Progress Report for Energy Storage R&D

  5. PHEV Engine Control and Energy Management Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H. Chambon (PI) Oak Ridge National Laboratory PHEV Engine Control and Energy Management Strategy This presentation does not contain any proprietary, confidential, or otherwise restricted information VSS013 2012 U.S. DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting May 14, 2012 Lee Slezak Vehicle Technologies Program U.S. Department of Energy 2 Managed by UT-Battelle for the Department of Energy Overview * Timeline - Project start date: Oct.

  6. Novel electrolytes and electrolyte additives for PHEV applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel electrolytes and electrolyte additives for PHEV applications 2009 DOE Hydrogen ... More Documents & Publications Novel Electrolytes and Additives Novel Electrolytes and ...

  7. National Labs Work to Settle PHEV Fuel Economy Conundrum - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Labs Work to Settle PHEV Fuel Economy Conundrum NREL-developed methodology shows ... joined forces with researchers from Idaho National Laboratory (INL) and Argonne ...

  8. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate materials & ...

  9. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

  10. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect (OSTI)

    Simpson, A.

    2006-11-01

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  11. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  12. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  13. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  14. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

  15. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 5: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 Hybrid electric vehicles (HEVs) are conventional hybrid vehicles that use a gasoline engine with a hybrid electric drive for superior efficiency; they do not plug-in. This type of hybrid vehicle was introduced to the U.S. market in 1999 with the Honda Insight and followed by the Toyota Prius in 2000. After about 15 years of

  16. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect (OSTI)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  17. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  18. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss013_chambon_2010_o.pdf (555.51 KB) More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy Advanced LD Engine Systems and Emissions Control Modeling and Analysis

  19. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  20. Adaptive powertrain control for plugin hybrid electric vehicles

    DOE Patents [OSTI]

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  1. Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank

  2. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-08-27

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  3. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-01-01

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  4. Hybrid opto-electric techniques for molecular diagnostics

    SciTech Connect (OSTI)

    Haque, Aeraj Ul [Argonne National Laboratory (ANL)

    2012-01-01

    Hybrid optoelectric techniques reflect a new paradigm in microfluidics. In essence, these are microfluidic techniques that employ a synergistic combination of optical and electrical forces to enable noninvasive manipulation of fluids and/or particle-type entities at the micro/nano-scale [1]. Synergy between optical and electrical forces bestows these techniques with several unique features that are promising to bring new opportunities in molecular diagnostics. Within the scope of molecular diagnostics, several aspects of optoelectric techniques promise to play a relevant role. These include, but are not limited to, sample preparation, sorting, purification, amplification and detection.

  5. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  6. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  7. AVTA: 2010 Quantum Escape PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Quantum Escape PHEV, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  8. Investigation of Path Dependence in Commercial Li-ion Cells Chosen for PHEV Duty Cycle Protocols (paper)

    SciTech Connect (OSTI)

    Kevin L. Gering

    2011-04-01

    depleting (CD) and charge sustaining (CS) modes discussed in the Battery Test Manual for Plug-in Hybrid Electric Vehicles (INL, March 2008, rev0). A realistic duty cycle will involve both CD and CS modes, the proportion of each defined by the severity of the power demands. We assume that the cells will start each cycling day at 90% SOC, and that they will not be allowed to go below 35% SOC, with operation around 70% SOC being a nominal condition. The 35, 70, and 90% SOC conditions are also being used to define critical aspects of the related reference performance test (RPT) for this investigation. There are three primary components to the RPT, all assessed at room temperature: (A) static and residual capacity (SRC) over a matrix of current, (B) kinetics and pulse performance testing (PPT) over current for SOCs of interest, and (C) EIS for SOCs of interest. The RPT is performed on all cells every 30 day test interval, as well as a pulse-per-day to provide a quick diagnostic snapshot. Where feasible, we utilize various elements of Diagnostic Testing (DT) to characterize performance of the cells and to gain mechanistic-level knowledge regarding both performance features and limitations. We will present the rationale behind the experimental design, early data, and discuss the fundamental tools used to elucidate performance degradation mechanisms.

  9. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.

    SciTech Connect (OSTI)

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution

  10. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Dataset | Department of Energy 5: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 - Dataset Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 - Dataset Excel file and dataset for Hybrid Electric Vehicle Penetration by State, 2014 fotw#875_web.xlsx (202.83 KB) More Documents & Publications Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 - Dataset Fact #936: August 1, 2016 California Had the Highest Concentration of

  11. Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles

    SciTech Connect (OSTI)

    Ehsani, Mark

    2002-10-07

    A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

  12. Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid

  13. Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ii This page intentionally left blank. iii CONTENTS ACKNOWLEDGMENTS ........................................................................................................ xi NOTATION .............................................................................................................................. xiii EXECUTIVE SUMMARY ...................................................................................................... 1 ES.1 CD Operation of Gasoline PHEVs and BEVs

  14. Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.

    2009-12-01

    Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

  15. Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

    2010-09-30

    The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

  16. Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 07/22/16 07/29/16 08/05/16 08/12/16 08/19/16 08/26/16 View History U.S. 24.8 24.4 24.1 23.8 23.9 24.0 1991 Maintaining Fuel Economy - News Releases | NREL

    Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While Maintaining Fuel Economy February 23, 2011 The U.S. Department of Energy's (DOE) National Renewable Energy

  17. AVTA: Plug-In Hybrid Electric School Buses

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing several plug-in hybrid electric school buses in locations in three different states. This research was conducted by the National Renewable Energy Laboratory (NREL).

  18. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  19. NREL Evaluates UPS Hybrid-Electric Van Performance - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Evaluates UPS Hybrid-Electric Van Performance New trucks deliver more than 28% fuel savings December 22, 2009 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has collected and analyzed fuel economy, maintenance and other vehicle performance data from UPS's first generation hybrid diesel step delivery vans powered by an Eaton Corp. electric hybrid propulsion system. The diesel hybrid delivery vans improved the on-road fuel economy by 28.9 percent resulting

  20. AVTA: 2013 Toyota Prius PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Toyota Prius PHEV 2013. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). The reports for download here are based on research done at Idaho National Laboratory. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  1. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  2. Evaluation of 2005 Honda Accord Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Burress, T.A.; Marlino, L.D.

    2006-09-11

    The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

  3. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt068_vss_miyasato_2011_o .pdf (575.74 KB) More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty

  4. Overcharge Protection for PHEV Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es037_chen_2011_p.pdf (3.56 MB) More Documents & Publications Overcharge Protection Overcharge Protection for PHEV Batteries

  5. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs. ...

  6. Cold-Start and Warm-Up Driveability Performance of Hybrid Electric Vehicles Using Oxygenated Fuels

    SciTech Connect (OSTI)

    Thornton, M.; Jorgensen, S.; Evans, B.; Wright, K.

    2003-11-01

    Provides analysis and results of the driveability performance testing from four hybrid electric vehicles--Honda Civic, Toyota Prius, and two Honda Insights--that used oxygenated fuels.

  7. Plug-In Hybrid Electric Vehicle Energy Storage System Design: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2006-05-01

    This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.

  8. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  9. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  10. AVTA … PHEV Demonstrations and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    … PHEV Demonstrations and Testing AVTA … PHEV Demonstrations and Testing 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss015_francfort_2010_o.pdf (1.45 MB) More Documents & Publications Idaho National Laboratory Testing of Advanced Technology Vehicles Advanced Vehicle Benchmarking of HEVs and PHEVs

  11. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect (OSTI)

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  12. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  13. Study Released on the Potential of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener | Photo courtesy of Dennis Schroeder, National Renewable ...

  14. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  15. Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nationwide Greenhouse Gas Emissions | Department of Energy Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources Defense Council (NRDC) are examining the greenhouse gas emissions

  16. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect (OSTI)

    J. Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  17. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  18. Impact of Sungate EP on PHEV Performance: Results of a Simulated Solar Reflective Glass PHEV Dynamometer Test

    SciTech Connect (OSTI)

    Rugh, J.

    2009-06-01

    Composite fuel economy of a plug-in hybrid electric test vehicle increased 8% to 41.6 mpg because of the reduction in thermal loads from Sungate EP glazings installed in the windshield and backlite.

  19. Energy Lab to Evaluate Performance of UPS Hybrid-Electric Vans - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Energy Lab to Evaluate Performance of UPS Hybrid-Electric Vans New delivery trucks expected to save fuel, reduce harmful emissions August 23, 2007 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is collecting and analyzing maintenance, fuel economy and other vehicle performance data from 50 UPS hybrid diesel step delivery vans powered by an Eaton Corp. electric hybrid propulsion system. Funded by the DOE's Advanced Vehicle Testing Activity

  20. Opportunity to Plug Your Car Into the Electric Grid is Arriving

    SciTech Connect (OSTI)

    Griego, G.

    2010-06-01

    Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save owners up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to

  1. Hybrid Electric Vehicle Fleet and Baseline Performance Testing

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

  2. Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations

    Broader source: Energy.gov [DOE]

    Results of simulations of LDD hybrid vehicle under hybrid drive cycle conditions in PSAT show the potential impact of urea-SCR NOx controls on HEVs and PHEVs powered by lean-burn engines.

  3. PHEV Energy Storage Performance/Life/Cost Trade-Off Analysis (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Smith, K.; Pesaran, A.

