Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Battery Testing for Plug-in Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The Sprinter van is a Plug-in Hybrid-Electric Vehicle (PHEV) developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. This report provides details of testing conducted on two different types of batteries used in these vehicles: VARTA nickel-metal hydride batteries and SAFT lithium ion batteries. Testing focused on long-term battery durability, using a test profile developed to simulate the battery duty cycle of a PHEV Sprinter

2008-12-18T23:59:59.000Z

2

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

3

2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Grey; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

4

2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

5

2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

6

2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

7

2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Grey; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

8

2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

9

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

10

2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

11

2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

12

High power battery test methods for hybrid vehicle applications  

DOE Green Energy (OSTI)

Commonly used EV battery tests are not very suitable for testing hybrid vehicle batteries, which may be primarily intended to supply vehicle acceleration power. The capacity of hybrid vehicle batteries will be relatively small, they will typically operate over a restricted range of states-of-charge, and they may seldom if ever be fully recharged. Further, hybrid propulsion system designs will commonly impose a higher regeneration content than is typical for electric vehicles. New test methods have been developed for use in characterizing battery performance and life for hybrid vehicle use. The procedures described in this paper were developed from the requirements of the government-industry cooperative Partnership for A New Generation of Vehicles (PNGV) program; however, they are expected to have broad application to the testing of energy storage devices for hybrid vehicles. The most important performance measure for a high power battery is its pulse power capability as a function of state-of-charge for both discharge and regeneration pulses. It is also important to characterize cycle life, although the {open_quote}cycles{close_quote} involved are quite different from the conventional full-discharge, full-recharge cycle commonly used for EV batteries, This paper illustrates in detail several test profiles which have been selected for PNGV battery testing, along with some sample results and lessons learned to date from the use of these test profiles. The relationship between the PNGV energy storage requirements and these tests is described so that application of the test methods can be made to other hybrid vehicle performance requirements as well. The resulting test procedures can be used to characterize the pulse power capability of high power energy storage devices including batteries and ultracapacitors, as well as the life expectancy of such devices, for either power assist or dual mode hybrid propulsion system designs.

Hunt, G.L.; Haskins, H.; Heinrich, B.; Sutula, R.

1997-11-01T23:59:59.000Z

13

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Not Available

2008-03-01T23:59:59.000Z

14

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

15

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

16

2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

17

2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

18

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

19

2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

20

2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

22

2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

23

PNGV Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles  

SciTech Connect

Novel testing procedures and analytical methodologies to assess the performance of hybrid electric vehicle batteries have been developed. Tests include both characterization and cycle life and/or calendar life, and have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar and cycle life data. Representative performance data and examples of the application of the analytical methodologies including resistance growth, power fade, and cycle and calendar life modeling for hybrid electric vehicle batteries are presented.

Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Haskind, H. J.; Tartamella, T.; Sutula, R.

2002-06-01T23:59:59.000Z

24

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

25

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

26

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

27

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

28

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

29

Testing and Evaluation of Batteries for a Fuel Cell Powered Hybrid Bus  

SciTech Connect

Argonne National Laboratory conducted performance characterization and life-cycle tests on various batteries to qualify them for use in a fuel cell/battery hybrid bus. On this bus, methanol-fueled, phosphoric acid fuel cells provide routine power needs, while batteries are used to store energy recovered during bus braking and to produce short-duration power during acceleration. Argonne carried out evaluation and endurance testing on several lead-acid and nickel/cadmium batteries selected by the bus developer as potential candidates for the bus application. Argonne conducted over 10,000 hours of testing, simulating more than 80,000 miles of fuel cell bus operation, for the nickel/cadmium battery, which was ultimately selected for use in the three hybrid buses built under the direction of H-Power Corp.

Miller, J.F.; Webster, C.E.; Tummillo, A.F.; DeLuca, W.H.

1997-05-01T23:59:59.000Z

30

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

31

Novel Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles. Tests include both characterization and cycle life and/or calendar life. Tests have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacitance, and the modeling of calendar and cycle life data. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries.

Motloch, Chester George; Batt, J. R.; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn

2001-06-01T23:59:59.000Z

32

Battery testing at Argonne National Laboratory. Electric and hybrid propulsion systems, No. 1  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY 1992 on both single cells and multi-cell modules that encompass six battery technologies [Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and lie evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-12-31T23:59:59.000Z

33

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

34

Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid  

DOE Green Energy (OSTI)

The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

2012-08-01T23:59:59.000Z

35

PNGV battery test manual  

DOE Green Energy (OSTI)

This manual defines a series of tests to characterize aspects of the performance or life cycle behavior of batteries for hybrid electric vehicle applications. Tests are defined based on the Partnership for New Generation Vehicles (PNGV) program goals, although it is anticipated these tests may be generally useful for testing energy storage devices for hybrid electric vehicles. Separate test regimes are defined for laboratory cells, battery modules or full size cells, and complete battery systems. Some tests are common to all three test regimes, while others are not normally applicable to some regimes. The test regimes are treated separately because their corresponding development goals are somewhat different.

NONE

1997-07-01T23:59:59.000Z

36

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

37

Test Profile Development for the Evaluation of Battery Cycle Life for Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

EPRI and DaimlerChrysler have developed a plug-in hybrid electric vehicle (PHEV) concept for the DaimlerChrysler Sprinter Van in an effort to reduce the emissions, fuel consumption, and operating costs of the vehicle while maintaining equivalent or superior functionality and performance. This report describes the development of a test profile to evaluate the life cycle of the batteries for the PHEV vehicle.

2004-03-29T23:59:59.000Z

38

Hybrids for Batteries and Fuel Cells  

Science Conference Proceedings (OSTI)

Hybrid Organic: Inorganic Materials for Alternative Energy: Hybrids for Batteries and Fuel Cells Program Organizers: Andrei Jitianu, Lehman College, City ...

39

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

40

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

supervises testing in the Hybrid Vehicle Propulsion SystemsChemistries for Plug-in Hybrid Vehicles Andrew Burke,batteries, plug-in hybrid vehicles, energy density, pulse

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries  

DOE Green Energy (OSTI)

Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

Rowlette, J.J.

1981-01-15T23:59:59.000Z

42

Ultracapacitors and Batteries in Hybrid Vehicles  

DOE Green Energy (OSTI)

Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

2005-08-01T23:59:59.000Z

43

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

44

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents (OSTI)

A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-02-10T23:59:59.000Z

45

Battery Technology for Hybrid Vehicles Marshall Miller  

E-Print Network (OSTI)

Battery Technology for Hybrid Vehicles Marshall Miller May 13, 2008 H2 #12;Energy Storage Lithium-ion Batteries Battery manufact. Electrode chemistry Voltage range Ah Resist. mOhm Wh/kg W/kg 95 hydride 7.2-5.4 6.5 11.4 46 208 1.04 1.8 #12;Comparisons of Lithium Battery Chemistries Technology type

California at Davis, University of

46

Battery Life Prediction Method for Hybrid Power Applications: Preprint  

Science Conference Proceedings (OSTI)

Batteries in hybrid power applications that include intermittent generators, such as wind turbines, experience a very irregular pattern of charge and discharge cycles. Because battery life is dependent on both depth and rate of discharge (and other factors such as temperature, charging strategy, etc.), estimating battery life and optimally sizing batteries for hybrid systems is difficult. Typically, manufacturers give battery life data, if at all, as cycles to failure versus depth of discharge, where all discharge cycles are assumed to be under conditions of constant temperature, current, and depth of discharge. Use of such information directly can lead to gross errors in battery lifetime estimation under actual operating conditions, which may result in either a higher system cost than necessary or an undersized battery bank prone to early failure. Even so, most current battery life estimation algorithms consider only the effect of depth of discharge on cycle life. This paper will discuss a new battery life prediction method, developed to investigate the effects of two primary determinants of battery life in hybrid power applications, varying depths of discharge and varying rates of discharge. A significant feature of the model is that it bases its analysis on battery performance and cycle life data provided by the manufacturer, supplemented by a limited amount of empirical test data, eliminating the need for an electrochemical model of the battery. It performs the analysis for a user-prescribed discharge profile consisting of a series of discharge events of specified average current and duration. Sample analyses are presented to show how the method can be used to select the most economical battery type and size for a given hybrid power system application.

Drouilhet, S.; Johnson, B. L.

1997-01-01T23:59:59.000Z

47

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network (OSTI)

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

48

High Energy Batteries for Hybrid Buses  

DOE Green Energy (OSTI)

EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

Bruce Lu

2010-12-31T23:59:59.000Z

49

Battery testing for photovoltaic applications  

SciTech Connect

Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

Hund, T.

1996-11-01T23:59:59.000Z

50

Battery testing at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY 1992 on both single cells and multi-cell modules that encompass six battery technologies [Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and lie evaluations with unbiased application of tests and analyses. The results help identify the most promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-01-01T23:59:59.000Z

51

Battery charging and testing circuit  

SciTech Connect

A constant current battery charging circuit is provided by which the battery receives a full charge until the battery voltage reaches a threshold. When the battery voltage is above the threshold, the battery receives a trickle charge. The actual battery voltage is compared with a reference voltage to determine whether the full charge circuit should be in operation. Hysteresis is provided for preventing a rapid on/off operation around the threshold. The reference voltage is compensated for temperature variations. The hysteresis system and temperature compensation system are independent of each other. A separate test circuit is provided for testing the battery voltage. During testing of the battery, the full charge circuit is inoperative.

Wicnienski, M. F.; Charles, D. E.

1984-01-17T23:59:59.000Z

52

Battery management system for Li-Ion batteries in hybrid electric vehicles.  

E-Print Network (OSTI)

??The Battery Management System (BMS) is the component responsible for the effcient and safe usage of a Hybrid Electric Vehicle (HEV) battery pack. Its main… (more)

Marangoni, Giacomo

2010-01-01T23:59:59.000Z

53

PNGV Battery Performance Testing and Analyses  

SciTech Connect

In support of the Partnership for a New Generation of Vehicles (PNGV), the Idaho National Engineering and Environmental Laboratory (INEEL) has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles (HEV’s). Tests have been designed for both Power Assist and Dual Mode applications. They include both characterization and cycle life and/or calendar life. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar- and cycle-life data. PNGV goals, test procedures, analytical methodologies, and representative results are presented.

Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Sutula, Raymond; Duong, T.Q.; Barnes, J.A.; Miller, Ted J.; Haskind, H. J.; Tartamella, T. J.

2002-03-01T23:59:59.000Z

54

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

55

2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

56

2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

57

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) -...

58

Battery testing at Argonne National Laboratory  

DOE Green Energy (OSTI)

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

59

Battery testing at Argonne National Laboratory  

DOE Green Energy (OSTI)

Argonne National Laboratory`s Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy`s. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

60

Battery testing at Argonne National Laboratory  

SciTech Connect

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles  

E-Print Network (OSTI)

BATTERIES FOR USE IN HYBRID ELECTRIC VEHICLES R. Kostecki,ion batteries for hybrid electric vehicles. Nine 18650-sizebatteries for hybrid electric vehicle (HEV) applications.

2001-01-01T23:59:59.000Z

62

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents (OSTI)

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

63

A fuel-cell-battery hybrid for portable embedded systems  

Science Conference Proceedings (OSTI)

This article presents our work on the development of a fuel cell (FC) and battery hybrid (FC-Bh) system for use in portable microelectronic systems. We describe the design and control of the hybrid system, as well as a dynamic power management (DPM)-based ... Keywords: DPM, Simulation, battery, fuel cell, hybrid systems, simulator

Kyungsoo Lee; Naehyuck Chang; Jianli Zhuo; Chaitali Chakrabarti; Sudheendra Kadri; Sarma Vrudhula

2008-01-01T23:59:59.000Z

64

An Ultracapacitor - Battery Energy Storage System for Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The nickel metal hydride (NiMH) batteries used in most hybrid electric vehicles (HEVs) provide satisfactory performance but are quite expensive. In spite of their lower… (more)

Stienecker, Adam W

2005-01-01T23:59:59.000Z

65

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density  

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density Note: The technology described above is an early stage opportunity. Licensing rights to this ...

66

US advanced battery consortium in-vehicle battery testing procedure  

DOE Green Energy (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

67

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

68

Battery Thermal Modeling and Testing (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

Smith, K.

2011-05-01T23:59:59.000Z

69

Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs  

E-Print Network (OSTI)

with 85% ethanol EIA ­ Energy Information Administration EVSE ­ Electric vehicle supply equipment gPlug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size to get this thesis finished. #12;iv Intentionally blank #12;v Abstract Plug-in hybrid electric vehicles

70

Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.  

SciTech Connect

In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

Nelson, P. A.; Henriksen, G. L.; Amine, K.

2000-12-04T23:59:59.000Z

71

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles What's New 2012 Hyundai Sonata (4932) Battery Report (PDF 574KB) 2010 Ultra-Battery Honda Civic Battery Report (PDF 614KB) 2013 Chevrolet Malibu Baseline...

72

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

SciTech Connect

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

73

Overview of PNGV Battery Development and Test Programs  

SciTech Connect

Affordable, safe, long-lasting, high-power batteries are requisites for successful commercialization of hybrid electric vehicles. The U.S. Department of Energy’s Office of Advance Automotive Technologies and the Partnership for a New Generation of Vehicles are funding research and development programs to address each of these issues. An overview of these areas is presented along with a summary of battery development and test programs, as well as recent performance data from several of these programs.

Motloch, Chester George; Murphy, Timothy Collins; Sutula, Raymond; Miller, Ted J.

2002-02-01T23:59:59.000Z

74

hybrid electric vehicle and lithium polymer nev testing  

NLE Websites -- All DOE Office Websites (Extended Search)

P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing James Edward Francfort Advanced Vehicle Testing Activity Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID. 83415-3830 james.francfort@inl.gov Abstract: The U.S. Department of Energy's Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery. Keywords: hybrid; neighborhood; electric; battery; fuel;

75

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems  

E-Print Network (OSTI)

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 kWh per day. The effect of varying the size of the pv array and the battery bank in such systems on both

76

Battery Technology Life Verification Test Manual Revision 1  

SciTech Connect

The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

Jon P. Christophersen

2012-12-01T23:59:59.000Z

77

Battery control strategy Diesel generator Fuel consumption Hybrid system  

E-Print Network (OSTI)

Standalone diesel generators (DGs) are widely utilized in remote areas in Indonesia. Some areas use microhydro (MH) systems with DGs backup. However, highly diesel fuel price makes such systems become uneconomical. This paper introduces hybrid photovoltaic (PV)/MH/DG/battery systems with a battery control strategy to minimize the diesel fuel consumption. The method is applied to control the state of charge (SOC) level of the battery based on its previous level and the demand load condition to optimize the DG operation. Simulation results show that operations of the hybrid PV/MH/DG/battery with the battery control strategy needs less fuel consumption than PV/MH/DG and MH/DG systems.

Ayong Hiendro; Yohannes M. Simanjuntak

2012-01-01T23:59:59.000Z

78

Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale  

DOE Green Energy (OSTI)

Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

2009-07-01T23:59:59.000Z

79

PNGV Battery Test Manual Revision 3  

NLE Websites -- All DOE Office Websites (Extended Search)

69 69 Octoberr 2003 FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions

80

Battery Testing in the US  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S.-China EV and Battery Workshop Joint Vehicle Demonstrations and Standards Development August 24, 2012 Session Chairmen: Keith Hardy, Argonne National Laboratory Li Jianqiu,...

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

82

ATOMIC BATTERY AND TEST INSTRUMENT  

SciTech Connect

A portable nuclear battery is designed which can be adjusted to vary the output. The battery comprises a Sr/sup 90/ peactivated phosphor light source and photocells housed in a shielding structure. The output may be varied by rotating elements between the light source and the photocells. (D.L.C.)

Viszlocky, N.

1962-09-11T23:59:59.000Z

83

Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies  

E-Print Network (OSTI)

words: capacity fade, interfacial impedance, lithium ion battery/supercapacitor hybrid, pulse discharge amplitude, rate capability Abstract A detailed analysis of the capacity fade of a battery/supercapacitor

Popov, Branko N.

84

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of advanced batteries for plug-in hybrid electric vehicle (Advanced Lithium-Ion Batteries for Plug- in Hybrid-Electric Vehicles,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

85

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

86

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

87

Hybrid energy storage systems and battery management for electric vehicles  

Science Conference Proceedings (OSTI)

Electric vehicles (EV) are considered as a strong alternative of internal combustion engine vehicles expecting lower carbon emission. However, their actual benefits are not yet clearly verified while the energy efficiency can be improved in many ways. ... Keywords: battery-supercapacitor hybrid, charging/discharging asymmetry, electric vehicle, regenerative braking

Sangyoung Park, Younghyun Kim, Naehyuck Chang

2013-05-01T23:59:59.000Z

88

Page 1 of 69 PSYCHOMETRIC TEST BATTERY CODE BOOK  

E-Print Network (OSTI)

Page 1 of 69 PSYCHOMETRIC TEST BATTERY CODE BOOK Table of Contents Introduction Missing Data Code Case Identification Information Test Batteries in Current Use UDS Standard WU ADRC Battery Adult Data Set (UDS) Psychometric Battery Test Variable Name Boston Naming Test BOSTON Category Fluency

89

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

32 B.1 Electrical power capacity: BatteryB.1 Electrical power capacity: Battery EDVs For the battery-and/or generation capacity of battery, hybrid and fuel cell

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

90

ARGONNE'S BATTERY POST-TEST FACILITY W  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing the LIFE of batteries ARGONNE'S BATTERY POST-TEST FACILITY W h a t h a p p e n s t o b a t t e r ie s a s t h e y a g e ? H o w c a n w e e n s u r e s a f e u s e o f b...

91

Battery test facility hardware, software, and system operation  

SciTech Connect

Division 2525 Battery Test Laboratory is a fully automated battery testing facility used in evaluating various battery technologies. The results of these tests are used to verify developers` claims, characterize prototypes, and assist in identifying the strengths and weaknesses of each technology. The Test Facility consists of a central computer and nine remote computer controlled battery test systems. Data acquired during the battery testing process is sent to the central computer system. The test data is then stored in a large database for future analysis. The central computer system is also used in configuring battery tests. These test configurations are then sent to their appropriate remote battery test sites. The Battery Test Facility can perform a variety of battery tests, which include the following: Life Cycle Testing; Parametric Testing at various temperature levels, cutoff parameters, charge rates, and discharge rates; Constant Power Testing at various power levels; Peak Power Testing at various State-of-Charge levels; Simplified Federal Urban Driving Schedule Tests (SFUDS79). The Battery Test Facility is capable of charging a battery either by constant current, constant voltage, step current levels, or any combination of them. Discharge cycles can be by constant current, constant resistance, constant power, step current levels, or also any combination of them. The Battery Test Facility has been configured to provide the flexibility to evaluate a large variety of battery technologies. These technologies include Lead-Acid, Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminum/Air, and Nickel/Cadmium batteries.

Rodriguez, G.P.

