Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hybrid optomechanical cooling by atomic $?$ systems  

E-Print Network [OSTI]

We investigate a hybrid quantum system consisting of a cavity optomechanical device optically coupled to an ultracold quantum gas. We show that the dispersive properties of the ultracold gas can be used to dramatically modify the optomechanical response of the mechanical resonator. We examine hybrid schemes wherein the mechanical resonator is coupled either to the motional or the spin degrees of freedom of the ultracold gas. In either case, we find an enhancement of more than two orders of magnitude in optomechanical cooling due to this hybrid interaction. Significantly, based on demonstrated parameters for the cavity optomechanical device, we identify regimes that enable the ground state cooling of the resonator from room temperature. In addition, the hybrid system considered here represents a powerful interface for the use of an ultracold quantum gas for state preparation, sensing and quantum manipulation of a mesoscopic mechanical resonator.

F. Bariani; S. Singh; L. F. Buchmann; M. Vengalattore; P. Meystre

2014-07-03T23:59:59.000Z

2

Analysis of advanced solar hybrid desiccant cooling systems for buildings  

SciTech Connect (OSTI)

This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

Schlepp, D.; Schultz, K.

1984-10-01T23:59:59.000Z

3

Hybrid Radiator Cooling System | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmasSandy-Nor'easter Situation ReportsHuubRadiator Cooling

4

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

SciTech Connect (OSTI)

This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

Ashwood, A.; Bharathan, D.

2011-03-01T23:59:59.000Z

5

Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals  

SciTech Connect (OSTI)

This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

Anglart, Henryk [Div. of Nuclear Technology, School of Engineering Sciences, Royal Institute of Technology Roslagstullsbacken 21, 106-91 Stockholm (Sweden)

2012-06-19T23:59:59.000Z

6

A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS  

E-Print Network [OSTI]

system also incorporates mechanical devices to move energy, then the sys tern is classified as hybrid. *

Holtz, Michael J.

2011-01-01T23:59:59.000Z

7

Optical bistability and cooling of a mechanical oscillator induced by radiation pressure in a hybrid optomechanical system  

E-Print Network [OSTI]

We investigate theoretically the effect of optical feedback from a cavity containing an ultracold two level atomic ensemble, on the bistable behavior shown by mean intracavity optical field and the ground state cooling effect of the mechanical oscillator in an optomechanical cavity resonator. The optical bistability can be controlled by tuning the frequency and power of the single driving laser as well as by varying the atom-cavity coupling strength in the atomic cavity. Study of the cooling of the mechanical oscillator, in both good and bad cavity limits, reveals that the hybrid system is more efficient in cooling in comparison to a generic optomechanical setup, even at room temperature. In essence, our work emphasizes the impact of the coupling with the atomic cavity on the radiation pressure effects in the optomechanical cavity.

Sarma, Bijita

2015-01-01T23:59:59.000Z

8

Optimization of hybrid-water/air-cooled condenser in an enhanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

air-cooled condenser in an enhanced turbine geothermal ORC system Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system DOE Geothermal...

9

Two-Phase Spray Cooling of Hybrid Vehicle Electronics: Preprint  

SciTech Connect (OSTI)

Spray cooling is a feasible cooling technology for hybrid vehicle electronics; HFE 7100 is a promising coolant.

Mudawar, I.; Bharathan, D.; Kelly, K.; Narumanchi, S.

2008-07-01T23:59:59.000Z

10

Coherent control and feedback cooling in a remotely-coupled hybrid atom-optomechanical system  

E-Print Network [OSTI]

Cooling to the motional ground state is an important first step in the preparation of nonclassical states of mesoscopic mechanical oscillators. Light-mediated coupling to a remote atomic ensemble has been proposed as a method to reach the ground state for low frequency oscillators. The ground state can also be reached using optical measurement followed by feedback control. Here we investigate the possibility of enhanced cooling by combining these two approaches. The combination, in general, outperforms either individual technique, though atomic ensemble-based cooling and feedback cooling each individually dominate over large regions of parameter space.

James S. Bennett; Lars S. Madsen; Mark Baker; Halina Rubinsztein-Dunlop; Warwick P Bowen

2014-06-30T23:59:59.000Z

11

Hybrid Radiator-Cooling System (ANL-IN-11-096) - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmasSandy-Nor'easter Situation ReportsHuubRadiator Cooling

12

Development of Nanofluids for Cooling Power Electronics for Hybrid...  

Broader source: Energy.gov (indexed) [DOE]

for Hybrid Electric Vehicles Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

13

Optimization of hybrid-water/air-cooled condenser in an enhanced...  

Open Energy Info (EERE)

hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

14

A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS  

E-Print Network [OSTI]

all zones equally. Remote heating systems can be designed toremote from the building envelope proper. South wall heating

Holtz, Michael J.

2011-01-01T23:59:59.000Z

15

Cooling Water System Optimization  

E-Print Network [OSTI]

During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

Aegerter, R.

2005-01-01T23:59:59.000Z

16

Cooling water distribution system  

DOE Patents [OSTI]

A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

Orr, Richard (Pittsburgh, PA)

1994-01-01T23:59:59.000Z

17

Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume I. Executive summary  

SciTech Connect (OSTI)

The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. A summary of results of Phase I is given in this volume. (WHK)

None

1980-01-01T23:59:59.000Z

18

Passive containment cooling system  

DOE Patents [OSTI]

A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

1991-01-01T23:59:59.000Z

19

Gas turbine cooling system  

DOE Patents [OSTI]

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

20

Passive containment cooling system  

DOE Patents [OSTI]

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Passive containment cooling system  

DOE Patents [OSTI]

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

Billig, P.F.; Cooke, F.E.; Fitch, J.R.

1994-01-25T23:59:59.000Z

22

Cooling System Basics | Department of Energy  

Energy Savers [EERE]

Homes & Buildings Space Heating & Cooling Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings...

23

Liquid metal cooled nuclear reactors with passive cooling system  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

1991-01-01T23:59:59.000Z

24

Emergency core cooling system  

DOE Patents [OSTI]

A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

Schenewerk, William E. (Sherman Oaks, CA); Glasgow, Lyle E. (Westlake Village, CA)

1983-01-01T23:59:59.000Z

25

A Unique Approach to Power Electronics and Motor Cooling in a Hybrid Electric Vehicle Environment  

SciTech Connect (OSTI)

An innovative system for cooling the power electronics of hybrid electric vehicles is presented. This system uses a typical automotive refrigerant R-134a (1,1,1,2 tetrafluoroethane) as the cooling fluid in a system that can be used as either part of the existing vehicle passenger air conditioning system or separately and independently of the existing air conditioner. Because of the design characteristics, the cooling coefficient of performance is on the order of 40. Because liquid refrigerant is used to cool the electronics directly, high heat fluxes can result while maintaining an electronics junction temperature at an acceptable value. In addition, an inverter housing that occupies only half the volume of a conventional inverter has been designed to take advantage of this cooling system. Planned improvements should result in further volume reductions while maintaining a high power level.

Ayers, Curtis William [ORNL; Hsu, John S [ORNL; Lowe, Kirk T [ORNL; Conklin, Jim [ORNL

2007-01-01T23:59:59.000Z

26

Hybrid Systems State estimation for hybrid systems: applications  

E-Print Network [OSTI]

Hybrid Systems State estimation for hybrid systems: applications to aircraft tracking I. Hwang, H of a stochastic linear hybrid system, given only the continuous system output data, is studied. Well established techniques for hybrid estimation, known as the multiple model adaptive estimation algorithm

Tomlin, Claire

27

Desiccant Cooling Systems - A Review  

E-Print Network [OSTI]

Desiccant cooling systems have been investigated extensively during the past decade as alternatives to electrically driven vapor compression systems because regeneration temperatures of the desiccant - about 160°F, can be achieved using natural gas...

Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

1986-01-01T23:59:59.000Z

28

Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6  

SciTech Connect (OSTI)

The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

None

1980-01-01T23:59:59.000Z

29

Temperature initiated passive cooling system  

DOE Patents [OSTI]

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

Forsberg, Charles W. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

30

Temperature initiated passive cooling system  

DOE Patents [OSTI]

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

Forsberg, C.W.

1994-11-01T23:59:59.000Z

31

Combustor liner cooling system  

DOE Patents [OSTI]

A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

Lacy, Benjamin Paul; Berkman, Mert Enis

2013-08-06T23:59:59.000Z

32

Hybrid cavity mechanics with doped systems  

E-Print Network [OSTI]

We investigate the dynamics of a mechanical resonator in which is embedded an ensemble of two-level systems interacting with an optical cavity field. We show that this hybrid approach to optomechanics allows for enhanced effective interactions between the mechanics and the cavity field, leading for instance to ground state cooling of the mechanics, even in regimes, like the unresolved sideband regime, in which standard radiation pressure cooling would be inefficient.

Aurelien Dantan; Bhagya Nair; Guido Pupillo; Claudiu Genes

2014-06-27T23:59:59.000Z

33

Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4  

SciTech Connect (OSTI)

The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

None

1980-01-01T23:59:59.000Z

34

Non-intrusive cooling system  

DOE Patents [OSTI]

A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

Morrison, Edward F. (Burnt Hills, NY); Bergman, John W. (Barrington, NH)

2001-05-22T23:59:59.000Z

35

Elgersburg School 2014 Hybrid Systems  

E-Print Network [OSTI]

Elgersburg School 2014 Hybrid Systems Worksheet 2 Problem 1. Consider the hybrid system given by C) Is V1(x) = 1 2 x2 2 + x1 (which represents the total energy of the ball) a Lyapunov function verifying

Knobloch,Jürgen

36

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

Office of Scientific and Technical Information (OSTI)

(NREL) at www.nrel.govpublications. Executive Summary Many binary-cycle geothermal power plants use air as the heat rejection medium. An air-cooled condenser (ACC) system is...

37

Solar-powered cooling system  

DOE Patents [OSTI]

A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

Farmer, Joseph C

2013-12-24T23:59:59.000Z

38

Compressor bleed cooling fluid feed system  

DOE Patents [OSTI]

A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

Donahoo, Eric E; Ross, Christopher W

2014-11-25T23:59:59.000Z

39

Hybrid Neural Systems Stefan Wermter  

E-Print Network [OSTI]

Hybrid Neural Systems Stefan Wermter Ron Sun Springer, Heidelberg, New York January 2000 #12; Preface The aim of this book is to present a broad spectrum of current research in hybrid neural systems, and advance the state of the art in neural networks and arti#12;cial intelligence. Hybrid neural systems

Varela, Carlos

40

A better cooling water system  

SciTech Connect (OSTI)

To prepare their newly constructed reduced crude conversion (RCC) open recirculating cooling water system for the implementation of a corrosion and deposit control water treatment program, Ashland Petroleum, Catlettsburg, Ky., made plans for and carried out precleaning and passivation procedures. Here, the authors share the results, and some potential guidelines for one's own operations. Inspection of equipment after precleaning showed that the precleaning procedures was very effective in removing undesirable matter. After precleaning and passivation of the system, the recommended cooling water treatment program was started. Corrosion rates for mild steel specimens ranged from 0.5 to 1.5 mils per year (mpy), with an average of 1.0 mpy. The corrosion rates for admiralty specimens ranged from 0.1 to 0.2 mpy. Benefits of the precleaning and passivating programs greatly outweigh the costs, since the normal cooling water treatment program for corrosion and deposit control can then operate more effectively.

Gale, T.E.; Beecher, J.

1987-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Indirect passive cooling system for liquid metal cooled nuclear reactors  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

42

Passive cooling safety system for liquid metal cooled nuclear reactors  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

1991-01-01T23:59:59.000Z

43

Lamination cooling system formation method  

DOE Patents [OSTI]

An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

Rippel, Wally E. (Altadena, CA); Kobayashi, Daryl M. (Monrovia, CA)

2012-06-19T23:59:59.000Z

44

Lamination cooling system formation method  

DOE Patents [OSTI]

An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

2009-05-12T23:59:59.000Z

45

Gas hydrate cool storage system  

DOE Patents [OSTI]

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

46

Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems1  

E-Print Network [OSTI]

HyLo 2006 Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems1 Andr´e Platzer2 Carnegie platzer@informatik.uni-oldenburg.de Abstract We introduce a hybrid variant of a dynamic logic for this extended hybrid dynamic logic. With the addition of satisfaction operators, this hybrid logic provides

Platzer, André

47

Cryo Utilities Room Cooling System  

SciTech Connect (OSTI)

Many of the mechanical equipment failures at the Laboratory are due to the loss of cooling water. In order to insure the proper operating temperatures and to increase the reliability of the mechanical equipment in the D0 Cryo Utilities Room it is necessary to provide an independent liquid cooling system. To this end, an enclosed glycoVwater cooling system which transfers heat from two vane-type vacuum pumps and an air compressor to the outside air has been installed in the Cryo Utilities Room. From the appended list it can be seen that only the Thermal Precision PFC-121-D and Ingersoll-Rand WAC 16 deserve closer investigation based on price. The disadvantages of the WAC 16 are that: it runs a little warmer, it requires more valving to properly install a backup pump, inlet and outlet piping are not included, and temperature and pressure indicators are not included. Its only advantage is that it is $818 cheaper than the PFC-121-D. The advantages of the PFC-121-D are that: it has automatic pump switching during shutdown, it has a temperature regulator on one fan control, it has a switch which indicates proper operation, has a sight glass on the expansion tank, and comes with an ASME approved expansion tank and relief valve. For these reasons the Thermal Precision PFC-121-D was chosen. In the past, we have always found the pond water to be muddy and to sometimes contain rocks of greater than 1/2 inch diameter. Thus a system completely dependent on the pond water from the accelerator was deemed unacceptable. A closed system was selected based on its ability to greatly improve reliability, while remaining economical. It is charged with a 50/50 glycol/water mixture capable of withstanding outside temperatures down to -33 F. The fluid will be circulated by a totally enclosed air cooled Thermal Precision PFC-121-D pump. The system will be on emergency power and an automatically controlled backup pump, identical to the primary, is available should the main pump fail. The fan unit is used as a primary cooler and the trim cooler cools the fluid further on extremely hot days. The trim cooler has also been sized to cool the system in the event of a total shutdown provided that the pond water supply has adequate pressure. Due to a broken filter, we found it necessary to install a strainer in the pond water supply line. The expansion tank separates air bubbles, ensures a net positive suction head, protects against surges and over pressurization of the system, and allows for the filling of the system without shutting it off. All piping has been installed, flushed, charged with the glycol/water mix, and hydrostatically tested to 55 psi. The condition of all pumps and flow conditions will be recorded at the PLC. It has been decided not to include the regulator valve in the pond water return line. This valve was designated by the manufacturer to reduce the amount of water flowing through the trim cooler. This is not necessary in our application. There is some concern that the cooling fluid may cool the mechanical eqUipment too much when they are not operating or during very cold days. This issue will be addressed and the conclusion appended to this engineering note.

Ball, G.S.; /Fermilab

1989-01-26T23:59:59.000Z

48

Information technology equipment cooling system  

SciTech Connect (OSTI)

According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

Schultz, Mark D.

2014-06-10T23:59:59.000Z

49

Thermal Response of the Hybrid Loop-Pool Design for Sodium Cooled Faster Reactors  

SciTech Connect (OSTI)

An innovative hybrid loop-pool design for the sodium cooled fast reactor (SFR) has been recently proposed with the primary objective of achieving cost reduction and safety enhancement. With the hybrid loop-pool design, closed primary loops are immersed in a secondary buffer tank. This design takes advantage of features from conventional both pool and loop designs to further improve economics and safety. This paper will briefly introduce the hybrid loop-pool design concept and present the calculated thermal responses for unproctected (without reactor scram) loss of forced circulation (ULOF) transients using RELAP5-3D. The analyses examine both the inherent reactivity shutdown capability and decay heat removal performance by passive safety systems.

Zhang, Hongbin; Zhao, Haihua; Davis, Cliff

2008-09-01T23:59:59.000Z

50

Cooling system for superconducting magnet  

DOE Patents [OSTI]

A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

Gamble, B.B.; Sidi-Yekhlef, A.

1998-12-15T23:59:59.000Z

51

Hybrid Automata-based CEGAR for Rectangular Hybrid Systems  

E-Print Network [OSTI]

Hybrid Automata-based CEGAR for Rectangular Hybrid Systems Pavithra Prabhakar, Sridhar Duggirala- example guided abstraction-refinement (CEGAR) for systems modelled as rectangular hybrid automata. The main difference, between our ap- proach and previous proposals for CEGAR for hybrid automata

Liberzon, Daniel

52

Global optimization of hybrid systems  

E-Print Network [OSTI]

Systems that exhibit both discrete state and continuous state dynamics are called hybrid systems. In most nontrivial cases, these two aspects of system behavior interact to such a significant extent that they cannot be ...

Lee, Cha Kun

2006-01-01T23:59:59.000Z

53

Impact of Hybrid Wet/Dry Cooling on Concentrating Solar Power Plant Performance  

SciTech Connect (OSTI)

This paper examines the sensitivity of Rankine cycle plant performance to dry cooling and hybrid (parallel) wet/dry cooling combinations with the traditional wet-cooled model as a baseline. Plants with a lower temperature thermal resource are more sensitive to fluctuations in cooling conditions, and so the lower temperature parabolic trough plant is analyzed to assess the maximum impact of alternative cooling configurations. While low water-use heat rejection designs are applicable to any technology that utilizes a Rankine steam cycle for power generation, they are of special interest to concentrating solar power (CSP) technologies that are located in arid regions with limited water availability. System performance is evaluated using hourly simulations over the course of a year at Daggett, CA. The scope of the analysis in this paper is limited to the power block and the heat rejection system, excluding the solar field and thermal storage. As such, water used in mirror washing, maintenance, etc., is not included. Thermal energy produced by the solar field is modeled using NREL's Solar Advisor Model (SAM).

Wagner, M. J.; Kutscher, C.

2010-01-01T23:59:59.000Z

54

Hybrid spread spectrum radio system  

DOE Patents [OSTI]

Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

Smith, Stephen F. (London, TN) [London, TN; Dress, William B. (Camas, WA) [Camas, WA

2010-02-09T23:59:59.000Z

55

Evaporative cooling enhanced cold storage system  

DOE Patents [OSTI]

The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

Carr, Peter (Cary, NC)

1991-01-01T23:59:59.000Z

56

Evaporative cooling enhanced cold storage system  

DOE Patents [OSTI]

The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

Carr, P.

1991-10-15T23:59:59.000Z

57

Hybrid Wet/Dry Cooling for Power Plants (Presentation)  

SciTech Connect (OSTI)

This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

Kutscher, C.; Buys, A.; Gladden, C.

2006-02-01T23:59:59.000Z

58

A new cylinder cooling system using oil  

SciTech Connect (OSTI)

The design of engine cylinders must satisfy two conflicting requirements, good cooling performance and ease of manufacture. A cooling system was designed to permit the circulation of engine lubricating oil as a coolant at high speed through grooves provided on the external periphery of the cylinder liner. Testing in an actual operating engine confirmed that this cooling system design not only provides better heat transfer and higher cooling performance but also simplifies the manufacturing of the cylinder since external cooling fins are not required. In this paper, the authors will discuss the cylinder cooling effect of the new cylinder cooling system, referring mainly to the test results of a single-cylinder motorcycle engine with lubricating oil from the crankcase used as the coolant.

Harashina, Kenichi; Murata, Katsuhiro; Satoh, Hiroshi; Shimizu, Yasuo; Hamamura, Masahiro

1995-12-31T23:59:59.000Z

59

A Possible Hybrid Cooling Channel for a Neutrino Factory  

E-Print Network [OSTI]

notably the question of hydrogen embrittlement of structuralare resistant to hydrogen embrittlement, but other cooling

Zisman, Michael S

2010-01-01T23:59:59.000Z

60

Reactor core isolation cooling system  

DOE Patents [OSTI]

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

Cooke, F.E.

1992-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reactor core isolation cooling system  

DOE Patents [OSTI]

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

Cooke, Franklin E. (San Jose, CA)

1992-01-01T23:59:59.000Z

62

Hybrid solar lighting distribution systems and components  

DOE Patents [OSTI]

A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

2011-07-05T23:59:59.000Z

63

Hybrid solar lighting systems and components  

DOE Patents [OSTI]

A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

2007-06-12T23:59:59.000Z

64

Emergency cooling system and method  

DOE Patents [OSTI]

An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

Oosterkamp, W.J.; Cheung, Y.K.

1994-01-04T23:59:59.000Z

65

Cooling load design tool for UFAD systems.  

E-Print Network [OSTI]

Underfloor Air Distribution (UFAD) Design Guide. Atlanta:Load Design Tool for Underfloor Air Distribution Systems. ”for design cooling loads in underfloor air distribution (

Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

2010-01-01T23:59:59.000Z

66

Liquid metal cooled nuclear reactor plant system  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

67

Hot gas path component cooling system  

DOE Patents [OSTI]

A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

2014-02-18T23:59:59.000Z

68

Distributed Theorem Proving for Distributed Hybrid Systems  

E-Print Network [OSTI]

system with a varying number of arbitrarily many cars. 1 Introduction Hybrid systems with joint discrete a multi-agent system, e.g., distributed car control systems. Such systems form distributed hybrid systemsDistributed Theorem Proving for Distributed Hybrid Systems David W. Renshaw, Sarah M. Loos

Platzer, André

69

Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

70

Hybrid Systems: From Verification to Falsification  

E-Print Network [OSTI]

Hybrid Systems: From Verification to Falsification Erion Plaku, Lydia E. Kavraki, and Moshe Y}@cs.rice.edu Abstract. We propose HyDICE, Hybrid DIscrete Continuous Exploration, a multi­layered approach for hybrid. The discrete search uses the discrete transitions of the hybrid system and coarse­grained decompositions

Vardi, Moshe Y.

71

Hybrid Systems: From Verification to Falsification  

E-Print Network [OSTI]

Hybrid Systems: From Verification to Falsification Erion Plaku, Lydia E. Kavraki, and Moshe Y}@cs.rice.edu Abstract. We propose HyDICE, Hybrid DIscrete Continuous Exploration, a multi-layered approach for hybrid. The discrete search uses the discrete transitions of the hybrid system and coarse-grained decompositions

Kavraki, Lydia E.

72

Programming Hybrid HPC Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada wins GeraldDuncanProgramProgramming Hybrid HPC

73

Advanced Open-Cycle Desiccant Cooling System  

E-Print Network [OSTI]

The concept of staged regeneration as means of improving the desiccant cooling system performance is the subject of investigation in this study. In the staged regeneration, the regeneration section of desiccant dehumidifier is divided into two parts...

Ko, Y. J.; Charoensupaya, D.; Lavan, Z.