    2008-05-15

    Developed linked parametric modeling tools to mathematically evaluate battery designs to satisfy challenging operational requirements for a PHEV.

  4. Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Ireland, J.; Cosgrove, J.

    2013-04-01

    This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

  5. NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings June 20, 2007 Hybrid electric vehicles have saved close to 230 million gallons - or 5.5 million barrels - of fuel in the United States since their introduction in 1999, according to a recent analysis conducted at the U. S. Department of Energy's National Renewable Energy Laboratory (NREL). "Sales of hybrid electric vehicles have increased an average of 72 percent a year for the past five years and in 2006 the average fuel economy

  6. Plug-in Hybrid Battery Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. es_05_ashtiani.pdf (1.06 MB) More Documents & Publications USABC PHEV Battery Development Project USABC HEV and PHEV Programs Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

  7. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  8. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  9. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    Activity | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018_cesiel_2012_o.pdf (718.67

  10. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    Activity | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss_02_sell.pdf (835.13

  11. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss02sell...

  12. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss018cesiel2012...

  13. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss018cesiel2010...

  14. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss018cesiel2011...

  15. United Parcel Service Evaluates Hybrid Electric Delivery Vans...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... a synchronous brushless, permanent magnet motor (26-kW continuous power, 44-kW peak ... Hybrid-specific engine optimization and calibration might produce more consistent ...

  16. Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Web site and in print publications. TESTING ADVANCED VEHICLES INDIANAPOLIS PUBLIC TRANSPORTATION ◆ DIESEL HYBRID ELECTRIC BUSES Indianapolis Public Transportation DIESEL HYBRID ELECTRIC BUSES NREL/PIX 13504, 13505, 13583 THE INDIANAPOLIS PUBLIC TRANSPORTATION CORPORATION (INDYGO) provides transit service in the Indianapolis Metropolitan area, using 226 vehicles to serve 28 fixed and demand response routes. IndyGo vehicles accumulated more than 9 million miles and transported 11 million

  17. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Energy Savers [EERE]

    EV batter- ies are charged by plugging the vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection ...

  18. 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  19. 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  20. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    McKeever, JW

    2005-06-16

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature

  1. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

  2. PHEV and LEESS Battery Cost Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es001_barnett_2011_o.pdf (1.34 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: SAFT-USABC 12V Start-Stop Phase II PHEV Battery Cost Assessment Vehicle Technologies Office Merit Review 2015: A 12V Start-Stop Li Polymer Battery Pack

  3. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results- Phase 2

    Broader source: Energy.gov [DOE]

    The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale.

  4. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  5. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the storage capacity must be large enough to supply electrical needs during non-charging periods. Battery banks ... Small stand-alone home energy systems Links Federal tax ...

  6. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results Phase 1

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  7. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act project map

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following map describes the distribution of vehicles for a project with the 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. This research was conducted by Idaho National Laboratory.

  8. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  9. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  10. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    SciTech Connect (OSTI)

    Lammert, M.

    2008-06-01

    This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

  11. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  12. Electric and hybrid vehicles program. 5th annual report to Congress for Fiscal Year 1981

    SciTech Connect (OSTI)

    1982-03-01

    This fifth annual report on the implementation of the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (Public Law 94-413, as amended by Public Law 95-238, referred to as the Act) complies with the reporting requirements established in Section 14 of the Act. In addition to informing the Congress of the progress and plans of the Department of Energy Electric and Hybrid Vehicles Program, this report is intended to serve as a communication link between the Department and all of the public and private interests involved in making the program a success. The Annual Report represents the major summary of the Electric and Hybrid Vehicles Program activities; since July 1981, DOE has ceased publication of the EHV Quarterly Reports with Congressional approval. The fourth quarter activities for FY 1981 are included in this report. During FY 1981, significant progress was made toward implementing the policies established by Congress in the Act. There has been a noticeable increase in interest shown by both the automobile manufacturing and the supply sectors of our economy in electric and hybrid vehicles. This year, the emphasis in the Electric and Hybrid Vehicles Program shifted from vehicle demonstration and preparation for production readiness to research, development, test, and evaluation of advanced technologies to achieve the attributes necessary to make electric and hybrid vehicles a practical transportation alternative. Research and development efforts in batteries and propulsion components, as well as total vehicle systems, continue to reveal significant progress toward providing industry with technology options that will result in vehicles with greater public acceptance.

  13. Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle

    Broader source: Energy.gov [DOE]

    General Motors has been gathering feedback from customers who purchased the 2011 Chevrolet Volt, which is the only plug-in hybrid vehicle (PHEV) on the market today. Through May 2011, about 2,100...

  14. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Class 4 Parcel Delivery Vehicle | Department of Energy Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the U.S. and improve air quality. p-13_thornton.pdf (476.67

  15. Hybrid Electric Vehicles: How They Perform in the Real World | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Hybrid Electric Vehicles: How They Perform in the Real World Hybrid Electric Vehicles: How They Perform in the Real World October 5, 2009 - 11:27am Addthis John Lippert One advantage of working on a U.S. Department of Energy (DOE) support team is that I'm exposed to the impressive work DOE is doing to develop and promote advanced energy technologies. I'm particularly impressed with the data DOE has gathered as part of the Advanced Vehicle Testing Activity (AVTA) on many of the

  16. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Broader source: Energy.gov (indexed) [DOE]

    E Prius PHEV Ford Focus Honda Fit EV Tesla Model S* RAV4 EV Ford C-Max Energi Honda ... 13,050 600 4,856 200 1,584 27 112,724 *Tesla Model S numbers are estimated. Source: ...

  17. Performance of electric and hybrid vehicles at the 1995 American Tour de Sol

    SciTech Connect (OSTI)

    Quong, S.; LeBlanc, N.; Buitrago, C.; Duoba, M.; Larsen, R.

    1995-12-31

    Energy consumption and performance data were collected on more than 40 electric and hybrid vehicles during the 1995 American Tour de Sol. At this competition, one electric vehicle drove 229 miles on one charge using nickel metalhydride batteries. The results obtained from the data show that electric vehicle efficiencies reached 9.07 mi./kWh or 70 equivalent mpg of gasoline when compared to the total energy cycle efficiency of electricity and gasoline. A gasoline-fueled 1995 Geo Metro that drove the same route attained 36.4 mpg.

  18. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit: Keith Wipke Image of the cutaway top view of a passenger vehicle showing the drive train that contains an electric motor and a small internal combustion engine side by side ...

  19. Plug-In Hybrid Electric Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for

  20. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... GHG emissions than the HEV if powered by coal-fired power plants with CO 2 capture and ... with electricity from specific power plant technologies (12,000 miles driven per ...

  1. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31

    Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the

  2. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    SciTech Connect (OSTI)

    Barnitt, R. A.

    2008-06-01

    The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

  3. AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

  4. PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Markel, T.; Pesaran, A.

    2009-03-01

    Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

  5. Project Results: Evaluating FedEx Express Hybrid-Electric Delivery Trucks (Fact Sheet), Vehicle Technologies Program (VTP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the 12-month, in-service performance of three Class 4 gasoline hybrid-electric delivery trucks and three comparable conventional diesel trucks operated by FedEx Express in Southern California. In addition, the tailpipe emissions and fuel economy of one of the gasoline hybrid-electric vehicles (gHEVs) and one diesel truck were tested on a chassis dynamometer. The gHEVs were equipped with a parallel hybrid system

  6. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01-1556 In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit Robb A. Barnitt National Renewable Energy Laboratory - U.S. Department of Energy Copyright © 2008 SAE International ABSTRACT The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems' HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid

  7. Project Results: Evaluating FedEx Express Hybrid-Electric Delivery Trucks (Fact Sheet), Vehicle Technologies Program (VTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the 12-month, in-service performance of three Class 4 gasoline hybrid-electric delivery trucks and three comparable conventional diesel trucks operated by FedEx Express in Southern California. In addition, the tailpipe emissions and fuel economy of one of the gasoline hybrid-electric vehicles (gHEVs) and one diesel truck were tested on a chassis dynamometer. The gHEVs were equipped with a parallel hybrid system

  8. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses

    SciTech Connect (OSTI)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-10-19

    This study evaluates the costs and benefits associated with the use of a stationary-wireless- power-transfer-enabled plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep was performed over many different battery sizes, charging power levels, and number/location of bus stop charging stations. The net present cost was calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario. The study also performed parameter sensitivity analysis under favorable and high unfavorable market penetration assumptions. The analysis identifies fuel saving opportunities with plug-in hybrid electric bus scenarios at cumulative net present costs not too dissimilar from those for conventional buses.

  9. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    SciTech Connect (OSTI)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  10. Multi-Disciplinary Decision Making and Optimization for Hybrid Electric Propulsion Systems

    SciTech Connect (OSTI)

    Shoultout, Mohamed L.; Malikopoulos, Andreas; Pannala, Sreekanth; Chen, Dongmei

    2014-01-01

    In this paper, we investigate the trade-offs among the subsystems of a hybrid electric vehicle (HEV), e.g., the engine, motor, and the battery, and discuss the related im- plications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences.

  11. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2011-01-01

    This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

  12. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    SciTech Connect (OSTI)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  13. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    SciTech Connect (OSTI)

    Wu, M.; Peng, J.

    2011-02-24

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  14. Comprehensive Well to Wheel Analysis for Plug-in-Hybrid Electric Vehicles in the U.S.