1991-09-01T23:59:59.000Z

92

Battery test facility hardware, software, and system operation  

SciTech Connect

Division 2525 Battery Test Laboratory is a fully automated battery testing facility used in evaluating various battery technologies. The results of these tests are used to verify developers' claims, characterize prototypes, and assist in identifying the strengths and weaknesses of each technology. The Test Facility consists of a central computer and nine remote computer controlled battery test systems. Data acquired during the battery testing process is sent to the central computer system. The test data is then stored in a large database for future analysis. The central computer system is also used in configuring battery tests. These test configurations are then sent to their appropriate remote battery test sites. The Battery Test Facility can perform a variety of battery tests, which include the following: Life Cycle Testing; Parametric Testing at various temperature levels, cutoff parameters, charge rates, and discharge rates; Constant Power Testing at various power levels; Peak Power Testing at various State-of-Charge levels; Simplified Federal Urban Driving Schedule Tests (SFUDS79). The Battery Test Facility is capable of charging a battery either by constant current, constant voltage, step current levels, or any combination of them. Discharge cycles can be by constant current, constant resistance, constant power, step current levels, or also any combination of them. The Battery Test Facility has been configured to provide the flexibility to evaluate a large variety of battery technologies. These technologies include Lead-Acid, Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminum/Air, and Nickel/Cadmium batteries.

Rodriguez, G.P.

1991-09-01T23:59:59.000Z

93

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumof a plug-in hybrid-electric vehicle is the selection of theHybrid and Fuel Cell Electric Vehicle Symposium negative)

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

94

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

95

NREL Battery Thermal and Life Test Facility (Presentation)  

DOE Green Energy (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

96

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method  

E-Print Network (OSTI)

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

Papalambros, Panos

97

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles Lithium-ion batteries are a fast-growing technology that is attractive for use in portable electronics of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

98

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles. Manuscript submitted May 15, 2000; revised manuscript received January 15, 2001. Lithium-ion batteries effort by the U.S. Department of Energy to aid the development of lithium-ion batteries for hybrid

99

HypoEnergy: Hybrid supercapacitor-battery power-supply optimization for Energy efficiency  

E-Print Network (OSTI)

HypoEnergy: Hybrid supercapacitor-battery power-supply optimization for Energy efficiency Azalia the hybrid battery-supercapacitor power supply life- time. HypoEnergy combines high energy density of recharge cycles of supercapacitors. The lifetime optimizations consider nonlinear battery characteristics

100

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions and torque ripples. Keywords- Electric Vehicle, Plug-in Hybrid Vehicle, On-board Battery Charger, H on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Battery Technology Life Verification Testing and Analysis  

DOE Green Energy (OSTI)

A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

2007-12-01T23:59:59.000Z

102

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

103

P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

SciTech Connect

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

J. Francfort

2006-06-01T23:59:59.000Z

104

Test des Systèmes hybrides.  

E-Print Network (OSTI)

??Les systèmes hybrides, systèmes combinant à la fois une dynamique continue et discrète, s'avèrent être un modèle mathématique utile pour différents phénomènes physiques, technologiques, biologiques… (more)

Nahhal, Tarik

105

Implications of NiMH Hysteresis on HEV Battery Testing and Performance  

SciTech Connect

Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented.

Motloch, Chester George; Belt, Jeffrey R; Hunt, Gary Lynn; Ashton, Clair Kirkendall; Murphy, Timothy Collins; Miller, Ted J.; Coates, Calvin; Tataria, H. S.; Lucas, Glenn E.; Duong, T.Q.; Barnes, J.A.; Sutula, Raymond

2002-08-01T23:59:59.000Z

106

Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

Pesaran, A.

2007-02-13T23:59:59.000Z

107

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

for vehicle applications. 2 Lithium-ion battery chemistriesThe lithium-ion battery technology used for consumerfrom EIG Figure 4: Lithium-ion battery modules for testing

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

108

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

portion of the battery’s total energy capacity is used—knownelectricity from a battery which—(i) has a capacity of notassumed battery mass. Second, energy capacity requirements

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

109

A New Hybrid Redox Flow Battery with Multiple Redox Couples  

Science Conference Proceedings (OSTI)

A redox flow battery using V{sup 4+}/V{sup 5+} vs. V{sup 2+}/V{sup 3+} and Fe{sup 2+}/Fe{sup 3+} vs. V{sup 2+}/V{sup 3+} redox couples in chloric/sulphuric mixed acid supporting electrolyte was investigated for potential stationary energy storage applications. The Fe/V hybrid redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.7 V demonstrated stable cycling over 100 cycles with energy efficiency {approx}80% and no capacity fading at room temperature. A 66% improvement in the energy density of the Fe/V hybrid cell was achieved compared with the previous reported Fe/V cell using only Fe{sup 2+}/Fe{sup 3+} vs. V{sup 2+}/V{sup 3+} redox couples.

Wang, Wei; Li, Liyu; Nie, Zimin; Chen, Baowei; Luo, Qingtao; Shao, Yuyan; Wei, Xiaoliang; Chen, Feng; Xia, Guanguang; Yang, Zhenguo

2012-05-19T23:59:59.000Z

110

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage limits (see Note 2) at 50% depth of discharge (DOD). 2013 Chevrolet Malibu ECO Hybrid - VIN 3800 Advanced Vehicle Testing - Beginning-of-Test Battery Testing Results...

111

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage limits (see Note 2) at 50% depth of discharge (DOD). 2013 Chevrolet Malibu ECO Hybrid - VIN 7249 Advanced Vehicle Testing - Beginning-of-Test Battery Testing Results...

112

Advanced Vehicle Testing Activity: Chevrolet Silverado Hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Silverado Hybrid Electric Vehicle Accelerated Reliability Testing - April 2009 to someone by E-mail Share Advanced Vehicle Testing Activity: Chevrolet Silverado Hybrid...

113

2010 Hyundai LPI Hybrid Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai LPI Hybrid Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Alternative Fuel Hybrid...

114

Potential use of battery packs from NCAP tested vehicles.  

Science Conference Proceedings (OSTI)

Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

Lamb, Joshua; Orendorff, Christopher J.

2013-10-01T23:59:59.000Z

115

Utility Cycle Testing of a 500-kWh Zinc Chloride Battery at the Battery Energy Storage Test (BEST) Facility  

Science Conference Proceedings (OSTI)

A 500-kWh zinc chloride battery test system completed an entire schedule of 80 simulated utility and customer application cycles--the most diverse and severe known to be successfully performed by any advanced battery system. Encouraged by these results, researchers plan to have a 2-MW demonstration battery system ready for testing in 1986.

1985-10-09T23:59:59.000Z

116

Evaluation of Emerging Battery Technologies for Plug-in Hybrid Vehicles  

Science Conference Proceedings (OSTI)

The performance, cycle life, and cost of available batteries are key issues in determining the marketability of plug-in hybrid-electric vehicles (PHEVs). The California Air Resources Board (CARB) initiated a project to evaluate emerging lithiumion battery technologies for PHEV applications. Work initially focused on the determination of the characteristics of one of the most interesting of the emerging lithium-ion batteries, the lithium titanate battery in commercial development by Altairnano, but other ...

2009-08-24T23:59:59.000Z

117

NREL: Fleet Test and Evaluation - Hybrid Electric Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Drive Systems Hybrid Electric Drive Systems The Fleet Test and Evaluation Team conducts performance evaluations of hybrid electric drive systems in fleets of delivery vehicles and transit buses. Hybrid electric drive systems combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits unattainable with any of these technologies alone. Hybrid electric drive systems use less petroleum-based fuel and capture energy created during breaking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill climbing. Learn more about the team's hybrid electric drive system evaluations: Delivery Vehicles

118

Key results of battery performance and life tests at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory`s & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1991-12-31T23:59:59.000Z

119

Key results of battery performance and life tests at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R D programs, compare battery technologies, and provide basic data for modeling and continuing R D to battery users, developers, and program managers.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1991-01-01T23:59:59.000Z

120

Key results of battery performance and life tests at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R D programs, compare battery technologies, and provide basic data for modeling and continuing R D to battery users, developers, and program managers.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

2 and 10 seconds Fourth, battery cost is cited as one of thegeneral, current advanced battery costs range from $800/kWhpersists that battery technology and cost remain as barriers

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

122

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

at higher SOC. Fourth, battery cost is cited as one of thegeneral, current advanced battery costs range from $800/kWhpersists that battery technology and cost remain as barriers

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

123

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

2 and 10 seconds Fourth, battery cost is cited as one of thegeneral, current advanced battery costs range from $800/kWhpersists that battery technology and cost remain as barriers

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

124

Advanced Batteries for Electric-Drive Vehicles: A Technology and Cost-Effectiveness Assessment for Battery Electric Vehicles, Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

Availability of affordable advanced battery technology is a crucial challenge to the growth of the electric-drive vehicle (EDV) market. This study assesses the state of advanced battery technology for EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles (HEV 0s -- hybrids without electric driving range), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. The first part of this study presents assessments of current battery performance and cycle life ca...

2004-05-31T23:59:59.000Z

125

Argonne Transportation Technology R&D Center - Battery Test Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Test Facility Argonne researcher Lee Walker Argonne researcher Lee Walker examines a...

126

Uncertainty Study of INEEL EST Laboratory Battery Testing Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

INEELEXT-01-00505 December 2001 Uncertainty Study of INEEL EST Laboratory Battery Testing Systems Volume 1 Background and Derivation of Uncertainty Relationships John L. Morrison...

127

KATECH (Lithium Polymer) 4-Passenger NEV Range and Battery Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization...

128

Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Influences That Will Likely Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar Sept. 16, 2010 Vehicle fuel use regulation/policy measures differ. Which should measure plug-in success?  Corporate average fuel economy (CAFE) ratings do not represent real world fuel use. However, the range ratings of EVs and PHEVs are based on CAFE tests.  "Window sticker" information on vehicle fuel use predicts more gasoline and electricity use than CAFE ratings. - The GREET model (basis of GHG saving estimates) is based on real world fuel use

129

USABC electric vehicle Battery Test Procedures Manual. Revision 2  

DOE Green Energy (OSTI)

This manual summarizes the procedural information needed to perform the battery testing being sponsored by the United States Advanced Battery Consortium (USABC). This information provides the structure and standards to be used by all testing organizations, including the USABC developers, national laboratories, or other relevant test facilities.

NONE

1996-01-01T23:59:59.000Z

130

Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System  

E-Print Network (OSTI)

A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

Saif, A.

131

Do More Batteries Make A Plug-in Hybrid Better? Implications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Do More Batteries Make A Plug-in Hybrid Better? Implications from Optimal Vehicle Design and Allocation Speaker(s): Chin-Shin Shiau Date: June 18, 2010 - 2:00pm Location: 90-3122...

132

Hybrid Electric and Pure Electric vehicle testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric and Pure Electric Vehicle Testing (Advanced Vehicle Testing Activity) Jim Francfort Discovery Center of Idaho - September 2005 INLCON-05-00693 HEV & EV Testing...

133

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications  

E-Print Network (OSTI)

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications Donghwa Shin, Younghyun layer capacitors, or simply supercapacitors, have extremely low internal resistance, and a battery-supercapacitor architecture comprising a simple parallel connection does not perform well when the supercapacitor capacity

Pedram, Massoud

134

Abuse tests on sealed lead-acid batteries  

DOE Green Energy (OSTI)

Abuse tests were conducted on the lead-acid batteries used to power electrical testers used at the Department of Energy's Pantex Plant. Batteries were subjected to short circuits, crushes, penetrations, and drops. None of the observed responses would be a threat to nuclear explosive safety in a bay or cell at Pantex. Temperatures, currents, and damage were measured and recorded during the tests.

LOESCHER,DOUGLAS H.; CRAFTS,CHRIS C.; UNKELHAEUSER,TERRY M.

2000-03-01T23:59:59.000Z

135

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. (2008) ‘Emerging lithium-ion battery technologies forbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel-metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

136

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

M. (2008) ‘Emerging lithium-ion battery technologies forbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel-metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

137

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. , 2008. Emerging lithium-ion battery technologies forbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel- metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

138

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

139

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

140

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

and impacts of hybrid electric vehicle options for compactof plug-in hybrid electric vehicles, vol. 1: nationwideimpacts of hybrid electric vehicle options. Report #1000349,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

142

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchand Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

143

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchand Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

144

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

145

Electric and Hybrid Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

results. Generally, hotel loads while on charge in fleet use contributes to lower energy efficiencies. These hotel loads can include heating and cooling vehicle battery...

146

Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)  

DOE Green Energy (OSTI)

Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

Pesaran, A.

2007-12-01T23:59:59.000Z

147

NREL: Fleet Test and Evaluation - Electric and Plug-In Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric and Plug-In Hybrid Electric Drive Systems Electric and Plug-In Hybrid Electric Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of electric and plug-in hybrid electric drive systems in medium-duty trucks operated by fleets. Photo of medium-duty truck with the words "All Electric Vehicle" and "Plug-in" written on its side. NREL evaluates the performance of electric and plug-in hybrid electric vehicles in fleet operation. All-electric vehicles (EVs) use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. Plug-in hybrid electric vehicles (PHEVs) are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be

148

ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS  

E-Print Network (OSTI)

ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS O. GERGAUD, G Abstract: Within the scope of full-scale energy modeling of a hybrid wind / photovoltaic system coupled / photovoltaic production system coupled to the network grid (with energy storage) ENERGY MODELING OF A LEAD

Paris-Sud XI, Université de

149

A Comparison of US and Chinese EV Battery Testing Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

US and Chinese EV US and Chinese EV Battery Testing Protocols: Results D. Robertson, 1 J. Christophersen, 2 Fang Wang, 3 Fan Bin, 3 I. Bloom 1 US/China Electric Vehicle Initiative Meeting August 23-24, 2012 Boston, MA 1 Argonne National Laboratory 2 Idaho National Laboratory 3 CATARC A Comparison of US and Chinese Battery Testing Protocols  Battery testing is a time-consuming and costly process  There are parallel testing efforts, such as those in the US and China  These efforts may be better leveraged through international collaboration  The collaboration may establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data  In turn, the collaboration may accelerate electric vehicle development and

150

MODELING BATTERY-ULTRACAPACITOR HYBRID SYSTEMS FOR SOLARAND WIND APPLICATIONS.  

E-Print Network (OSTI)

??The purpose of this study was to quantify the improvement in the performance of a battery withthe addition of an ultracapacitor as an auxillary energy… (more)

Tammineedi, Charith

2011-01-01T23:59:59.000Z

151

All-solid-state Hybrid Batteries with High Capacity - Programmaster ...  

Science Conference Proceedings (OSTI)

Abstract Scope, High-performance thin film battery (TFB) has gained many attentions, as active RFID tags, and MEMS based electronic systems. Although the ...

152

Method and apparatus for controlling battery charging in a hybrid electric vehicle  

DOE Green Energy (OSTI)

A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2003-06-24T23:59:59.000Z

153

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

154

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

155

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchfor plug- in hybrid electric vehicles: analysis and2007. Plug-in Hybrid Electric Vehicle R&D Plan: Working

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

156

A Comparison of US and Chinese EV Battery Testing Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Battery Testing Protocols: Results D. Robertson, 1 J. Christophersen, 2 Fang Wang, 3 Fan Bin, 3 I. Bloom 1 USChina Electric Vehicle Initiative Meeting August 23-24, 2012...

157

Advanced Vehicle Testing Activity - Medium and Heavy Duty Hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

an electric vehicle. Medium and heavy duty HEV testing results to date are posted below. Vehicle Testing Reports INL Hybrid Shuttle Busses INL Hybrid Shuttle Busses INL Hybrid...

158

Status and evaluation of hybrid electric vehicle batteries for short term applications. Final report  

SciTech Connect

The objective of this task is to compile information regarding batteries which could be use for electric cars or hybrid vehicles in the short term. More specifically, this study applies lead-acid batteries and nickel-cadmium battery technologies which are more developed than the advanced batteries which are presently being investigated under USABC contracts and therefore more accessible in production efficiency and economies of scale. Moreover, the development of these batteries has advanced the state-of-the-art not only in terms of performance and energy density but also in cost reduction. The survey of lead-acid battery development took the biggest part of the effort, since they are considered more apt to be used in the short-term. Companies pursuing the advancement of lead-acid batteries were not necessarily the major automobile battery manufacturers. Innovation is found more in small or new companies. Other battery systems for short-term are discussed in the last part of this report. We will review the various technologies investigated, their status and prognosis for success in the short term.

Himy, A. [Westinghouse Electric Co., Pittsburgh, PA (United States). Machinery Technology Div.

1995-07-01T23:59:59.000Z

159

Battery technology for electric and hybrid vehicles: Expert views about prospects for advancement  

SciTech Connect

In this paper we present the results of an expert elicitation on the prospects for advances in battery technology for electric and hybrid vehicles. We find disagreement among the experts on a wide range of topics, including the need for government funding, the probability of getting batteries with Lithium Metal anodes to work, and the probability of building safe Lithium-ion batteries. Averaging across experts we find that U.S. government expenditures of $150 M/year lead to a 66% chance of achieving a battery that costs less than $200/kWh, and a 20% chance for a cost of $90/kWh or less. Reducing the cost of batteries from a baseline of $384 to $200 could lead to a savings in the cost of reducing greenhouse gases of about $100 billion in 2050.

Baker, Erin D.; Chon, Haewon; Keisler, Jeffrey M.

2010-09-01T23:59:59.000Z

160

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

type of battery for next Prius’, The Wall Street Journal,2008) simulations for Toyota Prius with US06 drive cycle—2008) simulations for Toyota Prius with US06 drive cycle—

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

type of battery for next Prius’, The Wall Street Journal,2008) simulations for Toyota Prius with US06 drive cycle—2008) simulations for Toyota Prius with US06 drive cycle—

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

162

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

type of battery for next Prius, The Wall Street Journal June2008) simulations for Toyota Prius with US06 drive cycle—2008) simulations for Toyota Prius with US06 drive cycle—

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

163

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Barcelona, Spain, November 17-20, 2013  

E-Print Network (OSTI)

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS27 Barcelona Vehicle Symposium & Exhibition (EVS27), Barcelona : Spain (2013)" #12;EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2 However, for embedded systems, studies look for simple signals

Recanati, Catherine

164

Exploratory battery technology development and testing report for 1989  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque, has been designated as Lead Center for the Exploratory Battery Technology Development and Testing Project, which is sponsored by the US Department of Energy's Office of Energy Storage and Distribution. In this capacity, Sandia is responsible for the engineering development of advanced rechargeable batteries for both mobile and stationary energy storage applications. This report details the technical achievements realized in pursuit of the Lead Center's goals during calendar year 1989. 4 refs., 84 figs., 18 tabs.

Magnani, N.J.; Diegle, R.B.; Braithwaite, J.W.; Bush, D.M.; Freese, J.M.; Akhil, A.A.; Lott, S.E.

1990-12-01T23:59:59.000Z

165

Environmental impact analysis of electric and hybrid vehicle batteries. Final report  

DOE Green Energy (OSTI)

This environmental impact analysis of electric and hybrid vehicle batteries is intended to identify principal environmental impacts resulting directly or indirectly from the development of electric vehicle batteries. Thus, the result of this study could be used to determine the appropriate following step in the U.S. DOE's EIA process. The environmental impacts considered in this document are the incremental impacts generated during the various phases in the battery life cycle. The processes investigated include mining, milling, smelting, and refining of metallic materials for electrode components; manufacturing processes of inorganic chemicals and other materials for electrolytes and other hardware components; battery assembly processes; operation and maintenance of batteries; and recycling and disposal of used batteries. The severity of the incremental impacts is quantified to the extent consistent with the state-of-knowledge. Many of the industrial processes involve proprietary or patent information; thus, in many cases, the associated environmental impacts could not be determined. In addition, most candidate battery systems are still in the development phase. Thus, the manufacturing and recycling processes for most battery systems either have not been developed by industry, or the information is not available. For these cases, the associated environmental impact evaluations could only be qualitative, and the need for further investigations is indicated. 26 figures, 27 tables. (RWR)

Not Available

1977-12-16T23:59:59.000Z

166

Test Report : GS battery, EPC power HES RESCU.  