1989-01-01T23:59:59.000Z

74

Gas hydrate cool storage system  

DOE Patents [OSTI]

This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

1985-01-01T23:59:59.000Z

75

Energy Efficient HVAC System for Distributed Cooling/Heating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

76

Passive cooling system for top entry liquid metal cooled nuclear reactors  

DOE Patents [OSTI]

A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

Boardman, Charles E. (Saratoga, CA); Hunsbedt, Anstein (Los Gatos, CA); Hui, Marvin M. (Cupertino, CA)

1992-01-01T23:59:59.000Z

77

System Simulations of Hybrid Electric Vehicles with Focus on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid...

78

Hybrid powertrain system  

SciTech Connect (OSTI)

A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

Hughes, Douglas A. (Wixom, MI)

2007-09-25T23:59:59.000Z

79

Process Cooling Pumping Systems Analysis  

E-Print Network [OSTI]

An analysis of the mill water pumping systems at a North American manufacturing facility was conducted late las year and the following issues were observed: 1. Overpumping – Both systems were overpumped to a significant degree against...

Sherman, C.

2008-01-01T23:59:59.000Z

80

NASA's Marshall Space Flight Center Improves Cooling System Performanc...  

Broader source: Energy.gov (indexed) [DOE]

Improves Cooling System Performance Case study details Marshall Space Flight Center's innovative technologies to improve water efficiency and cooling performance for one of its...

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Passive Cooling System for a Vehicle  

DOE Patents [OSTI]

A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

Hendricks, T. J.; Thoensen, T.

2005-11-15T23:59:59.000Z

82

Passive cooling system for a vehicle  

DOE Patents [OSTI]

A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

Hendricks, Terry Joseph; Thoensen, Thomas

2005-11-15T23:59:59.000Z

83

A verification framework for hybrid systems  

E-Print Network [OSTI]

Combining; discrete state transitions with differential equations, Hybrid system models provide an expressive formalism for describing software systems that interact with a physical environment. Automatically checking ...

Mitra, Sayan

2007-01-01T23:59:59.000Z

84

Witnessing entanglement in hybrid systems  

E-Print Network [OSTI]

We extend the definition of entanglement witnesses based on structure factors to the case in which the position of the scatterers is quantized. This allows us to study entanglement detection in hybrid systems. We provide several examples that show how these extra degrees of freedom affect the detection of entanglement by directly contributing to the measurement statistics. We specialize the proposed witness operators for a chain of trapped ions. Within this framework, we show how the collective vibronic state of the chain can act as an undesired quantum environment and how ions quantum motion can affect the entanglement detection. Finally, we investigate some specific cases where the method proposed leads to detection of hybrid entanglement.

Massimo Borrelli; Matteo Rossi; Chiara Macchiavello; Sabrina Maniscalco

2014-04-24T23:59:59.000Z

85

Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path  

DOE Patents [OSTI]

A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

86

Hybrid slab-microchannel gel electrophoresis system  

DOE Patents [OSTI]

A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

Balch, Joseph W. (Livermore, CA); Carrano, Anthony V. (Livermore, CA); Davidson, James C. (Livermore, CA); Koo, Jackson C. (San Ramon, CA)

1998-01-01T23:59:59.000Z

87

Hybrid spread spectrum radio system  

DOE Patents [OSTI]

Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.

Smith, Stephen F. (London, TN); Dress, William B. (Camas, WA)

2010-02-02T23:59:59.000Z

88

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-Print Network [OSTI]

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

89

Method of fabricating a cooled electronic system  

DOE Patents [OSTI]

A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

2014-02-11T23:59:59.000Z

90

Cooling system for a gas turbine  

DOE Patents [OSTI]

A plurality of arcuate circumferentially spaced supply and return manifold segments are arranged on the rim of a rotor for respectively receiving and distributing cooling steam through exit ports for distribution to first and second-stage buckets and receiving spent cooling steam from the first and second-stage buckets through inlet ports for transmission to axially extending return passages. Each of the supply and return manifold segments has a retention system for precluding substantial axial, radial and circumferential displacement relative to the rotor. The segments also include guide vanes for minimizing pressure losses in the supply and return of the cooling steam. The segments lie substantially equal distances from the centerline of the rotor and crossover tubes extend through each of the segments for communicating steam between the axially adjacent buckets of the first and second stages, respectively.

Wilson, Ian David (Mauldin, SC); Salamah, Samir Armando (Niskayuna, NY); Bylina, Noel Jacob (Niskayuna, NY)

2003-01-01T23:59:59.000Z

91

Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System  

SciTech Connect (OSTI)

HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

None

2012-01-04T23:59:59.000Z

92

Method for passive cooling liquid metal cooled nuclear reactors, and system thereof  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

Hunsbedt, Anstein (Los Gatos, CA); Busboom, Herbert J. (San Jose, CA)

1991-01-01T23:59:59.000Z

93

Hybrid Geometric Reduction of Hybrid Systems Aaron D. Ames and Shankar Sastry  

E-Print Network [OSTI]

Hybrid Geometric Reduction of Hybrid Systems Aaron D. Ames and Shankar Sastry Abstract-- This paper presents a unifying framework in which to carry out the hybrid geometric reduction of hybrid systems, generalizing classical reduction to a hybrid setting. I. INTRODUCTION The reduction of mechanical systems

Sastry, S. Shankar

94

Development of Nanofluids for Cooling Power Electronics for Hybrid...  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information Sponsored by L. Slezak (Vehicle System Optimization) Project ID: VSS112 2 Overview Timeline Project start FY11 Project end FY14...

95

System for controlling a hybrid energy system  

DOE Patents [OSTI]

A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

Hoff, Brian D.; Akasam, Sivaprasad

2013-01-29T23:59:59.000Z

96

Low pressure cooling seal system for a gas turbine engine  

DOE Patents [OSTI]

A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

Marra, John J

2014-04-01T23:59:59.000Z

97

Ventilation Systems for Cooling | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type WaterTravelVentilation Systems for Cooling

98

On hybrid control of complex systems: Sur la commande hybride des systmes  

E-Print Network [OSTI]

On hybrid control of complex systems: a survey Sur la commande hybride des syst·mes complexes a brief overview of hybrid control systems is given and an introduction to several approaches in hybrid to hybrid control. RESUME. L'objectif de cet article est de prZsenter un Ztat de l'art des travaux relatifs

Koutsoukos, Xenofon D.

99

Cooling load design tool for UFAD systems.  

E-Print Network [OSTI]

fraction (SPF) of cooling Supply Plenum SPF heat transfer bythrough the supply ple- Figure 2: Design day cooling loadsupply represent the????????????????????????????????????????????? air temperature, diffuser type and number, room setpoint instantaneous cooling

Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

2010-01-01T23:59:59.000Z

100

acid hybrid system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Because the discrete part of a hybrid system 107 Series Parallel Hybrid VSC-LCC for HVdc Transmission Systems. Open Access Theses and Dissertations Summary: ??This thesis...

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Energy Savers [EERE]

Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

102

Advanced Methods Approach to Hybrid Powertrain Systems Optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus...

103

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

104

2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

105

2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

106

Hybrid Ground Source System Analysis and Tool Development | Department...  

Broader source: Energy.gov (indexed) [DOE]

Hybrid Ground Source System Analysis and Tool Development Hybrid Ground Source System Analysis and Tool Development Project objectives: 1. Compile filtered hourly data for three...

107

Hybrid slab-microchannel gel electrophoresis system  

DOE Patents [OSTI]

A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

1998-05-05T23:59:59.000Z

108

CCHP System with Interconnecting Cooling and Heating Network  

E-Print Network [OSTI]

The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

2006-01-01T23:59:59.000Z

109

The Thermodynamic and Cost Benefits of Floating Cooling Systems  

E-Print Network [OSTI]

. The application of a floating cooling concept to evaporative heat rejection systems can have significant impact on improving plant performance. The floating cooling concept refers to the optimization of yearly plant output and energy consumption by taking...

Svoboda, K. J.; Klooster, H. J.; Johnnie, D. H., Jr.

1983-01-01T23:59:59.000Z

110

Improving the Water Efficiency of Cooling Production System  

E-Print Network [OSTI]

For most of the time, cooling towers (CTs) of cooling systems operate under partial load conditions and by regulating the air circulation with a variable frequency drive (VFD), significant reduction in the fan power can be achieved. In Kuwait...

Maheshwari, G.; Al-Hadban, Y.; Al-Taqi, H. H.; Alasseri, R.

2010-01-01T23:59:59.000Z

111

Cooling load differences between radiant and air systems  

E-Print Network [OSTI]

radiant heat transfer for cooling load calculation.heat gain is well recognized by cooling load calculationload calculation approach for radiant systems, Corgnati [17] also tackled the direct radiant heat

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

112

Integrated exhaust gas recirculation and charge cooling system  

DOE Patents [OSTI]

An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

Wu, Ko-Jen

2013-12-10T23:59:59.000Z

113

Corrosion in HVDC valve cooling systems  

SciTech Connect (OSTI)

Stainless steel couplings in the main cooling water pipes of HVDC thyristor valves have been in use since 1983, with an overall satisfactory behavior. However, some water leakage due to corrosion below the sealing O-rings of the couplings was observed during 1992. An extensive investigation and follow-up worldwide showed a direct correlation between water quality and the corrosion rate of the stainless steel couplings. Recommendations are given about actions to be taken in order to maintain a long lifetime for the fine water systems.

Jackson, P.O.; Abrahamsson, B.; Gustavsson, D.; Igetoft, L.

1997-04-01T23:59:59.000Z

114

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents [OSTI]

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

115

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents [OSTI]

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

116

Powertrain system for a hybrid electric vehicle  

DOE Patents [OSTI]

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

1999-08-31T23:59:59.000Z

117

Powertrain system for a hybrid electric vehicle  

DOE Patents [OSTI]

A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

1999-08-31T23:59:59.000Z

118

Cooling load design tool for UFAD systems.  

E-Print Network [OSTI]

ratio of time between Fan Coil Units Perimeter Zone Linearand underfloor fan coil units. cooling contribution of

Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

2010-01-01T23:59:59.000Z

119

Analysis of Hybrid Hydrogen Systems: Final Report  

SciTech Connect (OSTI)

Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

2010-01-01T23:59:59.000Z

120

Cooling System for the MERIT High-Power Target Experiment  

E-Print Network [OSTI]

and a remote PVSS supervision station connected via Ethernet. Operation Modes: Cooling of proximity cryogenicsCooling System for the MERIT High-Power Target Experiment Haug F., Pereira H., Silva P., Pezzetti M a free mercury jet inside a normal conducting pulsed 15 T capture solenoid magnet cooled with liquid

McDonald, Kirk

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hybrid Systems with Finite Bisimulations Gerardo Lafferriere1  

E-Print Network [OSTI]

Hybrid Systems with Finite Bisimulations Gerardo Lafferriere1 , George J. Pappas2 , and Shankar is one of the main approach- es to hybrid system analysis. Decidability questions for verification algo classes of planar hybrid systems. 1 Introduction Hybrid systems consist of finite state machines

Pappas, George J.

122

Commissioning of the Lower Hybrid Current Drive System on Alcator C-Mod  

E-Print Network [OSTI]

cooled magnets which allow sustained 5 T pulse durations at up to 5 s (several resistive diffusion times System (TPS) and programmable logic controller. Critical protection, control and status information- A Lower Hybrid Current Drive (LHCD) system has been developed for current profile control of advanced

Basse, Nils Plesner

123

Passive cooling system for nuclear reactor containment structure  

DOE Patents [OSTI]

A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

1989-01-01T23:59:59.000Z

124

Natural circulating passive cooling system for nuclear reactor containment structure  

DOE Patents [OSTI]

A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

125

Progress of the stochastic cooling system of the Collector Ring  

E-Print Network [OSTI]

An overview of the recent achievements and ongoing developments for the stochastic cooling system of the Collector Ring is given. In focus are the hardware developments as well as the progress in predicting the system performance. The system operates in the frequency band 1-2 GHz, it has to provide fast 3D cooling of antiproton, rare isotope and stable heavy ion beams. The main challenges are (i) the cooling of antiprotons by means of cryogenic movable pick-up electrodes and (ii) the fast two-stage cooling (pre-cooling by the Palmer method, followed by the notch filter method) of the hot rare isotope beams (RIBs). Recently, a novel code for simulating the cooling process in the time domain has been developed at CERN. First results for the momentum cooling for heavy ions in the CR will be shown in comparison with results obtained in the frequency domain with the Fokker-Planck approach.

Dimopoulou, C; Bohm, R; Dolinskyy, O; Franzke, B; Hettrich, R; Maier, W; Menges, R; Nolden, F; Peschke, C; Petri, P; Steck, M; Thorndahl, L

2013-01-01T23:59:59.000Z

126

Cedarville School District Retrofit of Heating and Cooling Systems...  

Open Energy Info (EERE)

Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville...

127

Modeling and Analysis of Hybrid Systems Hybrid systems and their modeling  

E-Print Network [OSTI]

a heater on and off x is regulated by a thermostat: 17 x 18 "heater on" 22 x 23 "heater off" t x 20 18 17 22 23 t on off Hybrid Ábrahám - Hybrid Systems 6 / 41 #12;Example: Water tank system two

Ábrahám, Erika

128

Debris trap in a turbine cooling system  

DOE Patents [OSTI]

In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

129

Nuclear reactor cooling system decontamination reagent regeneration  

DOE Patents [OSTI]

An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

Anstine, Larry D. (San Jose, CA); James, Dean B. (Saratoga, CA); Melaika, Edward A. (Berkeley, CA); Peterson, Jr., John P. (Livermore, CA)

1985-01-01T23:59:59.000Z

130

Control system for a hybrid powertrain system  

DOE Patents [OSTI]

A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

2014-09-09T23:59:59.000Z

131

Heat pump system with selective space cooling  

DOE Patents [OSTI]

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

132

Heat pump system with selective space cooling  

DOE Patents [OSTI]

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

133

Signature of deconfinement with spin down compression in cooling hybrid stars  

E-Print Network [OSTI]

The thermal evolution of neutron stars is coupled to their spin down and the resulting changes in structure and chemical composition. This coupling correlates stellar surface temperatures with rotational state as well as time. We report an extensive investigation of the coupling between spin down and cooling for hybrid stars which undergo a phase transition to deconfined quark matter at the high densities present in stars at low rotation frequencies. The thermal balance of neutron stars is re-analyzed to incorporate phase transitions and the related latent heat self-consistently, and numerical calculations are undertaken to simultaneously evolve the stellar structure and temperature distribution. We find that the changes in stellar structure and chemical composition with the introduction of a pure quark matter phase in the core delay the cooling and produce a period of increasing surface temperature for strongly superfluid stars of strong and intermediate magnetic field strength. The latent heat of deconfinement is found to reinforce this signature if quark matter is superfluid and it can dominate the thermal balance during the formation of a pure quark matter core. At other times it is less important and does not significantly change the thermal evolution.

Morten Stejner; Fridolin Weber; Jes Madsen

2009-04-05T23:59:59.000Z

134

Cooling system early-stage design tool for naval applications  

E-Print Network [OSTI]

This thesis utilizes concepts taken from the NAVSEA Design Practices and Criteria Manualfor Surface Ship Freshwater Systems and other references to create a Cooling System Design Tool (CSDT). With the development of new ...

Fiedel, Ethan R

2011-01-01T23:59:59.000Z

135

Special Property Assessment for Renewable Heating and Cooling Systems  

Broader source: Energy.gov [DOE]

Title 8 of Maryland’s property tax code includes a state-wide special assessment for solar and geothermal heating and cooling systems. Under this provision, such systems are to be assessed at not...

136

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

137

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

Huber, D.J.; Briesch, M.S.

1998-07-21T23:59:59.000Z

138

Hybrid Molten Salt Reactor (HMSR) System Study  

SciTech Connect (OSTI)

Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

Woolley, Robert D [PPPL; Miller, Laurence F [PPPL

2014-04-01T23:59:59.000Z

139

Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module  

SciTech Connect (OSTI)

BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

None

2010-10-01T23:59:59.000Z

140

Hybrid Energy System Modeling in Modelica  

SciTech Connect (OSTI)

In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Micro Hydro-Diesel Hybrid Power System  

E-Print Network [OSTI]

This paper presents the design and analysis of Neuro-Fuzzy controller based on Adaptive Neuro-Fuzzy Inference System (ANFIS) architecture for Load frequency control of an isolated wind-micro hydro-diesel hybrid power system, to regulate the frequency deviation and power deviations. Due to the sudden load changes and intermittent wind power, large frequency fluctuation problem can occur. This newly developed control strategy combines the advantage of neural networks and fuzzy inference system and has simple structure that is easy to implement. So, in order to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to control the system. Simulations of the proposed ANFIS based Neuro-Fuzzy controller in an isolated wind-micro hydro-diesel hybrid power system with different load disturbances are performed. Also, a conventional proportional Integral (PI) controller and a fuzzy logic (FL) controller were designed separately to control the same hybrid power system for the performance comparison. The performance of the proposed controller is verified from simulations and comparisons. Simulation results show that the performance of the proposed ANFIS based Neuro-Fuzzy Controller damps out the frequency deviation and attains the steady state value with less settling time. The proposed ANFIS based Neuro-Fuzzy controller provides best control performance over a wide range of operating conditions.

Dhanalakshmi R; Palaniswami S

142

Quadratic Control of Stochastic Hybrid Systems with Renewal Transitions  

E-Print Network [OSTI]

Quadratic Control of Stochastic Hybrid Systems with Renewal Transitions Farshad R. Pour Safaei a, semi-Markov processes, optimal control, stochastic hybrid systems, renewal transitions 1 Introduction probability distributions other than the exponential. We consider a Stochastic Hybrid System with renewal

Hespanha, João Pedro

143

APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO  

E-Print Network [OSTI]

APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. By MAHADEVAN Chapter Page 1. Introduction 1.1. Overview of hybrid ground source heat pump systems 1.2. Literature review 1.3. Thesis objective and scope 2. Optimal sizing of hybrid ground source heat pump system

144

Hybrid Dynamical Systems, or HDS: The Ultimate Switching Experience  

E-Print Network [OSTI]

Hybrid Dynamical Systems, or HDS: The Ultimate Switching Experience Michael S. Branicky Laboratory concentrated on formalizing the notion of a hybrid system as switching among an indexed collection of dynamical give a quick overview of the area of hybrid systems. I also briefly review the formal definition

Branicky, Michael S.

145

Hybrid Systems: Review and Recent Progress Panos J. Antsaklis  

E-Print Network [OSTI]

Hybrid Systems: Review and Recent Progress Panos J. Antsaklis Department of Electrical Engineering of this volume focuses on hybrid dynamical systems, an area of research that has developed as a result communities. This chapter provides a broad-based introduction to hybrid systems and discusses a number

Koutsoukos, Xenofon D.

146

air cooling system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coil unit (FCU) and 100% fresh air are used... Mohamed, E.; Abdalla, K. N. 2010-01-01 8 Cold side thermal energy storage system for improved operation of air cooled power plants...

147

air cooling systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coil unit (FCU) and 100% fresh air are used... Mohamed, E.; Abdalla, K. N. 2010-01-01 8 Cold side thermal energy storage system for improved operation of air cooled power plants...

148

System and method for pre-cooling of buildings  

DOE Patents [OSTI]

A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

Springer, David A.; Rainer, Leo I.

2011-08-09T23:59:59.000Z

149

Cooling system for three hook ring segment  

DOE Patents [OSTI]

A triple hook ring segment including forward, midsection and aft mounting hooks for engagement with respective hangers formed on a ring segment carrier for supporting a ring segment panel, and defining a forward high pressure chamber and an aft low pressure chamber on opposing sides of the midsection mounting hook. An isolation plate is provided on the aft side of the midsection mounting hook to form an isolation chamber between the aft low pressure chamber and the ring segment panel. High pressure air is supplied to the forward chamber and flows to the isolation chamber through crossover passages in the midsection hook. The isolation chamber provides convection cooling air to an aft portion of the ring segment panel and enables a reduction of air pressure in the aft low pressure chamber to reduce leakage flow of cooling air from the ring segment.

Campbell, Christian X.; Eng, Darryl; Lee, Ching-Pang; Patat, Harry

2014-08-26T23:59:59.000Z

150

Active noise canceling system for mechanically cooled germanium radiation detectors  

DOE Patents [OSTI]

A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

Nelson, Karl Einar; Burks, Morgan T

2014-04-22T23:59:59.000Z

151

Hybrid Renewable Energy Systems for a Dynamically Positioned Buoy  

E-Print Network [OSTI]

i Hybrid Renewable Energy Systems for a Dynamically Positioned Buoy by Robert Sean Pagliari ________________________ #12; ii We the undersigned committee hereby approve the attached thesis Hybrid Renewable Energy, College of Engineering #12; iii Abstract Hybrid Renewable Energy Systems for a Dynamically Positioned

Wood, Stephen L.

152

HYBRID SYSTEMS: GENERALIZED SOLUTIONS AND ROBUST STABILITY 1  

E-Print Network [OSTI]

HYBRID SYSTEMS: GENERALIZED SOLUTIONS AND ROBUST STABILITY 1 Rafal Goebel Joao Hespanha Andrew R asymptotic stability for hybrid systems is considered. For this purpose, a generalized solution concept is developed. The first step is to characterize a hybrid time domain that permits an efficient description

Goebel, Rafal

153

HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS  

SciTech Connect (OSTI)

Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

Gorensek, M.

2011-07-06T23:59:59.000Z

154

Bachelor Thesis Detection of Zeno Sets in Hybrid Systems  

E-Print Network [OSTI]

Bachelor Thesis Detection of Zeno Sets in Hybrid Systems to Validate Modelica Simulations Marcel . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Example: Water Tank . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Modelica 9 3.1 OpenModelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Hybrid Automata

155

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

156

Hybrid Systems and Biology. Continuous and Discrete Modeling for Systems Biology  

E-Print Network [OSTI]

Hybrid Systems and Biology. Continuous and Discrete Modeling for Systems Biology Luca Bortolussi1 (IGA) alberto.policriti@appliedgenomics.org Abstract. Hybrid Systems are dynamical systems presenting both dis- crete and continuous evolution. Hybrid Automata are a formal model for hybrid systems

Bortolussi, Luca

157

Reachability Analysis of Stochastic Hybrid Systems: A Biodiesel Production System  

E-Print Network [OSTI]

Reachability Analysis of Stochastic Hybrid Systems: A Biodiesel Production System Derek Riley problem because it provides a formal framework to analyze complex systems. Biodiesel production is a realistic biochemical process that can be modeled and analyzed using SHS methods. Analysis of a biodiesel

Koutsoukos, Xenofon D.

