Powered by Deep Web Technologies
Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel cell cooler-humidifier plate  

DOE Patents (OSTI)

A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

Vitale, Nicholas G. (Albany, NY); Jones, Daniel O. (Glenville, NY)

2000-01-01T23:59:59.000Z

2

Evaporative Coolers | Open Energy Information  

Open Energy Info (EERE)

List of Evaporative Coolers Incentives Retrieved from "http:en.openei.orgwindex.php?titleEvaporativeCoolers&oldid380633" Category: Articles with outstanding TODO tasks...

3

Evaporative Coolers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Coolers Evaporative Coolers Evaporative Coolers July 1, 2012 - 6:51pm Addthis Evaporative Coolers, sometimes called swamp coolers, is another way to cool air in warm climates with low humidity. | Photo courtesy of Public Domain Photos. Evaporative Coolers, sometimes called swamp coolers, is another way to cool air in warm climates with low humidity. | Photo courtesy of Public Domain Photos. What does this mean for me? If you live in a warm, dry climate, you can save money on utility bills and stay comfortable during the cooling season by installing an evaporative cooler. Evaporative coolers add humidity to indoor air, a benefit in dry, warm climates. Unlike air conditioners that recirculate air, an evaporative cooler

4

List of Evaporative Coolers Incentives | Open Energy Information  

Open Energy Info (EERE)

Coolers Incentives Coolers Incentives Jump to: navigation, search The following contains the list of 35 Evaporative Coolers Incentives. CSV (rows 1 - 35) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Energy Efficiency Solutions for Business (Arizona) Utility Rebate Program Arizona Commercial Industrial Institutional Local Government Retail Supplier Schools State Government Building Insulation Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Motor VFDs Motors Programmable Thermostats Refrigerators LED Exit Signs Evaporative Coolers Vending Machine Controls Food Service Equipment Yes Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Minnesota Commercial

5

Exergy method of optimisation of a wavy plate indirect evaporative cooler  

Science Journals Connector (OSTI)

The present paper deals with the performance optimisation of a wavy plate surface of indirect evaporative coolers with cooling capacities of 10, 25, 45 kW. Based on the minimum entropy generation rate and by applying a number of geometrical constraints, as well as using a search method, the optimum apparatus's dimensions and the secondary air discharge and the primary air mass flow rates are calculated. The numerical results show that, to increase the cooling load of an indirect evaporative cooler, the optimisation of the above mentioned parameters by this method can increase energy efficiency by up to 65%.

A. Abbassi; M. Aliehyaei

2004-01-01T23:59:59.000Z

6

Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification  

DOE Patents (OSTI)

An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

Kozubal, Eric Joseph; Slayzak, Steven Joseph

2014-07-08T23:59:59.000Z

7

Preliminary evaluation of the performance, water use, and current application trends of evaporative coolers in California climates  

SciTech Connect

This paper describes the latest results of an ongoing analysis investigating the potential for evaporative cooling as an energy-efficient alternative to standard air-conditioning in California residences. In particular, the study uses detailed numerical models of evaporative coolers linked with the DOE-2 building energy simulation program to study the issues of indoor comfort, energy and peak demand savings with and without supplemental air-conditioning and consumptive water use. In addition, limited surveys are used to assess the current market availability of evaporative cooling in California, typical contractor practices and costs, and general acceptance of the technology among engineers, contractors, and manufacturers. The results show that evaporative coolers can provide significant energy and peak demand savings in California residences, but the impact of the increased indoor humidity on human comfort remains an unanswered question that requires further research and clarification. Evaluated against ASHRAE comfort standards developed primarily for air-conditioning both direct and two-stage evaporative coolers would not maintain comfort at peak cooling conditions due to excessive humidity. However, using bioclimatic charts that place human comfort at the 80% relative humidity line, the study suggests that direct evaporative coolers will work in mild coastal climates, while two-stage models should provide adequate comfort in Title 24 houses throughout California, except in the Imperial Valley. The study also shows that evaporative coolers will increase household water consumption by less than 6% on an annual basis, and as much as 23% during peak cooling months, and that the increases in water cost are minimal compared to the electricity savings. Lastly, a survey of engineers and contractors revealed generally positive experiences with evaporative coolers, with operational cost savings, improved comfort, unproved air quality as the primary benefits in their use.

Huang, Y.J.; Hanford, J.W.; Wu, H.F.

1992-09-01T23:59:59.000Z

8

Federal technology alert: Ultrasonic humidifiers  

SciTech Connect

Humidifiers are used in buildings to maintain humidity levels to ensure quality and handling capabilities in manufacturing processes, to lower the transmission rate of disease-causing bacteria in hospitals, to reduce static electricity in manufacturing clean rooms and in computer rooms, and to provide higher levels of employee comfort in offices. Ultrasonic humidifiers generate a water mist without raising its temperature. An electronic oscillation is converted to a mechanical oscillation using a piezo disk immersed in a reservoir of mineral-free water. The mechanical oscillation is directed at the surface of the water, where at very high frequencies it creates a very fine mist of water droplets. This adiabatic process, which does not heat the supply water, reduces humidifier energy use by 90 to 93% compared with systems that do boil the water. Ultrasonic humidifiers have been demonstrated to be more efficient and to require less maintenance than competing humidifier technologies such as electrode canisters, quartz lamps, and indirect steam-to-steam. They do not require anticorrosive additives that affect the indoor air quality of buildings using direct steam humidifiers. There are two potential disadvantages of ultrasonic humidifiers. They must use mineral-free, deionized water or water treated with reverse osmosis. Treated water reduces maintenance costs because it eliminates calcium deposits, but increases other operating costs. Also, the cool mist from ultrasonic humidifiers absorbs energy from the supply air as it evaporates and provides a secondary cooling effect.

NONE

1998-11-01T23:59:59.000Z

9

Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems: Part 2: The evaporative gas turbine based system and some discussions  

Science Journals Connector (OSTI)

This is Part 2 of the paper “Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems — Part 1: The desalination unit and its combination with a steam-injected gas turbine power system”. A combined power and water system based on the evaporative gas turbine (EvGT) is studied, and major features such as the fuel saving, power-to-water ratio, energy and exergy utilization, and approaches to performance improvement, are presented and discussed in comparison with STIG- and EvGT- based systems, to further reveal the characteristics of these two types of combined systems. Some of the main results of the paper are: the fuel consumption of water production in STIG-based combined system is, based on reference-cycle method, about 45% of a water-only unit, and that in an EvGT-based system, it is 31–54%; compared with the individual power-only and water-only units, the fuel savings of the two combined systems are 12%–28% and 10%–21%, respectively; a water production gain of more than 15% can be obtained by using a direct-contact gas-saline water heat exchanger to recover the stack heat; and the combined system are more flexible in its power-to-water ratio than currently used dual-purpose systems. Further studies on aspects such as operation, hardware cost, control complexity, and environmental impact, are needed to determine which configuration is more favorable in practice.

Yongqing Wang; Noam Lior

2007-01-01T23:59:59.000Z

10

Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler  

SciTech Connect

The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

Parker, Danny S; Sherwin, John R; Raustad, Richard

2014-04-10T23:59:59.000Z

11

Sandia Cooler  

ScienceCinema (OSTI)

The Sandia Cooler is 30-times more efficient than conventional air-cooled heat exchangers and is available for licensing to electronics and solid state lighting cooling manufacturers.

Koplow, Jeff; Fornaciari, Neal; Gharagozloo, Patricia

2014-06-23T23:59:59.000Z

12

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

13

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

14

Sandia Cooler Blows Traditional CPU Coolers Away  

Energy.gov (U.S. Department of Energy (DOE))

The Sandia Cooler's innovative, compact design improves the way heat is transferred in microelectronics, earning it R&D Magazine Editor's Choice Award.

15

Static gas expansion cooler  

DOE Patents (OSTI)

Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

Guzek, J.C.; Lujan, R.A.

1984-01-01T23:59:59.000Z

16

Conductive Thermal Interaction in Evaporative Cooling Process  

E-Print Network (OSTI)

It has long been recognized that evaporative cooling is an effective and logical substitute for mechanical cooling in hot-arid climates. This paper explores the application of evaporative coolers to the hot-humid climates using a controlled...

Kim, B. S.; Degelman, L. O.

1990-01-01T23:59:59.000Z

17

EGR Cooler Deposit Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Analysis of fouling and performance of exhaust gas recirculation (EGR) coolers as a function of EGR flow rate, inlet gas and coolant temperatures, soot level, and hydrocarbon concentration

18

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling Evaporative Cooling (Redirected from Hybrid Cooling) Jump to: navigation, search Dictionary.png Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can

19

The Cascaded Humidified Advanced Turbine (CHAT)  

SciTech Connect

This paper introduces the Cascaded Humidified Advanced Turbine (CHAT) plant, a gas turbine based power generation plant utilizing intercooling, reheat, and humidification. It is based upon the integration of an existing heavy duty gas turbine with an additional shaft comprising industrial compressors and high pressure expander. CHAT capitalizes on the latest proven gas turbine technology, which, combined with a sophisticated thermal cycle configuration, results in substantial improvement in gas turbine efficiency, compared to a simple cycle, while still maintaining typical advantages and merits of a combustion turbine plant. Built with a commercial combustion turbine and available industrial compressors and expanders, the CHAT plant does not require extensive product development and testing. As a result, the CHAT power plant can be offered with specific capital costs up to 20 percent lower than the combined cycle plant, and with competing efficiency. Compared to a combined cycle plant, the CHAT plant offers lower emissions (due to air humidification) and other significant operating advantages with regard to start-up time and costs, better efficiency at part load, lower power degradation at higher ambient temperatures, and simpler operations and maintenance due to elimination of the complexities and costs associated with steam production. The CHAT plant also integrates very effectively with coal gasification and particularly well with the water quench design. This feature has been discussed in previous publications.

Nakhamkin, M.; Swensen, E.C. [Energy Storage and Power Consultants, Inc., Mountainside, NJ (United States); Wilson, J.M.; Gaul, G. [Westinghouse Electric Corp., Orlando, FL (United States); Polsky, M. [Polsky Energy Corp., Northbrook, IL (United States)

1996-07-01T23:59:59.000Z

20

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling: Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Shipboard electronics thermoacoustic cooler  

Science Journals Connector (OSTI)

A thermoacousticrefrigerator that was optimized for preservation of biological samples in space was modified for use as a cooler for the CV?2095 shipboard radar electronics rack. The thermoacoustic cooler was tested in the laboratory and demonstrated at sea aboard USS DEYO (DD?989). In the laboratory using a calibrated heat load the data acquisition system was able to account for the total energy balance to within 4%. At the highest operating power aboard ship 227 W of acoustic power was used to provide 419 W of useful cooling power corresponding to a coefficient of performance of 1.85. Taking into account the 54% electroacoustic efficiency of the loudspeakers the shipboard electronics thermoacoustic cooler (SETAC) provided 1 W of cooling for each watt of electrical power input. [Work supported the Office of Naval Research and the Navy Science Assistance Program.

D. McKelvey; S. Ballaster; S. Garrett

1995-01-01T23:59:59.000Z

22

Definition: Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate.[1] References ↑ http://en.wikipedia.org/wiki/Evaporative_cooler Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Evaporative_Cooling&oldid=601323" Category: Definitions What links here Related changes

23

Commercial Cooler: Order (2013-CE-5343)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Commercial Cooler, Inc. to pay a $8,000 civil penalty after finding Commercial Cooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

24

Southeast Cooler: Order (2013-CE-5331)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Southeast Cooler Corp. to pay a $8,000 civil penalty after finding Southeast Cooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

25

Golden Cooler: Order (2013-CE-5345)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Golden Cooler to pay a $8,000 civil penalty after finding Golden Cooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

26

Custom Coolers: Order (2013-CE-5315)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Custom Coolers, LLC to pay a $8,000 civil penalty after finding Custom Coolers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

27

Plugging of Exhaust Gas Recirculation Coolers  

Energy.gov (U.S. Department of Energy (DOE))

EGR coolers donated by industry and analyzed at ORNL contained lacquer-like deposits, which can be prevented by maintaining the cooler above the dew point of the hydrocarbons.

28

Commercial Cooler: Proposed Penalty (2013-CE-5343)  

Energy.gov (U.S. Department of Energy (DOE))

DOE alleged in a Notice of Proposed Civil Penalty that Commercial Cooler, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

29

American Cooler Technologies: Order (2013-CE-5305)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered American Cooler Technologies to pay a $8,000 civil penalty after finding American Cooler Technologies had failed to certify that certain models of walk-in coolers or freezers (WICF) components comply with the applicable energy conservation standards.

30

Energy savings from indirect evaporative pre-cooling: Control strategies and commissioning  

SciTech Connect

Package rooftop air conditioning units (RTU) with evaporative pre-cooling systems were installed at an Agricultural History Museum and conference center in the northern Sacramento Valley in California, a hot and dry summer climate region. The evaporative pre-coolers serve to extend the economizer range of the RTU's. A commissioning team monitored the performance of the RTU evaporative pre-coolers. The purpose of the monitoring was to determine if changes were warranted to optimize the system's energy efficiency. The commissioning process revealed that the RTU evaporative pre-coolers were being controlled by the economizer control cycle. With this control cycle, the evaporative pre-cooler operates when the outdoor air temperature is falling below the space return air temperature. This means that the pre-cooler will never operate at peak load conditions. The conference center is an assembly occupancy. Building codes require significant levels of outdoor air for ventilation. The evaporative pre-cooler system provides the means to significantly offset the energy requirements for cooling down and heating up this ventilation air. A DOE2 energy simulation analysis indicated that the evaporative pre-cooler could cut energy use by over 50% if it were working correctly. Investigation concludes that in buildings with high outdoor air requirements, evaporative pre-cooling, using building exhaust air as the indirect evaporative cooling source, significantly reduce building energy consumption. This evaporative pre-cooling technology works in any climate, regardless of outdoor conditions, since the return air stream exhausted from the building provides a relatively constant temperature and humidity source for evaporative cooling. An added benefit is that the evaporative pre-cooler heat exchanger recovers heat from the exhausted air stream in cold weather.

Felts, D.; Jump, D.A.

1998-07-01T23:59:59.000Z

31

Radial Sandia Cooler Report | Department of Energy  

Energy Savers (EERE)

Cooler More Documents & Publications Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact...

32

New and Underutilized Technology: Multi-stage Indirect Evaporative Cooling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-stage Indirect Evaporative Multi-stage Indirect Evaporative Cooling New and Underutilized Technology: Multi-stage Indirect Evaporative Cooling October 4, 2013 - 4:33pm Addthis The following information outlines key deployment considerations for multi-stage evaporative cooling within the Federal sector. Benefits Multi-stage indirect evaporative cooling is an advanced evaporative cooler that can lower air temperatures without adding moisture. These systems evaporate water in a secondary (or working) airstream, which is discharged in multiple stages. No water or humidity is added to the primary (or product) airstream in the process. Application Multi-stage indirect evaporative cooling is applicable in office, research and development, service, and school applications. Climate and Regional Considerations

33

Direct Evaporative Precooling Model and Analysis  

SciTech Connect

Evaporative condenser pre-cooling expands the availability of energy saving, cost-effective technology options (market engagement) and serves to expedite the range of options in upcoming codes and equipment standards (impacting regulation). Commercially available evaporative pre-coolers provide a low cost retrofit for existing packaged rooftop units, commercial unitary split systems, and air cooled chillers. We map the impact of energy savings and peak energy reduction in the 3 building types (medium office, secondary school, and supermarket) in 16 locations for three building types with four pad effectivenesses and show the effect for HVAC systems using either refrigerants R22 or R410A

Shen, Bo [ORNL; Ally, Moonis Raza [ORNL; Rice, C Keith [ORNL; Craddick, William G [ORNL

2011-01-01T23:59:59.000Z

34

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Kick-off Meeting, Kick-off Meeting, Wash. D.C - 10/01/2009 Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Prime Contractor: W. L. Gore & Associates Elkton, MD Principal Investigator: William B. Johnson Sub-Contractor: dPoint Technologies Vancouver, BC W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Ahluwalia, et. al, ibid. Mirza, Z. DOE Hydrogen Program Review, June 9-13, 2008; Washington, DC Background W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Objective and Technical Barriers Addressed More efficient, low-cost humidifiers can increase fuel cell inlet humidity: Reduce system cost and size of balance of plant; Improve fuel cell performance; Improve fuel cell durability. OBJECTIVE: Demonstrate a durable, high performance water

35

The application of Stirling cooler to refrigeration  

SciTech Connect

The application field of the free-piston Stirling Cooler, Model 100A of Global Cooling BV in the refrigeration has been studied. The cooling effectiveness of the free-piston Stirling Cooler which means small capacity with better efficiency, large range of temperature and capacity modulated operation is of much use to cool a space insulated well. One practicable application is suggested here, in which FPSC and secondary heat transfer fluid are used to the single temperature refrigerator (60 liter) instead of conventional vapor compression machines. In the freezer operation at {minus}20 C inside cabinet, the steady-state test results show 25% improvement in energy consumption over original one. The application of free-piston Stirling Cooler to a freezer at lower temperature shows great potentials also.

Kim, S.Y.; Chung, W.S.; Shin, D.K.; Cho, K.S. [LG Electronics Inc., Seoul (Korea, Republic of). Living System Lab.

1997-12-31T23:59:59.000Z

36

Development of Single Stage Stirling Cooler for Space Use  

Science Journals Connector (OSTI)

A single?stage Stirling cooler has been developed and tested for space applications which include instrument or detector cooling and a supplemental cooler for the cryogenic system. The mechanical cooler is a free displacer type and consists of a compressor a cold head and a connecting tube. The features of this cooler are a moving cylinder clearance seal by diaphragm spring twin pole magnet system and pneumatically driven displacer. The typical cooling power is 2 W at 80 K and the input power to the cooler is 50 W without driver electronics. The total weight of the cooler is 4.2 kg. The engineering and the flight models of the cooler have been fabricated and evaluated to verify the capability for three space missions. This paper describes the design of the cooler and the results from verification tests including cooler performance test thermal vacuum test vibration test and lifetime test.

K. Narasaki; S. Tsunematsu; K. Kanao; K. Otsuka; S. Hoshika; K. Fujioka; K. Tsurumi; M. Hirabayashi

2006-01-01T23:59:59.000Z

37

A high performance thin film thermoelectric cooler  

SciTech Connect

Thin film thermoelectric devices with small dimensions have been fabricated using microelectronics technology and operated successfully in the Seebeck mode as sensors or generators. However, they do not operate successfully in the Peltier mode as coolers, because of the thermal bypass provided by the relatively thick substrate upon which the thermoelectric device is fabricated. In this paper a processing sequence is described which dramatically reduces this thermal bypass and facilitates the fabrication of high performance integrated thin film thermoelectric coolers. In the processing sequence a very thin amorphous SiC (or SiO{sub 2}SiN{sub 4}) film is deposited on a silicon substrate using conventional thin film deposition and a membrane formed by removing the silicon substrate over a desired region using chemical etching or micro-machining. Thermoelements are deposited on the membrane using conventional thin film deposition and patterning techniques and configured so that the region which is to be cooled is abutted to the cold junctions of the Peltier thermoelements while the hot junctions are located at the outer peripheral area which rests on the silicon substrate rim. Heat is pumped laterally from the cooled region to the silicon substrate rim and then dissipated vertically through it to an external heat sink. Theoretical calculations of the performance of a cooler described above indicate that a maximum temperature difference of about 40--50K can be achieved with a maximum heat pumping capacity of around 10 milliwatts.

Rowe, D.M.; Min, G.; Volklein, F.

1998-07-01T23:59:59.000Z

38

NETL: Gasification Systems - Mitigation of Syngas Cooler Plugging and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mitigation of Syngas Cooler Plugging and Fouling Mitigation of Syngas Cooler Plugging and Fouling Project No.: DE-FE0007952 Reaction Engineering International (REI) is working to develop practical solutions to mitigate the plugging and fouling of syngas coolers (SC) - fire tube heat exchangers located between the coal gasifier and the combustion turbine. Syngas coolers used in Integrated Gasification Combined Cycle (IGCC) plants offer high efficiency, but their reliability is generally lower than other process equipment in the gasification island. The principle downtime events associated with syngas coolers are typically a result of ash deposits that: form on (wall) surfaces upstream of the syngas cooler, break loose, and then lodge in the tubes; or form on the fireside surface of the syngas cooler tubes that lead to fouling and reduced heat transfer. Both ash deposit mechanisms result in reduced equipment life and increased maintenance costs.

39

American Cooler Technologies: Proposed Penalty (2013-CE-5305) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooler Technologies: Proposed Penalty (2013-CE-5305) Cooler Technologies: Proposed Penalty (2013-CE-5305) American Cooler Technologies: Proposed Penalty (2013-CE-5305) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that American Cooler Technologies failed to certify walk-in coolers and freezers as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. American Cooler Technologies: Proposed Penalty (2013-CE-5305) More Documents & Publications American Cooler Technologies: Order (2013-CE-5305)

40

Golden Cooler: Proposed Penalty (2013-CE-5345) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Golden Cooler: Proposed Penalty (2013-CE-5345) Golden Cooler: Proposed Penalty (2013-CE-5345) Golden Cooler: Proposed Penalty (2013-CE-5345) February 21, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Golden Cooler failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Golden Cooler: Proposed Penalty (2013-CE-5345) More Documents & Publications Golden Cooler: Order (2013-CE-5345)

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EGR Cooler Fouling- Visualization of Deposition and Removal Mechanis  

Energy.gov (U.S. Department of Energy (DOE))

Presents experimental data on exhaust gas recirculation(EGR) cooler fouling using new test apparatus that allows for in-situ observation of deposition and removal processes

42

GEA Heat Exchangers GEA Searle Cooler and Condensing Unit Ranges  

E-Print Network (OSTI)

have high efficiency EC fans as standard across the range. All our commercial unit coolers have whiteUnits GEA Searle Condensing Units are supplied as standard to a high specification with a complete controlGEA Heat Exchangers GEA Searle Cooler and Condensing Unit Ranges Top-level engineering solutions

Frandsen, Søren

43

COMMISSIONING COSY COOLER WITH ELECTRON BEAM AT NOVOSIBIRSK  

E-Print Network (OSTI)

on the classic scheme of low energy coolers like cooler CSRm, CSRe, LEIR that was produced in BINP before gun to a collector. This optic scheme is stimulated by the wide range of the working energies 0 of the transformers connected in series with isolating winding. SETUP DESCRIPTION A new generation of accelerators

Kozak, Victor R.

44

Monolithic Integration of Solid State Thermionic Coolers with Semiconductor Lasers  

E-Print Network (OSTI)

-893-8447 Fax. 805-893-7990 E-mail: bowers@ece.ucsb.edu ABSTRACT: We examine the cooling requirements the performance such as increasing the output power. Conventionally, thermoelectric (TE) coolers are used of a packaged laser module [3]. An alternative to traditional TE coolers is heterostructure integrated

45

Direct Measurement of EGR Cooler Deposit Thermal Properties for Improved Understanding of Cooler Fouling  

SciTech Connect

Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOX emissions standards. This paper reports results of a study of fundamental aspects of EGR cooler fouling. An apparatus and procedure were developed to allow surrogate EGR cooler tubes to be exposed to diesel engine exhaust under controlled conditions. The resulting fouled tubes were removed and analyzed. Volatile and non-volatile deposit mass was measured for each tube. Thermal diffusivity of the deposited soot cake was measured by milling a window into the tube and using the Xenon flash lamp method. The heat capacity of the deposit was measured at temperatures up to 430 C and was slightly higher than graphite, presumably due to the presence of hydrocarbons. These measurements were combined to allow calculation of the deposit thermal conductivity, which was determined to be 0.041 W/mK, only ~1.5 times that of air and much lower than the 304 stainless steel tube (14.7 W/mK). The main determinant of the deposit thermal conductivity is density, which was measured to be just 2% that of the density of the primary soot particles (or 98% porous). The deposit layer thermal resistance was calculated and compared with estimates of the thermal resistance calculated from gas temperature data during the experiment. The deposit properties were also used to further analyze the temperature data collected during the experiment.

Wang, Hsin [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Storey, John Morse [ORNL] [ORNL

2009-01-01T23:59:59.000Z

46

Custom Coolers: Proposed Penalty (2013-CE-5315) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2013-CE-5315) Proposed Penalty (2013-CE-5315) Custom Coolers: Proposed Penalty (2013-CE-5315) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Custom Coolers, LLC, failed to certify walk-in cooler or freezer (WICF) components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Custom Coolers: Proposed Penalty (2013-CE-5315) More Documents & Publications Custom Coolers: Order (2013-CE-5315) Imperial Manufacturing: Proposed Penalty (2013-CE-5322)

47

Southeast Cooler: Proposed Penalty (2013-CE-5331) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2013-CE-5331) Proposed Penalty (2013-CE-5331) Southeast Cooler: Proposed Penalty (2013-CE-5331) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Southeast Cooler Corp. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Southeast Cooler: Proposed Penalty (2013-CE-5331) More Documents & Publications Southeast Cooler: Order (2013-CE-5331) Dade Engineering: Proposed Penalty (2013-CE-5316)

48

Microwave-assisted synthesis of silica aerogel supported pt nanoparticles for self-humidifying proton exchange membrane fuel cell  

Science Journals Connector (OSTI)

In this study, the mesoporous silica aerogel supported Pt nanoparticle (SAP) was synthesized by the simple microwave-assisted method within 90 s and characterized by WXRD and BET measurements. SAP was then used as a filler to prepare the self-humidifying Nafion®-based composite membrane (N/SAP). The dispersion of the catalyst in N/SAP as well as the water uptake and proton conductivity of N/SAP were investigated. Compared to that of the recast Nafion® membrane (RN), the water uptake and the proton conductivity of N/SAP was improved for about 38% and 109%, respectively. In addition, the power density of the PEMFC single cell fabricated with N/SAP at 50 °C was 1104 mW cm?2 and 913 mW cm?2 measured under the humidified condition and dry condition, respectively, which was approximately 91% and 5.5 times higher than that with RN membrane, respectively.

Cheng-Hsiu Tsai; Feng-Lien Yang; Ching-Hung Chang; Yui Whei Chen-Yang

2012-01-01T23:59:59.000Z

49

Improvements to the Cooling Power of a Space Qualified Two-Stage Stirling Cycle Cooler  

Science Journals Connector (OSTI)

A long life two stage cooler has been developed at the Rutherford Appleton Laboratory (RAL) for space purposes. This cooler has been qualified for space use by Matra Marconi Space Systems (MMS). This cooler is us...

T. W. Bradshaw; A. H. Orlowska; C. Jewell; B. G. Jones; S. Scull

1997-01-01T23:59:59.000Z

50

Monolithic integration of thin-film coolers with optoelectronic devices  

E-Print Network (OSTI)

Monolithic integration of thin-film coolers with optoelectronic devices Christopher La Barbara, California 93106-9560 Abstract. Active refrigeration of optoelectronic components through the use manuscript received June 30, 2000; accepted for publication June 30, 2000. 1 Introduction Optoelectronic

51

Identification and Control of Factors that Affect EGR Cooler Fouling  

Energy.gov (U.S. Department of Energy (DOE))

Key factors that cause exhaust gas recirculation cooler fouling were identified through extensive literature search and controlled experiment was devised to study the impact of a few key factors on deposition.

52

NISTIR 5873 INTRACYCLE EVAPORATIVE  

E-Print Network (OSTI)

vapor, is used to subcool the high-pressure liquid leaving the condenser. Intracycle evaporative cooling and Technology Energy Efficiency and Renewable Energy Arati Prabhakar, Director 1000 Independence Ave., SW of the refrigerant leaving the condenser. Intracycle evaporative cooling is similar to the use of a liquid

Oak Ridge National Laboratory

53

Puerto Rico Farmers Market Cooler, Saving Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puerto Rico Farmers Market Cooler, Saving Money Puerto Rico Farmers Market Cooler, Saving Money Puerto Rico Farmers Market Cooler, Saving Money October 22, 2010 - 11:33am Addthis EAA Executive Director Luis Bernal addresses an audience about Puerto Rico’s State Energy Program. | Photo courtesy EAA EAA Executive Director Luis Bernal addresses an audience about Puerto Rico's State Energy Program. | Photo courtesy EAA Joshua DeLung What are the key facts? Market saving $16,000 annually from cooling upgrades $37 million in Recovery Act funding projected to save millions on island Recovery Act funded 11 programs 22 direct jobs, 394 indirect jobs in Puerto Rico Buying fruits and vegetables at the Las Piedras farmers market is now more comfortable for the thousands of Puerto Ricans who shop there regularly.

54

Cool Roofs Lead to Cooler Cities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Lead to Cooler Cities Cool Roofs Lead to Cooler Cities Cool Roofs Lead to Cooler Cities July 23, 2010 - 2:07pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofs and roadways create what is called the "urban heat island effect," meaning a city is significantly warmer than its surrounding rural areas. Light colored roofs reduce the heat island effect and improve air quality by reducing emissions. Lighter-colored roofing surfaces reflect more of the sun's heat, which helps to improve building efficiency by reducing cooling costs and offsetting carbon emissions. Roofs and road pavement cover 50 to 65 percent of urban areas. Because they absorb so much heat, dark-colored roofs and roadways create what is called

55

Micro-cooler enhancements by barrier interface analysis  

SciTech Connect

A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions on the nanometre scale has shown to produce significant changes in cooler performance.

Stephen, A.; Dunn, G. M. [Department of Physics, University of Aberdeen, King's College, AB24 3UE Aberdeen (United Kingdom)] [Department of Physics, University of Aberdeen, King's College, AB24 3UE Aberdeen (United Kingdom); Glover, J.; Oxley, C. H. [Department of Engineering, De Montfort University, Gateway, LE1 9BH Leicester (United Kingdom)] [Department of Engineering, De Montfort University, Gateway, LE1 9BH Leicester (United Kingdom); Bajo, M. Montes; Kuball, M. [Center for Device Thermography and Reliability, H. H. Wills Physics Laboratory, University of Bristol, BS8 1TL Bristol (United Kingdom)] [Center for Device Thermography and Reliability, H. H. Wills Physics Laboratory, University of Bristol, BS8 1TL Bristol (United Kingdom); Cumming, D. R. S.; Khalid, A. [School of Engineering, University of Glasgow, Rankine Building, G12 8LT Glasgow (United Kingdom)] [School of Engineering, University of Glasgow, Rankine Building, G12 8LT Glasgow (United Kingdom)

2014-02-15T23:59:59.000Z

56

Soluble Substances and Evaporation  

NLE Websites -- All DOE Office Websites (Extended Search)

Soluble Substances and Evaporation Soluble Substances and Evaporation Name: JD Status: student Grade: 9-12 Location: FL Country: New Zealand Date: Winter 2011-2012 Question: Do soluble substances evaporate with the water? Replies: JD, As a general rule, no. If the soluble substance is a solid, then its boiling point is well above that of water, so it cannot possibly boil off. If the substance is a liquid, it may have a boiling point that is below that of water and will boil off at a lower temperature than water. If the boiling point is higher than that of water, than it will boil off after the water has evaporated. Some substances, like ethanol for example, form an "azeotrope" with water. The combination of ethanol and water form a tight intermolecular connection that makes the two substances boil off at the same time.

57

Mixed feed evaporator  

DOE Patents (OSTI)

In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

Vakil, Himanshu B. (Schenectady, NY); Kosky, Philip G. (Ballston Lake, NY)

1982-01-01T23:59:59.000Z

58

Closed cycle refrigerators -Pulse tube coolers Peter Dahl Nissen  

E-Print Network (OSTI)

-McMahon and Joule-Thomson cryocoolers all use expansion of a gas to obtain cooling. Different operating principles certain criteria. In this text the build-ups and principles of cooling for the mentioned coolers freezing ice-cream [1] to cryoablation of particular locations in the heart to treat heart arrhythmia [2

Nygård, Jesper

59

European Atmospheric Pollution Imported by Cooler Air Masses to  

E-Print Network (OSTI)

European Atmospheric Pollution Imported by Cooler Air Masses to the Eastern Mediterranean during of European pollution are observed in the atmosphere (74 ( 13%). On the other hand, when the Persian Trough). This study demonstrates that atmospheric pollution over the East Mediterranean region during the summer

Einat, Aharonov

60

The energy saving potential of precooling incoming outdoor air by indirect evaporative cooling  

SciTech Connect

This paper investigates the energy saving potentials of using indirect evaporative coolers to precool incoming outdoor air as the first stage of a standard cooling system. For dry and moderately humid locations, either exhaust room air or outdoor air can be used as the secondary air to the indirect evaporative precooler with similar energy savings. Under these conditions, the use of outdoor air is recommended due to the simplicity in installing the duct system. For humid locations, the use of exhaust room air is recommended because the precooling capacity and energy savings will be greatly increased. For locations with short cooling seasons, the use of indirect evaporative coolers for precooling may not be worthwhile. The paper also gives some simplified indices for easily predicting the precooling capacity, energy savings and water consumption of an indirect evaporative precooler. These indices can be used for cooling systems with continuous operation, but further work is needed to determine whether the same indices are also suitable for cooling systems with intermittent operations.

Chen, P.; Qin, H.; Huang, Y.J.; Wu, H.; Blumstein, C.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid  

SciTech Connect

The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

Mehta, R. N. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076, India and Government Engineering College Bharuch, Gujarat - 392002 (India); Bapat, S. L.; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

2014-01-29T23:59:59.000Z

62

Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal  

Energy.gov (U.S. Department of Energy (DOE))

This paper reports on studies carried out at ORNL to examine the shear force required to remove particles from a well-developed EGR cooler deposit.

63

Vacuum flash evaporated polymer composites  

DOE Patents (OSTI)

A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

Affinito, J.D.; Gross, M.E.

1997-10-28T23:59:59.000Z

64

Updating for Ash Cooler Fluidized Air System of a 410 t/h CFB Boiler  

Science Journals Connector (OSTI)

The paper presents an updating scheme for ash cooler fluidized air system of a 410 t/h CFB boiler. The ash cooler fluidized air, which is originally designed, is provided by the independent configuration of two forced fans. By analyzing and studying ...

Gao Jian-qiang; Chen Hong-wei; Zhang Wei

2009-10-01T23:59:59.000Z

65

Test research of bed ash coolers for a 50 MWe CFB boiler  

SciTech Connect

CFB boilers have been developed and commercialized in China. As one of the main auxiliaries of FBC boilers, the bed ash cooler plays an important role in regular operation of the boilers. A 50 MWe 2-shaped CFB boiler will be put into operation in North China. Many kinds of bed ash cooling systems for this boiler had been designed and compared. Then the optimum bed ash coolers were determined and made. Experimental research and pilot-scale test for the bed ash coolers were also carried out. The result indicates that the bed ash cooler can be operated reliably and can meet the demand for cooling bed ash of the 50 MWe CFB boiler. The test data are very useful for further improving the performance of ash coolers.

Chen, H.P.; Lu, J.D.; Lin, Z.J.; Liu, D.C. [Huazhong Univ. of Science and Technology, Wuhan, Hubei (China). National Lab. of Coal Combustion; Hu, L.L.; Xie, P.J.; Yan, H.X.; Liu, M.C. [Hubei Boiler Auxiliary Factory, Jingshan, Hubei (China)

1995-12-31T23:59:59.000Z

66

Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)  

SciTech Connect

This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

Kozubal, E.

2013-02-01T23:59:59.000Z

67

330 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 30, NO. 2, JUNE 2007 Enhancing Performance of Thermoelectric Coolers  

E-Print Network (OSTI)

material-based research initiatives to further compound the benefits. Index Terms--Thermoelectric coolers Performance of Thermoelectric Coolers Through the Application of Distributed Control R. D. Harvey, D. G. Walker, and K. D. Frampton Abstract--The primary drawback of thermoelectric coolers (TECs

Walker, D. Greg

68

A large solar/heat?driven thermoacoustic cooler  

Science Journals Connector (OSTI)

Based on the success of an earlier solar?powered thermoacoustics prime mover which used a direct?illumination stack and no hot?side heat exchanger [Chen and Garrett Proc. 16th Int. Cong. Acoust. Vol. II 813–814 (1998)] a large solar/heat?driven thermoacoustic cooler was designed and fabricated. Target cooling powers of 10 to 60 W over a 25?deg temperature span were based on a thermal input power of 150 to 600 W. To concentrate the required amount of solar power on an 11?cm?diameter ceramic stack a 10?ft diameter fiberglass parabolic dish used for satellite TV has been converted by gluing aluminized MylarTM on its surface over a 2?m diameter. A two?axis coordinated solar tracking system driven by two computer?controlled motors has produced the required 600 W of solar power to illuminate the hot side of the stack for a maximum of 3 h. Measured performance of the solar refrigerator will be compared to DE L T AE models. [Work supported by the Office of Naval Research.