SciTech Connect

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-10-01T23:59:59.000Z

167

Development and Testing of an UltraBattery-Equipped Honda Civic  

DOE Green Energy (OSTI)

The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

Donald Karner

2012-04-01T23:59:59.000Z

168

Design of a Control Strategy for a Fuel Cell/Battery Hybrid Power Supply  

E-Print Network (OSTI)

The purpose of this thesis is to design hardware and a control strategy for a fuel cell/battery hybrid power supply. Modern fuel cell/battery hybrid power supplies can have 2 DC/DC converters: one converter for the battery and one for the fuel cell. The hardware for the power supply proposed in this thesis consists of a single DC/DC buck converter at the output terminals of the fuel cell. The battery does not have a DC/DC converter, and it is therefore passive in the system. The use of one single converter is attractive, because it reduces the cost of this power supply. This thesis proposes a method of controlling the fuel cell's DC/DC buck converter to act as a current source instead of a voltage source. This thesis will explain why using the fuel cell's buck converter to act as a current source is most appropriate. The proposed design techniques for the buck converter are also based on stiff systems theory. Combining a fuel cell and a battery in one power supply allows exploitation of the advantages of both devices and undermines their disadvantages. The fuel cell has a slow dynamic response time, and the battery has a fast dynamic response time to fluctuations in a load. A fuel cell has high energy density, and a battery has high power density. And the performance of the hybrid power supply exploits these advantages of the fuel cell and the battery. The controller designed in this thesis allows the fuel cell to operate in its most efficient region: even under dynamic load conditions. The passive battery inherits all load dynamic behavior, and it is therefore used for peaking power delivery, while the fuel cell delivers base or average power. Simulations will be provided using MATLAB/Simulink based models. And the results conclude that one can successfully control a hybrid fuel cell/battery power supply that decouples fluctuations in a load from the fuel cell with extremely limited hardware. The results also show that one can successfully control the fuel cell to operate in its most efficient region.

Smith, Richard C.

2009-08-01T23:59:59.000Z

169

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

such as cycle life and battery cost and battery managementnot dominate the total battery cost. Note that in generalsuch as cycle life and battery cost and battery management

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

170

Batteries for stationary standby and cycling applications :Part 5: maintenance and testing standards.  

Science Conference Proceedings (OSTI)

The existing IEEE stationary battery maintenance and testing standards fall into two basic categories: those associated with grid-tied standby applications and those associated with stand-alone photovoltaic cycling applications. These applications differ in several significant ways, which in turn influence their associated standards. A review of the factors influencing the maintenance and testing of stationary battery systems provides the reasons for the differences between these standards and some of the hazards of using a standard inappropriate to the application. This review also provides a background on why these standards will need to be supplemented in the future to support emerging requirements of other applications, such as grid-tied cycling and photovoltaic hybrid applications.

Chamberlin, Jay L.

2003-01-01T23:59:59.000Z

171

Batteries for stationary standby and cycling applications. Part 5, Maintenance and testing standards.  

Science Conference Proceedings (OSTI)

The existing IEEE stationary battery maintenance and testing standards fall into two basic categories: those associated with grid-tied standby applications and those associated with stand-alone photovoltaic cycling applications. These applications differ in several significant ways, which in turn influence their associated standards. A review of the factors influencing the maintenance and testing of stationary battery systems provides the reasons for the differences between these standards and some of the hazards of using a standard inappropriate to the application. This review also provides a background on why these standards will need to be supplemented in the future to support emerging requirements of other applications, such as grid-tied cycling and photovoltaic hybrid applications.

Chamberlin, Jay L.

2003-06-01T23:59:59.000Z

172

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

DOE Green Energy (OSTI)

This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

Mark, J

1992-11-01T23:59:59.000Z

173

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

cell (Altairnano data) Battery cost considerations It is ofnot dominate the total battery cost. Note that in generala detailed lithium battery cost model that is applicable to

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

174

Plug-In Hybrid Electric Vehicles - PHEV and HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne is a major player in the Department of Energy's (DOE's) plug-in hybrid electric vehicle (PHEV) energy storage research and development (R&D) program. DOE has...

175

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

176

Advanced Vehicle Testing Activity: 2004 Toyota Prius Hybrid Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Toyota Prius Hybrid Electric Vehicle Accelerated Reliability Testing - October 2007 to someone by E-mail Share Advanced Vehicle Testing Activity: 2004 Toyota Prius Hybrid...

177

Advanced Vehicle Testing Activity: Honda Accord Hybrid Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accord Hybrid Electric Vehicle Accelerated Reliability Testing - April 2008 to someone by E-mail Share Advanced Vehicle Testing Activity: Honda Accord Hybrid Electric Vehicle...

178

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

Greer, Mark R

2012-01-01T23:59:59.000Z

179

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

2010). Plug-in hybrid electric vehicles as regulating powervalue of plug-in hybrid electric vehicles as grid resources.of using plug-in hybrid electric vehicle battery packs for

Greer, Mark R

2012-01-01T23:59:59.000Z

180

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

in and Batttery Electric Vehicles, The 5 th IEEE VehiclePlug-in and Battery Electric Vehicles, The 1 st IEEE EnergyE. Plug-in Hybrid-Electric Vehicle Powertrain Design and

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems  

Science Conference Proceedings (OSTI)

This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

182

Small Hybrid Systems and Applications Testing at NREL's Outdoor Test Facility  

DOE Green Energy (OSTI)

The PV International Program at the National Renewable Energy Laboratory recently installed a small hybrid solar and wind energy system that could produce enough electricity to power a cabin or provide electricity in a remote village, without being connected to a utility grid. The solar system can provide 1,400 watts of power, and the wind turbine is rated at 900 watts when the wind is blowing at 28 miles per hour. The 48-volt system has eight batteries for storage. When the batteries are fully charged, the control system slows down the wind turbine so as not to overcharge the batteries. The turbine is mounted on a tilt-down, guyless, 30-foot tower that allows one person to easily lower and raise the machine for maintenance. A data acquisition system is being designed to monitor the individual outputs from the solar system and the wind system. The small hybrid system is housed in an insulated shed, the PV International Program's Test Building (ITB). The ITB contains electrical loads found in the average home, including a refrigerator, lights, heaters, air coolers, computers, and a radio.

Roybal, L.

2005-01-01T23:59:59.000Z

183

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

DOE Green Energy (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

184

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline performance testing new HEVs Fleet testing (160k miles in 36 months) End-of-life testing (fuel economy & battery testing at 160k miles) WWW information location 3...

185

Performance of battery charge controllers: First year test report  

DOE Green Energy (OSTI)

The results of the first year of an evaluation of charge controllers for stand-alone photovoltaic (PV) systems are presented. The objectives of the test program are to positively influence the development of battery charge controllers for stand-alone PV applications and to develop design and application criteria that will improve PV system reliability and battery performance. Future goals are to expand the evaluation program to include various battery technologies and controller algorithms. Also, the information is being communicated to manufacturers to aid in the design of more effective and reliable charge controllers for PV systems. Eight different models of small (nominal 10 amp) charge controllers are being subjected to a comprehensive evaluation. These evaluations include operational tests in identical stand-alone PV systems and environmental and electrical cycling tests. Selected custom tests are also performed on the controllers to determine the response to transients, installation requirements and system design compatibilities. Data presented in this paper include measured electrical characteristics of the controllers, temperature effects on set points, and operational performance in PV systems both in the lab and in the field. A comparison is presented for four different charge controller algorithms which include array-shunt, series-interrupting, series-linear constant-voltage and series-linear-multistep constant-current. 9 refs., 11 figs., 2 tabs.

Dunlop, J. (Florida Solar Energy Center, Cape Canaveral, FL (United States)); Bower, W. (Sandia National Labs., Albuquerque, NM (United States)); Harrington, S. (Ktech Corp., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

186

Selected test results from the neosonic polymer Li-ion battery.  

DOE Green Energy (OSTI)

The performance of the Neosonic polymer Li-ion battery was measured using a number of tests including capacity, capacity as a function of temperature, ohmic resistance, spectral impedance, hybrid pulsed power test, utility partial state of charge (PSOC) pulsed cycle test, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the polymer Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, wind farm energy smoothing, and solar photovoltaic energy smoothing. Test results have indicated that the Neosonic polymer Li-ion battery technology can provide power levels up to the 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h (1C) discharge rate. Two of the three cells used in the utility PSOC pulsed cycle test completed about 12,000 cycles with only a gradual loss in capacity of 10 and 13%. The third cell experienced a 40% loss in capacity at about 11,000 cycles. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were increases in impedance after cycling, especially for the third cell. Cell No.3 impedance Rs increased significantly along with extensive ballooning of the foil pouch. Finally, at a 1C (10 A) charge rate, the over charge/voltage abuse test with cell confinement similar to a multi cell string resulted in the cell venting hot gases at about 45 C 45 minutes into the test. At 104 minutes into the test the cell voltage spiked to the 12 volt limit and continued out to the end of the test at 151 minutes. In summary, the Neosonic cells performed as expected with good cycle-life and safety.

Ingersoll, David T.; Hund, Thomas D.

2010-07-01T23:59:59.000Z

187

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network (OSTI)

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks

McGaughey, Alan

188

A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues  

E-Print Network (OSTI)

The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL) involved two experiments which looked at a vehicle systems approach to analyze two such technical challenges: Battery life and low battery power at cold (-7 ?C) temperature. The first experiment, concerning battery life and its impact on gasoline savings due to a PHEV, evaluates different vehicle control strategies over a pre-defined vehicle drive cycle, in order to identify the control strategy which yields the maximum dollar savings (operating cost) over the life of the vehicle, when compared to a charge sustaining hybrid. Battery life degradation over the life of the vehicle, and fuel economy savings on every trip (daily) are taken into account when calculating the net present value of the gasoline dollars saved. The second experiment evaluates the impact of different vehicle control strategies in heating up the PHEV battery (due to internal ohmic losses) for cold ambient conditions. The impact of low battery power (available to the vehicle powertrain) due to low battery and ambient temperatures has been well documented in literature. The trade-off between the benefits of heating up the battery versus heating up the internal combustion engine are evaluated, using different control strategies, and the control strategy, which provided optimum temperature rise of each component, is identified.

Shidore, Neeraj Shripad

2012-05-01T23:59:59.000Z

189

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

Miller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology andAltairnano EIG Lithium-ion battery modules available for

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

190

The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applications .  

E-Print Network (OSTI)

??In this work, a hybrid power module comprising of a direct methanol fuel cell (DMFC) and a Li-ion battery has been proposed for low power… (more)

Prakash, Shruti

2009-01-01T23:59:59.000Z

191

Dynamic thermal testing of lead-acid batteries for the PREPA battery energy storage system  

DOE Green Energy (OSTI)

A test is being carried out to determine the thermal load that will be present in a 20 MW battery energy storage system (BESS) facility being built by the Puerto Rico Electric Power Authority (PREPA). Efforts were made to duplicate, on a smaller scale, the arrangement of the flooded lead-acid cells in the BESS and to generate ambient temperatures typical of Puerto Rico through use of an environmental chamber. A utility energy storage (UES) test cycle for the 12-cell series string was set up based on projected operating parameters scaled from the BESS for frequency regulation and spinning reserve operating modes. Battery temperatures were measured during UES cycling and fit to a thermal model for the system. Cell temperatures increased slowly over a week-long utility cycle and eventually were elevated by 13{degrees}C (23{degrees}F) in the most extreme case observed to date. Temperature increases are expected to be lower in the BESS facility due to a much higher air flow rate than in the test chamber.

Jungst, R.G.; Freese, J.M.; Rodriguez, G.P.; Dykhuizen, R.C.; Braithwaite, J.W.; Woods, C.

1993-08-01T23:59:59.000Z

192

Testing and Development of a 30-kVA Hybrid Inverter: Lessons Learned and Reliability Implications  

SciTech Connect

A 30-kVA Trace Technologies hybrid power processor was specified and tested at the Sandia inverter test facility. Trace Technologies involving the control system, in response to suggestions made modifications, primarily by Sandia and Arizona Public Service (APS) personnel. The modifications should make the inverter more universally applicable and less site-specific so that it can be applied in various sites with minimal field interaction required from the design engineer. The project emphasized the importance of battery management, generator selection, and site load management to the performance and reliability of hybrid power systems.

Ginn, J.W.

1998-12-21T23:59:59.000Z

193

Microsoft Word - Highlander 6395 Battery Final Report_edited...  

NLE Websites -- All DOE Office Websites (Extended Search)

115 2006 Toyota Highlander-6395 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S....

194

Microsoft Word - Highlander 5681 Battery Final Report_edited...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S....

195

Modeling, testing and economic analysis of a wind-electric battery charging station  

Science Conference Proceedings (OSTI)

Battery charging systems are very important in many developing countries where rural families cannot afford a solar-battery home system or other electricity options, but they can afford to own a battery (in some cases more than one battery) and can pay for it to be charged on a regular basis. Because the typical households that use batteries are located far from the grid, small wind battery charging stations can be a cost-competitive options for charging batteries. However, the technical aspects of charging numerous 12-volt batteries on one DC bus with a small permanent magnet alternator wind turbine suggest that a special battery charging station be developed. NREL conducted research on two different types of wind battery charging stations: a system that uses one charge controller for the entire DC bus and charges batteries in parallel strings of four batteries each, and one that uses individual charge controllers for each battery. The authors present test results for both system configurations. In addition, modeling results of steady-state time series simulations of both systems are compared. Although the system with the single charge controller for the entire bus is less expensive, it results in less efficient battery charging. The authors also include in the paper a discussion of control strategies to improve system performance and an economic comparison of the two alternative system architectures.

Gevorgian, V.; Corbus, D.A.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (US). National Wind Technology Center; Thomas, K.E. [Univ. of California, Berkeley, CA (US). Dept. of Chemical Engineering

1998-07-01T23:59:59.000Z

196

Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

2013-04-01T23:59:59.000Z

197

Battery Energy Storage Test (BEST) Facility: Summary report, 1976-1986: Final report  

SciTech Connect

This report summarizes the development, operations, and contributions of the Battery Energy Storage Test Facility. Providing direction for the nation's battery technology research, the facility has generated a better understanding of the work involved in operating energy storage systems and has been instrumental in demonstrating lead-acid battery applications for utilities worldwide.

Hyman, E.A.

1986-12-01T23:59:59.000Z

198

Transport Test Problems for Hybrid Methods Development  

Science Conference Proceedings (OSTI)

This report presents 9 test problems to guide testing and development of hybrid calculations for the ADVANTG code at ORNL. These test cases can be used for comparing different types of radiation transport calculations, as well as for guiding the development of variance reduction methods. Cases are drawn primarily from existing or previous calculations with a preference for cases which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22.

Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

2011-12-28T23:59:59.000Z

199

Argonne TTRDC - Publications - Transforum 10.2 - Battery Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

New Battery Facilities Will Help Accelerate Commercialization of Technologies New Battery Facilities Will Help Accelerate Commercialization of Technologies Gang Cheng tests batteries At existing Argonne battery testing labs, researcher Gang Cheng conducts an experiment to detect moisture in battery electrolytes. Moisture is detrimental to the performance and longevity of battery cells. Argonne will soon have three new battery facilities to bolster its research and development of battery materials and batteries for hybrid electric vehicles, plug-in hybrid electric vehicles and all other electric vehicles. The Lab was recently awarded $8.8 million in American Recovery and Reinvestment Act (ARRA) funding to build a Battery Prototype Cell Fabrication Facility, a Materials Production Scale-Up Facility and a Post-Test Analysis Facility.

200

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specificati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE News Release - DOE Conducts Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

21, 2003 DOE conducts Hybrid Electric Vehicle testing The U.S. Department of Energy, through its Advanced Vehicle Testing Activity, is Baseline Performance and Fleet testing the...

202

Advanced Vehicle Testing Activity - Hybrid Electric Vehicle and...  

NLE Websites -- All DOE Office Websites (Extended Search)

max speed, braking, & handling DOE - Advanced Vehicle Testing Activity Hybrid Electric Vehicle Testing * Fleet and accelerated reliability testing - 6 Honda Insights...

203

Testing of a refuelable zinc/air bus battery  

DOE Green Energy (OSTI)

We report tests of a refuelable zinc/air battery of modular, bipolar-cell design, intended for fleet electric busses and vans. The stack consists of twelve 250-cm{sup 2} cells built of two units: (1) a copper-clad glass-reinforced epoxy board supporting anode and cathode current collectors, and (2) polymer frame providing for air- and electrolyte distribution and zinc fuel storage. The stack was refueled in 4 min. by a hydraulic transfer of zinc particles entrained in solution flow.

Cooper, J.F.; Fleming, D.; Koopman, R.; Hargrove, D.; Maimoni, A.; Peterman, K.

1995-02-22T23:59:59.000Z

204

Battery technology for electric and hybrid vehicles: Expert viewsabout prospects for advancement. Under Review at Technological Forecasting and Social Change  

E-Print Network (OSTI)

In this paper we present the results of an expert elicitation on the prospects for advances in battery technology for electric and hybrid vehicles. We find disagreement among the experts on a wide range of topics, including the need for government funding, the probability of getting batteries with Lithium Metal anodes to work, and the probability of building safe Lithium-ion batteries. Averaging across experts we find that U.S. government expenditures of $150M/yr lead to a 66 % chance of achieving a battery that costs less than $200/kWh, and a 20 % chance for a cost of $90/kWh or less. Reducing the cost of batteries from a baseline of $384 to $200 could lead to a savings in the cost of reducing greenhouse gases of about $100 Billion in 2050.

Erin Baker; Jeffrey Keisler

2009-01-01T23:59:59.000Z

205

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

new feanlres of compressed natural gas. battery poweredgasoline, compressed natural gas, hybrid dectdc, two typesNatural gas vehicles (NGVs) were available with one two compressed

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

206

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

new features of compressed natural gas, battery poweredgasoline, compressed natural gas, hybrid electric, two typesNatural gas vehicles (NGVs) were available with one or two compressed

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

207

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

208

Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles  

Science Conference Proceedings (OSTI)

State of health (SOH) determination becomes an increasingly important issue for a safe and reliable operation of lithium-ion batteries in hybrid electric vehicles (HEVs). Characteristic performance parameters as capacity and resistance change over lifetime ... Keywords: Extended Kalman filter, Hybrid electric vehicle, Internal resistance estimation, Lithium-ion batteries, State of health, Structured neural networks

D. Andre, A. Nuhic, T. Soczka-Guth, D. U. Sauer

2013-03-01T23:59:59.000Z

209

Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the...

210

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

211

Evaluation of electric vehicle battery systems through in-vehicle testing: Third annual report, April 1989  

SciTech Connect

This third annual summary report documents the performance from October 1986 through September 1987 of the Tennessee Valley Authority's ongoing project to evaluate near-term electric vehicle traction battery packs. Detailed test procedures and test data are available from EPRI in an informal data report. The purpose of this field test activity is to provide an impartial life evaluation and comparison of the performance of various battery systems in a real-world operating environment. Testing includes initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static (constant current) discharge tests under computer control. This year's report gives the final results on a NiZn, NiCd, Gel Cell, and two lead-acid battery packs. Specific energy and monthly driving ranges (SAE J227a ''C'' cycle and 35 mi/h constant speed cycles) are maintained throughout battery life. Vehicle range test data is analyzed statistically and variable conditions are normalized for comparative purposes. Battery modules in the pack are replaced when their measured ampere-hour capacity at a fixed discharge rate drops to 60 percent of the manufacturer's rated value. The life of a test battery pack is terminated when 25 percent of the modules in the pack have been replaced or require replacement. 26 figs., 8 tabs.