158

Steam cooling system for a gas turbine  

DOE Patents [OSTI]

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

2002-01-01T23:59:59.000Z

159

Analysis of a hybrid UFAD and radiant hydronic slab HVAC system  

E-Print Network [OSTI]

speed, and the cooling tower supply water temperature set-operates in ‘free-cooling’ mode to supply cool water to thealso include a cooling system that can supply cool water to

Raftery, Paul; Lee, Kwang Ho; Webster, Thomas; Bauman, Fred

2011-01-01T23:59:59.000Z

160

System and method for cooling a combustion gas charge  

DOE Patents [OSTI]

The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

Massey, Mary Cecelia; Boberg, Thomas Earl

2010-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Closed-loop air cooling system for a turbine engine  

DOE Patents [OSTI]

Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

North, William Edward (Winter Springs, FL)

2000-01-01T23:59:59.000Z

162

Mining Gold from your Cooling Water System  

E-Print Network [OSTI]

to be achieved. GPM 2 /GPM 1 = RPM 2 /RPM 1 Equation (1) (RPM 2 /RPM 1 ) 3 = HP 2 /HP 1 Equation (2) ESL-IE-07-05-25 Proceedings from the Twenty-ninth Industrial Energy Technology Conference, New Orleans, LA, May 8-11, 2007. COOLING WATER PUMPING Pumping... Apr May Jun Jul Aug Sep Oct Nov Months Ri ver l eve l ( f t ) 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 T e mp er at ur e ( F) Average River Level Average River Temperature ESL-IE-07-05-25 Proceedings from the Twenty...

Mendez, T.

163

Hybrid quantum-classical models as constrained quantum systems  

E-Print Network [OSTI]

Constrained Hamiltonian description of the classical limit is utilized in order to derive consistent dynamical equations for hybrid quantum-classical systems. Starting with a compound quantum system in the Hamiltonian formulation conditions for classical behavior are imposed on one of its subsystems and the corresponding hybrid dynamical equations are derived. The presented formalism suggests that the hybrid systems have properties that are not exhausted by those of quantum and classical systems.

M. Radonjic; S. Prvanovic; N. Buric

2012-06-07T23:59:59.000Z

164

Thermal Storage with Conventional Cooling Systems  

E-Print Network [OSTI]

demand which results in lower electrical costs. The effectiveness of this 'Thermal Retention System" is determined by its design characteristics, its operational efficiency and comparative system analysis. Today's computer technology has provided...

McGee, E. E.

1990-01-01T23:59:59.000Z

165

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY  

E-Print Network [OSTI]

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY Hamid Daiyan Islamic Azad University - Semnan in dray land, and only uses wind energy for conditioning. It technologies date back over 1000 years. Wind system, Wind energy, Temperature Fig.1 Wind tower of Doulat-Abad garden of Yazd with it's altitude is 33

166

A Peltier cooling system for SiPM temperature stabilization  

E-Print Network [OSTI]

A Peltier cooling system for SiPM temperature stabilization von Simon Nieswand Bachelorarbeit außen thermisch isolierten Kupferblockes einzulassen, an welchen ein Peltier-Element angebracht wird. Um das System zu automatisieren, werden der Temperatursensor und die Stromquelle des Peltier- Elements

Hebbeker, Thomas

167

Cooling load calculations for radiant systems: are they the same traditional methods?  

E-Print Network [OSTI]

heat transfer is handled in traditional cooling load calculationheat gain is well recognized by cooling load calculationload calculations for radiant systems should use the ASHRAE heat

Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

2013-01-01T23:59:59.000Z

168

Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors  

E-Print Network [OSTI]

systems for the Gas Cooled Fast Reactor (GCFR) includes theThey are 1) gas cooled fast reactors (GFR), 2) very high

Galvez, Cristhian

2011-01-01T23:59:59.000Z

169

Laser system for secondary cooling of {sup 87}Sr atoms  

SciTech Connect (OSTI)

A laser system with a narrow generation line for secondary laser cooling of {sup 87}Sr atoms has been developed and investigated. It is planned to use ultracold {sup 87}Sr atoms loaded in an optical lattice in an optical frequency standard. To this end, a 689-nm semiconductor laser has been stabilised using an external reference ultrastable cavity with vibrational and temperature compensation near the critical point. The lasing spectral width was 80 Hz (averaging time 40 ms), and the frequency drift was at a level of 0.3 Hz s{sup -1}. Comparison of two independent laser systems yielded a minimum Allan deviation: 2 Multiplication-Sign 10{sup -14} for 300-s averaging. It is shown that this system satisfies all requirements necessary for secondary cooling of 87Sr atoms using the spectrally narrow {sup 1}S{sub 0} - {sup 3}P{sub 1} transition ({lambda} = 689 nm). (cooling of atoms)

Khabarova, K Yu; Slyusarev, S N; Strelkin, S A; Belotelov, G S; Kostin, A S; Pal'chikov, Vitaly G; Kolachevsky, Nikolai N

2012-11-30T23:59:59.000Z

170

Traveling Wave RF Systems for Helical Cooling Channels  

SciTech Connect (OSTI)

The great advantage of the helical ionization cooling channel (HCC) is its compact structure that enables the fast cooling of muon beam 6-dimensional phase space. This compact aspect requires a high average RF gradient, with few places that do not have cavities. Also, the muon beam is diffuse and requires an RF system with large transverse and longitudinal acceptance. A traveling wave system can address these requirements. First, the number of RF power coupling ports can be significantly reduced compared with our previous pillbox concept. Secondly, by adding a nose on the cell iris, the presence of thin metal foils traversed by the muons can possibly be avoided. We show simulations of the cooling performance of a traveling wave RF system in a HCC, including cavity geometries with inter-cell RF power couplers needed for power propagation.

Yonehara, K.; Lunin, A.; Moretti, A.; Popovic, M.; Romanov, G.; /Fermilab; Neubauer, M.; Johnson, R.P.; /Muons Inc., Batavia; Thorndahl, L.; /CERN

2009-05-01T23:59:59.000Z

171

Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers  

E-Print Network [OSTI]

The supply water temperature to the cooling modules used ininlet supply air temperatures, as was the cooling module’sCooling System 2 be evaluated when operating with higher supply

Adams, Barbara J

2009-01-01T23:59:59.000Z

172

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network [OSTI]

sensors and control valves used in our generalized experimental system. The experimental solarsensors are remotely located at critical (in terms of decision-making) locations in the solar

Dols, C.

2010-01-01T23:59:59.000Z

173

Radiation detector system having heat pipe based cooling  

DOE Patents [OSTI]

A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

2006-10-31T23:59:59.000Z

174

Nuclear Hybrid Energy Systems: Challenges and Opportunities  

SciTech Connect (OSTI)

With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

2014-07-01T23:59:59.000Z

175

A fundamental study on hybrid geothermal energy systems.  

E-Print Network [OSTI]

??Research Doctorate - Doctor of Philosophy (PhD) This thesis focuses on a fundamental study of hybrid geothermal energy systems, in which geothermal energy is hybridised… (more)

Zhou, Cheng

2014-01-01T23:59:59.000Z

176

System Simulations of Hybrid Electric Vehicles with Focus on...  

Broader source: Energy.gov (indexed) [DOE]

System Simulations of Hybrid Electric Vehicles with Focus on Emissions Zhiming Gao Veerathu K. Chakravarthy Josh Pihl C. Stuart Daw Maruthi Devarakonda Jong Lee...

177

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network [OSTI]

Solar Energy Society Meeting, Los Angeles, California, Julysolar in- solation measuring stations in northern and central California (California 94720 August 1975 A control system is being developed that will be capable of operating solar

Dols, C.

2010-01-01T23:59:59.000Z

178

Comparative Study Between Air-Cooled and Water-Cooled Condensers of the Air-Conditioning Systems  

E-Print Network [OSTI]

consumptions. The cooling capacities for WC and AC systems were 373 and 278 tons-of- refrigeration, respectively. It was found that for the same cooling production, the peak power demand and the daily energy consumption of the WC system were 45 and 32% less...

Maheshwari, G. P.; Mulla Ali, A. A.

2004-01-01T23:59:59.000Z

179

Wind turbine generators having wind assisted cooling systems and cooling methods  

DOE Patents [OSTI]

A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

2008-09-23T23:59:59.000Z

180

BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.  

SciTech Connect (OSTI)

This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

ANDREWS,J.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Air conditioning system with supplemental ice storing and cooling capacity  

DOE Patents [OSTI]

The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

Weng, Kuo-Lianq (Taichung, TW); Weng, Kuo-Liang (Taichung, TW)

1998-01-01T23:59:59.000Z

182

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

indus- trial process heat, and solar. heating and coolingSolar Energy for Agricultural and Industrial Process Heat (and heat transfer processes which are appropriate to passive solar

Authors, Various

2012-01-01T23:59:59.000Z

183

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network [OSTI]

when the need is discovered, but a good preventive maintenance program will reduce the number. This fact sheet will emphasize corrective and preventive maintenance procedures for ventilation, evaporativeAE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E

Watson, Craig A.

184

e-Cooling High Cavity & Cryomodule Systems, Inc.  

E-Print Network [OSTI]

Beta Cavity & Cryomodule Final Design Review Cryomodule Design Brookhaven National Laboratory July 22;e-Cooling High Cavity & Cryomodule Advanced Energy Systems, Inc. Slide 7 of 24 Cavity Cold Model) 40.0 85.0 Wall Thickness (mm) 4 mm 3 mm Cavity Configuration Freq. Cells Tuner Load (400 kHz) Tuning

185

Turbine airfoil with an internal cooling system having vortex forming turbulators  

DOE Patents [OSTI]

A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

Lee, Ching-Pang

2014-12-30T23:59:59.000Z

186

Seasonal distribution of hybrid striped bass in a power-plant cooling reservoir and a comparison to red drum  

E-Print Network [OSTI]

. Management Unit Description Palmetto bass locations were independent of time of day (p&0. 9 spring, summer and fall; p& 0. 1 winter) and 20 homogeneous among fish (p& 0. 9 fall and spring; p& 0. 1 summer and winter). The relatively small reservoir size... Power-Plant Cooling Reservoir and a Comparison to Red Drum. (May 1993) Kevin Ray Piner, B. S. , Texas A&M at Galveston Chair of Advisory Committee: Dr. Brian R. Murphy P 1 ttob (Moro*~t' ' g, ~ho ) r th most commonly stocked hybrid striped bass...

Piner, Kevin Ray

1993-01-01T23:59:59.000Z

187

Experimental Studies of NGNP Reactor Cavity Cooling System With Water  

SciTech Connect (OSTI)

This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

Michael Corradini; Mark Anderson; Yassin Hassan; Akira Tokuhiro

2013-01-16T23:59:59.000Z

188

Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System  

SciTech Connect (OSTI)

The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the realizable k-epsilon model with two-layer all y+ wall treatment performs better than the other k-epsilon and k-omega turbulence models when compared to the experimental results and the Reynolds stress transport turbulence model results. A scaling analysis was developed to address the distortions introduced by the CFD model in simulating the physical phenomena inside the RCCS system with respect to the full plant configuration. The scaling analysis demonstrated that both the experimental facility and the CFD model achieve a satisfactory resemblance of the main flow characteristics inside the RCCS cavity region, and convection and radiation heat exchange phenomena are properly scaled from the actual plant.

Angelo Frisani; Yassin A. Hassan; Victor M. Ugaz

2010-11-02T23:59:59.000Z

189

Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems  

E-Print Network [OSTI]

Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD1 , Ren to BEH). Keywords: Energy consumption reduction, Genetic algorithms, hybrid heuristics, memory allocation energy consumption of embedded systems is of great importance. To do so, numerous options to save energy

Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

190

Comparison of Hybrid Systems and Fluid Stochastic Petri Nets \\Lambda  

E-Print Network [OSTI]

Comparison of Hybrid Systems and Fluid Stochastic Petri Nets \\Lambda Bruno Tuffin , Dong S. Chen Engineering Duke University, Durham, NC 27708­0291, U.S.A. Abstract. Hybrid Systems are models of interacting digital and continuous devices with applications in the control of aircraft, computers, or modern cars

Tuffin, Bruno

191

Method and system for powering and cooling semiconductor lasers  

DOE Patents [OSTI]

A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

Telford, Steven J; Ladran, Anthony S

2014-02-25T23:59:59.000Z

192

Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels  

SciTech Connect (OSTI)

Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

2011-03-01T23:59:59.000Z

193

Redesigning Process Cooling Systems in the Plastics Industry  

E-Print Network [OSTI]

towers during the winter. Lifetime’s electric provider, Utah Power, manages a demand side management program (DSM) and hired etc Group, Inc to evaluate the cooling systems for potential energy efficiency improvements. etc Group, Inc and Lifetime... basketball systems in 1973 and became Lifetime Products in 1986. Lifetime introduced the first blow-molded plastic table in 1995. In the 120,000 square foot Clearfield, UT facility discussed in this paper, Lifetime blow molds plastic folding tables...

Anderson, G. R.

2006-01-01T23:59:59.000Z

194

Analytical energy spectrum for hybrid mechanical systems  

E-Print Network [OSTI]

We investigate the energy spectrum for hybrid mechanical systems described by non-parity-symmetric quantum Rabi models. A set of analytical solutions in terms of the confluent Heun functions and their analytical energy spectrum are obtained. The analytical energy spectrum includes regular and exceptional parts, which are both confirmed by direct numerical simulation. The regular part is determined by the zeros of the Wronskian for a pair of analytical solutions. The exceptional part is relevant to the isolated exact solutions and its energy eigenvalues are obtained by analyzing the truncation conditions for the confluent Heun functions. By analyzing the energy eigenvalues for exceptional points, we obtain the analytical conditions for the energy-level-crossings, which correspond to two-fold energy degeneracy.

Honghua Zhong; Qiongtao Xie; Xiwen Guan; Murray T. Batchelor; Kelin Gao; Chaohong Lee

2013-11-07T23:59:59.000Z

195

CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications  

SciTech Connect (OSTI)

The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during stead-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the stead-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

2014-07-14T23:59:59.000Z

196

E-Print Network 3.0 - affine hybrid systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hybrid systems Search Powered by Explorit Topic List Advanced Search Sample search results for: affine hybrid systems Page: << < 1 2 3 4 5 > >> 1 Affine Hybrid Systems Aaron D....

197

Estimation Strategies for Constrained and Hybrid Dynamical Systems  

E-Print Network [OSTI]

The estimation approaches examined in this dissertation focus on manipulating system dynamical models to allow the well-known form of the continuous-discrete extended Kalman filter (CDEKF) to accommodate constrained and hybrid systems...

Parish, Julie Marie Jones

2012-10-19T23:59:59.000Z

198

Evaluation of Hybrid Air-Cooled Flash/Binary Power Cycle  

SciTech Connect (OSTI)

Geothermal binary power plants reject a significant portion of the heat removed from the geothermal fluid. Because of the relatively low temperature of the heat source (geothermal fluid), the performance of these plants is quite sensitive to the sink temperature to which heat is rejected. This is particularly true of air-cooled binary plants. Recent efforts by the geothermal industry have examined the potential to evaporatively cool the air entering the air-cooled condensers during the hotter portions of a summer day. While the work has shown the benefit of this concept, air-cooled binary plants are typically located in regions that lack an adequate supply of clean water for use in this evaporative cooling. In the work presented, this water issue is addressed by pre-flashing the geothermal fluid to produce a clean condensate that can be utilized during the hotter portions of the year to evaporatively cool the air. This study examines both the impact of this pre-flash on the performance of the binary plant, and the increase in power output due to the ability to incorporate an evaporative component to the heat rejection process.

Greg Mines

2005-10-01T23:59:59.000Z

199

Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant  

DOE Patents [OSTI]

A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

2006-02-07T23:59:59.000Z

200

CFD Simulation and Analysis of the Combined Evaporative Cooling and Radiant Ceiling Air-conditioning System  

E-Print Network [OSTI]

, and the ceiling cooling system deals with the other part of sensible loads in the air-conditioned zone, so that the condensation on radiant panels and the insufficiency of cooling capacity can be avoided. The cooling water at 18? used in the cooling coils...

Xiang, H.; Yinming, L.; Junmei, W.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities  

SciTech Connect (OSTI)

The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

2012-09-01T23:59:59.000Z

202

Incremental cooling load determination for passive direct gain heating systems  

SciTech Connect (OSTI)

This paper examines the applicability of the National Association of Home Builders (NAHB) full load compressor hour method for predicting the cooling load increase in a residence, attributable to direct gain passive heating systems. The NAHB method predictions are compared with the results of 200 hour-by-hour simulations using BLAST and the two methods show reasonable agreement. The degree of agreement and the limitations of the NAHB method are discussed.

Sullivan, P.W.; Mahone, D.; Fuller, W.; Gruber, J.; Kammerud, R.; Place, W.; Andersson, B.

1981-05-01T23:59:59.000Z

203

On Hybrid Systems and Closed-Loop MPC Systems A. Bemporad1  

E-Print Network [OSTI]

On Hybrid Systems and Closed-Loop MPC Systems A. Bemporad1 , W.P.M.H. Heemels2 , B. De Schutter3 Abstract The following five classes of hybrid systems were re- cently proved to be equivalent: linear- per, for linear or hybrid plants in closed-loop with a model predictive control (MPC) controller based

Sontag, Eduardo

204

Improving the Efficiency of Your Process Cooling System  

E-Print Network [OSTI]

Many industries require process cooling to achieve desired outcomes of specific processes. This cooling may come from cooling towers, once-through water, mechanical refrigeration, or cryogenic sources such as liquid nitrogen or dry ice. This paper...

Baker, R.

2005-01-01T23:59:59.000Z

205

POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

V. King

2000-06-19T23:59:59.000Z

206

Impact of material system thermomechanics and thermofluid performance on He-cooled ceramic  

E-Print Network [OSTI]

as with helium-cooled ceramic breeder blanket systems. Thus, both the design and issue relevant R&D emphasis around the SiCf /SiC based helium gas-cooled ceramic breeder blanket systems of DREAM Nishio et al. [1Impact of material system thermomechanics and thermofluid performance on He-cooled ceramic breeder

Abdou, Mohamed

207

Cooling system of an internal combustion engine having a turbo-charger  

SciTech Connect (OSTI)

A cooling system of an internal combustion engine is described having a turbo-charger, comprising a cooling water circulation passageway filled with cooling water for cooling the engine including at least a cylinder head cooling portion, a cooling water circulation passageway for cooling the turbo-charger including a turbo-charger cooling portion, and means for supplying a part of the engine cooling water to the turbo-charger cooling water ciruclation passageway and returning it from there to the engine cooling water cirulation passageway, characterized in that the turbo-charger cooling portion is positioned at the same level or higher than the cylinder head cooling portion of the engine, the turbo-charger cooling water circulation passageway includes a water volume positioned at a level higher than the turbo-charger cooling portion. The volume is connected to a cooling water reservoir tank via a pressure relief valve which is opened when pressure in the volume exceeds a predetermined value to supply cooling water to the volume.

Hasegawa, M.; Fukuda, T.

1986-09-02T23:59:59.000Z

208

Passive-solar directional-radiating cooling system  

DOE Patents [OSTI]

A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

Hull, J.R.; Schertz, W.W.

1985-06-27T23:59:59.000Z

209

Passive-solar directional-radiating cooling system  

DOE Patents [OSTI]

A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

1986-01-01T23:59:59.000Z

210

System and method for cooling a super-conducting device  

DOE Patents [OSTI]

A system and method for cooling a superconductive rotor coil. The system comprises a rotatable shaft coupled to the superconductive rotor coil. The rotatable shaft may comprise an axial passageway extending through the rotatable shaft and a first passageway extending through a wall of the rotatable shaft to the axial passageway. The axial passageway and the first passageway are operable to convey a cryogenic fluid to the superconductive rotor coil through the wall of the rotatable shaft. A cryogenic transfer coupling may be provided to supply cryogenic fluid to the first passageway.

Bray, James William (Niskayuna, NY); Steinbach, Albert Eugene (Schenectady, NY); Dawson, Richard Nils (Voorheesville, NY); Laskaris, Evangelos Trifon (Schenectady, NY); Huang, Xianrul (Clifton Park, NY)

2008-01-08T23:59:59.000Z

211

System Study: Reactor Core Isolation Cooling 1998–2012  

SciTech Connect (OSTI)

This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trend was identified in the HPCI results. Statistically significant decreasing trends were identified for RCIC start-only and 8-hour trends.

T. E. Wierman

2013-10-01T23:59:59.000Z

212

Control system design for a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the design of control systems for a parallel hybrid electric drive train which is an alternative to conventional passenger vehicles. The principle components of the drive train are a small internal combustion engine...

Buntin, David Leighton

1994-01-01T23:59:59.000Z

213

Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles.  

E-Print Network [OSTI]

??This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated… (more)

Moshirvaziri, Mazhar

2012-01-01T23:59:59.000Z

214

The assessment of battery-ultracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

He, Yiou

2014-01-01T23:59:59.000Z

215

The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid  

SciTech Connect (OSTI)

The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.

Wang, L.; Wu, H.; Li, L.K.; Green, M.A.; Liu, C.S.; Li, L.Y.; Jia, L.X.; Virostek, S.P.

2007-08-27T23:59:59.000Z

216

Dissipativity Theory for Hybrid Systems with Applications to Networked Control Systems.  

E-Print Network [OSTI]

?? This dissertation provides new results for energy-based analysis of systems modeled by switched or hybrid system models. This work is motivated by applications in… (more)

McCourt, Michael J.

2015-01-01T23:59:59.000Z

217

Optimal Scheduling for Biocide and Heat Exchangers Maintenance Towards Environmentally Friendly Seawater Cooling Systems  

E-Print Network [OSTI]

FOR SEAWATER-COOLED POWER AND DESALINATION PLANTS....................................................... 127 5.1 Overview .............................................................................................. 127 5.2 Introduction... 5.2 Representation of a Once-Thorough Cooling System................................ 141 5.3 An Overall Representation of the Power/Desalination Plant ..................... 152 5.4 The Cooling System for the Case Study...

Binmahfouz, Abdullah

2012-10-19T23:59:59.000Z

218

Three-dimensional neutronics optimization of helium-cooled blanket for multi-functional experimental fusion-fission hybrid reactor (FDS-MFX)  

SciTech Connect (OSTI)

Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate the demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)

Jiang, J.; Yuan, B.; Jin, M.; Wang, M.; Long, P.; Hu, L. [Inst. of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Univ. of Science and Technology of China, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, Univ. of Science and Technology of China, No.350 Shushanhu Road, Shushan District, Hefei, Anhui, 230031 (China)

2012-07-01T23:59:59.000Z

219

Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling  

E-Print Network [OSTI]

and cooling were set up, which is responsible for the space heating and cooling and domestic hot water for a residential block. Through hourly simulation, the performance and the economics of such systems were analyzed, for the different tank volumes...

Yu, G.; Chen, P.; Dalenback, J.