2000-01-01T23:59:59.000Z

69

Dual manifold heat pipe evaporator  

DOE Patents (OSTI)

An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

1994-01-01T23:59:59.000Z

70

Dual manifold heat pipe evaporator  

DOE Patents (OSTI)

An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

Adkins, D.R.; Rawlinson, K.S.

1994-01-04T23:59:59.000Z

71

Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks  

E-Print Network (OSTI)

Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks so produced drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the "flow reversal point" or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a 1-D hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and tra...

Brannon, Sean

2014-01-01T23:59:59.000Z

72

Experimental Study on Heat Transfer in a Rolling Ash Cooler used in the CFB Boiler  

Science Journals Connector (OSTI)

From the view of the reliability and the techno-economy, the rolling ash cooler is feasible for the large-scale CFB boilers. However, existing studies on heat...

W. Wang; J. J. Li; S. Yang; X. D. Si…

2010-01-01T23:59:59.000Z

73

Solar Roof Cooling by Evaporation  

E-Print Network (OSTI)

It is generally recognized that as much as 60% of the air conditioning load in a building is generated by solar heat from the roof. This paper on SOLAR ROOF COOLING BY EVAPORATION is presented in slide form, tracing the history of 'nature's way...

Patterson, G. V.

1981-01-01T23:59:59.000Z

74

Can Photo-Evaporation Trigger Planetesimal Formation?  

E-Print Network (OSTI)

Can Photo-Evaporation Trigger Planetesimal Formation? Henry Throop John Bally SWRI Univ.Colorado / CASA DPS 12-Oct-2004 #12;Orion Nebula Photo-evaporation by extr 4 O/B stars, UV-bright, 105 solar luminosities 2000 solar-type stars with disks Photo-evaporation (PE) by external O/B stars removes disks on 105

Throop, Henry

75

Southeast Cooler Corp. Respondent BEFORE THE U.S. DEPARTMENT OF ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Cooler Corp. Southeast Cooler Corp. Respondent BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ) ORDER Case Number: 2013-CE-5331 By the General Counsel, U.S. Department of Energy: I. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Southeast Cooler Corp. ("Respondent"). The Compromise Agreement resolves the case initiated to pursue a civil penalty for violations of the compliance certification requirements located at 10 C.P.R.§§ 429.12 and 429.53. 2. DOE and Respondent have negotiated the terms of the Compromise Agreement that resolve this matter. A copy of the Compromise Agreement is attached hereto and incorporated by reference. 3. After reviewing the terms of the Compromise Agreement and evaluating the facts

76

Commercial Cooler, Inc. Respondent BEFORE THE U.S. DEPARTMENT OF ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Cooler, Inc. Commercial Cooler, Inc. Respondent BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ) ORDER Case Number: 2013-CE-5343 By the General Counsel, U.S. Department of Energy: I. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Commercial Cooler, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated to pursue a civil penalty for violations of the compliance certification requirements located at I 0 C.F.R. §§ 429.12 and 429.53. 2. DOE and Respondent have negotiated the terms of the Compromise Agreement that resolve this matter. A copy of the Compromise Agreement is attached hereto and incorporated by reference. 3. After reviewing the terms of the Compromise Agreement and evaluating the facts

77

Learning is Now Much 'Cooler' for Maryland School Students | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learning is Now Much 'Cooler' for Maryland School Students Learning is Now Much 'Cooler' for Maryland School Students Learning is Now Much 'Cooler' for Maryland School Students September 21, 2010 - 4:30pm Addthis Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Loretta Prencipe Senior Communications Analyst, Office of Energy Efficiency & Renewable Energy It is back to school time for the 513 students at Ring Factory Elementary School in Harford County, Md. And there's something new and cool --

78

Learning is Now Much 'Cooler' for Maryland School Students | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Now Much 'Cooler' for Maryland School Students is Now Much 'Cooler' for Maryland School Students Learning is Now Much 'Cooler' for Maryland School Students September 21, 2010 - 4:30pm Addthis Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Loretta Prencipe Senior Communications Analyst, Office of Energy Efficiency & Renewable Energy It is back to school time for the 513 students at Ring Factory Elementary School in Harford County, Md. And there's something new and cool --

79

Custom Coolers, LLC Respondent BEFORE THE U.S. DEPARTMENT OF ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Custom Coolers, LLC Custom Coolers, LLC Respondent BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ) ORDER Case Number: 2013-CE-5315 By the General Counsel, U.S. Department of Energy: I. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Custom Coolers, LLC ("Respondent"). The Compromise Agreement resolves the case initiated to pursue a civil penalty for violations ofthe compliance certification requirements located at 10 C.F.R. §§ 429.12 and 429.53. 2. DOE and Respondent have negotiated the terms of the Compromise Agreement that resolve this matter. A copy of the Compromise Agreement is attached hereto and incorporated by reference. 3. After reviewing the terms of the Compromise Agreement and evaluating the facts

80

A Test Facility for MEIC ERL Circulator Ring Based Electron Cooler Design  

SciTech Connect

An electron cooling facility which is capable to deliver a beam with energy up to 55 MeV and average current up to 1.5 A at a high bunch repetition rate up to 750 MHz is required for MEIC. The present cooler design concept is based on a magnetized photo-cathode SRF gun, an SRF ERL and a compact circulator ring. In this paper, we present a proposal of a test facility utilizing the JLab FEL ERL for a technology demonstration of this cooler design concept. Beam studies will be performed and supporting technologies will also be developed in this test facility.

Zhang, Yuhong [JLAB; Derbenev, Yaroslav S. [JLAB; Douglas, David R. [JLAB; Hutton, Andrew M. [JLAB; Krafft, Geoffrey A. [JLAB; Nissen, Edward W. [JLAB

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Dynamics of evaporative colloidal patterning  

E-Print Network (OSTI)

Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of the band and film deposition, and the transition in between when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

C. Nadir Kaplan; Ning Wu; Shreyas Mandre; Joanna Aizenberg; L. Mahadevan

2014-12-04T23:59:59.000Z

82

Environmental test report on the CTI-Cryogenics 1-watt integral Stirling cooler (long-life HD-1033d). Final report, 16 June-24 July 1988  

SciTech Connect

This final report describes and provides the data on the environmental testing of the CTI-Cryogenics 1-Watt Integral Stirling Cooler (Long-Life HD-1033D). The 1-Watt Integral Cooler (HD-1033B/C) is currently used in the M1 FLIR, M60 FLIR, and the Advanced Attack Helicopter FLIR. The long life cooler (clearance seal) improves life of the cooler by approximately two and one half times. C2NVEO evaluated the cooler performance at environmental extremes per the purchase description, PD-0182-001(CR). The cooler successfully passed all the environmental tests with no failures.

Doggett, G.; Dunmire, H.; Samuels, R.; Shaffer, J.

1989-04-01T23:59:59.000Z

83

TWO STAGE MONOLITHIC THIN FILMaCOOLERS Chris LaBounty, Ali Shakouri', Patrick Abraham, and John E. Bowers  

E-Print Network (OSTI)

University of California ~ Santa Cruz Santa Cruz, CA 95064-1077,USA ABSTRACT Optoelectronic devices of these coolers with optoelectronic devices should be possible. KEY WORDS: integratecl; thermionic; thermoelectric accomplished with thermoelectric (TE) coolers. Since optoelectronic devices are not easily integrated with TE

84

Buddy's is now offering a self-service cooler and checkout system in the SNS b  

NLE Websites -- All DOE Office Websites (Extended Search)

Buddy's is now offering a self-service cooler and checkout system in the SNS building 8600 after its Buddy's is now offering a self-service cooler and checkout system in the SNS building 8600 after its normal operating hours. The self-service cooler and kiosk will be open from 1:15 pm to 6:30 am the following morning. Buddy's employees will not be available or present during this time. The cafeteria will be operating on the Honor System, choose what you like and make sure to ring up each item you wish to purchase, as the items are inventoried every day. While traditional cafeteria style buffet etc. will not be offered, Buddy's will offer a wide variety of the following: sandwiches, salads, soups, side items, yogurts, drinks and desserts. The self-service cooler is located next to the salad bar and behind the drink station. All items have been tagged with custom barcodes (if they didn't have one already, ex. Chips and

85

Effect of Engine Operating Condition and Coolant Temperature on EGR Cooler Deposit Microstructure and Chemical Composition  

Energy.gov (U.S. Department of Energy (DOE))

In this work, the performance of a stand-alone EGR cooler attached to a 6.4L turbodiesel engine is being investigated by analyzing the microstructure and chemical composition of the deposits in the fouled heat exchanger surfaces, at two engine loads: medium and low, and at two coolant temperatures: 85?C and 40?C.

86

ULSD and B20 Hydrocarbon Impacts on EGR Cooler Performance and Degradation  

SciTech Connect

Exhaust gas recirculation (EGR) cooler fouling has emerged as an important issue in diesel engine development. Uncertainty about the level of impact that fuel chemistry may have upon this issue has resulted in a need to investigate the cooler fouling process with emerging non-traditional fuel sources to gage their impact on the process. This study reports experiments using both ultra-low sulfur diesel (ULSD) and 20% biodiesel (B20) at elevated exhaust hydrocarbon conditions to investigate the EGR cooler fouling process. The results show that there is little difference between the degradation in cooler effectiveness for ULSD and B20 at identical conditions. At lower coolant temperatures, B20 exhibits elevated organic fractions in the deposits compared with ULSD, but this does not appear to lead to incremental performance degradation under the conditions studied. Comparisons with a previous study conducted at low HC levels shows that the presence of increased volatiles in the deposit does not impact the degradation in effectiveness significantly. Moreover, the effectiveness loss divided by the deposit mass gain for both low- and high-HC conditions seems to indicate that the HC fraction in the deposit does not significantly alter the overall thermal properties of the deposit layer.

Sluder, Scott [ORNL; Storey, John Morse [ORNL; Youngquist, Adam D [ORNL

2009-01-01T23:59:59.000Z

87

P-type SiGe/Si Superlattice Cooler Xiaofeng Fan, Gehong Zeng, Edward Croke1  

E-Print Network (OSTI)

the temperature of the device below ambient. For a material to be a good thermoelectric cooler, it must have]. SiGe is a good thermoelectric material especially for high temperature applications [11 element thermoelectric devices, and it will enable us to achieve large cooling capacities with relatively

88

University of California and HRL Laboratories, LLC. All rights reserved. SiGe/Si SUPERLATTICE COOLERS  

E-Print Network (OSTI)

for SiGe/Si superlattice coolers. SiGe is a good thermoelectric material for high temperature and thermally in parallel, similar to conventional thermoelectric devices, and thus achieve large cooling of the barriers to further increase clock speeds and decrease feature sizes. Thermoelectric (TE) refrigeration

89

Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).  

SciTech Connect

This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

2014-12-01T23:59:59.000Z

90

Evaporative oxidation treatability test report  

SciTech Connect

In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

NONE

1995-04-01T23:59:59.000Z

91

Portable brine evaporator unit, process, and system  

DOE Patents (OSTI)

The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

2009-04-07T23:59:59.000Z

92

Ocean Currents Produced by Evaporation and Precipitation  

Science Journals Connector (OSTI)

1 September 1933 research-article Ocean Currents Produced by Evaporation and Precipitation G. R. Goldsbrough The Royal Society is collaborating with JSTOR to digitize, preserve...

1933-01-01T23:59:59.000Z

93

Apparatus and method for evaporator defrosting  

DOE Patents (OSTI)

An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN); Domitrovic, Ronald E. (Knoxville, TN)

2001-01-01T23:59:59.000Z

94

242-A evaporator vacuum condenser system  

SciTech Connect

This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

Smith, V.A.

1994-09-28T23:59:59.000Z

95

TimeVariable Photo-Evaporation of  

E-Print Network (OSTI)

TimeVariable Photo-Evaporation of Protoplanetary Disks Henry Throop (SwRI) John Bally (U. Colorado) #12;Takeaway: Photo-evaporation alters the disk structure in essentially unpredictable ways, because for disks formed at the same time in the same cluster. #12;30 Doradus: 100+ O/B stars Photo

Throop, Henry

96

Water Evaporation: A Transition Path Sampling Study  

E-Print Network (OSTI)

We use transition path sampling to study evaporation in the SPC/E model of liquid water. Based on thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface, and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

Patrick Varilly; David Chandler

2012-10-11T23:59:59.000Z

97

Advanced evaporator technology progress report FY 1992  

SciTech Connect

This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

1995-01-01T23:59:59.000Z

98

CONDENSATION AND EVAPORATION FOR THERMALLY UNEQUILIBRATED PHASES  

E-Print Network (OSTI)

CONDENSATION AND EVAPORATION FOR THERMALLY UNEQUILIBRATED PHASES R. A. Marcus1 , A. V. Fedkin2-K) equation for the rate of condensation of a gas or evaporation of a solid or liquid is used for systems, Tg, differs from that of the condensed phase, Ts . Here, we modify the H-K equation for this case

Grossman, Lawrence

99

Development of Model-Based Controls for GE's Gasifier and Syngas Cooler  

NLE Websites -- All DOE Office Websites (Extended Search)

Model-Based Controls Model-Based Controls for GE's Gasifier and Syngas Cooler Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced sensor and control technologies that can function under the extreme operating conditions often found in advanced power systems, particularly

100

6D mu (+/-) cooling using a solenoid-dipole ring cooler for a muon collider  

SciTech Connect

Six dimensional cooling of large emittance {mu}{sup +} and {mu}{sup -} beams is required in order to obtain the desired luminosity for a muon collider. We propose to use a ring cooler that employs both dipoles and solenoids with the additional requirement that the arcs of the ring be achromatic. We describe the lattice and the beam dynamics of the proposed ring, and demonstrate that the lattice gives substantial cooling in all 6 phase space dimensions.

Garren, A.; Berg, J.; Cline, D.; Ding, X.; Kirk, H.G.

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cheaper, Cleaner, Cooler Ways to Meet our Needs for New Energy  

E-Print Network (OSTI)

Warming And Power Plant Pollution • Energy Efficiency HB 3693 – retrofits • Energy Management • Building Codes, Green Buildings and Net Zero buildings – 2030 goal of US Conference of Mayors, • Renewable Energy – Wind, solar thermal, geothermal, solar....9% by the summer of 2012 — well below the 12.5% that is considered the “safety margin.” Cooler Power: Texas Leads the Nation in Renewable Energy Potential Source: Texas State Energy Conservation Office. Texas Has Been VERY Successful Promoting Wind Over 3352...

Smith, T.

102

Thermosyphon Cooler Hybrid System Providing Water Resiliency in a typical Chemical Plant  

E-Print Network (OSTI)

1Thermosyphon Cooler Hybrid System Providing Water Resiliency in a Typical Chemical Plant Presentation to the: May 21, 2014 Thomas P. Carter, P.E. Sr. Program Manager, Heat Rejection Technology Johnson Controls, Building Efficiency thomas....p.carter@jci.com ESL-IE-14-05-20 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 2Johnson Controls is a globally diversified company in the building and automotive industries Automotive Experience...

Carter, T. P.

2014-01-01T23:59:59.000Z

103

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Desiccant Enhanced Evaporative Air Conditioning Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system. DEVAP uses 90 percent less electricity and up to 80 percent less

104

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system.

105

Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission  

SciTech Connect

The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

Schock, Alfred

1993-10-01T23:59:59.000Z

106

Fundamental study of evaporation model in micron pore  

E-Print Network (OSTI)

of evaporation has not been established. The purpose of this study is to establish a method to apply the evaporation model based on the statistical rate theory for engineering application including vapor-liquid-structure intermolecular effect. The evaporation...

Oinuma, Ryoji

2004-11-15T23:59:59.000Z

107

Water Evaporation Studies in Texas.  

E-Print Network (OSTI)

69 59 3,893 Records JUL 8.83 8.33 9.64 10.99 1.65 .94 73 73 4,679 3,068 9.76 8.97 11.54 1.32 96 71 2,559 9.78 2.08 1.86 97 71 54 4,262 7.19 2.54 2.77 96 72 78 2,402 9.93 2.54 91 62 51 3,618 7.89 2.17 95 72....15 1.10 55 31 71 4,403 2.31 3.82 3.68 63 43 85 3,374 .45 48 19 3,948 1.92 2.34 58 35 75 4,870 1.64 1.54 1.73 58 33 67 3,138 Table 1 . Mean Monthly and Annual Meteorological Data for Stations from which Evaporation Records...

Patterson, R. E. (Raleigh Elwood); Bloodgood, Dean W.; Smith, R. L.

1954-01-01T23:59:59.000Z

108

242-A evaporator safety analysis report  

SciTech Connect

This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

CAMPBELL, T.A.

1999-05-17T23:59:59.000Z

109

Tank 26 Evaporator Feed Pump Transfer Analysis  

SciTech Connect

The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

Tamburello, David; Dimenna, Richard; Lee, Si

2009-02-11T23:59:59.000Z

110

Operations and Performance of the PACS Instrument 3He Sorption Cooler on board of the Herschel Space Observatory  

E-Print Network (OSTI)

A 3He sorption cooler produced the operational temperature of 285mK for the bolometer arrays of the Photodetector Array Camera and Spectrometer (PACS) instrument of the Herschel Space Observatory. This cooler provided a stable hold time between 60 and 73h, depending on the operational conditions of the instrument. The respective hold time could be determined by a simple functional relation established early on in the mission and reliably applied by the scientific mission planning for the entire mission. After exhaustion of the liquid 3He due to the heat input by the detector arrays, the cooler was recycled for the next operational period following a well established automatic procedure. We give an overview of the cooler operations and performance over the entire mission and distinguishing in-between the start conditions for the cooler recycling and the two main modes of PACS photometer operations. As a spin-off, the cooler recycling temperature effects on the Herschel cryostat 4He bath were utilized as an alt...

Sauvage, Marc; Klaas, Ulrich; Muller, Thomas; Moor, Andras; Poglitsch, Albrecht; Feuchtgruber, Helmut; Duband, Lionel

2014-01-01T23:59:59.000Z

111

Flexible microprocessor-based evaporation controller  

Science Journals Connector (OSTI)

Electron beam evaporation sources require two power supplies one each for the filament current and the electron acceleration. To obtain a stable deposition rate the emission current between filament and target must remain constant. During film deposition slight geometry changes in the evaporator cause significant rate variations making constant readjustment of the emission current necessary. While in commercial solutions analog feedback regulators are often used to perform this task these controllers cannot easily be adapted to home-built evaporation sources. The microcontrolled feedback controller presented here is more flexible and versatile than the commercial solutions. The controller can be easily modified to work with different external power supplies and allows the easy upgrade of most existing electron beam evaporation setups. A serial-port computer interface completely integrates the controller into the automated laboratory environment.

F.-J. Meyer zu Heringdorf; A. C. Belton

2004-01-01T23:59:59.000Z

112

241-A evaporator flowsheet users manual  

SciTech Connect

This supporting document presents a description of the 242-A Evaporator flowsheet. Material balances are calculated for feed, slurry, and effluent streams based on input data for the feed stream.

Larrick, A.P.

1994-12-22T23:59:59.000Z

113

ARM - Lesson Plans: Sunlight and Evaporation  

NLE Websites -- All DOE Office Websites (Extended Search)

Water will evaporate into the atmosphere. The extra water vapor will add to the greenhouse effect (i.e., more water vapor in the atmosphere can trap more heat and it will make...

114

TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS  

SciTech Connect

The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

Tamburello, D; Richard Dimenna, R; Si Lee, S

2009-01-27T23:59:59.000Z

115

Failure assessment of composite cooler tubes in a gas boosting station  

Science Journals Connector (OSTI)

The present study describes origin and failure mechanisms of air cooled heat exchangers tubes, in a gas pressure boosting station. Hydrocarbon gas was circulating within aluminum finned tubes and cooling was done by forcing ambient air over the exterior of the tubes, made of carbon steel A-214 material. The hydrocarbon gas was contained traces of H2S and substantial level of CO2. The investigation was carried out in a station located in southern part of Iran. The process involved condensation of water and hydrocarbon along the length of tubes, resulting in a wet gas multiphase flow situation. Such type of coolers is also called composite coolers. The failure of tubes was characterized on the bases of all the available evidences and metallurgical examinations, such as analysis of tube materials, feeding gas, condensate water, and the residue inside the tubes. The processing was also simulated by Hysis-3.1 software, in order to evaluate and compare various parameters such as gas flow rate, liquid water and hydrocarbon formation, in actual and design condition. The air cooled tubes showed highest corrosion rate and was experienced leakage regularly. The results indicated that, low velocity assisted sweet corrosion caused severe pitting inside the tubes, and led to failure.

Khalil Ranjbar

2011-01-01T23:59:59.000Z

116

Mekanisk integration av en IR-detektor i en Stirlingkylare; Mechanical Integration of an IR-detector in a Micro Cooler.  

E-Print Network (OSTI)

?? The master thesis “Mechanical Integration of an IR-detector in a Micro Cooler” has been performed at FLIR Systems AB in Danderyd. FLIR Systems is… (more)

Gibson, Camilla

2008-01-01T23:59:59.000Z

117

Changes Made on a 2.7-m Long Superconducting Solenoid Magnet Cryogenic System that allowed the Magnet to be kept Cold using 4 K Pulse Tube Cooler  

E-Print Network (OSTI)

in Cooler,” Advances in Cryogenic Engineering 57, pp 581 -Solenoid Magnet Cryogenic System that allowed the Magnet toof the International Cryogenic Engineering Conference 22,

Green, Michael

2014-01-01T23:59:59.000Z

118

2014-06-23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration  

Energy.gov (U.S. Department of Energy (DOE))

This document is the agency response to the Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration.

119

On the Use of Thermoelectric (TE) Applications Based on Commercial Modules: The Case of TE Generator and TE Cooler  

Science Journals Connector (OSTI)

In recent years thermoelectricity sees rapidly increasing usages in applications like portable refrigerators beverage coolers electronic component coolers etc. when used as Thermoelectric Cooler (TEC) and Thermoelectric Generators (TEG) which make use of the Seebeck effect in semiconductors for the direct conversion of heat into electrical energy and is of particular interest for systems of highest reliability or for waste heat recovery. In this work we examine the performance of commercially available TEC and TEG. A prototype TEC?refrigerator has been designed modeled and constructed for in?car applications. Additionally a TEG was made in order to measure the gained power and efficiency. Furthermore a TEG module was tested on a small size car (Toyota Starlet 1300 cc) in order to measure the gained power and efficiency for various engine loads. With the use of a modeling approach we evaluated the thermal contact resistances and their influence on the final device efficiency.

K. Zorbas; E. Hatzikraniotis; K. M. Paraskevopoulos; Th. Kyratsi

2010-01-01T23:59:59.000Z

120

DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)  

SciTech Connect

The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.

Stone, M

2005-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ball feeder for replenishing evaporator feed  

DOE Patents (OSTI)

Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

Felde, D.K.; McKoon, R.H.

1993-03-23T23:59:59.000Z

122

Evaporative Cooling of Antiprotons to Cryogenic Temperatures  

E-Print Network (OSTI)

We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise \\emph{CPT} test on trapped antihydrogen is a long-standing goal.

ALPHA Collaboration; G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; J. S. Hangst; W. N. Hardy; R. S. Hayano; M. E. Hayden; A. Humphries; R. Hydomako; S. Jonsell; L. Kurchaninov; R. Lambo; N. Madsen; S. Menary; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; D. M. Silveira; C. So; J. W. Storey; R. I. Thompson; D. P. van der Werf; D. Wilding; J. S. Wurtele; Y. Yamazaki

2010-09-23T23:59:59.000Z

123

New and Underutilized Technology: Evaporative Pre-Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Pre-Cooling Systems Evaporative Pre-Cooling Systems New and Underutilized Technology: Evaporative Pre-Cooling Systems October 4, 2013 - 4:43pm Addthis The following information outlines key deployment considerations for evaporated pre-cooling systems within the Federal sector. Benefits Evaporative pre-cooling systems install ahead of the condenser to lower the condenser pressure. These systems can also work with an economizer. Evaporative pre-cooling reduces the requirement for energy intensive DX cooling. Application Evaporative pre-cooling systems are applicable in most building categories. Climate and Regional Considerations Evaporative pre-cooling systems are well suited in dry climates. Key Factors for Deployment Water usage needs to be taken into account in evaporative pre-cooling

124

New and Underutilized Technology: Evaporative Pre-Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology: Evaporative Pre-Cooling Systems Technology: Evaporative Pre-Cooling Systems New and Underutilized Technology: Evaporative Pre-Cooling Systems October 4, 2013 - 4:43pm Addthis The following information outlines key deployment considerations for evaporated pre-cooling systems within the Federal sector. Benefits Evaporative pre-cooling systems install ahead of the condenser to lower the condenser pressure. These systems can also work with an economizer. Evaporative pre-cooling reduces the requirement for energy intensive DX cooling. Application Evaporative pre-cooling systems are applicable in most building categories. Climate and Regional Considerations Evaporative pre-cooling systems are well suited in dry climates. Key Factors for Deployment Water usage needs to be taken into account in evaporative pre-cooling

125

Helium Refrigerator Liquid Nitrogen Pre-Cooler Component Parameter Sensitivity Analysis  

SciTech Connect

For helium refrigerators using liquid nitrogen (LN) pre-cooling it is not uncommon for the ambient helium refrigeration return stream(s) exiting the cold box to be significantly colder and for the cycle to use more nitrogen than estimated by the process studies. Often there is an emphasis on the length of 300 to 80-K helium-nitrogen heat exchangers to ensure the exiting nitrogen is as close to ambient as possible. However, it is really the size and flow distribution of the 300 to 80-K helium-helium heat exchangers which are the dominate influence of the nitrogen consumption. As such, an analysis was done to identify and quantify the sensitivity the key parameters in the refrigerator LN pre-cooler section affecting the LN consumption.

Peter Knudsen, Venkatarao Ganni

2010-04-01T23:59:59.000Z

126

Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise  

E-Print Network (OSTI)

The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. We simulated one year long observations of four 30 GHz detectors. The simulated timestreams contained CMB, foreground components (both galactic and extra-galactic), instrument noise (correlated and white), and the four instrument systematic effects. We made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. We also compared the maps of different mapmaking codes to see how they performed. We used five mapmaking codes (two destripers and three optimal codes). None of our mapmaking codes makes an attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual RMS) is baseline length. All optimal codes give essentially indistinguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough. For longer baselines destripers require less computing resources but deliver a noisier map.

M. A. J. Ashdown; C. Baccigalupi; J. G. Bartlett; J. Borrill; C. Cantalupo; G. de Gasperis; G. de Troia; K. M. Gorski; E. Hivon; K. Huffenberger; E. Keihanen; R. Keskitalo; T. Kisner; H. Kurki-Suonio; C. R. Lawrence; P. Natoli; T. Poutanen; G. Prezeau; M. Reinecke; G. Rocha; M. Sandri; R. Stompor; F. Villa; B. Wandelt

2009-04-09T23:59:59.000Z

127

Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise  

SciTech Connect

The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. Temperature and polarization frequency maps made from these observations are prime deliverables of the Planck mission. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. They simulated one year long observations of four 30 GHz detectors. The simulated timestreams contained CMB, foreground component (both galactic and extra-galactic), instrument nolise (correlated and white), and the four instrument systematic effects. They made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. They also compared the maps of different mapmaking codes to see how they performed. They used five mapmaking codes (two destripers and three optimal codes). None of their mapmaking codes makes an attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. This is a complicated smoothing, because every map pixel has its own effective beam. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual RMS) is baseline length. All optimal codes give essentially indistiguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough (Madam). For longer baselines destripers (Springtide and Madam) require less computing resources but deliver a noisier map.

The Planck CTP Working Group; Ashdown, M.A.J.; Baccigalupi, C.; Bartlett, J.G.; Borrill, J.; Cantalupo, C.; de Gasperis, G.; Gorski, K.M.; Hivon, E.; Huffenberger, K.; Keihanen, E.; Keskitalo, R.; Kisner, T.; Hurki-Suonio, H.; Lawrence, C.R.; Natoli, P.; Poutanen, T.; Prezeau, G.; Reinecke, M.; Rocha, G.; Sandri, M.; Stompor, R..; Villa, F.; Wandelt, B.; de Troia, G.

2008-06-19T23:59:59.000Z

128

Water Management for Evaporatively Cooled Condensers  

E-Print Network (OSTI)

Water Management for Evaporatively Cooled Condensers Theresa Pistochini May 23rd, 2012 ResearchAirCapacity,tons Gallons of Water Continuous Test - Outdoor Air 110-115 Deg F Cyclic Test - Outdoor Air 110-115 Deg F #12 AverageWaterHardness(ppm) Cooling Degree Days (60°F Reference) 20% Population 70% Population 10

California at Davis, University of

129

Tank 26F-2F Evaporator Study  

SciTech Connect

Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

Adu-Wusu, K.

2012-12-19T23:59:59.000Z

130

An AlGaAsGaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3  

E-Print Network (OSTI)

out using a compact thermo-electrically cooled laser package. The QCL described here is designedAn AlGaAs­GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3. Langford b a Department of Electronics and Electrical Engineering, Rankine Building, University of Glasgow

131

Rain on the Roof-Evaporative Spray Roof Cooling  

E-Print Network (OSTI)

This paper describes evaporative spray roof cooling systems, their components, performance and applications in various climates and building types. The evolution of this indirect evaporative cooling technique is discussed. Psychrometric and sol...

Bachman, L. R.

1985-01-01T23:59:59.000Z

132

Evaporative system for water and beverage refrigeration in hot countries  

E-Print Network (OSTI)

Evaporative system for water and beverage refrigeration in hot countries A Saleh1 and MA Al-Nimr2 1 Abstract: The present study proposes an evaporative refrigerating system used to keep water or other are found to be consistent with the available literature data. Keywords: evaporative refrigeration, heat

133

Can photo-evaporation trigger planetesimal formation?  

E-Print Network (OSTI)

We propose that UV radiation can stimulate the formation of planetesimals in externally-illuminated protoplanetary disks. We present a numerical model of disk evolution including vertical sedimentation and photo-evaporation by an external O or B star. As solid material grows and settles toward the disk midplane, the outer layers of the disk become dust depleted. When such a disk is exposed to UV radiation, heating drives photo-evaporative mass-loss from its surface, generating a dust-depleted outflow. The dust:gas surface density ratio in the disk interior grows until dust in the disk midplane becomes gravitationally unstable. Thus, UV radiation fields may induce the rapid formation of planetesimals in disks where sedimentation has occurred.

Henry B. Throop; John Bally

2004-11-23T23:59:59.000Z

134

CHROMOSPHERIC EVAPORATION IN AN M1.8 FLARE OBSERVED BY THE EXTREME-ULTRAVIOLET IMAGING SPECTROMETER ON HINODE  

SciTech Connect

We discuss observations of chromospheric evaporation for a complex flare that occurred on 2012 March 9 near 03:30 UT obtained from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board the Hinode spacecraft. This was a multiple event with a strong energy input that reached the M1.8 class when observed by EIS. EIS was in raster mode and fortunately the slit was almost at the exact location of a significant energy input. Also, EIS obtained a full-CCD spectrum of the flare, i.e., the entire CCD was readout so that data were obtained for about the 500 lines identified in the EIS wavelength ranges. Chromospheric evaporation characterized by 150-200 km s{sup -1} upflows was observed in multiple locations in multi-million degree spectral lines of flare ions such as Fe XXII, Fe XXIII, and Fe XXIV, with simultaneous 20-60 km s{sup -1} upflows in million degree coronal lines from ions such as Fe XII-Fe XVI. The behavior of cooler, transition region ions such as O VI, Fe VIII, He II, and Fe X is more complex, but upflows were also observed in Fe VIII and Fe X lines. At a point close to strong energy input in space and time, the flare ions Fe XXII, Fe XXIII, and Fe XXIV reveal an isothermal source with a temperature close to 14 MK and no strong blueshifted components. At this location there is a strong downflow in cooler active region lines from ions such as Fe XIII and Fe XIV, on the order of 200 km s{sup -1}. We speculate that this downflow may be evidence of the downward shock produced by reconnection in the current sheet seen in MHD simulations. A sunquake also occurred near this location. Electron densities were obtained from density sensitive lines ratios from Fe XIII and Fe XIV. Atmospheric Imaging Assembly (AIA) observations from the Solar Dynamics Observatory are used with JHelioviewer to obtain a qualitative overview of the flare. However, AIA data are not presented in this paper. In summary, spectroscopic data from EIS are presented that can be used for predictive tests of models of chromospheric evaporation as envisaged in the Standard Flare Model.

Doschek, G. A.; Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)] [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)] [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

2013-04-10T23:59:59.000Z

135

Evaporated Lithium Surface Coatings in NSTX  

SciTech Connect

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges: (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density. (C) 2009 Elsevier B.V. All rights reserved

Kugel, H. W. [Princeton Plasma Physics Laboratory (PPPL); Mansfield, D. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Allain, J. P. [Purdue University; Gates, D. [Princeton Plasma Physics Laboratory (PPPL); Gerhardt, S. P. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Menard, J. [Princeton Plasma Physics Laboratory (PPPL); Mueller, D. [Princeton Plasma Physics Laboratory (PPPL); Ono, M. [Princeton Plasma Physics Laboratory (PPPL); Paul, S. [Princeton Plasma Physics Laboratory (PPPL); Raman, R. [University of Washington, Seattle; Roquemore, A. L. [Princeton Plasma Physics Laboratory (PPPL); Ross, P. W. [Princeton Plasma Physics Laboratory (PPPL); Sabbagh, S. A. [Columbia University; Schneider, H. [Princeton Plasma Physics Laboratory (PPPL); Skinner, C. H. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. [Lawrence Livermore National Laboratory (LLNL); Stevenson, T. [Princeton Plasma Physics Laboratory (PPPL); Timberlake, J. [Princeton Plasma Physics Laboratory (PPPL); Wampler, W. R. [Sandia National Laboratories (SNL); Wilgen, John B [ORNL; Zakharov, L. E. [Princeton Plasma Physics Laboratory (PPPL)

2009-01-01T23:59:59.000Z

136

Evaporated Lithium Surface Coatings in NSTX  

SciTech Connect

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: 1) plasma density reduction as a result of lithium deposition; 2) suppression of ELMs; 3) improvement of energy confinement in a low-triangularity shape; 4) improvement in plasma performance for standard, high-triangularity discharges; 5) reduction of the required HeGDC time between discharges; 6) increased pedestal electron and ion temperature; 7) reduced SOL plasma density; and 8) reduced edge neutral density.

Kugel, H. W.; Mansfield, D.; Maingi, R.; Bel, M. G.; Bell, R. E.; Allain, J. P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

2009-04-09T23:59:59.000Z

137

Nuclear evaporation process with simultaneous multiparticle emission  

E-Print Network (OSTI)

The nuclear evaporation process is reformulated by taking into account simultaneous multiparticle emission from a hot compound nucleus appearing as an intermediate state in many nuclear reaction mechanisms. The simultaneous emission of many particles is particularly relevant for high excitation energy of the compound nucleus.These channels are effectively open in competition with the single particle emissions and fission in this energy regime. Indeed, the inclusion of these channels along the decay evaporating chain shows that the yield of charged particles and occurrence of fission are affected by these multiparticle emission processes of the compounded nucleus, when compared to the single sequential emission results. The effect also shows a qualitative change in the neutron multiplicity of different heavy compound nucleus considered. This should be an important aspect for the study of spallation reaction in Acceleration Driven System (ADS) reactors. The majority of neutrons generated in these reactions come from the evaporation stage of the reaction, the source of neutron for the system. A Monte Carlo simulation is employed to determine the effect of these channels on the particle yield and fission process. The relevance of the simultaneous particle emission with the increasing of excitation energy of the compound nucleus is explicitly shown.

Leonardo P. G. De Assis; Sergio B. Duarte; Bianca M. Santos

2012-08-07T23:59:59.000Z

138

Evaporated lithium surface coatings in NSTX.  

SciTech Connect

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges; (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density.