Blickwedel, T.W.; Thomas, W.A.; Whitehead, G.D.

1989-04-01T23:59:59.000Z

212

Power management strategy based on adaptive neuro-fuzzy inference system for fuel cell-battery hybrid vehicle  

Science Conference Proceedings (OSTI)

A power management strategy based on an adaptive neuro-fuzzy inference system is proposed to enhance the fuel economy of fuel cell-battery hybrid vehicle and increase the mileage of continuation of journey. The model of hybrid vehicle for fuel cell-battery structure is developed by electric vehicle simulation software advisor. The simulation results demonstrate that the proposed strategy can satisfy the power requirement of four standard drive cycles and achieve the power distribution between fuel cell system and battery. The comprehensive comparisons with a power tracking control strategy which is widely adopted in advisor verify that the proposed strategy has better validity in terms of fuel economy in four standard drive cycles. Hence

Qi Li; Weirong Chen; Shukui Liu; Zhiyu You; Shiyong Tao; Yankun Li

2012-01-01T23:59:59.000Z

213

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network (OSTI)

, Norway, May 13-16, 2009 Site selection for electric cars of a car-sharing service Luminita Ion1 , T. Cucu, modeling, electric vehicle 1 Introduction Car-sharing is defined as a system which allows to eachEVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger

Paris-Sud XI, Université de

214

Design and implementation of a chassis dynamometer for testing battery-powered motorcycles  

Science Conference Proceedings (OSTI)

The objective of this paper is to design and implement a chassis dynamometer for testing dynamic characteristics of a battery-powered motorcycle (BPM). By using a load simulation system, which is constituted with a DC motor and two rollers, a roller ... Keywords: battery-powered motorcycle, chassis dynamometer, drag force, driving resistance, kinetic energy recycle, road patterns, test platform

Ding-Tsair Su; Ying-Shing Shiao; Jui-Liang Yang

2008-10-01T23:59:59.000Z

215

Hybrid neural net and physics based model of a lithium ion battery.  

E-Print Network (OSTI)

??Lithium ion batteries have become one of the most popular types of battery in consumer electronics as well as aerospace and automotive applications. The efficient… (more)

Refai, Rehan

2011-01-01T23:59:59.000Z

216

Evaluation of near-term electric vehicle battery systems through in-vehicle testing: Interim report  

SciTech Connect

EVTF personnel tested 10 batteries, including lead-acid (flat plate and tubular design), Gel Cell III, advanced lead-acid, nickel iron, nickel zinc, nickel cadmium, and zinc chloride systems. The assessment encompassed the following tasks: initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static discharge tests under computer control. Performance data were based on specific energy versus accumulated vehicle mileage and vehicle driving range over a fixed operating cycle at 35-mph constant speed and the SAE J227a C cycle. A battery's life cycle was terminated when its measured capacity dropped below 60% of the rating, at a 2-h rate, after 25% of the battery modules had been replaced. The EVs used for the tests were 10 Volkswagen vans and 2 General Motors Griffin vans.

Blickwedel, T.W.

1986-12-01T23:59:59.000Z

217

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

218

Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability  

Science Conference Proceedings (OSTI)

Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefits by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

219

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

of batteries done at Argonne National Laboratory for theon those used in a recent Argonne Lab study (References 7-about 30%. Researchers at Argonne National Laboratory (ANL)

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

220

HEV Fleet Testing - Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Total miles driven: 161,532 Cumulative MPG: 37.23 Engine: 4-cylinder, 70 kW @ 5700 rpm Electric Motor: 10 kW Battery: Nickel Metal Hydride Seatbelt Positions: Five Payload: 882...

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)  

DOE Green Energy (OSTI)

Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

Dr. Malgorzata Gulbinska

2009-08-24T23:59:59.000Z

222

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries - Hongxing Hu, Amsen Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN © 2008 DESIGN © 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program Manager at DOE: Dr. Imre Gyuk Objectives and Technical Approach Objectives: This SBIR project aims to develop low-cost, high performance hybrid polymeric PEMs for redox flow batteries (RFBs). Such membranes shall have high chemical stability in RFB electrolytes, high proton conductivity, low permeability of vanadium ions, along with high dimensional stability, high mechanical strength and durability, and lower cost than Nafion membranes. Approach: * Hybrid membranes of sulfonated polymers * Balance between different types of polymers for proton conductivity and chemical stability

223

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

Chemistries for Plug-in Hybrid Vehicles, EVS-24, Stavanger,for plug-in hybrid vehicles. By emerging lithium batterychemistries for plug-in hybrid vehicle applications. The

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

224

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

for Power-Assist Hybrid Electric Vehicles, DOE/ID-11069,Board (CARB) Plug-in Hybrid Electric Vehicle Research Centerdesign of a plug-in hybrid-electric vehicle is the selection

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

225

FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.  

DOE Green Energy (OSTI)

This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

Doughty, Daniel Harvey; Crafts, Chris C.

2006-08-01T23:59:59.000Z

226

Valve-Regulated Lead Acid (VRLA) Battery Seismic Testing: Initial Investigation  

Science Conference Proceedings (OSTI)

This report describes the results obtained when subjecting naturally aged valve-regulated lead acid (VRLA) batteries from two manufacturers to the capacity test, seismic test, and final capacity test described in IEEE Standard 535- 2006, Standard for Qualification of Class 1E Lead Storage Batteries for Nuclear Power Generating Stations. The project that is the subject of this report was not intended to be a formal qualification program or process. Instead, it was a test of the seismic ruggedness of ...

2013-04-12T23:59:59.000Z

227

Evaluation of Near-Term Electric Vehicle Battery Systems through In-Vehicle Testing  

Science Conference Proceedings (OSTI)

Electric vehicles (EVs) using today's technology are suitable for certain commercial fleets. Yet expanding the EV market largely depends on developing and marketing batteries with performance characteristics superior to those already commercially available. The in-vehicle test results summarized in this report provide valuable information on the performance, life, and maintenance of 10 new batteries under real-world operating conditions.

1986-12-01T23:59:59.000Z

228

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

229

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

230

A Proposed 80% Service Test to Satisfy the Duty Cycle and to Trend Battery Capacity  

Science Conference Proceedings (OSTI)

Current practice within the nuclear power industry is to use performance discharge tests for condition monitoring to determine when a battery has reached 80 of its rated capacity, which is considered the end of its service life. A service test is now used in every refueling outage to verify that a battery can satisfy its design basis function as defined by the battery duty cycle. A modified performance test is used at intervals of one-fourth the qualified life, typically every five years, to satisfy the ...

2010-11-11T23:59:59.000Z

231

The ANL electric vehicle battery R D program for DOE-EHP. [ANL (Argonne National Laboratory); EHP (Electric and Hybrid Propulsion Division)  

SciTech Connect

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce air pollution and petroleum consumption due to the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, and project management on advanced battery technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of January 1, 1993 through March 31, 1993. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Project Management; 2.0 Sodium/Metal Chloride R D; 3.0 Microreference Electrodes for Lithium/Polymer Batteries.

1993-06-15T23:59:59.000Z

232

Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report  

DOE Green Energy (OSTI)

This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

NONE

1996-05-30T23:59:59.000Z

233

Development and Testing of Commercial Prototype Wind-Electric Battery Charging Station  

SciTech Connect

The technical aspects of charging 12-volt (V) batteries with a small permanent magnet wind-turbine generator suggested that a special battery-charging station be developed. Scientists at the National Renewable Energy Laboratory (NREL) conducted research on several possible configurations of wind-electric battery-charging stations. Based on preliminary modeling and test results, the optimal system for this application was the one with individual charge controllers. This paper presents the development efforts and test results of a commercial prototype wind-electric battery-charging station designed and manufactured by Ascension Technology, a Division of Applied Power Corporation (APC). The system, which is powered by a 3-kilowatt (kW) wind turbine, was tested at the National Wind Technology Center (NWTC). The paper discusses control strategies to improve system performance, and includes recommendations for system integrators based on the testing experience accumulated at the NWTC.

Gevorgian, V.; Corbus, D.; Kern, G.

2000-08-24T23:59:59.000Z

234

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

SciTech Connect

Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

Corbus, D.

1992-09-01T23:59:59.000Z

235

Advanced Batteries for PHEVs  

Science Conference Proceedings (OSTI)

This report describes testing conducted on two different types of batteriesVARTA nickel-metal hydride and SAFT lithium ionused in the Plug-in Hybrid Electric Vehicle (PHEV) Sprinter program. EPRI and DaimlerChrysler developed a PHEV concept for the Sprinter Van to reduce the vehicle's emissions, fuel consumption, and operating costs while maintaining equivalent or superior functionality and performance. The PHEV Sprinter was designed to operate in both a pure electric mode and a charge-sustaining hybrid ...

2009-12-22T23:59:59.000Z

236

HEV Fleet Testing - 2001 Honda Insight Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Honda Insight Hybrid VIN JHMZE14781T002163 Date Mileage Description Cost 2202002 7,595 Changed oil, rotated tires 27.00 592002 15,119 15K service 160.21 6142002 19,290...

237

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

in a battery to the battery’s maximum capacity. Total Energyversion of the battery, with total energy capacity of (0.057Mass Battery “Goals” kW Peak Power kWh Energy Capacity years

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

238

Katech (Lithium Polymer) 4-Passenger NEV - Range and Battery Testing Report  

SciTech Connect

The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization testing. The KATECH NEV (called the Invita) was equipped with a lithium polymer battery pack from Kokam Engineering. The Invita was to be baseline performance tested by AVTA’s testing partner, Electric Transportation Applications (ETA), at ETA’s contract testing facilities and test track in Phoenix, Arizona, to AVTA’s NEVAmerica testing specifications and procedures. Before and during initial constant speed range testing, the Invita battery pack experienced cell failures, and the onboard charger failed. A Kokamsupplied off-board charger was used in place of the onboard charger to successfully perform a constant speed range test on the Invita. The Invita traveled a total of 47.9 miles in 1 hour 47 minutes, consuming 91.3 amp-hours and 6.19 kilowatt-hours. The Kokam Engineering lithium polymer battery was also scheduled for battery pack characterization testing, including the C/3 energy capacity, dynamic stress, and peak power tests. Testing was stopped during the initial C/3 energy capacity test, however, because the battery pack failed to withstand cycling without cell failures. After the third discharge/charge sequence was completed, it was discovered that Cell 6 had failed, with a voltage reading of 0.5 volts. Cell 6 was replaced, and the testing sequence was restarted. After the second discharge/charge sequence was complete, it was discovered that Cell 1 had failed, with its voltage reading 0.2 volts. At this point it was decided to stop all battery pack testing. During the discharge cycles, the battery pack supplied 102.21, 94.34, and 96.05 amp-hours consecutively before Cell 6 failed. After replacing Cell 6, the battery pack supplied 98.34 and 98.11 amp-hours before Cell 1 failed. The Idaho National Laboratory managed these testing activities for the AVTA, as part of DOE’s FreedomCAR and Vehicle Technologies Program.

J. Francfort; D. Karner

2005-07-01T23:59:59.000Z

239

Fuel Economy and Performance of Mild Hybrids with Ultracapacitors: Simulations and Vehicle Test Results (Presentation)  

DOE Green Energy (OSTI)

NREL worked with GM and demonstrated equivalent performance in the Saturn Vue Belt Alternator Starter (BAS) hybrid vehicle whether running with its stock batteries or a retrofit ultracapacitor system.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2009-06-01T23:59:59.000Z

240

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Test of Polymer Electrolyte Membrane Fuel Cell / Uninterruptible Power Supply for Electric Utility Battery Replacement Markets  

Science Conference Proceedings (OSTI)

A sub-scale polymer electrolyte membrane (PEM) fuel cell/capacitor uninterruptible power supply (UPS) was designed and constructed based on previous research. Testing of this sub-scale UPS as a replacement for existing battery systems is documented in this report. The project verified that the PEM fuel cells, coupled with an ultracapacitor, could functionally replace batteries used for emergency power at electric generating stations. Remaining steps to commercialization include continuing market research...

2001-12-18T23:59:59.000Z

242

Modeling, Simulation & Implementation of Li-ion Battery Powered Electric and Plug-in Hybrid Vehicles.  

E-Print Network (OSTI)

??The modeling, simulation and hardware implementation of a Li-ion battery powered electric vehicle are presented in this thesis. The results obtained from simulation and experiments… (more)

Mantravadi, Siva Rama Prasanna

2011-01-01T23:59:59.000Z

243

U.S. Department of Energy Hybrid Electric Vehicle Battery and...  

NLE Websites -- All DOE Office Websites (Extended Search)

and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles). Key Words...

244

Test Series 4: seismic-fragility tests of naturally-aged Exide EMP-13 battery cells  

SciTech Connect

This report, the fourth in a test series of an extensive seismic research program, covers the testing of a 27-year old lead-antimony Exide EMP-13 cells from the recently decommissioned Shippingport Atomic Power Station. The Exide cells were tested in two configurations using a triaxial shake table: single-cell tests, rigidly mounted; and multicell (five-cell) tests, mounted in a typical battery rack. A total of nine electrically active cells was used in the two different cell configurations. None of the nine cells failed during the actual seismic tests when a range of ZPAs up to 1.5 g was imposed. Subsequent discharge capacity tests of five of the cells showed, however, that none of the cells could deliver the accepted standard of 80% of their rated electrical capacity for 3 hours. In fact, none of the 5 cells could deliver more than a 33% capacity. Two of the seismically tested cells and one untested, low capacity cell were disassembled for examination and metallurgical analyses. The inspection showed the cells to be in poor condition. The negative plates in the vicinity of the bus connections were extremely weak, the positive buses were corroded and brittle, negative and positive active material utilization was extremely uneven, and corrosion products littered the cells.

Bonzon, L.L.; Hente, D.B.; Kukreti, B.M.; Schendel, J.; Tulk, J.D.; Janis, W.J.; Black, D.A.; Paulsen, G.D.; Aucoin, B.D.

1985-03-01T23:59:59.000Z

245

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

246

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

technology is a lithium-ion battery using lithium titanateof lithium-ion batteries of various chemistries Batterylithium-ion batteries were 20-22 kg and in the zinc-air battery,

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

247

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

DOE Green Energy (OSTI)

This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

Hammel, C.J.

1992-09-01T23:59:59.000Z

248

NREL: Fleet Test and Evaluation - Hydraulic Hybrid Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Drive Systems Hydraulic Hybrid Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of hydraulic hybrid drive systems in delivery vehicles. Because hydraulic hybrids feature highly efficient regenerative braking systems and "engine off at idle" capabilities, they are ideal for parcel delivery applications where stop-and-go traffic is common. Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the vehicle's fuel economy

249

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Fleet and Vehicle Fleet and Baseline Performance Testing James Francfort Idaho National Laboratory 2 Paper #2006-01-1267 Presentation Outline Background & goals Testing partners Baseline performance testing new HEVs Fleet testing (160k miles in 36 months) End-of-life testing (fuel economy & battery testing at 160k miles) WWW information location 3 Paper #2006-01-1267 Background Advanced Vehicle Testing Activity (AVTA) - part of DOE's FreedomCAR and Vehicle Technologies Program Goal - provide benchmark data for technology modeling, and research and development programs Idaho National Laboratory manages these activities, and performs data analysis and reporting activities 4 Paper #2006-01-1267 Testing Partners Qualified Vehicle Testers hElectric Transportation Applications (lead)

250

Control of fuel cell/battery/supercapacitor hybrid source for vehicle applications  

Science Conference Proceedings (OSTI)

This paper presents a control algorithm for utilizing a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices (batteries and supercapacitors) for dc distributed system, particularly for future FC vehicle applications. ...

Phatiphat Thounthong; Panarit Sethakul; Stephane Rael; Bernard Davat

2009-02-01T23:59:59.000Z

251

Amp-hour counting control for PV hybrid power systems  

SciTech Connect

The performance of an amp-hour (Ah) counting battery charge control algorithm has been defined and tested using the Digital Solar Technologies MPR-9400 microprocessor based PV hybrid charge controller. This work included extensive field testing of the charge algorithm on flooded lead-antimony and valve regulated lead-acid (VRLA) batteries. The test results after one-year have demonstrated that PV charge utilization, battery charge control, and battery state of charge (SOC) has been significantly improved by providing maximum charge to the batteries while limiting battery overcharge to manufacturers specifications during variable solar resource and load periods.

Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, B. [Biri Systems, Ithaca, NY (United States)

1997-06-01T23:59:59.000Z

252

Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses  

SciTech Connect

This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

2006-02-01T23:59:59.000Z

253

High Energy Density Na-S/NiCl2 Hybrid Battery  

SciTech Connect

High temperature (250-350°C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280°C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo (Gary) [Gary

2013-02-15T23:59:59.000Z

254

Testing of a 50-kW wind-diesel hybrid system at the National Wind Technology Center  

DOE Green Energy (OSTI)

To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this paper include component characterization, such as power conversion losses for the rotary converter systems and battery round trip efficiencies. In addition, systems operation over this period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

Corbus, D.A.; Green, J.; Allderdice, A.; Rand, K.; Bianchi, J. [National Renewable Energy Lab., Golden, CO (United States); Linton, E. [New World Village Power, Waitsfield, VT (United States)

1996-07-01T23:59:59.000Z

255

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

design. Simulations of Prius plug-in hybrids were performedpresented for a plug-in Prius-type vehicle using differentchemistries Simulations of Prius plug-in hybrids have been

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

256

Advanced Nuclear Technology: 1E Battery 80% Service Test  

Science Conference Proceedings (OSTI)

The purpose of this test program was to verify that the proposed 80% service test could be used to deliver percent capacity results comparable with the current performance tests for capacity trending at various end voltages encountered in Class 1E applications. The general test methodology followed the service and performance test processes described in Section 7 of Institute of Electrical and Electronics Engineers Standard 450-2002. The test sequence is located in Section 1 of this report. The testing w...

2011-09-09T23:59:59.000Z

257

Spinel LiMn(2)O(4)/Reduced Graphene Oxide Hybrid for High Rate Lithium Ion Batteries  

DOE Green Energy (OSTI)

A well-crystallized and nano-sized spinel LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid cathode material for high rate lithium-ion batteries has been successfully synthesized via a microwave-assisted hydrothermal method at 200 C for 30 min without any post heat-treatment. The nano-sized LiMn{sub 2}O{sub 4} particles were evenly dispersed on the reduced graphene oxide template without agglomeration, which allows the inherent high active surface area of individual LiMn{sub 2}O{sub 4} nanoparticles in the hybrid. These unique structural and morphological properties of LiMn{sub 2}O{sub 4} on the highly conductive reduced graphene oxide sheets in the hybrid enable achieving the high specific capacity, an excellent high rate capability and stable cycling performance. An analysis of the cyclic voltammogram data revealed that a large surface charge storage contribution of the LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid plays an important role in achieving faster charge/discharge.

Bak, S.M.; Nam, K.; Lee, C.-W.; Kim, K.-H.; Jung, H.-C.; Yang, X-Q.; Kim, K.-B.

2011-10-04T23:59:59.000Z

258

Microsoft Word - Altima 7982 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

78 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S. Department...