2006-01-01T23:59:59.000Z

220

System and method for cooling a superconducting rotary machine  

DOE Patents [OSTI]

A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

Ackermann, Robert Adolf (Schenectady, NY); Laskaris, Evangelos Trifon (Schenectady, NY); Huang, Xianrui (Clifton Park, NY); Bray, James William (Niskayuna, NY)

2011-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

VISUAL DESCRIPTION OF HYBRID SYSTEMS Radu Grosu, Thomas Stauner1  

E-Print Network [OSTI]

may be fatal in the safety critical environment of many hybrid systems. In this paper we present-time systems interacting with their physical environment. In the past few years a number of formalisms have height control system (EHC), taken from a former case study together with BMW. The purpose of this system

222

E-Print Network 3.0 - auxiliary cooling system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Panels Summary: Heating System Preheat - Solar thermal 80-gal tank, electric auxiliary heating Active, indirect forced... -circulation system for cool climates Four solar thermal...

223

Extending the lifetime of fuel cell based hybrid systems  

E-Print Network [OSTI]

Fuel cells are clean power sources that have much higher energy densities and lifetimes compared to batteries. However, fuel cells have limited load following capabilities and cannot be efficiently utilized if used in isolation. In this work, we consider a hybrid system where a fuel cell based hybrid power source is used to provide power to a DVFS processor. The hybrid power source consists of a room temperature fuel cell operating as the primary power source and a Li-ion battery (that has good load following capability) operating as the secondary source. Our goal is to develop polices to extend the lifetime of the fuel cell based hybrid system. First, we develop a charge based optimization framework which minimizes the charge loss of the hybrid system (and not the energy consumption of the DVFS processor). Next, we propose a new algorithm to minimize the charge loss by judiciously scaling the load current. We compare the performance of this algorithm with one that has been optimized for energy, and demonstrate its superiority. Finally, we evaluate the performance of the hybrid system under different system configurations and show how to determine the best combination of fuel cell size and battery capacity for a given embedded application.

Jianli Zhuo; Chaitali Chakrabarti; Naehyuck Chang; Sarma Vrudhula

2006-01-01T23:59:59.000Z

224

Experimental and CFD Analysis of Advanced Convective Cooling Systems  

SciTech Connect (OSTI)

The objective of this project is to study the fundamental physical phenomena in the reactor cavity cooling system (RCCS) of very high-temperature reactors (VHTRs). One of the primary design objectives is to assure that RCCS acts as an ultimate heat sink capable of maintaining thermal integrity of the fuel, vessel, and equipment within the reactor cavity for the entire spectrum of postulated accident scenarios. Since construction of full-scale experimental test facilities to study these phenomena is impractical, it is logical to expect that computational fluid dynamics (CFD) simulations will play a key role in the RCCS design process. An important question then arises: To what extent are conventional CFD codes able to accurately capture the most important flow phenomena, and how can they be modified to improve their quantitative predictions? Researchers are working to tackle this problem in two ways. First, in the experimental phase, the research team plans to design and construct an innovative platform that will provide a standard test setting for validating CFD codes proposed for the RCCS design. This capability will significantly advance the state of knowledge in both liquid-cooled and gas-cooled (e.g., sodium fast reactor) reactor technology. This work will also extend flow measurements to micro-scale levels not obtainable in large-scale test facilities, thereby revealing previously undetectable phenomena that will complement the existing infrastructure. Second, in the computational phase of this work, numerical simulation of the flow and temperature profiles will be performed using advanced turbulence models to simulate the complex conditions of flows in critical zones of the cavity. These models will be validated and verified so that they can be implemented into commercially available CFD codes. Ultimately, the results of these validation studies can then be used to enable a more accurate design and safety evaluation of systems in actual nuclear power applications (both during normal operation and accident scenarios).

Yassin A. Hassan; Victor M. Ugaz

2012-06-27T23:59:59.000Z

225

Hydraulic Modeling of Large District Cooling Systems for Master Planning Purposes  

E-Print Network [OSTI]

Hydraulic Modeling of Large District Cooling Systems for Master Planning Purposes Chen Xu Qiang Chen David E. Claridge Dan Turner Song Deng Energy Systems Laboratory Texas A&M University College Station, TX 77843-3581 KEYWORD Pipe Network..., District Cooling System, Central Chilled Water System, Master Planning, Hydraulic Simulation ABSTRACT District Cooling Systems (DCS) have been widely applied in large institutions such as universities, government facilities, commercial districts...

Xu, C.; Chen, Q.; Claridge, D. E.; Turner, W. D.; Deng, S.

2006-01-01T23:59:59.000Z

226

Energy-Efficient Building HVAC Control Using Hybrid System LBMPC  

E-Print Network [OSTI]

Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

2012-01-01T23:59:59.000Z

227

AT GUANTANAMO BAY: A HYBRID WIND-DIESEL SYSTEM  

E-Print Network [OSTI]

turbines. The integration of the wind system into the existing diesel power plant was modeled of the existing power system, the wind resource, and the proposed wind power plant. In addition, preliminaryWIND POWER AT GUANTANAMO BAY: A HYBRID WIND-DIESEL SYSTEM FOR THE US NAVY AT GUANTANAMO NAVAL BASE

Massachusetts at Amherst, University of

228

Cooling Water Systems - Energy Savings/Lower Costs By Reusing Cooling Tower Blowdown  

E-Print Network [OSTI]

Reuse of cooling tower blow down cannot only provide energy conservation, but can provide water conservation and chemical conservation. To be effective, it is critical that the water treatment program be coordinated with the treatment of the blow...

Puckorius, P. R.

1981-01-01T23:59:59.000Z

229

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.  

E-Print Network [OSTI]

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system Coal Storage Building 39 NA Cooke Hall 56 Donhowe Building 044 East Gateway District Steam Distr. 199

Webb, Peter

230

Cooling System for the Merit High-Power Target Experiment  

E-Print Network [OSTI]

MERIT is a proof-of-principle experiment of a target station suitable as source for future muon colliders or neutrino factories. When installed at the CERN (European Organization for Nuclear Research) PS (Proton Synchrotron)complex fast-extracted high-intensity proton beams intercepted a free mercury jet inside a normal-conducting, pulsed 15-T capture solenoid magnet cooled with liquid nitrogen. Up to 25 MJ of Joule heat was dissipated in the magnet during a pulse. The fully automated, remotely controlled cryogenic system of novel design permitted the transfer of nitrogen by the sole means of differential pressures inside the vessels. This fast cycling system permitted several hundred tests in less than three weeks during the 2007 data taking campaign.

Haug, F; Silva, P; Pezzeti, M; Pavlov, O; Pirotte, O; Metselaar, J; Efthymiopoulos, I; Fabich, A; Lettry, J; Kirk, H G; McDonald, K T; Titus, P; Bennett, J R J; 10.1063/1.3422261

2010-01-01T23:59:59.000Z

231

Reachability Analysis of a Biodiesel Production System Using Stochastic Hybrid Systems  

E-Print Network [OSTI]

Reachability Analysis of a Biodiesel Production System Using Stochastic Hybrid Systems Derek Riley defines the creation of biodiesel from soybean oil and methanol. Modeling and analyzing the biodiesel. In this paper we model a biodiesel production system as a stochastic hybrid system, and we present

Koutsoukos, Xenofon D.

232

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

233

Hydrogen atom as a quantum-classical hybrid system  

E-Print Network [OSTI]

Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

Fei Zhan; Biao Wu

2013-02-15T23:59:59.000Z

234

Sealed Battery Block Provided With A Cooling System  

DOE Patents [OSTI]

The present invention relates to a sealed battery block operating at a pressure of at least 1 bar relative, the battery including a container made of a plastics material and made up of a lid and of a case subdivided into wells by at least one partition, said battery being provided with a cooling system including two cheek plates made of a plastics material and co-operating with the outside faces of respective ones of two opposite walls of said case, each cheek plate co-operating with the corresponding wall to define a compartment provided with a plurality of ribs forming baffles for fluid flow purposes, and with an inlet orifice and an outlet orifice for the fluid, said battery being characterized in that each of said ribs extends in a direction that forms an angle relative to the plane of said partition lying in the range 60.degree. to 90.degree..

Verhoog, Roelof (Bordeaux, FR); Barbotin, Jean-Loup (Pompignac, FR)

1999-11-16T23:59:59.000Z

235

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

236

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

237

Aircraft AC Generators: Hybrid System Modeling and Simulation  

E-Print Network [OSTI]

--Integrated Drive Generators (IDGs) are the main source of electrical power for a number of critical systems1 Aircraft AC Generators: Hybrid System Modeling and Simulation Ashraf Tantawy, Student Member is a difficult task. dq0 models have been developed for design and control of generators, but these models

Koutsoukos, Xenofon D.

238

Simulation of IPA Gradients in Hybrid Network Systems Benjamin Melamed  

E-Print Network [OSTI]

Simulation of IPA Gradients in Hybrid Network Systems Benjamin Melamed Rutgers University Rutgers Atlanta, GA 30332 October 26, 2005 Abstract Infinitesimal Perturbation Analysis (IPA) provides formulas paths of stochastic systems. In practice, IPA derivatives may be computed either from simulation runs

239

HYBRID INVERSE PROBLEMS AND REDUNDANT SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS  

E-Print Network [OSTI]

. The theory is applied to the case of power density measurements, which are internal functionals of the form from knowledge of said internal functionals. For recent books and reviews on hybrid inverse problems conditions. General theories of elliptic systems then allow us to construct a parametrix for such systems

Bal, Guillaume

240

Orbits of hybrid systems as qualitative indicators of quantum dynamics  

E-Print Network [OSTI]

Hamiltonian theory of hybrid quantum-classical systems is used to study dynamics of the classical subsystem coupled to different types of quantum systems. It is shown that the qualitative properties of orbits of the classical subsystem clearly indicate if the quantum subsystem does or does not have additional conserved observables.

N. Buric; D. B. Popovic; M. Radonjic; S. Prvanovic

2014-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hybrid Thin Film Deposition System | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeteranstoHuub van DamHybrid

242

Cooling system having reduced mass pin fins for components in a gas turbine engine  

DOE Patents [OSTI]

A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

Lee, Ching-Pang; Jiang, Nan; Marra, John J

2014-03-11T23:59:59.000Z

243

Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems  

Broader source: Energy.gov [DOE]

Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

244

Cooling system for a bearing of a turbine rotor  

DOE Patents [OSTI]

In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

Schmidt, Mark Christopher (Niskayuna, NY)

2002-01-01T23:59:59.000Z

245

STOCHASTIC HYBRID SYSTEMS WITH RENEWAL TRANSITIONS: MOMENT ANALYSIS WITH APPLICATION TO  

E-Print Network [OSTI]

STOCHASTIC HYBRID SYSTEMS WITH RENEWAL TRANSITIONS: MOMENT ANALYSIS WITH APPLICATION TO NETWORKED motivated us to refer to these systems as Stochastic Hybrid Systems with Renewal Transitions. This class Stochastic Hybrid Systems (SHSs) for which the lengths of times that the system stays in each mode

Hespanha, João Pedro

246

Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries  

SciTech Connect (OSTI)

Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

None,

1981-09-01T23:59:59.000Z

247

Cryogenic cooling with cryocooler on a rotating system  

E-Print Network [OSTI]

We developed a system that continuously maintains a cryocooler for long periods on a rotating table. A cryostat that holds the cryocooler is set on the table. A compressor is located on the ground and supplies high-purity (> 99.999%) and high-pressure (1.7 MPa) helium gas and electricity to the cryocooler. The operation of the cryocooler and other instruments requires the development of interface components between the ground and rotating table. A combination of access holes at the center of the table and two rotary joints allows simultaneous circulation of electricity and helium gas. The developed system provides two innovative functions under the rotating condition; cooling from room temperature and the maintenance of a cold condition for long periods. We have confirmed these abilities as well as temperature stability under a condition of continuous rotation at 20 revolutions per minute. The developed system can be applied in various fields; e.g., in tests of Lorentz invariance, searches for axion, radio as...

Oguri, Shugo; Kawai, Masanori; Tajima, Osamu

2013-01-01T23:59:59.000Z

248

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

concepts for space heating using remote col- lection withheating systems in terms of the fan owing matrix: DIRECT INDIRECT ISOLATED SOUTH APERTURE SHADED ROOF APERTURE ROOF APERTURE REMOTE

Authors, Various

2012-01-01T23:59:59.000Z

249

Improving Cooling performance of the mechanical resonator with the two-level-system defects  

E-Print Network [OSTI]

We study cooling performance of a realistic mechanical resonator containing defects. The normal cooling method through an optomechanical system does not work efficiently due to those defects. We show by employing periodical $\\sigma_z$ pulses, we can eliminate the interaction between defects and their surrounded heat baths up to the first order of time. Compared with the cooling performance of no $\\sigma_z$ pulses case, much better cooling results are obtained. Moreover, this pulse sequence has an ability to improve the cooling performance of the resonator with different defects energy gaps and different defects damping rates.

Tian Chen; Xiang-Bin Wang

2014-06-03T23:59:59.000Z

250

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

options into local solar loan programs. IV.G.6 EncourageSolar Applications of the U.S. Department of Energy January 1 TWO-WEEK lOANsolar system and Light, Pacific Gas & Electric, and are investigating the peak load sharing systems and consumer loan

Authors, Various

2012-01-01T23:59:59.000Z

251

High performance liquid desiccant cooling system simulation at standard ARI conditions  

E-Print Network [OSTI]

of the standard vapor compression system are cryogenic cooling, non fluorocarbon refrigerants and desiccant cooling. Navy scientists have been investigating the use of sound waves for cryogenic cooling. The "cryo-cooler" uses water as the working fluid... and thus eliminates the possibility of fluorocarbon emissions. However, initial research shows that the system requires about the same amount of electricity as contemporary refrigeration models [2]. Non fluorocarbon refrigerants are used as a...

McDonald, Brian Francis

1991-01-01T23:59:59.000Z

252

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

of passive solar systems. The building design andparts of the building design. The passive solar componentspassive solar design is accepted as ndard practice" by both design profession- als and building

Authors, Various

2012-01-01T23:59:59.000Z

253

Air cooled turbine component having an internal filtration system  

DOE Patents [OSTI]

A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

Beeck, Alexander R. (Orlando, FL)

2012-05-15T23:59:59.000Z

254

Hybrid two fuel system nozzle with a bypass connecting the two fuel systems  

DOE Patents [OSTI]

A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

Varatharajan, Balachandar (Cincinnati, OH); Ziminsky, Willy Steve (Simpsonville, SC); Yilmaz, Ertan (Albany, NY); Lacy, Benjamin (Greer, SC); Zuo, Baifang (Simpsonville, SC); York, William David (Greer, SC)

2012-05-29T23:59:59.000Z

255

COOLING FAN AND SYSTEM PERFORMANCE AND EFFICIENCY IMPROVEMENTS  

SciTech Connect (OSTI)

Upcoming emissions regulations (Tiers 3, 4a and 4b) are imposing significantly higher heat loads on the cooling system than lesser regulated machines. This work was a suite of tasks aimed at reducing the parasitic losses of the cooling system, or improving the design process through six distinct tasks: 1. Develop an axial fan that will provide more airflow, with less input power and less noise. The initial plan was to use Genetic Algorithms to do an automated fan design, incorporating forward sweep for low noise. First and second generation concepts could not meet either performance or sound goals. An experienced turbomachinery designer, using a specialized CFD analysis program has taken over the design and has been able to demonstrate a 5% flow improvement (vs 10% goal) and 10% efficiency improvement (vs 10% goal) using blade twist only. 2. Fan shroud developments, using an 'aeroshroud' concept developed at Michigan State University. Performance testing at Michigan State University showed the design is capable of meeting the goal of a 10% increase in flow, but over a very narrow operating range of fan performance. The goal of 10% increase in fan efficiency was not met. Fan noise was reduced from 0 to 2dB, vs. a goal of 5dB at constant airflow. The narrow range of fan operating conditions affected by the aeroshroud makes this concept unattractive for further development at this time 3. Improved axial fan system modeling is needed to accommodate the numbers of cooling systems to be redesigned to meet lower emissions requirements. A CFD fan system modeling guide has been completed and transferred to design engineers. Current, uncontrolled modeling practices produce flow estimates in some cases within 5% of measured values, and in some cases within 25% of measured values. The techniques in the modeling guide reduced variability to the goal of + 5% for the case under study. 4. Demonstrate the performance and design versatility of a high performance fan. A 'swept blade mixed flow' fan was rapid prototyped from cast aluminum for a performance demonstration on a small construction machine. The fan was mounted directly in place of the conventional fan (relatively close to the engine). The goal was to provide equal airflow at constant fan speed, with 75% of the input power and 5 dB quieter than the conventional fan. The result was a significant loss in flow with the prototype due to its sensitivity to downstream blockage. This sensitivity to downstream blockage affects flow, efficiency, and noise all negatively, and further development was terminated. 5. Develop a high efficiency variable speed fan drive to replace existing slipping clutch style fan drives. The goal for this task was to provide a continuously variable speed fan drive with an efficiency of 95%+ at max speed, and losses no greater than at max speed as the fan speed would vary throughout its entire speed range. The process developed to quantify the fuel savings potential of a variable speed fan drive has produced a simple tool to predict the fuel savings of a variable speed drive, and has sparked significant interest in the use of variable speed fan drive for Tier 3 emissions compliant machines. The proposed dual ratio slipping clutch variable speed fan drive can provide a more efficient system than a conventional single ratio slipping clutch fan drive, but could not meet the established performance goals of this task, so this task was halted in a gate review prior to the start of detailed design. 6. Develop a cooling system air filtration device to allow the use of automotive style high performance heat exchangers currently in off road machines. The goal of this task was to provide a radiator air filtration system that could allow high fin density, louvered radiators to operate in a find dust application with the same resistance to fouling as a current production off-road radiator design. Initial sensitivity testing demonstrated that fan speed has a significant impact on the fouling of radiator cores due to fine dusts, so machines equipped with continuously variabl

Ronald Dupree

2005-07-31T23:59:59.000Z

256

Cooling season study and economic analysis of a desiccant cooling system  

E-Print Network [OSTI]

. This effect stems from using refrigerants which contain fluorocarbons. Fluorocarbons released into the atmosphere react with, and destroy, upper level ozone. As a result several alternative cooling processes have been proposed as replacements. One... of the detrimental effect fluorocarbons have on the environment, legislation has been passed banning their manufacture and sale. Refrigerants proposed as replacements, HFC 134a and HCFC-123, are more costly and less efficient than fluorocarbon , and their long...

Lee, James Howard

1992-01-01T23:59:59.000Z

257

Stochastic Hybrid Systems with Renewal Transitions Duarte Antunes, Jo~ao P. Hespanha, and Carlos Silvestre  

E-Print Network [OSTI]

Stochastic Hybrid Systems with Renewal Transitions Duarte Antunes, Jo~ao P. Hespanha, and Carlos], which motivated us to refer to these systems as stochastic hybrid systems with renewal transitions Silvestre Abstract-- We consider Stochastic Hybrid Systems (SHSs) for which the lengths of times

Hespanha, João Pedro

258

Borazine-boron nitride hybrid hydrogen storage system  

DOE Patents [OSTI]

A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

Narula, Chaitanya K. (Knoxville, TN) [Knoxville, TN; Simonson, J. Michael (Knoxville, TN) [Knoxville, TN; Maya, Leon (Knoxville, TN) [Knoxville, TN; Paine, Robert T. (Albuquerque, NM) [Albuquerque, NM

2008-04-22T23:59:59.000Z

259

Comparison of four procedures for the identification of hybrid systems  

E-Print Network [OSTI]

Comparison of four procedures for the identification of hybrid systems A.Lj. Juloski1 , W.niessen@nyquist.com Abstract. In this paper we compare four recently proposed procedures for the identification of PieceWise AutoRegressive eXogenous (PWARX) and switched ARX models. We consider the clustering-based procedure

260

On the Fokker-Planck Equation for Stochastic Hybrid Systems  

E-Print Network [OSTI]

On the Fokker-Planck Equation for Stochastic Hybrid Systems: Application to a Wind Turbine Model- speed wind turbine, with a switching controller that combines stall regulation and pitch control FPE is stated. Then the theory is applied to a variable-speed wind turbine model, yielding

Boyer, Edmond

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit  

E-Print Network [OSTI]

Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit Abstract Recent interest in fuel cell fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical performance with experimental data is presented to demonstrate model validity. Introduction Fuel cell

Mease, Kenneth D.

262

Interchange Format for Hybrid Systems: Abstract Semantics  

E-Print Network [OSTI]

used by the algorithms. Modelica, for instance, pro- vides a language for describing systems in terms

Carloni, Luca

263

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

Kurt Montgomery; Nguyen Minh

2003-08-01T23:59:59.000Z

264

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

aspects of a hybrid fusion-fission energy system called theof a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevin

Kramer, Kevin James

2010-01-01T23:59:59.000Z

265

Method and apparatus for controlling hybrid powertrain system in response to engine temperature  

DOE Patents [OSTI]

A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

2014-10-07T23:59:59.000Z

266

Solar Cooling Using Variable Geometry Ejectors Centre for Sustainable Energy Systems  

E-Print Network [OSTI]

pumps were other notable benefits. Heat pump cooling systems dominate the air-conditioning market electrically driven heat pumps to be deployed to locations such as houses where a steady source of heat may to consider solar heat driven cooling systems, most prominently since the 1990s. The Ejector Heat Pump

267

A Simple and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems  

E-Print Network [OSTI]

A Simple and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems Simon, thermoelectric active cooling systems can help maintain electronic devices at a desired temperature condition and others. The method could help designers to examine and choose a thermoelectric module from catalogues

268

MAGNET/CRYOCOOLER INTEGRATIONFOR THERMAL STABILITY IN CONDUCTION-COOLED SYSTEMS  

E-Print Network [OSTI]

-cooling with a closed-cycle refrigerator is an excellent option for relatively small superconducting systems. Since to energy consumption, mainly because the thermal loss associated with the storage and the transferMAGNET/CRYOCOOLER INTEGRATIONFOR THERMAL STABILITY IN CONDUCTION-COOLED SYSTEMS H.-M. Chang and K

Chang, Ho-Myung

269

Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate  

E-Print Network [OSTI]

1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild. "Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate the architectural and mechanical design of a building. Several researchers have demonstrated the analysis of low-energy

Chen, Qingyan "Yan"

270

Monitoring system for a liquid-cooled nuclear fission reactor  

DOE Patents [OSTI]

A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

DeVolpi, Alexander (Bolingbrook, IL)

1987-01-01T23:59:59.000Z

271

Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Demonstrates the application of an artificial neural network (ANN) for modeling the energy storage system of a hybrid electric vehicle.

Bhatikar, S. R.; Mahajan, R. L.; Wipke, K.; Johnson, V.