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Pratt, Robert G.; Schneider, Kevin P.

    2008-09-19

    The U.S. electric power infrastructure is a strategic national asset that is underutilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver the necessary energy to fuel the majority of the U.S. light-duty vehicle (LDV) fleet. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the U.S. dependency on foreign oil. This paper estimates the regional percentages of the energy requirements for the U.S. LDV stock that could potentially be supported by the existing infrastructure, based on the 12 modified North American Electric Reliability Council regions, as of 2002. For the United States as a whole, about 70% of LDV fleet in the U.S. could be supported by the existing infrastructure with some degree of load management. This has an estimated gasoline displacement potential of 6.5 million barrels of oil equivalent per day, or approximately 52% of the nation's oil imports. The paper also discusses the impact on overall emissions of criteria gases and greenhouse gases as a result of shifting emissions from millions of individual vehicles to a few hundred power plants. Overall, PHEVs could reduce greenhouse gas emissions with regional variations dependent on the local generation mix. Total NOX emissions may or may not increase, dependent on the use of coal generation in the region. Any additional SO2 emissions associated with the expected increase in generation from coal power plants would need to be cleaned up to meet the existing SO2 emissions constraints. Particulate emissions would increase in 8 of the 12 regions. The emissions in urban areas are found to improve across all pollutants and regions as the emission sources shift from millions of tailpipes to a smaller number of large power plants in less-populated areas. This paper concludes with a discussion about possible grid impacts as a result of the PHEV load as well as the likely impacts on the plant

  15. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    SciTech Connect (OSTI)

    Walkowicz, K.; Lammert, M.; Curran, P.

    2012-08-01

    This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group.

  16. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    SciTech Connect (OSTI)

    Miyasato, Matt; Kosowski, Mark

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests were run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.

  17. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  18. AVTA: 2011 Chrysler Town and Country Experimental PHEV Testing Results

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Chrysler Town and Country PHEV 2011, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  19. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  20. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect (OSTI)

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

  1. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

    SciTech Connect (OSTI)

    Ayers, C.W.

    2004-11-23

    Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  2. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    SciTech Connect (OSTI)

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  3. Analysis of plug-in hybrid electric vehicles' utility factors using GPS-based longitudinal travel data

    SciTech Connect (OSTI)

    Wu, Xing; Aviquzzaman, Md.; Lin, Zhenhong

    2015-05-29

    The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel and charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline. In addition, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist's daily distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3-18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. However, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.

  4. Analysis of plug-in hybrid electric vehicles' utility factors using GPS-based longitudinal travel data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Xing; Aviquzzaman, Md.; Lin, Zhenhong

    2015-05-29

    The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel andmore » charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline. In addition, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist's daily distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3-18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. However, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.« less

  5. THYME: Toolkit for Hybrid Modeling of Electric Power Systems

    Energy Science and Technology Software Center (OSTI)

    2011-01-01

    THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flowmore » data, and sample models of discrete sensors and controllers.« less

  6. Electric and hybrid vehicle program; Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the Program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  7. Electric and hybrid vehicle program site operator program. Quarterly progress report, January 1995--March 1995

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1995-08-01

    The Site Operator Program was initially established by the Department of Energy (DOE) to incorporate the electric vehicle activities dictated by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976. In the ensuing years, the Program has evolved in response to new legislation and interests. The Program currently includes twelve sites located in diverse geographic, metrologic, and metropolitan areas across the United States. Information is shared reciprocally with a thirteenth site, not under Program contract. The vehicles are operator-owned. The Mission Statement of the Site Operator Program includes three major activities: (1) Advancement of electric vehicle technologies; (2) Development of infrastructure elements necessary to support significant electric vehicle use; and (3) Increasing the awareness and acceptance of electric vehicles (EVs) by the public. The current participants in the Site Operator Program are shown. Table 1 indicates the EVs in each of the Site Operator fleets. Table 2 provides baseline information on several EVs currently in use by the Site Operators, or which have evolved to the point that they may be introduced in the near future. The Program is currently managed by personnel of the Electric and Hybrid Vehicle Program at the Idaho National Engineering Laboratory (INEL). The current principal management functions include: Coordination of Site Operator efforts in the areas of public awareness and infrastructure development (program-related meetings, and educational presentations).

  8. Who Will More Likely Buy PHEV: A Detailed Market Segmentation Analysis

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2010-01-01

    Understanding the diverse PHEV purchase behaviors among prospective new car buyers is key for designing efficient and effective policies for promoting new energy vehicle technologies. The ORNL MA3T model developed for the U.S. Department of Energy is described and used to project PHEV purchase probabilities by different consumers. MA3T disaggregates the U.S. household vehicle market into 1458 consumer segments based on region, residential area, driver type, technology attitude, home charging availability and work charging availability and is calibrated to the EIA s Annual Energy Outlook. Simulation results from MA3T are used to identify the more likely PHEV buyers and provide explanations. It is observed that consumers who have home charging, drive more frequently and live in urban area are more likely to buy a PHEV. Early adopters are projected to be more likely PHEV buyers in the early market, but the PHEV purchase probability by the late majority consumer can increase over time when PHEV gradually becomes a familiar product. Copyright Form of EVS25.

  9. Electric and Hybrid Vehicle Program; Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1992-01-01

    Activities during the first quarter centered around integrating the new participants into the program. A meeting of the Site Operators, in conjunction with the first meeting of the Electric Vehicle Users Task Force, was held in October. A second meeting of the Task Force was held in December. During these meetings the new contractual requirements were explained to the participants. The Site Operator Data Base was distributed and explained. The Site Operators will begin using the data base in December 1991 and will supply the operating and maintenance data to the INEL on a monthly basis. The Operators requested that they be able to have access to the data of the other Operators and it was agreed that they would be provided this on floppy disk monthly from the INEL. Presentations were made to the DOE sponsored Automotive Technology Development-Contractors Coordination Meeting in October. An overview of the program was given by EG G. Representatives from Arizona Public Service, Texas A M University, and York Technical College provided details of their programs and the results and future goals. Work was begun on commercializing the Versatile Data Acquisition System (VDAS). A Scope of Work has been written for a Cooperative Research and Development Agreement (CRADA) to be submitted to the USABC. If implemented, the CRADA will provide funds for the development and commercialization of the VDAS. Participants in the Site Operator Program will test prototypes of the system within their fleets, making the data available to the USABC and other interested organizations. The USABC will provide recommendations on the data to be collected. Major activities by the majority of the Operators were involved with the continued operation and demonstration of existing vehicles. In addition, several of the operators were involved in identifying and locating vehicles to be added to their fleets. A list of the vehicles in each Site Operator fleet is included as Appendix A to this report.

  10. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  11. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

  12. Field Testing Plug-in Hybrid Electric Vehicles with Charge Control Technology in the Xcel Energy Territory

    SciTech Connect (OSTI)

    Markel, T.; Bennion K.; Kramer, W.; Bryan, J.; Giedd, J.

    2009-08-01

    Results of a joint study by Xcel Energy and NREL to understand the fuel displacement potential, costs, and emissions impacts of market introduction of plug in hybrid electric vehicles.

  13. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  14. Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT ◆ PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004. Award-winning accomplishments included KAT's increase in annual ridership

  15. Vehicle Technologies Office Merit Review 2015: PHEV and EV Battery Performance and Cost Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PHEV and EV...

  16. Evaluation of Ethanol Blends for PHEVs using Simulation andEngine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop Evaluation of Ethanol ... Program Annual Merit Review and Peer Evaluation PDF icon vss049shidore2011o.pdf More ...

  17. Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Envia at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries for PHEV...

  18. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  19. Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2014-01-01

    Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

  20. Efficient Drivetrains Inc | Open Energy Information

    Open Energy Info (EERE)

    have direct applications in Plug-in Hybrid Electric Vehicles (PHEVs), Hybrids, and Electric Vehicles (EVs), including trucks, buses and cars. The company's closely related...

  1. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion. Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.

  2. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.more » Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.« less

  3. Kansas Consortium Plug-in Hybrid Medium Duty

    SciTech Connect (OSTI)

    None, None

    2012-03-31

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative

  4. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOE Patents [OSTI]

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  5. The prospects for electric and hybrid electric vehicles: Second-stage results of a two-stage Delphi study

    SciTech Connect (OSTI)

    Ng, H.K.; Anderson, J.L.; Santini, D.J.; Vyas, A.D.

    1996-08-01

    This study was conducted to collect information for a technical and economic assessment of electric (EV) and hybrid (HEV) vehicles. The first-stage worldwide survey was completed in fall 1994, while the second-stage was completed by summer 1995. The paper reports results from the second round of the survey and major differences between the two rounds. This second-stage international survey obtained information from 93 expert respondents from the automotive technology field. Key results: EVs will penetrate the market first, followed by internal combustion engine HEVs, while gas turbine and fuel cell HEVs will come after 2020. By 2020, EVs and internal combustion engine HEVs will have a 15% share of the new vehicle market; they will also cost 18-50% more and will be slightly inferior to 1993 gasoline cars. AC induction motor is projected to be superior to DC and DC brushless motors by 2020, although the DC motor will be less expensive in 2000. DC brushless motors are projected to be the most expensive. Though generally declining, battery costs will remain high. EVs are believed to be effective in reducing urban emissions; however, their costs must be reduced drastically. Petroleum is expected to be the predominant fuel for hybrid vehicles through 2020. Mean energy equivalent fuel economy of electric drivetrain vehicles is projected to be 20-40% greater than for conventional vehicles in 2000, and to rise a few percents during the projection period. Respondents anticipate only a 16% increase in conventional vehicle fuel economy from 2000 to 2020.