259

Microsoft Word - Camry 7129 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S. Department of...

260

Microsoft Word - Lexus 2575 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

6 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S. Department of...

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Microsoft Word - Lexus 4807 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

7 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S. Department of...

262

Microsoft Word - Altima 2351 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

81 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S. Department...

263

Microsoft Word - Camry 6330 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

09-15276 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S....

264

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

265

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 7, DOE/AL68080-TSR07  

DOE Green Energy (OSTI)

Analysis and results show hybrid system weight and efficiency affect productivity and fuel usage. Analysis shows equivalent hybrid benefits for adjacent size classes of mine truck. Preparations are ongoing for full power test. The battery cycling test protocol was modified.

Lembit Salasoo

2004-08-25T23:59:59.000Z

266

Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles  

DOE Green Energy (OSTI)

In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

2012-06-01T23:59:59.000Z

267

Issues in emissions testing of hybrid electric vehicles.  

DOE Green Energy (OSTI)

Argonne National Laboratory (ANL) has tested more than 100 prototype HEVs built by colleges and universities since 1994 and has learned that using standardized dynamometer testing procedures can be problematic. This paper addresses the issues related to HEV dynamometer testing procedures and proposes a new testing approach. The proposed ANL testing procedure is based on careful hybrid operation mode characterization that can be applied to certification and R and D. HEVs also present new emissions measurement challenges because of their potential for ultra-low emission levels and frequent engine shutdown during the test cycles.

Duoba, M.; Anderson, J.; Ng, H.

2000-05-23T23:59:59.000Z

268

Calorimeter Preamplifier Hybrid Circuit Test Jig  

SciTech Connect

There are two ways in which the testing may be initiated, remotely or locally. If the remote operation is desired, an external TTL level signal must be provided to the test jig with the remotellocal switch on the side of the test jig switched to remote. A logic high will initiate the test. A logic low will terminate the test. In the event that an external signal is connected to the test jig while local operation occurs, the local control takes precedence over remote control. Once a DVT has been locked in the ZIF socket and the DIP switches are selected, the Push-to-Test button may be depressed. Momentarily depressing the button will initiate a test with a minimum 400 ms duration. At the same time a PBCLOCK and PBLATCH pulses will be initiated and the power rails +12V, +8V, and -6V will be ramped to full voltage. The time at which the power rails reach the full voltage is about 13 ms and it is synchronized with bypass capacitors placed on COMP input of U20 and U22 and on the output of U23 voltage regulators. The voltage rails are supplied to a {+-}10% window comparator. A red LED indicates the rail is below or above 10% of the design value. A green LED indicates the rail is within acceptable limits. For DDT with a 5 pF and 10 pF feed back capacitor, the +12V and +8V rails are current-regulated to 19rnA and 22 rnA respectively and the -6V rail is short-circuit protected within the regulator. For DUT with a 22 pF feed back capacitor the current regulation is the same as above except that the +8V rail is current regulated to 43 rnA. The power rails are supplied to the DUT via a 10 {Omega} resistor. The voltage drop across this resistor is sensed by a differential amplifier AD620 and amplified by a gain of 10. An external BNC connection is provided from this point to allow for current measurements by the vendor. The current value for each rail is calculated by measuring the voltage value at this point and divided by (10*10{Omega}). The next stage inverts and amplifies the voltage signal by a factor of 5 for + 12V and -6V rails and by a factor of 1 for +8V rail. For DUT with 22 pF feed back capacitor the amplification factors are same as above except that the amplification factor for +8V rail is a gain of 2. An offset null potentiometer is provided between the AD620 and the inverting stage which eliminates device offset current errors. The inverted and amplified voltage is presented to two window comparators. One of them compares the inverted and amplified voltage to the low threshold point and the other one compares the inverted and amplified voltage to the high threshold point. If the inverted and amplified voltage is within the low and high threshold points, both the low and the high current LEDs illuminate green indicating the current is within acceptable limits. If the inverted and amplified voltage is below the low threshold point or above the high threshold point, the low current LED or the high current LED illuminates red, respectively, indicating the current is outside acceptable limits.

Abraham, B.M.; /Fermilab

1999-04-19T23:59:59.000Z

269

Evaluation of near-term electric vehicle battery systems through in-vehicle testing: Second annual final report  

SciTech Connect

This report documents the performance from October 1985 through September 1986 of the Tennessee Valley Authority's ongoing project to evaluate near-term electric vehicle traction batteries. This second annual report includes the addition of four new batteries and the termination of two sets. The purpose of this field test activity is to provide an impartial evaluation and comparison of battery performance in a real-world operating environment. Testing includes initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static (constant current) discharge tests under computer control. Battery performance data is typically presented on the basis of specific energy versus accumulated vehicle mileage and vehicle driving range over fixed operating cycle (35 mi/h) constant speed (SAE J227a ''C'' Cycle). Data is analyzed statistically with variable conditions normalized. The life-cycle is terminated when a battery system's measured capacity drops below 60 percent of rating (at the 2-hour rate) and/or after 25 percent of the battery modules have been replaced. 120 figs., 2 tabs.

Blickwedel, T.W.; Whitehead, G.D.; Thomas, W.A.

1987-12-01T23:59:59.000Z

270

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

cost. Third, lithium-ion (Li-Ion) battery designs are betterclass of advanced battery using lithium-ion chemistry. LMS –Li-Ion battery technologies as follows: LCO: Lithium cobalt

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

271

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of “acceptability”. Targeted battery costs are $200-$300 persafety will increase battery cost. Table E-1: Comparing PHEVthis report. 3.5 Costs Battery cost is thought to be one of

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

272

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal  

SciTech Connect

Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

Corbus, D.

1992-09-01T23:59:59.000Z

273

Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center  

DOE Green Energy (OSTI)

In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

1996-07-01T23:59:59.000Z

274

Development of Low Cost Carbonaceous Materials for Anodes in Lithium-Ion Batteries for Electric and Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Final report on the US DOE CARAT program describes innovative R & D conducted by Superior Graphite Co., Chicago, IL, USA in cooperation with researchers from the Illinois Institute of Technology, and defines the proper type of carbon and a cost effective method for its production, as well as establishes a US based manufacturer for the application of anodes of the Lithium-Ion, Lithium polymer batteries of the Hybrid Electric and Pure Electric Vehicles. The three materials each representing a separate class of graphitic carbon, have been developed and released for field trials. They include natural purified flake graphite, purified vein graphite and a graphitized synthetic carbon. Screening of the available on the market materials, which will help fully utilize the graphite, has been carried out.

Barsukov, Igor V.

2002-12-10T23:59:59.000Z

275

Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

Donald Karner

2007-12-01T23:59:59.000Z

276

Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)  

SciTech Connect

Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

Dr. Malgorzata Gulbinska

2009-08-24T23:59:59.000Z

277

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL

2011-01-01T23:59:59.000Z

278

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

279

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 4, In-vehicle safety  

DOE Green Energy (OSTI)

This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

Mark, J.

1992-11-01T23:59:59.000Z

280

Lithium-Ion Batteries: Possible Materials Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne, IL Abstract The transition to plug-in hybrid vehicles and possibly pure battery electric vehicles will depend on the successful development of lithium-ion batteries....

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

Technology Power devices supercapacitor Activated 2320 11600Effectiveness of Battery-Supercapacitor Combination in

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

282

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

weight, volume, and the cost of the battery unit. It is alsoweight, volume, and the cost of the battery unit. It is alsoCost-Effective Combinations of Ultracapacitors and Batteries for Vehicle Applications, Proceedings of the Second International Advanced Battery

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

283

Prototype testing for a hybrid gas-gun/railgun device  

DOE Green Energy (OSTI)

In 1984 Los Alamos began the design of the lethality test system (LTS), a facility to be used for the study of impact physics at velocities up to 15 km/s. The key component of LTS was an electromagnetic launcher capable of accelerating a 30 gram mass to 15 km/s. By the time of the Preliminary Design Review (July 1985) it was known from laboratory experiments that a conventional railgun was incapable of reaching 15 km/s starting at low velocity (/approximately/1 km/s) and a hybrid design was adopted for the LTS launcher. The hybrid launcher consisted of a two-stage hydrogen gun that preaccelerated the test mass to 6.5 km/s and an electromagnetic launcher for the final acceleration from 6.5 to 15 km/s. Design calculations predicted that injection into the railgun at 6.5 km/s would reduce ablation sufficiently to permit operation at 12 km/s with reasonable probability of achieving 15 km/s. The hybrid launcher design adopted for LTS presents some unique mechanical and electrical issues. In particular, the hybrid design requires that the plasma armature be established in a high pressure gas environment behind the projectile. To address this issue, as well as to evaluate the mechanical and electrical design, an 1.83 meter long prototype of the electromagnetic launcher barrel was built and tested. This paper describes the prototype launcher tests and the performance achieved. In addition, testing of a plasma initiator operating in a high pressure gas environment is discussed. 5 refs., 11 figs., 1 tab.

Parker, J.V.

1989-01-01T23:59:59.000Z

284

Hyundai Avante LPi hybrid level 1 testing report.  

DOE Green Energy (OSTI)

In collaboration with the Korea Automotive Technology Institute (KATECH), the Korean market only Hyundai Avante LPi Hybrid was purchased and imported to ANL's Advanced Powertrain Research Facility for vehicle-level testing. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. To assess the impacts of more aggressive driving, the LA92 cycle and a UDDS scaled by a factor 1.2x cycles were also included in the testing plan. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed. The following sections will seek to explain some of the basic operating characteristics of the Avante LPi Hybrid and provide insight into unique features of its operation and design. Figure 1 shows the test vehicle in Argonne's soak room.

Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H. (Energy Systems)

2012-02-07T23:59:59.000Z

285

Requirements for Defining Utility Drive Cycles: An Exploratory Analysis of Grid Frequency Regulation Data for Establishing Battery Performance Testing Standards  

DOE Green Energy (OSTI)

Battery testing procedures are important for understanding battery performance, including degradation over the life of the battery. Standards are important to provide clear rules and uniformity to an industry. The work described in this report addresses the need for standard battery testing procedures that reflect real-world applications of energy storage systems to provide regulation services to grid operators. This work was motivated by the need to develop Vehicle-to-Grid (V2G) testing procedures, or V2G drive cycles. Likewise, the stationary energy storage community is equally interested in standardized testing protocols that reflect real-world grid applications for providing regulation services. As the first of several steps toward standardizing battery testing cycles, this work focused on a statistical analysis of frequency regulation signals from the Pennsylvania-New Jersey-Maryland Interconnect with the goal to identify patterns in the regulation signal that would be representative of the entire signal as a typical regulation data set. Results from an extensive time-series analysis are discussed, and the results are explained from both the statistical and the battery-testing perspectives. The results then are interpreted in the context of defining a small set of V2G drive cycles for standardization, offering some recommendations for the next steps toward standardizing testing protocols.

Hafen, Ryan P.; Vishwanathan, Vilanyur V.; Subbarao, Krishnappa; Kintner-Meyer, Michael CW

2011-10-19T23:59:59.000Z

286

Battery construction. [miniaturized batteries  

SciTech Connect

A description is given of a battery having a battery cup and a battery cap which has a ridge portion to provide a battery chamber for accommodating a positive electrode, a negative electrode, and an electrolyte. The battery chamber has a contour at its outer periphery different from that of the sealing flanges of the battery cup and the battery cap. 11 figures.

Nishimura, H.; Nomura, Y.

1977-05-24T23:59:59.000Z

287

Seismic-fragility tests of new and accelerated-aged Class 1E battery cells  

SciTech Connect

The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

1987-01-01T23:59:59.000Z

288

Batteries - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

289

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

290

TransForum - Special Issue: Batteries - August 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Issue: Batteries-August 2010 Special Issue: Batteries-August 2010 RESEARCH REVIEWS 2 China's Minister of Science and Technology Visits Argonne 3 Testing the Tesla 4 Six Myths about Plug-in Hybrid Electric Vehicles 6 Charging Ahead: Taking PHEVs Farther on a Single Battery Charge 7 Argonne to Explore Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology Transfer Successes 11 New Battery Facilities Will Help Accelerate Commercialization of Technologies 12 Argonne Charges Ahead with Smart Grid Research 14 Center for Electrical Energy Storage Promises Advances in Transportation Technologies 15 PHEVs Need Further Research for Acceptable Payback 16 PUTTING ARGONNE'S RESOURCES TO WORK FOR YOU Lithium-ion Battery Research page 8 Minister of Science and

291

Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems  

DOE Green Energy (OSTI)

This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

1999-06-01T23:59:59.000Z

292

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 3, Transport of sodium-sulfur and sodium-metal-chloride batteries  

DOE Green Energy (OSTI)

This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

Hammel, C.J.

1992-09-01T23:59:59.000Z

293

Rechargeable battery charger system for charging testing, rejuvenation and preventative maintenance  

SciTech Connect

The present invention is directed to a method for automatically maintaining rechargeable batteries at maximum capacity and includes the steps of detecting the presence of a battery, deep discharging the battery to a predetermined level above cell reversal, recharging the battery to its rated capacity, discharging the battery at a controlled rate while measuring battery output voltage and determining whether its capacity is above or below a selected minimum, deep discharging and recharging if the battery is below the selected minimum until reversible memory effects are removed, providing a positive indication of battery failure, maintaining the full battery capacity by trickle charging, and periodically repeating the above steps to avoid onset of battery memory.

Yefsky, S.A.

1981-11-24T23:59:59.000Z

294

Cycle life testing of lithium-ion batteries for small satellite LEO space missions  

DOE Green Energy (OSTI)

In 1990, Sony corporation announced their intention to manufacture a rechargeable lithium ion battery, based on the intercalation of lithium ions into a carbonaceous anode. The cells were first introduced for portable telephone use in June, 1991. (1) A 3.6V average cell voltage (4.1-2.75V range); (2) Excellent cycle life (1200 @ 100% DOD); (3) Good capacity retention (70% after 6 months); (4) Wide temperature range performance ({minus}20 to +60{degrees}C); (5) Excellent Discharge rate (82% capacity at 30 min. discharge rate); (6) Excellent Charge rate (100% Charge in <3 hrs); and (7) High energy density (264 W*hr/1 and 120 Whr/kg for ``D`` size cell. These specifications show significant promise for application of these batteries in low earth orbit (LEO) small satellites, particularly when compared to existing NiH{sub 2} and NiCd technology. The very high energy density and specific energy will reduce power system volume and weight. The wide temperature range enables simpler thermal design, particularly for new, small, high power satellites. The materials used in the lithium ion batteries are relatively inexpensive and benign, so that we expect costs to come down substantially in the future. The specified cycle life at 100% DOD is also 50% longer than most NiCds, so low DOD (depth of discharge) performance could be substantial. This study was undertaken to: (a) assess the feasibility for using lithium ion cells on small satellite LEO missions and (b) verify the claims of the manufacturer. This was accomplished by performing a detailed autopsy and various depth of discharge and rate tests on the cells. Of special interest was the cycle life performance of these cell at various depths of discharge DOD`s, to get an initial measure of the reduction in capacity fade with cycle conditions. Low DOD`s are used to extend the life of all batteries used in a space application.

Mayer, S.T.; Feikert, J.H.; Kaschmitter, J.L.

1993-08-16T23:59:59.000Z

295

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

296

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

vehicles was the Hybrid and Electric Vehicle Act of 1976.for Electric and Hybrid Electric Vehicle Applications,and Impacts of Hybrid Electric Vehicle Options EPRI, Palo

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

297

Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)  

SciTech Connect

NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

Neubauer, J.; Pesaran, A.; Howell, D.

2010-05-01T23:59:59.000Z

298

Advanced Vehicle Testing Activity - Plug-in Hybrid ElectricVehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

INL and testing partner Electric Transportation Engineering Corporation conduct Plug-in Hybrid Electric Vehicle (PHEV) and Extended Range Electric Vehicle (EREV) testing as part...

299

Comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energizer Battery Manufacturing, Inc 25225 Detroit Rd. Westlake, OH 44145 Energizer Comments On DOE Verification Testing in Support of ENERGY STAR 1. In the "Conditions and Criteria for Recognition of Certification Bodies for the ENERGY STAR® Program" document on page 3 it states in 3.a.i.2.a that "Annually test at least 10% of all ENERGY STAR qualified models the CB has certified or for which it has received qualified product data". Does the 10% of qualified models pertain to all products the lab has certified or is it 10% of each companies product? This is unclear, please add sufficient detail. 2. On page 7 under program funding, it states "For products tested by DOE under the ENERGY STAR verification program, DOE pays all costs for obtaining and testing products. Verification programs administered by CBs are

300

CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY  

DOE Green Energy (OSTI)

This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that prevents the formation of a sulfur layer previously observed in MEAs used in the Hybrid Sulfur Cycle electrolyzer. This result is very important because the sulfur layer increased cell voltage and eventually destroyed the MEA that is the heart of the cell. Steimke and Steeper [2005, 2006, 2007, 2008] reported on testing in the Single Cell Electrolyzer test facility in several periodic reports. Steimke et. al [2010] issued a final facility close-out report summarizing all the testing in the Single Cell Electrolyzer test facility. During early tests, significant deterioration of the membrane occurred in 10 hours or less; the latest tests ran for at least 200 hours with no sign of deterioration. Ironically, the success with the Single Cell electrolyzer meant that it became dedicated to long runs and not available for quick membrane evaluations. Early in this research period, the ambient pressure Button Cell Electrolyzer test facility was constructed to quickly evaluate membrane materials. Its small size allowed testing of newly developed membranes that typically were not available in sizes large enough to test in the Single Cell electrolyzer. The most promising membranes were tested in the Single Cell Electrolyzer as soon as sufficient large membranes could be obtained. However, since the concentration of SO{sub 2} gas in sulfuric acid decreases rapidly with increasing temperature, the ambient pressure Button Cell was no longer able to achieve the operating conditions needed to evaluate the newer improved high temperature membranes. Significantly higher pressure operation was required to force SO{sub 2} into the sulfuric acid to obtain meaningful concentrations at increased temperatures. A high pressure (200 psig), high temperature (120 C) Button Cell was designed and partially fabricated just before funding was discontinued in June 2009. SRNL completed the majority of the design of the test facility, including preparation of a process and instrument drawing (P&ID) and preliminary designs for the major components. SRNL intended to complete the designs and procu

Steeper, T.

2010-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act, OAS-RA-L-12-05  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Follow-up on the Department of Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act OAS-RA-L-12-05 July 2012 Department of Energy Washington, DC 20585 July 10, 2012 MEMORANDUM FOR THE DIRECTOR, NATIONAL ENERGY TECHNOLOGY LABORATORY FROM: Joanne Hill, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act" BACKGROUND Under the American Recovery and Reinvestment Act of 2009, the Department of Energy's Advanced Batteries and Hybrid Components Program (Advanced Batteries Program) received

302

Microsoft Word - PLUG_IN_HYBRID_Manual Rev 2.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-07-12536 U.S. Department of Energy Vehicle Technologies Program Battery Test Manual For Plug-In Hybrid Electric Vehicles REVISION 2 DECEMBER 2010 The Idaho National...

303

Argonne Software Licensing: Battery Life Estimation Software  

Battery Life Estimation. Rising gasoline and diesel fuel prices have resulted in a resurgence of interest in hybrid electric and plug-in hybrid ...

304

Vehicle Battery Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and...

305

Design of a testing device for quasi-confined compression of lithium-ion battery cells  

E-Print Network (OSTI)

The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

Roselli, Eric (Eric J.)