1999-08-01T23:59:59.000Z

272

Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine  

SciTech Connect (OSTI)

Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

2005-04-01T23:59:59.000Z

273

Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs  

SciTech Connect (OSTI)

As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Thus, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. This paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. Additionally, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

Mark F. Ruth; Owen R. Zinaman; Mark Antkowiak; Richard D. Boardman; Robert S. Cherry; Morgan D. Bazilian

2014-02-01T23:59:59.000Z

274

Nuclear Hybrid Energy Systems: Molten Salt Energy Storage  

SciTech Connect (OSTI)

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

2014-07-01T23:59:59.000Z

275

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents [OSTI]

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

276

System identification and optimal control for mixed-mode cooling  

E-Print Network [OSTI]

The majority of commercial buildings today are designed to be mechanically cooled. To make the task of air conditioning buildings simpler, and in some cases more energy efficient, windows are sealed shut, eliminating ...

Spindler, Henry C. (Henry Carlton), 1970-

2004-01-01T23:59:59.000Z

277

Potential of Evaporative Cooling Systems for Buildings in India  

E-Print Network [OSTI]

Evaporative cooling potential for building in various climatic zones in India is investigated. Maintainable indoor conditions are obtained from the load - capacity analysis for the prevailing ambient conditions. For the assumed activity level...

Maiya, M. P.; Vijay, S.

2010-01-01T23:59:59.000Z

278

Understanding and reducing energy and costs in industrial cooling systems  

E-Print Network [OSTI]

Industrial cooling remains one of the largest potential areas for electrical energy savings in industrial plants today. This is in spite of a relatively small amount of attention paid to it by energy auditors and rebate program designers. US DOE...

Muller, M.R.; Muller, M.B.

2012-01-01T23:59:59.000Z

279

NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)  

SciTech Connect (OSTI)

National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

Not Available

2011-02-01T23:59:59.000Z

280

ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS  

E-Print Network [OSTI]

ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS O. GERGAUD, G Abstract: Within the scope of full-scale energy modeling of a hybrid wind / photovoltaic system coupled-power hybrid wind/photovoltaic production system (20 ASE modules for a 2- kW polycrystalline silicon peak

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+  

E-Print Network [OSTI]

HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+ M.H. Khan, 74078, USA ABSTRACT This paper presents a simulation of a hybrid ground source heat pump system, performed using a new graphical user interface for HVACSIM+. Hybrid ground source heat pump systems

282

Cooling-load implications for residential passive-solar-heating systems  

SciTech Connect (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

Jones, R.W.; McFarland, R.D.

1983-01-01T23:59:59.000Z

283

Hydraulic modeling of large district cooling systems for master planning purposes  

E-Print Network [OSTI]

District Cooling Systems (DCS) have been widely applied in large institutions such as universities, government facilities, commercial districts, airports, etc. The hydraulic system of a large DCS can be complicated. They often stem from an original...

Xu, Chen

2007-09-17T23:59:59.000Z

284

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

E-Print Network [OSTI]

the modular liquid cooling system with varying supply waterinlet supply air temperature, while modular system coolingcooling needed (up to 9.8 kW/rack) at various supply water

Xu, TengFang

2009-01-01T23:59:59.000Z

285

Performance Modeling of a Solar Driven Absorption Cooling System for Carnegie Mellon University's Intelligent Workplace  

E-Print Network [OSTI]

system for space heating and cooling. The proposed energy supply system configuration includes integrated compound parabolic concentrator (ICPC), a hot storage tank, a gas fired auxiliary heater, a steam generator, a steam driven absorption chiller...

Masson, S. V.; Qu, M.; Archer, D. H.

2006-01-01T23:59:59.000Z

286

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

SciTech Connect (OSTI)

This report discusses the following tasks; solar heating with isothermal collector operation and advanced control strategy; solar cooling with solid desiccant; liquid desiccant cooling system development; solar house III -- development and improvement of solar heating systems employing boiling liquid collectors; generic solar domestic water heating systems; advanced residential solar domestic hot water (DHW) systems; management and coordination of Colorado State/DOE program; and field monitoring workshop.

Not Available

1991-01-07T23:59:59.000Z

287

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

SciTech Connect (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

288

Effect of a Radiant Panel Cooling System on Indoor Air Quality of a Conditioned Space  

E-Print Network [OSTI]

This paper discusses the effect of a radiant cooling panel system on an indoor air quality (IAQ) of a conditioned space. In this study, ceiling radiant cooling panel, mechanical ventilation with fan coil unit (FCU) and 100% fresh air are used...

Mohamed, E.; Abdalla, K. N.

2010-01-01T23:59:59.000Z

289

Multiobjective Search for the Management of a Hybrid Energy Storage System  

E-Print Network [OSTI]

Multiobjective Search for the Management of a Hybrid Energy Storage System Simon Boxnick, Stefan Kl objective search algorithm. The algorithm is designed for the management of a hybrid energy storage module-board hybrid energy storage system (HES) of the novel autonomous rail-bound vehicle RailCab developed

Paderborn, Universität

290

Periodically Controlled Hybrid Systems Verifying A Controller for An Autonomous Vehicle  

E-Print Network [OSTI]

Periodically Controlled Hybrid Systems Verifying A Controller for An Autonomous Vehicle Tichakorn Hybrid Au- tomata (PCHA) for describing a class of hybrid control systems. In a PCHA, control actions of the planner-controller subsystem of an autonomous ground vehicle, and in deriving geometric properties

Murray, Richard M.

291

Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems  

E-Print Network [OSTI]

Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

Greenhut, Andrew David

2010-01-01T23:59:59.000Z

292

Proposal for the Award of a Contract for Maintenance, Operation and Minor Installation Work for CERN Cooling and HVAC Systems  

E-Print Network [OSTI]

Proposal for the Award of a Contract for Maintenance, Operation and Minor Installation Work for CERN Cooling and HVAC Systems

1996-01-01T23:59:59.000Z

293

Proposal for the award of a contract for the supply of water cooling systems for the HIE-ISOLDE infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the supply of water cooling systems for the HIE-ISOLDE infrastructure

2012-01-01T23:59:59.000Z

294

Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems  

SciTech Connect (OSTI)

This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

Not Available

1980-03-01T23:59:59.000Z

295

Passive-solar-cooling system concepts for small office buildings. Final report  

SciTech Connect (OSTI)

This report summarizes the efforts of a small group of building design professionals and energy analysis experts to develop passive solar cooling concepts including first cost estimates for small office buildings. Two design teams were brought together at each of two workshops held in the fall of 1982. Each team included an architect, mechanical engineer, structural engineer, and energy analysis expert. This report presents the passive cooling system concepts resulting from the workshops. It summarizes the design problems, solutions and first-cost estimates relating to each technology considered, and documents the research needs identified by the participants in attempting to implement the various technologies in an actual building design. Each design problem presented at the workshops was based on the reference (base case) small office building analyzed as part of LBL's Cooling Assessment. Chapter II summarizes the thermal performance, physical specifications and estimated first-costs of the base case design developed for this work. Chapters III - VI describe the passive cooling system concepts developed for each technology: beam daylighting; mass with night ventilation; evaporative cooling; and integrated passive cooling systems. The final Chapters, VII and VIII present the preliminary implications for economics of passive cooling technologies (based on review of the design concepts) and recommendations of workshop participants for future research in passive cooling for commercial buildings. Appendices provide backup information on each chapter as indicated.

Whiddon, W.I.; Hart, G.K.

1983-02-01T23:59:59.000Z

296

Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting  

SciTech Connect (OSTI)

Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

2010-06-01T23:59:59.000Z

297

Designing a 'Near Optimum' Cooling-Water System  

E-Print Network [OSTI]

Cooling water is expensive to circulate. Reducing its flow - i.e., hiking exchanger outlet temperatures - can cut tower, pump and piping investment as much as one-third and operating cost almost in half. Heat-exchanger-network optimization has been...

Crozier, R. A., Jr.

1981-01-01T23:59:59.000Z

298

A Free Cooling Based Chilled Water System at Kingston  

E-Print Network [OSTI]

-04-13 Proceedings from the Sixth Annual Industrial Energy Technology Conference Volume I, Houston, TX, April 15-18, 1984 COOLING TOWER #3 FROM EAST FROM WEST TOWER TO TO EAST WES TOWER TOW8:R ELEC. #9 2000 TON MOOE, ?YAP. CHILLING LOAD SHAVING Sl...

Jansen, P. R.

1984-01-01T23:59:59.000Z

299

March 1, 2013. Campus Wide District Heating & Cooling System  

E-Print Network [OSTI]

(hot water) #12;14 Decentralisation Central Plant becomes Energy Plant 11 Mechanical Rooms (water heaters Units Chillers recovery Hot Water Heaters recovery Second Stage Heatpumps (HWH + DHW) 70 (tons) X 4;18 Energy Loop 18 Energy Loop Geothermal Cooling Units Chillers recovery Hot Water Heaters recovery Second

300

Mechanically Cooled Large-Volume Germanium Detector Systems for Neclear Explosion Monitoring DOENA27323-2  

SciTech Connect (OSTI)

Compact maintenance free mechanical cooling systems are being developed to operate large volume high-resolution gamma-ray detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The maintenance-free operating lifetime of these detector systems will exceed 5 years. Three important factors affect the operation of mechanically cooled germanium detectors: temperature, vacuum, and vibration. These factors will be studied in the laboratory at the most fundamental levels to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system. Using this knowledge, mechanically cooled germanium detector prototype systems will be designed and fabricated.

Hull, E.L.

2006-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A finite state machine framework for robust analysis and control of hybrid systems  

E-Print Network [OSTI]

Hybrid systems, describing interactions between analog and discrete dynamics, are pervasive in engineered systems and pose unique, challenging performance verification and control synthesis problems. Existing approaches ...

Tarraf, Danielle C. (Danielle Charles), 1974-

2006-01-01T23:59:59.000Z

302

Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting  

SciTech Connect (OSTI)

Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

2013-03-01T23:59:59.000Z

303

Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

2011-04-06T23:59:59.000Z

304

A computer simulation appraisal of non-residential low energy cooling systems in California  

SciTech Connect (OSTI)

An appraisal of the potential performance of different Low Energy Cooling (LEC) systems in nonresidential buildings in California is being conducted using computer simulation. The paper presents results from the first phase of the study, which addressed the systems that can be modeled, with the DOE-2.1E simulation program. The following LEC technologies were simulated as variants of a conventional variable-air-volume system with vapor compression cooling and mixing ventilation in the occupied spaces: Air-side indirect and indirect/direct evaporative pre-cooling. Cool beams. Displacement ventilation. Results are presented for four populous climates, represented by Oakland, Sacramento, Pasadena and San Diego. The greatest energy savings are obtained from a combination of displacement ventilation and air-side indirect/direct evaporative pre-cooling. Cool beam systems have the lowest peak demand but do not reduce energy consumption significantly because the reduction in fan energy is offse t by a reduction in air-side free cooling. Overall, the results indicate significant opportunities for LEC technologies to reduce energy consumption and demand in nonresidential new construction and retrofit.

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-05-17T23:59:59.000Z

305

MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor  

E-Print Network [OSTI]

In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

Meenen, Jordan N

2010-01-01T23:59:59.000Z

306

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal...  

Open Energy Info (EERE)

makeup. Though they use no water, air-cooling systems have higher capital costs, reduced power output (heat is rejected at a higher temperature), lower power sales due to higher...

307

Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems  

Broader source: Energy.gov [DOE]

The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...

308

Technical and Economic Analysis of Solar Cooling Systems in a Hot and Humid Climate  

E-Print Network [OSTI]

The aim of this paper is to promote efficient and cost effective implementation of advanced solar cooling systems and techniques for the hot and humid climates cities in the United States. After an introduction of basic principles, the development...

Moaveni, H.

309

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-11-4 Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation Yanli Ren1, Deying Li2, Yufeng Zhang1 1...

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

310

Cost-Effective Gas-Fueled Cooling Systems for Commercial/Industrial Buildings and Process Applications  

E-Print Network [OSTI]

and the system absorption machinery, increasing the efficiency by design was modified considerably. 40%. The manufacturers of the absorption cooling equipment, including Hitachi, Yazakt, and Sanyo, The current design consists of: a 454 cubic have teamed...

Lindsay, B. B.

311

Modeling the transient operation of an endothermic fuel cooling system for high Mach number vehicle missions  

E-Print Network [OSTI]

A computer model was developed to simulate the transient operation of a hypothetical endothermic fuel cooling system. The model simulated the performance of a cross-flow, shell and tube heat exchanger. This model was applied to a representative...

Williams, Mark Robert

1993-01-01T23:59:59.000Z

312

Solar Energy to Drive Absorption Cooling Systems Suitable for Small Building Applications  

E-Print Network [OSTI]

results and an overview of the performance of low capacity single stage and half-effect absorption cooling systems, suitable for residential and small building applications. The primary heat source is solar energy supplied from flat plate collectors...

Gomri, R.

2010-01-01T23:59:59.000Z

313

A novel personal cooling system for use by soldiers in hot climates  

E-Print Network [OSTI]

This report focuses on the design, testing and fabrication of a lightweight personal, portable cooling system for use by soldiers beneath their Interceptor body armor. An alpha prototype was constructed and was used to ...

Gentile, Margaret H

2006-01-01T23:59:59.000Z

314

Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems  

E-Print Network [OSTI]

With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam...

Zuo, Z.; Hu, W.

2006-01-01T23:59:59.000Z

315

The Operation Management and Energy Consumption Analysis of the District Cooling System  

E-Print Network [OSTI]

for the operation management. It can be concluded that the district cooling system not only can save energy and protect the environment, but also is economically feasible. It should be developed and popularized in China because of its significant advantages....

Xu, Q.; Li, D.; Xu, W.

2006-01-01T23:59:59.000Z

316

Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers  

SciTech Connect (OSTI)

Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants' input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 1. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable overhead cooling system. The system was tested in a hot/cold aisle environment without separation, or containment or the hot or cold aisles. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

Xu, TengFang T.

2009-05-01T23:59:59.000Z

317

Thermodynamic modeling and optimization of a screw compressor chiller and cooling tower system  

E-Print Network [OSTI]

THERMODYNAMIC MODELING AND OPTIMIZATION OF A SCREW COMPRESSOR CHILLER AND COOLING TOWER SYSTEM A Thesis by RHETT DAVID GRAVES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2003 Major Subject: Mechanical Engineering THERMODYNAMIC MODELING AND OPTIMIZATION OF A SCREW COMPRESSOR CHILLER AND COOLING TOWER SYSTEM A Thesis by RHETT DAVID GRAVES Submitted to Texas A&M University in partial...

Graves, Rhett David

2004-09-30T23:59:59.000Z

318

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

SciTech Connect (OSTI)

The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report.

Not Available

1992-03-23T23:59:59.000Z

319

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling  

E-Print Network [OSTI]

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat Fuel Cells (SOFCs) are of great interest nowadays. The feature of SOFCs makes them suitable for hybrid plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power

Paris-Sud XI, Université de

320

Design of Electric or Hybrid vehicle alert sound system for pedestrian  

E-Print Network [OSTI]

Design of Electric or Hybrid vehicle alert sound system for pedestrian J.-C. Chamard and V, France 1691 #12;The arrival of fully or hybrid electric vehicles raised safety problems respect the environment to warn of his approach. However, hybrid and electric vehicles can potentially be dangerous

Boyer, Edmond

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Safety in Semi-autonomous Multi-vehicle Systems: A Hybrid Control Approach  

E-Print Network [OSTI]

1 Safety in Semi-autonomous Multi-vehicle Systems: A Hybrid Control Approach Rajeev Verma, Member illustrate our results on an in-scale multi-vehicle roundabout test-bed. Index Terms--Safety, hybrid control on the problem of safe design in the presence of human operators and employ a formal hybrid control approach. We

Entekhabi, Dara

322

Method and system for simulating heat and mass transfer in cooling towers  

DOE Patents [OSTI]

The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

Bharathan, Desikan (Lakewood, CO); Hassani, A. Vahab (Golden, CO)

1997-01-01T23:59:59.000Z

323

Observability Criteria and Estimator Design for Stochastic Linear Hybrid Systems  

E-Print Network [OSTI]

. Alessandri and Coletta [5] proposed a Luenberger observer design methodology for deterministic linear hybrid

Gummadi, Ramakrishna

324

Propellant feed system of a regeneratively cooled scramjet  

SciTech Connect (OSTI)

An expander cycle for an airframe-integrated hydrogen-fueled scramjet is analyzed to study regenerative cooling characteristics and overall specific impulse. Below Mach 10, the specific impulse and thrust coincide with the reference values. At Mach numbers above 10, a reduction of the specific impulse occurs due to the coolant flow rate requirement, which is accompanied by an increase of thrust. It is shown that the thrust may be increased by injecting excess fuel into the combustor to compensate for the decrease of the specific impulse. 9 refs.

Kanda, Takeshi; Masuya, Goro; Wakamatsu, Yoshio (National Aerospace Laboratory, Kakuda (Japan))

1991-04-01T23:59:59.000Z

325

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed JumpMover Jump to: navigation, searchEnergy

326

Nanofluid Development for Engine Cooling Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogenNRGA C T S HNanocompositeCooling

327

Postdoc position: Hybrid Systems Theorem Proving Carnegie Mellon University, Computer Science Department  

E-Print Network [OSTI]

Postdoc position: Hybrid Systems Theorem Proving Carnegie Mellon University, Computer Science is to develop next-generation verification techniques for cyber- physical systems and hybrid systems. Our prover KeYmaera and have found application in the verification of cars, aircraft, railway systems

Sandholm, Tuomas W.

328

Optimal control of a hybrid production/remanufacturing system using one shared resource  

E-Print Network [OSTI]

Optimal control of a hybrid production/remanufacturing system using one shared resource Lâm Laurent. Such systems are called hybrid production/remanufacturing systems and have received a growing attention. Sharing resources increases the flexibility of the system but complicates the production

Paris-Sud XI, Université de

329

A Collision Avoidance Control for Multi-Vehicle Using PWA/MLD Hybrid System Representation  

E-Print Network [OSTI]

A Collision Avoidance Control for Multi-Vehicle Using PWA/MLD Hybrid System Representation Masakazu for multi-vehicle systems which are modeled as a class of hybrid systems, piecewise affine (PWA) systems. We propose an optimal trajectory path which guarantees that the vehicle moves to the objective point

330

Asymmetric crystallization during cooling and heating in model glass-forming systems  

E-Print Network [OSTI]

We perform molecular dynamics (MD) simulations of the crystallization process in binary Lennard-Jones systems during heating and cooling to investigate atomic-scale crystallization kinetics in glass-forming materials. For the cooling protocol, we prepared equilibrated liquids above the liquidus temperature $T_l$ and cooled each sample to zero temperature at rate $R_c$. For the heating protocol, we first cooled equilibrated liquids to zero temperature at rate $R_p$ and then heated the samples to temperature $T > T_l$ at rate $R_h$. We measured the critical heating and cooling rates $R_h^*$ and $R_c^*$, below which the systems begin to form a substantial fraction of crystalline clusters during the heating and cooling protocols. We show that $R_h^* > R_c^*$, and that the asymmetry ratio $R_h^*/R_c^*$ includes an intrinsic contribution that increases with the glass-forming ability (GFA) of the system and a preparation-rate dependent contribution that increases strongly as $R_p \\rightarrow R_c^*$ from above. We also show that the predictions from classical nucleation theory (CNT) can qualitatively describe the dependence of the asymmetry ratio on the GFA and preparation rate $R_p$ from the MD simulations and results for the asymmetry ratio measured in Zr- and Au-based bulk metallic glasses (BMG). This work emphasizes the need for and benefits of an improved understanding of crystallization processes in BMGs and other glass-forming systems.

Minglei Wang; Kai Zhang; Zhusong Li; Yanhui Liu; Jan Schroers; Mark D. Shattuck; Corey S. O'Hern

2015-01-09T23:59:59.000Z

331

Optimization of a hybrid solar energy collector system  

E-Print Network [OSTI]

OPTIMIZATION OF A HYBRID SOLAR ENERGY COLLECTOR SYSTEM A Thesis by ALAN M. SHI NEMAN Submitted to the Graduate College of Texas A&N University in partial fulfillment of the requirement for the degree MASTER OF SCIENCE May 1981 Major Subject...: Mechanical Engineering THE STRUCTURAL IMPACT OF COMMODITY FARM PROGRAMS ON FARMS IN THE SOUTHERN TEXAS HIGH PLAINS A Thesis by CHRISTINA KAY SHIRLEY Submitted to the Graduate College of Texas A&M University in par'tial fulfillment of the requirement...

Shinkman, Alan M.

1981-01-01T23:59:59.000Z

332

Control system and method for a hybrid electric vehicle  

DOE Patents [OSTI]

Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

Tamor, Michael Alan (Toledo, OH)

2001-03-06T23:59:59.000Z

333

Adaptive hybrid optimal quantum control for imprecisely characterized systems  

E-Print Network [OSTI]

Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the its input variables, the quantum system's parameters. We show how to overcome this by Adaptive Hybrid Optimal Control (Ad-HOC). This protocol combines open- and closed-loop optimal by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity measure with a gradient-free method. For typical settings in solid-state quantum information processing, Ad-Hoc enhances gate fidelities by an order of magnitude hence making optimal control theory applicable and useful.

D. J. Egger; F. K. Wilhelm

2014-02-28T23:59:59.000Z

334

Modeling and Dynamic Management of 3D Multicore Systems with Liquid Cooling  

E-Print Network [OSTI]

in the future to address the increasing power density. Considering the high power densities in 3D systems Mi- crosystems, UC MICRO, Center for Networked Systems (CNS) at UCSD, MARCO/DARPA GSRC and NSFModeling and Dynamic Management of 3D Multicore Systems with Liquid Cooling Ayse K. Coskun , Jos

Simunic, Tajana

335

Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring  

SciTech Connect (OSTI)

Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators at Pacific Northwest National Laboratory (PNNL) will evaluate these detector systems on the bench top and eventually in RASA systems to insure reliable and practical operation.

Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

2006-09-21T23:59:59.000Z

336

IMPLEMENTATION OF A HYBRID CONTROLLER FOR CRITICAL BUILDING HVAC SYSTEMS  

SciTech Connect (OSTI)

Many industrial facilities utilize pressure control gradients to prevent migration of hazardous species from containment areas to occupied zones, often using Proportional-Integral-Derivative (PID) control systems. When operators rebalance the plant, variation from the desired gradients can occur and the operating conditions can change enough that the PID parameters are no longer adequate to maintain a stable system. As the goal of the ventilation control system is to optimize the pressure gradients and associated flows for the plant, Linear Quadratic Tracking (LQT) is a method that provides a time-based approach to guiding plant interactions. However, LQT methods are susceptible to modeling and measurement errors, and therefore the additional use of soft computing methods is proposed for implementation to account for these errors and nonlinearities. The performance of the resulting hybrid controller is demonstrated through simulation and experimental testing as compared to a representative PID controller.