  6. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report K. Walkowicz, M. Lammert, and P. Curran Technical Report NREL/TP-5400-53502 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

  7. A Consumer-Oriented Control Framework for Performance Analysis in Hybrid Electric Vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shaltout, Mohamed L.; Malikopoulos, Andreas A.; Pannala, Sreekanth; Chen, Dongmei

    2014-12-09

    Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce fuel consumption and emissions. Our objective with this paper is to enhance our understanding of the associated tradeoffs among the HEV subsystems, e.g., the engine, the motor, and the battery, and investigate the related implications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences. The results of the proposed optimization approach can also be used to investigate the implications for HEV costs related to ownership and warranty.

  8. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses M. Lammert National Renewable Energy Laboratory Technical Report NREL/TP-540-42226 June 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research

  9. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  10. A Consumer-Oriented Control Framework for Performance Analysis in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Shoultout, Mohamed L.; Malikopoulos, Andreas; Pannala, Sreekanth; Chen, Dongmei

    2015-01-01

    Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce fuel consumption and emissions. The objective of this paper is to enhance our understanding of the associated tradeoffs among the HEV subsystems, e.g., the engine, the motor, and the battery, and investigate the related implications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences. The results of the proposed optimization approach can also be used to investigate the implications for HEV costs related to ownership and warranty.

  11. Electric and Hybrid Vehicles Program. Sixteenth annual report to Congress for fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report describes the progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY 1992. Detailed descriptions are provided of program activities during FY 1992 in the areas of battery, fuel cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. This Annual Report also contains a status report on incentives and use of foreign components, as well as a list of publications resulting from the DOE program.

  12. Electric and Hybrid Vehicles Program. Seventeenth annual report to Congress for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This program, in cooperation with industry, is conducting research, development, testing, and evaluation activities to develop the technologies that would lead to production and introduction of low-and zero-emission electric and hybrid vehicles into the Nation`s transportation fleet. This annual report describes program activities in the areas of advanced battery, fuel cell, and propulsion systems development. Testing and evaluation of new technology in fleet site operations and laboratories are also provided. Also presented is status on incentives (CAFE, 1992 Energy Policy Act) and use of foreign components, and a listing of publications by DOE, national laboratories, and contractors.

  13. Hybrid Electric Vehicle, Winner of the "FutureCar Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle, Winner of the "FutureCar Challenge," to Recharge at the National Renewable Energy Laboratory, One of Only Three Stops Between Sacramento, Calif. and Washington, D.C. For more information contact: George Douglas (303) 275-4096 or (303) 880-2913 (cellular) Golden, Colo., July 15, 1997 -- Media are invited to photograph "FutureCar" winner and interview students who designed it. What: The "FutureCar Challenge" winner, a modified Ford Taurus,

  14. Thirty-Six Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thirty-Six Month Evaluation of UPS Diesel Hybrid-Electric Delivery Vans M. Lammert and K. Walkowicz Technical Report NREL/TP-5400-53503 March 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Thirty-Six Month Evaluation of UPS Diesel

  15. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report K. Walkowicz, M. Lammert, and P. Curran Technical Report NREL/TP-5400-53502 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

  16. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV

  17. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  18. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  19. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  20. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  1. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  2. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  3. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population

    SciTech Connect (OSTI)

    Wei, Xile; Zhang, Danhong; Wang, Jiang; Yu, Haitao; Lu, Meili; Che, Yanqiu

    2015-01-15

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.

  4. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect (OSTI)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  5. Electric Vehicle Service Personnel Training Program

    SciTech Connect (OSTI)

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty

  6. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Savings and Incremental Cost | Department of Energy 5: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost The recently released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future. Questions were also asked that gave an

  7. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    SciTech Connect (OSTI)

    Tribioli, L. Cozzolino, R.; Barbieri, M.

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  8. Locating PHEV exchange stations in V2G

    SciTech Connect (OSTI)

    Pan, Feng; Bent, Russell; Berscheid, Alan; Izraelevitz, David

    2010-01-01

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

  9. MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.; Ramroth, L.; Duran, A.; Rosen, B.

    2012-01-01

    This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.

  10. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect (OSTI)

    Dr. Malgorzata Gulbinska

    2009-08-24

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  11. The prospects for hybrid electric vehicles, 2005-2020 : results of a Delphi Study.

    SciTech Connect (OSTI)

    Ng, H. K.; Santini, D. J.; Vyas, A. D.

    1999-07-22

    The introduction of Toyota's hybrid electric vehicle (HEV), the Prius, in Japan has generated considerable interest in HEV technology among US automotive experts. In a follow-up survey to Argonne National Laboratory's two-stage Delphi Study on electric and hybrid electric vehicles (EVs and HEVs) during 1994-1996, Argonne researchers gathered the latest opinions of automotive experts on the future ''top-selling'' HEV attributes and costs. The experts predicted that HEVs would have a spark-ignition gasoline engine as a power plant in 2005 and a fuel cell power plant by 2020. The projected 2020 fuel shares were about equal for gasoline and hydrogen, with methanol a distant third. In 2020, HEVs are predicted to have series-drive, moderate battery-alone range and cost significantly more than conventional vehicles (CVs). The HEV is projected to cost 66% more than a $20,000 CV initially and 33% more by 2020. Survey respondents view batteries as the component that contributes the most to the HEV cost increment. The mean projection for battery-alone range is 49 km in 2005, 70 km in 2010, and 92 km in 2020. Responding to a question relating to their personal vision of the most desirable HEV and its likely characteristics when introduced in the US market in the next decade, the experts predicted their ''vision'' HEV to have attributes very similar to those of the ''top-selling'' HEV. However, the ''vision'' HEV would cost significantly less. The experts projected attributes of three leading batteries for HEVs and projected acceleration times on battery power alone. The resulting battery packs are evaluated, and their initial and replacement costs are analyzed. These and several other opinions are summarized.

  12. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

  13. Tacomo Power/AVTA PHEV Demand and Energy Cost Demonstration - Analysis Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL/EXT-10-18207 Tacoma Power/AVTA PHEV Demand and Energy Cost Demonstration - Analysis Report Andre Masters Jeffrey Wishart James Francfort May 2010 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance INL/EXT-10-18207 Tacoma Power/AVTA PHEV Demand and Energy Cost Demonstration - Analysis Report Andre Masters Jeffrey Wishart James Francfort May 2010 Idaho National Laboratory Idaho Falls, Idaho 83415 http://avt.inl.gov Prepared for the U.S. Department

  14. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  15. DC-AC Cascaded H-Bridge Multilevel Boost Inverter With No Inductors for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect (OSTI)

    Tolbert, Leon M; Ozpineci, Burak; Du, Zhong; Chiasson, John N

    2009-01-01

    This paper presents a cascaded H-bridge multilevel boost inverter for electric vehicle (EV) and hybrid EV (HEV) applications implemented without the use of inductors. Currently available power inverter systems for HEVs use a dc-dc boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. A cascaded H-bridge multilevel boost inverter design for EV and HEV applications implemented without the use of inductors is proposed in this paper. Traditionally, each H-bridge needs a dc power supply. The proposed design uses a standard three-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the dc power source. A fundamental switching scheme is used to do modulation control and to produce a five-level phase voltage. Experiments show that the proposed dc-ac cascaded H-bridge multilevel boost inverter can output a boosted ac voltage without the use of inductors.

  16. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  17. 2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS

    SciTech Connect (OSTI)

    Gray, Tyler; Shirk, Matthew; Wishart, Jeffrey

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  18. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  19. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    SciTech Connect (OSTI)

    1995-04-01

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  20. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles

    SciTech Connect (OSTI)

    Marr, W.W.; He, J.

    1995-07-01

    As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

  1. Equivalence of optical and electrical noise equivalent power of hybrid NbTiN-Al microwave kinetic inductance detectors

    SciTech Connect (OSTI)

    Janssen, R. M. J.; Endo, A.; Visser, P. J. de; Klapwijk, T. M.; Baselmans, J. J. A.

    2014-11-10

    We have measured and compared the response of hybrid NbTiN-Al Microwave Kinetic Inductance Detectors (MKIDs) to changes in bath temperature and illumination by sub-mm radiation. We show that these two stimulants have an equivalent effect on the resonance feature of hybrid MKIDs. We determine an electrical noise equivalent power (NEP) from the measured temperature responsivity, quasiparticle recombination time, superconducting transition temperature, and noise spectrum, all of which can be measured in a dark environment. For the two hybrid NbTiN-Al MKIDs studied in detail, the electrical NEP is within a factor of two of the optical NEP, which is measured directly using a blackbody source.

  2. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect (OSTI)

    Giorgio Rizzoni

    2005-09-30

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a

  3. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es025_zhang_2011_p.pdf (443.82 KB) More Documents & Publications Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte

  4. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  5. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-08-01

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  6. Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint

    SciTech Connect (OSTI)

    Brooker, A.; Thornton, M.; Rugh, J.

    2010-02-01

    This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

  7. Crop drying by indirect active hybrid solar - Electrical dryer in the eastern Algerian Septentrional Sahara

    SciTech Connect (OSTI)

    Boughali, S.; Bouchekima, B.; Mennouche, D.; Bouguettaia, H.; Bechki, D.; Benmoussa, H.

    2009-12-15

    In the present work, a new specific prototype of an indirect active hybrid solar-electrical dryer for agricultural products was constructed and investigated at LENREZA Laboratory, University of Ouargla (Algerian Sahara). In the new configuration of air drying passage; the study was done in a somewhat high range of mass flow rate between 0.04 and 0.08 kg/m{sup 2} s a range not properly investigated by most researchers. Experimental tests with and without load were performed in winter season in order to study the thermal behavior of the dryer and the effect of high air masse flow on the collector and system drying efficiency. The fraction of electrical and solar energy contribution versus air mass flow rate was investigated. Slice tomato was studied with different temperatures and velocities of drying air in order to study the influence of these parameters on the removal moisture content from the product and on the kinetics drying and also to determine their suitable values. Many different thin layer mathematical drying models were compared according to their coefficient of determination (R{sup 2}) and reduced chi square ({chi}{sup 2}) to estimate experimental drying curves. The Middli model in this condition proved to be the best for predicting drying behavior of tomato slice with (R{sup 2} = 0.9995, {chi}{sup 2} = 0.0001). Finally an economic evaluation was calculated using the criterion of payback period which is found very small 1.27 years compared to the life of the dryer 15 years. (author)

  8. Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

  9. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect (OSTI)

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H.

    2007-01-01

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  10. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    Lai, Jason; Yu, Wensong; Sun, Pengwei; Leslie, Scott; Prusia, Duane; Arnet, Beat; Smith, Chris; Cogan, Art

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  11. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  12. RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint

    SciTech Connect (OSTI)

    Telias, G.; Day, K.; Dietrich, P.

    2011-01-01

    Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

  13. Electric and hybrid vehicle program site operator program. Quarterly progress report, October 1994--December 1994 (First quarter of FY-95)

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1995-07-01

    The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three ma or activity categories: (1) Advancement of Electric Vehicle (EV) technologies, (2) Development of infrastructure elements needed to support significant EV use, and (3) Increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified in Table ES-1. The EV inventories of each participant are summarized in Table ES-2.

  14. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch 

  15. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/CP-5400-60098. Posted with permission. Presented at the SAE 2013 Commercial Vehicle Engineering Congress. 2013-01-2468 Published 09/24/2013 doi:10.4271/2013-01-2468 saecomveh.saejournals.org In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks Jonathan Burton, Kevin Walkowicz, Petr Sindler, and Adam Duran National Renewable Energy Laboratory ABSTRACT This study compared fuel economy and emissions between heavy-duty

  16. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet), Vehicle Technologies Program (VTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eere.energy.gov * November 2011 UPS operates 381 hybrid-electric delivery vans nationwide. This image is reproduced with permission of United Parcel Service of America, Inc. © 2011 United Parcel Service of America, Inc. All rights reserved. Photo from UPS, NREL/PIX 19821 Advanced Vehicle Testing This project is part of a series of evaluations performed by NREL's Fleet Test and Evaluation Team for the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA). AVTA bridges the gap

  17. Thirty-Six Month Evaluation of UPS Diesel Hybrid-Electric Delivery Vans

    SciTech Connect (OSTI)

    Lammert, M.; Walkowicz, K.

    2012-03-01

    This evaluation compared six hybrids and six standard diesels in UPS facilities in Phoenix, Arizona. Dispatch and maintenance practices are the same at both facilities. GPS logging, fueling, and maintenance records are used to evaluate the performance of these step delivery vans. The hybrids' average monthly mileage rate was 18% less than the diesel vans. The hybrids consistently were driven a fewer number of miles throughout the evaluation period. The hybrids idled more and operating at slower speeds than the diesels, and the diesels spent slightly more time operating at greater speeds, accounting for much of the hybrids fewer monthly miles. The average fuel economy for the hybrid vans is 13.0 mpg, 23% greater than the diesel vans 10.6 mpg. Total hybrid maintenance cost/mile of $0.141 was 9% more than the $0.130 for the diesel vans. Propulsion-related maintenance cost/mile of $0.037 for the hybrid vans was 25% more than the $0.029 for the diesel vans. Neither difference was found to be statistically significant. The hybrid group had a cumulative average of 96.3% uptime, less than the diesel group's 99.0% uptime. The hybrids experienced troubleshooting and recalibration issues related to prototype components that were primarily responsible for the lower uptime figures.

  18. Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentcost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible...

  19. Thirty-Six Month Evaluation of UPS Diesel Hybrid Electric Delivery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or implied, or assumes any legal liability or responsibility ... orders@ntis.fedworld.gov online ordering: http:... Drivers were given training on the operation of the hybrids, ...

  20. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Staunton, Robert H; Hsu, John S; Starke, Michael R

    2006-09-01

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at

  1. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Hsu, J.S.; Staunton, M.R.; Starke, M.R.

    2006-09-30

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at

  2. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets

  3. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the

  4. DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks

    Broader source: Energy.gov [DOE]

    Pacific Gas and Electric (PG&E) is demonstrating that plug-in electric vehicles can provide significant benefits to medium and heavy-duty fleets, especially utilities.

  5. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  6. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  7. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  8. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  9. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  10. Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modelling

    SciTech Connect (OSTI)

    Yao, Yin; Gao, Wenzhong; Momoh, James; Muljadi, Eduard

    2015-10-06

    In this paper, an economic dispatch model with probabilistic modeling is developed for microgrid. Electric power supply in microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Due to the fluctuation of solar and wind plants' output, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar plants, the parameters for probabilistic distribution are further adjusted individually for both power plants. On the other hand, with the growing trend of Plug-in Electric Vehicle (PHEV), an integrated microgrid system must also consider the impact of PHEVs. Not only the charging loads from PHEVs, but also the discharging output via Vehicle to Grid (V2G) method can greatly affect the economic dispatch for all the micro energy sources in microgrid. This paper presents an optimization method for economic dispatch in microgrid considering conventional, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in modern microgrid.

  11. Vehicle Technologies Office Merit Review 2016: Hybrid Electrolytes for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by NOHMs Technologies at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  12. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  13. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon vss023friesner2011o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Plug IN Hybrid Vehicle Bus The Business of Near Zero...

  16. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid Nuclear-Renewable Energy Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hybrid Nuclear-Renewable Energy Systems Chapter 4: Technology Assessments Introduction and Background This Technology Assessment summarizes the current state of knowledge of nuclear-renewable hybrid

  17. Hybrid and Plug-In Electric Vehicle Basics | Department of Energy

    Energy Savers [EERE]

    EV batteries are charged by plugging the vehicle into an electric power source. Although most U.S. electricity production contributes to air pollution, the U.S. Environmental ...

  18. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  19. DOE to Provide up to $14 Million to Develop Advanced Batteries...

    Energy Savers [EERE]

    in funding for a 28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. ...

  20. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  1. King County Metro Transit: Allison Hybrid Electric Transit Bus Laboratory Testing

    SciTech Connect (OSTI)

    Hayes, R. R.; Williams, A.; Ireland, J.; Walkowicz, K.

    2006-09-01

    Paper summarizes chassis dynamometer testing of two 60-foot articulated transit buses, one conventional and one hybrid, at NREL's ReFUEL Laboratory. It includes experimental setup, test procedures, and results from vehicle testing performed at the NREL ReFUEL laboratory.

  2. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  3. Study Finds DOE-Funded Research in Energy Storage Provides a Vital Foundation for Success of Today's Hybrid and Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    r ams Number of Citations Office of Planning, Budget and Analysis U.S. Department of Energy * Office of Energy Efficiency and Renewable Energy May 2 0 0 9 � EERERe eS d y B - De mo at gRe sAc h i db y EERE e v e t l s u i n t n sr if re t u i v t t r o s p e c Study Finds DOE-funded Research in Energy Storage Provides a Vital Foundation for Success of Today's Hybrid & Electric Vehicles ‹ Hybrid and electric vehicles are showing great developmental and commercial market progress. ‹

  4. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber for Hydrocarbons and NOx | Department of Energy Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Reports results from study of potential for using chemisorbing materials to temporally trap HC and NOx emissions during cold-start of HEVs and PHEVs over transient driving cycles p-13_gao.pdf (1.35 MB) More Documents & Publications

  5. Hybrid and Plug-In Electric Vehicles (Spanish Version) (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Los vehículos de accionamiento eléctrico se valen de la electricidad como fuente principal de energía o la utilizan para mejorar la efciencia de diseños vehiculares convencionales. Estos vehículos se pueden dividir en tres categorías: * Vehículos eléctricos híbridos (HEV, por sus siglas en inglés) * Vehículos eléctricos híbridos enchufables (PHEV, por sus siglas en inglés) * Vehículos totalmente eléctricos (EV, por sus siglas en inglés) Juntos, tienen el enorme potencial de

  6. ETA-HTP10 - Measurement and Evaluation of Hybrid Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... by an electric motor-generator system, an ... Reserved 6 7.11 Test Engineer - The individual(s) ... 8.3 ETA-HAC01 - "Control, Close-out and Storage of ...

  7. Hybrid-Electric Porsche GT3R to Make North American Debut | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Petit Le Mans race in Georgia to feature five green vehicles Green Racing Initiative seeks to encourage development of energy efficient vehicles Two 60 kW electric motors part of ...

  8. Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  9. Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)

    SciTech Connect (OSTI)

    Cosgrove, J.; Gonder, J.; Pesaran, A.

    2013-11-01

    The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

  10. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, October--December 1995 (first quarter of fiscal year 1996)

    SciTech Connect (OSTI)

    Francfort, J.E.; Bassett, R.R.; Briasco, S.

    1996-03-01

    This is the Site Operator Program quarterly report for USDOE electric and hybrid vehicle research. Its mission now includes the three major activity categories of advancement of electric vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use and increasing public awareness and acceptance of EVs. The 11 Site Operator Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of the site operators totals about 250 vehicles. The individual fleets are summarized.

  11. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, January--March 1996

    SciTech Connect (OSTI)

    Francfort, J.E.; Bassett, R.R.; Briasco, S.

    1996-08-01

    Goals of the site operator program include field evaluation of electric vehicles (EVs) in real-world applications and environments, advancement of electric vehicle technologies, development of infrastructure elements necessary to support significant EV use, and increasing the awareness and acceptance of EVs by the public. The site operator program currently consists of 11 participants under contract and two other organizations with data-sharing agreements with the program. The participants (electric utilities, academic institutions, Federal agencies) are geographically dispersed within US and their vehicles see a broad spectrum of service conditions. Current EV inventories of the site operators exceeds 250 vehicles. Several national organizations have joined DOE to further the introduction and awareness of EVs, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for EVs; (2) DOE, DOT, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of EVs. Current focus of the program is collection and dissemination of EV operations and performance data to aid in the evaluation of real- world EV use. This report contains several sections with vehicle evaluation as a focus: EV testing results, energy economics of EVs, and site operators activities.

  12. Battery Test Manual For 12 Volt Start/Stop Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Belt, Jeffrey R.

    2015-05-01

    This manual was prepared by and for the United Stated Advanced Battery Consortium (USABC) Electrochemical Energy Storage Team. It is based on the targets established for 12 Volt Start/Stop energy storage development and is similar (with some important changes) to an earlier manual for the former FreedomCAR program. The specific procedures were developed primarily to characterize the performance of energy storage devices relative to the USABC requirements. However, it is anticipated that these procedures will have some utility for characterizing 12 Volt Start/Stop hybrid energy storage device behavior in general.

  13. Los Angeles Department of Water and Power Electric and Hybrid Vehicle Program site operator program

    SciTech Connect (OSTI)

    1998-02-01

    During the term of the above mentioned agreement, the Los Angeles Department of Water and Power (LADWP), a municipal utility serving the citizens of Los Angeles, marked its tenth year of involvement in testing and promoting electric vehicles as part of Los Angeles` overall air quality improvement program, and as a means of improving the regions` economic competitiveness through the creation of new industries. LADWP maintained and operated twenty electric vehicles (EVs) during the test period. These vehicles consisted of six G-Vans, four Chrysler TEVans, five U.S. Electricar pickup trucks, and five U.S. Electricar Prizms. LADWP`s electric transportation program also included infrastructure, public transit development, public and awareness, and legislative and regulatory activities.

  14. Study Finds DOE-Funded Research in Energy Storage Provides a Vital Foundation for Success of Today's Hybrid and Electric Vehicles

    Broader source: Energy.gov [DOE]

    This report discusses a study that found that U.S. Department of Energy-funded research in energy storage provides a vital foundation for the success of today's hybrid and electric vehicles. The study is from the DOE's Office of Planning, Budget and Analysis, Office of Energy Efficiency and Renewable Energy.

  15. SBIR/STTR FY15 Phase 1 Release 2 Awards Announced—Includes Fuel Cell-Battery Electric Hybrid Truck and Fuel Cell Manufacturing Quality Control Processes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Awards, including projects demonstrating fuel cell-battery electric hybrid trucks and developing a real-time, in-line optical detector for the measurement of fuel cell membrane thickness.

  16. Development of auxiliary power units for electric hybrid vehicles. Interim report, July 1993-February 1994

    SciTech Connect (OSTI)

    Owens, E.C.; Steiber, J.

    1997-06-01

    Larger urban commercial vehicles (such as shuttle and transit buses), various delivery and service vehicles (such as panel and step vans), and garbage trucks and school buses are particularly well suited for electric drive propulsion systems due to their relatively short operating routes, and operation and maintenance from central sites. Furthermore, these vehicles contribute a proportionately large amount to metropolitan air pollution by virtue of their continuous operation in those areas. It is necessary to develop auxiliary power units (APUs) that minimize emissions and in addition, increase range of electric vehicles. This report focuses on the first phase study of the development of APUs for large, electric drive commercial vehicles, intended primarily for metropolitan applications. This paper (1) summarizes the differences between available mobile APUs and Electric Vehicle APU requirements, (2) describes the major components in APUs, and (3) discusses APU integration issues. During this phase, three potential APU manufacturers were identified and selected for development of prototype units at 25 kW and 50 kW power levels.

  17. Hybrid: Overview

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is

  18. Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses

    SciTech Connect (OSTI)

    James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

    2006-02-01

    This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric

  19. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  20. Electric and Hybrid Vehicle Program: Site Operation Program. Quarterly progress report, July--September 1995

    SciTech Connect (OSTI)

    Francfort, J.; Bassett, R.R.; Briasco, S.

    1995-12-01

    The Site Operator Program has evolved substantially since its inception in response to the Electric Vehicle Research and Demonstration Act of 1976. In its original form, a commercialization effort was intended but this was not feasible for lack of vehicle suppliers and infrastructure. Nonetheless, with DOE sponsorship and technical participation, a few results (primarily operating experience and data) were forthcoming. The current Program comprises eleven sites and over 200 vehicles, of which about 50 are latest generation vehicles. DOE partially funds the Program participant expenditures and the INEL receives operating and maintenance data for the DOE-owned, and participant-owned or monitored vehicles, as well as Program reports. As noted elsewhere in this report, participants represent several widely differing categories: electric utilities, academic institutions, and federal agencies. While both the utilities and the academic institutions tend to establish beneficial relationships with the industrial community.

  1. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    SciTech Connect (OSTI)

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  2. Dueco Plug-In Hybrid Engines

    SciTech Connect (OSTI)

    Phillip Eidler

    2011-09-30

    Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

  3. Electric and hybrid vehicle program, site operator program quarterly progress report for April through June 1996 (third quarter of fiscal year 1996)

    SciTech Connect (OSTI)

    Francfort, J.; Bassett, R.R.; Briasco, S.

    1997-01-01

    The US Department of Energy (DOE) Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. The goals of the Site Operator Program include the field evaluation of electric vehicles (EVs) in real-world applications and environments; the advancement of electric vehicle technologies; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of EVs by the public. The Site Operator Program currently consists of eleven participants under contract and two other organizations that have data-sharing agreements with the Program (Table ES-1). Several national organizations have joined DOE to further the introduction and awareness of electric vehicles, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for electric vehicles; and (2) DOE, the Department of Transportation, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of electric vehicles. The current focus of the Program is the collection and dissemination of EV operations and performance data to aid in the evaluation of real-world EV use. This report contains several sections with vehicle evaluation as a focus.

  4. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to

  5. Gyrodynamic effects of an energy storage flywheel on the handling of a hybrid-electric vehicle. Master`s thesis

    SciTech Connect (OSTI)

    Greer, J.L.

    1997-01-09

    This research presents the results of numerical simulation of the handling characteristics of a hybrid-electric vehicle which uses a flywheel for temporary energy storage. The work is presented in an effort to understand the potential interaction of the flywheel and the vehicle, and to predict what positive and negative outcomes may result. The vehicle is modeled with four wheels, and the roll, yaw, and sideslip-angle degrees of freedom. The simulation uses an empirical model of the nonlinear interface between the tire and the road. The results are presented graphically, and are analyzed on both quantitative and qualitative bases. The vehicle parameters used to define the baseline vehicle are based on the broad guidelines set forth by the Partnership for a New Generation of Vehicles. The size and speed range of the flywheel is based on a compilation of results presented in the popular literature. Analyses of the results are based on alignment of the angular momentum vector of the flywheel along the three axes of the vehicle. The speed of the flywheel is varied from -100,000 rpm to +100,000 rpm. Negative speeds represent orientation of the angular momentum vector of the flywheel along the negative axes, and positive speeds represent orientation along the positive axes.

  6. Electric and Hybrid Vehicle Program; Site Operator Program. Quarterly progress report, October--December 1991

    SciTech Connect (OSTI)

    Warren, J.F.

    1992-01-01

    Activities during the first quarter centered around integrating the new participants into the program. A meeting of the Site Operators, in conjunction with the first meeting of the Electric Vehicle Users Task Force, was held in October. A second meeting of the Task Force was held in December. During these meetings the new contractual requirements were explained to the participants. The Site Operator Data Base was distributed and explained. The Site Operators will begin using the data base in December 1991 and will supply the operating and maintenance data to the INEL on a monthly basis. The Operators requested that they be able to have access to the data of the other Operators and it was agreed that they would be provided this on floppy disk monthly from the INEL. Presentations were made to the DOE sponsored Automotive Technology Development-Contractors Coordination Meeting in October. An overview of the program was given by EG&G. Representatives from Arizona Public Service, Texas A&M University, and York Technical College provided details of their programs and the results and future goals. Work was begun on commercializing the Versatile Data Acquisition System (VDAS). A Scope of Work has been written for a Cooperative Research and Development Agreement (CRADA) to be submitted to the USABC. If implemented, the CRADA will provide funds for the development and commercialization of the VDAS. Participants in the Site Operator Program will test prototypes of the system within their fleets, making the data available to the USABC and other interested organizations. The USABC will provide recommendations on the data to be collected. Major activities by the majority of the Operators were involved with the continued operation and demonstration of existing vehicles. In addition, several of the operators were involved in identifying and locating vehicles to be added to their fleets. A list of the vehicles in each Site Operator fleet is included as Appendix A to this report.

  7. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

    SciTech Connect (OSTI)

    McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D.

    1997-12-31

    Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

  8. New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors and customer requirements, evaluating performance and durability of alternative

  9. Benefit-Cost Evaluation of U.S. DOE Investment in Energy Storage Technologies for Hybrid and Electric Cars and Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2013 Benefit-Cost Evaluation of U.S. DOE Investment in Energy Storage Technologies for Hybrid and Electric Cars and Trucks Final Report Prepared for Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585 Prepared by Albert N. Link Alan C. O'Connor Troy J. Scott Sara E. Casey Ross J. Loomis J. Lynn Davis RTI International 3040 Cornwallis Road Research Triangle Park, NC 27709 RTI Project Number 0213238

  10. Promote the use of electric and hybrid vehicles through information dissemination & data collection through the NESEA American Tour de Sol. Final project report

    SciTech Connect (OSTI)

    2000-09-12

    A report on information dissemination on alternative fueled vehicles and on efficiency data collected at the NESEA American Tour de Sol is presented. Some of the latest advanced transportation technology vehicles were showcased. Numerous attachments are included, such as the post-event newsletter, press kit, publicity report, results table, technical workshop proceedings, NESEA tour rules and resources, and a paper titled ''Quantifying the fuel use and greenhouse gas reduction potential of electric and hybrid vehicles.''

  11. Data Collection, Testing, and Analysis of Hybrid Electric Trucks and Buses Operating in California Fleets. Final Report

    SciTech Connect (OSTI)

    Thornton, Matthew; Duran, Adam; Ragatz, Adam; Cosgrove, Jon; Sindler, Petr; Russell, Robert; Johnson, Kent

    2015-06-12

    The objective of this project was to evaluate and quantify the emission impacts of commercially available hybrid medium- and heavy-duty vehicles relative to their non-hybrid counterparts. This effort will allow the California Air Resources Board (CARB) and other agencies to more effectively encourage development and commercial deployment of the most efficient, lowest emitting hybrid technologies needed to meet air quality and climate goals.

  12. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Ozpineci, Burak; Tolbert, Leon M

    2013-01-01

    This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

  13. National Drive Electric Week

    Office of Energy Efficiency and Renewable Energy (EERE)

    Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener!

  14. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    SciTech Connect (OSTI)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  15. U.S. Department of Energy electric and hybrid vehicle Site Operator Program at Platte River Power Authority. Final report, July 3, 1991--August 31, 1996

    SciTech Connect (OSTI)

    Emmert, R.A.

    1996-12-31

    The Platte River Power Authority (Platte River) is a political subdivision of the state of Colorado, owned by the four municipalities of Fort Collins, Loveland, Longmont and Estes Park, Colorado. Platte River is a non-profit, publicly owned, joint-action agency formed to construct, operate and maintain generating plants, transmission systems and related facilities for the purpose of delivering to the four municipalities electric energy for distribution and resale. Platte River, as a participant in the US Department of Energy (DOE) Site Operator Program, worked to accomplish the Site Operator Program goals and objectives to field test and evaluate electric and electric-hybrid vehicles and electric vehicle systems in a real world application/environment. This report presents results of Platte River`s program (Program) during the five-years Platte River participated in the DOE Site Operator Program. Platte River participated in DOE Site Operator Program from July 3, 1991 through August 31, 1996. During its Program, Platte River conducted vehicle tests and evaluations, and electric vehicle demonstrations in the Front Range region of Northern Colorado. Platte River also investigated electric vehicle infrastructure issues and tested infrastructure components. Platte River`s Program objectives were as follows: evaluate the year round performance, operational costs, reliability, and life cycle costs of electric vehicles in the Front Range region of Northern Colorado; evaluate an electric vehicle`s usability and acceptability as a pool vehicle; test any design improvements or technological improvements on a component level that may be made available to PRPA and which can be retrofit into vehicles; and develop, test and evaluate, and demonstrate components to be used in charging electric vehicles.

  16. Western Michigan University Learner Centered * Discovery Driven * Globally Engaged

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Vehicles | Department of Energy This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles (2.53 MB) More

  17. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  18. Buying and Making Electricity | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Planning renewable systems Solar electric systems Wind electric systems Hybrid wind and solar Microhydropower systems. Follow Us followontwitter.png...

  19. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report for July through September 1994 (Fourth quarter of fiscal year 1994)

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1995-03-01

    The Site Operator Program was initially established by the Department of Energy (DOE) to incorporate the electric vehicle activities dictated by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976. In the ensuing years, the Program has evolved in response to new legislation and interests. The Program currently includes twelve sites located in diverse geographic, metrologic, and metropolitan areas across the US. Information is shared reciprocally with a thirteenth site, not under Program contract. The vehicles are operator-owned, except for two Griffon vans. The Mission Statement of the Site Operator Program includes three major activities: advancement of electric vehicle technologies; development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles (EVs) by the public. The current participants in the Site Operator Program are shown. The ultimate thrust of program activities varies among sites, reflecting not only the Operator`s business interests but also geographic and climate-related operating conditions. This fourth quarter report (FY-94) includes a summary of activities from the previous three quarters. The report section sequence has been revised to provide a more easily seen program overview, and specific operator activities are now found in Appendix A.

  20. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  1. Electric and hybrid vehicle program: Site operator program. Quarterly progress report, April--June, 1994 (3rd quarter of FY-1994)

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1994-10-01

    The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three major activity categories; advancement of Electric Vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use, and increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of each participant are summarized. This third quarter report (FY-94) will include a summary of activities from the previous three quarters. The report section sequence has been revised to provide a more easily seen program overview, and specific operator activities are now included.

  2. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    SciTech Connect (OSTI)

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar; Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  3. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    SciTech Connect (OSTI)

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy; LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  4. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage

    SciTech Connect (OSTI)

    Castello, Charles C; LaClair, Tim J; Maxey, L Curt

    2014-01-01

    The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

  5. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  6. The National Mission | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produce 25 percent of all electricity consumed in the United States from solar and wind. By 2015, have 1 million all-electric, plug-in hybrid (PHEV) vehicles on the road. One...

  7. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  8. Improving Petroleum Displacement Potential of PHEVs Using Enhanced Charging Scenarios: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Smith, K.; Pesaran, A. A.

    2009-05-01

    Describes NREL's R&D on the petroleum displacement potential of plug-in hybrid vehicles; vehicles charged during the day would save about 5% more fuel than those charged at night.

  9. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect (OSTI)

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  10. Jing Jin Electric JJE | Open Energy Information

    Open Energy Info (EERE)

    Beijing Municipality, China Sector: Vehicles Product: Develops and manufactures high-performance electric motors and electric drive components for hybrid electric vehicles (HEV),...

  11. INL Hybrid Shuttle Buses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL Hybrid Shuttle Buses Four 28 to 36 passenger hybrid-electric shuttle buses, operated at the Idaho National Laboratory, were equipped with data loggers. The shuttle buses were delivered in 2010 with MaxxForce DT engines configured for 620 ft-lb of torque, and Eaton City-Delivery hybrid-electric systems, each containing a lithium-ion battery pack, electric motor, and Fuller six-speed automated manual transmission. Road speed, engine speed, and fueling data were gathered from the diagnostic

  12. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet), Vehicle Technologies Program (VTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Although the largest trucks-Class 8, with a gross vehicle weight rating (GVWR) above 33,000 lb-make up only 1% of the U.S. highway vehicle fleet, they are responsible for almost 20% of highway petroleum consumption. 1 Improving the efficiency of Class 8 trucks through strategies such as alternative fuels and hybridization is a high-impact way to reduce petroleum consumption and associated emissions. The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team is evaluating

  13. Alternative Fuels Data Center: Availability of Hybrid and Plug...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Find more information about plug-in hybrids and all-electric vehicles: Find electric charging stations near you. Look up incentives and laws related to hybrid and plug-in electric ...

  14. Hybrids Plus | Open Energy Information

    Open Energy Info (EERE)

    Area Sector: Vehicles Product: Plug in Electric Hybrid Vehicle conversions, chargers, battery systems Website: www.eetrex.com Coordinates: 40.022143, -105.250981 Show Map...

  15. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  16. Novel Hybrid Materials with High Stability for Electrically Switched Ion Exchange: Carbon Nanotubes/Polyaniline/Nickel Hexacyanoferrate Nanocomposites

    SciTech Connect (OSTI)

    Lin, Yuehe; Cui, Xiaoli

    2005-04-21

    A novel and stable carbon nanotubes /polyaniline /nickel hexacyanoferrates composite film has been synthesized with electrodeposition method, and the possibility for removing cesium through an electrically switched ion exchange has been evaluated in a mixture containing NaNO3 and CsNO3.

  17. Implementation Approach for Electric Vehicles at Marine Corps Base Camp Lejeune. Task 4

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense base studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Marine Corps Base Camp Lejeune (MCBCL) located in North Carolina. Task 1 consisted of a survey of the non-tactical fleet of vehicles at MCBCL to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the MCBCL fleet. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from MCBCL personnel.

  18. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    SciTech Connect (OSTI)

    Martin, Elijah H.; Goniche, M.; Klepper, C. Christopher; Hillairet, J.; Isler, Ralph C.; Bottereau, C.; Colas, L.; Ekedahl, A.; Panayotis, S.; Pegourie, B.; Lotte, Ph.; Colledani, G.; Caughman, J. B. O.; Harris, Jeffrey H.; Hillis, Donald Lee; Shannon, S.C.; Clairet, F.; Litaudon, X.

    2015-04-22

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies ($E_{LH}$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. We find through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $E_{LH}$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.

  19. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin, Elijah H.; Goniche, M.; Klepper, C. Christopher; Hillairet, J.; Isler, Ralph C.; Bottereau, C.; Colas, L.; Ekedahl, A.; Panayotis, S.; Pegourie, B.; et al

    2015-04-22

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies (more » $$E_{LH}$$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. We find through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $$E_{LH}$$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.« less

  20. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    SciTech Connect (OSTI)

    Martin, Elijah H; Goniche, M.; Klepper, C Christopher; Hillairet, J.; Isler, Ralph C; Caughman, J. B. O.; Colas, L.; Ekedahl, A.; Colledani, G.; Lotte, Ph.; Litaudon, X; Hillis, Donald Lee; Harris, Jeffrey H

    2015-01-01

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies ($E_{LH}$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. It was found through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $E_{LH}$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.

  1. Polymer Hybrid Photovoltaics for Inexpensive Electricity Generation: Final Technical Report, 1 September 2001--30 April 2006

    SciTech Connect (OSTI)

    Carter, S. A.

    2006-07-01

    The project goal is to understand the operating mechanisms underlying the performance of polymer hybrid photovoltaics to enable the development of a photovoltaic with a maximum power conversion efficiency over cost ratio that is significantly greater than current PV technologies. Plastic or polymer-based photovoltaics can have significant cost advantages over conventional technologies in that they are compatible with liquid-based plastic processing and can be assembled onto plastic under atmospheric conditions (ambient temperature and pressure) using standard printing technologies, such as reel-to-reel and screen printing. Moreover, polymer-based PVs are lightweight, flexible, and largely unbreakable, which make shipping, installation, and maintenance simpler. Furthermore, a numerical simulation program was developed (in collaboration with IBM) to fully simulate the performance of multicomponent polymer photovoltaic devices, and a manufacturing method was developed (in collaboration with Add-vision) to inexpensively manufacture larger-area devices.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen and Plug-In Electric Vehicle (PEV) Rebate The Hydrogen and Electric Automobile Purchase Rebate Program (CHEAPR) offers rebates for the incremental cost of the purchase or lease of a hydrogen fuel cell electric vehicle (FCEV), all-electric vehicle (EV), or plug-in hybrid electric vehicle (PHEV). Rebates are offered based on battery capacity in the following amounts: Eligible FCEV, EV, or PHEVs purchased or leased before July 1, 2016: Rebate Amount Required Battery Capacity $3,000 Greater

  3. New Cost Tool Helps Fleet Managers Evaluate Hybrid Vehicles ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Cost Tool Helps Fleet Managers Evaluate Hybrid Vehicles August 3, 2005 Golden, Colo. - A new software tool that compares the costs and emissions of hybrid electric vehicles ...

  4. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  5. CX-010979: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Energy Lithium Batteries for Plug-in Hybrid Electric Vehicle (PHEV) Applications CX(s) Applied: B3.6 Date: 09/13/2013 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  6. CX-010978: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Energy Lithium Batteries for Plug-in Hybrid Electric Vehicle (PHEV) Applications CX(s) Applied: B3.6 Date: 09/13/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  7. Plug In Partners | Open Energy Information

    Open Energy Info (EERE)

    Zip: 78704 Sector: Vehicles Product: Focused on promotion of flexible-fuel Plug-in Hybrid Electric Vehicles (PHEV). Coordinates: 30.267605, -97.742984 Show Map Loading...

  8. Effect of the electric field pattern on the generation of fast electrons in front of lower hybrid launchers

    SciTech Connect (OSTI)

    Valade, Laurent Ekedahl, Annika; Colas, Laurent; Goniche, Marc; Hillairet, Julien; Fuchs, Vladimir; Petrzilka, Vaclav; Li, Miaohui; Zhang, Bin

    2015-12-10

    The effect of the detailed waveguide spectrum on the electron acceleration has been studied for the 3.7 GHz LHCD launchers in Tore Supra, i.e. the ITER-like passive-active multijunction (PAM) launcher and the fully-active-multijunction (FAM) launcher, using test electron modelling technique. The detailed launched antenna wave spectrum is used as input to the code that computes the dynamics of the electrons in the electric field. Comparison with the LHCD launchers in EAST, operating at 2.45 GHz and 4.6 GHz, has also been made. The simulations show that the PAM-design generates lower flux of fast electrons than FAM-launchers, this could be the consequence of the wider waveguide of PAM-launcher (14.65 mm for Tore-Supra) than FAM-launcher (8 mm for Tore-Supra)

  9. Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack

    Broader source: Energy.gov [DOE]

    Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

  10. Optimal Energy Management of a PHEV Using Trip Information | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy vss068_karbowski_2012_o.pdf (953.61 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Trip Prediction and Route-Based Vehicle Energy Management Electric Drive Vehicle Level Control Development Under Various Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)

  11. Virtual Vehicle - Component-in-the-Loop | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Tours Nuclear Weapons Mission at Sandia Sandia Labs: Who we are Related Topics apm

    Virtual Vehicle - Component-in-the-Loop Preparing a plug-in hybrid electric vehicle (PHEV) battery for testing on Argonne's Battery-in-the-Loop system Preparing a plug-in hybrid electric vehicle (PHEV) battery for testing on Argonne's Battery-in-the-Loop system How do you evaluate unique vehicle configurations without building each vehicle from the ground up? Argonne researchers have developed

  12. Full Hybrid: Overview

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button OVERVIEW Full hybrids use a gasoline engine as the primary source of power, and an electric motor provides additional power when needed. In addition, full hybrids can use the electric motor as the sole source of propulsion for low-speed, low-acceleration driving, such as in stop-and-go traffic or for backing up. This electric-only driving mode can further increase fuel efficiency under some

  13. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2011-10-01

    develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects

  14. A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes

    SciTech Connect (OSTI)

    Huang, Jingsong; Feng, Guang; Sumpter, Bobby G; Qiao, Rui; Meunier, Vincent

    2011-01-01

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero

  15. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.05% and the specific power and power density of the onboard components is ~455 W/kg and ~302 W/ .

  16. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L; Tolbert, Leon M

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.1% and the specific power and power density of the onboard components is ~455 W/kg and ~320 W/ .

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Electric Vehicle (PEV) Registration Fees Beginning January 2017, PEVs, are subject to an increased vehicle registration fee. These fees apply to all-electric vehicles (EVs) as well as plug-in hybrid electric vehicles (PHEVs) with a minimum battery capacity of 4 kilowatt-hours. The specific fee increases are as follows: Vehicle Type Gross Vehicle Weight Rating Fee Increase PHEV 8,000 pounds (lbs.) or less $30 PHEV > 8,000 lbs. $100 EV 8,000 lbs. or less $100 EV > 8,000 lbs. $200

  18. PROJECT PROFILE: Opportunistic Hybrid Communications Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    distributed solar power is added to the electric power grid and becomes an increasing proportion of total energy generation... a hybrid communications system to meet the needs of ...

  19. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adv SI Adv CI SI HEV SI PHEV10 SI PHEV40 BEV100 BEV300 Levelized cost of driving, 2011mile Fuel Cost (NPV) Drive, Wheels, Tires, 12V Battery Transmission Generator Motor Energy ...

  20. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  1. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  2. PHEV Battery Cost Assessment

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. PHEV Battery Cost Assessment

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Maintenance

  5. Recovery Act: State Assistance for Recovery Act Related Electricity...

    Energy Savers [EERE]

    efficiency, renewable energy, carbon capture and storage, transmission lines, energy storage, smart grid, demand response equipment, and electric and hybrid-electric vehicles. ...

  6. Electric Vehicle Preparedness - Task 2: Identification of Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Collectively, battery electric vehicles and plug-in hybrid electric vehicles are known ... Truck (8500 pounds < GVWR) Medium Truck Heavy Truck % of Vehicles Number of Vehicles Figure ...

  7. Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in ...

  8. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle ...

  9. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  10. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  11. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  12. Full Hybrid: Starting

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an

  13. Hybrid electroluminescent devices

    DOE Patents [OSTI]

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  14. BreezElectric | Open Energy Information

    Open Energy Info (EERE)

    Product: Electricity supplier for small grids on remote islands using a hybrid wind-diesel power system. References: BreezElectric1 This article is a stub. You can help OpenEI...

  15. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2009-11-01

    system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been

  16. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  17. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  18. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect (OSTI)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  19. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  20. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...