2011-01-01T23:59:59.000Z

306

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

307

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

308

Selected test results from the LiFeBatt iron phosphate Li-ion battery.  

DOE Green Energy (OSTI)

In this paper the performance of the LiFeBatt Li-ion cell was measured using a number of tests including capacity measurements, capacity as a function of temperature, ohmic resistance, spectral impedance, high power partial state of charge (PSOC) pulsed cycling, pulse power measurements, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the iron phosphate Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, and wind farm energy smoothing. Test results have indicated that the LiFeBatt battery technology can function up to a 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h discharge rate (1C). The utility PSOC cycle test at up to the 4C{sub 1} pulse rate completed 8,394 PSOC pulsed cycles with a gradual loss in capacity of 10 to 15% depending on how the capacity loss is calculated. The majority of the capacity loss occurred during the initial 2,000 cycles, so it is projected that the LiFeBatt should PSOC cycle well beyond 8,394 cycles with less than 20% capacity loss. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were only very small changes after cycling. Finally, at a 1C charge rate, the over charge/voltage abuse test resulted in the cell venting electrolyte at 110 C after 30 minutes and then open-circuiting at 120 C with no sparks, fire, or voltage across the cell.

Ingersoll, David T.; Hund, Thomas D.

2008-09-01T23:59:59.000Z

309

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

Targeted battery costs are $200-$300 per kWh. We note thatbattery cost is commonly measured in dollars per total kWh (

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

310

Battery Usage and Thermal Performance of the Toyota Prius and Honda Insight for Various Chassis Dynamometer Test Procedures: Preprint  

DOE Green Energy (OSTI)

This study describes the results from the National Renewable Energy Laboratory's (NREL) chassis dynamometer testing of a 2000 model year Honda Insight and 2001 model year Toyota Prius. The tests were conducted for the purpose of evaluating the battery thermal performance, assessing the impact of air conditioning on fuel economy and emissions, and providing information for NREL's Advanced Vehicle Simulator (ADVISOR).

Kelly, K. J.; Mihalic, M.; Zolot, M.

2001-11-20T23:59:59.000Z

311

Performance-oriented packaging testing of wood box for M83769/4-1 battery. Final report  

SciTech Connect

The current packaging configuration for the M873769/4-1 Battery was tested for conformance to Performance Oriented Packaging regulations. The cleated plywood box was tested with a gross weight of 214 pounds and met the requirements and retained its contents.

Libbert, K.J.

1991-05-01T23:59:59.000Z

312

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

313

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

314

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

to approximately 40 kW. The hybrid vehicles are of interestat $0.84/therm). The hybrid vehicles in motor-generator modegas reformer, and the hybrid vehicle. However, the simple

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

315

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

Gelder E. Plug-in Hybrid-Electric Vehicle Powertrain DesignIntegration for Hybrid Electric Vehicles, IEEE Transactionsmodels [1-3] of hybrid-electric vehicles using Advisor have

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

316

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

than the vehicle’s battery capacity will allow. Previousowner selling vehicle battery capacity into the market forusing an EDV’s battery and electronics capacity in segments

Greer, Mark R

2012-01-01T23:59:59.000Z

317

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

rd International Electric Vehicle Symposium and Exposition (Electric and Hybrid Electric Vehicle Applications, Sandiaand Impacts of Hybrid Electric Vehicle Options EPRI, Palo

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

318

Environmental Assessment of Li-CNT Battery Production  

Science Conference Proceedings (OSTI)

These batteries are expected to be widely used in hybrid-cars, satellites, and cellphones to extend battery lifetime, decrease power consumption, offer weight ...

319

Available Technologies: Lower Cost Lithium Ion Batteries from ...  

Lower Cost Lithium Ion Batteries from ... Although lithium ion batteries are the most promising candidates for plug-in hybrid electric vehicles, the u ...

320

Results of advanced battery technology evaluations for electric vehicle applications  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BEST for batteries  

Science Conference Proceedings (OSTI)

The Battery Energy Storage Test (BEST) Facility, Hillsborough Township, New Jersey, will investigate advanced battery performance, reliability, and economy and will verify system characteristics and performance in an actual utility environment.

Lihach, N.

1981-05-01T23:59:59.000Z

322

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

5, Shirouzu, N. (2007). Toyota Puts Off New Type of Batteryof one battery, e.g. Toyota’s concerns about safety with itssuccess, typified by the Toyota Prius. Currently, interest

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

323

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

New Type of Battery for Next Prius, The Wall Street Journal,typified by the Toyota Prius. Currently, interest has turneda plug-in version of the Prius, General Motors is working

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

324

Progress and forecast in electric-vehicle batteries  

SciTech Connect

With impetus provided by US Public Law 94-413 (Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976), the Department of Energy (DOE) launched a major battery development program early in 1978 for near-term electric vehicles. The program's overall objective is to develop commercially viable batteries for commuter vehicles (with an urban driving range of 100 miles) and for vans and trucks (with a range of 50 miles) by the mid-1980's. Three near-term battery candidates are receiving major developmental emphasis - improved lead-acid, nickel/iron and nickel/zinc systems. Sharing the cost with the government, nine industrial firms (battery developers) are participating in the DOE battery project. They are Eltra Corp., Exide Management and Technology Co., and Globe-Union Inc., for the lead-acid battery; Eagle-Picher Industries, Inc., and Westinghouse Electric Corp. for the nickel/iron battery; and Energy Research Corp., Exide Management and Technology Co., and Gould Inc., for the nickel/zinc battery. Good progress has been made in improving the specific energy, specific power, and manufacturing processes of these three battery technologies. Current emphasis is directed toward reduction of manufacturing cost and enhancement of battery cycle life and reliability. Recently, the zinc-chloride battery was added as the fourth candidate to the near-term battery list. Testing of the zinc-chloride battery in a vehicle and evaluation of its operating characteristics are currently under way. This paper presents the development goals, the status, and the outlook for the near-term battery program.

Webster, W.H. Jr.; Yao, N.P.

1980-01-01T23:59:59.000Z

325

Battery Types  

Science Conference Proceedings (OSTI)

...and rechargeable batteries (Table 1A battery consists of a negative electrode (anode) from which electrons

326

Development of a Hardware-in-the-loop Simulation System for Hybrid Electric Vehicle Performance Test  

Science Conference Proceedings (OSTI)

In order to facilitate control strategy development and performance test of hybrid electric vehicle, a hardware-in-the-loop simulation system is developed. The system is constructed with LabVIEW and PXI hardware. Hardware-in-the-loop simulation test ... Keywords: hybrid electric vehicle, hardware-in-the-loop simulation, fuel economy, exhaust emission

Yanyi Zhang, Zhenhua Jin, Haoduan Wang, Qingchun Lu

2012-07-01T23:59:59.000Z

327

Plug-In Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Downloadable Dynanometer Database (D3) * Modeling * Prototypes * Testing * Assessment PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Argonne Leads DOE's Effort to Evaluate Plug-in Hybrid Technology aprf testing Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles such as PHEVs. Argonne's Research Argonne National Laboratory is the U.S. Department of Energy's lead national laboratory for the simulation, validation and laboratory evaluation of plug-in hybrid electric vehicles and the advanced

328

Advanced Vehicle Testing Activity: Plug-in Hybrid ElectricVehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

VehiclesExtended Range Electric Vehicles Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric VehiclesExtended Range Electric...

329

HEV Fleet testing maintenance sheet for Honda insight hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid VIN JHMZE14701T002688 Date Mileage Description Cost 272002 7,473 Changed oil, rotated tires 27.00 4122002 14,946 Changed oil, rotated tires 27.00 4172002...

330

Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)  

E-Print Network (OSTI)

and hybrid electric vehicle test platforms. Relevant HHVRL project history includes: · Combined BatteryPenn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI) The Hybrid and Hydrogen Vehicle Research Laboratory (HHVRL) at the Larson Transportation Institute (LTI

Lee, Dongwon

331

Hybrid Vehicle Program. Final report  

DOE Green Energy (OSTI)

This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

None

1984-06-01T23:59:59.000Z

332

Computer-Aided Engineering and Secondary Use of Automotive Batteries (Presentation)  

SciTech Connect

NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

Pesaran, A.; Kim, G. H.; Smith, K.; Newbauer, J.

2010-05-01T23:59:59.000Z

333

Developing a standardized test procedure for hybrid vehicles: The challenge of the SAE HEV task force  

DOE Green Energy (OSTI)

In 1992, the Society of Automotive Engineers (SAE) established a task force to develop a procedure for measuring electric energy consumption, all-electric range, fuel economy, and exhaust emissions for hybrid vehicles; the procedure will be submitted to regulatory agencies as representing the automotive industry`s recommendations. The draft procedure is currently being tested on hybrid vehicles. The University of Maryland`s parallel hybrid was tested in September 1994, and the University of California-Davis` parallel hybrid and the University of Illinois` series hybrid will be tested in November 1994 and January 1995, respectively. The procedure is being modified to incorporate any lessons learned, and the task force hopes to recommend the final procedure to the SAE by mid 1995.

Penney, T; Christensen, D [National Renewable Energy Lab., Golden, CO (United States); Poulos, S [General Motors Corp., Warren, MI (United States)

1994-11-01T23:59:59.000Z

334

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

DOE Green Energy (OSTI)

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

335

In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries  

E-Print Network (OSTI)

] .......................................................................................................... 8 1.1.4 Separator .......................................................................................... 12 1.1.6.2 VRLA batteries.................................................................................... 105 3.6 ANALYZING EVOLUTION OF SEPARATED STATES OF CHARGE OF NEGATIVE AND POSITIVE ELECTRODES USING

Wang, Chao-Yang

336

Effect of Temperature on Lithium-Iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range.  

E-Print Network (OSTI)

??Increasing pressure from environmental, political and economic sources are driving the development of an electric vehicle powertrain. The advent of hybrid electric vehicles (HEVs), plug-in… (more)

Lo, Joshua

2013-01-01T23:59:59.000Z

337

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

the battery depletion cost per kWh transferred could bethe battery depletion cost per kWh transferred from off-peakhigher battery depletion cost per kWh transferred under the

Greer, Mark R

2012-01-01T23:59:59.000Z

338

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

the significant battery depletion costs incurred from deep-Consequently, the battery depletion cost per kWh transferredTo estimate the battery depletion cost of peak shaving, we

Greer, Mark R

2012-01-01T23:59:59.000Z

339

ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING  

SciTech Connect

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide >99.99% particulate collection efficiency for particle sizes from 0.01 to 50 {micro}m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of the perforated plate configuration on bag protection and AHPC overall performance and to optimize the perforated plate design. Five different perforated plate configurations were evaluated in a coal combustion system. The AHPC performed extremely well even at a low current level (1.5-3.0 mA) and a low pulse trigger pressure of 6.5 in. W.C. (1.62 kPa), resulting in a bag-cleaning interval of over 40 min at an A/C ratio of 12 ft/min (3.7 m/min) for most of the test period. The longest bag-cleaning interval was 594 min, which is the best to date. The residual drag was reduced to the range from 0.25 to 0.35 in. H{sub 2}O/ft/min, showing an excellent bag-cleaning ability under the perforated plate configurations. The K{sub 2}C{sub i} at the current level of 3 mA was as low as 1.0, indicating excellent ESP performance. All the results are the best achieved to date.

Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

2001-09-30T23:59:59.000Z

340

Battery chargers  

SciTech Connect

A battery charger designed to be installed in a vehicle, and while utilizing a portion of this vehicle's electrical system, can be used to charge another vehicle's battery or batteries. This battery charger has a polarity sensor, and when properly connected to an external battery will automatically switch away from charging the internal battery to charging the external battery or batteries. And, when disconnected from the external battery or batteries will automatically switch back to charging the internal battery, thus making it an automatic vehicle to vehicle battery charger.

Winkler, H.L.

1984-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles  

E-Print Network (OSTI)

incentives. The federal Qualified Plug-In Electric Drive Motor Vehicle Tax Credit is available for PEV. Advances in electric-drive technologies enabled commercializa- tion of hybrid electric vehicles (HEVs That Affect All-Electric and Hybrid Electric Vehicle Efficiency and Range section). The time required to fully

Michalek, Jeremy J.

342

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

343

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

344

Advanced Lithium Ion Battery Technologies - Energy Innovation Portal  

The Berkeley Lab technology contributes to improved battery safety by circumventing lithium metal dendrite formation. Benefits. ... hybrid electric vehicles;

345

Multilayer Graphene-Silicon Structures for Lithium Ion Battery ...  

Automotive industry: electric vehicles, hybrid electric vehicles; High performance lithium ion battery manufacturers; Aerospace industry, for lightweight power storage;

346

Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

Pesaran, A. A.

2011-04-01T23:59:59.000Z

347

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

a graphite-free lithium ion battery can be built, usingK (1990) Lithium Ion Rechargeable Battery. Prog. Batteriesion battery configurations, as all of the cycleable lithium

Doeff, Marca M

2011-01-01T23:59:59.000Z

348

Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

2005-03-01T23:59:59.000Z

349

Battery Maintenance  

Science Conference Proceedings (OSTI)

... Cranking batteries are not appropriate for extended use since disharging the battery deeply can rapidly destroy the thin plates. ...

350

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

351

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this

Doeff, Marca M

2010-07-12T23:59:59.000Z

352

Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

may prove to be a limitation for realizing technologies for very high gradient accelerators. In this article, we present a scheme that uses a hybrid dielectric and iris-loaded...

353

King County Metro Transit: Allison Hybrid Electric Transit Bus Laboratory Testing  

DOE Green Energy (OSTI)

Paper summarizes chassis dynamometer testing of two 60-foot articulated transit buses, one conventional and one hybrid, at NREL's ReFUEL Laboratory. It includes experimental setup, test procedures, and results from vehicle testing performed at the NREL ReFUEL laboratory.

Hayes, R. R.; Williams, A.; Ireland, J.; Walkowicz, K.

2006-09-01T23:59:59.000Z

354

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

Doeff, Marca M

2011-01-01T23:59:59.000Z

355

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

356

Test Protocol for System Compatibility of Single-Phase Battery Chargers for Electric Vehicles (SC-320)  

Science Conference Proceedings (OSTI)

This document defines procedures for performing comparisons of 240 V, single-phase residential battery chargers suitable for charging electric vehicles. The protocol describes methods for evaluating the charging characteristics, response to supply-side voltage variations, effects on supply-side power quality, and protection features of these charging devices.

1997-02-03T23:59:59.000Z

357

Test Protocol for System Compatibility of Three-Phase Battery Chargers for Electric Vehicles (SC-330)  

Science Conference Proceedings (OSTI)

This document defines procedures for performing comparisons of 480 V, three-phase battery chargers suitable for charging electric vehicles (EVs). The protocol describes methods for evaluating the charging characteristics, response to supply-side voltage variations, effects on supply-side power quality, and protection features of these charging devices.

1997-02-03T23:59:59.000Z

358

Electrothermal Battery Pack Modeling and Simulation.  

E-Print Network (OSTI)

??Much attention as been given to the study of Li-Ion batteries for their use in automotive applications such as Hybrid Electric Vehicles (HEV), Plug In… (more)

Yurkovich, Benjamin J.

2010-01-01T23:59:59.000Z

359

Surface Modification Agents for Lithium Batteries  

Increased safety and life of lithium-ion batteries, ... Electric and plug-in hybrid electric vehicles; Portable electronic devices; Medical devices; and

360

Microsoft Word - Vehicle Battery EA_BASF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lithium-ion battery industry and, more specifically, the electric drive vehicle (EDV) and hybrid-electric vehicle industry (HEV). If approved, DOE would provide approximately 50...

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wind/hybrid power system test facilities in the United States and Canada  

SciTech Connect

By 1995, there will be four facilities available for testing of wind/hybrid power systems in the United States and Canada. This paper describes the mission, approach, capabilities, and status of activity at each of these facilities. These facilities have in common a focus on power systems for remote, off-grid locations that include wind energy. At the same time, these facilities have diverse, yet complimentary, missions that range from research to technology development to testing. The first facility is the test facility at the Institut de Recherche d`Hydro-Quebec (IREQ), Hydro-Quebec`s research institute near Montreal, Canada. This facility, not currently in operation, was used for initial experiments demonstrating the dynamic stability of a high penetration, no-storage wind/diesel (HPNSWD) concept. The second facility is located at the Atlantic Wind Test Site (AWTS) on Prince Edward Island, Canada, where testing of the HPNSWD concept developed by Hydro-Quebec is currently underway. The third is the Hybrid Power Test Facility planned for the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, which will focus on testing commercially available hybrid power systems. The fourth is the US Department of Agriculture (USDA) Conservation and Production Research Laboratory in Bushland, Texas, where a test laboratory is being developed to study wind-energy penetration and control strategies for wind/hybrid systems. The authors recognize that this summary of test facilities is not all inclusive; for example, at least one US industrial facility is currently testing a hybrid power system. Our intent, though, is to describe four facilities owned by nonprofit or governmental institutions in North America that are or will be available for ongoing development of wind/hybrid power systems.

Green, H J [National Renewable Energy Lab., Golden, CO (United States); Clark, R N [USDA Conservation and Production Research Laboratory, Bushland, TX (United States); Brothers, C [Atlantic Wind Test Site, North Cape, PE (Canada); Saulnier, B [Institut de Recherche d`Hydro-Quebec, Varennes, PQ (Canada)

1994-05-01T23:59:59.000Z

362

Flywheel Battery Commercialization Study  

Science Conference Proceedings (OSTI)

High energy-density flywheel batteries, already in development as load leveling devices for electric and hybrid vehicles, have the potential to form part of an uninterruptible power supply (UPS) for utilities and their customers. This comprehensive assessment of the potential of flywheels in a power conditioning role shows that a sizeable market for flywheel battery-UPS systems may emerge if units can be manufactured in sufficient volume.

1999-09-23T23:59:59.000Z

363

A Historical-Data-Based Method for Health Assessment of Li-Ion Battery.  

E-Print Network (OSTI)

??Nowadays, rechargeable Li-ion batteries have been widely used in laptops, cell phones and hybrid electric vehicles (HEV). The health information of battery is very important.… (more)

Dai, Wanchen

2012-01-01T23:59:59.000Z

364

DOE to Provide up to $14 Million to Develop Advanced Batteries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions...

365

U.S. Hybrid and Lithium Technology Corporation GAIA Battery: Initial System Characterization for the Plug-In Hybrid Electric Vehicle Yard Tractor  

Science Conference Proceedings (OSTI)

Diesel-powered tractors, called yard tractors, are used to shuttle cargo trailers from point to point within the confines of a port facility, terminal, or yard. A plug-in hybrid electric vehicle (PHEV) yard tractor design was proposed as a way to reduce operation emissions and diesel fuel use. The Electric Power Research Institute (EPRI) has designed and constructed a first-of-a-kind PHEV yard tractor. Southern California Edison's (SCE's) Electric Vehicle Technical Center performed PHEV yard tractor bat...

2012-03-01T23:59:59.000Z

366

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

367

Preprint of: A.H. Nosrat, L.G. Swan, J.M. Pearce, Improved Performance of Hybrid Photovoltaic-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http://dx.doi.org/10.1016/j.energy.201  

E-Print Network (OSTI)

-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http://dx.doi.org/10.1016/j.energy.2012.11.005 Improved Performance of Hybrid Photovoltaic Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http

368

Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries  

DOE Green Energy (OSTI)

During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

White, Ralph E.; Popov, Branko N.