Craig Rieger

2008-11-01T23:59:59.000Z

337

Coil system for a mirror-based hybrid reactor  

SciTech Connect (OSTI)

Two different superconducting coil systems for the SFLM Hybrid study - a quadrupolar mirror based fusion-fission reactor study - are presented. One coil system is for a magnetic field with 2 T at the midplane and a mirror ratio of four. This coil set consists of semiplanar coils in two layers. The alternative coil system is for a downscaled magnetic field of 1.25 T at the midplane and a mirror ratio of four, where a higher {beta} is required to achieve sufficient the neutron production. This coil set has one layer of twisted 3D coils. The 3D coils are expected to be considerably cheaper than the semiplanar, since NbTi superconductors can be used for most coils instead of Nb3Sn due to the lower magnetic field.

Hagnestal, A.; Agren, O.; Moiseenko, V. E. [Uppsala University, Angstroem laboratory, Division of Electricity, Box 534, SE-751 21 Uppsala (Sweden); Institute of Plasma Physics, National Science Center 'Kharkov Institute of Physics and Technology', Akademichna st. 1, 61108 Kharkiv (Ukraine)

2012-06-19T23:59:59.000Z

338

Structural Oil Pan With Integrated Oil Filtration And Cooling System  

DOE Patents [OSTI]

An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

Freese, V, Charles Edwin (Westland, MI)

2000-05-09T23:59:59.000Z

339

Robust optimal sizing of an hybrid energy stand-alone system  

E-Print Network [OSTI]

Mar 25, 2014 ... Abstract: This paper deals with the optimal design of a stand-alone hybrid system composed of wind turbines, solar photovoltaic panels and ...

Alain Billionnet

2014-03-25T23:59:59.000Z

340

Analysis of simultaneous cooling and heating in supermarket refrigeration systems.  

E-Print Network [OSTI]

?? In this master thesis project, conventional supermarket refrigeration systems using R404A are compared with refrigeration system solutions using natural refrigerants such as carbon dioxide… (more)

Marigny, Johan

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Exploiting concurrency to improve latency and throughput in a hybrid storage system  

E-Print Network [OSTI]

Exploiting concurrency to improve latency and throughput in a hybrid storage system Xiaojian Wu, A the problem of how to improve the performance of hybrid storage system employing solid state disks and hard parallelism in the storage system effectively to improve through- put and latency simultaneously. We

Reddy, Narasimha

342

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks  

E-Print Network [OSTI]

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks management system for hybrid electric vehicles (HEV), using neural networks (NN), was developed and tested. The system minimizes the energy requirement of the vehicle and can work with different primary power sources

Catholic University of Chile (Universidad Católica de Chile)

343

Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering Strategy  

E-Print Network [OSTI]

Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering-connected hybrid electrical energy storage (HEES) system can help residential users lower their electric bills system consists of different types of electrical energy storage (EES) elements, utilizing the benefits

Pedram, Massoud

344

Stability of Hybrid System Limit Cycles: Application to the Compass Gait Biped Robot  

E-Print Network [OSTI]

Stability of Hybrid System Limit Cycles: Application to the Compass Gait Biped Robot Ian A. Hiskens a diverse range of application areas. Examples include power systems [1], robotics [2, 3], manufacturing [4 are illustrated using a com- pass gait biped robot example. 1 Introduction Hybrid systems are characterized

Hiskens, Ian A.

345

Evaluation of 2005 Honda Accord Hybrid Electric Drive System  

SciTech Connect (OSTI)

The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

Staunton, R.H.; Burress, T.A.; Marlino, L.D.

2006-09-11T23:59:59.000Z

346

Evaluation of systems and components for hybrid optical firing sets  

SciTech Connect (OSTI)

High-energy density light appears to be a unique energy form that may be used to enhance the nuclear safety of weapon systems. Hybrid optical firing sets (HOFS) utilize the weak-link/strong-link exclusion region concept for nuclear safety; this method is similar to present systems, but uses light to transmit power across the exclusion region barrier. This report describes the assembling, operating, and testing of fourteen HOFS. These firing sets were required to charge a capacitor-discharge unit to 2.0 and 2.5 kV (100 mJ) in less than 1 s. First, we describe the components, the measurement techniques used to evaluate the components, and the different characteristics of the measured components. Second, we describe the HOFS studied, the setups used for evaluating them, and the resulting characteristics. Third, we make recommendations for improving the overall performance and suggest the best HOFS for packaging. 36 refs., 145 figs., 14 tabs.

Landry, M.J.; Rupert, J.W.; Mittas, A.

1989-06-01T23:59:59.000Z

347

A new hybrid algorithm for analysis of HVdc and FACTs systems  

SciTech Connect (OSTI)

Hybrid stability programs use a transient stability analysis for ac systems, in conjunction with detailed state variable or EMTP type modelling for fast dynamic devices. This paper presents a new hybrid algorithm that uses optimized techniques based on previously proposed methods. The hybrid provides a useful analysis tool to examine systems incorporating fast dynamic non-linear components such as HVdc links and FACTs devices.

Anderson, G.W.J. [New Zealand Aluminium Smelters Ltd., Invercargill (New Zealand); Watson, N.R.; Arnold, C.P.; Arrillaga, J. [Univ. of Canterbury, Christchurch (New Zealand)

1995-12-31T23:59:59.000Z

348

absorption cooling systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Line Systems Astrophysics (arXiv) Summary: A model of Lyman limit QSO absorption systems is investigated where they are produced in gaseous galactic halos with a two-phase...

349

absorption cooling system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Line Systems Astrophysics (arXiv) Summary: A model of Lyman limit QSO absorption systems is investigated where they are produced in gaseous galactic halos with a two-phase...

350

Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads  

E-Print Network [OSTI]

studied in this thesis is the chilled water system at the Dallas/Fort Worth International Airport (DFW Airport). This system has the problem of low delta-T under low cooling loads. When the chilled water flow is much lower than the design conditions at low...

Li, Nanxi 1986-

2012-12-05T23:59:59.000Z

351

WICKING OPTIMIZATION FOR THERMAL COOLING -WITH A TITANIUM BASED HEAT PIPE SYSTEM  

E-Print Network [OSTI]

WICKING OPTIMIZATION FOR THERMAL COOLING -WITH A TITANIUM BASED HEAT PIPE SYSTEM C. Ding1* , P for a proposed flat heat pipe system. This unique bitextured titania structure (BTS) provides a suprerhydrophilic based flat heat pipe is proposed to integrate the BTS wicks and study the concept of this titanium based

MacDonald, Noel C.

352

Use of a hybrid technology in a critical security system.  

SciTech Connect (OSTI)

Assigning an acceptable level of power reliability in a security system environment requires a methodical approach to design when considering the alternatives tied to the reliability and life of the system. The downtime for a piece of equipment, be it for failure, routine maintenance, replacement, or refurbishment or connection of new equipment is a major factor in determining the reliability of the overall system. In addition to these factors is the condition where the system is static or dynamic in its growth. Most highly reliable security power source systems are supplied by utility power with uninterruptable power source (UPS) and generator backup. The combination of UPS and generator backup with a reliable utility typically provides full compliance to security requirements. In the energy market and from government agencies, there is growing pressure to utilize alternative sources of energy other than fossil fuel to increase the number of local generating systems to reduce dependence on remote generating stations and cut down on carbon effects to the environment. There are also conditions where a security system may be limited on functionality due to lack of utility power in remote locations. One alternative energy source is a renewable energy hybrid system including a photovoltaic or solar system with battery bank and backup generator set. This is a viable source of energy in the residential and commercial markets where energy management schemes can be incorporated and systems are monitored and maintained regularly. But, the reliability of this source could be considered diminished when considering the security system environment where stringent uptime requirements are required.

Trujillo, David J.

2010-10-01T23:59:59.000Z

353

Use of a hybrid technology in a critical security system.  

SciTech Connect (OSTI)

Assigning an acceptable level of power reliability in a security system environment requires a methodical approach to design when considering the alternatives tied to the reliability and life of the system. The downtime for a piece of equipment, be it for failure, routine maintenance, replacement, or refurbishment or connection of new equipment is a major factor in determining the reliability of the overall system. In addition to these factors is the condition where the system is static or dynamic in its growth. Most highly reliable security power source systems are supplied by utility power with uninterruptable power source (UPS) and generator backup. The combination of UPS and generator backup with a reliable utility typically provides full compliance to security requirements. In the energy market and from government agencies, there is growing pressure to utilize alternative sources of energy other than fossil fuel to increase the number of local generating systems to reduce dependence on remote generating stations and cut down on carbon effects to the environment. There are also conditions where a security system may be limited on functionality due to lack of utility power in remote locations. One alternative energy source is a renewable energy hybrid system including a photovoltaic or solar system with battery bank and backup generator set. This is a viable source of energy in the residential and commercial markets where energy management schemes can be incorporated and systems are monitored and maintained regularly. But, the reliability of this source could be considered diminished when considering the security system environment where stringent uptime requirements are required.

Scharmer, Carol; Trujillo, David J.

2010-08-01T23:59:59.000Z

354

Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2  

SciTech Connect (OSTI)

The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

2006-10-01T23:59:59.000Z

355

Rehabilitation of Secondary Heating and Cooling Systems - Case Study  

E-Print Network [OSTI]

will occur unless system adjustments are made (Hegberg Mark C. 2000). In extreme cases, damage caused by erosion, cavitations, and a process akin to wire drawing can occur. In a simple system, the actuator might simply stop functioning properly... force as the pressure recovers downstream. The limited area where this occurs can cause significant damage to the valve and plug (ASHRAE, 2000b). The risk of cavitation tends to occur most in hot water systems when taking pressure drops greater...

Chen, H.; Deng, S.; Hugghins, J.; Brundidge, T.; Claridge, D.; Turner, W. D.; Bruner, H., Jr.

2002-01-01T23:59:59.000Z

356

American Indian Complex to Cool Off Using Ice Storage System...  

Broader source: Energy.gov (indexed) [DOE]

demand and prices are at their lowest. An energy savings calculator from Oklahoma Gas & Electric suggests the system could save nearly 42,000 a year over conventional...

357

A comparative assessment of alternative combustion turbine inlet air cooling system  

SciTech Connect (OSTI)

Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

1996-02-01T23:59:59.000Z

358

Short communication Optimization of hybrid ground coupled and air source heat pump systems  

E-Print Network [OSTI]

Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

Fernández de Córdoba, Pedro

359

Estimation of global posteriors and forward-backward training of hybrid HMM/ANN systems  

E-Print Network [OSTI]

The results of our research presented in this paper are two-fold. First, an estimation of global posteriors is formalized in the framework of hybrid HMM/ANN systems. It is shown that hybrid HMM/ANN systems, in which the ANN part estimates local...

Hennebert, J; Ris, C; Bourlard, Herve; Renals, Steve; Morgan, Nelson

1997-01-01T23:59:59.000Z

360

Stresa, Italy, 26-28 April 2006 THERMOELECTRIC AND MICROBATTERY HYBRID SYSTEM WITH ITS POWER  

E-Print Network [OSTI]

developed. It consists in hybriding an energy storage system (thin film solid state battery change depending on the outside conditions) and required by the thin film solid state battery conversion and energy storage. A hybrid system comprising a thermoelectric generator, a thin film solid state

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Feasibility Study for Wind/Hybrid Power System Applications for New England Islands  

E-Print Network [OSTI]

wind/hybrid systems. A feasibility study, carried out at the Renewable Energy Research Laboratory (RERLA Feasibility Study for Wind/Hybrid Power System Applications for New England Islands Gabriel Blanco, James F. Manwell, and Jon G. McGowan Renewable Energy Research Laboratory, University

Massachusetts at Amherst, University of

362

Safe Intersections: At the Crossing of Hybrid Systems and Verification Sarah M. Loos and Andre Platzer  

E-Print Network [OSTI]

scenarios may be distributed hybrid systems [21] when there is a multi-agent situation with mul- tiple carsSafe Intersections: At the Crossing of Hybrid Systems and Verification Sarah M. Loos and Andr and risks in ground trans- portation, e.g., by making cars aware of their environment and regulating speed

Platzer, André

363

Online Capable Optimized Planning of Power Split in a Hybrid Energy Storage System  

E-Print Network [OSTI]

Online Capable Optimized Planning of Power Split in a Hybrid Energy Storage System Karl Stephan, D-33095 Paderborn (Germany) {stille,romaus,boecker}@lea.upb.de Abstract--A hybrid energy storage system is an energy storage consisting of more than one type of energy storages combining

Paderborn, Universität

364

Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double  

E-Print Network [OSTI]

Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double Layer storage for operation. High demands concerning power and energy density, small volume and weight is to combine storage technologies with complementary characteristics as a hybrid energy storage system. Thus

Paderborn, Universität

365

A scalable and flexible hybrid energy storage system design and implementation  

E-Print Network [OSTI]

A scalable and flexible hybrid energy storage system design and implementation Younghyun Kim and flexibility. Detailed description on implementation of hybrid energy storage system prototype. Power conversion efficiency and energy storage element characteristics considered. a r t i c l e i n f o Article

Pedram, Massoud

366

Electrically heated particulate filter regeneration methods and systems for hybrid vehicles  

DOE Patents [OSTI]

A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-10-12T23:59:59.000Z

367

Special Session on Switched and Hybrid Systems Thursday, November 18, 2010  

E-Print Network [OSTI]

) The set-valued bouncing ball and its application to Lagrangian hybrid systems 11:30-11:45 Josef ShinarIEEEI2010 Special Session on Switched and Hybrid Systems Thursday, November 18, 2010 Topaz Hall in the wheeled robot problem 08:42-08:54 Ron Teichner and Michael Margaliot (Tel Aviv University, Israel

Margaliot, Michael

368

Control system and method for a hybrid electric vehicle  

DOE Patents [OSTI]

A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2001-01-01T23:59:59.000Z

369

A novel hybrid (wind-photovoltaic) system sizing procedure  

SciTech Connect (OSTI)

Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

Hocaoglu, Fatih O. [Afyon Kocatepe University, Dept. of Electronics and Communication Eng., 03200 Afyonkarahisar (Turkey); Gerek, Oemer N.; Kurban, Mehmet [Anadolu University, Dept. of Electrical and Electronics Eng., 26555 Eskisehir (Turkey)

2009-11-15T23:59:59.000Z

370

Information thermodynamics in a hybrid opto-mechanical system  

E-Print Network [OSTI]

Information thermodynamics is a recent field that investigates the links between information and energy. Its most famous "Gedankenexperiments" are Landauer erasure and Szilard engine, that describe the reversible conversion of a single bit of information into an elementary amount of work between a system and a battery. So far, direct evidences of such reversible work exchanges by measuring the battery's energy has remained elusive. In this article, we show that a hybrid optomechanical transducer is a proper platform to monitor these conversions. Such devices consist in an optically active quantum emitter, playing the role of the bit, coupled to a mechanical resonator, playing the role of the battery. Heat is exchanged with the electromagnetic reservoir. Within a mechanical oscillation, we connect the entropy variations of the quantum emitter with the mechanical energy variations, that are identi?ed with work exchanges. These results pave the road towards experimental investigation of quantum information thermodynamics.

Cyril Elouard; Maxime Richard; Alexia Auffèves

2014-09-23T23:59:59.000Z

371

Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems  

SciTech Connect (OSTI)

In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

Watzlaf, G.R.; Ackman, T.E.

2006-03-01T23:59:59.000Z

372

Contol of integrated mechanical dehumidification and passive cooling systems to produce energy efficient comfort  

SciTech Connect (OSTI)

Detailed computer simulations validated by full scale testing indicate that roof pond type passive cooling systems can provide acceptable residential temperature conditions in all climates of the United States. Passive cooling systems as presently conceived, however, require complementary dehumidification to carry existing latent loads. A study is made of the relative dehumidification efficiencies of conventional air conditioners and an improved mechanical dehumidifier which utilizes sensible cooling recovery. The effects of dew point and dry bulb temperatures, controller set point and humidity band width, infiltration, and climate are evaluated. A simple dehumidifier sizing procedure is presented. Results indicate that the improved dehumidifiers are several times as efficient as conventional air conditioners under desired steady state room conditions. It is also shown that dehumidifier capacities at AHAM test conditions may be misleading if used for design purposes.

Doderer, E.; Marcus, D.; Hoffner, J.

1982-01-01T23:59:59.000Z

373

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems  

E-Print Network [OSTI]

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

Raghavan, Srinivasa

374

COOLING SYSTEM FOR THE MERIT HIGH-POWER TARGET EXPERIMENT  

E-Print Network [OSTI]

pressures inside the vessels. This fast cycling system permitted several hundred tests in less than three colliders or neutrino factories. When installed at the CERN (European Organization for Nuclear Research) PS

McDonald, Kirk

375

Hybrid-drive implosion system for ICF targets  

DOE Patents [OSTI]

Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

Mark, James W. (Danville, CA)

1988-01-01T23:59:59.000Z

376

Hybrid-drive implosion system for ICF targets  

DOE Patents [OSTI]

Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

Mark, J.W.K.

1987-10-14T23:59:59.000Z

377

Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities  

SciTech Connect (OSTI)

Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

C. McGowin; M. DiFilippo; L. Weintraub

2006-06-30T23:59:59.000Z

378

HYBUD: An Energy-Efficient Architecture for Hybrid Parallel Disk Systems  

E-Print Network [OSTI]

consumption in parallel disk systems has strong impacts on the cost of backup power-generation and cooling consumption and cooling. Although flash memory is very energy- efficient compared to disk drives, flash memory but not limited to, video surveillance [1], remote-sensing database systems [2], and digital libraries [5

Qin, Xiao

379

Discussion on the Energy-Saving Potential of a Hybrid System in a Large Space Building in Different Areas  

E-Print Network [OSTI]

The use of a hybrid ventilation system is promoted to decrease the annual energy consumption of air conditioning. The switch-point of temperature, which is related with weather conditions, is presented to control the hybrid system properly...

Liu, S.; Huang, C.

2006-01-01T23:59:59.000Z

380

Standby cooling system for a fluidized bed boiler  

DOE Patents [OSTI]

A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Light Duty Plug-in Hybrid Vehicle Systems Analysis  

Broader source: Energy.gov (indexed) [DOE]

and Hybrids-Plus - Have experience with hardware from all three conversion vendors * Tesla Motors and AC Propulsion - Interest and support in testing next generation EVs for...

382

Electron-State Hybridization in Heavy-Fermion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transport, and, in part, magnetic properties of these materials. In the case of rare-earth compounds, the quasiparticle states arise from the interactions (hybridization) of...

383

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents [OSTI]

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

384

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents [OSTI]

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

Corletti, M.M.; Lau, L.K.; Schulz, T.L.

1993-12-14T23:59:59.000Z

385

Use of caged fish for mariculture and environmental monitoring in a power-plant cooling-water system  

E-Print Network [OSTI]

-nydrocarbon pesticides in fishes cultured at various locations within the cooling system. 203 LIST OF FIGURES Figure Page Map of the research site ~g the location of the power plant, cooling-water system, and research facilities 17 Schematic representation... quality might conceivably be available considering the large number of power plants utilizing coastal waters for cooling. Other important benefits of thermal fish-culture include ample water supply, and reduced pumping costs as a result of the massive...

Chamberlain, George William

2012-06-07T23:59:59.000Z

386

Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC  

SciTech Connect (OSTI)

The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto [Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

2014-01-29T23:59:59.000Z

387

Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests, Final Report  

E-Print Network [OSTI]

This is the final report for ASHRAE Research Project 1004-RP: Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests. This report presents the results of the development and application of the methodology to Case Study #2...

Reddy, T. A.; Elleson, J.; Haberl, J. S.

2000-01-01T23:59:59.000Z

388

EIS-0121: Alternative Cooling Water Systems, Savannah River Plant, Aiken, South Carolina  

Broader source: Energy.gov [DOE]

The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of cooling water systems for thermal discharges from K– and C-Reactors and from a coal-fired powerhouse in the D-Area at the Savannah River Plant (SRP)

389

Advancements of the Hybrid Method UF6 Container Inspection System  

SciTech Connect (OSTI)

Safeguards inspectors currently visit uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution detectors on a limited number of cylinders taken to be representative of the plant’s cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute. Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter data (186 keV photons from 235U) and non-traditional, neutron-induced, high-energy gamma-ray signatures (3-8 MeV) with an array of collimated, medium-resolution scintillators. Previous work at PNNL (2010) demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term, unattended operations. This system aims to increase the number of inspected cylinders at higher accuracy and with lower cost than when compared to inspectors with hand-held instruments. Several measurement campaigns of 30B cylinder populations and a refined MCNP model will be reported. The MCNP model consists of per-gram basis vectors for the different uranium isotopes and several fill geometries, enabling fast generation of any UF6 enrichment level and multiple configurations. The refined model was used to optimize collimator design and detector configuration for the hybrid method. In addition, a new field prototype based on model results was utilized in a set of field measurements.

Mace, Emily K.; Orton, Christopher R.; Jordan, David V.; McDonald, Benjamin S.; Smith, Leon E.

2011-07-17T23:59:59.000Z

390

Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER  

E-Print Network [OSTI]

The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were...

Naveed, A.T.; Lee, E. J.; Kang, E. C.

2006-01-01T23:59:59.000Z

391

ROBUST CONTROL ANALYSIS USING REAL-TIME IMPLEMENTATION OF A HYBRID FUEL CELL POWER GENERATION SYSTEM  

E-Print Network [OSTI]

is performed for a hybrid Fuel Cell/Supercapacitor generation system with power management, realized through converters interfacing the Fuel Cell (FC) and the Supercapacitor (SC) with the system electrical load

Paris-Sud XI, Université de

392

A Modular Visual Model for Hybrid Systems Radu Grosu, Thomas Stauner and Manfred Broy  

E-Print Network [OSTI]

, but also because hybrid systems are naturally decomposed into the system itself and its environment. Based by BMW, is to control the chassis level of an automobile by a pneumatic suspension. The abstract model

Grosu, Radu

393

Reversible work extraction in a hybrid opto-mechanical system  

E-Print Network [OSTI]

With the progress of nano-technology, thermodynamics also has to be scaled down, calling for specific protocols to extract and measure work. Usually, such protocols involve the action of an external, classical field (the battery) of infinite energy, that controls the energy levels of a small quantum system (the calorific fluid). Here we suggest a realistic device to reversibly extract work in a battery of finite energy : a hybrid optomechanical system. Such devices consist in an optically active two-level quantum system interacting strongly with a nano-mechanical oscillator that provides and stores mechanical work, playing the role of the battery. We identify protocols where the battery exchanges large, measurable amounts of work with the quantum emitter without getting entangled with it. When the quantum emitter is coupled to a thermal bath, we show that thermodynamic reversibility is attainable with state-of-the-art devices, paving the road towards the realization of a full cycle of information-to-energy conversion at the single bit level.