Zakharov, L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gates, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Menard, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Maingi, R. (Oak Ridge National Laboratory, Oak Ridge, TN); Schneider, H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mueller, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wampler, William R.; Roquemore, A. L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kallman, Jeffrey K. (Princeton Plasma Physics Laboratory, Princeton, NJ); Sabbagh, S. (Columbia University, New York, NY); LeBlanc, B. (Princeton Plasma Physics Laboratory, Princeton, NJ); Raman, R. (University of Washington, Seattle, WA); Ono, M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wilgren, J. (Oak Ridge National Laboratory, Oak Ridge, TN); Allain, J.P. (Purdue University, West Lafayette, IN); Timberlake, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Stevenson, T. (Princeton Plasma Physics Laboratory, Princeton, NJ); Ross, P. W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Majeski, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kugel, Henry W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Skinner, C. H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gerhardt, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Paul, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Bell, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaye, S. M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaita, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Soukhanovskii, V. (Lawrence Livermore National Laboratory, Livermore, CA); Bell, Michael G. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mansfield, D. (Princeton Plasma Physics Laboratory, Princeton, NJ)

2008-08-01T23:59:59.000Z

139

Optical runaway evaporation for multi-BEC production  

E-Print Network (OSTI)

We report on parallel production of Bose-Einstein condensates (BECs) in steerable, multi-plexed crossed optical dipole traps. Using a trap-weakening evaporation scheme, where the optical trapping power is lowered, we obtain an array of up to four independent similarly sized BECs. In the weakening scheme the elastic collision rate decreases with time, leading to inefficient evaporation. As an efficient alternative, we demonstrate an all-optical evaporation scheme, where a ghost tweezer beam near a trapping site establishes an escape route for hot atoms, without compromising trap stiffness. The ghost beam scheme leads to runaway evaporation and is particularly suited for simultaneous evaporative cooling at multiple trap sites.

Deb, Amita; Kjærgaard, Niels

2014-01-01T23:59:59.000Z

140

Unified theory for inhomogeneous thermoelectric generators and coolers including multistage devices  

Science Journals Connector (OSTI)

A novel generalized Lagrange multiplier method for functional optimization with inclusion of subsidiary conditions is presented and applied to the optimization of material distributions in thermoelectric converters. Multistaged devices are considered within the same formalism by inclusion of position-dependent electric current in the legs leading to a modified thermoelectric equation. Previous analytical solutions for maximized efficiencies for generators and coolers obtained by Sherman [J. Appl. Phys. 31, 1 (1960)], Snyder [Phys. Rev. B 86, 045202 (2012)], and Seifert et al. [Phys. Status Solidi A 207, 760 (2010)] by a method of local optimization of reduced efficiencies are recovered by independent proof. The outstanding maximization problems for generated electric power and cooling power can be solved swiftly numerically by solution of a differential equation-system obtained within the new formalism. As far as suitable materials are available, the inhomogeneous TE converters can have increased performance by use of purely temperature-dependent material properties in the thermoelectric legs or by use of purely spatial variation of material properties or by a combination of both. It turns out that the optimization domain is larger for the second kind of device which can, thus, outperform the first kind of device.

York Christian Gerstenmaier and Gerhard Wachutka

2012-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Treatment of evaporator condensates by pervaporation  

DOE Patents (OSTI)

A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

Blume, Ingo (Hengelq, NL); Baker, Richard W. (Palo Alto, CA)

1990-01-01T23:59:59.000Z

142

A cold model experimental study on the flow characteristics of bed material in a fluidized bed bottom ash cooler in a CFB boiler  

Science Journals Connector (OSTI)

A cold model experimental study on the flowing characteristics of bed material between a fluidized bed ash cooler and a furnace of CFB boiler were discussed in this paper. The research results showed that flowing...

Xiaofeng Lu; Yourong Li

2000-12-01T23:59:59.000Z

143

Cooler-less and heat-sink free 980nm pump laser diode module wavelength-stabilized from -40 to 100 °C  

Science Journals Connector (OSTI)

Cooler-less 200mW kink free 980nm LD module was developed. Center wavelength was locked and unnecessary modes were suppressed from -40 to 100 deg. C. under low heat dissipation...

Irie, Yuichiro; Koseki, Takashi; Minamino, Masayuki; Miyokawa, Jun; Nishikata, Kevin; Koiso, Takeshi; Yamagata, Yuji; Ikegami, Yoshikazu

144

Evaporation of Water from Particles in the Aerodynamic Lens Inlet...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Water from Particles in the Aerodynamic Lens Inlet: An Experimental Study. Evaporation of Water from Particles in the Aerodynamic Lens Inlet: An Experimental Study. Abstract:...

145

"Increasing Solar Panel Efficiency And Reliability By Evaporative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing Solar Panel Efficiency And Reliability By Evaporative Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks...

146

Studies on the Ecological Impact of Evaporation Retardation Monolayers  

E-Print Network (OSTI)

TR-6 1966 Studies on the Ecological Impact of Evaporation Retardation Monolayers B.G. Wixson Texas Water Resources Institute Texas A&M University ...

Wixson, B.G.

147

Evaporative Hydrochloric Acid Recovery: Something Old, Something New...  

E-Print Network (OSTI)

. If zinc is present from the pickling of galvanizing racks or stripping of parts, the zinc concentration will range from as low as zinc chloride solution remains. In the evaporative process of the Hydrochloric Acid Recovery System, the waste acid is pumped through a pre-filter into the evaporator section oftI1e recovery system. This solution is heated by means...

Cullivan, B.

148

Modeling Coupled Evaporation and Seepage in Ventilated Cavities  

SciTech Connect

Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

2004-07-01T23:59:59.000Z

149

Forward-backward emission of target evaporated evaporated fragments at high energy nucleus-nucleus collisions  

E-Print Network (OSTI)

The multiplicity distribution, multiplicity moment, scaled variance, entropy and reduced entropy of target evaporated fragment emitted in forward and backward hemispheres in 12 A GeV $^{4}$He, 3.7 A GeV $^{16}$O, 60 A GeV $^{16}$O, 1.7 A GeV $^{84}$Kr and 10.7 A GeV $^{197}$Au induced emulsion heavy targets (AgBr) interactions are investigated. It is found that the multiplicity distribution of target evaporated fragments emitted in forward and backward hemispheres can be fitted by a Gaussian distribution. The multiplicity moments of target evaporated particles emitted in forward and backward hemispheres increase with the order of the moment {\\em q}, and second-order multiplicity moment is energy independent over the entire energy for all the interactions in the forward and backward hemisphere respectively. The scaled variance, a direct measure of multiplicity fluctuations, is close to one for all the interactions which may be said that there is a feeble correlation among the produced particles. The entropy of...

Zhang, Zhi; Zhang, Dong-Hai

2015-01-01T23:59:59.000Z

150

Effect of cooler electrons on a compressive ion acoustic solitary wave in a warm ion plasma — Forbidden regions, double layers, and supersolitons  

SciTech Connect

It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%–20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leads to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.

Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218 (India); Sekar Iyengar, A. N. [Plasma Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

2014-08-15T23:59:59.000Z

151

A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider  

SciTech Connect

The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

2013-06-01T23:59:59.000Z

152

Spent-fuel pool thermal hydraulics: The evaporation question  

SciTech Connect

Many nuclear power plants are currently using dense fuel arrangements that increase the number of spent fuel elements stored in their spent-fuel pools (SFPs). The denser spent-fuel storage results in higher water temperatures, especially when certain event scenarios are analyzed. In some of these event scenarios, it is conservative to maximize the evaporation rate, while in other circumstances it is required to minimize the evaporation rates for conservatism. Evaporation is such a fundamental phenomenon that many branches of engineering developed various equations based on theory and experiments. The evaporation rates predicted by existing equations present a wide range of variation, especially at water temperatures >40{degrees}C. Furthermore, a study on which equations provide the highest and lowest evaporation rates has not been done until now. This study explores the sensitivity of existing evaporation equations to various parameters and recommends the limiting evaporation equations for use in the solution of SFP thermal problems. Note that the results of this study may be applicable to a much wider range of applications from irrigation ponds, cooling lakes, and liquid-waste management to calculating adequate air exchange rate for swimming pools and health spas.

Yilmaz, T.P. [Belcan Services, Lombard, IL (United States); Lai, J.C. [Public Service Electric & Gas Co., Berwick, PA (United States)

1996-12-31T23:59:59.000Z

153

Black Hole Evaporation in an Expanding Universe  

E-Print Network (OSTI)

We calculate the quantum radiation power of black holes which are asymptotic to the Einstein-de Sitter universe at spatial and null infinities. We consider two limiting mass accretion scenarios, no accretion and significant accretion. We find that the radiation power strongly depends on not only the asymptotic condition but also the mass accretion scenario. For the no accretion case, we consider the Einstein-Straus solution, where a black hole of constant mass resides in the dust Friedmann universe. We find negative cosmological correction besides the expected redshift factor. This is given in terms of the cubic root of ratio in size of the black hole to the cosmological horizon, so that it is currently of order $10^{-5} (M/10^{6}M_{\\odot})^{1/3} (t/14 {Gyr})^{-1/3}$ but could have been significant at the formation epoch of primordial black holes. Due to the cosmological effects, this black hole has not settled down to an equilibrium state. This cosmological correction may be interpreted in an analogy with the radiation from a moving mirror in a flat spacetime. For the significant accretion case, we consider the Sultana-Dyer solution, where a black hole tends to increase its mass in proportion to the cosmological scale factor. In this model, we find that the radiation power is apparently the same as the Hawking radiation from the Schwarzschild black hole of which mass is that of the growing mass at each moment. Hence, the energy loss rate decreases and tends to vanish as time proceeds. Consequently, the energy loss due to evaporation is insignificant compared to huge mass accretion onto the black hole. Based on this model, we propose a definition of quasi-equilibrium temperature for general conformal stationary black holes.

Hiromi Saida; Tomohiro Harada; Hideki Maeda

2007-05-28T23:59:59.000Z

154

DOE - Office of Legacy Management -- Swenson Evaporator Co - IL 23  

NLE Websites -- All DOE Office Websites (Extended Search)

Swenson Evaporator Co - IL 23 Swenson Evaporator Co - IL 23 FUSRAP Considered Sites Site: SWENSON EVAPORATOR CO. (IL.23 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Harvey , Illinois IL.23-1 Evaluation Year: 1987 IL.23-1 Site Operations: Scheduled a raffinate spray drying test that was later cancelled. IL.23-1 Site Disposition: Eliminated - No indication that radioactive materials were handled at this site IL.23-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to SWENSON EVAPORATOR CO. IL.23-1 - Memorandum/Checklist; D.Levine to the File; Subject:

155

Potential of Evaporative Cooling Systems for Buildings in India  

E-Print Network (OSTI)

Evaporative cooling potential for building in various climatic zones in India is investigated. Maintainable indoor conditions are obtained from the load - capacity analysis for the prevailing ambient conditions. For the assumed activity level...

Maiya, M. P.; Vijay, S.

2010-01-01T23:59:59.000Z

156

Evaporative Roof Cooling- A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

Since the “Energy Crisis” Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retro-fit installations show direct energy savings...

Abernethy, D.

157

Superhydrophobic coated apparatus for liquid purification by evaporative condensation  

DOE Patents (OSTI)

Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a first vessel for storing the contaminated fluid. The first vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus simplifying maintenance of the apparatus.

Simpson, John T; McNeany, Steve R; Dinsmore, Thomas V; Hunter, Scott R; Ivanov, Ilia N

2014-03-11T23:59:59.000Z

158

Thermodynamics and evaporation of the noncommutative black hole  

E-Print Network (OSTI)

We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.

Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

2006-11-24T23:59:59.000Z

159

Rates of evaporation from swimming pools in active use  

SciTech Connect

The rates of water evaporation from indoor and outdoor swimming pools in active use have been measured and compared with evaporation rates from unoccupied pools and with values calculated by the equation W = (95 + 0.425 v) (pw-pa)Y, where W is evaporation rate, lb/h ft{sup 2}; v is air velocity at water surface, ft/min.; pw is saturation vapor pressure at water temperature, in. Hg; pa is saturation vapor pressure at air dewpoint, in. Hg; and Y is latent heat at pool temperature, Btu/lb. In undisturbed pools, evaporation rates were measured and found to be 74% of the rates obtained by use of the equation. Rates of evaporation from pools in active use increase with the number of swimmers, rising 40--70% above the rates from a quiet water surface. Measurements of evaporation from a pool in use by 15--20 swimmers per 1,000 ft{sup 2} were found to average 26% higher than the rate calculated by the equation.

Smith, C.C.; Loef, G.O.G. [Colorado State Univ., Fort Collins, CO (United States). Solar Energy Applications Lab.; Jones, R.W. [Dept. of Energy, Golden, CO (United States)

1998-10-01T23:59:59.000Z

160

Method and apparatus for flash evaporation of liquids  

DOE Patents (OSTI)

A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

Bharathan, Desikan (Lakewood, CO)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Dynamic Modeling and Simulation Study of Falling Film Evaporation and Condensation  

Science Journals Connector (OSTI)

Falling film evaporators and condensers have demonstrated a good performance in air-conditioning and refrigeration. A study of falling film evaporation and condensation models is presented in this document. Two different evaporator models and a condenser ... Keywords: Falling film, evaporator, condenser, horizontal tube bundle, heat pump, dryout, Modelica

Alberto de la Calle; Luis J. Yebra; Sebastián Dormido

2013-09-01T23:59:59.000Z

162

Control of the rate of evaporation in protein crystallization by the `microbatch under oil' method  

Science Journals Connector (OSTI)

A procedure is presented for controlling the rate of evaporation during `microbatch under oil' protein crystallization.

Brumshtein, B.

2008-08-30T23:59:59.000Z

163

Thin Film Coolers for Localized Temperature Control in Optoelectronic Integrated Circuits Yan Zhang. James Cliristofferson, Danoosh Vaslkiee. Phuong Nguyen. Ali Shakouri  

E-Print Network (OSTI)

Thin Film Coolers for Localized Temperature Control in Optoelectronic Integrated Circuits Yan Zhang-sensitive properties of optoelectronic are constraints for high frequency high power operation. and for high level, optoelectronic. transient, integration Introduction 1. Thermal Issue in Optoelectronic Devices The on

164

S0june 2007State of the Climate in 2006 | of Iran were up to 8C cooler than normal during  

E-Print Network (OSTI)

S0june 2007State of the Climate in 2006 | of Iran were up to 8°C cooler than normal during December. Snow and cold weather penetrated north- ern Iran, with heavy rainfall in eastern and southern Iran, precipitation totals were normal to above normal in much of Iran during autumn 2006. (v) Significant weather

165

Upward-facing Lithium Flash Evaporator for NSTX-U  

SciTech Connect

NSTX plasma performance has been significantly enhanced by lithium conditioning [1]. To date, the lower divertor and passive plates have been conditioned by downward facing lithium evaporators (LITER) as appropriate for lower null plasmas. The higher power operation expected from NSTX-U requires double null plasma operation in order to distribute the heat flux between the upper and lower divertors making it desirable to coat the upper divertor region with Li as well. An upward aiming LITER (U-LITER) is presently under development and will be inserted into NSTX-U using a horizontal probe drive located in a 6" upper midplane port. In the retracted position the evaporator will be loaded with up to 300 mg of Li granules utilizing one of the calibrated NSTX Li powder droppers[2]. The evaporator will then be inserted into the vessel in a location within the shadow of the RF limiters and will remain in the vessel during the discharge. About 10 seconds before a discharge, it will be rapidly heated and the lithium completely evaporated onto the upper divertor, thus avoiding the complication of a shutter that prevents evaporation during the shot when the diagnostic shutters are open. The minimal time interval between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the conditioning effects of un-passivated Li surfaces [3]. Two methods are being investigated to accomplish the rapid (few second) heating of the lithium. A resistive method relies on passing a large current through a Li filled crucible. A second method requires using a 3 kW e-beam gun to heat the Li. In this paper the evaporator systems will be described and the pros and cons of each heating method will be discussed.

Roquemore, A. L.

2013-07-09T23:59:59.000Z

166

Simultaneous multiparticle emissions in hot nuclei evaporation process  

SciTech Connect

This work presents a new mechanism for the evaporation with simultaneous particles emission mechanism in the evaporation chain as new channels opened to high excitation energy regime of the compound nucleus. The probability of multiple simultaneous emissions is determined based on phase space approach. A Monte Carlo simulation is employed to compute the final average yield of emitted particles after the decay chain. The neutron, proton, alpha and fission yields are obtained and compared to the conventional calculation with sequential simple particles emission and the relevance of the different channels in competition is also analyzed.

Santos, B. M. [Instituto de Fisica - Universidade Federal Fluminense Av. Gal. Milton Tavares de Souza, 24210-346 Niteroi. RJ (Brazil); De Assis, L. P.; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas - CBPF Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro. RJ (Brazil)

2013-03-25T23:59:59.000Z

167

2F Evaporator CP class instrumentation uncertainties evaluations  

SciTech Connect

There are two instrumentation systems in the 2F Evaporator facilities (bldg. 242-16F) that are classified as the Critical Protection (CP). They are the Evaporator Pot Temperature instrumentations and Steam Condensate Gamma Monitor. The pot instrumentation consists of two interrelated circuits sharing the same temperature sensor and transducer. They are the high alarm and interlock circuit and the recorder circuit. The gamma monitor instrumentation consists of four interrelated circuits sharing the same scintillation detector. They are the gamma alarm and interlock circuit, failure alarm and interlock circuit, condensate cesium activity recorder circuit, and condensate americium activity recorder circuit. The resulting uncertainties for the instrument circuits are tabulated. (GHH)

Hwang, E.

1994-01-28T23:59:59.000Z

168

A techno-economic analysis of cost savings for retrofitting industrial aerial coolers with variable frequency drives  

Science Journals Connector (OSTI)

A techno-economic model was created in order to develop curves that show the typical annual energy savings, rate of return, and payback for retrofitting aerial coolers with variable frequency drives (VFDs) for up to 50 motors, motor sizes from 4 to 186 kW (5–250 hp), and varying climate conditions. The cost savings due to installing a VFD depends on the reduction in energy used, as well as the reduction in power demand, the capital cost of the VFD, installation cost of the VFD, change in operating cost, and cost of electricity. The geographic locations examined in this report were Fort McMurray, Calgary, Vancouver, and Thunder Bay. This study found that the IRR increases rapidly with motor size, becomes greater than 10% at a motor size of approximately 15 kW, and may be as high as 220% (for the case of fifty, 186 kW motors). The IRR is sensitive to the number of fan motors retrofitted with VFDs, however the sensitivity rapidly declines as the number of motors is increased beyond five. The simple payback period becomes less than 1 year and nearly independent of number of motors and motor size for motors larger than 90 kW. Ambient temperature and geographic location affect the profitability of the investment, although the IRR only changes by approximately 4%.

Patrick Miller; Babatunde Olateju; Amit Kumar

2012-01-01T23:59:59.000Z

169

Low-Cost Wind Speed Measurements Using Naphthalene Evaporation  

Science Journals Connector (OSTI)

Six 125-cm3 metal mesh cages, filled with 99% pure naphthalene mothballs, were suspended near anemometers during 8 winter weeks. Each week the cages were weighed to determine how much evaporation had occurred. A least-squares linear regression of ...

Pierre Y. Bernier

1988-10-01T23:59:59.000Z

170

Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram  

E-Print Network (OSTI)

Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

Paris-Sud XI, Université de

171

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network (OSTI)

condensation in winter, reduced life and reliability of ventilation equipment, and high repair bills cooling and heating systems. VENTILATION SYSTEMS The operating efficiency of a ventilation fan can be pockets of stagnant air, inadequate cooling from evaporative cooling pads, high heating expenses, heavy

Watson, Craig A.

172

Evaporation Minus Precipitation and Density Fluxes for the North Atlantic  

Science Journals Connector (OSTI)

Estimates of evaporation (E) over the North Atlantic Ocean by Bunker have been combined with estimates of precipitation (P) by Dorman and Bourke to produce new annual and seasonal maps of E–P and surface density flux. Although uncertainties about ...

Raymond W. Schmitt; Philip S. Bogden; Clive E. Dorman

1989-09-01T23:59:59.000Z

173

Process Control Plan for 242A Evaporator Campaign  

SciTech Connect

The wastes in tanks 107-AP and 108-AP are designated as feed for 242-A Evaporator Campaign 2000-1, which is currently scheduled for the week of April 17, 2000. Waste in tanks 107-AP and 108-AP is predominantly comprised of saltwell liquor from 200 West Tank Farms.

LE, E.Q.

2000-04-06T23:59:59.000Z

174

Isotope Fractionation of Water during Evaporation without Condensation  

Science Journals Connector (OSTI)

Specifially, isotope fractionation factors associated with free evaporation (?evap) have been measured as a function of the isotopic composition and temperature of the liquid. ... Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature ...

Christopher D. Cappa; Walter S. Drisdell; Jared D. Smith; Richard J. Saykally; Ronald C. Cohen

2005-12-03T23:59:59.000Z

175

242-A Evaporator Waste Analysis Plan. Revision 5  

SciTech Connect

This Waste Analysis Plan (WAP) provides the plan for obtaining information needed for proper waste handling and processing in the 242-A Evaporator (Evaporator) located on the Hanford Site. In particular it addresses analysis necessary to manage the waste according to Washington Administrative Code (WAC) 173-303 and Parts 264 and 265 of the Code of Federal Regulations (CFR). Regulatory and safety issues are addressed by establishing boundary conditions for waste received and treated at the 242-A Evaporator. The boundary conditions are set by establishing limits for items such as potential exothermic reactions, waste compatibility, and control of vessel vent organic emissions. Boundary conditions are also set for operational considerations and to ensure waste acceptance at receiving facilities. The issues that are addressed in this plan include prevention of exotherms in the waste, waste compatibility, and vessel vent emissions. Samples from the other streams associated with the Evaporator are taken as required by Process Control Plans but are excluded from this plan because either the streams do not contain dangerous waste or the analyses are not required by WAC 173-303-300.

Basra, T.S.

1995-04-13T23:59:59.000Z

176

Exhaust and evaporative emissions from gasohol-type fuels  

SciTech Connect

An experimental study was conducted at the US Department of Energy's Bartlesville (Okla.) Energy Technology Center in cooperation with the Environmental Protection Agency to determine the characteristics of gasohol-type fuels with respect to exhaust and evaporative emissions. Five fuels, 2 gasolines (reference and commercial unleaded) and 3 gasohols (90% gasoline/10% ethanol) were tested in a fleet of 10 late-model automobiles. Six were equipped with oxidation catalysts and 4 were equipped with three-way catalysts. The results obtained from the 1978 Federal test procedure indicate that the addition of ethanol to the base gasoline, whether it is a reference fuel (Indolene) or a commercial fuel, has measurable effects on exhaust and evaporative emissions. However, on the average, the magnitude of these effects was generally within the 1978 emission standards established by the EPA. More specifically, the addition of ethanol, in the case of vehicles with oxidation catalysts, decreased hydrocarbons by an average of 27%, decreased carbon monoxide by 43%, decreased volumetric fuel economy by 3%, and increased oxides of nitrogen by 16%. Evaporative emissions were increased by 40%. In the case of vehicles with three-way catalysts, the addition of ethanol to the base fuel, on the average, decreased carbon monoxide by 7%, decreased fuel economy by 5%, increased hydrocarbons by 12%, increased oxides of nitrogen by 7%, and increased evaporative emissions by 49%.

Naman, T.M.; Allsup, J.R.

1980-08-01T23:59:59.000Z

177

Infiltration and evaporation of small hydrocarbon spills at gas stations  

Science Journals Connector (OSTI)

Abstract Small gasoline spills frequently occur at gasoline dispensing stations. We have developed a mathematical model to estimate both the amount of gasoline that infiltrates into the concrete underneath the dispensing stations and the amount of gasoline that evaporates into the typically turbulent atmosphere. Our model shows that the fraction of infiltrated gasoline can exceed the fraction that evaporates from the sessile droplets. Infiltrated gasoline then evaporates and is slowly released to the atmosphere via slow diffusive transport in pores. Tentative experiments show that our theoretical approach captures observed experimental trends. Predictions based on independently estimated model parameters roughly describe the experimental data, except for the very slow vapor release at the end of Stage II evaporation. Our study suggests that, over the lifespan of a gas station, concrete pads underneath gas dispensing stations accumulate significant amounts of gasoline, which could eventually break through into underlying soil and groundwater. Our model also shows that lifetimes of spilled gasoline droplets on concrete surfaces are on the order of minutes or longer. Therefore contamination can be carried away by foot traffic or precipitation runoff. Regulations and guidelines typically do not address subsurface and surface contaminations due to chronic small gasoline spills, even though these spills could result in non-negligible human exposure to toxic and carcinogenic gasoline compounds.

Markus Hilpert; Patrick N. Breysse

2014-01-01T23:59:59.000Z

178

On the Motion of an Intensely Heated Evaporating Boundary  

Science Journals Connector (OSTI)

......several calculations of weld pool shapes and isotherms, etc...effect on the shape of a weld pool (Gibb & Longworth, private...material evaporated is Adx and conservation of energy implies that hpAbx...Magnesium Mercury Nickel Tungsten Water Zinc Heat capacity (from 0......

J. G. ANDREWS; D. R. ATTHEY

1975-02-01T23:59:59.000Z

179

Hanford high-level waste evaporator/crystallizer corrosion evaluation  

SciTech Connect

The US Department of Energy, Hanford Site nuclear reservation, located in Southeastern Washington State, is currently home to 61 Mgal of radioactive waste stored in 177 large underground storage tanks. As an intermediate waste volume reduction, the 242-A Evaporator/Crystallizer processes waste solutions from most of the operating laboratories and plants on the Hanford Site. The waste solutions are concentrated in the Evaporator/Crystallizer to a slurry of liquid and crystallized salts. This concentrated slurry is returned to Hanford Site waste tanks at a significantly reduced volume. The Washington State Department of Ecology Dangerous Waste Regulations, WAC 173-393 require that a tank system integrity assessment be completed and maintained on file at the facility for all dangerous waste tank systems. This corrosion evaluation was performed in support of the 242-A Evaporator/Crystallizer Tank System Integrity Assessment Report. This corrosion evaluation provided a comprehensive compatibility study of the component materials and corrosive environments. Materials used for the Evaporator components and piping include austenitic stainless steels (SS) (primarily ASTM A240, Type 304L) and low alloy carbon steels (CS) (primarily ASTM A53 and A106) with polymeric or asbestos gaskets at flanged connections. Building structure and secondary containment is made from ACI 301-72 Structural Concrete for Buildings and coated with a chemically resistant acrylic coating system.

Ohl, P.C.; Carlos, W.C.

1993-10-01T23:59:59.000Z

180

The Adhesion of Evaporated Metal Films on Glass  

Science Journals Connector (OSTI)

...The Adhesion of Evaporated Metal Films on Glass P. Benjamin C. Weaver The adhesion of...deposited by vacuum techniques on to a glass surface have been examined. It has been...intermediate oxide layer at the metal/glass interface is necessary for good adhesion...

1961-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

USER SATISFACTION WITH INNOVATIVE COOLING RETROFITS IN SACRAMENTO PUBLIC HOUSING  

E-Print Network (OSTI)

and a housing authority have been retrofitting their buildings with evaporative coolers, ground-source heatpumps

Diamond, Richard

182

Wind Run Changes: The Dominant Factor Affecting Pan Evaporation Trends in Australia  

Science Journals Connector (OSTI)

The Class A pan evaporation rates at many Australian observing stations have reportedly decreased between 1970 and 2002. That pan evaporation rates have decreased at the same time that temperatures have increased has become known as the “pan ...

D. P. Rayner

2007-07-01T23:59:59.000Z

183

The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project  

SciTech Connect

The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref.

Presgrove, S.B. (Bechtel Savannah River, Inc., North Augusta, SC (United States))

1992-01-01T23:59:59.000Z

184

The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project  

SciTech Connect

The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref.

Presgrove, S.B. [Bechtel Savannah River, Inc., North Augusta, SC (United States)

1992-08-01T23:59:59.000Z

185

Reconstruction of a Daily Large-Pan Evaporation Dataset over China  

Science Journals Connector (OSTI)

Land surface evaporation is an important component of the earth’s surface hydrological cycle, as well as in the atmospheric energy and water balances. In China, different instruments have been used over time to measure evaporation. A small pan ...

An-Yuan Xiong; Jie Liao; Bin Xu

2012-07-01T23:59:59.000Z

186

Neotropical eocene coastal floras and [sup 18]O/[sup 16]O-estimated warmer vs. cooler equatorial waters  

SciTech Connect

The history of the earth's sea-surface temperature (SST) in equatorial regions during the Tertiary is unsettled because of uncertainty as to the presence and extent of glaciers during the Paleogene. The [sup 16]O trapped in glaciers and subsequently released back to the ocean basins as meltwater during interglacials affects the [sup 18]O/[sup 16]O ratio of sea water, one of the variables that must be known for oxygen isotope paleotemperature analysis of calcareous fossils. Estimates of SST range from [approximately]18 to 20 C, assuming an ice-free earth, to [approximately]28 C assuming glaciers were present in the Paleogene. Low latitude SST presently averages 28C, so the former estimate gives a value 8 to 10 C cooler than present, while the latter gives a value as warm or slightly warmer than present. The figures are important for interpreting terrestrial vegetational history because the temperature differential between low and high latitudes is a major factor in determining global climates through the control of poleward transfer of heat. The middle( ) to late Eocene Gatuncillo Formation palynoflora of Panama was deposited at the ocean-continental interface at [approximately]9[degrees]N latitude. The individual components and paleocommunities are distinctly tropical and similar to the present vegetation along the Atlantic coast of southern Central America. This is consistent with data emerging from other recently studied tropical coastal biotas and represents a contribution from paleobiology toward eventually resolving the problem of Eocene equatorial marine environments. Collectively, the evidence is beginning to favor a model of Eocene SST near present values. 50 refs., 1 fig., 2 tabs.

Graham, A. (Kent State Univ., OH (United States))

1994-03-01T23:59:59.000Z

187

Detailed modeling of the evaporation and thermal decomposition of urea-water-solution in SCR systems  

E-Print Network (OSTI)

Detailed modeling of the evaporation and thermal decomposition of urea-water-solution in SCRE Journal. Keywords: Multi-component, , evaporation, UWS, Adbue, urea decomposition, thermolysis SCR Catalytic Reduction (SCR) systems. In the multi-component evaporation model, the influence of urea

Boyer, Edmond

188

Optical and electrical characterization of the electron beam gun evaporated TiO2 lm  

E-Print Network (OSTI)

Optical and electrical characterization of the electron beam gun evaporated TiO2 ®lm V of TiO2 ®lms obtained by electron beam gun evaporation and annealed in an oxygen environment. A negative with TiO2 insulator ®lms deposited by electron beam gun evaporator. P-type Si wafers (1 0 0 orientation

Eisenstein, Gadi

189

Electrical characteristics of Ta2O5 thin films deposited by electron beam gun evaporation  

E-Print Network (OSTI)

Electrical characteristics of Ta2O5 thin films deposited by electron beam gun evaporation V films deposited by a simple electron beam gun evaporator. We describe thicknessO5 thin films deposited by a simple electron beam gun evaporator which enables versatility

Eisenstein, Gadi

190

Characteristics of Evaporated Antimony Films as a Function of the Antimony Source  

Science Journals Connector (OSTI)

Thin antimonyfilms deposited by evaporation from a PtSb source differ from films produced from elementary antimony in electrical resistance light transmission reaction with oxygen and particle size. Qualitative mass spectroscopic experiments indicate that these differences may be due to antimony evaporating from PtSb predominantly as Sb1 as distinct from the Sb4 aggregates known to evaporate from elementary antimony.

A. H. Sommer

1966-01-01T23:59:59.000Z

191

Understanding Kepler's Super-Earths and Sub-Neptunes: Insights from Thermal Evolution and Photo-Evaporation  

E-Print Network (OSTI)

Sculpted by Photo-Evaporation . . . . . . . . . . . . 1245.2.1 Improved Photo-Evaporationsignificantly sculpted by photo-evaporation. . 122 xii List

Lopez, Eric David

2014-01-01T23:59:59.000Z

192

Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices  

DOE Patents (OSTI)

The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

Nilson, Robert (Cardiff, CA); Griffiths, Stewart (Livermore, CA)

2005-10-04T23:59:59.000Z

193

Evaporation-based Ge/.sup.68 Ga Separation  

DOE Patents (OSTI)

Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.

Mirzadeh, Saed (Albuquerque, NM); Whipple, Richard E. (Los Alamos, NM); Grant, Patrick M. (Los Alamos, NM); O'Brien, Jr., Harold A. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

194

Cash for Coolers  

E-Print Network (OSTI)

Fowlie. 2008. “Demand Side Management and Energy-efficiencyKulick. 2004. “Demand-Side Management and Energy- efficiency

Davis, Lucas W.; Fuchs, Alan; Gertler, Paul J.

2012-01-01T23:59:59.000Z

195

Cash for Coolers  

E-Print Network (OSTI)

cost for these electricity consumption. U.S. DOE (2011b), p.replacement reduces electricity consumption by an average ofcontrast, increases electricity consumption by an average of

Davis, Lucas W.; Fuchs, Alan; Gertler, Paul J.

2012-01-01T23:59:59.000Z

196

Cash for Coolers  

E-Print Network (OSTI)

de Electricidad (“CFE”), Subdirección de Programación.Federal de Electricidad, or “CFE”) is the exclusive supplierelectricity within Mexico. CFE is responsible for almost all

Davis, Lucas W.; Fuchs, Alan; Gertler, Paul J.

2012-01-01T23:59:59.000Z

197

CFD?Phenomenological Diesel Spray Analysis under Evaporative Conditions  

Science Journals Connector (OSTI)

CFD?Phenomenological Diesel Spray Analysis under Evaporative Conditions ... Despite their great uncertainties compared to the experimental studies, numerical simulations permit carrying out extensive parametric studies, isolating every single variable involved in the general process at any point in time and at any position in physical space. ... The thermodynamic codes assume that the cylinder charge is uniform in both composition and temperature, at all times during the cycle. ...

J. M. Desantes; X. Margot; J. M. Pastor; M. Chavez; A. Pinzello

2009-07-13T23:59:59.000Z

198

Concrete characterization for the 300 Area Solvent Evaporator Closure Site  

SciTech Connect

This report summarizes the sampling activities undertaken and the analytical results obtained in a concrete sampling and analyses study performed for the 300 Area Solvent Evaporator (300 ASE) closure site. The 300 ASE is identified as a Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) unit that will be closed in accordance with the applicable laws and regulations. No constituents of concern were found in concentrations indicating contamination of the concrete by 300 ASE operations.

Prignano, A.L.

1995-02-21T23:59:59.000Z

199

Heavy quark production in the black hole evaporation at LHC  

SciTech Connect

The understanding of Quantum Chromodynamics (QCD) and Quantum Gravity are currently two of the main open questions in Physics. In order to understand these problems some authors proposed the existence of extra dimensions in the Nature. These extra dimensions would be compacted and not visible on the macroscopic world, but the effects would be manifest in ultrarelativistic colision process. In particular, black holes (BH) could be produced in proton-proton colisions in the Large Hadron Collider (LHC) and in future colliders. The BH is an object characterized by its mass and temperature wich also characterizes the evaporation process. All kind of particle should be produced in this process. Our goal in this contribution is to study the BH production in proton - proton collisions at LHC and its evaporation rate in heavy quarks. We present our estimate considering two scenarios (with and without trapped energy corrections) and compare our predictions with those obtained using perturbative QCD. Our results demonstrate that in both scenarios the charm and bottom production in the BH evaporation are smaller than the QCD prediction at LHC. In contrast, the top production is similar or larger than the QCD prediction, if the trapped energy corrections are disregarded.

Thiel, M.; Goncalves, V. P.; Sauter, W. K. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas (Brazil)

2013-03-25T23:59:59.000Z

200

Nanoparticle enhanced evaporation of liquids: A case study of silicone oil and water  

E-Print Network (OSTI)

Evaporation is a fundamental physical phenomenon, of which many challenging questions remain unanswered. Enhanced evaporation of liquids in some occasions is of enormous practical significance. Here we report the enhanced evaporation of the nearly permanently stable silicone oil by dispersing with nanopariticles including CaTiO3, anatase and rutile TiO2. The results can inspire the research of atomistic mechanism for nanoparticle enhanced evaporation and exploration of evaporation control techniques for treatment of oil pollution and restoration of dirty water.