2002-10-31T23:59:59.000Z

369

Low-temperature Sodium-Beta Battery  

Rechargeable metallic sodium batteries have application in large-scale energy storage applications such as electric power generation and distribution, in motive applications such as electric vehicles, hybrids, and plug-in hybrids, and for aerospace ...

370

Test and Evaluation of a Hybrid Desiccant Dehumidifier  

Science Conference Proceedings (OSTI)

Dehumidification technology is being investigated for potential savings in building air conditioning systems. The potential for savings lies in separating the sensible and the latent cooling loads to more efficiently address the combined conditioning needs of the space. The Munters DryCool HD combined desiccant/vapor compression system was tested in the EPRI Knoxville psychrometric chambers. The system was tested in the laboratory for a host of indoor and outdoor conditions. The system provides cooling a...

2011-05-09T23:59:59.000Z

371

Novel electrolyte chemistries for Mg-Ni rechargeable batteries.  

DOE Green Energy (OSTI)

Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

Garcia-Diaz, Brenda (Savannah River National Laboratory); Kane, Marie; Au, Ming (Savannah River National Laboratory)

2010-10-01T23:59:59.000Z

372

Optimization of blended battery packs  

E-Print Network (OSTI)

This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

Erb, Dylan C. (Dylan Charles)

2013-01-01T23:59:59.000Z

373

Battery system  

DOE Patents (OSTI)

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

374

Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based on  

E-Print Network (OSTI)

}@lea.uni-paderborn.de Abstract--For electric and hybrid electric cars, commonly nickel-metal hydride and lithium-ion batteries. The BMW Mini-E is an all electric powered car field-tested in the United States, United KingdomOptimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based

Noé, Reinhold

375

AGEING PROCEDURES ON LITHIUM BATTERIES IN AN INTERNATIONAL COLLABORATION CONTEXT  

DOE Green Energy (OSTI)

The widespread introduction of electrically-propelled vehicles is currently part of many political strategies and introduction plans. These new vehicles, ranging from limited (mild) hybrid to plug-in hybrid to fully-battery powered, will rely on a new class of advanced storage batteries, such as those based on lithium, to meet different technical and economical targets. The testing of these batteries to determine the performance and life in the various applications is a time-consuming and costly process that is not yet well developed. There are many examples of parallel testing activities that are poorly coordinated, for example, those in Europe, Japan and the US. These costs and efforts may be better leveraged through international collaboration, such as that possible within the framework of the International Energy Agency. Here, a new effort is under development that will establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data. This paper reviews the present state-of-the-art in accelerated life testing in Europe, Japan and the US. The existing test procedures will be collected, compared and analyzed with the goal of international collaboration.

Jeffrey R. Belt; Ira Bloom; Mario Conte; Fiorentino Valerio Conte; Kenji Morita; Tomohiko Ikeya; Jens Groot

2010-11-01T23:59:59.000Z

376

Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers  

E-Print Network (OSTI)

Requirements for Products with Battery Charging Systems (Power Tools Slow Charger Battery Energy No load (stdby) FastWorkshop on Power Supply and Battery Test Procedures, San

Webber, Carrie; Korn, David; Sanchez, Marla

2007-01-01T23:59:59.000Z

377

A refuelable zinc/air battery for fleet electric vehicle propulsion  

SciTech Connect

We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet s home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.

Cooper, J.F.; Fleming, D.; Hargrove, D.; Koopman, R.; Peterman, K.

1995-04-20T23:59:59.000Z

378

Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

John G. Smart; Sera White; Michael Duoba

2009-05-01T23:59:59.000Z

379

Battery charger  

SciTech Connect

A battery charging system for charging a battery from an ac source, including control rectifier means for rectifying the charging current, a pulse generator for triggering the rectifier to control the transmission of current to the battery, phase control means for timing the firing of the pulse generator according to the charge on the battery, and various control means for alternatively controlling the phase control means depending upon the charge on the battery; wherein current limiting means are provided for limiting the charging current according to the charge on the battery to protect the system from excessive current in the event a weak battery is being charged, a feedback circuit is provided for maintaining the charge on a battery to compensate for battery leakage, and circuitry is provided for equalizing the voltage between the respective cells of the battery.

Kisiel, E.

1980-12-30T23:59:59.000Z

380

Battery system  

SciTech Connect

This patent describes a battery system for use with a battery powered device. It comprises a battery pack, the battery pack including; battery cells; positive and negative terminals serially coupled to the battery cells, the positive terminal being adapted to deliver output current to a load and receive input current in the direction of charging current; circuit means coupled to the positive and negative terminals and producing at an analog output terminal an analog output signal related to the state of charge of the battery cells; and display means separate from the battery pack and the battery powered device and electrically coupled to the analog output terminal for producing a display indicating the state of charge of the battery cells in accordance with the analog output signal.

Sokira, T.J.

1991-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

In contrast to a hybrid vehicle whichcombines multiple1994) "Demand Electric Vehicles in Hybrid for Households:or 180 mile hybrid electric vehicle. Natural gas vehicles (

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

382

Plug-In Hybrid Electric Vehicles - Prototypes  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

383

Amp-hour counting charge control for photovoltaic hybrid power systems  

SciTech Connect

An amp-hour counting battery charge control algorithm has been defined and tested using the Digital Solar Technologies MPR-9400 microprocessor based photovoltaic hybrid charge controller. This work included extensive laboratory and field testing of the charge algorithm on vented lead-antimony and valve regulated lead-acid batteries. The test results have shown that with proper setup amp-hour counting charge control is more effective than conventional voltage regulated sub-array shedding in returning the lead-acid battery to a high state of charge.

Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, B. [Biri Systems, Ithaca, NY (United States)

1997-10-01T23:59:59.000Z

384

The hydrogen hybrid option  

SciTech Connect

The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

Smith, J.R.

1993-10-15T23:59:59.000Z

385

Studies of ionic liquids in lithium-ion battery test systems  

SciTech Connect

In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-06-01T23:59:59.000Z

386

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

387

Batteries - PHEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE has implemented a relatively new program to develop plug-in hybrid electric vehicle (PHEV) technologies, with the goal of achieving the equivalent of a 40-mile...

388

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

389

A Hybrid PSO-Self Regulating VSC-SMC Controller for PV-FC-Diesel-Battery Renewable Energy Scheme for Buildings Electricity Utilization  

Science Conference Proceedings (OSTI)

The paper presents the dynamic modeling and coordinated control strategy for an integrated micro grid scheme using Photo Voltaic PV, Fuel Cell FC, and backup Diesel generation with additional battery backup system. The integrated scheme is fully stabilized ... Keywords: Diesel-driven generator, Photo Voltaic PV, Fuel Cell, Backup Battery, Dynamic Filter Compensator, Green Power Filter, Multi Objective Optimization MOO, Particle Swarm Optimization PSO

Adel M. Sharaf; Adel A. A. El-Gammal

2010-05-01T23:59:59.000Z

390

Battery charger  

SciTech Connect

A battery charger can charge a battery from a primary power source having a peak voltage exceeding the maximum battery voltage independently producible by the battery. The charger has output terminals, a switch and a feedback circuit. The output terminals are adapted for connection to the battery. The switch can periodically couple the primary power source to the output terminals to raise their voltage above the maximum battery voltage. The feedback device is responsive to the charging occuring at the terminals for limiting the current thereto by varying the duty cycle of the switch.

Chernotsky, A.; Satz, R.

1984-10-09T23:59:59.000Z

391

Plug-in Hybrid Electric Vehicle (PHEV) Prototype Testing and Evaluation -- Data Collection and Analysis  

Science Conference Proceedings (OSTI)

In 2003, EPRI and DaimlerChrysler initiated a collaborative effort to develop and demonstrate a Plug-in Hybrid Electric Vehicle (PHEV) version of DaimlerChrysler's Sprinter commercial van. PHEV Sprinters were subsequently developed and used in limited fleet testing at several locations within the United States. As part of this effort, EPRI took on the responsibility of managing data acquisition and analysis. This report describes the data analysis toolkit EPRI created as part of an ongoing effort to eval...

2008-12-16T23:59:59.000Z

392

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

of an experimental fuel cell/supercapacitor-powered hybridof fuel cell/battery/supercapacitor hybrid power source for

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

393

Test Methods  

Science Conference Proceedings (OSTI)

... of the robot, operator control unit (OCU), payload, and batteries • Tools needed ... this test method is to quantitatively evaluate the battery capacity per ...

2010-10-05T23:59:59.000Z

394

Flow Batteries: A Historical Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Marvin Warshay *1976 Shunt Current Model, Paul Prokopius *1976 Interfaced an RFB with solar cells *1977 Electrode-Membrane-Flow Battery Testing *Largest polarization @ negative...

395

laura.schewel@berkeley.edu 1 VIRTUAL EV TEST DRIVE: INTRODUCTION AND PROJECT SUMMARY  

E-Print Network (OSTI)

, and battery electric vehicles (4) (5). · Many consumers are not interested in strict economic rationality when costs? Her fundamental question: "What does an EV mean for me?" Virtual EV Test Drive helps answer all a plug-in hybrid probably would switch into gasoline mode, and if/where a battery electric would have run

Kammen, Daniel M.

396

Batteries - Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Modeling Over the last few decades, a broad range of battery technologies have been examined at Argonne for transportation applications. Today the focus is on lithium-ion...

397

Battery Only:  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Only: Acceleration 0-60 MPH Time: 57.8 seconds Acceleration 14 Mile Time: 27.7 seconds Acceleration 1 Mile Maximum Speed: 62.2 MPH Battery & Generator: Acceleration 0-60...

398

Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

website and in print publications. website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT â—† PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004.

399

Electrochemical modeling of lithium-ion positive electrodes during hybrid pulse power characterization tests.  

DOE Green Energy (OSTI)

An electrochemical model was developed to examine hybrid pulsed power characterization (HPPC) tests on the positive electrode of lithium-ion cells. By utilizing the same fundamental equations as in previous electrochemical impedance spectroscopy studies, this investigation serves as an extension of the earlier work and a comparison of the two techniques. The electrochemical model was used to examine performance characteristics and limitations for the positive electrode during HPPC tests. Parametric studies using the electrochemical model and focusing on the positive electrode thickness were employed to examine methods of slowing electrode aging and improving performance.

Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Sciences and Engineering Division; Illinois Inst. of Tech.

2008-01-01T23:59:59.000Z

400

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals ...

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

402

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

DOE Green Energy (OSTI)

The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

403

Polymer Electrolytes for Rechargeable Lithium/Sulfur Batteries.  

E-Print Network (OSTI)

??With the rapid development of portable electronics, hybrid-electric and electric cars, there is great interest in utilization of sulfur as cathodes for rechargeable lithium batteries.… (more)

Zhao, Yan

2013-01-01T23:59:59.000Z

404

Redox Shuttle Electrolyte Additive Could Help Make Batteries Safer ...  

Argonne National Laboratory has developed a way to make commercially viable lithium-ion (Li-ion) batteries for plug-in hybrid electric vehicles (PHEVs) and electric ...

405

Materials and Processing for Lithium-Ion Batteries (Originally  

Science Conference Proceedings (OSTI)

... safe and reliable lithium ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, safety of ...

406

Battery Choices for Different Plug-in HEV Configurations (Presentation)  

DOE Green Energy (OSTI)

Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

Pesaran, A.

2006-07-12T23:59:59.000Z

407

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

lithium ion battery can be built, using LiVPO 4 F as both the anode and the cathode!ion battery configurations, as all of the cycleable lithium must originate from the cathode.

Doeff, Marca M

2011-01-01T23:59:59.000Z

408

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

travel by electric and hybrid vehicles. SAE Technical PapersIn contrast to a hybrid vehicle which combines multipleElectric, Hybrid and Other Alternative Vehicles. A r t h u r

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

409

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

or 180 mile hybrid electric vehicle. Natural gas vehicles (1994) Demand for Electric Vehicles in Hybrid Households: A nof Electric, Hybrid and Other Alternative Vehicles. A r t h

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

410

Battery Performance Monitoring by Internal Ohmic Measurements: Emergency Lighting Unit Batteries  

Science Conference Proceedings (OSTI)

Battery internal ohmic measurements offer a less expensive and technically superior alternative to the 8-hour discharge test, now required to demonstrate capacity. This report documents the initial results of internal ohmic testing on three emergency battery lighting (EBL) unit types used in nuclear power plants. In two of the three EBL unit types tested, internal ohmic measurements could replace battery capacity discharge tests.

1996-12-01T23:59:59.000Z

411

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to… (more)

Serrano Guillén, Isabel

2013-01-01T23:59:59.000Z

412

Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980  

DOE Green Energy (OSTI)

The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

Not Available

1981-03-01T23:59:59.000Z

413

Plug-in Hybrid Electric Vehicle Evaluation and Test Data Analysis  

Science Conference Proceedings (OSTI)

In 2003, EPRI and DaimlerChrysler initiated a three-part collaborative effort to 1) develop and demonstrate a plug-in hybrid electric vehicle (PHEV) based on the Sprinter vehicle platform, 2) deliver prototype Sprinter PHEVs to fleets within the United States, and 3) explore these benefits in the context of commercial fleet use. As part of this effort, EPRI assumed the responsibility of managing data acquisition and analysis. This report focuses on evaluation of the PHEV Sprinter tested by the South Coas...

2009-12-07T23:59:59.000Z

414

Advanced Power Batteries for Renewable Energy Applications 3.09  

SciTech Connect

This report describes the research that was completed under project title â?? Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

Rodney Shane

2011-09-30T23:59:59.000Z

415

The ANL electric vehicle battery R D program for DOE-EHP  

DOE Green Energy (OSTI)

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

Not Available

1990-01-01T23:59:59.000Z

416

The ANL electric vehicle battery R D program for DOE-EHP  

SciTech Connect

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

1990-01-01T23:59:59.000Z

417

Battery technology handbook  

SciTech Connect

This book is a comprehensive reference work on the types of battery available, their characteristics and applications. Topics considered include introduction, guidelines to battery selection, battery characteristics, battery theory and design, battery performance evaluation, battery applications, battery charging, and battery supplies.

Crompton, T.R.

1987-01-01T23:59:59.000Z

418

Battery separators  

SciTech Connect

Novel, improved battery separators carrying a plurality of polymeric ribs on at least one separator surface. The battery separators are produced by extruding a plurality of ribs in the form of molten polymeric rib providing material onto the surface of a battery separator to bond the material to the separator surface and cooling the extruded rib material to a solidified state. The molten polymeric rib providing material of this invention includes a mixture or blend of polypropylenes and an ethylene propylene diene terpolymer.

Battersby, W. R.

1984-12-25T23:59:59.000Z

419

Battery Performance Monitoring by Internal Ohmic Measurements: Application Guidelines for Stationary Batteries  

Science Conference Proceedings (OSTI)

Battery internal ohmic measurements offer a viable method of performance monitoring for stationary batteries. Ohmic measurements have demonstrated the ability to identify degraded cells and to baseline the general health of a battery. This report presents the results of research to correlate battery capacity with internal ohmic measurements. The report provides guidelines to assist users with the implementation of this relatively new battery test technology.

1997-12-31T23:59:59.000Z

420

Full Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Low Speed button Cruising button Passing button Braking button Stopped button highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Battery (highlighted): The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery powers the vehicle at low speeds, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection.

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Battery Recycling  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... By the mid-1990's due to manufacturers changing the composition of ... for electric drive vehicles is dependent battery performance, cost, and ...

422

Plug-In Hybrid Electric Vehicle Performance Analysis  

Science Conference Proceedings (OSTI)

This report describes the performance testing of two configurations of the Plug-in Hybrid-Electric Vehicle (PHEV) Sprinter van developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. One configuration, California 1 (CA-1) has a Nickel Metal Hydride (NiMH) battery pack. The other, California 2 (CA-2) has a Lithium Ion (Li-Ion) battery pack. California 2 showed better fuel and energy economy in all aspects of testing.

2008-03-27T23:59:59.000Z

423

?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life  

SciTech Connect

Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

424

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

Chemistries for Plug-in Hybrid Vehicles, EVS-24, Stavanger,ion batteries in the Hybrid Vehicle Propulsion System Lab atIn the case of plug-in hybrid vehicles, there is much design

Burke, Andrew

2009-01-01T23:59:59.000Z

425

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

A. , et al. , Plug-In Hybrid Electric Vehicles: How Does Oneand in particular, hybrid electric vehicles. In addition to1.1 Motivation: Why Hybrid Electric Vehicles? 1 1.2 Battery

Wilcox, James D.

2010-01-01T23:59:59.000Z

426

Measuring Energy Efficiency Improvements in Industrial Battery Chargers  

E-Print Network (OSTI)

Industrial battery chargers have provided the energy requirements for motive power in industrial facilities for decades. Their reliable and durable performance, combined with their low energy consumption relative to other industrial processes, has left the core charger technology unchanged since its introduction to the market. Recent improvements in charger technology have led to a new generation of high frequency chargers on the market that can provide energy efficiency improvements over existing Silicon Controlled Rectifier (SCR) and Ferroresonant charger technologies. We estimate there are approximately 32,000 three phase chargers in use within Pacific Gas & Electric Company’s service area, using roughly 750 to 1,000 GWh per year. A 10 percent efficiency improvement on every charger would save about 75 to 100 GWh per year. There are three areas of energy losses in the battery and charger system: • Power Conversion Efficiency (energy out of charger vs. energy into charger) • Charge Return (energy out of battery vs. energy into battery): some amount of overcharge is necessary for battery health, but chargers vary in the degree which they overcharge • Standby losses when no battery is connected. PG&E and Southern California Edison (SCE) are testing industrial battery chargers according to a California Energy Commission (CEC) approved test procedure. This test procedure, developed with charger manufacturer input as part of the CEC’s Codes and Standards process, specifies test conditions during active charge, maintenance charge and standby modes. The results from this testing are expected to provide independent confirmation of vendor claims of energy efficiency improvements during all modes of charger operation, and will form the foundation of data for utility energy efficiency programs. Initial test results of one battery charger from each technology type show the Hybrid and High Frequency technology as the top performers when compared to the SCR and Ferroresonant chargers. Multiple chargers from each technology group will be tested in the first half of 2009 to determine an average performance for each technology type. The full set of results will be available in summer 2009.

Matley, R.

2009-05-01T23:59:59.000Z

427

Fact Sheet: Sodium-Ion Batteries for Grid-Level Applications (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aquion Energy, Inc. Aquion Energy, Inc. American Recovery and Reinvestment Act (ARRA) Sodium-Ion Batteries for Grid-Level Applications Demonstrating low-cost, grid-scale, ambient temperature sodium-ion batteries In June 2012, Aquion Energy, Inc. completed the testing and demonstration requirements for the U.S. Department of Energy's program with its low-cost, grid-scale, ambient temperature Aqueous Hybrid Ion (AHI) energy storage device. During the three-year project, Aquion manufactured hundreds of batteries and assemble them into high-voltage, grid-scale systems. This project helped them move their aqueous electrochemical energy storage device from bench-scale testing to pilot-scale manufacturing. The testing successfully demonstrated a grid-connected, high voltage (>1,000 V), 13.5 kWh system with a 4-hour discharge.

428

Electro-Thermal Modeling to Improve Battery Design: Preprint  

DOE Green Energy (OSTI)

Operating temperature greatly affects the performance and life of batteries in electric and hybrid electric vehicles (HEVs). Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. This study describes an electro-thermal finite element approach that predicts the thermal performance of a battery cell or module with realistic geometry.