Cyril Elouard; Maxime Richard; Alexia Auffèves

2015-02-16T23:59:59.000Z

394

Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

Gonder, J.; Ireland, J.; Cosgrove, J.

2013-04-01T23:59:59.000Z

395

Method and apparatus for enhancing reactor air-cooling system performance  

DOE Patents [OSTI]

An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

Hunsbedt, Anstein (Los Gatos, CA)

1996-01-01T23:59:59.000Z

396

Method and apparatus for enhancing reactor air-cooling system performance  

DOE Patents [OSTI]

An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

Hunsbedt, A.

1996-03-12T23:59:59.000Z

397

Handbook of experiences in the design and installation of solar heating and cooling systems  

SciTech Connect (OSTI)

A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

Ward, D.S.; Oberoi, H.S.

1980-07-01T23:59:59.000Z

398

Study of parameters affecting the performance of solar desiccant cooling systems  

SciTech Connect (OSTI)

The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65[degree]C to 160[degree]C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

Pesaran, A.A.; Hoo, E.A.

1993-01-01T23:59:59.000Z

399

Study of parameters affecting the performance of solar desiccant cooling systems  

SciTech Connect (OSTI)

The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65{degree}C to 160{degree}C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

Pesaran, A.A.; Hoo, E.A.

1993-01-01T23:59:59.000Z

400

Cooled electronic system with thermal spreaders coupling electronics cards to cold rails  

DOE Patents [OSTI]

Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

2013-07-23T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

SciTech Connect (OSTI)

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

402

Hybrid Ground Source System Analysis and Tool Development  

Broader source: Energy.gov [DOE]

Project objectives: 1. Compile filtered hourly data for three monitored hybrid installations. 2.Validate existing HyGCHP model. 3.Refine and enhance the HyGCHP model (usability / capability). 4. Demonstrate impact of actual hybrid installations. 5. Report lessons learned and impacts of HyGSHPs to design/engineering community.

403

Modeling and Simulation of a Microgrid as a Stochastic Hybrid System  

E-Print Network [OSTI]

1 Modeling and Simulation of a Microgrid as a Stochastic Hybrid System Martin Strelec, Karel Macek, Alessandro Abate Abstract--Microgrids (MGs) are small-scale local energy grids. While dedicated to cover and on approximate dynamic programming) for typical challenges in MGs. Index Terms--Microgrids, Stochastic Hybrid

Abate, Alessandro

404

Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage Systems*  

E-Print Network [OSTI]

Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage massimo.poncino@polito.it Abstract-- Hybrid electrical energy storage (HEES) systems consist of multiple banks of heterogeneous electrical energy storage (EES) elements that are connected to each other through

Pedram, Massoud

405

Hybrid Electrical Energy Storage Systems Massoud Pedram, Naehyuck Chang, Younghyun Kim, and Yanzhi Wang  

E-Print Network [OSTI]

Hybrid Electrical Energy Storage Systems Massoud Pedram, Naehyuck Chang, Younghyun Kim, and Yanzhi of EES element fulfills high energy density, high power delivery capacity, low cost per unit of storage Descriptors B.0 [General] General Terms Design Keywords Energy, Energy storage, Electrical storage, Hybrid

Pedram, Massoud

406

Title of thesis: SCHEDULING IN ENERGY HARVESTING SYSTEMS WITH HYBRID ENERGY STORAGE  

E-Print Network [OSTI]

ABSTRACT Title of thesis: SCHEDULING IN ENERGY HARVESTING SYSTEMS WITH HYBRID ENERGY STORAGE and Computer Engineering In wireless networks, efficient energy storage and utilization plays a vital role transmission with an energy harvesting trans- mitter which has hybrid energy storage with a perfect super

Ulukus, Sennur

407

Fluorescence from a quantum dot and metallic nanosphere hybrid system  

SciTech Connect (OSTI)

We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

2014-03-31T23:59:59.000Z

408

Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water  

E-Print Network [OSTI]

source and cooling water overall (in comparison with normal system 15% of energy saving) -Adopt large-scale ice heat storage system and realize equalization of electricity load -Adopt turbo chiller and heat recovery facilities as high efficiency heat... screw heat pump - 838MJ/? 1 IHP/Water source screw heat pump (Ice storage and heat recovery) Cool water? 3,080MJ/h Ice Storage? 1,936MJ/h Cool water heat recovery? 3,606MJ/h Ice storage heat recovery? 2,448MJ/h 8Unit ?16? TR1 Water cooling turbo...

Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

2014-01-01T23:59:59.000Z

409

Evaluation of 2004 Toyota Prius Hybrid Electric Drive System  

SciTech Connect (OSTI)

The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

Staunton, Robert H [ORNL; Ayers, Curtis William [ORNL; Chiasson, J. N. [University of Tennessee, Knoxville (UTK); Burress, Timothy A [ORNL; Marlino, Laura D [ORNL

2006-05-01T23:59:59.000Z

410

Evaluation of 2004 Toyota Prius Hybrid Electric Drive System  

SciTech Connect (OSTI)

The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

Staunton, R.H.; Ayers, C.W.; Chiasson, J.N. (U Tennessee-Knoxville); Burress, B.A. (ORISE); Marlino, L.D.

2006-05-01T23:59:59.000Z

411

RAMI Analysis for Designing and Optimizing Tokamak Cooling Water System (TCWS) for the ITER's Fusion Reactor  

SciTech Connect (OSTI)

U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C and 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment with no field experience and lowers specific costs while providing higher reliability. This paper presents a brief description of the TCWS conceptual design and the application of RAMI tools to optimize the design at different stages during the project.

Ferrada, Juan J [ORNL] [ORNL; Reiersen, Wayne T [ORNL] [ORNL

2011-01-01T23:59:59.000Z

412

Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor  

SciTech Connect (OSTI)

U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclear pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.

Kim, Seokho H [ORNL] [ORNL; Berry, Jan [ORNL] [ORNL

2011-01-01T23:59:59.000Z

413

The design and evaluation of a water delivery system for evaporative cooling of a proton exchange membrane fuel cell  

E-Print Network [OSTI]

An investigation was performed to demonstrate system design for the delivery of water required for evaporative cooling of a proton exchange membrane fuel cell (PEMFC). The water delivery system uses spray nozzles capable of injecting water directly...

Al-Asad, Dawood Khaled Abdullah

2009-06-02T23:59:59.000Z

414

SIMULATION OF A SOLAR ABSORPTION COOLING SYSTEM J.P. Praene*, D. Morau, F. Lucas, F. Garde, H. Boyer  

E-Print Network [OSTI]

of the extensive use of heating ventilation air conditioning (HVAC) systems, which increase the peak electric load cooling. As no CFC are used, absorption systems are friendlier to the environment. At present the market

Paris-Sud XI, Université de

415

Electron-State Hybridization in Heavy-Fermion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and the shapes of the Yb 4f and Ir 5d orbitals involved in hybridization. The 14 "rare-earth" elements following lanthanum in the periodic table are characterized by the...

416

The split system approach to managing time in simulations of hybrid systems having continuous and discrete event components  

SciTech Connect (OSTI)

The efficient and accurate management of time in simulations of hybrid models is an outstanding engineering problem. General a priori knowledge about the dynamic behavior of the hybrid system (i.e. essentially continuous, essentially discrete, or 'truly hybrid') facilitates this task. Indeed, for essentially discrete and essentially continuous systems, existing software packages can be conveniently used to perform quite sophisticated and satisfactory simulations. The situation is different for 'truly hybrid' systems, for which direct application of existing software packages results in a lengthy design process, cumbersome software assemblies, inaccurate results, or some combination of these independent of the designer's a priori knowledge about the system's structure and behavior. The main goal of this paper is to provide a methodology whereby simulation designers can use a priori knowledge about the hybrid model's structure to build a straightforward, efficient, and accurate simulator with existing software packages. The proposed methodology is based on a formal decomposition and re-articulation of the hybrid system; this is the main theoretical result of the paper. To set the result in the right perspective, we briefly review the essentially continuous and essentially discrete approaches, which are illustrated with typical examples. Then we present our new, split system approach, first in a general formal context, then in three more specific guises that reflect the viewpoints of three main communities of hybrid system researchers and practitioners. For each of these variants we indicate an implementation path. Our approach is illustrated with an archetypal problem of power grid control.

Nutaro, James J [ORNL; Kuruganti, Phani Teja [ORNL; Protopopescu, Vladimir A [ORNL; Shankar, Mallikarjun [ORNL

2012-01-01T23:59:59.000Z

417

Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System  

SciTech Connect (OSTI)

One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions between the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power and power density can be significantly increased, without losing the passive heat removal feature. This paper will introduce the concept of using DRACS to enhance VHTR passive safety and economics. Three design options will be discussed, depending on the cooling pipe locations. Analysis results from a lumped volume based model and CFD simulations will be presented.

Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

2012-06-01T23:59:59.000Z

418

Summary of Field Measurement on UF6 Cylinders Using Electro-Mechanically Cooled Systems  

SciTech Connect (OSTI)

Measurement of the enrichment of solid state UF6 stored within large metal cylinders is a task commonly performed by plant operators and inspectors. The measurement technologies typically used range from low-resolution, high-efficiency sodium iodide detectors to high-resolution, moderate-efficiency high-purity germanium (HPGe) detectors. The technology used and methods deployed are dependent upon the material being measured, environmental conditions, time constraints, and measurement-precision requirements. Operators and inspectors typically use specially designed, HPGe detectors that are cooled with liquid nitrogen in situations where high-resolution measurements are required. However, the requirement for periodically refilling the system with liquid nitrogen makes remote usage cumbersome and slow. The task of cooling the detector reduces the available time for the inspector to perform other safeguards activities while on site. If the inspector has to reduce the count time for each selected cylinder to ensure that all preselected cylinders are measured during the inspection, the resulting measurement uncertainties may be increased, making it more difficult to detect and verify potential discrepancies in the operator's declarations. However, recent advances in electromechanically cooled HPGe detectors may provide the inspector with an improved verification tool by eliminating the need for liquid nitrogen. This report provides a summary of test results for field measurements performed using electromechanically cooled HPGe detectors on depleted, natural, and low-enriched uranium cylinders. The results of the study provide valuable information to inspectors and operators regarding the capabilities and limitations of electromechanically cooled systems based on true field-measurement conditions.

McGinnis, Brent R [ORNL; Smith, Steven E [ORNL; Solodov, Alexander A [ORNL; Whitaker, J Michael [ORNL; Morgan, James B [ORNL; MayerII, Richard L. [USEC, Inc.; Montgomery, J. Brent [U.S. Enrichment Corporation Paducah Gaseous Diffusion Plant

2009-01-01T23:59:59.000Z

419

Evaluation of materials for systems using cooled, treated geothermal or high-saline brines  

SciTech Connect (OSTI)

Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. The metals exhibiting corrosion resistance at 50,000 ppM chloride were then evaluated at 100,000 and 200,000 ppM chloride. Since these were screening tests to select materials for components to be used in a cooling system, with primary emphasis on condenser tubing, several materials were exposed for 4 to 10 months in pilot cooling tower test units with heat transfer for further corrosion evaluation. The results of the screening tests indicate that ferritic stainless steels (29-4-2 and SEA-CURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests. This pitting was not apparent, however, after 6 months of exposure in the pilot cooling tower tests. The nickel-base alloys exhibited excellent corrosion resistance, but their high cost prevents their use unless no other material is found feasible. Other materials tested, although unsuitable for condenser tubing material, would be suitable as tube sheet material.

Suciu, D.F.; Wikoff, P.M.

1982-09-01T23:59:59.000Z

420

Cooled railplug  

DOE Patents [OSTI]

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

Weldon, William F. (Austin, TX)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges  

SciTech Connect (OSTI)

As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: • economic stability – related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; • environmental sustainability – related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; • resource security – related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process applications is certainly not new, renewed interest in more tightly coupled energy product plants (such as HES) that meet the objectives outline above have gained additional interest recently, an interest likely sparked by sharpening energy security concerns. Studies have shown that non-nuclear integrated (hybrid) energy systems can have appealing attributes in terms of overall process efficiency, enhanced electric grid stability, renewable energy integration, and economic performance, and lifecycle greenhouse gas emissions. These attributes seem to be sufficiently compelling that several significant commercial investments in fossil-renewable HES are being made in the United States while the U.S. Defense Advanced Research Projects Agency (DARPA) has openly solicited information regarding nuclear energy integration schemes. The challenges of nuclear energy integration include myriad issues associated with the following RD&D areas, or “platforms”: • feedstock processing (e.g. bio-feedstock integration with coal, carbon feedstock extraction using nuclear energy); • heat / energy management (e.g. advanced heat exchangers, process design); • energy storage (e.g. H2 production, liquid fuels synthesis); • byproduct management (e.g. CO2 recycle approaches); • systems dynamics, integration and control (e.g. process dynamics analyses and optimization, advanced prognostics, diagnostics, variable time scale control and flow sheet optimization).

Steven E. Aumeier

2010-10-01T23:59:59.000Z

422

Effect of makeup water properties on the condenser fouling in power planr cooling system  

SciTech Connect (OSTI)

The thermoelectric power industry in the U.S. uses a large amount of fresh water. As available freshwater for use in thermoelectric power production becomes increasingly limited, use of nontraditional water sources is of growing interest. Utilization of nontraditional water, in cooling systems increases the potential for mineral precipitation on heat exchanger surfaces. In that regard, predicting the accelerated rate of scaling and fouling in condenser is crucial to evaluate the condenser performance. To achieve this goal, water chemistry should be incorporated in cooling system modeling and simulation. This paper addresses the effects of various makeup water properties on the cooling system, namely pH and aqueous speciation, both of which are important factors affecting the fouling rate in the main condenser. Detailed modeling of the volatile species desorption (i.e. CO{sub 2} and NH{sub 3}), the formation of scale in the recirculating system, and the relationship between water quality and the corresponding fouling rates is presented.

Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Dzombak, D.; Miller, D.

2011-01-01T23:59:59.000Z

423

Development of passive dry cooling system for power plants in arid land  

SciTech Connect (OSTI)

Availability of large amounts of cooling water is essential for steam power plants. In inland arid areas, gas turbines are usually used for electric power generation at low efficiency and high operation costs. Dry cooling towers are another option but they are not effective with high ambient temperature. This work explores the use of radiative cooling for power plants and large refrigeration plants in inland arid areas. The work done consists of small scale experiments, mathematical models, a survey of the suitable materials, and a prototype experiment. This article presents the prototype experiment. The mathematical modeling was presented by the authors in Solar Energy 48(5), 279-286 (1992). A prototype experimental pond, 10m x 25m x 1m, covered with a painted white aluminum sheet was designed, constructed, and tested. The pond was divided into two layers. The experiment was carried out from January to June. Temperatures in the pond at different sections and depths, net radiation, and weather data were measured. At night the results showed an average heat rejection by radiation of 50 W/m[sup 2]. These results were comparable with the results of the mathematical model. The net result of the experiment was positive. It demonstrated the suitability of the covered pond as a heat rejection system in place where a sufficient amount of cooling water was not available.

Sabbagh, J.A.; Khalifa, A.M.A.; Olwi, I.A. (King Abdulaziz Univ., Jeddah (Saudi Arabia))

1993-12-01T23:59:59.000Z

424

Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System  

E-Print Network [OSTI]

A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

Saif, A.

425

Speaker-Adaptation for Hybrid HMM-ANN Continuous Speech Recognition System   

E-Print Network [OSTI]

to reduce this degradation. In this paper we present and evaluate some techniques for speaker-adaptation of a hybrid HMM-artificial neural network (ANN) continuous speech recognition system. These techniques are applied to a well trained, speaker...

Neto, Joao; Almeida, Luis; Hochberg, Mike; Martins, Ciro; Nunes, Luis; Renals, Steve; Robinson, Tony

1995-01-01T23:59:59.000Z

426

Design of a hybrid energy-generation system for autonomous kayaks  

E-Print Network [OSTI]

The goal of this research is to design and analyze a series-hybrid energy-production system for an autonomous kayak. Currently these vehicles have limited range due to energy storage in lead acid batteries. Extending the ...

Plumer, Kevin E. (Kevin Edward)

2010-01-01T23:59:59.000Z

427

Safety in Semi-autonomous Multi-vehicle Systems: A Hybrid Control Approach  

E-Print Network [OSTI]

In this article, we have illustrated the application of a formal hybrid control approach to design semiautonomous multivehicle systems that are guaranteed to be safe. Our experimental results illustrate that, in a structured ...

Verma, Rajeev

428

Combined refrigeration system with a liquid pre-cooling heat exchanger  

DOE Patents [OSTI]

A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

Gaul, Christopher J.

2003-07-01T23:59:59.000Z

429

Engine coolant compatibility with the nonmetals found in automotive cooling systems  

SciTech Connect (OSTI)

High temperature, short term immersion testing was used to determine the impact of propylene and ethylene glycol base coolants on the physical properties of a variety of elastomeric and thermoplastic materials found in automotive cooling systems. The materials tested are typically used in cooling system hoses, radiator end tanks, and water pump seals. Traditional phosphate or borate-buffered silicated coolants as well as extended-life organic acid formulations were included. A modified ASTM protocol was used to carry out the testing both in the laboratory and at an independent testing facility. Post-test fluid chemistry including an analysis of any solids which may have formed is also reported. Coolant impact on elastomer integrity as well as elastomer-induced changes in fluid chemistry were found to be independent of the coolant`s glycol base.

Greaney, J.P.; Smith, R.A. [ARCO Chemical Co., Newtown Square, PA (United States)

1999-08-01T23:59:59.000Z

430

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network [OSTI]

effect from CO2 emission resulting from the combustion of fossil fuels in utility power plants and the use of chlorofluorocarbon refrigerants, which is currently thought to affect depletion of the ozone layer. The ban on fluorocarbon fluids has been...LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical Engineering, Anna University...

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

431

Hybrid vehicle powertrain system with power take-off driven vehicle accessory  

DOE Patents [OSTI]

A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

2006-09-12T23:59:59.000Z

432

Questions About Your Cooling Water System That You Need To Ask  

E-Print Network [OSTI]

TO BE TREATED? Yes, yes, yes. Two bad th ings happen to water in cooling systems. The impurities in the water concentrate due to evaporation, and the impurities in the air are scrubbed into the water. These impurities, without treatment, would foul... and corrode the system rapidly. HOW CAN I DETERMINE WHAT TREATMENT I NEED? First, you must have tests performed on the water. The chemical constituents must be identified. Your system must be defined in terms of its sca1 ing and foul ing tendencies by a...

Matson, J. V.

1984-01-01T23:59:59.000Z

433

Energy minimization of separation processes using conventional/membrane hybrid systems  

SciTech Connect (OSTI)

The purpose of this study was to identify the general principles governing the choice of hybrid separation systems over straight membrane or straight nonmembrane systems and to do so by examining practical applications (process design and economics). Our focus was to examine the energy consumption characteristics and overall cost factors of the membrane and nonmembrane technologies that cause hybrid systems to be preferred over nonhybrid systems. We evaluated four cases studies, chosen on the basis of likelihood of commercial viability of a hybrid system and magnitude of energy savings: (1) propane/propylene separation; (2) removal of nitrogen from natural gas; (3) concentration of Kraft black liquor; and (4)solvent deasphalting. For propane/propylene splitting, the membrane proved to be superior to distillation in both thermodynamic efficiency and processing cost (PC) when the product was 95% pure propylene. However, to produce higher purity products, the membrane alone could not perform the separation, and a membrane/distillation hybrid was required. In these cases, there is an optimum amount of separation to be accomplished by the membrane (expressed as the fraction of the total availability change of the membrane/distillation hybrid that takes place in the membrane and defined as {phi}{sub m}, the thermodynamic extent of separation). Qualitative and quantitative guidelines are discussed with regard to choosing a hybrid system. 54 refs., 66 figs., 36 tabs.

Gottschlich, D.E.; Roberts, D.L. (SRI International, Menlo Park, CA (USA))

1990-09-28T23:59:59.000Z

434

Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building  

E-Print Network [OSTI]

Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

Zhu, N.

2014-01-01T23:59:59.000Z

435

Development of a simplified cooling load design tool for underfloor air distribution (UFAD) systems.  

E-Print Network [OSTI]

occupants) W = zone cooling load (supply and return plenumm]. W L is the zone cooling load (supply and return plenumthe total UFAD cooling load between the supply plenum, the

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

436

Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems  

E-Print Network [OSTI]

of the UFAD cooling load between the supply plenum, zone (split the UFAD cooling load into the supply plenum, the zonesplit the UFAD cooling load into the supply plenum, zone and

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

437

Hybrid System for Separating Oxygen from Air - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmasSandy-Nor'easter SituationHybrid Hybrid

438

Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems  

E-Print Network [OSTI]

Underfloor Air Distribution (UFAD) Design Guide, Americanfor design cooling loads in Underfloor Air Distribution (for design cooling loads in underfloor air distribution (

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

439

Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems  

E-Print Network [OSTI]

heat gain is well recognized by cooling load calculationheat gain and building thermal mass, which is particularly important in cooling load calculation,

Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

440

Purification of water from cooling towers and other heat exchange systems  

DOE Patents [OSTI]

The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

Sullivan; Enid J. (Los Alamos, NM), Carlson; Bryan J. (Ojo Caliente, NM), Wingo; Robert M. (Los Alamos, NM), Robison; Thomas W. (Stilwell, KS)

2012-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Determining Optimal Equipment Capacities in Cooling, Heating and Power (CHP) Systems  

SciTech Connect (OSTI)

Evaluation of potential cooling, heating and power (CHP) applications requires an assessment of the operations and economics of a particular system in meeting the electric and thermal demands of a specific end-use facility. A key determinate in whether a candidate system will be economic is the proper selection of equipment capacities. A methodology to determine the optimal capacities for CHP prime movers and absorption chillers using nonlinear optimization algorithms has been coded into a Microsoft Excel spreadsheet tool that performs the capacity optimization and operations simulation. This paper presents details on the use and results of this publicly available tool.

DeVault, Robert C [ORNL; Hudson II, Carl Randy [ORNL

2006-01-01T23:59:59.000Z

442

Dehumidification Enhancement of Direct Expansion Systems Through Component Augmentation of the Cooling Coil  

E-Print Network [OSTI]

to 7 o F (2.2 to 3.9 o C) lower than the CDP as a result of the adsorption process after the DX cooling coil. Likewise for the DX&DD system, air can be delivered at a SDP 7 to 11 o F (3.9 to 6.1 o C) lower than the CDP as a result... of the desiccant dehumidifier, especially in the DX&DD system is that its sorption process can produce dew points well into the 32 o F range and lower possibly, without the freezing coils associated with the conventional condensation process...

Kosar, D.; Swami, M.; Shirey, D.; Raustad, R.; Basarkar, M.

2006-01-01T23:59:59.000Z

443

Hybrid Energy Storage System Integration For Vehicles , Hai Zhou  

E-Print Network [OSTI]

electric-drive vehicles have shown promises for substantial reductions in petroleum use and vehicle emis, Electric-Drive Vehicle, Design, Optimization 1. Introduction Transportation electrification has drawn these challenges [3]. Hybrid electric vehicles (HEVs) have been fast adopted and widely deployed over the past

Zhou, Hai

444

Solar heating and cooling of residential buildings: design of systems, 1980 edition  

SciTech Connect (OSTI)

This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

None

1980-09-01T23:59:59.000Z

445

Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1  

SciTech Connect (OSTI)

Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

Hull, E.L.

2006-07-28T23:59:59.000Z

446

A Hybrid Feedback Regulator Approach to Control an Automotive Suspension System  

E-Print Network [OSTI]

A Hybrid Feedback Regulator Approach to Control an Automotive Suspension System Xenofon D synthe- sis approach using an automotive suspension system. Discrete abstrac- tions are used control synthesis is presented and an example of an automotive suspension system is used to illus- trate

Antsaklis, Panos

447

Passive decay heat removal system for water-cooled nuclear reactors  

DOE Patents [OSTI]

A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

Forsberg, Charles W. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

448

Fuzzy Logic Application for Optimization of the Cooling Towers Control System  

E-Print Network [OSTI]

The control system for the SPS-BA6 cooling towers station is considered in order to introduce the concept of a multivariable process. Multivariable control means the maintenace of several controlled variables at independent set points. In a single-variable system, to keep the single process variables within their critical values is considered a rather simple operation. In a complex multivariable system, the determination of the optimal operation point results in a combination of all set values of the variables. Control of a multivariable system requires therefore a more complex analysis. As the solution based on a mathematical model of the process is far beyond acceptable complexity, most mathematical models involve extensive simplifications and linearizations to optimize the resulting controllers. In this report the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.

Blanc, D

2000-01-01T23:59:59.000Z

449

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

SciTech Connect (OSTI)

The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The eight-month program for 1990 is separated into seven tasks. There are tasks for each of the three solar houses, a project to build and test several generic solar water heaters, a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, a management task, and a task funding travel to attend the Field Monitoring for a Purpose'' workshop which was held April 2--5, 1990, in Gothenburg, Sweden. The objectives and progress in each task are described in this report. 7 figs., 4 tabs.

Not Available

1990-11-01T23:59:59.000Z

450

Regulatory analysis for the resolution of Generic Issue 143: Availability of chilled water system and room cooling  

SciTech Connect (OSTI)

This report presents the regulatory analysis for Generic Issue (GI-143), {open_quotes}Availability of Chilled Water System and Room Cooling.{close_quotes} The heating, ventilating, and air conditioning (HVAC) systems and related auxiliaries are required to provide control of environmental conditions in areas in light water reactor (LWR) plants that contain safety-related equipment. In some plants, the HVAC and chilled water systems serve to maintain a suitable environment for both safety and non-safety-related areas. Although some plants have an independent chilled water system for the safety-related areas, the heat removal capability often depends on the operability of other supporting systems such as the service water system or the component cooling water system. The operability of safety-related components depends upon operation of the HVAC and chilled water systems to remove heat from areas containing the equipment. If cooling to dissipate the heat generated is unavailable, the ability of the safety-related equipment to operate as intended cannot be assured. Typical components or areas in the nuclear power plant that could be affected by the failure of cooling from HVAC or chilled water systems include the (1) emergency switchgear and battery rooms, (2) emergency diesel generator room, (3) pump rooms for residual heat removal, reactor core isolation cooling, high-pressure core spray, and low-pressure core spray, and (4) control room. The unavailability of such safety-related equipment or areas could cause the core damage frequency (CDF) to increase significantly.

Leung, V.T.

1993-12-01T23:59:59.000Z

451

Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs  

DOE Patents [OSTI]

An improved cooling system for a gas turbine is disclosed. A plurality of V-shaped notch weirs are utilized to meter a coolant liquid from a pool of coolant into a plurality of platform and airfoil coolant channels formed in the buckets of the turbine. The V-shaped notch weirs are formed in a separately machined cylindrical insert and serve to desensitize the flow of coolant into the individual platform and airfoil coolant channels to design tolerances and non-uniform flow distribution.

Grondahl, Clayton M. (Clifton Park, NY); Germain, Malcolm R. (Ballston Lake, NY)

1981-01-01T23:59:59.000Z

452

KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM  

SciTech Connect (OSTI)

Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

L.E. Demick

2010-09-01T23:59:59.000Z

453

Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

SciTech Connect (OSTI)

This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the {sup 6}Li/{sup 7}Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant {sup 6}Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive M

Kramer, K

2010-04-08T23:59:59.000Z

454

Cool Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Links Explore Science Explore Explore these Topics Activities Videos Cool Links Favorite Q&A invisible utility element Cool Links Los Alamos National Laboratory links Los...

455

Cleaning residual NaK in the fast flux test facility fuel storage cooling system  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the scrubber through the stack and due to the temperature of the gas, the hydrogen auto ignited when it mixed with the oxygen in the air. There was no damage to equipment, no injuries, and no significant release of hazardous material. Even though the FSF Cooling System is the only system at FFTF that contains residual NaK, there are lessons to be learned from this event that can be applied to future residual sodium removal activities. The lessons learned are: - Before cleaning equipment containing residual alkali metal the volume of alkali metal in the equipment should be minimized to the extent practical. As much as possible, reconfirm the amount and location of the alkali metal immediately prior to cleaning, especially if additional evolutions have been performed or significant time has passed. This is especially true for small diameter pipe (<20.3 centimeters diameter) that is being cleaned in place since gas flow is more likely to move the alkali metal. Potential confirmation methods could include visual inspection (difficult in all-metal systems), nondestructive examination (e.g., ultrasonic measurements) and repeating previous evolutions used to drain the system. Also, expect to find alkali metal in places it would not reasonably be expected to be. - Staff with an intimate knowledge of the plant equipment and the bulk alkali metal draining activities is critical to being able to confirm the amount and locations of the alkali metal residuals and to safely clean the residuals. - Minimize the potential for movement of alkali metal during cleaning or limit the distance and locations into which alkali metal can move. - Recognize that when working with alkali metal reactions, occasional pops and bangs are to be anticipated. - Pre-plan emergency responses to unplanned events to assure responses planned for an operating reactor are appropriate for the deactivation phase.

Burke, T.M.; Church, W.R. [Fluor Hanford, PO Box 1000, Richland, Washington, 99352 (United States); Hodgson, K.M. [Fluor Government Group, PO Box 1050, Richland, Washington, 99352 (United States)

2008-01-15T23:59:59.000Z

456

OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant; Gregory Nellis, Professor; Sanford Klein,  

E-Print Network [OSTI]

1 OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant, Madison, WI, United States Abstract: Hybrid ground-coupled heat pump systems (HyGCHPs) couple conventional ground- coupled heat pump (GCHP) equipment with supplemental heat rejection or extraction systems

Wisconsin at Madison, University of

457

Optimal Design of a PV/Fuel Cell Hybrid Power System for the City of Brest in France  

E-Print Network [OSTI]

source. The produced hydrogen feeds then a fuel cell (FC) system, which will supply the city of BrestOptimal Design of a PV/Fuel Cell Hybrid Power System for the City of Brest in France Omar Hazem with the optimal design of a stand-alone hybrid photovoltaic and fuel cell power system without battery storage

Brest, Université de

458

Adaptive Model Predictive Control of the Hybrid Dynamics of a Fuel Cell System.  

E-Print Network [OSTI]

Adaptive Model Predictive Control of the Hybrid Dynamics of a Fuel Cell System. M. Fiacchini, T operation of a fuel cell system is presented. The aim of the control design is to guarantee that the oxygen control to a fuel cell plant is presented. The fuel cell, located in the laboratory of the Department

Paris-Sud XI, Université de

459

Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles Yanzhi, xuelin, pedram}@usc.edu, 2 {naehyuck}@elpl.snu.ac.kr ABSTRACT Photovoltaic (PV) energy harvesting system and Reliability]: Performance Analysis and Design Aids. General Terms Algorithms, Design, Management, Performance

Pedram, Massoud

460

DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon  

E-Print Network [OSTI]

DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon Department of Electrical vehicles has been implemented and tested successfully. The system can work with different primary power the vehicle with minimum help of the primary power source. The vehicle uses a brushless dc motor

Catholic University of Chile (Universidad Católica de Chile)

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DESIGN OF HYBRID MARINE CONTROL SYSTEMS FOR DYNAMIC POSITIONING IN EXTREME SEAS  

E-Print Network [OSTI]

- OPERATOR CONTROL SYSTEM INTEGRATED MONITORING & CONTROL SYSTEM - EXTENSION ALARM - PROCESS CONTROL POWER · Harsh environmental conditions ­ Strong current: Gulf of Mexico, Northern England, Southern Norway ­ Hybrid concept motivation · Flight control: ­ Gain scheduling (McLean, 1990; Wang and Balakrishnan, 2002

Nørvåg, Kjetil

462

A Monolithic Microconcentrator Receiver For A Hybrid PV-Thermal System: Preliminary Performance  

E-Print Network [OSTI]

for Sustainable Energy Systems, Australian National University, Canberra, Australia http://solar.05 INTRODUCTION In the drive for ever more cost effective solar energy technologies, hybrid PV by Chromasun Inc., San Jose, California, and at the Centre for Sustainable Energy Systems, Australian National

463

SIMULATION AND CONTROL OF HYBRID SYSTEMS WITH APPLICATIONS TO MOBILE ROBOTICS  

E-Print Network [OSTI]

SIMULATION AND CONTROL OF HYBRID SYSTEMS WITH APPLICATIONS TO MOBILE ROBOTICS Joel M. Esposito is particularly evident in mobile robotics because these systems typically have significant onboard computing and control of mobile robots is presented. It is our approach that reactive control and motion planning

Plotkin, Joshua B.

464

Hybrid Generation Systems Planning Expansion Forecast: A Critical State of the Art Review  

E-Print Network [OSTI]

resources. In order to power system enhance reliability, efficiency and safety, renewable and nonrenewable, hydropower, geothermal, and biomass constitute a type of distributed electricity resources and have recently, these generation unit should be working together in two or more sources in the so-called hybrid system concept

Brest, Université de

465

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS  

E-Print Network [OSTI]

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter-mounted system couples the benefits of distributed PV electricity generation with the on-site generation of thermal energy in a temperature range of 60 to 220 ºC. This is ideal for applications ranging from

466

A HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION  

E-Print Network [OSTI]

hydrogen production for proton exchange membrane (PEM) fuel cells for various mobile and stationaryA HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION A. Harale, H. Hwang, P recently our focus has been on new HAMR systems for hydrogen production, of potential interest to pure

Southern California, University of

467

Modelling of Stochastic Hybrid Systems with Applications to Accident Risk Assessment  

E-Print Network [OSTI]

Modelling of Stochastic Hybrid Systems with Applications to Accident Risk Assessment #12;The SYSTEMS WITH APPLICATIONS TO ACCIDENT RISK ASSESSMENT DISSERTATION to obtain the doctor's degree promotor Prof. dr. A. Bagchi #12;Contents 1 Introduction 3 1.1 Accident risk assessment

Del Moral , Pierre

468

Potential Refrigerants for Power Electronics Cooling  

SciTech Connect (OSTI)

In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

Starke, M.R.

2005-10-24T23:59:59.000Z

469

Predictive pre-cooling control for low lift radiant cooling using building thermal mass  

E-Print Network [OSTI]

Low lift cooling systems (LLCS) hold the potential for significant energy savings relative to conventional cooling systems. An LLCS is a cooling system which leverages existing HVAC technologies to provide low energy cooling ...

Gayeski, Nicholas (Nicholas Thomas)

2010-01-01T23:59:59.000Z

470

Hybrid power management system and method - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmasSandy-Nor'easter SituationHybridVehicles and Fuels

471

Electron-State Hybridization in Heavy-Fermion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the‹ SeeElectron-State Hybridization in

472

Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

2005-03-01T23:59:59.000Z

473

Cooled railplug  

DOE Patents [OSTI]

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

Weldon, W.F.

1996-05-07T23:59:59.000Z

474

Cold side thermal energy storage system for improved operation of air cooled power plants  

E-Print Network [OSTI]

Air cooled power plants experience significant performance fluctuations as plant cooling capacity reduces due to higher daytime temperature than nighttime temperature. The purpose of this thesis is to simulate the detailed ...

Williams, Daniel David

2012-01-01T23:59:59.000Z

475

STOCHASTIC COOLING  

E-Print Network [OSTI]

on Stochastic Cooling i n ICE, IEEE Transaction's in Nucl. SICE studies firmly establishing the stochastic cooling

Bisognano, J.

2010-01-01T23:59:59.000Z

476

26 ASHRAE Transactions: Research Cooling-dominated commercial and institutional build-  

E-Print Network [OSTI]

- ings served by ground-source heat pump (GSHP) systems generally reject more heat to a closed ground design of hybrid ground- source heat pump systems. INTRODUCTION Ground-source heat pump (GSHP) systems offer an attractive alternative for both residential and commercial heat- ing and cooling applications

477

Summary Report of the INL-JISEA Workshop on Nuclear Hybrid Energy Systems  

SciTech Connect (OSTI)

The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions--one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group.

Antkowiak, M.; Ruth, M.; Boardman, R.; Bragg-Sitton, S.; Cherry, R.; Shunn, L.

2012-07-01T23:59:59.000Z

478

Combustion flame-plasma hybrid reactor systems, and chemical reactant sources  

DOE Patents [OSTI]

Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

Kong, Peter C

2013-11-26T23:59:59.000Z

479

Advanced phase change materials and systems for solar passive heating and cooling of residential buildings  

SciTech Connect (OSTI)

During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

Salyer, I.O.; Sircar, A.K.; Dantiki, S.

1988-01-01T23:59:59.000Z

480

The Effect of Optimal Tuning of the Heating/Cooling Curve in AHU of HVAC System in Real Practice  

E-Print Network [OSTI]

be ordered by ISSO. http://www.isso.nl/ Elkhuizen P.A. , Peitsman H.C., ? A new design guideline for the heating and cooling curve in AHU of HVAC systems (a method for the optimal adjustment of AHU in HVAC systems) ?, A40-E-M4-NL-TNO-1, IEA Annex 40...

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Cooling load estimation methods  

SciTech Connect (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

McFarland, R.D.

1984-01-01T23:59:59.000Z

482

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications  

E-Print Network [OSTI]

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications Donghwa Shin, Younghyun layer capacitors, or simply supercapacitors, have extremely low internal resistance, and a battery-supercapacitor architecture comprising a simple parallel connection does not perform well when the supercapacitor capacity

Pedram, Massoud

483

A Hybrid Energy System Using Cascaded H-bridge Converter , Zhong Du2  

E-Print Network [OSTI]

schemes were developed to extract maximum wind power and charge/discharge the battery with fast dynamics proposes a hybrid energy system to integrate the variable-speed wind turbine, fuel cell, and battery using a cascaded H-bridge converter. One of the advantages of this topology is that it still can obtain

Tolbert, Leon M.

484

Hybrid GA-SA Algorithms for Reducing Energy Consumption in Embedded Systems  

E-Print Network [OSTI]

Hybrid GA-SA Algorithms for Reducing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD Vandoeuvre-L`es-Nancy, France. Email: Rene.Schott@loria.fr Abstract--Reducing energy consumption in embedded algorithms based on Simulated An- nealing (SA) and Genetic Algorithm (GA) for reducing energy consumption

Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

485

PCIM, Nrnberg, may 2003 FLYWHEEL ENERGY STORAGE SYSTEMS IN HYBRID AND  

E-Print Network [OSTI]

-scale storage of the type pumped hydro, compressed air, flow batteries, etc.), or even at the level of potentialPCIM, Nürnberg, may 2003 FLYWHEEL ENERGY STORAGE SYSTEMS IN HYBRID AND DISTRIBUTED ELECTRICITY of the electromechanical storage of energy over long operating cycles (with time constants ranging from several minutes

Boyer, Edmond

486

A Policy Management System for Hybrid Networks N Vardalachos, J Rubio, A Galis and J Serrat  

E-Print Network [OSTI]

management architecture devised for management of IP over WDM networks and is part of the work carried outA Policy Management System for Hybrid Networks N Vardalachos, J Rubio, A Galis and J Serrat University College London, Universitat Politècnica de Catalunya Abstract: The management of heterogeneous

Haddadi, Hamed

487

Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems  

E-Print Network [OSTI]

Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems the excessive electric energy in the electrical energy storage (EES) rather than converting into a different) are typically not balanced with each other. Storage of excessive en- ergy and compensation of the energy

Pedram, Massoud

488

Microsimulation analysis of a hybrid system model of multiple merge junction highway and semiautomatic vehicles  

E-Print Network [OSTI]

Microsimulation analysis of a hybrid system model of multiple merge junction highway and semi­automatic vehicles Marco Antoniottiz Akash Deshpandez Alain Giraultx marcoxa@path.berkeley.edu akash Abstract In this paper we present a protocol that controls semi­automated autonomous vehicles driving

Girault, Alain

489

Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power  

E-Print Network [OSTI]

. Possibilities to overcome this problem are to increase transmission capacities, demand side management approach to find two optimum energy storages (ESs) to build a hybrid system which is part of a virtual and the EU renewable directive [1] is even demanding for even higher rates of renewable power generation

Teodorescu, Remus

490

Passive containment cooling system with drywell pressure regulation for boiling water reactor  

DOE Patents [OSTI]

A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

Hill, P.R.

1994-12-27T23:59:59.000Z

491

Final draft: IEA Task 1. Report on Subtask D, optimization of solar heating and cooling systems  

SciTech Connect (OSTI)

A review of general techniques and specific methods useful in the optimization of solar heating and cooling systems is undertaken. A discussion of the state-of-the-art and the principal problems in both the simplified thermal performance analysis and economic analysis portions of the optimization problem are presented. Sample economic analyses are performed using several widely used economic criteria. The predicted thermal results of one typical, widely used simplified method is compared to detailed simulation results. A methodology for and the results of a sensitivity study of key economic parameters in the life cycle cost method are presented. Finally, a simple graphical optimization technique based on the life cycle cost method is proposed.

Freeman, T.L. (ed.)

1981-03-01T23:59:59.000Z

492

Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools  

E-Print Network [OSTI]

the VHTR performance and safety analysis, one-dimensional (1-D) system type codes, like RELAP5 or MELCOR, and multi-dimensional CFD codes can be used. The choice of 1-D over multi-dimensional codes first involves identifying the main phenomena, and from...

Frisani, Angelo

2011-08-08T23:59:59.000Z

493

Hybrid lean premixing catalytic combustion system for gas turbines  

DOE Patents [OSTI]

A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

Critchley, Ian L.

2003-12-09T23:59:59.000Z

494

Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems  

E-Print Network [OSTI]

the outlet side of fan coil units (FCU) served by variableunit (AHU) including a return air economizer, chilled water cooling coil, hot water heating coil and supply fan.

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

495

Development of a simplified cooling load design tool for underfloor air distribution (UFAD) systems.  

E-Print Network [OSTI]

Underfloor Air Distribution (UFAD) Design Guide, Atlanta:application and design of underfloor air distributionfor design cooling loads in underfloor air distribution (

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

496

A hybrid system for fault detection and sensor fusion based on fuzzy clustering and artificial immune systems  

E-Print Network [OSTI]

A HYBRID SYSTEM FOR FAULT DETECTION AND SENSOR FUSION BASED ON FUZZY CLUSTERING AND ARTIFICIAL IMMUNE SYSTEMS A Dissertation by MOHAMMAD ABDEL KAREEM RASHEED JARADAT Submitted to the Office of Graduate Studies of Texas A... CLUSTERING AND ARTIFICIAL IMMUNE SYSTEMS A Dissertation by MOHAMMAD ABDEL KAREEM RASHEED JARADAT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR...

Jaradat, Mohammad Abdel Kareem Rasheed

2007-04-25T23:59:59.000Z

497

System for thermal energy storage, space heating and cooling and power conversion  

DOE Patents [OSTI]

An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

1981-04-21T23:59:59.000Z

498

Hot Random Off-loading: A Hybrid Storage System With Dynamic Data Lin Lin, Yifeng Zhu, Jianhui Yue, Zhao Cai and Bruce Segee  

E-Print Network [OSTI]

Hot Random Off-loading: A Hybrid Storage System With Dynamic Data Migration Lin Lin, Yifeng Zhu in such a hybrid storage system can be as small as 1% of the disk capacity. For example, it may consist of a SSD overhead. The key challenging research issue in such a hybrid storage system is how to dynamically allocate

Zhu, Yifeng

499

Hybrid robust predictive optimization method of power system dispatch  

DOE Patents [OSTI]

A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

Chandra, Ramu Sharat (Niskayuna, NY); Liu, Yan (Ballston Lake, NY); Bose, Sumit (Niskayuna, NY); de Bedout, Juan Manuel (West Glenville, NY)

2011-08-02T23:59:59.000Z

500

Berry phase and Hannay’s angle in the Born–Oppenheimer hybrid systems  

SciTech Connect (OSTI)

In this paper, we investigate the Berry phase and Hannay’s angle in the Born–Oppenheimer (BO) hybrid systems and obtain their algebraic expressions in terms of one form connection. The semiclassical relation of Berry phase and Hannay’s angle is discussed. We find that, besides the usual connection term, the Berry phase of quantum BO composite system also contains a novel term brought forth by the coupling induced effective gauge potential. This quantum modification can be viewed as an effective Aharonov–Bohm effect. Moreover, the similar phenomenon is founded in Hannay’s angle of classical BO composite system, which indicates that the Berry phase and Hannay’s angle possess the same relation as the usual one. An example is used to illustrate our theory. This scheme can be used to generate artificial gauge potentials for neutral atoms. Besides, the quantum–classical hybrid BO system is also studied to compare with the results in full quantum and full classical composite systems. -- Highlights: •We have derived the Berry phase and Hannay’s angle in BO hybrid systems. •The Berry phase contains a novel term brought by the effective gauge potential. •This mechanism can be used to generate artificial gauge potentials for neutral atoms. •The relation between Hannay’s angles and Berry phases is established.

Liu, H.D. [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)] [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Yi, X.X. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Fu, L.B., E-mail: lbfu.iapcm@gmail.com [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084 (China)

2013-12-15T23:59:59.000Z