Wenbin Zhang; Rong Shen; Kunquan Lu; Ailing Ji; Zexian Cao

2012-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler  

SciTech Connect

This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC fouling). In parallel, an MPC solution was initially developed using ideal sensing to optimize the plant operation during startup pre-heating as well as steady state and transient operation under normal high-pressure conditions, e.g. part-load, base-load, load transition and fuel changes. The MPC simulation studies showed significant improvements both for startup pre-heating and for normal operation. Finally, the EKF and MPC solutions were coupled to achieve the integrated sensing and control solution and its performance was studied through extensive steady state and transient simulations in the presence of sensor and modeling errors. The results of each task in the program and overall conclusions are summarized in this final report.

Aditya Kumar

2010-12-30T23:59:59.000Z

202

A Rinsing Effluent Evaporator for Dismantling Operations - 13271  

SciTech Connect

Between 1958 and 1997, the UP1 plant at Marcoule - located in the south of France - reprocessed and recycled nearly 20,000 MT of used fuel from special defense applications reactors, as well as fuel from the first generation of electricity generating reactors in France (natural uranium fuel, CO{sub 2}-cooled, graphite-moderated). Decommissioning and Dismantling of the UP1 plant and its associated units started in 1998. Since 2005, the UP1 facility has been operated by AREVA as the Marcoule Management and Operation contractor for French Atomic Energy Commission (CEA). An important part of this decommissioning program deals with the vitrification facility of Marcoule. This facility includes 20 tanks devoted to interim storage of highly active solutions, prior to vitrification. In 2006, a rinsing program was defined as part of the tank cleanup strategy. The main objective of the rinsing phases was to decrease activity in order to limit the volume of 'long-life active' waste produced during the decommissioning operations, so the tanks can be dismantled without the need of remote operations. To enable this rinsing program, and anticipating large volumes of generated effluent, the construction of an evaporation unit proved to be essential. The main objective of this unit was to concentrate the effluent produced during tank rinsing operations by a factor of approximately 10, prior to it being treated by vitrification. The evaporator design phase was launched in September 2006. The main challenge for the Project team was the installation of this new unit within a nuclear facility still in operation and in existing compartments not initially designed for this purpose. Cold operating tests were completed in 2008, and in May 2009, the final connections to the process were activated to start the hot test phase. During the first hot test operations performed on the first batches of clean-up effluent, the evaporator had a major operating problem. Extremely large quantities of foam were produced, affecting the evaporator operation, and creating the risk of a reduction in its capacity and throughput performance. A task force of AREVA process, operations, and safety experts from Marcoule and the La Hague reprocessing complex was assembled. New operating parameters were defined and tested to improve the process. Since then, the evaporator has performed very satisfactorily. The foam buildup phenomenon has been brought under complete control. All the different types of effluents produced during cleanup operations have been concentrated, and the results obtained in terms of quality and throughput, have ensured a consistent supply to the vitrification unit. The evaporator was operated until the end of April 2012, and enabled the production of 500 cubic meters of very high activity effluent, concentrating the fission products rinsed from the storage tanks. The evaporator will now be deactivated and decommissioned, with the first rinsing and cleanup operations scheduled to begin in 2014. (authors)

Rives, Rachel [AREVA BE/NV, Marcoule (France)] [AREVA BE/NV, Marcoule (France); Asou-Pothet, Marielle [CEA DEN/DPAD, Marcoule (France)] [CEA DEN/DPAD, Marcoule (France); Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia, MD (United States)] [AREVA FEDERAL SERVICES, Columbia, MD (United States)

2013-07-01T23:59:59.000Z

203

Expert assessments of the cost of light water small modular reactors  

Science Journals Connector (OSTI)

...computers, monitoring equipment, instrumentation equipment 8) HVAC and fire fighting equipmentVentilation and air conditioning...buildings that are not in controlled areas Both of the above include filters, heaters, coolers, fans, blowers, humidifiers, ducts...

Ahmed Abdulla; Inês Lima Azevedo; M. Granger Morgan

2013-01-01T23:59:59.000Z

204

2014-09-23 Issuance: Energy Conservation Standard for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration Notice of Public Meeting  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for walk-in coolers and freezers; Air-Conditioning, Heating, & Refrigeration Institute petition for reconsideration, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 23, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

205

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

SciTech Connect

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

2012-03-16T23:59:59.000Z

206

The development of a new evaporation formula for Texas  

E-Print Network (OSTI)

of Texas. From these maps an equation for evapo- ration can be extracted for any location in Texas. It was found that wind speed and relative humidity had little effect on evaporation from pans in Texas, at least when considered in terms of mean... meteorological parameters, such as temperature, wind speed, and relative humidity. These investigations have often been hampered by a lack of reliable data and non-standard instrumenta- tion. In addition, there has been a great deal of con- troversy over...

Moe, R. D

2012-06-07T23:59:59.000Z

207

Black hole evaporation within a momentum-dependent metric  

SciTech Connect

We investigate the black hole thermodynamics in a 'deformed' relativity framework where the energy-momentum dispersion law is Lorentz-violating and the Schwarzchild-like metric is momentum-dependent with a Planckian cutoff. We obtain net deviations of the basic thermodynamical quantities from the Hawking-Bekenstein predictions: actually, the black hole evaporation is expected to quit at a nonzero critical mass value (of the order of the Planck mass), leaving a zero temperature remnant, and avoiding a spacetime singularity. Quite surprisingly, the present semiclassical corrections to black hole temperature, entropy, and heat capacity turn out to be identical to the ones obtained within some quantum approaches.

Salesi, G.; Di Grezia, E. [Universita Statale di Bergamo, Facolta di Ingegneria, viale Marconi 5, I-24044 Dalmine (Italy) and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, I-20133 Milan (Italy)

2009-05-15T23:59:59.000Z

208

Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation  

E-Print Network (OSTI)

We apply hydrodynamic evaporation models to different synthetic planet populations that were obtained from a planet formation code based on a core-accretion paradigm. We investigated the evolution of the planet populations using several evaporation models, which are distinguished by the driving force of the escape flow (X-ray or EUV), the heating efficiency in energy-limited evaporation regimes, or both. Although the mass distribution of the planet populations is barely affected by evaporation, the radius distribution clearly shows a break at approximately 2 $R_{\\oplus}$. We find that evaporation can lead to a bimodal distribution of planetary sizes (Owen & Wu 2013) and to an "evaporation valley" running diagonally downwards in the orbital distance - planetary radius plane, separating bare cores from low-mass planet that have kept some primordial H/He. Furthermore, this bimodal distribution is related to the initial characteristics of the planetary populations because low-mass planetary cores can only acc...

Jin, Sheng; Parmentier, Vivien; van Boekel, Roy; Henning, Thomas; Ji, Jianghui

2014-01-01T23:59:59.000Z

209

Energy-efficient evaporators can cut operating costs for wastewater treatment, reuse  

SciTech Connect

High-efficiency evaporators can substantially lower the costs of recycling water, separating and reducing waste, and reclaiming industrial byproducts. Although capital costs run higher than conventional, stream-driven systems, energy efficient designs can allow users to recoup those costs over time and provide significant, ongoing utility savings. This is especially true in applications in which evaporation requirements are more than 75,000 pounds per hour, and steam costs exceed $3 per 1,000 pounds. In conventional, multistage evaporators, vapor resulting from wastewater evaporation is reused as a heating agent to effect further evaporation, but fresh steam must be added continuously to the system to maintain adequate temperature and pressure--two factors critical to evaporation. In contrast, three energy-efficient designs maintain temperature and pressure by recycling otherwise wasted resources, thereby greatly reducing or eliminating steam costs and other utility expenses.

Kersey, D. [Dedert Corp., Olympia Fields, IL (United States)

1996-05-01T23:59:59.000Z

210

Glass Development for Treatment of LANL Evaporator Bottoms Waste  

SciTech Connect

Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

1998-11-20T23:59:59.000Z

211

Economic and Technical Tradeoffs Between Open and Closed Cycle Vapor Compression Evaporators  

E-Print Network (OSTI)

and solute. Evaporation tends to be a very energy intensive process. Approximately 1000 BTUs of energy are required to vaporize one pound of water. Many techniques have been developed to reuse energy Within an evaporation system so as to vaporize... Recompression A schematic of an open cycle vapor recompression evaporator is shown in Figure 2. This method uses the vapor in an open cycle for both heating and cooling. Rather than being condensed after the last effect, steam is compressed to a slightly...

Timm, M. L.

212

Membrane evaporation of amine solution for energy saving in post-combustion carbon capture: Performance evaluation  

Science Journals Connector (OSTI)

Abstract In this study, we propose a membrane evaporation system for energy penalty reduction in post-combustion carbon capture (PCC) and carry out membrane evaporation of amine solutions. The effects of some key factors (i.e. evaporation temperature, gas and liquid flow rates and solvent concentration) on mass and heat transfer are systematically investigated. It is found that both evaporation temperature and gas flow rates have significant influences on vapor and heat transfer, while liquid flow rates have limited effect on mass and heat transfer in membrane evaporation. The vapor and recovered heat fluxes increase exponentially with the rise in evaporation temperature, and increase linearly with the rise in gas flow rates. The increase in evaporation temperature and gas flow rates also significantly improves the evaporation efficiency and heat recovery. Mass and heat transfer rates decrease as the concentration of the solvent increases because of the reduced vapor pressure of the liquid at higher concentration. It is estimated that the recovered heat flux can be up to 32 MJ m?2 h?1 and heat recovery can be over 40% when the gas/liquid flow rate ratio is 150. Therefore, the proposed membrane evaporation system has great potential to save considerable energy in large-scale PCC pilot plant operation.

Shuaifei Zhao; Chencheng Cao; Leigh Wardhaugh; Paul H.M. Feron

2015-01-01T23:59:59.000Z

213

The use of carbonation and fractional evaporative crystallization in the pretreatment of Hanford nuclear wastes.  

E-Print Network (OSTI)

??The purpose of this work was to explore the use of fractional evaporative crystallization as a technology that can be used to separate medium-curie waste… (more)

Dumont, George Pierre, Jr.

2007-01-01T23:59:59.000Z

214

Fixture for forming evaporative pattern (EPC) process patterns  

DOE Patents (OSTI)

A method of casting metal using evaporative pattern casting process patterns in combination with a fixture for creating and maintaining a desired configuration in flexible patterns. A pattern is constructed and gently bent to the curvature of a suitable fixture. String or thin wire, which burns off during casting, is used to tie the pattern to the fixture. The fixture with pattern is dipped in a commercially available refractory wash to prevent metal adherence and sticking to the fixture. When the refractory wash is dry, the fixture and pattern are placed in a flask, and sand is added and compacted by vibration. The pattern remains in position, restrained by the fixture. Metal that is poured directly into the pattern replaces the pattern exactly but does not contact or weld to the fixture due to the protective refractory layer. When solid, the casting is easily separated from the fixture. The fixture can be cleaned for reuse in conventional casting cleaning equipment.

Turner, Paul C. (Albany, OR); Jordan, Ronald R. (Albany, OR); Hansen, Jeffrey S. (Corvallis, OR)

1993-01-01T23:59:59.000Z

215

Oxidation of magnesium single crystals and evaporated films  

Science Journals Connector (OSTI)

The oxidation of (001) and (100) faces of pure magnesium single crystals at 2.5 mm Hg oxygen pressure was measured at 400°C and 440°C by means of an all-quartz, high vacuum microbalance. In a first approximation a parabolic oxidation law is observed. The oxidation rate on the basal plane is initially higher than on the prismatic plane. Electron diffraction patterns and photomicrographs indicate that the oxide has a preferred orientation on the basal plane, even for a thickness of about 1000 Å. The oxidation of evaporated magnesium films at room temperature was also investigated. After an induction period a logarithmic oxidation law is observed, where the limiting thickness is dependent on the oxygen pressure.

R.R Addiss Jr.

1963-01-01T23:59:59.000Z

216

Evaporative cooling of a guided rubidium atomic beam  

Science Journals Connector (OSTI)

We report on our recent progress in the manipulation and cooling of a magnetically guided, high-flux beam of Rb87 atoms. Typically, 7×109atomspersecond propagate in a magnetic guide providing a transverse gradient of 800G?cm, with a temperature ?550?K, at an initial velocity of 90cm?s. The atoms are subsequently slowed down to ?60cm?s using an upward slope. The relatively high collision rate (5s?1) allows us to start forced evaporative cooling of the beam, leading to a reduction of the beam temperature by a factor of 4, and a tenfold increase of the on-axis phase-space density.

T. Lahaye, Z. Wang, G. Reinaudi, S. P. Rath, J. Dalibard, and D. Guéry-Odelin

2005-09-19T23:59:59.000Z

217

Structural properties and electrical characteristics of electron-beam gun evaporated erbium oxide films  

E-Print Network (OSTI)

Structural properties and electrical characteristics of electron-beam gun evaporated erbium oxide for publication 3 January 2002 We report properties of Er2O3 films deposited on silicon using electron-beam gun to 700 °C.6 The Er2O3 films we describe were deposited by an electron-beam gun EBG evaporation system

Eisenstein, Gadi

218

EVAPORATION LAW IN KINETIC GRAVITATIONAL SYSTEMS DESCRIBED BY SIMPLIFIED LANDAU MODELS  

E-Print Network (OSTI)

EVAPORATION LAW IN KINETIC GRAVITATIONAL SYSTEMS DESCRIBED BY SIMPLIFIED LANDAU MODELS PIERRE to a mathematical and numerical study of a simplified kinetic model for evaporation phenomena in gravitational) is the gravitational potential and (u) is the following 3 Ã? 3 matrix (u)ij = |u|2ij - uiuj |u|2 , (1.2) 1 #12;2 P

Méhats, Florian

219

PROC. S.D. ACAD. SCI., VOL. 69 (1990) 109 EVALUATION OF AN EVAPORATION POND  

E-Print Network (OSTI)

in concert with production of electricity. However, we had no data on the extent of winterkill that would Dakota 57007 ABSTRACT The evaporation pond (85 hectares) at the Big Stone Power Plant, Milbank, SD at the Big Stone Power Plant, Milbank, South Dakota (reviewed by Berry 1988). The evaporation pond (85

220

N-Z distributions of secondary fragments and the evaporation attractor line  

SciTech Connect

The process of light particle evaporation moves the position of an excited fragment in the chart of nuclides towards a line which will be called the evaporation attractor line. The predicted location of this line is parametrized and the conditions necessary for the secondary fragment distributions to reach this line are discussed. {copyright} {ital 1998} {ital The American Physical Society}

Charity, R.J. [Department of Chemistry, Washington University, St. Louis, Missouri 63130 (United States)] [Department of Chemistry, Washington University, St. Louis, Missouri 63130 (United States)

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER  

E-Print Network (OSTI)

1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation schemes proposed by Yan and Lin (1999b) for modeling the heat transfer coefficient in both a single- phase

Kandlikar, Satish

222

Control Structure Selection for an Evaporation Process Marius S. Govatsmark a , Sigurd Skogestad a  

E-Print Network (OSTI)

of controlled variables which with constant setpoints keep the process close to the economic optimum ("self1 Control Structure Selection for an Evaporation Process Marius S. Govatsmark a , Sigurd Skogestad structure selection is applied to the evaporation process of Newell and Lee (1989). First, promising sets

Skogestad, Sigurd

223

Surface excess properties from energy transport measurements during water evaporation Fei Duan and C. A. Ward*  

E-Print Network (OSTI)

Surface excess properties from energy transport measurements during water evaporation Fei Duan condi- tions, accounts for as little as 50% of the energy required to evaporate water at the measured moles per unit surface area , surface in- ternal energy uLV excess energy per excess mole , and spe

Ward, Charles A.

224

REAR-SIDE POINT-CONTACTS BY INLINE THERMAL EVAPORATION OF ALUMINUM Christoph Mader  

E-Print Network (OSTI)

REAR-SIDE POINT-CONTACTS BY INLINE THERMAL EVAPORATION OF ALUMINUM Christoph Mader 1 , Jens Müller of point-contacted aluminum rear-sides for silicon solar cells that are metalized by inline thermal evaporation. We deposit aluminum layers of 2 µm thickness at dynamic deposition rates of 1.0, 2.9 and 5.0 µm

225

Microsoft PowerPoint - 3-04_Tedeschi_Wiped Film Evaporator.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

of a Thin Film Evaporator for Development of a Thin Film Evaporator for of a Thin Film Evaporator for Development of a Thin Film Evaporator for Deployment at Hanford Tank Farms Deployment at Hanford Tank Farms EM Waste Processing Technical Exchange November, 2010 Atlanta, GA Allan R. "Rick" Tedeschi Washington River Protection Solutions, LLC Contractor to the United States Department of Energy Print Close Agenda Page 2 Summary Development and Project Background Pilot-scale Development Laboratory-scale Development Full-scale Development and Deployment Print Close Summary Report on thin-film evaporative technology development effort, and describe path forward for technology deployment Page 3  Pilot-scale testing has successfully demonstrated concentration of supernatant simulants to 1.4 - 1.5 specific gravity (sp gr)  Pilot-scale testing has refined and confirmed

226

Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines  

SciTech Connect

U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Gordon H. Holcomb

2009-01-01T23:59:59.000Z

227

Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines  

SciTech Connect

The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Holcomb, G.R. [US DOE, Albany, OR (United States)

2009-07-01T23:59:59.000Z

228

Measurement and analysis of evaporation from an inactive outdoor swimming pool  

SciTech Connect

Evaporation rates and total energy loads from an unoccupied, heated, outdoor pool in Fort Collins, Colorado were investigated. Pool and air temperatures, humidity, thermal radiation, wind speed, and water loss due to evaporation were measured over 21 test periods ranging from 1.1 to 16.2 hours during August and September, 1992. Data were analyzed and compared to commonly used evaporation rate equations, most notably that used in the ASHRAE Applications Handbook. Measured evaporation was 72% of the ASHRAE calculated value with near-zero wind velocity, and 82% of the ASHRAE value at 2.2 m/s wind velocity. A modified version of the ASHRAE equation was developed. Two overnight tests showed energy loss of 56% by evaporation, 26% by radiation, and 18% by convection. A correlation between radiation loss and temperatures was also found for the range of test conditions.

Smith, C.C.; Loef, G. (Colorado State Univ., Fort Collins, CO (United States)); Jones, R. (Department of Energy, Golden (United States))

1994-07-01T23:59:59.000Z

229

Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods  

Science Journals Connector (OSTI)

Evaporation plays an important role in many technical applications including beam-based additive manufacturing processes, such as selective electron beam or selective laser melting (SEBM/SLM). In this paper, we describe an evaporation model which we employ within the framework of a two-dimensional free surface lattice Boltzmann method. With this method, we solve the hydrodynamics as well as thermodynamics of the molten material taking into account the mass and energy losses due to evaporation and the recoil pressure acting on the melt pool. Validation of the numerical model is performed by measuring maximum melt depths and evaporative losses in samples of pure titanium and Ti–6Al–4V molten by an electron beam. Finally, the model is applied to create processing maps for an SEBM process. The results predict that the penetration depth of the electron beam, which is a function of the acceleration voltage, has a significant influence on evaporation effects.

Alexander Klassen; Thorsten Scharowsky; Carolin Körner

2014-01-01T23:59:59.000Z

230

The Economic and Environmental Aspects of Heat Exchanger Cleaning -- How FP&L Has Used the Newly Patented MCC Process to Clean Turbine Lube Oil Coolers to Maximize Efficiency and Minimize Waste  

E-Print Network (OSTI)

of efficient and timely cleaning of heat exchangers. There are great differences in the cleaning processes that are used to clean exchanger bundles in industry today. The cleaning of turbine lube oil coolers is a specialized case in point. A newly patented...

Wood, H. A. T.

231

Distributed and Steady Modeling of the Pv Evaporator in a Pv/T Solar Assisted Heat Pump  

Science Journals Connector (OSTI)

A specially designed direct-expansion evaporator (PV evaporator), which is laminated with PV cells on the front surface is adopted in a photovoltaic/thermal solar assisted heat pump (PV/T SAHP) to obtain both the...

Jie Ji; Hanfeng He; Wei He; Gang Pei…

2009-01-01T23:59:59.000Z

232

Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System  

SciTech Connect

Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning of glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.

Martino, C. J.

2013-08-13T23:59:59.000Z

233

Energy Savings in Direct Evaporative Cooling: real application in the Madrid metro and simulated application for offices in Sydney  

E-Print Network (OSTI)

Water evaporates spontaneously in contact with the air, absorbing around 680 W/(kg/h of evaporated water) from the air (1,053 BTU/lb.). Direct Evaporative Cooling (DEC) exploits this simple physical phenomenon to achieve high cooling capacities...

Simonetti, R.

2010-01-01T23:59:59.000Z

234

Calculation of the Aluminosilicate Half-Life Formation Time in the 2H Evaporator  

SciTech Connect

The 2H Evaporator contains large quantities of aluminosilicate solids deposited on internal fixtures. The proposed cleaning operations will dissolve the solids in nitric acid. Operations will then neutralize the waste prior to transfer to a waste tank. Combining recent calculations of heat transfer for the 2H Evaporator cleaning operations and laboratory experiments for dissolution of solid samples from the pot, the authors estimated the re-formation rate for aluminosilicates during cooling. The results indicate a half-life formation of 17 hours when evaporator solution cools from 60 degrees C and 9 hours when cooled from 90 degrees C.

Fondeur, F.F.

2000-09-21T23:59:59.000Z

235

Photoconductivity in reactively evaporated copper indium selenide thin films  

SciTech Connect

Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup ?5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (?) of 10{sup 6} cm{sup ?1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

Urmila, K. S., E-mail: urmilaks7@gmail.com; Asokan, T. Namitha, E-mail: urmilaks7@gmail.com; Pradeep, B., E-mail: urmilaks7@gmail.com [Solid State Physics Laboratory, Cochin University of Science and Technology, Kochi, Kerala (India); Jacob, Rajani; Philip, Rachel Reena [Thin Film Research Laboratory, Union Christian College, Aluva, Kerala (India)

2014-01-28T23:59:59.000Z

236

Microscale observables for heat and mass transport in sub-micron scale evaporating thin film  

E-Print Network (OSTI)

A mathematical model is developed to describe the micro/nano-scale fluid flow and heat/mass transfer phenomena in an evaporating extended meniscus, focusing on the transition film region under nonisothermal interfacial conditions. The model...

Wee, Sang-Kwon

2004-09-30T23:59:59.000Z

237

Procedure for Applying an Open-Cycle Heat Pump to An Existing Evaporator  

E-Print Network (OSTI)

An open-cycle heat pump, or mechanical vapor compression (MVC) system, is often an attractive technique for increasing the energy efficiency of an evaporator. With proper design, an MVC system is capable of dramatic cost savings when retrofitted...

Wagner, J. R.; Brush, F. C.

1984-01-01T23:59:59.000Z

238

Unitarity of black hole evaporation in final-state projection models  

E-Print Network (OSTI)

Almheiri et al. have emphasized that otherwise reasonable beliefs about black hole evaporation are incompatible with the monogamy of quantum entanglement, a general property of quantum mechanics. We investigate the final-state ...

Lloyd, Seth

239

The Melting Layer: A Laboratory Investigation of Ice Particle Melt and Evaporation near 0°C  

Science Journals Connector (OSTI)

Melting, freezing, and evaporation of individual and aggregates of snow crystals are simulated in the laboratory under controlled temperature, relative humidity, and air velocity. Crystals of selected habit are grown on a vertical filament and ...

R. G. Oraltay; J. Hallett

2005-02-01T23:59:59.000Z

240

Wind-evaporation feedback, angular momentum conservation, and the abrupt onset of monsoons  

E-Print Network (OSTI)

This thesis examines the mechanisms responsible for the abrupt onset of monsoon circulations, focusing on the role played by wind-evaporation feedback and its interaction with angular momentum conserving flow. The first ...

Boos, William R. (William Ronald), 1975-

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Study of Mechanisms and Supression of Evaporation of Water from Soils  

E-Print Network (OSTI)

Extensive greenhouse experiments were conducted to evaluate chemicals not previously studied extensively for their potential as evaporation suppressants. Included in the studies were crude oil, anionics, cationics, nonionics, silicones...

Wendt, C. W.

242

Phase Diagram Approach to Evaporation from Emulsions with n Oil Compounds  

Science Journals Connector (OSTI)

Chemistry Department, Southeast Missouri State University, Cape Girardeau, Missouri 63701 ... We have used dynamic headspace analysis to investigate the evaporation rates of perfume oils from stirred oil-in-water emulsions into a flowing gas stream. ...

Stig E. Friberg

2009-02-09T23:59:59.000Z

243

An experimental study on new egg-crate type evaporators in domestic refrigerators and freezers  

SciTech Connect

This paper presents experimental results of the heat transfer performance of new egg-crate type evaporators that are becoming popular in vapor compression cycle-based modern refrigerators and freezers. These forced flow, multiple finned evaporators are preferred in the local industry over the older roll-bonded designs due to efficiency and cost considerations. Extensive testing was done, and experimental data were gathered on evaporators of three different sizes at three airflow rates using a closed-loop test rig built for the purpose. This has led to the development of a novel approach of measuring low air velocities as encountered in domestic refrigerators. A correlation has been developed for the heat transfer performance of these evaporators following the j-Colburn factor analysis. The correlation relates the j-Colburn factor, a nondimensional heat transfer grouping of the Nusselt number, Reynolds number, and Prandtl number to the Reynolds number and finning factor.

Bansal, P.K. [Univ. of Auckland (New Zealand). Dept. of Mechanical Engineering; Neuren, O.S. van [OPUS International Consultants, Ltd., Auckland (New Zealand)

1998-12-31T23:59:59.000Z

244

Evaporation and Condensation of Large Droplets in the Presence of Inert Admixtures Containing Soluble Gas  

Science Journals Connector (OSTI)

In this study the mutual influence of heat and mass transfer during gas absorption and evaporation or condensation on the surface of a stagnant droplet in the presence of inert admixtures containing noncondensable soluble gas is investigated ...

T. Elperin; A. Fominykh; B. Krasovitov

2007-03-01T23:59:59.000Z

245

On the Cooling and Evaporative Powers of the Atmosphere, as Determined by the Kata-thermometer  

Science Journals Connector (OSTI)

1 April 1919 research-article On the Cooling and Evaporative Powers of the Atmosphere, as Determined by the Kata-thermometer Leonard Hill D. Hargood-Ash The Royal Society is collaborating with...

1919-01-01T23:59:59.000Z

246

Global Variations in Oceanic Evaporation (1958–2005): The Role of the Changing Wind Speed  

Science Journals Connector (OSTI)

Global estimates of oceanic evaporation (Evp) from 1958 to 2005 have been recently developed by the Objectively Analyzed Air–Sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution (WHOI). The nearly 50-yr time series shows that ...

Lisan Yu

2007-11-01T23:59:59.000Z

247

Single Source Electron Beam Evaporation of Bi-Sr-Ca-Cu-O Thin Films  

Science Journals Connector (OSTI)

A modified electron beam evaporation technique for the deposition of BiSrCaCuO thin films has been developed. In contrast to the conventional hearthed electron beam crucible the design in the present study use...

M. Ghanashyam Krishna; G. K. Muralidhar…

1990-01-01T23:59:59.000Z

248

Evaporation and contraction of a droplet that wets a surface monitored by photoacoustic detection  

Science Journals Connector (OSTI)

The evaporation and contraction of a droplet wetting a flat metallic surface is monitored using photoacoustic detection. The results are interpreted in terms of an effective backing model together with the lubrication theory for droplet dynamics.

L. C. M. Miranda and N. Cella

1993-02-15T23:59:59.000Z

249

Evaporation of water from sodium chloride solutions under controlled climatic conditions  

E-Print Network (OSTI)

EVAPORATION OF WATER FROM SODIUM CELORIDE SOLUTIONS UNDER CONTROLLED CLIMATIC CONDITIONS A Thesis by Jaroy Moore Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE January 1967 Haj or Subject: Soil Physics EVAPORATION OF WATER FROM SODIUM CHLORIDE SOLUTIONS UNDER CONTROLLED CLIMATIC CONDITIONS A Thesis by Jaroy Moore Approved as to style and content by: (Ch+jman of Committee) (Member) (, j. (Head...

Moore, Jaroy

2012-06-07T23:59:59.000Z

250

Solitons as the Early Stage of Quasicondensate Formation during Evaporative Cooling  

SciTech Connect

We calculate the evaporative cooling dynamics of trapped one-dimensional Bose-Einstein condensates for parameters leading to a range of condensates and quasicondensates in the final equilibrium state, using the classical fields method. We confirm that solitons are created during the evaporation process by the Kibble-Zurek mechanism, but subsequently dissipate during thermalization. However, their signature remains in the phase coherence length, which is approximately conserved during dissipation in this system.

Witkowska, E.; Deuar, P.; Gajda, M. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow, 02-668 Warsaw (Poland); RzaPzewski, K. [Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow, 02-668 Warsaw (Poland)

2011-04-01T23:59:59.000Z

251

Evaporative Evolution of Carbonate-Rich Brines from Synthetic Topopah Spring Tuff Pore Water, Yucca Mountain  

SciTech Connect

The evaporation of a range of synthetic pore water solutions representative of the potential high-level-nuclear-waste repository at Yucca Mountain, NV is being investigated. The motivation of this work is to understand and predict the range of brine compositions that may contact the waste containers from evaporation of pore waters, because these brines could form corrosive thin films on the containers and impact their long-term integrity. A relatively complex synthetic Topopah Spring Tuff pore water was progressively concentrated by evaporation in a closed vessel, heated to 95 C in a series of sequential experiments. Periodic samples of the evaporating solution were taken to determine the evolving water chemistry. According to chemical divide theory at 25 C and 95 C our starting solution should evolve towards a high pH carbonate brine. Results at 95 C show that this solution evolves towards a complex brine that contains about 99 mol% Na{sup +} for the cations, and 71 mol% Cl{sup -}, 18 mol% {Sigma}CO{sub 2}(aq), 9 mol%SO{sub 4}{sup 2-} for the anions. Initial modeling of the evaporating solution indicates precipitation of aragonite, halite, silica, sulfate and fluoride phases. The experiments have been used to benchmark the use of the EQ3/6 geochemical code in predicting the evolution of carbonate-rich brines during evaporation.

Sutton, M; Alai, M; Carroll, S A

2004-04-14T23:59:59.000Z

252

Prediction of water evaporation rate for indoor swimming hall using neural networks  

Science Journals Connector (OSTI)

Abstract The forecast of water evaporation rate is important in building and energy sectors. However, due to its stochastic nature and complexity, its forecast is rare in the literature. This paper presents a novel neural network approach to predicting water evaporation rate without occupant information for an indoor swimming hall containing five pools in Finland. Input sensitivity is analyzed and two step ahead predictions are compared. The neural networks using water evaporation rate and a binary representation form of time as inputs outperform other models. Experimental data show rapid fluctuations in water evaporation rate during operating hours although relatively stable during non-operating hours. The developed neural network model, however, is able to adapt to fluctuations and reaches good and acceptable accuracies for one- and two-step ahead predictions even for operating hours. The binary form of time simplifies learning process of neural networks. This paper demonstrates the capability of water evaporation rate forecasting without occupant information by neural networks, which might not be possible with traditional empirical models, and their positive impacts on promoting energy efficiency in various applications in general. Finally, the developed method is sufficiently general and can be extended to other systems for forecasting water evaporation rate as well.

Tao Lu; Xiaoshu Lü; Martti Viljanen

2014-01-01T23:59:59.000Z

253

Nanoparticle enhanced evaporation of liquids: A case study of silicone oil Wenbin Zhang, Rong Shen, Kunquan Lu, Ailing Ji, and Zexian Cao  

E-Print Network (OSTI)

to effective and economic treatment of polluted water, or desalination of seawater. Evaporation is a surface

Zexian, Cao

254

Optimizing Electric Humidifier Operation with an Air Side Economizer  

E-Print Network (OSTI)

Air side economizer cycle is a control scheme that is often used in WAC systems to reduce cooling energy consumption by introducing variable quantities of ambient air into a conditioned space to satisfy the space cooling load (free cooling...

Shami, U. F.

1996-01-01T23:59:59.000Z

255

Design and optimization of a humidifier for an HDH system  

E-Print Network (OSTI)

Two billion people around the world do not access to clean drinking water. 98% of deaths caused by water related illness occur in the developing world. The humidification dehumidification desalination system currently being ...

St. John, Maximus Gladstone

2012-01-01T23:59:59.000Z

256

NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)  

SciTech Connect

This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

Not Available

2012-07-01T23:59:59.000Z

257

Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H  

SciTech Connect

Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material from the 2H evaporator has been performed so that the evaporator can be chemically cleaned beginning July of 2013. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot. The sample holder from the 2H-evaporator wall was virtually empty and was not included in the analysis. It is worth noting that after the delivery of these 2H-evaporator scale samples to SRNL for the analyses, the plant customer determined that the 2H evaporator could be operated for additional period prior to requiring cleaning. Therefore, there was no need for expedited sample analysis as was presented in the Technical Task Request. However, a second set of 2H evaporator scale samples were expected in May of 2013, which would need expedited sample analysis. X-ray diffraction analysis (XRD) confirmed the bottom cone section sample from the 2H-evaporator pot consisted of nitrated cancrinite, (a crystalline sodium aluminosilicate solid), clarkeite and uranium oxide. There were also mercury compound XRD peaks which could not be matched and further X-ray fluorescence (XRF) analysis of the sample confirmed the existence of elemental mercury or mercuric oxide. On ''as received'' basis, the scale contained an average of 7.09E+00 wt % total uranium (n = 3; st.dev. = 8.31E-01 wt %) with a U-235 enrichment of 5.80E-01 % (n = 3; st.dev. = 3.96E-02 %). The measured U-238 concentration was 7.05E+00 wt % (n=3, st. dev. = 8.25E-01 wt %). Analyses results for Pu-238 and Pu-239, and Pu-241 are 7.06E-05 {+-} 7.63E-06 wt %, 9.45E-04 {+-} 3.52E-05 wt %, and <2.24E-06 wt %, respectively. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Because this 2H evaporator pot bottom scale sample contained a significant amount of elemental mercury (11.7 wt % average), it is recommended that analysis for mercury be included in future Technical Task Requests on 2H evaporator sample analysis at SRNL. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241.

Oji, L. N.

2013-07-15T23:59:59.000Z

258

Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid  

SciTech Connect

The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours. Based on averaging the two half-lives from the 2H scale acid dissolution in 1.25 and 1.5 M nitric acid solutions, a reasonable half-live for the dissolution of 2H scales in dilute nitric acid is 11.7 ± 1.3 hours. The plant operational time for chemically cleaning (soaking) the 2H evaporator with dilute nitric acid is 32 hours. It therefore may require about 3 half-lives or less to completely dissolve most of the scales in the Evaporator pot which come into contact with the dilute nitric acid solution. On a mass basis, the Al-to-Si ratio for the scale dissolution in 1.5 M nitric acid averaged 1.30 ± 0.20 and averaged 1.18 ± 0.10 for the 2H scale dissolution in 1.25 M nitric acid. These aluminum-to-silicon ratios are in fairly good agreement with ratios from previous studies. Therefore, there is still more aluminum in the 2H evaporator scales than silicon which implies that there are no significant changes in scale properties which will exclude nitric acid as a viable protic solvent for aluminosilicate scale buildup dissolution from the 2H evaporator. Overall, the monitoring of the scale decomposition reaction in 1.25 and 1.5 M nitric acid may be better ascertained through the determination of aluminum concentration in solution than monitoring silicon in solution. Silicon solution chemistry may lead to partial precipitating of silicon with time as the scale and acid solution is heated.

Oji, L.

2014-09-23T23:59:59.000Z

259

KINETIC CONDENSATION AND EVAPORATION OF METALLIC IRON AND IMPLICATIONS FOR METALLIC IRON DUST FORMATION  

SciTech Connect

Metallic iron is one of the most abundant condensing materials in systems of solar abundance. Because metallic iron is responsible for the continuum opacity of dust particles, it has a large contribution to the thermal structure of circumstellar environments and hence to dust evolution itself. In order to understand the formation processes of metallic iron in circumstellar environments, condensation and evaporation kinetics of metallic iron were studied experimentally. Metallic iron condenses at the maximum rate with the condensation coefficient (a parameter ranging from 0 to 1 to represent kinetic hindrance for surface reaction) of unity under high supersaturation conditions, and evaporates nearly ideally (evaporation coefficient of unity) in vacuum. On the other hand, evaporation of metallic iron takes place with more kinetic hindrance in the presence of metallic iron vapor. It is also found that metallic iron atoms nucleate heterogeneously on Al{sub 2}O{sub 3}. Metallic iron does not necessarily condense homogeneously in circumstellar environments, but might condense through heterogeneous nucleation on pre-existing dust. Metallic iron formation proceeds with little kinetic hindrance for highly unequilibrated conditions, but the effects of kinetic hindrance may appear for evaporation and condensation occurring near equilibrium with a timescale of months to years in protoplanetary disks.

Tachibana, Shogo; Nagahara, Hiroko; Ozawa, Kazuhito; Ikeda, Youhei; Nomura, Ryuichi; Tatsumi, Keisuke; Joh, Yui, E-mail: tachi@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033 (Japan)

2011-07-20T23:59:59.000Z

260

Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Evaporative and Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way-with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVap), also controls humidity more effectively to improve the comfort of people in buildings. Desiccants are an example of a thermally activated technology (TAT) that relies on heat instead

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Analytical services: 222-S characterization of 242-A Evaporator Slurry, Campaign 94-1. Addendum 1A  

SciTech Connect

During the 242-A Evaporator`s 94-1 campaign, five process samples were collected from the slurry stream for waste characterization. The five samples were collected over a 36 day time span, respectively on May 4, May 9, May 16, May 23, and June 9, 1994. Sample collections were performed per the protocol described in 242-A Evaporator Waste Analysis Plan, WHC-SD-WM-EV-060, Rev. 3 and in 242-A Evaporator Quality Assurance Project Plan, WHC-SD-WM-QAPP-009, Rev. 0. Slurry waste was characterized chemically and radiochemically by the Westinghouse Hanford Company, 222-S Laboratory as directed.

Not Available

1994-09-13T23:59:59.000Z

262

Spallation process with simultaneous multi-particle emission in nuclear evaporation  

SciTech Connect

High energy probes have been used currently to explore nuclear reaction mechanism and nuclear structure. The spallation process governs the reaction process around 1 GeV energy regime. A new aspect introduced here to describe the nuclear reaction is the in-medium nucleonnucleon collision framework. The nucleon-nucleon scattering is kinematically treated by using an effective mass to represent the nuclear binding. In respect to the evaporation phase of the reaction, we introduce the simultaneous particles emission decay. This process becomes important due to the rise of new channels at high excitation energy regime of the compound nucleus. As results, the particles yields in the rapid and evaporation phases are obtained and compared to experimental data. The effect and relevance of these simultaneous emission processes in the evaporation chain is also discussed.

Santos, B. M. [Instituto de Fisica/UFF - Av. Gal. Milton Tavares de Souza, Praia Vermelha, Niteroi - RJ (Brazil); Goncalves, M. [Comissao Nacional de Energia Nuclear/CNEN - Rua Gal Severiano, nr. 90, Botafogo - RJ (Brazil); Assis, L. P. G. de; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas/CBPF - Rua Dr. Xavier Sigaud, nr.150, Urca - RJ (Brazil)

2013-05-06T23:59:59.000Z

263

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27T23:59:59.000Z

264

Characterization of UHV E-beam Evaporated Low-Stress Thick Silicon Film for MEMS Application  

Science Journals Connector (OSTI)

This paper investigates various deposition and subsequent processing conditions on UHV e-beam evaporated silicon to obtain low stress film. They include substrate temperature, deposition rate, annealing, thermal oxidation and post-oxidation annealing. Film stress is measured for each condition and cantilever beams made from the films are released for evaluating stress-gradient. Films are also deposited on sloped step structures to observe step and corner coverage. The results indicate that as-deposited evaporated silicon exhibits tensile stress at substrate temperatures below 400?C and compressive stress as substrate temperature is increased above 400?C for a 100 nm/min deposition rate. For evaporated amorphous silicon films, performing thermal oxidation at 900?C and annealing at elevated temperatures has been found to be effective in reducing film stress. For fully crystallized poly-silicon films, however, annealing at 1000?C without thermal oxidation seems to be the more effective way of reducing stress in the film.

A. Michael; O. Kazuo; Y.W. Xu; C.Y. Kwok; T. Puzzer; S. Varlamov

2012-01-01T23:59:59.000Z

265

Preparation of radioactive targets for tandem accelerator experiments by high vacuum evaporation–condensation  

Science Journals Connector (OSTI)

Radioactive thin film targets have been prepared by high vacuum evaporation–condensation in the hot-lab facility of the University of Munich. Targets made by this technique are of high density and excellent smoothness, being well suited for experiments aimed at the production and spectroscopy of fission fragments. Cold crucible electron beam heating is the preferred method for evaporation of actinide isotopic material of sufficient abundance, for instance 230Th, 232Th, 233U, 235U, 238U and 239Pu. Exotic isotopes, which are available only in submilligram quantities, are processed in a micro-evaporator module consisting of a chimney-type crucible heated by low-tension electron bombardment. This set-up is characterised by a high collection efficiency and was used for the production of 244Pu and 10Be targets.

R. Grossmann; H.J. Maier; H.U. Friebel; D. Frischke

2002-01-01T23:59:59.000Z

266

Off gas film cooler cleaner  

DOE Patents (OSTI)

An apparatus is described for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter. 5 figs.

Dhingra, H.S.; Koch, W.C.; Burns, D.C.

1997-08-26T23:59:59.000Z

267

Project Management Procedures Needed to Design the Newest Four Phosphoric Acid Evaporators in North America  

Science Journals Connector (OSTI)

Abstract This paper presents the project management techniques needed to design the newest four evaporators installed in North America, and any similar project. The four evaporators included integral fluosilicic acid recovery systems, and were successfully designed, fabricated, erected and operational by mid 2009. Topics discussed in the paper include: Project Objectives, Project Stages, Scope Definition, Design Basis, Codes and Standards, Technology Selection, Capital Cost Estimation, Schedule Development and Control, Operating Cost Estimation, Value Improvement Practices, Equipment Specification, Contractor Bid Specification, Constructability Review, Construction Management, and Commissioning.

Richard Harrison

2014-01-01T23:59:59.000Z

268

Experimental Study of the Circulation Air Volume of Recirculation Evaporative Cooling  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-11-3 Experimental Study of the Circulation Air Volume of Recirculation Evaporative Cooling 1 Jun Xiong ZeHua Liu Chao Wang GuoJie Chen Bachelor Senior.... Pre-design and design tools for evapora- tive cooling[J]. ASHRAE Transaction: Symposia. 2001.Vol. 107 part1: 501-510. [5] LiangShi Ding, JianJun Wang, MingJian Jiang. Investigations of the thermal performance of in- direct evaporative plate heat...

Xiong, J.; Liu, Z.; Wang, C.; Chen, G.

2006-01-01T23:59:59.000Z

269

Spectral Lags of Gamma-Ray Bursts from Primordial Black Hole (PBH) Evaporations  

E-Print Network (OSTI)

Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. PBHs with an initial mass of 5.0 * 10^14 g should be expiring today with a burst of high energy particles. Evaporating PBHs in the solar neighborhood are candidate Gamma-Ray Bursts (GRBs) progenitors. We propose spectral lag, which is the temporal delay between the high energy photon pulse and the low energy photon pulse, as a possible method to detect PBH evaporation events with the Fermi Gamma-ray Space Telescope Observatory.

T. N. Ukwatta; J. H. MacGibbon; W. C. Parke; K. S. Dhuga; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

2009-08-14T23:59:59.000Z

270

Dynamic thermal simulation of a glass-covered semi-outdoor space with roof evaporative cooling  

Science Journals Connector (OSTI)

In the hot season solar radiation impinging on a glass roofing may overheat the underneath space to temperature values which may generate a high stress environment. To moderate the extreme microclimate which may occur in a glass covered semi-outdoor space, evaporative cooling to be applied to the glass roof is suggested. The analysis is performed under both the thermal and the energetic point of view, by accounting for the actual climate of the considered location. The results point out that roof evaporative cooling coupled with glass sheet high solar radiation absorptivity may offer an attractive way for the control of a semi-outdoor environment.

G. Pagliarini; S. Rainieri

2011-01-01T23:59:59.000Z

271

Feasibility Study – Using a Solar Evaporator to Reduce the Metalworking Fluid (MWF) Waste Stream  

SciTech Connect

A solar evaporator was designed, built, and operated to reduce the water-based metalworking fluid waste stream. The evaporator was setup in Waste Management’s barrel lot inside one of the confinement areas. The unit processed three batches of waste fluid during the prototype testing. Initial tests removed 13% of the fluid waste stream. Subsequent modifications to the collector improved the rate to almost 20% per week. Evaluation of the risk during operation showed that even a small spill when associated with precipitation, and the unit placement within a confinement area, gave it the potential to contaminate more fluid that what it could save.

Lazarus, Lloyd

2008-12-03T23:59:59.000Z

272

Electrical properties of MIS capacitor using low temperature electron beam gun--evaporated HfAlO dielectrics  

E-Print Network (OSTI)

Electrical properties of MIS capacitor using low temperature electron beam gun--evaporated Hf of $1.45 nm was achieved in HfAlO films deposited by an electron beam gun evap- orator on unheated p of electron beam gun (EBG) evaporation to deposit high quality HfAlO films close to room temperature

Eisenstein, Gadi

273

Lab-on-a-Chip Sensor with Evaporated Bismuth Film Electrode for Anodic Stripping Voltammetry of Zinc  

E-Print Network (OSTI)

Lab-on-a-Chip Sensor with Evaporated Bismuth Film Electrode for Anodic Stripping Voltammetry voltammetry, Zinc, Lab-on-a-chip sensor, Dopamine, Evaporated Bi film electrode DOI: 10.1002/elan.201300349 1 negative potential window. Most importantly, it is much less toxic than mercury and is environmentally

Papautsky, Ian

274

European Journal of Mechanics B/Fluids 22 (2003) 391408 Heat transfer and evaporation/condensation problems based  

E-Print Network (OSTI)

European Journal of Mechanics B/Fluids 22 (2003) 391­408 Heat transfer and evaporation-sphere interactions, that describe heat transfer and/or evaporation­ condensation between two parallel surfaces Elsevier SAS. All rights reserved. Keywords: Boltzmann equation; Rarefied gas dynamics; Heat transfer

Siewert, Charles E.

275

Boron Volatilization and Its Isotope Fractionation during Evaporation of Boron Solution  

Science Journals Connector (OSTI)

Evaporation experiments were undertaken to determine the volatility of parts-per-million concentrations of boron in water and dilute HCl in the presence and absence of equimolar mannitol and/or cesium. Multiple 10 mL aliquots prepared identically were ...

Y. K. Xiao; R. D. Vocke, Jr.; G. H. Swihart; Y. Xiao

1997-12-15T23:59:59.000Z

276

Optical Properties and Radiation-Enhanced Evaporation of Nanofluid Fuels Containing Carbon-Based Nanostructures  

E-Print Network (OSTI)

and thermal systems as an advanced heat-transfer fluid, e.g., advanced cooling of electronics systemsOptical Properties and Radiation-Enhanced Evaporation of Nanofluid Fuels Containing Carbon characteristics of nanofluid fuels with stable suspension of carbon-based nanostructures under radiation

Qiao, Li

277

Microscopic simulations of molecular cluster decay: Does the carrier gas affect evaporation?  

E-Print Network (OSTI)

the sys- tems in question. An example of a practical problem is the behavior of steam in turbines, where water droplets produced through condensation in the transition from dry to wet steam can lead of new phases within a system, be it through evaporation, condensation, or crystallization events.4,5 Due

Ford, Ian

278

The Effect of Reduced Evaporator Air Flow on the Performance of a Residential Central Air Conditioner  

E-Print Network (OSTI)

This paper discusses the measured degradation in performance of a residential air conditioning system operating under reduced evaporator air flow. Experiments were conducted using a R-22 three-ton split-type cooling system with a short-tube orifice...

Palani, M.; O'Neal, D.; Haberl, J.

279

A feasibility study of internal evaporative cooling for proton exchange membrane fuel cells  

E-Print Network (OSTI)

of internal evaporative cooling of the PEM fuel cell is to introduce finely atomized liquid water into the anode gas stream, so that the finely atomized liquid water adsorbs onto the anode and then moves to the cathode via electro-osmotic drag, where...

Snyder, Loren E

2006-04-12T23:59:59.000Z

280

Bi-Sr-Ca-Cu-O thin films grown by flash evaporation and pulsed laser deposition  

E-Print Network (OSTI)

. Thin films were grown by flash evaporation at Texas A&M University, and by pulsed laser deposition (PLD) at the University of Wollongong, Australia. The latter of these techniques is widely used for growing thin films of various compounds. Single...

Ganapathy Subramanian, Santhana

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

On the inherent asymmetric nature of the complementary relationship of evaporation  

E-Print Network (OSTI)

), thus it took some time before his idea was put into practice by Brutsaert and Stricker [1979 be considered as the apparent potential evaporation. [4] In Brutsaert and Stricker's [1979] Advection is the Priestley-Taylor parameter. Employing the so-defined terms of (1), Brutsaert and Stricker [1979] assumed

Szilagyi, Jozsef

282

Results from evaporation tests to support the MWTF heat removal system design  

SciTech Connect

An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

Crea, B.A.

1994-12-22T23:59:59.000Z

283

Evaporation of Lava and its Condensation from the Vapour Phase in Terrestrial and Lunar Volcanism  

Science Journals Connector (OSTI)

... appearance to the clouds of white steam from erupting geysers and from heated pools in geothermal areas. The resemblance between the steam clouds and the volcanic clouds is so pronounced ... is little doubt that they are formed by a similar mechanism. It appears that the hot lava has a high enough vapour pressure for appreciable quantities of it to evaporate. ...

BERNARD VONNEGUT; ROBERT K. MCCONNELL; RONALD V. ALLEN

1966-01-29T23:59:59.000Z

284

Gas exchange in terrestrial environments comes at the cost of evaporative water loss from respiratory surfaces.  

E-Print Network (OSTI)

3477 Gas exchange in terrestrial environments comes at the cost of evaporative water loss from of gas exchange, both within and among species (Lighton, 1998; Shelton and Appel, 2001; Chown, 2002). The classical pattern is that of discontinuous gas exchange, or discontinuous gas-exchange cycles (DGC; Lighton

Franz, Nico M.

285

STM Tip Construction and Calibration of Evaporation Sources for UHV Joshua Jones  

E-Print Network (OSTI)

1 STM Tip Construction and Calibration of Evaporation Sources for UHV Joshua Jones (Senior Physics (UHV) makes it necessary to have well calibrated deposition sources. Calibration and construction the morphology and absorption of Sulfur and Cobalt onto a Au(111) surface requires ultra high vacuum(UHV) better

Pohl, Karsten

286

WindEvaporation Feedback and Abrupt Seasonal Transitions of Weak, Axisymmetric Hadley Circulations  

E-Print Network (OSTI)

Wind­Evaporation Feedback and Abrupt Seasonal Transitions of Weak, Axisymmetric Hadley Circulations dynamics because the barotropic component of the Hadley circulation, which is coupled to the baroclinic-equatorial Hadley cell can create barotropic westerlies that constructively add to the baroclinic wind

287

WindEvaporation Feedback and the Axisymmetric Transition to Angular MomentumConserving Hadley Flow  

E-Print Network (OSTI)

Wind­Evaporation Feedback and the Axisymmetric Transition to Angular Momentum­Conserving Hadley Hadley circula- tions is examined for forcings strong enough to produce meridional flow that nearly) meridional flow. A previous theory of frontogenesis in tropical cyclones is adapted to axisymmetric Hadley

288

Bubble and droplet motion in binary mixtures: Evaporation-condensation mechanism and Marangoni effect  

E-Print Network (OSTI)

Bubble and droplet motion in binary mixtures: Evaporation-condensation mechanism and Marangoni 2009; published 14 April 2009 Bubble and droplet motion in binary mixtures is studied in weak heat a crossover concentration c inversely proportional to the radius R of the bubble or droplet. Here c is usually

289

Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer  

E-Print Network (OSTI)

Controlling bubble motion over heated surface through evaporation momentum force to enhance pool/APPLAB/v102/i5 Published by the American Institute of Physics. Related Articles Dynamics of micro-bubble sonication inside a phantom vessel Appl. Phys. Lett. 102, 013702 (2013) Bubble-driven inertial micropump Phys

Kandlikar, Satish

290

Optimal design of a micro evaporator with lateral gaps Taijong Sung a  

E-Print Network (OSTI)

transfer coefficient (HTC) and it forms the starting point in developing miniaturized vapor­outlet condi- tions of the evaporator have a standard design of expansion valve and compressor and so the heat and Lee [7] studied the correlation in order to represent the heat transfer coefficients of the boiling

Kim, Jongwon

291

Solar radiation effects on evaporative losses of floating roof storage tanks  

Science Journals Connector (OSTI)

There are 40 storage tanks in the Khark Island for storing crude oil. Considering the hot summers of the island, light hydrocarbons vaporise and vented to the atmosphere. This process causes environmental pollution and also affects the quality of the crude oil besides the economic detriment. Therefore, crude oil evaporation loss associated with the storage tank is an important issue which should be carefully investigated to identify the potential means of its reduction. The aim of the present work is to determine the evaporative losses from external floating storage tanks and to study the absorptivity effects of their exterior surface paint on the losses due to the solar irradiation. The API standards along with the thermal analysis of the tank have been employed to evaluate the tank temperature variations and the evaporative losses of a typical tank based on the actual ambient conditions of the Khark Island. The results show that the paints with low absorptivity can reduce the evaporative losses significantly. Furthermore, experimental data has been provided to validate the calculated tank temperature variations, and reasonable agreements have been found. [Received: April 10, 2010; Accepted: May 31, 2010

Mahmood Farzaneh-Gord; Amin Nabati; Hamid Niazmand

2011-01-01T23:59:59.000Z

292

A Simple Vacuum Evaporation Method of High Melting-point Metals and Its Application  

Science Journals Connector (OSTI)

......the height of the standard carbon film alone. The standard carbon film about 3,000 A in thickness was prepared by micro-grid technics.6 ' W and Au film are evaporated on standard carbon film 50-200 A in thickness. Those thickness of film......

Masaru KATOH; Hideki NAKAZUKA

1977-01-01T23:59:59.000Z

293

Automation of Evaporation Chamber for International Space Station CONTROL ALGORITHMFUNNEL VIEW  

E-Print Network (OSTI)

Automation of Evaporation Chamber for International Space Station MOTIVATION DIAL CONTROL are as shown. The direction of fluid/gas flow is indicated by the arrows. Our team would like to acknowledge the Canadian Space Agency and U of T Thermal Kinetic Lab for their contributions to the project. Gas Fluid

294

Estimating the Evaporative Cooling Bias of an Airborne Reverse Flow Thermometer YONGGANG WANG AND BART GEERTS  

E-Print Network (OSTI)

Estimating the Evaporative Cooling Bias of an Airborne Reverse Flow Thermometer YONGGANG WANG form 24 June 2008) ABSTRACT Airborne reverse flow immersion thermometers were designed to prevent in cloud is surmised because air decelerates into the thermometer housing, and thus is heated and becomes

Geerts, Bart

295

Q. J. R. Meteorol. Soc. (2006), 132, pp. 865883 doi: 10.1256/qj.04.187 Observations of the depth of ice particle evaporation  

E-Print Network (OSTI)

) suggested that evaporative cooling from falling ice particles can have a more significant dynamical impact of ice particle evaporation beneath frontal cloud to improve NWP modelling By RICHARD M. FORBES1 21 November 2005) SUMMARY The evaporation (sublimation) of ice particles beneath frontal ice cloud

Reading, University of

296

Thermal Evaporation and Characterization of Sb2Se3 Thin Film for Substrate Sb2Se3/CdS Solar Cells  

Science Journals Connector (OSTI)

Thermal Evaporation and Characterization of Sb2Se3 Thin Film for Substrate Sb2Se3/CdS Solar Cells ... Here we report Sb2Se3 solar cells fabricated from thermal evaporation. ... Sb2Se3; thermal evaporation; thin film; solar cells ...

Xinsheng Liu; Jie Chen; Miao Luo; Meiying Leng; Zhe Xia; Ying Zhou; Sikai Qin; Ding-Jiang Xue; Lu Lv; Han Huang; Dongmei Niu; Jiang Tang

2014-06-12T23:59:59.000Z

297

Evaporation-Induced Buckling and Fission of Microscale Droplet Interface Bilayers  

SciTech Connect

Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers ( DIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemi-spherical volumes. In the second regime, the combined effects of the shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a bending moment corresponding to a critical shear stress, the buckling bilayer fissions a vesicle to regulate its shape and stress. The DIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo- and exocytosis in cells.

Boreyko, Jonathan B [ORNL; Mruetusatorn, Prachya [ORNL; Sarles, Stephen A [ORNL; Retterer, Scott T [ORNL; Collier, Pat [ORNL

2013-01-01T23:59:59.000Z

298

Switching moving boundary models for two-phase flow evaporators and condensers  

Science Journals Connector (OSTI)

Abstract The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.

Javier Bonilla; Sebastián Dormido; François E. Cellier

2015-01-01T23:59:59.000Z

299

Co-Evaporated Cu2ZnSnSe4 Films and Devices  

SciTech Connect

The use of vacuum co-evaporation to produce Cu2ZnSnSe4 photovoltaic devices with 9.15% total-area efficiency is described. These new results suggest that the early success of the atmospheric techniques for kesterite photovoltaics may be related to the ease with which one can control film composition and volatile phases, rather than a fundamental benefit of atmospheric conditions for film properties. The co-evaporation growth recipe is documented, as is the motivation for various features of the recipe. Characteristics of the resulting kesterite films and devices are shown in scanning electron micrographs, including photoluminescence, current-voltage, and quantum efficiency. Current-voltage curves demonstrate low series resistance without the light-dark cross-over seen in many devices in the literature. Band gap indicated by quantum efficiency and photoluminescence is roughly consistent with that expected from first principles calculation.

Repins, I.; Beall, C.; Vora, N.; DeHart, C.; Kuciauskas, D.; Dippo, P.; To, B.; Mann, J.; Hsu, W. C.; Goodrich, A.; Noufi, R.

2012-06-01T23:59:59.000Z

300

Recycling nickel electroplating rinse waters by low temperature evaporation and reverse osmosis  

SciTech Connect

Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperature evaporation system was best suited to processing solutions with relatively high (greater than 4,000 to 5,000 mg/L) nickel concentrations. The reverse osmosis system was best adapted to conditions where the feed solution had a relatively low (less than4,000 to 5,000 mg/L) nickel concentration. In electroplating operations where relatively dilute rinse water solutions must be concentrated to levels acceptable for replacement in the plating bath, a combination of the two technologies might provide the best process alternative.

Lindsey, T.C.; Randall, P.M.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaporation behavior of Hastelloy-X alloys in simulated very high temperature reactor environments  

SciTech Connect

A sequential analysis was made on the material degradations during exposure of nickel-base corrosionresistant austenitic alloys to simulated very high temperature reactor environments. The materials tested were two modified versions of Hastelloy-X in terms of both increased manganese content for improved compatibility and decreased manganese content for possible adverse effects. Quantitative analysis of the specimens after exposure for 1000 h at several temperature steps from 850 to 1050/sup 0/C have revealed the temperature-dependent aspects of the processes including the depletion of chromium and manganese due to oxidation, evaporation, and carbon transfer into and/or from the materials. The material with enriched manganese, developed and specified as Hastelloy-XR, showed enhanced resistance to loss of chromium in terms of both oxidation and evaporation.

Shindo, M.; Kondo, T.

1984-08-01T23:59:59.000Z

302

A two-component heavy fuel oil evaporation model for CFD studies in marine Diesel engines  

Science Journals Connector (OSTI)

Abstract The paper presents an evaporation model for Heavy Fuel Oil (HFO) combustion studies. In the present work, HFO is considered as a mixture of a heavy and a light fuel component, with the thermophysical properties of the heavy component calculated from the recently introduced model of Kyriakides et al. (2009) [1]. The model proposes a proper treatment of convective heat transfer to the evaporating fuel droplets. Computational Fluid Dynamics (CFD) simulations of HFO spray combustion in constant volume chambers are performed, utilizing a modified characteristic time combustion model. The results are in good agreement with literature experimental data. Computational results for a two-stroke marine Diesel engine also compare favorably against experiments. The present development yields a basis for detailed CFD studies of HFO combustion in large marine Diesel engines.

Nikolaos Stamoudis; Christos Chryssakis; Lambros Kaiktsis

2014-01-01T23:59:59.000Z

303

Optical humidity sensors based on titania films fabricated by sol?gel and thermal evaporation methods  

Science Journals Connector (OSTI)

This paper reports a comparative study of an optical humidity sensor based on titania films fabricated by sol?gel and thermal evaporation methods. As semiconducting oxides are known for their n-type conduction because of the presence of oxygen vacancies, therefore they prove to be very good sensors for humidity. Sensing elements of the optical humidity sensor presented here consist of a rutile structured one-layered TiO2 thin film deposited on the base of an isosceles glass prism of thickness 1000 ?. This TiO2 film is porous and sensitive to humidity. The other sensing element consists of a film of the same material deposited by the thermal evaporation method on the base of a prism of the same thickness. Light from a He?Ne laser enters the prism from one of the isosceles faces of the prism and gets reflected from the glass?film interface, before emerging out from its other isosceles face. The emergent beam is collected through an optical fibre, which is connected to an optical power meter for measurement. Variations in the intensity of light caused by changes in humidity lying in the range of 5% RH to 95% RH have been recorded. A sensor fabricated by the thermal evaporation method shows better sensitivity than the sol?gel method. Scanning electron micrographs of both the films show that the film prepared by the thermal evaporation method is more porous and continuous than the film prepared by the sol?gel method, resulting in more sensitivity to humidity.

B C Yadav; N K Pandey; Amit K Srivastava; Preeti Sharma

2007-01-01T23:59:59.000Z

304

Characterization Results For The 2013 HTF 3H Evaporator Overhead Samples  

SciTech Connect

This report tabulates the radiochemical analysis of the 3H evaporator overhead sample for {sup 137}Cs, {sup 90}Sr, and {sup 129}I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

Washington, A. L. II

2013-12-04T23:59:59.000Z

305

Use of DOE-2 to Evaluate Evaporative Cooling in Texas Correctional Facilities  

E-Print Network (OSTI)

program was run with two weather tapes, one for Kingsville, Texas and one for Abilene, Texas during April, July, and October to resemble neutral, summer and winter weather conditions. The results showed that direct evaporative cooling is applicable..., enhance, or replace the DOE-2 calculations without having to recompile the program. The procedure includes using direct and indirect user- defined functions in the DOE-2 SYSTEMS subprogram together with two different weather conditions in Texas...

Saman, N.; Heneghan, T.; Bou-Saada, T. E.

1996-01-01T23:59:59.000Z

306

Field Test of Combined Desiccant-Evaporator Cycle Providing Lower Dew Points and Enhanced Dehumidification  

E-Print Network (OSTI)

Field Test of Combined Desiccant-Evaporator Cycle Providing Lower Dew Points and Enhanced Dehumidification Charles J. Cromer, PhD, P.E.; Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL, 321-638-1445, charlie... of difficult criteria, some with more success than others. Combined Cycle with Desiccant and AC Coil This paper describes the field testing of a novel air conditioning desiccant cycle. This cycle uses a desiccant to move moisture within the air...

Cromer, C. J.

2006-01-01T23:59:59.000Z

307

Thermal property and microstructure of Al nanopowders produced by two evaporation routes  

Science Journals Connector (OSTI)

Al nanopowders with diameters ranging from 20 to 50 nm passivated by Al2O3 coatings were produced by two different evaporation routes: induction heating evaporation (IHE) and laser-induction complex heating evaporation (LCHE). Thermal property of the nanopowders was investigated by differential thermal analysis (DTA) in dry oxygen environment. The results show that Al nanopowders produced by LCHE have the oxidation enthalpy change (?H) of 3.54 kJ/g, while the ?H of Al produced by IHE is 1.18 kJ/g. The phase constitution and microstructures of these nanopowders were revealed using X-ray diffraction (XRD) analysis, transmission electronic microscopy (TEM) and high-resolution transmission electronic microscopy (HRTEM). The results show that the two powders have the same composition and mean particle size, as well as the thickness of Al2O3 coatings (3–5 nm). Defects were observed on the surfaces of the particles by LCHE. However, the defects were not detected by HRTEM on the surfaces of the particles by IHE. The results prove that there exists excessive stored energy in Al nanopowders by LCHE because of the nonequilibrium condition brought by laser and the defects are the storage area of the excessive stored energy. Propellants composed of Al nanopowders by LCHE show higher energy level and specific impulse.

Liang CHEN; Wu-lin SONG; Lian-gui GUO; Chang-sheng XIE

2009-01-01T23:59:59.000Z

308

Measurement of LiCl removal behavior from porous solids by vacuum evaporation  

Science Journals Connector (OSTI)

Abstract Molten salt processes have been developed in various fields of engineering. In such a process, its efficiency and the quality of products would be enhanced when the used molten salt is effectively separated from the product and recycled into the process. Vacuum evaporation has been applied to recover molten salts due to the low vapor pressure and the high melting point. However, most of researches have been focused on the bulk salts evaporation. In this work, LiCl salt evaporation behavior from a porous solid was investigated to develop a post-treatment process of an electrolytic reduction process which uses LiCl as an electrolyte and produces porous solid products. The electrolytic reduction process is one of the main components of pyroprocessing to treat spent nuclear fuel and produce metallic uranium. Instead of using radioactive material, we prepared porous MgO chips and rods to determine the conditions and measure the behavior with different physical characteristics of the rods. The temperature and pressure were set to 700 oC and 20 mTorr, respectively, and more than 70% of salt was removed within 5 h.

Byung Heung Park; Seung-Chul Oh; Jin-Mok Hur

2014-01-01T23:59:59.000Z

309

Determination of the separation coefficients of the isotopes of boron in the equilibrium evaporation of BCl3  

Science Journals Connector (OSTI)

The separation coefficients of the isotopes of boron are determined for equilibrium evaporation of boron chloride in the temperature interval 12.7 to 85 °C. The methods are described, and the equation relating...

N. N. Sevryugova; O. V. Uvarov; N. M. Zhavoronkov

1956-01-01T23:59:59.000Z

310

Sampling and Analysis for Tank 241-AW-104 Waste in Support of Evaporator Campaign 2001-1  

SciTech Connect

This Tank Sampling and Analysis Plan (TSAP) identifies sample collection, laboratory analysis, quality assurance/quality control (QA/QC), and reporting objectives for the characterization of tank 241-AW-104 waste. Technical bases for these objectives are specified in the 242-A Evaporator Data Quality Objectives (Bowman 2000a and Von Bargen 1998), 242-A Evaporator Quality Assurance Project Plan (Bowman 1998 and Bowman 2000b), Tank 241-AW-104 Sampling Requirements in Support of Evaporator Campaign 2000-1 (Le 2000). Characterization results will be used to support the evaporator campaign currently planned for early fiscal year 2001. No other needs (or issues) requiring data for this tank waste apply to this sampling event.

MCKINNEY, S.G.

2000-05-23T23:59:59.000Z

311

Spatially resolved temperature and heat flux measurements for slow evaporating droplets heated by a microfabricated heater array  

E-Print Network (OSTI)

The evaporation phenomenon of a liquid droplet was investigated by using microfabricated heaters. All 32 microheaters were designed to have the same resistance. Gold microheaters worked both as temperature indicators and as heaters. The first...

Paik, Sokwon

2006-08-16T23:59:59.000Z

312

Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary  

Science Journals Connector (OSTI)

Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands ...

J. Y. Takekawa; A. K. Miles; D. H. Schoellhamer; N. D. Athearn…

2006-09-01T23:59:59.000Z

313

Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary  

Science Journals Connector (OSTI)

Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands ...

J. Y. Takekawa; A. K. Miles; D. H. Schoellhamer…

2006-01-01T23:59:59.000Z

314

Dynamic Performance Study on the Solar Collector/Evaporator of Direct Expansion Solar Assisted Heat Pump Systems  

Science Journals Connector (OSTI)

A dynamic simulation model is developed for predicting performance of the solar collector/evaporator of direct expansion solar assisted heat pump systems. In this model, ... meteorological and configuration param...

Li Hong; Yang Hongxing

2009-01-01T23:59:59.000Z

315

The effect of a low-energy electron beam and evaporated gold flux on GaAs surface content  

Science Journals Connector (OSTI)

This work studies changes of the GaAs surface state under the effect of low-intensity electron flux and under the effect of weakly ionized plasma (evaporated Au vapors in vacuum). It is shown that the structure a...

T. A. Bryantseva; D. V. Lyubchenko…

2012-01-01T23:59:59.000Z

316

A Novel Method for the Determination of the Ethanol Content in Soy Sauce by Full Evaporation Headspace Gas Chromatography  

Science Journals Connector (OSTI)

A full evaporation headspace gas chromatographic (HSGC) method is described for rapid determination of ethanol in soy sauce. The results demonstrated that a near-complete mass transfer of ethanol in the soy sauce...

Mengru Liu; Hailong Li; Huaiyu Zhan

2014-05-01T23:59:59.000Z

317

Comparison of Experimental and Model Data for the Evaporation of a Synthetic Topopah Spring Tuff Pore Water, Yucca Mountain, NV  

SciTech Connect

The evaporation of a range of synthetic pore water solutions representative of the potential high-level-nuclear-waste repository at Yucca Mountain, NV is being investigated. The motivation of this work is to understand and predict the range of brine compositions that may contact the waste containers from evaporation of pore waters, because these brines could form corrosive thin films on the containers and impact their long-term integrity. A relatively complex synthetic Topopah Spring Tuff pore water was progressively concentrated by evaporation in a closed vessel, heated to 95 C in a series of sequential experiments. Periodic samples of the evaporating solution were taken to determine the evolving water chemistry. According to chemical divide theory at 25 C and 95 C our starting solution should evolve towards a high pH carbonate brine. Results at 95 C show that this solution evolves towards a complex brine that contains about 99 mol% Na{sup +} for the cations, and 71 mol% Cl{sup -}, 18 mol% {Sigma}CO{sub 2}(aq), 9 mol% SO{sub 4}{sup 2-} for the anions. Initial modeling of the evaporating solution indicates precipitation of aragonite, halite, silica, sulfate and fluoride phases. The experiments have been used to benchmark the use of the EQ3/6 geochemical code in predicting the evolution of carbonate-rich brines during evaporation.

Alai, M; Sutton, M; Carroll, S

2003-10-14T23:59:59.000Z

318

The environmental aspects of the evaporation of BTEX from gasoline with and without ethanol  

Science Journals Connector (OSTI)

In this work the vapours from two columns simulating gasoline-contaminated soils (with and without ethanol) were monitored. Standards mixtures of BTEX, containing different ethanol contents were also analysed. The instrumental analysis was performed by Gas Chromatography with a Flame Ionisation Detector. Among BTEX, except benzene, in both columns the evaporation rate increases with time. In the gasoline/ethanol column this effect is higher particularly for the xylenes. Although the benzene concentrations were reduced in both columns, this reduction was less marked in the gasoline/ethanol column. The toluene concentrations were higher in the pure gasoline column.

Franciele Fedrizzi; Jóice Cagliari; Cláudia Echevenguá Teixeira; Alexandra Rodrigues Finotti; Irajá do Nascimento Filho

2013-01-01T23:59:59.000Z

319

Sensitivity of the FERMI Detectors to Gamma-Ray Bursts from Evaporating Primordial Black Holes (PBHs)  

E-Print Network (OSTI)

Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. The Fermi Gamma-ray Space Telescope observatory offers increased sensitivity to the gamma-ray bursts produced by PBHs with an initial mass of $\\sim 5\\times 10^{14}$ g expiring today. PBHs are candidate progenitors of unidentified Gamma-Ray Bursts (GRBs) that lack X-ray afterglow. We propose spectral lag, which is the temporal delay between the high and low energy pulses, as an efficient method to identify PBH evaporation events with the Fermi Large Area Telescope (LAT).

T. N. Ukwatta; Jane H. MacGibbon; W. C. Parke; K. S. Dhuga; S. Rhodes; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

2010-03-23T23:59:59.000Z

320

Tank 30 and 37 Supernatant Sample Cross-Check and Evaporator Feed Qualification Analysis-2012  

SciTech Connect

This report summarizes the analytical data reported by the F/H and Savannah River National Laboratories for the 2012 cross-check analysis for high level waste supernatant liquid samples from SRS Tanks 30 and 37. The intent of this Tank 30 and 37 sample analyses was to perform cross-checks against routine F/H Laboratory analyses (corrosion and evaporator feed qualification programs) using samples collected at the same time from both tanks as well as split samples from the tanks.

Oji, L. N.

2013-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Evaporative evolution of Martian brines based on halogens in nakhlites and MER samples  

SciTech Connect

Comparison of Cl and Br from Nakhla viens to MER samples suggests two kinds of brine solutions existed on Mars, one early and one late in the evaporation sequence. These solutions precipitated the secondary salts at the Meridiani and Gusev sites. We have recently reported the Cl and Br abundances determined by APS X-ray Microprobe and EMPA analyses of secondary aqueous minerals in Nakhla veins and discussed the significance of Cl-Br correlations with respect to the evolution of brine solutions on Mars. In that study, we suggested that the low Br concentration ({approx}10 ppm) in Lafayette Iddingsite is indicative of early stage of evaporation during progressive evolution of Martian brine solutions, which is, in turn, consistent with the petrographic evidence of early deposition of salt sequence of carbonate-sulfate- and no halite in Lafayette. We showed that the high Br concentrations of {approx}240 ppm in secondary salts in Nakhla veins similarly indicate late stages of evaporation in evolving Martian brine solutions which is again consistent with petrographic evidence of late stage deposition of salt sequence i.e. carbonate-sulfate-halite in Nakhla. When sea water evaporates under equilibrium conditions, the most insoluble carbonates (siderite and calcite) deposit first, followed by sulfates (gypsum and anhydrite) and finally the water-soluble halides are precipitated when the water content is sufficiently low. In the present study, we make a detailed comparison of Cl/Br ratios in secondary minerals in nakhlites with those in MER soils and rocks at Gusev and Meridiani and show that the compositions of solutions that inundated Lafayette iddingsite (early stage) and Nakhla veins (late stage) include the range of solution-compositions that gave rise to a variety of secondary salts at Gusev and Meridiani sites. Further, the results obtained here suggest that two kinds of brine solutions (one, late and the other, early or intermediate stage) seem to have inundated most of the rocks and soils to varying degrees and precipitated the secondary salts at Meridiani and Gusev sites.

Rao, M.N.; Sutton, S.R.; McKay, D.S. (Lockheed); (UC); (NASA)

2005-02-04T23:59:59.000Z

322

Non Evaporable Getter (NEG) Pumps: a Route to UHV-XHV  

SciTech Connect

Non Evaporable Getter (NEG) technology has been developed in the 1970's and since then adopted by industry, R and D labs, research centres and in large physics projects like accelerators, synchrotrons and fusion reactors. NEG pumps are very compact and vibration-free devices able to deliver very high pumping with minimal power requirement and electromagnetic interference. In the present paper, main features and performances of getter pumps are reviewed and discussed with a special focus to photocathode gun application, where UHV or XHV conditions are mandatory to ensure adequate gun life. NEG coating and future challenges for NEG technology are also discussed.

Manini, Paolo [SAES Getters SpA, Viale Italia 77, 20010 Lainate (Italy)

2009-08-04T23:59:59.000Z

323

Blue Emission Peak of GeO{sub 2} Particles Grown Using Thermal Evaporation  

SciTech Connect

In this paper we report a simple thermal evaporation technique (horizontal tube furnace) to grow large quantities of GeO{sub 2} particles with diameters ranging from tens of nanometer to 500 nm on n-type (100) Si substrate free of catalyst. The particles were grown at temperature about 1000 degree sign C for 2 hrs and characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. The photoluminescence spectrum reveals several emission peaks around 400 nm at room temperature. Raman measurement also measured at room temperature for this GeO{sub 2} particles.

Sulieman, Kamal Mahir [School of Physics, Universiti Sains Malaysia (USM), 11800 Minden, Penang (Malaysia); Physics Department, Alzaiem Alazhary University, 1432-Khartoum (Sudan); Jumidali, M. M. [School of Physics, Universiti Sains Malaysia (USM), 11800 Minden, Penang (Malaysia); Faculty of Applied Science, Universiti Teknologi MARA, 13500 Penang (Malaysia); Hashim, M. R. [School of Physics, Universiti Sains Malaysia (USM), 11800 Minden, Penang (Malaysia)

2010-07-07T23:59:59.000Z

324

A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates  

SciTech Connect

Many commercial nuclear plants and DOE facilities generate secondary waste streams consisting of evaporator bottoms and reverse osmosis (RO) concentrate. Since liquids are not permitted in disposal facilities, these waste streams must be converted to dry solids, either by evaporation to dried solids or by solidification to liquid-free solids. Evaporation of the liquid wastes reduces their volume, but requires costly energy and capital equipment. In some cases, concentration of the contaminants during drying can cause the waste to exceed Class A waste for nuclear utilities or exceed DOE transuranic limits. This means that disposal costs will be increased, or that, when the Barnwell, SC disposal site closes to waste outside of the Atlantic Compact in July 2008, the waste will be precluded from disposal for the foreseeable future). Solidification with cement agents requires less energy and equipment than drying, but results in a volume increase of 50-100%. The doubling or tripling of waste weight, along with the increased volume, sharply increases shipping and disposal costs. Confronted with these unattractive alternatives, Diversified Technologies Services (DTS), in conjunction with selected nuclear utilities and D and D operations at Rocky Flats, undertook an exploratory effort to convert this liquid wastewater to a solid without using cement. This would avoid the bulking effect of cement, and permit the waste to be disposed of the Energy Solutions facility in Utah as well as some DOE facilities. To address the need for an attractive alternative to drying and cement solidification, a test program was developed using a polymer absorbent media to convert the concentrate streams to a liquid-free waste form that meets the waste acceptance criteria of the pertinent burial sites. Two approaches for mixing the polymer with the liquid were tested: mechanical mixing and in-situ incorporation. As part of this test program, a process control program (PCP) was developed that is 100% scalable from a concentrate test sample as small as 50 grams to full-scale processing of 100 cubic foot containers or larger. In summary: The absorption process offers utilities a viable and less costly alternative to on-site drying or solidification of concentrates. The absorption process can be completed by site personnel or by a vendor as a turnkey service. The process is suitable for multiple types of waste, including RO and evaporator concentrates, sludges, and other difficult to process waters and wet solids. (author)

Brunsell, D.A. [Diversified Technologies Services, Inc., Knoxville, TN (United States)

2008-07-01T23:59:59.000Z

325

Direct evaporative cooling of K41 into a Bose-Einstein condensate  

Science Journals Connector (OSTI)

We have investigated the collisional properties of K41 atoms at ultracold temperatures. To demonstrate the possibility of using K41 as a coolant, a Bose-Einstein condensate of K41 atoms in the stretched state (F=2,mF=2) was created by direct evaporative cooling in a magnetic trap. An upper bound of the three-body loss coefficient for atoms in the condensate was determined to be 4(2)×10?29?cm?6?s?1. A Feshbach resonance in the F=1,?mF=?1, state was observed at 51.35(10) G, which is in good agreement with theoretical prediction.

T. Kishimoto; J. Kobayashi; K. Noda; K. Aikawa; M. Ueda; S. Inouye

2009-03-30T23:59:59.000Z

326

Evaporative Concentration of 100x J13 Ground Water at 60% Relative Humidity and 90C  

SciTech Connect

In these experiments we studied the behavior of a synthetic concentrated J13 solution as it comes in contact with a Ni-Cr-Mo-alloy selected for waste canisters in the designated high-level nuclear-waste repository at Yucca Mountain, Nevada. Concentrated synthetic J13 solution was allowed to drip slowly onto heated test specimens (90 C, 60% relative humidity) where the water moved down the surface of the specimens, evaporated and minerals precipitated. Mineral separation or zoning along the evaporation path was not observed. We infer from solid analyses and geochemical modeling, that the most corrosive components (Ca, Mg, and F) are limited by mineral precipitation. Minerals identified by x-ray diffraction include thermonatrite, natrite, and trona, all sodium carbonate minerals, as well as kogarkoite (Na{sub 3}SO{sub 4}F), halite (NaCl), and niter (KNO{sub 3}). Calcite and a magnesium silicate precipitation are based on chemical analyses of the solids and geochemical modeling. The most significant finding of this study is that sulfate and fluoride concentrations are controlled by the solubility of kogarkoite. Kogarkoite thermodynamic data are needed in the Yucca Mountain Project database to predict the corrosiveness of carbonate brines and to establish the extent to which fluoride is removed from the brines as a solid.

Staggs, K; Maureen Alai,; Hailey, P; Carroll, S A; Sutton, M; Nguyen, Q A

2003-12-04T23:59:59.000Z

327

Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions  

E-Print Network (OSTI)

We review recent experiments on dewetting thin films of evaporating colloidal nanoparticle suspensions (nanofluids) and discuss several theoretical approaches to describe the ongoing processes including coupled transport and phase changes. These approaches range from microscopic discrete stochastic theories to mesoscopic continuous deterministic descriptions. In particular, we describe (i) a microscopic kinetic Monte Carlo model, (ii) a dynamical density functional theory and (iii) a hydrodynamic thin film model. Models (i) and (ii) are employed to discuss the formation of polygonal networks, spinodal and branched structures resulting from the dewetting of an ultrathin 'postcursor film' that remains behind a mesoscopic dewetting front. We highlight, in particular, the presence of a transverse instability in the evaporative dewetting front, which results in highly branched fingering structures. The subtle interplay of decomposition in the film and contact line motion is discussed. Finally, we discuss a simple thin film model (iii) of the hydrodynamics on the mesoscale. We employ coupled evolution equations for the film thickness profile and mean particle concentration. The model is used to discuss the self-pinning and depinning of a contact line related to the 'coffee-stain' effect. In the course of the review we discuss the advantages and limitations of the different theories, as well as possible future developments and extensions.

U. Thiele; I. Vancea; A. J. Archer; M. J. Robbins; L. Frastia; A. Stannard; E. Pauliac-Vaujour; C. P. Martin; M. O. Blunt; P. J. Moriarty

2010-01-15T23:59:59.000Z

328

Interpretation of time-of-flight distributions for neutral particles under pulsed laser evaporation using direct Monte Carlo simulation  

SciTech Connect

A theoretical study of the time-of-flight (TOF) distributions under pulsed laser evaporation in vacuum has been performed. A database of TOF distributions has been calculated by the direct simulation Monte Carlo (DSMC) method. It is shown that describing experimental TOF signals through the use of the calculated TOF database combined with a simple analysis of evaporation allows determining the irradiated surface temperature and the rate of evaporation. Analysis of experimental TOF distributions under laser ablation of niobium, copper, and graphite has been performed, with the evaluated surface temperature being well agreed with results of the thermal model calculations. General empirical dependences are proposed, which allow indentifying the regime of the laser induced thermal ablation from the TOF distributions for neutral particles without invoking the DSMC-calculated database.

Morozov, Alexey A., E-mail: morozov@itp.nsc.ru [Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation)

2013-12-21T23:59:59.000Z

329

Analysis Of 2H-Evaporator Scale Wall [HTF-13-82] And Pot Bottom [HTF-13-77] Samples  

SciTech Connect

Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from two different locations within the evaporator pot; the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxyhydroxide mineral). On ''as received'' basis, the bottom pot section scale sample contained an average of 2.59E+00 {+-} 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 {+-} 1.48E-02 %, while the wall sample contained an average of 4.03E+00 {+-} 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% {+-} 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E-05 {+-} 5.40E-06 wt %, 3.28E-04 {+-} 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 {+-} 6.01E-06 wt %, 4.38E-04 {+-} 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. For these two evaporator scale samples obtained at two different locations within the evaporator pot the major radioactive components (on a mass basis) in the additional radionuclide analyses were Sr-90, Cs-137 Np-237, Pu-239/240 and Th-232. Small quantities of americium and curium were detected in the blanks used for Am/Cm method for these radionuclides. These trace radionuclide amounts are assumed to come from airborne contamination in the shielded cells drying or digestion oven, which has been replaced. Therefore, the Am/Cm results, as presented, may be higher than the true Am/Cm values for these samples. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241. The applicable method for calculation of equivalent U-235 will be determined in the NCSA. With a few exceptions, a comparison of select radionuclides measurements from this 2013 2H evaporator scale characterization (pot bottom and wall scale samples) with those measurements for the same radionuclides in the 2010 2H evaporator scale analysis shows that the radionuclide analysis for both years are fairly comparable; the analyses results are about the same order of magnitude.

Oji, L. N.

2013-09-11T23:59:59.000Z

330

The dark matter self-interaction and its impact on the critical mass for dark matter evaporations inside the sun  

E-Print Network (OSTI)

We study the capture, annihilation and evaporation of dark matter (DM) inside the Sun. It has been shown that the DM self-interaction can increase the DM number inside the Sun. We demonstrate that this enhancement becomes more significant in the regime of small DM mass, given a fixed DM self-interaction cross section. This leads to the enhancement of neutrino flux from DM annihilation. On the other hand, for DM mass as low as as a few GeVs, not only the DM-nuclei scatterings can cause the DM evaporation, DM self-interaction also provides non-negligible contributions to this effect. Consequently, the critical mass for DM evaporation (typically 3 ~ 4 GeV without the DM self-interaction) can be slightly increased. We discuss the prospect of detecting DM self-interaction in IceCube- PINGU using the annihilation channels $\\chi\\chi\\rightarrow\

Chian-Shu Chen; Fei-Fan Lee; Guey-Lin Lin; Yen-Hsun Lin

2014-12-21T23:59:59.000Z

331

As-doped p -type ZnO produced by an evaporation?sputtering process  

Science Journals Connector (OSTI)

Strongly p -type ZnO is produced by the following sequence of steps: (1) evaporation of Zn 3 As 2 on a fused-quartz substrate at 350 ° C ; and (2) sputtering of ZnO with substrate held at 450 ° C . The electrical characteristics include: resistivity of 0.4 ? cm a mobility of 4 cm 2 ? V s and a hole concentration of about 4 × 10 18 cm ? 3 . This resistivity is among the best (lowest) ever reported for p -type ZnO. Secondary-ion mass spectroscopic analysis gives an average As concentration about 5 × 10 19 cm ? 3 and a simple one-band fit of the temperature-dependent mobility curve yields an acceptor concentration of about 9 × 10 19 cm ? 3 . This is strong evidence that the p -type dopant involves As although it is not clear whether the acceptor is simply As O or the recently suggested As Zn ? 2 V Zn .

D. C. Look; G. M. Renlund; R. H. Burgener II; J. R. Sizelove

2004-01-01T23:59:59.000Z

332

Preparation and characterization of indium zinc oxide thin films by electron beam evaporation technique  

SciTech Connect

In this work, the preparation of In{sub 2}O{sub 3}-ZnO thin films by electron beam evaporation technique on glass substrates is reported. Optical and electrical properties of these films were investigated. The effect of dopant amount and annealing temperature on the optical and electrical properties of In{sub 2}O{sub 3}-ZnO thin films was also studied. Different amount of ZnO was used as dopant and the films were annealed at different temperature. The results showed that the most crystalline, transparent and uniform films with lowest resistivity were obtained using 25 wt% of ZnO annealed at 500 {sup o}C.

Keshavarzi, Reza [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mirkhani, Valiollah, E-mail: mirkhani@sci.ui.ac.ir [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Moghadam, Majid, E-mail: moghadamm@sci.ui.ac.ir [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of) [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Department of Nanotechnology Engineering, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Fallah, Hamid Reza; Dastjerdi, Mohammad Javad Vahid; Modayemzadeh, Hamed Reza [Department of Physics, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Department of Physics, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

2011-04-15T23:59:59.000Z

333

Measurement of evaporation residue excitation functions for the F19 + Pt194,196,198 reactions  

Science Journals Connector (OSTI)

Experimental measurements of evaporation residue (ER) cross sections for the F19 + Pt194,196,198 reactions forming Fr213,215,217 compound nuclei are reported. The cross sections are measured at beam energies in the range of 101–137.3 MeV. The survival probability of the Fr213 compound nucleus with neutron number N=126 is found to be lower than the survival probabilities of Fr215 and Fr217 with neutron numbers N=128 and 130 respectively. Statistical model analysis of the ER cross sections show that an excitation energy dependent scaling of the finite-range rotating liquid drop model fission barrier is necessary to fit the experimental data. The fitted scaling factors for Fr213 are found to be smaller than those of Fr215 and Fr217 for almost the entire range of excitation energies.

Varinderjit Singh; B. R. Behera; Maninder Kaur; A. Kumar; K. P. Singh; N. Madhavan; S. Nath; J. Gehlot; G. Mohanto; A. Jhingan; Ish Mukul; T. Varughese; Jhilam Sadhukhan; Santanu Pal; S. Goyal; A. Saxena; S. Santra; S. Kailas

2014-02-18T23:59:59.000Z

334

Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films  

SciTech Connect

The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

Birmingham, J.T. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

1996-06-01T23:59:59.000Z

335

Influence of contact angle on slow evaporation in 2D porous media. H.Chrabi1,2  

E-Print Network (OSTI)

the invasion percolation model with the computation of the diffusive transport in the gas phase. The overall, cooperative smoothing mechanisms of the interface become important and the width of the liquid gas interface fingers that form during the evaporation process increases. The mean overall drying time increases

Boyer, Edmond

336

Quasifission and difference in formation of evaporation residues in the $^{16}$O+$^{184}$W and $^{19}$F+$^{181}$Ta reactions  

E-Print Network (OSTI)

The excitation functions of capture, complete fusion, and evaporation residue formation in the $^{16}$O+$^{184}$W and $^{19}$F+$^{181}$Ta reactions leading to the same $^{200}$Pb compound nucleus has been studied theoretically to explain the experimental data showing more intense yield of evaporation residue in the former reaction in comparison with that in the latter reaction. The observed difference is explained by large capture cross section in the former and by increase of the quasifission contribution to the yield of fission-like fragments in the $^{19}$F+$^{181}$Ta reaction at large excitation energies. The probability of compound nucleus formation in the $^{16}$O+$^{184}$W reaction is larger but compound nuclei formed in both reactions have similar angular momentum ranges at the same excitation energy. The observed decrease of evaporation residue cross section normalized to the fusion cross section in the $^{19}$F+$^{181}$Ta reaction in comparison with the one in the $^{16}$O+$^{184}$W reaction at high excitation energies is explained by the increase of hindrance in the formation of compound nucleus connected with more quick increase of the quasifission contribution in the $^{19}$F induced reaction. The spin distributions of the evaporation residue cross sections for the two reactions are also presented.

A. K. Nasirov; G. Mandaglio; M. Manganaro; A. I. Muminov; G. Fazio; G. Giardina

2009-08-13T23:59:59.000Z

337

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

Not Available

1994-04-01T23:59:59.000Z

338

PHYSICAL REVIEW A 87, 053417 (2013) Efficient direct evaporative cooling in an atom-chip magnetic trap  

E-Print Network (OSTI)

technique for achieving the low temperatures and high densities needed to produce Bose-Einstein condensates that slows down rethermalization and can reduce cooling efficiency to the point that condensation cannotPHYSICAL REVIEW A 87, 053417 (2013) Efficient direct evaporative cooling in an atom-chip magnetic

Du, Shengwang

339

Physiological regulation of evaporative water loss in endotherms: is the little red kaluta (Dasykaluta rosamondae) an exception or the rule?  

Science Journals Connector (OSTI)

...is determined essentially by physics [1-3], and not by physiological...thermolabile T b, low basal metabolic rate and EWL, high point of relative...between EWL and deltawvp that passes through the origin (no EWL...determination of basal metabolic rate and evaporative water loss of...

2014-01-01T23:59:59.000Z

340

High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

Not Available

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modelling of heating and evaporation of n-Heptane droplets: Towards a generic model for fuel droplet/particle conversion  

E-Print Network (OSTI)

is a part of a project that is targeted to optimize the pyrolysis process of biomass pellets for bio, study of pyrolysis of the biomass pellets and evaporation of the pyrolysis bio-oil droplets are two key of the biomass pellets in the pyrolysis reactor, for the purpose of optimiz- ing the pyrolysis process. Modelling

Yin, Chungen

342

Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells  

E-Print Network (OSTI)

Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells Karolien Vasseur,, Katharina Broch,§ Alexander L. Ayzner, Barry P. Rand, David Cheyns: To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near

Schreiber, Frank

343

Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges  

E-Print Network (OSTI)

1 Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high between discharges in NSTX, partly to reduce recycling. Reduced D emissions from the lower and upper of the recycling light, improvements in global confinement16-19 , along with the appearance of ELM-free regimes20

Princeton Plasma Physics Laboratory

344

A Comparative Study of Precipitation and Evaporation between CMIP3 and CMIP5 Climate Model Ensembles in Semiarid Regions  

Science Journals Connector (OSTI)

The twentieth-century climatology and twenty-first-century trend in precipitation P, evaporation E, and P ? E for selected semiarid U.S. Southwest and Mediterranean regions are compared between ensembles from phases 3 and 5 of the Coupled Model ...

Noel C. Baker; Huei-Ping Huang

2014-05-01T23:59:59.000Z

345

Dynamics and energy balance of the Hadly circulation and the tropical precipitation zones: Significance of the distribution of evaporation  

SciTech Connect

A series of numerical experiments is performed using a general circulation model with an idealistic ocean-covered boundary condition. The meridional structure of the Hadley circulation system, which is a combined structure of the Hadley circulation and the tropical precipitation zone, is examined from the standpoints of the water vapor and the energy budgets. Although the prescribed SST distribution has a broad peak centered at the equator, the distribution of the precipitation has two peaks straddling the equator. The distribution of the evaporation rate is an important factor in the formation of this structure. The evaporation rate is smaller near the equator than in the subtropics because of its dependence upon the wind speed. If this dependence is removed, the latitudinal distribution of evaporation becomes flat and the precipitation concentrates at the equator to form a single band structure. Qualitatively similar results are obtained in experiments with an axisymmetric two-dimensional model without the effect of disturbances. The net supply of the moist static energy must balance with the divergence of the meridional transport of moist static energy. A small fractional change in the evaporation rate causes a large change in the net energy supply and thus results in a strong modification of the meridional structure of the system. A strong positive feedback between the strength of the Hadley circulation and the latitudinal concentration of the precipitation provides the high sensitivity of the Hadley circulation system to the distribution of the evaporation, which is the principal energy source of the system. A set of comparative experiments with different cumulus parameterization schemes is performed. It is shown that the difference in the vertical stratification significantly modifies the energy budget of the Hadley circulation system and causes a large difference in the distribution of precipitation. 27 refs., 21 figs.

Numaguti, A. (National Institute for Environmental Studies, Tsukuba, Ibaraki (Japan))

1993-07-01T23:59:59.000Z

346

ANALYSIS OF 2H-EVAPORATOR SCALE WALL [HTF-13-82] AND POT BOTTOM [HTF-13-77] SAMPLES  

SciTech Connect

Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2Hevaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxy-hydroxide mineral). On “as received” basis, the bottom pot section scale sample contained an average of 2.59E+00 ± 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 ± 1.48E-02 %, while the wall sample contained an average of 4.03E+00 ± 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% ± 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E- 05 ± 5.40E-06 wt %, 3.28E-04 ± 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 ± 6.01E-06 wt %, 4.38E-04 ± 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241. The applicable method for calculation of equivalent U-235 will be determined in the NCSA.

Oji, L.

2013-06-21T23:59:59.000Z

347

ANALYSES AND COMPARISON OF BULK AND COIL SURFACE SAMPLES FROM THE DWPF SLURRY MIX EVAPORATOR  

SciTech Connect

Sludge samples from the DWPF Slurry Mix Evaporator (SME) heating coil frame and coil surface were characterized to identify differences that might help identify heat transfer fouling materials. The SME steam coils have seen increased fouling leading to lower boil-up rates. Samples of the sludge were taken from the coil frame somewhat distant from the coil (bulk tank material) and from the coil surface (coil surface sample). The results of the analysis indicate the composition of the two SME samples are very similar with the exception that the coil surface sample shows {approx}5-10X higher mercury concentration than the bulk tank sample. Elemental analyses and x-ray diffraction results did not indicate notable differences between the two samples. The ICP-MS and Cs-137 data indicate no significant differences in the radionuclide composition of the two SME samples. Semi-volatile organic analysis revealed numerous organic molecules, these likely result from antifoaming additives. The compositions of the two SME samples also match well with the analyzed composition of the SME batch with the exception of significantly higher silicon, lithium, and boron content in the batch sample indicating the coil samples are deficient in frit relative to the SME batch composition.

Hay, M.; Nash, C.; Stone, M.

2012-02-17T23:59:59.000Z

348

Electron spin resonance of ultrahigh vacuum evaporated amorphous silicon: In situ and ex situ studies  

Science Journals Connector (OSTI)

An in situ study of the electron spin resonance (ESR) of ultrahigh vacuum evaporated amorphous silicon is performed to define the characteristics of the signal as a function of preparation conditions. The influence of deposition rate, temperature of substrates, temperature of annealing, angle of incidence of the vapor beam, contamination by air exposure, and the presence of hydrogen during growth have been investigated. Porosity effects depending on thermal history and angle of incidence, which allow contamination, are observed by ESR. It is found that the spin density is mainly determined by the thermal history and varies only within a factor of about 3 when contamination effects are not involved. This is contrary to other results which we believe were obtained from contaminated specimens. Related variations of linewidth and saturation behavior are observed. Ex situ measurements of linewidth, saturation behavior, and ESR susceptibility are done as a function of temperature. The results of these measurements are discussed in terms of two extreme possibilities for spins: individual spins randomly distributed and clusters of spins. The question of a possible association of spins with voids is also discussed. The results are compatible with a model of individual spins randomly distributed. An approach to the relation between spins and conductivity is presented.

P. A. Thomas; M. H. Brodsky; D. Kaplan; D. Lepine

1978-10-01T23:59:59.000Z

349

Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor  

DOE Patents (OSTI)

A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

Britten, Jerald A. (Oakley, CA)

1997-01-01T23:59:59.000Z

350

Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor  

DOE Patents (OSTI)

A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

Britten, J.A.

1997-08-26T23:59:59.000Z

351

As-doped p-type ZnO produced by an evaporation/sputtering process  

SciTech Connect

Strongly p-type ZnO is produced by the following sequence of steps: (1) evaporation of Zn{sub 3}As{sub 2} on a fused-quartz substrate at 350 deg. C; and (2) sputtering of ZnO with substrate held at 450 deg. C. The electrical characteristics include: resistivity of 0.4 {omega} cm, a mobility of 4 cm{sup 2}/V s, and a hole concentration of about 4x10{sup 18} cm{sup -3}. This resistivity is among the best (lowest) ever reported for p-type ZnO. Secondary-ion mass spectroscopic analysis gives an average As concentration about 5x10{sup 19} cm{sup -3}, and a simple one-band fit of the temperature-dependent mobility curve yields an acceptor concentration of about 9x10{sup 19} cm{sup -3}. This is strong evidence that the p-type dopant involves As, although it is not clear whether the acceptor is simply As{sub O} or the recently suggested As{sub Zn}-2V{sub Zn}.

Look, D.C.; Renlund, G.M.; Burgener, R.H. II; Sizelove, J.R. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 and Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 (United States); ON International, Inc., 418 West Winchester Street, Salt Lake City, Utah 84107 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)

2004-11-29T23:59:59.000Z

352

Slow positron annihilation spectroscopy and electron microscopy of electron beam evaporated cobalt and nickel silicides  

SciTech Connect

Metal silicide thin films on single-crystal silicon substrates are the subject of much research, due to their applications as electrical contacts and interconnects, diffusion barriers, low resistance gates, and field-assisted positron moderators, among others. Defects within the silicide layer and/or at the silicide/silicon interface are detrimental to device performance, since they can act as traps for charge carriers, as well as positrons. Pinholes penetrating the film are another detriment particularly for cobalt silicide films, since they allow electrons to permeate the film, rather than travel ballistically, in addition to greatly increasing surface area for recombination events. A series of epitaxial cobalt and nickel silicide thin films, deposited via electron-beam evaporation and annealed at various temperatures, have been grown on single-crystal silicon (111) substrates, in an effort to establish a relationship between deposition and processing parameters and film quality. The films have been analyzed by transmission and scanning electron microscopy, sputter depth profile Auger, and slow positron annihilation spectroscopy. The latter has been shown to both correlate and complement the traditional electron microscopy results.

Frost, R.L.; DeWald, A.B. (Georgia Institute of Technology, Atlanta, Georgia 30332 (USA)); Zaluzec, M.; Rigsbee, J.M. (University of Illinois, Urbana, Illinois 61801 (USA)); Nielsen, B.; Lynn, K.G. (Brookhaven National Laboratory, Upton, New York 11973 (USA))

1990-07-01T23:59:59.000Z

353

Use of non evaporable getter pumps to ensure long term performances of high quantum efficiency photocathodes  

SciTech Connect

High quantum efficiency photocathodes are routinely used as laser triggered emitters in the advanced high brightness electron sources based on radio frequency guns. The sensitivity of “semiconductor” type photocathodes to vacuum levels and gas composition requires special care during preparation and handling. This paper will discuss the results obtained using a novel pumping approach based on coupling a 20?l s{sup ?1} sputter ion getter pump with a CapaciTorr® D100 non evaporable getter (NEG) pump. A pressure of 8?10{sup ?8}?Pa was achieved using only a sputter ion pump after a 6?day bake-out. With the addition of a NEG pump, a pressure of 2?10{sup ?9}?Pa was achieved after a 2?day bake-out. These pressure values were maintained without power due to the ability of the NEG to pump gases by chemical reaction. Long term monitoring of cathodes quantum efficiencies was also carried out at different photon wavelengths for more than two years, showing no degradation of the photoemissive film properties.

Sertore, Daniele, E-mail: daniele.sertore@mi.infn.it; Michelato, Paolo; Monaco, Laura [Istituto Nazionale di Fisica Nucleare Sez. Milano – LASA, Via Fratelli Cervi 201, I-20090 Segrate (Italy); Manini, Paolo; Siviero, Fabrizio [SAES Getters S.p.A., Viale Italia 77, 20020 Lainate (Italy)

2014-05-15T23:59:59.000Z

354

Evaporation-driven growth of large crystallized salt structures in a porous medium  

Science Journals Connector (OSTI)

Subflorescence refers to crystallized salt structures that form inside a porous medium. We report a drying experiment revealing major development of subflorescence in the dry region of the porous medium away from the liquid zone. Using a combination of image analyses and numerical computations, we show that the growth is directly correlated to the evaporation flux distribution along the boundary of the growing salt structure. This indicates that the salt is transported into the domain occupied by the salt structure in the porous medium up to the structure periphery, where salt deposition takes place. This is confirmed when a growing salt structure encounters dry subflorescence formed earlier during the drying process. The dry subflorescence is reimbibed and resumes its growth. The analysis also suggests that the solution within the growing subflorescence is in equilibrium with the crystallized salt wall. These results shed light on the growth mechanisms of subflorescence, a phenomenon that can play a fundamental role in several important issues such as carbon dioxide sequestration or salt weathering.

N. Sghaier; S. Geoffroy; M. Prat; H. Eloukabi; S. Ben Nasrallah

2014-10-14T23:59:59.000Z

355

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-07-01T23:59:59.000Z

356

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-01-01T23:59:59.000Z

357

Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine  

SciTech Connect

This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

Rawlinson, K.S.; Adkins, D.R.

1995-05-01T23:59:59.000Z

358

Effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential split-system air conditioners  

E-Print Network (OSTI)

EFFECTS OF SYSTEM CYCLING, EVAPORATOR AIRFLOW, AND CONDENSER COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to the Office of Graduate Studies... COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

Dooley, Jeffrey Brandon

2005-02-17T23:59:59.000Z

359

Exact multipoint and multitime correlation functions of a one-dimensional model of adsorption and evaporation of dimers  

Science Journals Connector (OSTI)

In this work, we provide a method that allows us to compute exactly the multipoint and multitime correlation functions of a one-dimensional stochastic model of dimer adsorption evaporation with random (uncorrelated) initial states. In particular, explicit expressions of the two-point noninstantaneous/instantaneous correlation functions are obtained. The long-time behavior of these expressions is discussed in detail and in various physical regimes.

Mauro Mobilia

2002-04-04T23:59:59.000Z

360

EGR Catalyst for Cooler Fouling Reduction  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Heterostructure integrated thermionic coolers Ali Shakouria)  

E-Print Network (OSTI)

that with available high electron mobility and low thermal conductivity materials, and with optimized conduction band in the material given by electrical conductivity , and heat conduction from the hot to the cold junctions given by coefficient of thermal conductivity .1 Recently there have been proposals to improve the ther- moelectric

Bowers, John

362

Computational Study of Transverse Peltier Coolers.  

E-Print Network (OSTI)

??Transverse thermoelectricity can be observed in materials with anisotropic properties. As naturally occurring anisotropic materials are rare, transverse thermoelectricity needs to be produced artificially. One… (more)

Ali, Syed Ashraf

2013-01-01T23:59:59.000Z

363

Variably insulating portable heater/cooler  

DOE Patents (OSTI)

A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

Potter, Thomas F. (Denver, CO)

1998-01-01T23:59:59.000Z

364

Variably insulating portable heater/cooler  

DOE Patents (OSTI)

A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

Potter, T.F.

1998-09-29T23:59:59.000Z

365

Outside heat transfer coefficients for atmospheric coolers  

E-Print Network (OSTI)

in unit time, then Oq (23 ) Subtracting Equation 20 from Equation 22 gives f =D ), ' - Z))~ q(~W) (@) c I Wg C (25) then = C5('at) (26 ) Eliminating Dq from Equation l8 and Equation 26 gives B Clq (~f) (27) taking limit DA ~0 g(~y) = Bg (ai...'bo cr'oss-socti &nal area, s rare feet Surface area for '&oat r'ansfor& square feet I& g moan to"!;orat' re differs;ico, degrees . 'ai, ronho i t 97. 83 77. 5'. 102. 96 18l!. , 27li. ~ 3. 17 O. O177 l!9 7l!. 1$. 38 Tube ". ide rate, ' Ur por...

George, David Mark

2012-06-07T23:59:59.000Z

366

Modelica-based modelling and simulation of dry-expansion shell-and-tube evaporators working with alternative refrigerant mixtures  

Science Journals Connector (OSTI)

A new methodology of intermediate complexity level is developed to model the dry-expansion shell and U-tube evaporators. The model has a reasonable level of accuracy and uses fundamental physical principles in a distributed parameters approach capable of detecting the complex circuit of the shell-side flow. This level of details is necessary to simulate accurately the zeotropic refrigerant mixtures evaporation. Using Modelica language gives a heat exchanger model with a generic flow arrangement. The model is experimentally validated using a standard shell-and-tube evaporator working with HFC-134a. Three distinct working fluids, pure HFC-134a, R-407C, and a specially selected glide matching refrigerant mixture are simulated in the same heat source duty with different shell-and-tube configurations. Three different gas superheat values are also taken into account. The total amount of irreversibility is considered by calculating the total exergy losses. It is concluded that the effect of the temperature profile of any refrigerant mixture can be substantial on the relative performance of a particular heat exchanger configuration compared to counter-flow configuration.

Khattar Assaf; Assaad Zoughaib; Denis Clodic

2011-01-01T23:59:59.000Z

367

Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube  

SciTech Connect

Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

Aroonrat, Kanit; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

2011-01-15T23:59:59.000Z

368

Spray evaporation heat transfer performance in R-123 in tube bundles  

SciTech Connect

This study focuses on evaluating the heat transfer performance of refrigerant R-123 in the spray evaporation environment for pure refrigerant and for the case of lubricant addition. Tests were conducted with triangular-pitch tube bundles made from enhanced boiling tubes, enhanced condensation tubes, and plain-surface tubes. A second enhanced boiling surface tube bundle, made with a square-pitch tube alignment, was also tested so a comparison could be made between the square- and triangular-pitch geometries. In addition to pure refrigerant work, experiments were performed with small concentrations of a 305 SUS naphthenic mineral oil to evaluate its effect on falling-film heat transfer performance. Two different refrigerant supply rates were used in this work so the effects of film-feed supply rate could be interpreted from the data. Refrigerant was introduced to the test section via low-pressure-drop, wide-angle nozzles located directly over the tube bundle. Data were taken over a heat flux range of 40 kW/m{sup 2} (12,688 Btu/[h{center_dot}ft{sup 2}]) to 19 kW/m{sup 2} (6,027 Btu/[h{center_dot}ft{sup 2}]), while the refrigerant supply rate remained fixed. Collector tests were performed in parallel with the heat transfer experiments so the amount of refrigerant bypassing the tube bundle could be determined. It was found that the heat transfer coefficients were dependent upon film-feed supply rate, oil concentration, and heat flux. The enhanced boiling surface yielded higher heat transfer coefficients than either the enhanced condensation surface or the plain surface.

Moeykens, S. [Trane Co., LaCrosse, WI (United States); Kelly, J.E. [Kansas State Univ., Manhattan, KS (United States). Dept. of Mechanical Engineering; Pate, M.B. [Iowa State Univ., Ames, IA (United States). Mechanical Engineering Dept.

1996-12-31T23:59:59.000Z

369

THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY  

SciTech Connect

We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets' rock/iron cores and the impact that this has on mass-loss evolution. We explore in detail how our coupled models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass-loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass-loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune-sized planets. We show that 1.8-4.0 R{sub ?} planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow 'occurrence valley' in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. that inner planets are preferentially smaller within the systems.

Lopez, Eric D.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2013-10-10T23:59:59.000Z

370

Operation of a low temperature absorption chiller at rating point and at reduced evaporator temperature. Final report  

SciTech Connect

The returned SAM 015 (fifteen ton Solar Absorption Machine) chiller was given a cursory visual inspection, some obvious problems were remedied, and then it was placed on a test stand to get a measure of dirty performance. It was then given a standard acid clean, the water side of the tubes was brushed clean, and then the machine was retested. The before and after cleaning data were compared to equivalent data taken before the machine was shipped. The second part of our work statement was to experimentally demonstrate the technical feasibility of operating the chiller at evaporator temperatures below O/sup 0/C (32/sup 0/F) and identify any operational problems.

Best, R.; Biermann, W.; Reimann, R.

1985-01-01T23:59:59.000Z

371

Low-cost thin-film absorber/evaporator for an absorption chiller. Final report, May 1992-April 1993  

SciTech Connect

The feasibility of making the absorber and evaporator of a small lithium-bromide absorption chiller from thin plastic films was studied. Tests were performed to measure (1) pressure limitations for a plastic thin-film heat exchanger, (2) flow pressure-drop characteristics, (3) air permeation rates across the plastic films, and (4) creep characteristics of the plastic films. Initial tests were performed on heat exchangers made of either low-density polyethylene (LDPE), high-density polyethylene (HDPE), or a LDPE/HDPE blend. While initial designs for the heat exchanger failed at internal pressures of only 5 to 6 psi, the final design could withstand pressures of 34 psi.

Lowenstein, A.; Sibilia, M.

1993-04-01T23:59:59.000Z

372

Audit of the Replacement High Level Waste Evaporator at Savannah River, ER-B-95-04  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OF INSPECTOR GENERAL REPORT ON THE AUDIT OF THE REPLACEMENT HIGH LEVEL WASTE EVAPORATOR AT THE SAVANNAH RIVER SITE The Office of Audit Services wants to make the distribution of its audit reports as customer friendly and cost effective as possible. Therefore, this report will be available electroni- cally through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doc.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov U.S. Department of Energy Human Resources and Administration

373

RHEOLOGICAL AND ELEMENTAL ANALYSES OF SIMULANT SB5 SLURRY MIX EVAPORATOR-MELTER FEED TANK SLURRIES  

SciTech Connect

The Defense Waste Processing Facility (DWPF) will complete Sludge Batch 5 (SB5) processing in fiscal year 2010. DWPF has experienced multiple feed stoppages for the SB5 Melter Feed Tank (MFT) due to clogs. Melter throughput is decreased not only due to the feed stoppage, but also because dilution of the feed by addition of prime water (about 60 gallons), which is required to restart the MFT pump. SB5 conditions are different from previous batches in one respect: pH of the Slurry Mix Evaporator (SME) product (9 for SB5 vs. 7 for SB4). Since a higher pH could cause gel formation, due in part to greater leaching from the glass frit into the supernate, SRNL studies were undertaken to check this hypothesis. The clogging issue is addressed by this simulant work, requested via a technical task request from DWPF. The experiments were conducted at Aiken County Technology Laboratory (ACTL) wherein a non-radioactive simulant consisting of SB5 Sludge Receipt and Adjustment Tank (SRAT) product simulant and frit was subjected to a 30 hour SME cycle at two different pH levels, 7.5 and 10; the boiling was completed over a period of six days. Rheology and supernate elemental composition measurements were conducted. The caustic run exhibited foaming once, after 30 minutes of boiling. It was expected that caustic boiling would exhibit a greater leaching rate, which could cause formation of sodium aluminosilicate and would allow gel formation to increase the thickness of the simulant. Xray Diffraction (XRD) measurements of the simulant did not detect crystalline sodium aluminosilicate, a possible gel formation species. Instead, it was observed that caustic conditions, but not necessarily boiling time, induced greater thickness, but lowered the leach rate. Leaching consists of the formation of metal hydroxides from the oxides, formation of boric acid from the boron oxide, and dissolution of SiO{sub 2}, the major frit component. It is likely that the observed precipitation of Mg(OH){sub 2} and Mn(OH){sub 2} caused the increase in yield stress. The low pH run exhibited as much as an order of magnitude greater B and Li (frit components) leachate concentrations in the supernate. At high pH a decrease of B leaching was found and this was attributed to adsorption onto Mg(OH){sub 2}. A second leaching experiment was performed without any sludge to deconvolute the leach rate behavior of Frit 418 from those of the SB5 sludge-Frit 418 system. At high pH, the sludgeless system demonstrated very fast leaching of all the frit components, primarily due to fast dissolution of the main component, silica, by hydroxide anion; various semiconductor studies have established this reactivity. Overall, the frit-water system exhibited greater leaching from a factor two to almost three orders of magnitude (varying by conditions and species). The slower leaching of the sludge system is possibly due to a greater ionic strength or smaller driving force. Another possible reason is a physical effect, coating of the frit particles with sludge; this would increase the mass transfer resistance to leaching. Based on this study, the cause of clogs in the melter feed loop is still unknown. A possible explanation is that the SME product, like the simulant, is too thin and could contribute to a loss of two-phase flow which could cause plugging of a restricted and poorly mixed zone like the melter feed loop. This is feasible since a previous study of a slurry showed an increase in resistance to flow at lower flow rates. Testing with a radioactive SME sample is underway and should help understand this potential mechanism.

Fernandez, A.

2010-02-08T23:59:59.000Z

374

Final characterization and safety screen report of double shell tank 241-AP-105 for evaporator campaign 97-1  

SciTech Connect

Evaporator candidate feed from tank 241-AP-105 (hereafter referred to as AP-105) was characterized for physical, inorganic, organic and radiochemical parameters by the 222-S Laboratory as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4, and Engineering Change Notice, number 635332, Reference 5. This data package satisfies the requirement for a format IV, final report as described in Reference 1. This data package is also a follow-up to the 45-Day safety screen results for tank AP-105, Reference 8, which was issued on November 5, 1996, and is attached as Section II to this report. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory's Quality Assurance P1an, References 6 and 7. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation.

Miller, G.L.

1997-01-20T23:59:59.000Z

375

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4  

SciTech Connect

Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

Not Available

1994-04-01T23:59:59.000Z

376

Habitable Evaporated Cores: Transforming Mini-Neptunes into Super-Earths in the Habitable Zones of M Dwarfs  

E-Print Network (OSTI)

We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with $\\sim 1 M_\\oplus$ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

Luger, Rodrigo; Lopez, Eric; Fortney, Jonathan; Jackson, Brian; Meadows, Victoria

2015-01-01T23:59:59.000Z

377

Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation  

SciTech Connect

Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

2014-03-26T23:59:59.000Z

378

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

379

Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants  

SciTech Connect

This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

Ken Mortensen

2009-06-30T23:59:59.000Z

380

Statistical and evaporation models for the neutron emission energy spectrum in the center-of-mass system from fission fragments  

Science Journals Connector (OSTI)

Abstract The neutron emission energy spectra in the CMS (center-of-mass) frame from two compound nuclei produced by fission are studied. The neutron spectra calculated with the Hauser–Feshbach statistical model are compared with the evaporation theory, and the definition of the temperature is revisited. Using the Monte Carlo technique we average the CMS neutron spectra from many fission fragments to construct the representative CMS spectrum from both the light and heavy fragments. The CMS spectra for each fission fragment pair are also converted into the laboratory frame to calculate the total prompt fission neutron spectrum that can be observed experimentally. This is compared to measured laboratory data for thermal neutron induced fission on 235U. We show that the Hauser–Feshbach calculation gives a different spectrum shape than the Madland–Nix model calculation.

T. Kawano; P. Talou; I. Stetcu; M.B. Chadwick

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Interaction of CO molecules with evaporated silver, gold, and copper films: an infrared spectroscopic investigation using a thermal detection technique  

SciTech Connect

We have used infrared absorption spectroscopy to study the adsorption of CO at low temperatures on evaporated films of silver, gold, and copper as a function of the coverage of CO and the deposition temperature of the metal. For all three metals we observe two distinct adsorption regimes when the cold metal is exposed to CO gas. These regimes arise depending on whether the deposition temperature of the metal (or the highest temperature at which the metal has been annealed) is above or below a threshold temperature. For all three metals, the shift of the vibrational frequency with CO coverage has been analyzed, and the static and dynamic contributions separated. An analysis of infrared intensities and vibrational polarizabilities shows no evidence for any special infrared enhancement analogous to the large enhancement in Raman cross section peculiar to adsorption on rough noble metal films deposited at low temperatures.

Dumas, P.; Tobin, R.G.; Richards, P.L.

1985-09-01T23:59:59.000Z

382

Formation of anion vacancies by Langmuir evaporation from InP and GaAs (110) surfaces at low temperatures  

Science Journals Connector (OSTI)

A low-temperature Langmuir-evaporation regime is observed by scanning tunneling microscopy on InP and GaAs (110) surfaces. It is characterized by the formation of positively charged anion monovacancies even at room temperature. This vacancy formation has been studied as a function of time on InP between 293 and 480 K and on GaAs at room temperature. On InP the maximum vacancy concentration is obtained at 435 K. At this temperature 1.2% of the P surface sites are vacant. At higher temperatures the concentration decreases. The observations are explained by a competition between, on the one hand, P-vacancy–adatom pair production followed by P2 molecule formation and desorption and, on the other hand, phosphorus outdiffusion from the bulk.

Ph. Ebert, M. Heinrich, M. Simon, K. Urban, and M. G. Lagally

1995-04-15T23:59:59.000Z

383

Development of a simultaneous measurement system for SAXS-WAXD and the thickness of coating films during film formation by solvent evaporation  

Science Journals Connector (OSTI)

A new simultaneous measurement system for small-angle X-ray scattering and wide-angle X-ray diffraction (SAXS-WAXD) and the thickness of coating films, and a data correction method for the scattering invariant from SAXS during solvent evaporation, are presented. The correction was important when investigating the film formation mechanism on drying.

Shimokita, K.

2014-01-30T23:59:59.000Z

384

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

Burt, D.L.

1994-04-01T23:59:59.000Z

385

Self-Assembly of Spherical Particles on an Evaporating Sessile Droplet Michael Schnall-Levin, Eric Lauga, and Michael P. Brenner*  

E-Print Network (OSTI)

Self-Assembly of Spherical Particles on an Evaporating Sessile Droplet Michael Schnall-Levin, Eric for self-assembly is to design an energy landscape so that the desired outcome is the energy minimum.1 together. The extreme nonuniqueness of the self-assembly of three- dimensional particle clusters

Lauga, Eric

386

Evaporation characteristics of wetlands:experience from a wet grassland and a reedbed using eddy correlation measurements Hydrology and Earth System Sciences, 7(1), 1121 (2003) EGU  

E-Print Network (OSTI)

Evaporation characteristics of wetlands:experience from a wet grassland and a reedbed using eddy characteristics of wetlands: experience from a wet grassland and a reedbed using eddy correlation measurements M July to November 1999 using the eddy correlation method on two wetland types ­ wet grassland

Paris-Sud XI, Université de

387

Amol Kane, Kevin Budhoo, and Prof. David Sinton (Supervising Professor) Department of Mechanical and Industrial Engineering, University of Toronto  

E-Print Network (OSTI)

the air to affect evaporation · The solution employs solar heated water in addition to an electric heat gas will be completely replaced with solar and electricity as the energy inputs to the humidifier Canada - Climate Change - Canada's GHG Emissions." Environment Canada - Environment Canada. N.p., n

388

A comparative study of the electrical properties of Pd/ZnO Schottky contacts fabricated using electron beam deposition and resistive/thermal evaporation techniques  

SciTech Connect

A systematic investigation to check the quality of Pd Schottky contacts deposited on ZnO has been performed on electron beam (e-beam) deposited and resistively/thermally evaporated samples using current-voltage, IV, and conventional deep level transient spectroscopy (DLTS) measurements. Room temperature IV measurements reveal the dominance of pure thermionic emission on the resistively evaporated contacts, while the e-beam deposited contacts show the dominance of generation recombination at low voltages, <0.30 V, and the dominance of pure thermionic emission at high voltages, greater than 0.30 V. The resistively evaporated contacts have very low reverse currents of the order of 10{sup -10} A at a reverse voltage of 1.0 V whereas the e-beam deposited contacts have reverse currents of the order of 10{sup -6} A at 1.0 V. Average ideality factors have been determined as (1.43 {+-} 0.01) and (1.66 {+-} 0.02) for the resistively evaporated contacts and e-beam deposited contacts, respectively. The IV barrier heights have been calculated as (0.721 {+-} 0.002) eV and (0.624 {+-} 0.005) eV for the resistively evaporated and e-beam deposited contacts, respectively. Conventional DLTS measurements reveal the presence of three prominent defects in both the resistive and e-beam contacts. Two extra peaks with energy levels of 0.60 and 0.81 eV below the conduction band minimum have been observed in the e-beam deposited contacts. These have been explained as contributing to the generation recombination current that dominates at low voltages and high leakage currents. Based on the reverse current at 1.0 V, the degree of rectification, the dominant current transport mechanism and the observed defects, we conclude that the resistive evaporation technique yields better quality Schottky contacts for use in solar cells and ultraviolet detectors compared to the e-beam deposition technique. The 0.60 eV has been identified as possibly related to the unoccupied level for the doubly charged oxygen vacancy, V{sub o}{sup 2+}.

Mtangi, W.; Auret, F. D.; Janse van Rensburg, P. J.; Coelho, S. M. M.; Legodi, M. J.; Nel, J. M.; Meyer, W. E.; Chawanda, A. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield, 0028 (South Africa)

2011-11-01T23:59:59.000Z

389

Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL  

SciTech Connect

The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

1990-09-01T23:59:59.000Z

390

Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser  

SciTech Connect

The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-?m thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550?°C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450?°C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550?°C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450?°C, which limits the solar cell performance by n?=?2 recombination, and a performance degradation is expected due to severe shunting.

Yun, J., E-mail: j.yun@unsw.edu.au; Varalmov, S.; Huang, J.; Green, M. A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Suntech R and D Australia, Botany, New South Wales 2019 (Australia)

2014-06-16T23:59:59.000Z

391

Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators  

DOE Patents (OSTI)

A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.

Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.

1994-07-19T23:59:59.000Z

392

Synthesis, structural and electrochemical properties of electron beam evaporated V{sub 2}O{sub 5} thin films  

SciTech Connect

Vanadium pentoxide is one of the most promising cathode materials because it offers high energy density, low cost, low toxicity over the other cathode materials. Its layered and open structure makes this material in thin film form well suited for electro-chemical insertion reactions with the Li ions. In the present investigation, V{sub 2}O{sub 5} thin films have been prepared by electron beam evaporation technique on gold coated silicon substrates maintained at a substrate temperature of 250 Degree-Sign C in an oxygen partial pressure of 2 Multiplication-Sign 10{sup -4} mbar. The XRD patterns exhibited three predominant diffraction peaks corresponding to (200) (001) and (400) planes of orthorhombic phase of V{sub 2}O{sub 5} with P{sub mnm} space group. The electrochemical characteristics of V{sub 2}O{sub 5} thin films with thickness of 600 nm were examined in non-aqueous region. The film exhibited step wise discharge with two plateaus. The as-deposited film delivered a discharge capacity of 70 {mu}Ah/(cm{sup 2}-{mu}m) at a current density of 30 {mu}A/cm{sup 2}. Annealing of these films at 450 Degree-Sign C exhibited a better discharge capacity of 90 {mu}Ah/(cm{sup 2}-{mu}m).

Hussain, O. M.; Rosaiah, P. [Thin Film Laboratory, Department of Physics, Sri Venkateswara University, Tirupati-517 502 (India)

2012-06-25T23:59:59.000Z

393

Concentration of remote-handled, transuranic, sodium nitrate-based sludge using agitated thin-film evaporators  

SciTech Connect

The Waste Handling and Packaging Plant (WHPP) is being designed at Oak Ridge National Laboratory (ORNL) to prepared transuranic waste for final disposal. Once operational, this facility will process, package, and certify remote-handled transuranic waste for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. One of the wastes that will be handled at WHIPP is the transuranic sludge currently stored at ORNL in eight 50,000-gal underground tanks. The use of an Agitated Thin-Film Evaporator (ATFE) for concentration of this waste is being investigated. Tests have shown that the ATFE can be used to produce a thick slurry, a powder, or a fused salt. A computer model developed at the Savannah River Plant (SRP) to simulate the operation of ATFE's on their waste is being modified for use on the ORNL transuranic sludge. This paper summarizes the results of the test with the ATFEs to date, discusses the changes in the SRP model necessary to use this model with the ORNL waste, and compares the results of the model with the actual data taken from the operation of ATFEs at vendors' test facilities. 8 refs., 1 fig., 3 tabs.

Walker, J.F. Jr.; Youngblood, E.L.; Berry, J.B. (Oak Ridge National Lab., TN (USA)); Pen, Ben-Li (Institute of Nuclear Energy Research, Lung-Tan (Taiwan))

1991-01-01T23:59:59.000Z

394

High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine  

Science Journals Connector (OSTI)

Abstract The first application of Laser Induced Thermal Gratings Spectroscopy (LITGS) for precision thermometry in a firing GDI optical engine is reported. Crank-angle resolved temperature values were derived from LITGS signals generated in fuel vapour with a pressure dependent precision in the range 0.1–1.0% allowing differences in evaporative or charge cooling effects arising from a variety of ethanol and methanol blends with a model gasoline fuel to be quantified. In addition, fluctuations in temperature arising from cyclic variations in compression were directly detected and measured.

Ben Williams; Megan Edwards; Richard Stone; John Williams; Paul Ewart

2014-01-01T23:59:59.000Z

395

Modeling of plasma-controlled evaporation and surface condensation of Al induced by 1.06 and 0.248 {mu}m laser radiations  

SciTech Connect

Phase transition on the surface of an aluminum target and vapor plasma induced by laser irradiation in the nanosecond regime at the wavelengths of 1.06 {mu}m in the infrared range and 0.248 {mu}m in the ultraviolet range with an intensity of 10{sup 8}-10{sup 9} W/cm{sup 2} in vacuum are analyzed. Special attention is paid to the wavelength dependence of the observed phenomena and the non-one-dimensional effects caused by the nonuniform (Gaussian) laser intensity distribution and the lateral expansion of the plasma plume. A transient two-dimensional model is used which includes conductive heat transfer in the condensed phase, radiative gas dynamics, and laser radiation transfer in the plasma as well as surface evaporation and back condensation at the phase interface. It was shown that distinctions in phase transition dynamics for the 1.06 and 0.248 {mu}m radiations result from essentially different characteristics of the laser-induced plasmas. For the 1.06 {mu}m radiation, evaporation stops after the formation of hot optically thick plasma, can occasionally resume at a later stage of the pulse, and proceeds nonuniformly in the spot area, and the major contribution to the mass removal occurs in the outer part of the irradiated region. Plasma induced by the 0.248 {mu}m laser is colder and partially transparent since it transmits 30%-70% of the incident radiation; therefore evaporation does not stop but continues in the subsonic regime with the Mach number of about 0.1. The amount of evaporated matter that condenses back to the surface is as high as 15%-20% and less than 10% for the 1.06 and 0.248 {mu}m radiations, respectively. For a beam radius smaller than {approx}100 {mu}m, the screening and retarding effect of the plasma weakens because of the lateral expansion, thickness of the removed layer increases, and condensation after the end of the pulse is not observed. Comparison of the numerical and experimental results on the removed layer thickness has shown, in particular, the importance of accounting for the plasma effect to predict the correct trends for radiation intensity and beam radius.

Mazhukin, V. I.; Nossov, V. V.; Smurov, I. [Institute of Mathematical Modeling of RAS, 4a Miusskaya Square, 125047 Moscow (Russian Federation); Ecole Nationale d'Ingenieurs de Saint-Etienne, 58 rue Jean Parot, 42023 Saint-Etienne Cedex 2 (France)

2007-01-15T23:59:59.000Z

396

Thermionic converter with differentially heated cesium-oxygen source and method of operation  

SciTech Connect

A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

Rasor, Ned S. (Cupertino, CA); Riley, David R. (West Newton, PA); Murray, Christopher S. (Bethel Park, PA); Geller, Clint B. (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

397

Thermionic converter with differentially heated cesium-oxygen source and method of operation  

SciTech Connect

A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided, wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

Rasor, N.S.; Riley, D.R.; Murray, C.S.; Geller, C.B.

1998-12-01T23:59:59.000Z

398

Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report  

SciTech Connect

During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

1984-02-01T23:59:59.000Z

399

Water-quality and sediment-chemistry data of drain water and evaporation ponds from Tulare Lake Drainage District, Kings County, California, March 1985 to March 1986  

SciTech Connect

Trace element and major ion concentrations were measured in water samples collected monthly between March 1985 and March 1986 at the MD-1 pumping station at the Tulare Lake Drainage District evaporation ponds, Kings County, California. Samples were analyzed for selected pesticides several times during the year. Salinity, as measured by specific conductance, ranged from 11,500 to 37,600 microsiemens/centimeter; total recoverable boron ranged from 4,000 to 16,000 micrg/L; and total recoverable molybdenum ranged from 630 to 2,600 microg/L. Median concentrations of total arsenic and total selenium were 97 and 2 microg/L. Atrazine, prometone, propazine, and simazine were the only pesticides detected in water samples collected at the MD-1 pumping station. Major ions, trace elements, and selected pesticides also were analyzed in water and bottom-sediment samples from five of the southern evaporation ponds at Tulare Lake Drainage District. The water samples increased in specific conductance and concentrations of total arsenic, total recoverable boron and total recoverable molybdenum going from pond 1 to pond 10, respectively. Median concentrations of total arsenic and total selenium in the bottom sediments were 4.0 and 0.9 microg/g, respectively. 6 refs., 2 figs., 12 tabs.

Fujii, R.

1988-01-01T23:59:59.000Z

400

Experimental study on roll-bond collector/evaporator with optimized-channel used in direct expansion solar assisted heat pump water heating system  

Science Journals Connector (OSTI)

Abstract In this investigation, a direct expansion solar assisted heat pump (DX-SAHP) water heating system using an optimized-channel roll-bond collector/evaporator was designed, fabricated and tested. Optimized fractal T-shape and honeycomb shaped channel patterns were adopted to improve the thermal performance of the roll-bond panel, which acts as both the evaporator for the heat pump system and the collector for solar thermal utilization. The performance of the studied water heating system using the south-faced, wall-mounted roll-bond panel with the new composite channel patterns was investigated experimentally. Results show that, under the experimental conditions, the roll-bond panel with optimized channel pattern shows better thermal properties, and the performance the DX-SAHP system is significantly enhanced by using the roll-bond panel with optimized channel pattern. Compared to the conventional parallel channel pattern, fractal T-shaped channel pattern enhanced COP of the system by 14.6%, and heating capacity by 17.3%. And the honeycomb shaped channel pattern further enhanced COP and heating capacity of the system by 5.9% and 6.2%.

Xiaolin Sun; Jingyi Wu; Yanjun Dai; Ruzhu Wang

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FIELD DEPLOYMENT EVALUATION OF THE FREEZE-THAW/EVAPORATION (FTE) PROCESS TO TREAT OIL AND GAS PRODUCED WATERS. Task 45. Final topical report  

SciTech Connect

TASK 45 FIELD DEPLOYMENT EVALUATION OF THE FREEZE-THAW/ EVAPORATION (FTE ) PROCESS TO TREAT OIL AND GAS PRODUCED WATERS coupling evaporation with freezing. This offers operators a year- round method for treating produced water. Treating water with the FTE process reduces the volume of water to be disposed of as well as purifying the water to a level acceptable for watering livestock and agricultural lands. This process is currently used at two evaporation facilities, one in the San Juan Basin in New Mexico and one in the Green River Basin in Wyoming. the freezing point below that of pure water. When such a solution is cooled below 32EF, relatively pure ice crystals form, along with an unfrozen brine solution that contains elevated concentrations of salts. Because of the brine's high concentration of these constituents, its density is greater than that of the ice, and the purified ice and brine are easily separated. Coupling the natural processes of freezing and evaporation makes the FTE process a more cost- effective and efficient method for the treatment and disposal of produced water and allows for year-round operation of an FTE facility. drops below 32 F, produced water is automatically pumped from a holding pond and sprayed onto a freezing pad. The freezing pad consists of an elevated framework of piping with regularly placed, upright, extendable spray heads similar to those used to irrigate lawns. As the spray freezes, an ice pile forms over the elevated framework of pipes, and the brine, with an elevated constituent concentration, drains from the ice pile. The high-salinity brine, identified by its high electrical conductivity, is separated using automatic valves and pumped to a pond where it can subsequently be disposed of by conventional methods. As the ice pile increases in height, the sprayers are extended. When the ice on the freezing pad melts, the relatively pure water is pumped from the freezing pad and discharged or stored for later use . No new wastes are generated by the FTE process. and the U. S. Department of Energy has been conducted since 1992 to develop a commercial FTE purification process for produced waters. Numeric process and economic modeling, as well as the laboratory-scale process simulation that confirmed the technical and economic feasibility of the process, was performed by B. C. Technologies, Ltd., and the University of North Dakota Energy & Environmental Research Center (EERC) from 1992 to 1995. They then conducted a field evaluation from 1995 to 1997 in New Mexico's San Juan Basin at a conventional evaporation facility operated by Amoco Production Company. The results of this evaluation confirmed that the FTE process has significant commercial economic potential. A new facility was designed in 1998, and its construction is expected to begin in 1999.

Ames A. Grisanti; James A. Sorensen

1999-05-01T23:59:59.000Z

402

The Impact of PM and HC on EGR Cooler Fouling  

Energy.gov (U.S. Department of Energy (DOE))

Data were used to correlate an EGR cooling fouling model developed to test the impact of PM and HC on fouling

403

The DOD Family of Linear Drive Coolers for Weapon Systems  

Science Journals Connector (OSTI)

The critical module of all second generation thermal imaging systems is the Standard Advanced Dewar Assembly (SADA). To meet the requirements of advanced Infrared (IR) Imaging systems of the 1990s and beyond t...

H. Dunmire; J. Shaffer

1997-01-01T23:59:59.000Z

404

A Combined Water Heater, Dehumidifier, and Cooler (WHDC)  

Energy.gov (U.S. Department of Energy (DOE))

Lead Performer: University of Florida, Gainesville, FloridaPartners: -- Oak Ridge National Laboratory - Oak Ridge, TN -- Stony Brook University - Stony Brook, NY

405

Universal method makes used nuclear fuel reprocessing cooler...  

NLE Websites -- All DOE Office Websites (Extended Search)

its disposal safer has been developed by researchers from the U.S. Department of Energy's Argonne National Laboratory and Pacific Northwest National Laboratory. A significant...

406

Cooler and particulate separator for an off-gas stack  

DOE Patents (OSTI)

This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

Wright, G.T.

1991-04-08T23:59:59.000Z

407

Factors Impacting EGR Cooler Fouling - Main Effects and Interactions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10styles.pdf More Documents & Publications Identification...

408

Testing a Prototype Adsorption Cooler in a Research Dwelling  

E-Print Network (OSTI)

Cooling with heat is hot. Demand for cooling often coincides with the supply of solar heat. This makes thermally driven chillers (TDC's) in combination with solar collectors interesting for improving the energy efficiency of comfort cooling. Several...

Sijpheer, N.; Bakker, E.J.; De Boer, R.

2010-01-01T23:59:59.000Z

409

EECBG Success Story: Learning is Now Much 'Cooler' for Maryland...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

at Norton Middle School. | Photo courtesy of Norton Public Schools. EECBG Success Story: Massachusetts Middle School Goes Local for PV Solar Energy System North Community Police...

410

Rate of cooling and power consumption of farm milk coolers  

E-Print Network (OSTI)

milk usinm asit tcr1;. a'. er :;th wit::- out ice bank - mnruier load, i, ". . . rch 20, 196'd. '1'he ac:blent tem; er ature was ~O al ~ 6 & ~ 4 ~ 0 ~ i ~ 0 ~ ~ 0 ~ * ~ ~ ~ I V Typical data sheet for rate of cooling miiir using' crit... VIE Discussion of Resolta , , ~ . ~ . . . 51 VII. Corclusions ~ ~ ~ 55 VIII. sitsrsture Citsrl 55 Page X Typical data sheet for rats of cooling milk usinw agitated water bath with ice bank morning load~ Iarch 80, 195Ri The ambient temperature...

McCardle, Arthur, Jr

2012-06-07T23:59:59.000Z

411

Factors Impacting EGR Cooler Fouling- Main Effects and Interactions  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

412

Design and manufacture of low cost vaccine cooler  

E-Print Network (OSTI)

Vaccines are very sensitive to temperature, needing to be held between 2 and 80°C to maintain potency. In developing countries where electricity and fuel supplies are unreliable, many vaccines are ruined due to thermal ...

Panas, Cynthia Dawn Walker.

2007-01-01T23:59:59.000Z

413

Cooler and particulate separator for an off-gas stack  

DOE Patents (OSTI)

An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

Wright, George T. (15 Cherry Hills Dr., Aiken, SC 29803)

1992-01-01T23:59:59.000Z

414

Electronic Coolers Based on Superconducting Tunnel Junctions: Fundamentals and Applications  

Science Journals Connector (OSTI)

Thermo-electric transport at the nano-scale is a rapidly developing topic, in particular in superconductor-based hybrid devices. In this review paper, we first discuss the fundamental principles of electronic coo...

H. Courtois; F. W. J. Hekking; H. Q. Nguyen…

2014-06-01T23:59:59.000Z

415

Test results of a combined distributed ion pump/non-evaporable getter pump design developed as a proposed alternative pumping system for the PEP-II asymmetric B-Factory collider  

SciTech Connect

The authors have built and tested an all-in-one combination plate-type distributed ion pump/non-evaporable getter pump design (DIP/NEG) considered as a proposed alternative pumping system for the PEP-II B-Factory High Energy Ring (HER). The DIP portion of the design used a Penning cell hole size of 12 mm in a mostly uniform magnetic field of 0.18 T. The NEG portion of the design used commercially available non-evaporable getter material type St-707{trademark}. A detailed description of the design is presented along with results of pumping speed measurements.

Holdener, F.; Behne, D.; Hathaway, D. [Lawrence Livermore National Lab., CA (United States)] [and others

1995-04-24T23:59:59.000Z

416

New measurement of cross section of evaporation residues from $^{\\textrm{nat}}$Pr+$^{12}$C reaction: A comparative study on the production of $^{149}$Tb  

E-Print Network (OSTI)

Production cross sections of evaporation residues, $^{149}$Tb, $^{150}$Tb, $^{151}$Tb and $^{149}$Gd, have been measured using the stacked foil technique followed by off-line $\\gamma$-spectrometry in $^{12}$C induced reactions on naturally abundant mononuclidic praseodymium target in the 44-79 MeV incident energy range. Measured data have been interpreted comparing with previous measurements and theoretical prediction of nuclear reaction model code \\textsc{PACE4}. About 5% and 14% of the theoretical cross sections have been measured for $^{149}$Tb and $^{150}$Tb, respectively. The new cross sections of $^{149}$Tb complement those measured earlier by $\\alpha$-spectrometry. Cross sections of $^{151}$Tb are comparable to the theory. Cumulative cross section of $^{149}$Gd sheds light on the nuclear reaction mechanism. In addition, a discussion has been made to show the feasibility of producing $^{149}$Tb in $p$- and $\\alpha$-induced reactions on gadolinium isotopes.

Moumita Maiti

2011-09-29T23:59:59.000Z

417

Non-statistical decay and $?$-correlations in the $^{12}$C+$^{12}$C fusion-evaporation reaction at 95 MeV  

E-Print Network (OSTI)

Multiple alpha coincidence and correlations are studied in the reaction $^{12}$C+$^{12}$C at 95 MeV for fusion-evaporation events completely detected in charge. Two specific channels with Carbon and Oxygen residues in coincidence with $\\alpha$-particles are addressed, which are associated with anomalously high branching ratios with respect the predictions by Hauser-Feshbach calculations. Triple alpha emission appears kinematically compatible with a sequential emission from a highly excited Mg. The phase space distribution of $\\alpha$-$\\alpha$ coincidences suggests a correlated emission from a Mg compound, leaving an Oxygen residue excited above the threshold for neutron decay. These observations indicate a preferential $\\alpha$ emission of $^{24}$Mg at excitation energies well above the threshold for $6-\\alpha$ decay.

L. Morelli; G. Baiocco; M. D'Agostino; F. Gulminelli; M. Bruno; U. Abbondanno; S. Appannababu; S. Barlini; M. Bini; G. Casini; M. Cinausero; M. Degerlier; D. Fabris; N. Gelli; F. Gramegna; V. L. Kravchuk; T. Marchi; G. Pasquali; S. Piantelli; S. Valdré; Ad R. Raduta

2014-04-14T23:59:59.000Z

418

Preparative isolation and purification of chemical constituents from the root of Adenophora tetraphlla by high-speed counter-current chromatography with evaporative light scattering detection  

Science Journals Connector (OSTI)

Preparative high-speed counter-current chromatography (HSCCC), as a continuous liquid–liquid partition chromatography with no solid support matrix, combined with evaporative light scattering detection (ELSD) was employed for systematic separation and purification of non-chromophoric chemical components from Chinese medicinal herb Adenophora tetraphlla (Thunb.), Fisch. Nine compounds, including ?-spinasterol, ?-sitosterol, nonacosan-10-ol, 24-methylene cycloartanol, lupenone, 3-O-palmitoyl-?-sitosterol, 3-O-?-d-glucose-?-sitosterol, eicosanoic acid and an unknown compound, were obtained. The compounds were all above 95% determined by high-performance liquid chromatography (HPLC)–ELSD, and their structures were identified by 1H NMR and chemical ionization mass spectroscopy (CI-MS). The results demonstrate that HSCCC coupled with ELSD is a feasible and efficient technique for systematic isolation of non-chromophoric components from traditional medicinal herbs.

Shun Yao; Renming Liu; Xuefeng Huang; Lingyi Kong

2007-01-01T23:59:59.000Z

419

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

420

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Evaporative evolution of a Na–Cl–NO3–K–Ca–SO4–Mg–Si brine at 95°C: Experiments and modeling relevant to Yucca Mountain, Nevada  

Science Journals Connector (OSTI)

A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, NV was evaporated at 95°C in...3, 5 mol % K, and less than 1 mol % each of SO4, Ca, Mg, ?CO2(aq), F, and Si. All m...

Maureen Alai; Mark Sutton; Susan Carroll

2005-06-01T23:59:59.000Z

422

Optical, structural, and electrical properties of Mg{sub 2}NiH{sub 4} thin films in situ grown by activated reactive evaporation  

SciTech Connect

Mg{sub 2}NiH{sub 4} thin films have been prepared by activated reactive evaporation in a molecular beam epitaxy system equipped with an atomic hydrogen source. The optical reflection spectra and the resistivity of the films are measured in situ during deposition. In situ grown Mg{sub 2}NiH{sub 4} appears to be stable in vacuum due to the fact that the dehydrogenation of the Mg{sub 2}NiH{sub 4} phase is kinetically blocked. Hydrogen desorption only takes place when a Pd cap layer is added. The optical band gap of the in situ deposited Mg{sub 2}NiH{sub 4} hydride, 1.75 eV, is in good agreement with that of Mg{sub 2}NiH{sub 4} which has been formed ex situ by hydrogenation of metallic Pd capped Mg{sub 2}Ni films. The microstructure of these in situ grown films is characterized by a homogeneous layer with very small grain sizes. This microstructure suppresses the preferred hydride nucleation at the film/substrate interface which was found in as-grown Mg{sub 2}Ni thin films that are hydrogenated after deposition.

Westerwaal, R. J.; Slaman, M.; Broedersz, C. P.; Borsa, D. M.; Dam, B.; Griessen, R.; Borgschulte, A.; Lohstroh, W.; Kooi, B.; Brink, G. ten; Tschersich, K. G.; Fleischhauer, H. P. [Faculty of Sciences, Department of Physics and Astronomy, Condensed Matter Physics, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); GKSS-Research Center Geesthacht GmbH, WTP, Building 59 Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Institut fuer Nanotechnologie, Forschungszentrum Karlsruhe GmbH, Postfach 36 40 76021 Karlsruhe (Germany); Department of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Institut fuer Schichten und Grenzflaechen, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

2006-09-15T23:59:59.000Z

423

Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation  

SciTech Connect

In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Materials Engineering Department, College of Engineering, University of Kufa, Najaf (Iraq); Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

2012-06-20T23:59:59.000Z

424

Performance Method Overview Page 7-1 7 Performance Method  

E-Print Network (OSTI)

charge in air conditioners · Heating and cooling equipment efficiency · High EER air conditioners storage air conditioners · Air conditioners with evaporatively-cooled condensers · Evaporative coolers ventilation · Zonal control · Water heater efficiency and distribution system type Credit for many

425

One-step method for the production of nanofluids  

DOE Patents (OSTI)

A one step method and system for producing nanofluids by a particle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such (i.e. ethylene glycol) is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. A heater-boat-evaporator having an evaporant material (particle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material, the evaporated material absorbed by the liquid film to form nanofluid.

Kostic, Milivoje (Chicago, IL); Golubovic, Mihajlo (Chicago, IL); Hull, John R. (Downers Grove, IL); Choi, Stephen U. S. (Napersville, IL)

2010-05-18T23:59:59.000Z

426

Evaporative Evolution of a Na-Cl-NO3-K-Ca-SO4-Mg-Si Brine at 95(degree)C: Experiments and Modeling relevant to Yucca Mountain, Nevada, USA  

SciTech Connect

A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, Nevada (USA) was evaporated at 95 C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved towards a complex ''sulfate type'' brine that contained about 45 mol% Na, 40 mol% Cl, 9 mol% NO{sub 3}, 5 mol% K, and less than 1 mol% each of SO{sub 4}, Ca, Mg, {Sigma}CO{sub 2}(aq), F, and Si. All measured ions in the condensed vapor phase were below detection limits. The mineral precipitates identified were halite, anhydrite, bassanite, niter and nitratine. Trends in the solution composition and identification of CaSO{sub 4} solids suggest that fluorite, carbonate, sulfate, and magnesium-silicate precipitation control the aqueous solution composition of sulfate type waters by removing fluoride, calcium, and magnesium during the early stages of evaporation. In most cases, the high temperature Pitzer database, used by EQ3/6 geochemical code, sufficiently predicts water composition and mineral precipitation during evaporation. Predicted solution compositions are generally within a factor of two of the experimental values. The model predicts that sepiolite, bassanite, amorphous silica, calcite, halite and brucite are the solubility controlling mineral phases.

Alai, M; Sutton, M; Carroll, S A

2004-08-24T23:59:59.000Z

427

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Work-Arounds Work-Arounds While the Home Energy Saver is the most comprehensive home energy model available on the web, there are inevitably specific systems or features that we have not yet explicitly incorporated. In some cases, there are reasonable work-arounds that the user can use to approximate the energy use of such features or systems. For example: Evaporative Cooling: HES Does not model Evaporative coolers. However, you can specify an appropriately high SEER (e.g. 22) in the air conditioning description to approximate the relatively low energy use of evaporative coolers. Note that this method will not yield any information about the water consumption by evaporative coolers, which also has a cost and other implications. Extended Vacations: HES does not explicitly allow you to specify

428

Microdisk fabrication by emulsion evaporation  

E-Print Network (OSTI)

of disk-like particles through isotropic-smectic phase transition. Nucleation and growth occur in phase transition in which nuclei of a new phase are first formed, and then followed by the raising of the new phase at a faster rate. This process..., ice formation, or pop can fizzing are some of the examples of nucleation and growth. As we open a soda can, pressure is released and the bubbles of carbon dioxide float onto the top surface of the liquid and its size is increasing at the same time...

Wong, Susanna Wing Man

2007-09-17T23:59:59.000Z

429

Catastrophic evaporation of rocky planets  

Science Journals Connector (OSTI)

......the bulk velocity of gas to...and re-map all N grid...isothermal Parker wind problem...the planet mass M. Our goal...for low-mass planets because...their escape velocities are so small...driving a wind. Even optical...while losing mass. This approximation...surface at velocities v launch...imparted by the wind is a tiny......

Daniel Perez-Becker; Eugene Chiang

2013-01-01T23:59:59.000Z

430

Solar Roof Cooling by Evaporation  

E-Print Network (OSTI)

on 18' centers, supported on redwood effective method of reducing air-conditioning run blocks which completely cover the roof surface of time and dropping demand charge costs. the building. The piping is sized so as to deliver 25 PSI through... on 18' centers, supported on redwood effective method of reducing air-conditioning run blocks which completely cover the roof surface of time and dropping demand charge costs. the building. The piping is sized so as to deliver 25 PSI through...

Patterson, G. V.

1982-01-01T23:59:59.000Z

431

One-step method for the production of nanofluids  

DOE Patents (OSTI)

A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil or ethylene glycol is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. An insulated heater-boat-evaporator having an evaporant material (nanoparticle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material and forming nanoparticles, the nanoparticles absorbed by the liquid film to form nanofluid.

Kostic, Milivoje (Sycamore, IL); Golubovic, Mihajlo (Chicago, IL); Hull, John (Downers Grove, IL); Choi, Stephen U. S. (Naperville, IL)

2011-08-16T23:59:59.000Z

432

Economic and thermal feasibility of multi stage flash desalination plant with brine–feed mixing and cooling  

Science Journals Connector (OSTI)

Abstract Improving the performance of MSF (multi stage flash) desalination plants is a major challenge for desalination industry. High feed temperature in summer shortens the evaporation range of MSF plants and limits their yield. Installing a cooler at the feed intake expands the evaporation range of MSF plants and increases their yield. Adding a cooler and a mixing chamber increases the capital and operational costs of MSF plants. This paper presents thermal and economic analysis of installing a feed cooler at the plant intake. The profit of selling the additionally produced water must cover the cost of the cooling system. The selling prices for a reasonable breakeven depend on the selected cooling temperature. The cost of installing coolers capable of maintaining feed–brine mixture temperatures of 18–20 °C shows breakeven selling prices of 0.5–0.9 $/m3. These prices fall within the current range of potable water selling prices.

Majed M. Alhazmy

2014-01-01T23:59:59.000Z

433

Dielectric properties of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} thin films deposited by mist plasma evaporation using aqueous solution precursor  

SciTech Connect

Mist plasma evaporation (MPE) technique has been developed to deposit Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) thin films on SiO{sub 2}/Si and Pt/Ti/SiO{sub 2}/Si substrates at atmospheric pressure using metal nitrate aqueous solution as precursor. MPE is characterized by the injection of liquid reactants into thermal plasma where the source materials in the droplets are evaporated by the high temperature of the thermal plasma. Nanometer-scale clusters are formed in the tail flame of the plasma, and then deposited and rearranged on the substrate at a lower temperature. Due to the high temperature annealing process of the thermal plasma before deposition, well-crystallized BST films were deposited at substrate temperature of 630 deg. C. The dielectric constant and dielectric loss of the film at 100 kHz are 715 and 0.24, respectively. Due to the good crystallinity of the BST films deposited by MPE, high dielectric tunability up to 39.3% is achieved at low applied electric field of 100 kV cm{sup -1}.

Huang Hui; Shi Peng; Wang Minqiang; Yao Xi; Tan, O.K. [Electronic Materials Research Laboratory, Xi'an Jiaotong University, Xi'an 710049 (China); Microelectronics Center, School of EEE, Nanyang Technological University, 639798 Singapore (Singapore)

2006-06-01T23:59:59.000Z

434

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants ProMIS/Project No.:DE-NT0005647  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement to AIr2AIr® technology Improvement to AIr2AIr® technology to reduce Fresh-WAter evAporAtIve coolIng loss At coAl-BAsed thermoelectrIc poWer plAnts promIs/project no. :de-nt0005647 Background The production of electricity requires a reliable, abundant, and predictable source of freshwater - a resource that is limited in many parts of the United States and throughout the world. The process of thermoelectric generation from fossil fuels such as coal, oil, and natural gas is water intensive. According to the 2000 U.S. Geological Survey, thermoelectric-power withdrawals accounted for 48 percent of total water use, 39 percent of total freshwater withdrawals (136 billion gallons per day) for all categories, and 52 percent of fresh surface water withdrawals. As a growing economy drives the need for more electricity, demands on freshwater

435

Observation of the 3n Evaporation Channel in the Complete Hot-Fusion Reaction {sup 26}Mg+{sup 248}Cm Leading to the New Superheavy Nuclide {sup 271}Hs  

SciTech Connect

The analysis of a large body of heavy ion fusion reaction data with medium-heavy projectiles (6{<=}Z{<=}18) and actinide targets suggests a disappearance of the 3n exit channel with increasing atomic number of the projectile. Here, we report a measurement of the excitation function of the reaction {sup 248}Cm({sup 26}Mg,xn){sup 274-x}Hs and the observation of the new nuclide {sup 271}Hs produced in the 3n evaporation channel at a beam energy well below the Bass fusion barrier with a cross section comparable to the maxima of the 4n and 5n channels. This indicates the possible discovery of new neutron-rich transactinide nuclei using relatively light heavy ion beams of the most neutron-rich stable isotopes and actinide targets.

Dvorak, J.; Dvorakova, Z.; Kruecken, R.; Nebel, F.; Perego, R.; Schuber, R.; Tuerler, A.; Wierczinski, B.; Yakushev, A. [Technische Universitaet Muenchen, D-85748 Garching (Germany); Bruechle, W.; Jaeger, E.; Schaedel, M.; Schausten, B.; Schimpf, E. [Gesellschaft fuer Schwerionenforschung mbH, D-64291 Darmstadt (Germany); Chelnokov, M.; Kuznetsov, A.; Yeremin, A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Duellmann, Ch. E. [Gesellschaft fuer Schwerionenforschung mbH, D-64291 Darmstadt (Germany); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); University of California, Berkeley, California 94720-1460 (United States); Eberhardt, K. [Universitaet Mainz, D-55128 Mainz (Germany); Nagame, Y. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)] (and others)

2008-04-04T23:59:59.000Z

436

Ecological Applications, 14(4) Supplement, 2004, pp. S22S32 2004 by the Ecological Society of America  

E-Print Network (OSTI)

, University of California, Irvine, California 92697-3100 USA Abstract. We used the eddy covariance technique to the dry season, cooler temperatures, greater cloudiness, and reduced incoming solar and net radiation in evaporative fraction coincided with an increase in ecosystem CO2 assimilation capacity, which we attribute

Kimball, Sarah

437

Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise  

E-Print Network (OSTI)

J. Ashdown et al. : Making Maps from Planck LFI 30GHz DataJ. Ashdown et al. : Making Maps from Planck LFI 30GHz Datain this study. The hit map is shown in the ecliptic (left)

Ashdown, M.A.J.

2010-01-01T23:59:59.000Z

438

Ionization Profilometer for an Accumulator-Synchroton with a COSY Cooler  

Science Journals Connector (OSTI)

A profilometer operating on the principle of residual-gas ionization by accelerated particles makes it possible to measure a beam profile without degrading the characteristics of the beam. The coordinates of t...

J. Dietrich; V. Kamerdzhiev

2003-01-01T23:59:59.000Z

439

EECBG Success Story: Learning is Now Much 'Cooler' for Maryland School Students  

Energy.gov (U.S. Department of Energy (DOE))

The Harford County Board of Education in Maryland received $500,000, as part of the Energy Efficiency and Conservation Block Grant (EECBG), to install a new ENERGY STAR-rated roof.Learn more.

440

LBNL No. 49283 Examples of Cooler Reflective Streets for Urban Heat-Island Mitigation  

E-Print Network (OSTI)

Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National energy), but some are within our easy control. Cities necessarily replace most of the bare ground% of the area seen from above the tree canopy was paved (including roads, parking areas, sidewalks). A quick

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

GM-Type Two-Stage Pulse Tube Cooler with High Efficiency  

Science Journals Connector (OSTI)

A two-stage pulse tube refrigerator has been designed for maximum refrigeration powers ... 6.5 kW of electric compressor. The modular setup of the cold head enables easy...

A. Hofmann; H. Pan; L. Oellrich

2002-01-01T23:59:59.000Z

442

Innovative heat removal structure for power devices -the drift region integrated microchannel cooler  

E-Print Network (OSTI)

Innovative heat removal structure for power devices - the drift region integrated microchannel is approved to be a compact and high-performance solution to deal with the thermal requirements of power devices and modules. This is due to the large heat exchange surface, the high heat transfer coefficient

Boyer, Edmond

443

Combination cooler and freezer for refrigerating containers and food in outer space  

SciTech Connect

A refrigeration apparatus for cooling containers and food in the microgravity conditions of outer space is described comprising: (a) a housing defining a refrigeration compartment for supporting the containers in a container storage area and food in a refrigerated food storage area, and freezer compartment; (b) cold plate means within the refrigeration compartment for cooling the containers and food by conduction; (c) thermoelectric refrigeration means for maintaining the cold plates at temperatures which cool the contents of the refrigeration compartment, and the freezer compartment.

Rudick, A.G.

1988-04-19T23:59:59.000Z

444

Platform-Dependent, Leakage-Aware Control of the Driving Current of Embedded Thermoelectric Coolers  

E-Print Network (OSTI)

, high reliability, and exceptionally high heat-pumping capability. On the other hand, even out that a common disadvantage of various techniques is their low heat-pumping capability

Pedram, Massoud

445

Power-Aware Deployment and Control of Forced-Convection and Thermoelectric Coolers  

E-Print Network (OSTI)

techniques is their low heat-pumping capability [1]. In particular, none of the traditional techniques has

Pedram, Massoud

446

Eulerian CFD Models to Predict Thermophoretic Deposition of Soot Particles in EGR Coolers  

Energy.gov (U.S. Department of Energy (DOE))

This paper describes an Eulerian axisymmetric method in Fluent(R) to predict the overall heat transfer reduction of a surrogate tube due to thermophoretic deposition of submicron particles.

447

PSPICE-Compatible Equivalent Circuit of Thermoelectric Coolers Simon Lineykin and Sam Ben-Yaakov*  

E-Print Network (OSTI)

. The thermoelectric module (TEM) can be used for cooling, heating, and energy generation [1] - [3]. The objective OF OPERATION Five energy-conversion processes take place in a thermoelectric module: conductive heat transfer of thermodynamics, one can express the energy equilibrium at both sides of the thermoelectric module

448

Simulation of Si/SiGe Micro-Cooler by Thermal Quadrupoles Method Y. Ezzahri *(a)  

E-Print Network (OSTI)

has been used to model the behavior of a conventional thermoelectric module (Bi2Te3) [5], it consists simulation. I. Introduction Thermoelectric materials are frequently used in several fields of microelectronics and optoelectronics. In the last ten years, low dimensional cooling devices have attracted a lot

449

Specific features of utilizing bismuth antimony chalcogenide single crystals in miniature coolers  

SciTech Connect

A procedure for growing perfect single crystals of bismuth antimony chalcogenide solid solutions by the Czochralski technique with melt feeding from a floating crucible was developed at the Baikov Institute of Metallurgy. Given that the single crystals in question readily split along the cleavage planes, the problem of acceptable yield of suitable products in the manufacture of thermoelements and cooling modules arises. To solve this problem, investigations were undertaken along two lines: (1) development of nondestructive, damage-free technologies; and (2) development of methods for making low-resistance antidiffusion contacts on the end faces of the thermoelements.

Semenyuk, V.A. [Odessa State Academy of Cold, (Ukraine); Ivanova, L.D.; Svechnikova, T.E. [Baikov Institute of Metallurgy, Moscow (Russian Federation)

1995-01-01T23:59:59.000Z

450

Re-Condensation and Liquefaction of Helium and Hydrogen Using Coolers  

E-Print Network (OSTI)

fluid is creating a condenser circuit that causes thecold head (attached to the condenser plate). The temperaturemagnet cold mass) and the condenser that is connected to the

Green, Michael A.

2010-01-01T23:59:59.000Z

451

Evaporation-induced cavitation in nanofluidic channels  

E-Print Network (OSTI)

Cavitation, known as the formation of vapor bubbles when liquids are under tension, is of great interest both in condensed matter science as well as in diverse applications such as botany, hydraulic engineering, and medicine. ...

Karnik, Rohit N.

452

Latent Heat of Evaporation of Liquid Helium  

Science Journals Connector (OSTI)

... THE letter of Dr. J. Newton Friend in NATURE of December 26, 1936, on this subject raises interest in his equation. I have tested it ...

JOHN SATTERLY

1937-03-13T23:59:59.000Z

453

STATE OF CALIFORNIA EVAPORATIVELY COOLED CONDENSING UNITS  

E-Print Network (OSTI)

installations, and the duct sealing must be verified by a HERS rater. Proper refrigerant charge or a Charge trip for the compressor is set (per manufacturer's documents) at or below 300 psig for R22 Refrigerant and at or below the saturation pressure corresponding to a temperature of 1310 F for all other refrigerants. 5

454

Improved plant performance through evaporative steam condensing  

SciTech Connect

Combining an open cooling tower and a steam condenser into one common unit is a proven technology with many advantages in power generation application, including reduced first cost of equipment, reduced parasitic energy consumption, simplified design, reduced maintenance, and simplified water treatment, Performance of the steam turbine benefits from the direct approach to wet bulb temperature, and operating flexibility and reliability improve compared to a system with a cooling tower and surface condenser. System comparisons and case histories will be presented to substantiate improved systems economies.

Hutton, D.

1998-07-01T23:59:59.000Z

455

ORFIG-MSF. Desalination Flash Evaporator  

SciTech Connect

ORFIG-MSF was developed to determine the flexibility of a fixed-geometry water desalination plant to operate under off-design point conditions. The program accepts the variation of all major parameters and the specification of a number of logically possible dependent-independent parameter combinations. Input is in the form of punched cards and includes plant geometry specifications, operating and fixed cost data, parameter control information and operating variables. Output is printed hard copy from the standard output channel and includes detailed stage-by-stage flow and thermodynamic operating characteristics, costs and differential costs referred to the first case processed.

Browell, R.W.; Burris, J.H.; Friedrich, R.O.; Parsley, I.R. [Oak Ridge National Lab., TN (United States)

1989-07-01T23:59:59.000Z

456

Evaporation of Enriched Uranium Solutions Containing Organophosphates  

SciTech Connect

The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The preliminary SRTC data, in conjunction with information in the literature, is promising. However, very few experiments have been run, and none of the results have been confirmed with repeat tests. As a result, it is believed that insufficient data exists at this time to warrant Separations making any process or program changes based on the information contained in this report. When this data is confirmed in future testing, recommendations will be presented.

Pierce, R.A.

1999-03-18T23:59:59.000Z

457

Rate of Water Evaporation in Texas.  

E-Print Network (OSTI)

, Winterhaven, Dimmit Count No. 8, Lubbock, Lubbock County: E. Mortensen, B. 5.. Superintende D. L. Jones. Superintendent **L. R. Hawthorn, M. S., Horticultu Frank Gaines. Irrig. and Forest Nure. Members of Teaching Staff Carrying Cooperative Projects...

Karper, R. E. (Robert Earl)

1933-01-01T23:59:59.000Z

458

4, 58075829, 2004 Evaporation of PSC  

E-Print Network (OSTI)

in situ aerosol measurements were made from balloon- borne platforms within polar stratospheric clouds (radius >0.15 µm) and number concentrations were measured with two optical particle counters. One of these5 included an 80 cm inlet heated to >244 K to obtain measurements, within PSCs, of the size

Boyer, Edmond

459

Black Hole Evaporation in an Expanding Universe  

E-Print Network (OSTI)

We calculate the quantum radiation power of black holes which are asymptotic to the Einstein-de Sitter universe at spatial and null infinities. We consider two limiting mass accretion scenarios, no accretion and significant accretion. We find that the radiation power strongly depends on not only the asymptotic condition but also the mass accretion scenario. For the no accretion case, we consider the Einstein-Straus solution, where a black hole of constant mass resides in the dust Friedmann universe. We find negative cosmological correction besides the expected redshift factor. This is given in terms of the cubic root of ratio in size of the black hole to the cosmological horizon, so that it is currently of order $10^{-5} (M/10^{6}M_{\\odot})^{1/3} (t/14 {Gyr})^{-1/3}$ but could have been significant at the formation epoch of primordial black holes. Due to the cosmological effects, this black hole has not settled down to an equilibrium state. This cosmological correction may be interpreted in an analogy with th...

Saida, Hiromi; Maeda, Hideki

2007-01-01T23:59:59.000Z

460

Process for generating steam in a fuel cell powerplant  

SciTech Connect

The steam for a steam reforming reactor of a fuel cell powerplant is generated by humidifying the reactor feed gas in a saturator by evaporating a small portion of a mass of liquid water which circulates in a loop passing through the saturator. The water is reheated in each pass through the loop by waste heat from the fuel cell, but is not boiled. In the saturator the relatively dry feed gas passes in direct contact with the liquid water over and through a bed a high surface area material to cause evaporation of some of the water in the loop. All the steam requirements for the reactor can be generated in this manner without the need for a boiler; and steam can be raised at a higher total pressure than in a boiler heated by the same source.

Sederquist, R. A.

1985-09-03T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Impact of Reservoir Evaporation and Evaporation Suppression on Water Supply Capabilities  

E-Print Network (OSTI)

Reservoir storage is essential for developing dependable water supplies and is a major component of the river system water budget. The storage contents of reservoirs fluctuate greatly with variations in water use and climatic conditions that range...

Ayala, Rolando A

2013-04-01T23:59:59.000Z

462

Energy efficiency and sustainability in production  

E-Print Network (OSTI)

) transcritical > transcritical process at heat pumps > trans and subcritical process at chillers (addicted by gas cooling evaporator water in/out Gas cooler water in/out COP 35° C 29° C 10 °C 90° C 4,3 40 °C 60 of the refrigerant Refrigerant Water Exergy losses exit hot entrance cold thermodynamic average temperature THM #12

Oak Ridge National Laboratory

463

An analysis of energy use in two Texas state agencies  

E-Print Network (OSTI)

, electricity and natural gas prices for monthly equations; and electricity and natural gas prices, facility age, building density, and whether or not the facility has boilers, heat pumps, electrical heating, electrical chillers, or evaporative coolers...: Regression results from analysis of monthly electricity use (Btu/sq ft/month) for Texas state schools, hospitals, and centers 46 Table V-2: Regression results from analysis of monthly natural gas use (Btu/sq ft/month) for Texas state schools, hospitals...

Rothbauer, Kent Christopher

2012-06-07T23:59:59.000Z

464

High performance liquid desiccant cooling system simulation at standard ARI conditions  

E-Print Network (OSTI)

? the experimental indirect evaporative cooler results liqdesc - the liquid desiccant solution room ? the conditioned space s ? desiccant solution tow, in - the inlet condition of the packed tower absorber tow, out ? the outlet condition of the packed tower... surface area of desiccant as well as to suspend the desiccant, which in turn exposes it to the air for a longer period of time. Humid air is blown counter currently from the bottom of the tower through the packing material and 16 Gas ]out Liquid...

McDonald, Brian Francis

2012-06-07T23:59:59.000Z

465

Status of Programs for the DoD Family of Linear Drive Cryogenic Coolers for Weapon Systems  

Science Journals Connector (OSTI)

The Standard Advanced Dewar Assembly (SADA) is the critical module in the Department of Defense (DOD) standardization effort of second-generation thermal imaging systems. DOD has established a family of SADAs to ...

W. E. Salazar

2002-01-01T23:59:59.000Z

466

N-AND P-TYPE SiGe/Si SUPERLATTICE COOLERS Xiaofeng Fan, Gehong Zeng, Edward Croke  

E-Print Network (OSTI)

thermoelectric material for high temperature applications. In this paper the fabrication and characterization to solve some of these problems. SiGe is a good thermoelectric material for high temperature refrigeration electrically in series and thermally in parallel, similar to conventional thermoelectric devices, and thus

467

IEEE POWER ELECTRONICS LETTERS, VOL. 3, NO. 2, JUNE 2005 63 Analysis of Thermoelectric Coolers by a  

E-Print Network (OSTI)

are thermally joined in parallel and electrically in series. The TEM can be used for cooling, heating-conversion processes take place in a thermo- electric module: conductive heat transfer, Joule heating, Peltier cooling/heating and incorporating it in a closed-loop system. In such cases a SPICE-compatible model can help in obtaining

468

Performance Analysis of a Transcritical CO2 Heat Pump Water Heater Incorporating a Brazed-Plate Gas-cooler.  

E-Print Network (OSTI)

??This study focuses on the experimental testing and numerical modeling of a 4.5 kW transcritical CO2 heat pump water heater at Queen’s University in the… (more)

Murray, PORTIA

2015-01-01T23:59:59.000Z

469

Lawyers at the 'information age water cooler': exposing sex discrimination and challenging law firm culture on the internet  

E-Print Network (OSTI)

behalf, and I seek to determine whether the law can in fact be mobilized to challenge and perhaps change gender relations in the legal practice. Through ethnographic field research and content analysis of an Internet community, my research examines...

Baumle, Amanda Kathleen

2006-10-30T23:59:59.000Z

470

Comparison of heat sink and fan combinations and thermal electric coolers for use in the Mars Gravity Biosatellite  

E-Print Network (OSTI)

An experiment was conducted to help compare possible cooling methods for the payload module of the Mars Gravity Biosatellite. The Satellite will be launched into space with 15 mice on board and rotated to create a 0.38g ...

Parness, Aaron J. (Aaron Joseph), 1981-

2004-01-01T23:59:59.000Z

471

Microchannel Heat Exchangers with Carbon Dioxide  

SciTech Connect

The objective of the present study was to determine the performance of CO{sub 2} microchannel evaporators and gas coolers in operational conditions representing those of residential heat pumps. A set of breadboard prototype microchannel evaporators and gas coolers was developed and tested. The refrigerant in the heat exchangers followed a counter cross-flow path with respect to the airflow direction. The test conditions corresponded to the typical operating conditions of residential heat pumps. In addition, a second set of commercial microchannel evaporators and gas coolers was tested for a less comprehensive range of operating conditions. The test results were reduced and a comprehensive data analysis, including comparison with the previous studies in this field, was performed. Capacity and pressure drop of the evaporator and gas cooler for the range of parameters studied were analyzed and are documented in this report. A gas cooler performance prediction model based on non-dimensional parameters was also developed and results are discussed as well. In addition, in the present study, experiments were conducted to evaluate capacities and pressure drops for sub-critical CO{sub 2} flow boiling and transcritical CO{sub 2} gas cooling in microchannel heat exchangers. An extensive review of the literature failed to indicate any previous systematic study in this area, suggesting a lack of fundamental understanding of the phenomena and a lack of comprehensive data that would quantify the performance potential of CO{sub 2} microchannel heat exchangers for the application at hand. All experimental tests were successfully conducted with an energy balance within {+-}3%. The only exceptions to this were experiments at very low saturation temperatures (-23 C), where energy balances were as high as 10%. In the case of evaporators, it was found that a lower saturation temperature (especially when moisture condensation occurs) improves the overall heat transfer coefficient significantly. However, under such conditions, air side pressure drop also increases when moisture condensation occurs. An increase in airflow rate also increases the overall heat transfer coefficient. Air side pressure drop mainly depends on airflow rate. For the gas cooler, a significant portion of the heat transfer occurred in the first heat exchanger module on the refrigerant inlet side. The temperature and pressure of CO{sub 2} significantly affect the heat transfer and fluid flow characteristics due to some important properties (such as specific heat, density, and viscosity). In the transcritical region, performance of CO{sub 2} strongly depends on the operating temperature and pressure. Semi-empirical models were developed for predictions of CO{sub 2} evaporator and gas cooler system capacities. The evaporator model introduced two new factors to account for the effects of air-side moisture condensate and refrigerant outlet superheat. The model agreed with the experimental results within {+-}13%. The gas cooler model, based on non-dimensional parameters, successfully predicted the experimental results within {+-}20%. Recommendations for future work on this project include redesigning headers and/or introducing flow mixers to avoid flow mal-distribution problems, devising new defrosting techniques, and improving numerical models. These recommendations are described in more detail at the end of this report.

Zhao, Y.; Ohadi, M.M.; Radermacher, R.

2001-09-15T23:59:59.000Z

472

Facility effluent monitoring plan for 242-A evaporator facility  

SciTech Connect

A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

Crummel, G.M.; Gustavson, R.D.

1995-02-01T23:59:59.000Z

473

Negative pressure characteristics of an evaporating meniscus at nanoscale  

E-Print Network (OSTI)

This study aims at understanding the characteristics of negative liquid pressures at the nanoscale using molecular dynamics simulation. A nano-meniscus is formed by placing liquid argon on a platinum wall between two ...

Maroo, Shalabh C.

2011-01-01T23:59:59.000Z

474

Measuring Evaporation Rates of Metal Compounds from Solid Samples  

Science Journals Connector (OSTI)

A thermogravimeter (TGA, Mettler-Toledo TGA/SDTA851e) was connected to an inductively coupled plasma optical emission spectrometer (ICP-OES, Varian Liberty 110) using a condensation interface (CI), which transforms gaseous high-boiling-temperature substances into solid (or liquid) aerosols. ... This project was financially supported as GRS-058/00 by Gebert Rüf Foundation. ...

Christian Ludwig; Jörg Wochele; Urs Jörimann

2007-03-01T23:59:59.000Z

475

Design and fabrication of evaporators for thermo-adsorptive batteries  

E-Print Network (OSTI)

Current heating and cooling within electric vehicles places a significant demand on the battery, greatly reducing their potential driving range. An Advanced Thermo- Adsorptive Battery (ATB) reduces this load by storing ...

Farnham, Taylor A

2014-01-01T23:59:59.000Z

476

Micro loop heat pipe evaporator coherent pore structures  

E-Print Network (OSTI)

and 5360 K for water, Pv is vapor pressure, sigma is surface tension, Rc is the radius of curvature, Psat(Tl) is water saturation pressure at liquid temperature for flat interface, A is Hamaker constant, delta is liquid film thickness, )vib... is the vibrational partion function, w s pore wall temperature, hfg is water latent heat of vaporization, kl is liquid conductivity. The FPEM was developed by Ward1 and applied by Oinuma2 in order to eliminate the need for empirical constants required by Kinetic...

Alexseev, Alexandre Viktorovich

2005-02-17T23:59:59.000Z

477

On the Motion of an Intensely Heated Evaporating Boundary  

Science Journals Connector (OSTI)

......hole develops. The maximum rate of penetration into a given material is simply...hole develops. The maximum rate of penetration into a given material is simply...represents an upper limit on the rate of penetration and 62 J. G. ANDREWS AND......

J. G. ANDREWS; D. R. ATTHEY

1975-02-01T23:59:59.000Z

478

Decentralized model predictive control of a multiple evaporator HVAC system  

E-Print Network (OSTI)

Vapor compression cooling systems are the primary method used for refrigeration and air conditioning, and as such are a major component of household and commercial building energy consumption. Application of advanced control techniques...

Elliott, Matthew Stuart

2009-05-15T23:59:59.000Z

479

An evaluation of atmospheric evaporation for treating wood preserving wastes  

E-Print Network (OSTI)

seasoned . ;tock reduces the amount of si. earning necessary. Barometric condensers produce a large volume of wastewater if the cooling water is not recycled. Recycling increases the phenol content of the water, but greatly reduces the volume. Another a... seasoned . ;tock reduces the amount of si. earning necessary. Barometric condensers produce a large volume of wastewater if the cooling water is not recycled. Recycling increases the phenol content of the water, but greatly reduces the volume. Another a...

Shack, Pete A

2012-06-07T23:59:59.000Z

480

Evaporative Light Scattering Detection for Supercritical Fluid Chromatography  

Science Journals Connector (OSTI)

......nitrogen makeup gas flow rate, carbon...determined. As the nitrogen gas flow rate increases...increasing the solubility of the analyte...w), a makeup gas was necessary...could form ice (water) from nondried nitrogen and increase the......

J. Thompson B. Strode; III; Larry T. Taylor

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "humidifier evaporative cooler" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Advanced Evaporative Deposition System with Embedded Heater Element...  

NLE Websites -- All DOE Office Websites (Extended Search)

is part of a large portfolio of thin film technologies specifically developed for CdTe photovoltaic devices but potentially applicable to a wide variety of thin film...

482

Simulation of radiant cooling performance with evaporative cooling sources  

E-Print Network (OSTI)

of 65%, and pump motor electric efficiency of 78%, totalof 65%, and pump motor electric efficiency of 78%. Forof 65%, and pump motor electric efficiency of 78%. For both

Moore, Timothy

2008-01-01T23:59:59.000Z

483

Applications of Mechanical Vapor Recompression to Evaporation and Crystallization  

E-Print Network (OSTI)

there is no boiler plant available or when electrical power is priced competitively in comparison to steam. Vapor recompression is accomplished using centrifugal, axial-flow, or positive displacement compressors and these compressors can be powered by electricity...

Outland, J. S.

484

Evaporative Light Scattering Detection for Supercritical Fluid Chromatography  

Science Journals Connector (OSTI)

......rate was made using 5% methanol-modified CO2 . The total gas flow rate of the CO2 and nitrogen gas was set to equal or ex ceed 1000 mL/min. Since the mobile phase effluent was split between the UV and ELSD, the concentration of progesterone, testosterone......

J. Thompson B. Strode; III; Larry T. Taylor

1996-06-01T23:59:59.000Z

485

Simulation of radiant cooling performance with evaporative cooling sources  

E-Print Network (OSTI)

continuous rigid EPS foam insulation. The roofing assemblybatt insulation between the studs, and continuous rigid foamfoam. This provides the baseline with the same thermal mass and insulation

Moore, Timothy

2008-01-01T23:59:59.000Z

486

Clutter-Based Evaporation Duct Estimation Performance Using Meteorological Statistics  

E-Print Network (OSTI)

of California, Mediterranean, Persian Gulf, and Coast of Brazil. The effects of the radar frequency (S, C, and X, such as the Mediterranean, Persian Gulf, East China Sea, and California Coast, atmospheric ducts are common occurrences

Gerstoft, Peter

487

Development and Analysis of Desiccant Enhanced Evaporative Air...  

NLE Websites -- All DOE Office Websites (Extended Search)

a minimum of 11.2 for a 10-ton commercially packaged air-cooled unit (ASHRAE 2010). Energy savings are expected to be greater than indicated by the IEER effective measurement,...

488

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

basis. Since that humble beginning, literally millions of square feet of roof cooling systems have been installed in industrial and commercial buildings. A "mini-boom" for roof sprays existed following World War 11, when air conditioning was new.... All supply piping and spray laterals are supported at 5 ft. inter- vals by cementing redwood blocks to the surface. No roof penetrations are necessary with the excep- tion of very large roof areas, and this is done by a competent roofing...

Abernethy, D.

1985-01-01T23:59:59.000Z

489

Simulation of radiant cooling performance with evaporative cooling sources  

E-Print Network (OSTI)

a trade-off between cooling power and faster reaction time,a trade-off between cooling power and faster reaction time,derived potential peak cooling power of 77 W/m 2 (24 Btu/hr-

Moore, Timothy

2008-01-01T23:59:59.000Z

490

Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

can be sourced from fuels such as natural gas, waste heat, solar, or biofuels. Thermal energy consumption correlates directly to the humidity level in the operating environment....

491

EFFECT OF FRACTIONAL CRYSTALLIZATION ON 25 MG OF EVAPORATION  

E-Print Network (OSTI)

.5 of the melilite crystal surfaces, where DMg is the diffusion coefficient of Mg as a function of akermanite content

Grossman, Lawrence