Bharathan, D.; Pesaran, A.; Kim, G.; Vlahinos, A.

2005-09-01T23:59:59.000Z

429

Hybrid Tower Study: Volume 3: Phase 3 -- Scale Model Development and Full-Scale Tests  

Science Conference Proceedings (OSTI)

Hybrid towers maximize the power transmission efficiency of the available space whenever there is the need to have both ac and dc lines in the same corridor. This study developed calculation techniques and design rules for the placement of conductors energized with HVAC and HVDC circuits on the same towers. Significantly, the study did not identify any hybrid interactions that would prevent the successful operation of a hybrid corridor or hybrid tower transmission line.

1994-06-29T23:59:59.000Z

430

SunLine Begins Extended Testing of Hybrid Fuel Cell Bus  

DOE Green Energy (OSTI)

Fact sheet describing the fuel cell hybrid bus demonstration being managed by SunLIne Transit Agency.

Not Available

2008-06-01T23:59:59.000Z

431

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network (OSTI)

Power Battery for Hybrid Vehicle Applications. ProceedingsAF. Electric and Hybrid Vehicle Design and Performance.A, Thornton M. Plug-in Hybrid Vehicle Analysis. NREL/MP-540-

Burke, Andy

2009-01-01T23:59:59.000Z

432

Battery-level material cost model facilitates high-power li-ion battery cost reductions.  

SciTech Connect

Under the FreedomCAR Partnership, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously enhancing the calendar life and inherent safety of high-power Li-Ion batteries. Material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in batteries designed to meet the requirements of hybrid electric vehicles (HEVs). In order to quantify the material costs, relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared to the battery cost goals to determine the probability of meeting the goals with these cell chemistries. The most recent freedomCAR cost goals for 25-kW and 40-kW power-assist HEV batteries are $500 and $800, respectively, which is $20/kW in both cases. In 2001, ANL developed a high-power cell chemistry that was incorporated into high-power 18650 cells for use in extensive accelerated aging and thermal abuse characterization studies. This cell chemistry serves as a baseline for this material cost study. It incorporates a LiNi0.8Co0.15Al0.05O2 cathode, a synthetic graphite anode, and a LiPF6 in EC:EMC electrolyte. Based on volume production cost estimates for these materials-as well as those for binders/solvents, cathode conductive additives, separator, and current collectors--the total cell winding material cost for a 25-kW power-assist HEV battery is estimated to be $399 (based on a 48- cell battery design, each cell having a capacity of 15.4 Ah). This corresponds to {approx}$16/kW. Our goal is to reduce the cell winding material cost to <$10/kW, in order to allow >$10/kW for the cell and battery manufacturing costs, as well as profit for the industrial manufacturer. The material cost information is obtained directly from the industrial material suppliers, based on supplying the material quantities necessary to support an introductory market of 100,000 HEV batteries/year. Using its battery design model, ANL provides the material suppliers with estimates of the material quantities needed to meet this market, for both 25-kW and 40-kW power-assist HEV batteries. Also, ANL has funded a few volume-production material cost analyses, with industrial material suppliers, to obtain needed cost information. In a related project, ANL evaluates and develops low-cost advanced materials for use in high-power Li-Ion HEV batteries. [This work is the subject of one or more separate papers at this conference.] Cell chemistries are developed from the most promising low-cost materials. The performance characteristics of test cells that employ these cell chemistries are used as input to the cost model. Batteries, employing these cell chemistries, are designed to meet the FreedomCAR power, energy, weight, and volume requirements. The cost model then provides a battery-level material cost and material cost breakdown for each battery design. Two of these advanced cell chemistries show promise for significantly reducing the battery-level material costs (see Table 1), as well as enhancing calendar life and inherent safety. It is projected that these two advanced cell chemistries (A and B) could reduce the battery-level material costs by an estimated 24% and 43%, respectively. An additional cost advantage is realized with advanced chemistry B, due to the high rate capability of the 3-dimensional LiMn{sub 2}O{sub 4} spinel cathode. This means that a greater percentage of the total Ah capacity of the cell is usable and cells with reduced Ah capacity can be used. This allows for a reduction in the quantity of the anode, electrolyte, separator, and current collector materials needed f

Henriksen, G.; Chemical Engineering

2003-01-01T23:59:59.000Z

433

Electrothermal Analysis of Lithium Ion Batteries  

DOE Green Energy (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

434

Lithium Rechargeable Batteries  

DOE Green Energy (OSTI)

In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

Robert Filler, Zhong Shi and Braja Mandal

2004-10-21T23:59:59.000Z

435

Paper Battery Co | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Co Paper Battery Co Jump to: navigation, search Name Paper Battery Co. Place Troy, New York Zip 12180 Product Paper Battery Co. is constructing a hybrid ultracapacitor/battery which yeilds high power and energy density. The material used is a nano-porous cellulous. Coordinates 39.066587°, -80.768578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.066587,"lon":-80.768578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

European battery market  

SciTech Connect

The electric battery industry in Europe is discussed. As in any other part of the world, battery activity in Europe is dependent on people, prosperity, car numbers, and vehicle design. The European battery industry is discussed from the following viewpoints: battery performance, car design, battery production, marketing of batteries, battery life, and technology changes.

1984-02-01T23:59:59.000Z

437

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

438

Battery loading device  

SciTech Connect

A battery loading device for loading a power source battery, built in small appliances having a battery loading chamber for selectively loading a number of cylindrical unit batteries or a one body type battery having the same voltage as a number of cylindrical unit batteries, whereby the one body type battery and the battery loading chamber are shaped similarly and asymmetrically in order to prevent the one body type battery from being inserted in the wrong direction.

Phara, T.; Suzuki, M.

1984-08-28T23:59:59.000Z

439

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

440

The INEL battery data base  

SciTech Connect

The Department of Energy (DOE) has established a Battery Data Base for electric vehicle applications at the Idaho National Engineering Laboratory (INEL). The objectives of the Data Base are to collect, store, and make available to the electric vehicle community battery data from the INEL. Argonne National Laboratory, Sandia National Laboratory, and DOE battery contractors in forms appropriate for evaluating the batteries in electric vehicles. The Data Base currently includes data from over 500 test on 15 batteries of 5 different types. The data (over 120 MB) is stored on a 760 MB harddisk attached to a MicroVax 2. PC-based software to access the data has been developed on the IBM PS/2 using dBASE 4. The initial version of the Data Base to be distributed on a single floppy disk is nearly complete. The first release will include the physical characteristics of the batteries, summary tables showing the test results for each cycle of the battery test programs, and some constant power discharge data for the batteries. Later versions of the Data Base will include second-by-second peak power and SFUDS data, which will require several floppy of Bernoulli disks to store the data. 2 refs., 4 figs.

Burke, A.F.; Hardin, J.E.; Kiser, D.M.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Battery pack  

Science Conference Proceedings (OSTI)

A battery pack is described, having a center of mass, for use with a medical instrument including a latch, an ejector, and an electrical connector, the battery pack comprising: energy storage means for storing electrical energy; latch engagement means, physically coupled to the energy storage means, for engaging the latch; ejector engagement means, physically coupled to the energy storage means, for engaging the ejector; and connector engagement means, physically coupled to the energy storage means, for engaging the connector, the latch engagement means, ejector engagement means, and connector engagement means being substantially aligned in a plane offset from the center of mass of the battery pack.

Weaver, R.J.; Brittingham, D.C.; Basta, J.C.

1993-07-06T23:59:59.000Z

442

Battery Council International  

SciTech Connect

Forecasts of electric battery use, economic impacts of electric batteries, and battery technology and research were presented at the conference. (GHT)

1980-01-01T23:59:59.000Z

443

Design and Experimental Test Plan for Hybrid Sulfur Single Cell Pressurized Electrolyzer  

DOE Green Energy (OSTI)

The Hybrid Sulfur (HyS) process is one of the leading thermochemical cycles being studied as part of the DOE Nuclear Hydrogen Initiative (NHI). SRNL is conducting analyses and research and development for the Department of Energy on the HyS process. A conceptual design report and development plan for the HyS process was issued on April 1, 2005 [Buckner, et. al., 2005] , and a report on atmospheric testing of a sulfur dioxide depolarized electrolyzer (SDE), a major component of the HyS process, was issued on August 1, 2005 [Steimke, 2005]. The purpose of this report is to document work related to the design and experimental test plan for a pressurized SDE. Pressurized operation of the SDE is a key requirement for development of an efficient and cost-effective HyS process. The HyS process, a hybrid thermochemical cycle proposed and investigated in the 1970s and early 1980s by Westinghouse Electric Corporation, is a high priority candidate for NHI due to the potential for high efficiency and its relatively high level of technical maturity. It was demonstrated in laboratory experiments by Westinghouse in 1978. Process improvements and component advancements that build on that work are being pursued. One of the objectives of the current work is to develop the SDE in order to permit the demonstration of a closed-loop laboratory model of the HyS process. The heart of the HyS process for generating hydrogen is a bank of electrolyzers incorporating sulfur dioxide depolarized anodes. SRNL planned, designed, built and operated a facility for testing single cell electrolyzers at ambient temperature and near atmospheric pressure during the spring and summer of 2005. The major contribution of the SRNL work was the establishment of the proof-of-concept for utilizing the proton-exchange-membrane (PEM) cell design for the SDE operation. Since PEM cells are being extensively developed for automotive fuel cell use, they offer significant potential for cost-effective application for the HyS Process. This report discusses the modifications necessary to the existing SRNL sulfur dioxide depolarized electrolyzer test facility to allow testing at up to 80 C and 90 psig. Because of the need for significant additional equipment and the ability to infer performance results to higher pressures, it recommends delaying further modifications to support testing at up to 300 psig (the commercial goal) until other, higher priority technical issues are addressed. These issues include membrane material selection, component designs, catalyst type and loading, etc. The factors and rationale that should be considered in developing and executing a detailed test matrix for pressurized operation are also discussed. In addition, an electrolyzer assembly design has been developed to allow the testing of different Membrane Electrode Assemblies (MEA's) as part of the planned FY06 HyS Development Program to complete selection of component design specifications for the HyS electrolyzer. MEA's are used in PEM cells to allow intimate contact and minimal resistance between the electrodes and the electrolyte layer. The pressurized electrolyzer assembly presented in this report will facilitate rapid change-out and testing of various MEA designs as part of the electrolyzer development effort.

Steeper, T. J.; Steimke, J. L.

2005-09-01T23:59:59.000Z

444

The ANL electric vehicle battery R D program for DOE-EHP  

DOE Green Energy (OSTI)

The Electrochemical Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby. significantly reduce petroleum consumption in the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of October 1, 1991 through March 31, 1992. In this report, the objective, background, technical progress, and status are described for each task. These tasks are structured into the following task areas: 1.0 Project Management and Coordination; 2.0 Lithium/Sulfide Batteries; 3.0 Advanced Sodium/Beta Batteries; 4.0 Advanced Ambient-Temperature Batteries; 5.0 EV Battery Performance and Life Evaluation.

Not Available

1992-01-01T23:59:59.000Z

445

The ANL electric vehicle battery R D program for DOE-EHP  

SciTech Connect

The Electrochemical Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby. significantly reduce petroleum consumption in the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of October 1, 1991 through March 31, 1992. In this report, the objective, background, technical progress, and status are described for each task. These tasks are structured into the following task areas: 1.0 Project Management and Coordination; 2.0 Lithium/Sulfide Batteries; 3.0 Advanced Sodium/Beta Batteries; 4.0 Advanced Ambient-Temperature Batteries; 5.0 EV Battery Performance and Life Evaluation.

1992-01-01T23:59:59.000Z

446

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development. (Contains a minimum of 76 citations and includes a subject term index and title list.)

NONE

1995-03-01T23:59:59.000Z

447

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-02-01T23:59:59.000Z

448

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development. (Contains a minimum of 71 citations and includes a subject term index and title list.)

Not Available

1994-06-01T23:59:59.000Z

449

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network (OSTI)

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

450

TransForum v8n2 - EnerDel/Argonne Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact TTRDC TransForum Vol. 8, No. 2 R&D 100 Award: EnerDelArgonne High-Power Battery for Hybrid Electric Vehicles The EnerDelArgonne Lithium-Ion Battery Khalil Amine, a...

451

The ANL electric vehicle battery R&D program for DOE-EHP. Quarterly progress report, October--December 1990  

DOE Green Energy (OSTI)

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE`s Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

Not Available

1990-12-31T23:59:59.000Z

452

Bipolar battery  

SciTech Connect

A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

Kaun, Thomas D. (New Lenox, IL)

1992-01-01T23:59:59.000Z

453

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

1994) Demand for Electric Vehicles in Hybrid Households: A nand the Household Electric Vehicle Market: A Constraintsthe mar- ket for electric vehicles in California. Presented

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

454

Field Testing Plug-in Hybrid Electric Vehicles with Charge Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

over future resource availability and the environmental impacts of continued fossil-fuel consumption. Plug-in hybrid electric vehicles (PHEVs), electric vehicles, and fuel cell...

455

Vehicle battery polarity indicator  

SciTech Connect

Battery jumper cables provide an effective means to connect a charged battery to a discharged battery. However, the electrodes of the batteries must be properly connected for charging to occur and to avoid damage to the batteries. A battery polarity indicator is interposed between a set of battery jumper cables to provide a visual/aural indication of relative battery polarity as well as a safety circuit to prevent electrical connection where polarities are reversed.

Cole, L.

1980-08-12T23:59:59.000Z

456

Hybrid: Starting  

NLE Websites -- All DOE Office Websites (Extended Search)

the gasoline engine to the electric motor to the battery. Battery: The battery stores energy generated from the gasoline engine or, during regenerative braking, from the...

457

Carbon-enhanced VRLA batteries.  

Science Conference Proceedings (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

458

Battery charging system  

SciTech Connect

A battery charging system designed to charge a battery, especially a nickel-cadmium (Ni-cd) battery from a lead acid power supply without overcharging, and to charge uniformly a plurality of batteries in parallel is described. A non-linear resistance is utilized and is matched to the voltage difference of the power supply battery and the batteries being charged.

Komatsu, K.; Mabuchi, K.

1982-01-19T23:59:59.000Z

459

Battery Emulation 2 0740-7475/05/$20.00 2005 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers  

E-Print Network (OSTI)

Battery Emulation 2 0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS in portable devices such as PDAs and celluar phones, batteries are quickly becoming a lim- iting factor. Recently, researchers have started develop- ing battery-aware power management techniques that exploit

Shinozuka, Masanobu

460

Advanced batteries for electric vehicle applications  

SciTech Connect

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hybrid battery test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sodium sulfur battery design for the ETX-II  

Science Conference Proceedings (OSTI)

Chloride Silent Power Limited (CSPL) has developed a number of laboratory and field test batteries in support of its sodium sulfur development program. The most demanding of these test batteries is being developed for the Ford ETX-II electric vehicle, under a three year contract from the US Department of Energy. A major milestone of this program is to build and test an Intermediate Deliverable (ID) battery which is a fully representative section of the final battery. This will allow the performance predictions to be evaluated using an operational battery before the final battery is built and delivered. The performance predictions for the battery have been made and are described in this paper. The Intermediate Deliverable Battery, representing one third of the full battery both electrically and thermally, has now been built and preliminary test results are available.

Mangan, M.F.; Leadbetter, A.

1989-01-01T23:59:59.000Z

462

Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers  

E-Print Network (OSTI)

maintaining the battery Standby – Used in sensing circuitsthe AC power source in standby mode. This test was meant tothe battery and during standby would only address 25 percent

Webber, Carrie; Korn, David; Sanchez, Marla

2007-01-01T23:59:59.000Z

463

Battery life and performance depend strongly on temperature; thus there exists a need for thermal conditioning in plug-in  

E-Print Network (OSTI)

ABSTRACT Battery life and performance depend strongly on temperature; thus there exists a need battery life depends on the design of thermal management used as well as the specific battery chemistry of an air cooled plug-in hybrid electric vehicle battery pack with cylindrical LiFePO4/graphite cell design

Michalek, Jeremy J.

464

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

465

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

DOE Green Energy (OSTI)

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

466

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

SciTech Connect

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

467

Internal Resistance Identification in Vehicle Power Lithium-Ion Battery and Application in Lifetime Evaluation  

Science Conference Proceedings (OSTI)

According to the characteristic analysis of lithium-ion power battery, battery accelerate life test is carried out to obtain the relevant conclusions such as the changing trend of battery ohmic resistance in different conditions. Battery ohmic resistance ... Keywords: Lithium-ion battery, Internal resistance, Equivalent model, Lifetime evaluation

Xuezhe Wei; Bing Zhu; Wei Xu

2009-04-01T23:59:59.000Z

468

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

defined as when the battery capacity decreases by 20% fromdiscern a decrease in battery capacity (decrease in range)capacity. The test results, which are summarized in Table 7, indicate that both battery

Burke, Andrew

2009-01-01T23:59:59.000Z

469

Shock absorbing battery housing  

SciTech Connect

A portable battery device is provided which dampens shock incident upon the battery device such that an electrical energizable apparatus connected to the battery device is subject to reduced shock whenever the battery device receives an impact. The battery device includes a battery housing of resilient shock absorbing material injection molded around an interconnecting structure which mechanically and electrically interconnects the battery housing to an electrically energizable apparatus.

McCartney, W.J.; Jacobs, J.D.; Keil, M.J.

1984-09-04T23:59:59.000Z

470

Universal battery terminal connector  

SciTech Connect

This patent describes a universal battery terminal connector for connecting either a top post battery terminal or a side post battery terminal to a battery cable. The connector comprises an elongated electrically conductive body having: (a) first means for connection to a top post battery terminal; (b) second means for connection to a side post battery terminal, and (c) third means for receiving one end of a battery cable and providing an electrical connection therewith.

Norris, R.W.

1987-01-13T23:59:59.000Z

471

Argonne Transportation - Lithium Battery Technology Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

472

Battery separators  

Science Conference Proceedings (OSTI)

A novel, improved battery separator and process for making the separator. Essentially, the separator carries a plurality of polymeric ribs bonded to at least one surface and the ribs have alternating elevated segments of uniform maxiumum heights and depressed segments along the length of the ribs.

Le Bayon, R.; Faucon, R.; Legrix, J.

1984-11-13T23:59:59.000Z

473

Alkaline battery  

SciTech Connect

A zinc alkaline secondary battery is described having an excellent cycle characteristic, having a negative electrode which comprises a base layer of zinc active material incorporating cadmium metal and/or a cadmium compound and an outer layer made up of cadmium metal and/or a cadmium compound and applied to the surface of the base layer of zinc active material.

Furukawa, N.; Inoue, K.; Murakami, S.

1984-01-24T23:59:59.000Z

474

Hybrid Electric Vehicle End-of-life Testing on Honda Insights, Honda Gen I Civics, and Toyota Gen I Priuses  

NLE Websites -- All DOE Office Websites (Extended Search)

262 262 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses TECHNICAL REPORT James Francfort Donald Karner Ryan Harkins Joseph Tardiolo February 2006 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-06-01262 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses James Francfort i Donald Karner and Ryan Harkins ii Joseph Tardiolo iii February 2006 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy

475

Optimization of a plug-in hybrid electric vehicle .  

E-Print Network (OSTI)

??A plug-in hybrid electric vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery… (more)

Golbuff, Sam

2006-01-01T23:59:59.000Z

476

Batteries - Beyond Lithium Ion Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond