Sample records for human health toxicity

  1. Sustainable Material Selection of Toxic Chemicals in Design and Manufacturing From Human Health Impact Perspective

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01T23:59:59.000Z

    Human Toxicity Potential (HTP) method. Keywords: SustainableHuman Toxicity Potential (HTP) is used for the human healthassessment of toxic chemicals. HTP is a computed weighting

  2. Schematic Characterization of Human Health Impact of Toxic Chemicals for Sustainable Design and Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris Y.; Dornfeld, David

    2009-01-01T23:59:59.000Z

    Human Toxicity Potential (HTP) method. With an explicitHuman toxicity potential (HTP), proposed by Guinée andassessment of toxic chemicals. HTP is a computed weighting

  3. Modeling toxic endpoints for improving human health risk assessment

    E-Print Network [OSTI]

    Bruce, Erica Dawn

    2009-05-15T23:59:59.000Z

    Risk assessment procedures for mixtures of polycyclic aromatic hydrocarbons (PAHs) present a problem due to the lack of available potency and toxicity data on mixtures and individual compounds. This study examines the toxicity of parent compound...

  4. "Human Health Impact Characterization of Toxic Chemicals for Sustainable Design and Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01T23:59:59.000Z

    Human toxicity potential (HTP), proposed by Guinée andassessment of toxic chemicals. HTP is a computed weightingmodel environment [5]. The HTP values of toxic chemicals are

  5. COLLEGE OF ENGINEERING Human Health

    E-Print Network [OSTI]

    the exciting stories about how our faculty, students, and alumni are engineering solutions to health careCOLLEGE OF ENGINEERING Human Health #12;Welcome to our Health issue ­ Please take the time to read to tackle large worldwide health problems. A few years ago, the College of Engineering made a strategic

  6. Faculty of Science & Health SCHOOL OF HEALTH AND HUMAN PERFORMANCE

    E-Print Network [OSTI]

    Humphrys, Mark

    Faculty of Science & Health SCHOOL OF HEALTH AND HUMAN PERFORMANCE Teaching Fellowship in Athletic of Science and Health, the School of Health and Human Performance at DCU is developing an international reputation in health and exercise science. As such, the School of Health and Human Performance is committed

  7. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH

    E-Print Network [OSTI]

    Levin, Judith G.

    ; and translating and disseminating research findings to health care providers, researchers, policymakersDCP - 1 DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH Drug Control Programs ..................................................................................................................................2 #12;DCP - 2 DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Resource Summary

  8. Communities: Human Health and Community Development Webinar ...

    Energy Savers [EERE]

    Communities: Human Health and Community Development Webinar Communities: Human Health and Community Development Webinar May 1, 2014 5:00PM to 6:30PM EDT The multi-agency...

  9. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01T23:59:59.000Z

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  10. Integration of site-specific health information: Agency for Toxic Substances and Disease Registry health assessments

    SciTech Connect (OSTI)

    Lesperance, A.M.; Siegel, M.R.

    1990-12-01T23:59:59.000Z

    The Agency for Toxic Substances and Disease Registry is required to conduct a health assessment of any site that is listed on or proposed for the US Environmental Protection Agency's National Priorities List. Sixteen US Department of Energy (DOE) sites currently fall into this category. Health assessments contain a qualitative description of impacts to public health and the environment from hazardous waste sites, as well as recommendations for actions to mitigate or eliminate risk. Because these recommendations may have major impacts on compliance activities at DOE facilities, the health assessments are an important source of information for the monitoring activities of DOE's Office of Environmental Compliance (OEC). This report provides an overview of the activities involved in preparing the health assessment, its role in environmental management, and its key elements.

  11. Faculty of Science & Health SCHOOL OF HEALTH AND HUMAN PERFORMANCE

    E-Print Network [OSTI]

    Humphrys, Mark

    Faculty of Science & Health SCHOOL OF HEALTH AND HUMAN PERFORMANCE Teaching Fellowship in Athletic Therapy (half time, 3 year contract) The School of Health and Human Performance invites applications from and assessment, have relevant qualifications and be experienced in emergency care training and be competent

  12. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov (indexed) [DOE]

    HUMAN HEALTH SCIENCE BLDG GEO HEAT PUMP SYSTEMS Principal Investigator Source Heat Pumps Demo Projects May 20, 2010 This presentation does not contain any proprietary confidential,...

  13. Department of Health and Human Services Public Health Services

    E-Print Network [OSTI]

    Baker, Chris I.

    Department of Health and Human Services Public Health Services Review Group Type Activity Grant the obligation to comply with Public Health Services terms and conditions if a grant is awarded as a result/PI SUBTOTALS CONSULTANT COSTS EQUIPMENT (Itemize) SUPPLIES (Itemize by category) TRAVEL INPATIENT CARE COSTS

  14. Climate Change and Human Health National Center for Environmental Health

    E-Print Network [OSTI]

    Climate Change and Human Health National Center for Environmental Health Division of Environmental and Prevention October 17, 2012 #12;Coastal flooding Climate change effects: ·Temperature ·Sea level,civil conflict Anxiety,despair,depression Civil conflict Climate Change Health Effects Food & water Malnutrition

  15. PEOPLE OF CALIFORNIA HEALTH AND HUMAN

    E-Print Network [OSTI]

    Chair AIR RESOURCES BOARD Mary Nichols Chair DEPARTMENT OF HEALTH CARE SERVICES Toby Douglas DirectorPEOPLE OF CALIFORNIA HEALTH AND HUMAN SERVICES AGENCY Diana Dooley Secretary Michael Wilkening Deborah Raphael Director OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT George Alexeeff Director

  16. Department of Health and Human Services National Institutes of Health

    E-Print Network [OSTI]

    Rau, Don C.

    , M.D. Technology Richard Nakamura., Ph.D. Andrea T. Norris #12;ES-3 FY 2015 Budget Request National 2015 Budget Page No. Organization ChartES-1 Department of Health and Human Services National Institutes of Health Executive Summary FY

  17. College of Human and Health Sciences

    E-Print Network [OSTI]

    Harman, Neal.A.

    8988 College of Human and Health Sciences All research is delivered through discipline-focused research centres, which examine fields such as child research, ageing, psychology and social care, as well as midwifery, nursing and allied health professions. External funding from a number of prestigious bodies has

  18. USEtox - The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in Life Cycle Impact Assessment

    SciTech Connect (OSTI)

    Rosenbaum, Ralph K.; Bachmann, Till M.; Swirsky Gold, Lois; Huijbregts, Mark A.J.; Jolliet, Olivier; Juraske, Ronnie; Koehler, Annette; Larsen, Henrik F.; MacLeod, Matthew; Margni, Manuele; McKone, Thomas E.; Payet, Jerome; Schuhmacher, Marta; van de Meent, Dik; Hauschild, Michael Z.

    2008-02-03T23:59:59.000Z

    Background, Aim and Scope. In 2005 a comprehensive comparison of LCIA toxicity characterisation models was initiated by the UNEP-SETAC Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON, and EcoSense. In this paper we describe this model-comparison process and its results--in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (i) to identify specific sources of differences between the models' results and structure, (ii) to detect the indispensable model components, and (iii) to build a scientific consensus model from them, representing recommended practice. Methods. A chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Results. Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than 2 orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment, or nesting an urban box in a continental box. Discussion. The precision of the new characterisation factors (CFs) is within a factor of 100-1000 for human health and 10-100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement.Conclusions. USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC's Life Cycle Initiative regarding characterization of toxic impacts in Life Cycle Assessment. Recommendations and Perspectives. We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs.

  19. DEPARTMENT OF HEALTH &. HUMAN SERVICES Public Health Service National Institutes of Health

    E-Print Network [OSTI]

    Bandettini, Peter A.

    DEPARTMENT OF HEALTH &. HUMAN SERVICES Public Health Service National Institutes of Health of Intramural Research, OD Dr. James F. Taylor, Director Office ofAnimal Care and Use, OIR, OD Director, Division ofOccupational Health and Safety (DOHS) Scientific Resources, ORS Subject: Medical Surveillance of

  20. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium

    SciTech Connect (OSTI)

    Koehler, C.; Ginzkey, C.; Friehs, G.; Hackenberg, S.; Froelich, K.; Scherzed, A.; Burghartz, M.; Kessler, M. [Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg (Germany); Kleinsasser, N., E-mail: Kleinsasser_N@klinik.uni-wuerzburg.d [Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg (Germany)

    2010-06-01T23:59:59.000Z

    Cytotoxicity and genotoxicity of nitrogen dioxide (NO{sub 2}) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO{sub 2} in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO{sub 2}, 0.1 ppm NO{sub 2}, 1 ppm NO{sub 2}, 10 ppm NO{sub 2} and synthetic air for half an hour. After exposure, genotoxicity was evaluated by the alkaline single-cell microgel electophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO{sub 2} in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO{sub 2} in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.

  1. Global Warming and Human Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC) GettingGit GitGlobal Warming and Human

  2. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Project objectives: Construct a ground sourced heat pump, heating, ventilation, and air conditioning system for the new Oakland University Human Health Sciences Building utilizing variable refrigerant flow (VRF) heat pumps. A pair of dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

  3. aeromonas human health: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of North Carolina at Charlotte, students and faculty help chart the course for health care Xie,Jiang (Linda) 10 Faculty of Science & Health SCHOOL OF HEALTH AND HUMAN...

  4. Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes

    SciTech Connect (OSTI)

    Doherty, Kimberly R., E-mail: kimberly.doherty@quintiles.com [Quintiles, 777 Oakmont Lane Suite 100, Westmont, IL 60559 (United States); Wappel, Robert L.; Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M. [Quintiles, 777 Oakmont Lane Suite 100, Westmont, IL 60559 (United States); Kramer, James W.; Brown, Arthur M. [ChanTest Corporation, 14656 Neo Parkway, Cleveland, OH 44128 (United States); Shell, Scott A.; Bacus, Sarah [Quintiles, 777 Oakmont Lane Suite 100, Westmont, IL 60559 (United States)

    2013-10-01T23:59:59.000Z

    Tyrosine kinase inhibitors (TKi) have greatly improved the treatment and prognosis of multiple cancer types. However, unexpected cardiotoxicity has arisen in a subset of patients treated with these agents that was not wholly predicted by pre-clinical testing, which centers around animal toxicity studies and inhibition of the human Ether-ŕ-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter test panel assessing the effect of drug treatment on cellular, molecular, and electrophysiological endpoints could accurately predict cardiotoxicity. We examined how 4 FDA-approved TKi agents impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channel function in human cardiomyocytes. The 3 drugs clinically associated with severe cardiac adverse events (crizotinib, sunitinib, nilotinib) all proved to be cardiotoxic in our in vitro tests while the relatively cardiac-safe drug erlotinib showed only minor changes in cardiac cell health. Crizotinib, an ALK/MET inhibitor, led to increased ROS production, caspase activation, cholesterol accumulation, disruption in cardiac cell beat rate, and blockage of ion channels. The multi-targeted TKi sunitinib showed decreased cardiomyocyte viability, AMPK inhibition, increased lipid accumulation, disrupted beat pattern, and hERG block. Nilotinib, a second generation Bcr-Abl inhibitor, led to increased ROS generation, caspase activation, hERG block, and an arrhythmic beat pattern. Thus, each drug showed a unique toxicity profile that may reflect the multiple mechanisms leading to cardiotoxicity. This study demonstrates that a multi-parameter approach can provide a robust characterization of drug-induced cardiomyocyte damage that can be leveraged to improve drug safety during early phase development. - Highlights: • TKi with known adverse effects show unique cardiotoxicity profiles in this panel. • Crizotinib increases ROS, apoptosis, and cholesterol as well as alters beat rate. • Sunitinib inhibits AMPK, increases lipids and alters the cardiac beat pattern. • Nilotinib causes ROS and caspase activation, decreased lipids and arrhythmia. • Erlotinib did not impact ROS, caspase, or lipid levels or affect the beat pattern.

  5. Modeling toxic endpoints for improving human health risk assessment 

    E-Print Network [OSTI]

    Bruce, Erica Dawn

    2009-05-15T23:59:59.000Z

    and Applied Chemistry (IUPAC) has delineated a set of rules for naming PAH compounds. There are only a select number of compounds that are given trivial names such as fluorene, chrysene, and pyrene (Figure 1). The numbering system is determined... 154.2 3.98 (3.66) NC Fluorene 166.2 800 4.18 (3.86) NC Anthracene 178.2 59 2.4x 10 -4 4.5 (4.15) NC Phenanthrene 178.2 435 6.8x 10 -4 4.46 (4.15) NC 2-Methylanthracene 192.3 21.3 4.77 NC 9-Methylphenanthrene 192.3 261 4.77 NC 1...

  6. Human Health Risk & Environmental Analysis | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the interplay between human health and environmental risks associated with energy production, hazardous waste, national security and natural disasters. Research findings...

  7. Adjunct Faculty Data Request College of Health and Human Services

    E-Print Network [OSTI]

    Moore, Paul A.

    Adjunct Faculty Data Request College of Health and Human Services Bowling Green State University at Bowling Green State University are required to provide the following information. Appointments

  8. College of Health and Human Sciences School of Health Sciences

    E-Print Network [OSTI]

    Ginzel, Matthew

    : Environmental health and toxicology program formed 1970s: Industrial hygiene added 1979-Present: Era of School components of the School: Environmental Health Sciences, Radiological Health, and Industrial Hygiene (1963 with Tom Miya) Occupational health (industrial hygiene) (1979 with Dennis Paustenbach) Medical

  9. Human Resource Services Health Insurance Informational Session

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    will be defaulted to the Quality Care Health Plan Enrollment forms were mailed by Central Management Services February 1, 2013 Preferred Provider Organization (PPO) Quality Care Health Plan (D3) Open Access Plan (OAP) ­ Managed Care Coventry OAP (CH) HealthLink OAP (CF) Health Maintenance Organization (HMO

  10. Department of Health and Human Services National Institutes of Health

    E-Print Network [OSTI]

    Rau, Don C.

    FY 2015 Budget Page No. Appropriation Language ...............................................................................................40 #12;OA-2 National Institutes of Health FY 2015 Congressional Justification FY 2015 Appropriations

  11. Human intake fraction of toxic pollutants: a model comparison between caltox and uses-lca

    SciTech Connect (OSTI)

    Huijbregts, Mark A.J.; Geelen, Loes M.J.; Hertwich, Edgar G.; McKone, Thomas E.; van de Meent, Dik

    2004-01-06T23:59:59.000Z

    In Life Cycle Assessment and Comparative Risk Assessment potential human exposure to toxic pollutants can be expressed as the human intake fraction (iF), representing the fraction of the quantity emitted that enters the human population. To assess model uncertainty in the human intake fraction, ingestion and inhalation iFs of 367 substances emitted to air and freshwater were calculated with two commonly applied multi-media fate and exposure models, CalTOX and USES-LCA. Comparison of the model outcomes reveal that uncertainty in the ingestion iFs was up to a factor of 70. The uncertainty in the inhalation iFs was up to a factor of 865,000. The comparison showed that relatively few model differences account for the uncertainties found. An optimal model structure in the calculation of human intake fractions can be achieved by including (1) rain and no-rain scenarios, (2) a continental sea water compartment, (3) drinking water purification, (4) pH-correction of chemical properties, and (5) aerosol-associated deposition on plants. Finally, vertical stratification of the soil compartment combined with a chemical-dependent soil depth may be considered in future intake fraction calculations.

  12. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH

    E-Print Network [OSTI]

    Rau, Don C.

    ) Director, Research and Development Global Health, Population and Nutrition Contraceptive Technology and Gynecology Roy J. and Lucille A. Carver College of Medicine University of Iowa Health Care Iowa City, IA of Veterans Affairs Washington, DC 20420 LU, Michael C., M.D., M.P.H. Associate Administrator Maternal

  13. Department of Health and Human Services National Institutes of Health

    E-Print Network [OSTI]

    Rau, Don C.

    ,133.828 Drug Resources by Decision Unit National Institute on Drug Abuse 1 National Institute on Alcohol Abuse MISSION National Institute on Drug Abuse (NIDA) The societal impact of substance abuse (alcohol, tobacco a year in health care, crime-related, and productivity losses. To provide a comprehensive public health

  14. Department of Health and Human Services National Institutes of Health

    E-Print Network [OSTI]

    Rau, Don C.

    Resources by Decision Unit National Institute on Drug Abuse 1 National Institute on Alcohol Abuse Program Summary MISSION National Institute on Drug Abuse (NIDA) The societal impact of substance abuse $600 billion a year in health care, crime-related, and productivity losses. Knowledge is the foundation

  15. Assessment Plans College of Education, Health and Human Development

    E-Print Network [OSTI]

    Dyer, Bill

    Program Plan Update LO Data Sched Education UG BS Early Childhood Education & Child Services Y 2014 Y Y YAssessment Plans 9/18/2014 College of Education, Health and Human Development Dept Level Degree Education UG BS Elementary Education K-8 Y 2014 Y Y N Education UG BS Secondary Education Y 2014 Y Y N

  16. Soil and human health: an epidemiological review R. L. HOUGH

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Soil and human health: an epidemiological review R. L. HOUGH The Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK Summary Two different approaches have been used to study relationships between soil in the geosciences and broadly relates spatial soil characteristics to geographic incidence of disease. However

  17. National Center for Environmental Health Agency for Toxic Substances and Disease Registry

    E-Print Network [OSTI]

    capacity to help identify children with dangerous exposure to lead. · Connect these families and children's National Center for Environmental Health: Maryland CDC 24/7: Saving Lives. Protecting People from Health Threats. Saving Money through Prevention. Environmental Health Your environment is everything around you

  18. National Center for Environmental Health Agency for Toxic Substances and Disease Registry

    E-Print Network [OSTI]

    , and technical capacity to help identify children with dangerous exposure to lead. · Connect families's National Center for Environmental Health: California CDC 24/7: Saving Lives. Protecting People from Health Threats. Saving Money through Prevention. Environmental Health Your environment is everything around you

  19. National Center for Environmental Health Agency for Toxic Substances and Disease Registry

    E-Print Network [OSTI]

    to lead. · Connect these families and children to appropriate healthcare and case management. · Inspect's National Center for Environmental Health: Montana CDC 24/7: Saving Lives. Protecting People from Health Threats. Saving Money through Prevention. Environmental Health Your environment is everything around you

  20. National Center for Environmental Health Agency for Toxic Substances and Disease Registry

    E-Print Network [OSTI]

    with dangerous exposures to lead. · Connect these families and children to appropriate healthcare and case's National Center for Environmental Health: Illinois CDC 24/7: Saving Lives. Protecting People from Health Threats. Saving Money through Prevention. Environmental Health Your environment is everything around you

  1. National Center for Environmental Health Agency for Toxic Substances and Disease Registry

    E-Print Network [OSTI]

    capacity to help identify children with dangerous exposures to lead. · Connect these families and children's National Center for Environmental Health: Louisiana CDC 24/7: Saving Lives. Protecting People from Health Threats. Saving Money through Prevention. Environmental Health Your environment is everything around you

  2. National Center for Environmental Health Agency for Toxic Substances and Disease Registry

    E-Print Network [OSTI]

    capacity to help identify children with dangerous exposure to lead. · Connect these families and children's National Center for Environmental Health: Connecticut CDC 24/7: Saving Lives. Protecting People from Health Threats. Saving Money through Prevention. Environmental Health Your environment is everything around you

  3. ('~ DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service National Institutes of Health

    E-Print Network [OSTI]

    Baker, Chris I.

    and communicate research findings to patients and their families, health care providers, and the general public care professionals access to important health and science information from taxpayer to reach patients, health care providers, and our other audiences. While these communication efforts

  4. Assessing human health risk in the USDA forest service

    SciTech Connect (OSTI)

    Hamel, D.R. [Department of Agriculture-Forest Service, Washington, DC (United States)

    1990-12-31T23:59:59.000Z

    This paper identifies the kinds of risk assessments being done by or for the US Department of Agriculture (USDA) Forest Service. Summaries of data sources currently in use and the pesticide risk assessments completed by the agency or its contractors are discussed. An overview is provided of the agency`s standard operating procedures for the conduct of toxicological, ecological, environmental fate, and human health risk assessments.

  5. Indoor air and human health revisited: A recent IAQ symposium

    SciTech Connect (OSTI)

    Gammage, R.B.

    1994-12-31T23:59:59.000Z

    Indoor Air and Human Health Revisited was a speciality symposium examining the scientific underpinnings of sensory and sensitivity effects, allergy and respiratory disease, neurotoxicity and cancer. An organizing committee selected four persons to chain the sessions and invite experts to give state-of-the-art presentations that will be published as a book. A summary of the presentations is made and some critical issues identified.

  6. National Center for Environmental Health Agency for Toxic Substances and Disease Registry

    E-Print Network [OSTI]

    in the environment, such as in swamps. Paper mills, the textile industry, petroleum and natural gas extraction of drywall produced in China. State and local health authorities also received similar reports. At this time. Label: Can you see the back side of your drywall? Some drywall from China is stamped with"Made in China

  7. Infrastructure, human resources, international cooperation, research and development, environment and health, societal issues, industrial innovation, Infrastructure, human resources, international cooperation, research and development, environment and hea

    E-Print Network [OSTI]

    Zürich, Universität

    Infrastructure, human resources, international cooperation, research and development, environment and health, societal issues, industrial innovation, Infrastructure, human resources, international Infrastructure, human resources, international cooperation, research and development, environment and health

  8. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    SciTech Connect (OSTI)

    Chiu, Weihsueh A., E-mail: chiu.weihsueh@epa.gov [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460 (United States); Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P. [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460 (United States)

    2013-09-15T23:59:59.000Z

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes.

  9. Evaluation of the Hazard of Microcystis Blooms for Human Health through Fish Consumption

    E-Print Network [OSTI]

    will be harmful to human health. #12;Proposed Work Microcystin Toxicokinetics Experiments Past experimentationEvaluation of the Hazard of Microcystis Blooms for Human Health through Fish Consumption Primary-Investigator: Duane Gossiaux - NOAA GLERL Overview Human exposure to the cyanobacterial toxin Microcystin occurs

  10. assessing human health: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Assessments Engineering Websites Summary: a next exam date recorded by the Student Health Care Center. Use this instruction guide to keep yourInstruction Guide Health...

  11. Toxic Pollution Prevention Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the purpose of this Act to reduce the disposal and release of toxic substances which may have adverse and serious health and environmental effects, to promote toxic pollution prevention as...

  12. U.S. Department of Health and Human Services National Institutes of Health NIH Division of Loan Repayment

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Center The Year in Review 1 The Five Extramural Loan Repayment Programs 2 Applications, Awards of the NRSA Payback Service Center 18 The Year in Review 19 #12;U.S. Department of Health and Human Services

  13. Clay minerals and their beneficial effects upon human health. M. Isabel Carretero*

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Clay minerals and their beneficial effects upon human health. A review M. Isabel Carretero* Dpto examines the beneficial effects for human health of clay minerals, describing their use in pharmaceutical process and in its possible degradation effect. Among their uses in spas, clay minerals therapeutic

  14. aerosols human health: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health and Safety, was established, and is dedicated to providing outstanding clinical care to improve the health and safety of University employees 4 Adjoint model...

  15. ancillary human health: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health and Safety, was established, and is dedicated to providing outstanding clinical care to improve the health and safety of University employees 4 Faculty of Science &...

  16. Schematic Characterization of Human Health Impact of Toxic Chemicals for Sustainable Design and Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris Y.; Dornfeld, David

    2009-01-01T23:59:59.000Z

    Butanol Ethyl acetate Acetonitrile Hexane 8 Ethyl ether08 Aniline 3.14E-13 1.10E-09 Acetonitrile 2.50E-12 1.46E-10the plot, Aniline and Acetonitrile have a very comparable

  17. "Human Health Impact Characterization of Toxic Chemicals for Sustainable Design and Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01T23:59:59.000Z

    Butanol Ethyl acetate Acetonitrile Methanol Isopropyl08 Aniline 3.14E-13 1.10E-09 Acetonitrile 2.50E-12 1.46E-10the plot, Aniline and Acetonitrile have a very comparable

  18. Geographically Differentiated Life-cycle Impact Assessment of Human Health

    E-Print Network [OSTI]

    Humbert, Sebastien

    2009-01-01T23:59:59.000Z

    indicators in life-cycle assessment (LCA). Human Ecologicalindicators in life-cycle assessment (LCA). Human EcologicalI explore how life-cycle assessment (LCA) results can

  19. Toxic waste sites may cause health problems for millions1 By Erin Wayman for www.sciencenews.org2

    E-Print Network [OSTI]

    South Bohemia, University of

    , identified the toxic waste sites, such as lead15 battery recycling centers and former tanneries. For each percent of the lost healthy years. The team estimates that22 the three countries could house an additional

  20. Communications Assistant The College of Health and Human Sciences Dean's Office is seeking a dynamic individual to help us get

    E-Print Network [OSTI]

    of Communications College of Health and Human Sciences 226 L. L. Gibbons Building (970) 491-5182 | gretchen

  1. Environmental and health management in small and medium size enterprises

    E-Print Network [OSTI]

    Arredondo, Juan C. (Juan Carlos Arredondo Brun), 1974-

    2004-01-01T23:59:59.000Z

    Workers and employees are increasingly exposed in the workplace to chemical compounds and substances that are potentially toxic; for most of these compounds, no information exist regarding effects on human health. As one ...

  2. Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules: Effects on apoptosis, necrosis, and glutathione status

    SciTech Connect (OSTI)

    Lash, Lawrence H. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)]. E-mail: l.h.lash@wayne.edu; Putt, David A. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Hueni, Sarah E. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Payton, Scott G. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Zwickl, Joshua [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)

    2007-06-15T23:59:59.000Z

    Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg{sup 2+}) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg{sup 2+} increased expression of glutathione S-transferase-{alpha}1 (GST{alpha}1) but decreased expression of GST{alpha}2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI. Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg{sup 2+}. Pretreatment of human proximal tubular (hPT) cells with Hg{sup 2+} caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg{sup 2+} by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg{sup 2+} exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg{sup 2+}-induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg{sup 2+}, TRI, or DCVC are markedly altered by prior exposures.

  3. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs

    E-Print Network [OSTI]

    Polz, Martin F.

    Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ...

  4. SUSTAINABILITY PRINCIPLES Harvard University is committed to developing and maintaining an environment that enhances human health

    E-Print Network [OSTI]

    Paulsson, Johan

    #12;#12;SUSTAINABILITY PRINCIPLES Harvard University is committed to developing and maintaining species. · · · Developing planning tools to enable comparative analysis of sustainability implications an environment that enhances human health and fosters a transition toward sustainability. Sustainability should

  5. Blood Pressure U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Your Blood Pressure Lowering Guide to U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and Blood Institute #12;Your Guide to Lowering Blood Pressure 2 What Are High Blood Pressure and Prehypertension? Blood pressure is the force of blood against

  6. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

    E-Print Network [OSTI]

    Bandettini, Peter A.

    cells James McBride, Stephen Pennycook #12;Disease... Pollution... Hunger... Global warming... Did you on important health issues, including what causes certain diseases and how to treat them safely and effectively

  7. Energy and Human Health Kirk R. Smith,1

    E-Print Network [OSTI]

    Mauzerall, Denise

    by Annual Reviews. All rights reserved Keywords coal, air pollution, biomass fuel, petroleum, nuclear energy accrue to the harvesting and burning of solid fuels, coal and biomass, mainly in the form of occupational health risks and household and general ambient air pollution. Lack of access to clean fuels

  8. Do Housing Prices Reflect Environmental Health Risks? Evidence from More than 1600 Toxic Plant Openings and Closings

    E-Print Network [OSTI]

    Currie, Janet

    2012-12-21T23:59:59.000Z

    A ubiquitous and largely unquestioned assumption in studies of housing markets is that there is perfect information about local amenities. This paper measures the housing market and health impacts of 1,600 openings and ...

  9. Do Housing Prices Reflect Environmental Health Risks? Evidence from More than 1600 Toxic Plant Openings and Closings

    E-Print Network [OSTI]

    Currie, Janet

    A ubiquitous and largely unquestioned assumption in studies of housing markets is that there is perfect information about local amenities. This paper measures the housing market and health impacts of 1,600 openings and ...

  10. Quantifying the health and economic impacts of mercury : an integrated assessment approach

    E-Print Network [OSTI]

    Giang, Amanda (Amanda Chi Wen)

    2013-01-01T23:59:59.000Z

    Mercury is a toxic pollutant that endangers human and ecosystem health. Especially potent in the form of methyl mercury, exposure is known to lead to adverse neurological effects, and, a growing body of evidence suggests, ...

  11. Human Reliability Program (HRP) - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault SignInstituteDOE Origins ResourcesHuman

  12. M.S. in Health and Human Development Sustainable Food Systems Emphasis

    E-Print Network [OSTI]

    Dyer, Bill

    to promote health, human development, and well-being. The sustainable food systems program focuses://sites.google.com/site/friendsoflocalfood/ Sustainable Food and Bioenergy Systems Undergraduate Program: www.sfbs.montana.edu Accredited Dietetics completed a bachelor's degree in food and nutrition, agricultural science, environmental or food studies

  13. Abstract--Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high

    E-Print Network [OSTI]

    Mason, Andrew

    Abstract--Airborne pollution and explosive gases threaten human health and occupational safety and a thumb-drive sized prototype system. I. INTRODUCTION xposure to air pollution consistently ranks among to occupational safety as energy demands rise. Airborne pollutants and explosive gases vary in both time and space

  14. el equilibrio: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

    E-Print Network [OSTI]

    Baker, Chris I.

    National Cancer Institute Publicación de NIH, No. 05-5274 Junio 2005 Cómo las familias encuentran el Health and Human Development (Instituto Nacional de Salud Infantil y Desarrollo Humano, NICHD) y el National Cancer Institute (Instituto Nacional del Cáncer, NCI). ¡Podemos! es un programa único, puesto que

  15. Human health impacts for Renewable Energy scenarios from the EnerGEO Platform of Integrated Assessment (PIA)

    E-Print Network [OSTI]

    Boyer, Edmond

    Energy Agency with the use of the World En- ergy Model for the World Energy Outlook 2009, OrganizationHuman health impacts for Renewable Energy scenarios from the EnerGEO Platform of Integrated of renewable energy, affect concentrations of air pollutants and as a consequence affect human health. PM2

  16. EVALUATION OF EFFICACY AND HUMAN HEALTH RISK OF AERIAL ULTRA-LOW VOLUME APPLICATIONS OF PYRETHRINS AND

    E-Print Network [OSTI]

    Peterson, Robert K. D.

    EVALUATION OF EFFICACY AND HUMAN HEALTH RISK OF AERIAL ULTRA-LOW VOLUME APPLICATIONS OF PYRETHRINS). A human health risk assessment conducted by Peterson et al. (2006) for truck-mounted ultra-low volume (ULV to epidemic levels and dispersed to all 58 counties in the state, and was associated with low

  17. Testing for Toxic Algae By Tadd Barrow

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Testing for Toxic Algae By Tadd Barrow UNL Extension Educator, Water Quality Algae is a microscopic plant that occurs in all water. However, only certain conditions bring algae to the surface, making it toxic to animals, especially humans and dogs. Toxic algae often are naturally occurring from high

  18. A meta-analysis of literature data relating to the relationships between cadmium intake and toxicity indicators in humans

    SciTech Connect (OSTI)

    Omarova, A. [Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES (United Kingdom); Institute of Human and Animal Physiology, Almaty (Kazakhstan); Phillips, C.J.C. [Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES (United Kingdom)]. E-mail: c.phillips@uq.edu.au

    2007-03-15T23:59:59.000Z

    The objective of the study was to determine the relationship between cadmium (Cd) intake and cadmium toxicity indicators by meta-analysis of literature data, in particular {beta}2-microglobulin ({beta}2MC), and to compare the results with the current Provisional Tolerable Weekly Intake (PTWI) set by FAO/WHO. The literature survey identified 79 feeding trials involving 27,537 people that were suitable for extraction of cadmium intake, levels in blood and urine and {beta}2-microglobulin in urine. There was an exponential increase in {beta}2-microglobulin with increases in cadmium intake above 302 {mu}g/day, which corresponds to a PTWI of 3.02 {mu}g/kg of body weight, when a safety margin of 10 is included. This compares with the current level set by FAO/WHO of 7 {mu}g/kg of body weight. Cadmium in blood and urine were also positively related to cadmium intake and participants' age. There were two principal components of variation in the data set, first: cadmium intake, concentrations of cadmium in blood, urine and {beta}2-microglobulin in urine, and second: duration and age of exposure.

  19. Space Science Technology Health General Sci-fi & Gaming Oddities International Business Politics Education Entertainment Sports Electronic Nose Sniffs Out Toxic Gases

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Education Entertainment Sports Electronic Nose Sniffs Out Toxic Gases Posted on: Sunday, 13 September 2009 detection of toxic industrial chemicals (TICs) that is simple, fast and inexpensive ­ and works identify and quantify the TICs in a matter of seconds." To create the sensor array, the researchers print

  20. Toxic remediation

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alamed County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1994-01-01T23:59:59.000Z

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  1. Increased European biofuel cultivation could harm human health1 by James Morgan for www.scienceomega.com2

    E-Print Network [OSTI]

    South Bohemia, University of

    Increased European biofuel cultivation could harm human health1 by James Morgan for www that the large-scale production of biofuels in4 Europe could result in increased human mortality and crop losses that many biofuel plant species, including poplar and willow, release more isoprene ­ an6 ozone precursor

  2. VQ5. Ecosystem and Human Health How do changes in ecosystem composi9on and func9on

    E-Print Network [OSTI]

    Christian, Eric

    VQ5. Ecosystem and Human Health How do changes in ecosystem composi9on Issue: ·Ecosystem condition affects the humans dependent on those ecosystems for life and livelihood. How do changes in ecosystem composition and function correlate with famine, exposure to harmful biotic

  3. Appendix F Human Health Risk Assessment Document Number Q0029500 Appendix F

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCD _WOMPOC:Human Health

  4. Waste management programmatic environmental impact statement methodology for estimating human health risks

    SciTech Connect (OSTI)

    Bergenback, B. [Midwest Technical, Inc. (United States); Blaylock, B.P.; Legg, J.L. [Oak Ridge National Lab., TN (United States)] [and others

    1995-05-01T23:59:59.000Z

    The US Department of Energy (DOE) has produced large quantities of radioactive and hazardous waste during years of nuclear weapons production. As a result, a large number of sites across the DOE Complex have become chemically and/or radiologically contaminated. In 1990, the Secretary of Energy charged the DOE Office of Environmental Restoration and Waste management (EM) with the task of preparing a Programmatic Environmental Impact Statement (PEIS). The PEIS should identify and assess the potential environmental impacts of implementing several integrated Environmental Restoration (ER) and Waste Management (WM) alternatives. The determination and integration of appropriate remediation activities and sound waste management practices is vital for ensuring the diminution of adverse human health impacts during site cleanup and waste management programs. This report documents the PEIS risk assessment methodology used to evaluate human health risks posed by WM activities. The methodology presents a programmatic cradle to grave risk assessment for EM program activities. A unit dose approach is used to estimate risks posed by WM activities and is the subject of this document.

  5. Green tea polyphenol, (?)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting ?-catenin signaling

    SciTech Connect (OSTI)

    Singh, Tripti [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233 (United States)

    2013-12-01T23:59:59.000Z

    The green tea polyphenol, (?)-epigallocatechin-3-gallate (EGCG), has been shown to have anti-carcinogenic effects in several skin tumor models, and efforts are continued to investigate the molecular targets responsible for its cytotoxic effects to cancer cells. Our recent observation that ?-catenin is upregulated in skin tumors suggested the possibility that the anti-skin carcinogenic effects of EGCG are mediated, at least in part, through its effects on ?-catenin signaling. We have found that treatment of the A431 and SCC13 human skin cancer cell lines with EGCG resulted in reduced cell viability and increased cell death and that these cytotoxic effects were associated with inactivation of ?-catenin signaling. Evidence of EGCG-induced inactivation of ?-catenin included: (i) reduced accumulation of nuclear ?-catenin; (ii) enhanced levels of casein kinase1?, reduced phosphorylation of glycogen synthase kinase-3?, and increased phosphorylation of ?-catenin on critical serine{sup 45,33/37} residues; and (iii) reduced levels of matrix metalloproteinase (MMP)-2 and MMP-9, which are down-stream targets of ?-catenin. Treatment of cells with prostaglandin E2 (PGE{sub 2}) enhanced the accumulation of ?-catenin and enhanced ?-catenin signaling. Treatment with either EGCG or an EP2 antagonist (AH6809) reduced the PGE{sub 2}-enhanced levels of cAMP, an upstream regulator of ?-catenin. Inactivation of ?-catenin by EGCG resulted in suppression of cell survival signaling proteins. siRNA knockdown of ?-catenin in A431 and SCC13 cells reduced cell viability. Collectively, these data suggest that induction of cytotoxicity in skin cancer cells by EGCG is mediated by targeting of ?-catenin signaling and that the ?-catenin signaling is upregulated by inflammatory mediators. - Highlights: • EGCG inhibits cancer cell viability through inactivation of ?-catenin signaling. • Inactivation of ?-catenin involves the downregulation of inflammatory mediators. • EGCG inactivates ?-catenin in skin cancer cells by inhibition of cAMP and PGE{sub 2}. • siRNA knockdown of ?-catenin or COX-2 reduces the viability of cancer cells.

  6. Programs director`s report for the Office of Health and Environmental Research

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    Since its establishment, the Department of Energy`s Office of Health and Environmental Research (OHER) has had responsibility for conducting biological research to develop the knowledge needed to identify, understand, and anticipate the long-term health consequences of energy use and development, including the potential health impacts of radiation. The Health Effects Research Program has established the basis for understanding the health consequences of radiation for humans, developed radiation dosimetry methodology, characterized and evaluated the health impacts of fossil fuels, and developed and conducted research to determine the health impacts of inhaled toxicants. The results of this research have provided input for setting genetic standards for radiation and chemical exposure.

  7. acute toxicity assessment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in this technology, and the products constructed from nanoparticulates is an emerging area in toxicology and health risk assessment. The development of toxicity data sets and...

  8. Toxic Contaminants and Their Effects on Resident Fish

    E-Print Network [OSTI]

    Science-Policy Exchange September 10, 2009 #12;Take-away themes Toxic contaminants are present are source areas for toxic contaminants for multiple fish stocks A better understanding of the effects and restore fish and ecosystem health #12;Take-away themes Toxic contaminants are present in the Columbia

  9. FY 2008FY 2008FY 2012 U.S. Department of Health and Human Services National Institutes of Health

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Table of Contents The Year in Review 1 The Four Intramural Loan Repayment Programs 2 Applications Institutes of Health The Year in Review In Fiscal Year (FY) 2012, 92 individuals applied to the Intramural

  10. FY 2008FY 2008FY 2010 U.S. Department of Health and Human Services National Institutes of Health

    E-Print Network [OSTI]

    Bandettini, Peter A.

    ­ National Institutes of Health NIH Intramural Loan Repayment Programs Table of Contents The Year in Review 1 Repayment Programs The Year in Review In Fiscal Year (FY) 2010, 96 individuals applied to the Intramural

  11. Contact the College of Human and Health Sciences for more information

    E-Print Network [OSTI]

    Martin, Ralph R.

    , doctors and other health and social care practitioners. This part-time provision extends to postgraduate be applied retrospectively to existing modules and programmes u Work closely with health and social care providers and professional bodies u Engage with employers across the health and social care, social policy

  12. Comparative developmental toxicity of environmentally relevant oxygenated PAHs

    SciTech Connect (OSTI)

    Knecht, Andrea L., E-mail: andrea.knecht@tanguaylab.com [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Goodale, Britton C., E-mail: goodaleb@onid.orst.edu [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Truong, Lisa, E-mail: lisa.truong.888@gmail.com [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Simonich, Michael T., E-mail: mtsimonich@oregonstate.edu [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Swanson, Annika J., E-mail: swansoan@onid.orst.edu [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Matzke, Melissa M., E-mail: melissa.matzke@pnl.gov [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA (United States); Anderson, Kim A., E-mail: kim.anderson@oregonstate.edu [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Waters, Katrina M., E-mail: katrina.waters@pnl.gov [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA (United States); Tanguay, Robert L., E-mail: robert.tanguay@oregonstate.edu [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States)

    2013-09-01T23:59:59.000Z

    Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are byproducts of combustion and photo-oxidation of parent PAHs. OPAHs are widely present in the environment and pose an unknown hazard to human health. The developing zebrafish was used to evaluate a structurally diverse set of 38 OPAHs for malformation induction, gene expression changes and mitochondrial function. Zebrafish embryos were exposed from 6 to 120 h post fertilization (hpf) to a dilution series of 38 different OPAHs and evaluated for 22 developmental endpoints. AHR activation was determined via CYP1A immunohistochemistry. Phenanthrenequinone (9,10-PHEQ), 1,9-benz-10-anthrone (BEZO), xanthone (XAN), benz(a)anthracene-7,12-dione (7,12-B[a]AQ), and 9,10-anthraquinone (9,10-ANTQ) were evaluated for transcriptional responses at 48 hpf, prior to the onset of malformations. qRT-PCR was conducted for a number of oxidative stress genes, including the glutathione transferase(gst), glutathione peroxidase(gpx), and superoxide dismutase(sod) families. Bioenergetics was assayed to measure in vivo oxidative stress and mitochondrial function in 26 hpf embryos exposed to OPAHs. Hierarchical clustering of the structure-activity outcomes indicated that the most toxic of the OPAHs contained adjacent diones on 6-carbon moieties or terminal, para-diones on multi-ring structures. 5-carbon moieties with adjacent diones were among the least toxic OPAHs while the toxicity of multi-ring structures with more centralized para-diones varied considerably. 9,10-PHEQ, BEZO, 7,12-B[a]AQ, and XAN exposures increased expression of several oxidative stress related genes and decreased oxygen consumption rate (OCR), a measurement of mitochondrial respiration. Comprehensive in vivo characterization of 38 structurally diverse OPAHs indicated differential AHR dependency and a prominent role for oxidative stress in the toxicity mechanisms. - Highlights: • OPAHs are byproducts of combustion present in the environment. • OPAHs pose a largely unknown hazard to human health. • We assayed the developmental toxicology of 39 different OPAHs in zebrafish. • The most toxic OPAHs contained adjacent diones or terminal, para-diones. • AHR dependency varied among OPAHs, and oxidative stress influenced their toxicology.

  13. To advance and share knowledge, discover solutions and promote opportunities in food and agriculture, bioenergy, health, the environment and human well-

    E-Print Network [OSTI]

    Sheridan, Jennifer

    and agriculture, bioenergy, health, the environment and human well- being. Vision: To lead in science, innovationMission: To advance and share knowledge, discover solutions and promote opportunities in food

  14. Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecoveryG -Hazmat work opensHealth

  15. A Multidisciplinary Paradigm and Approach to Protecting Human Health and the Environment, Society, and Stakeholders at Nuclear Facilities - 12244

    SciTech Connect (OSTI)

    Burger, Joanna [Division of Life Sciences, Rutgers University, Piscataway, NJ (United States); Environmental and Occupational Health Sciences Institute, Piscataway, NJ (United States); Gochfeld, Michael [Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Rutgers University, Piscataway NY, USA and Vanderbilt University, Nashville, TN (United States); Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Clarke, James; Powers, Charles W.; Kosson, David [Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Rutgers University, Piscataway NY, USA and Vanderbilt University, Nashville, TN (United States); Civil and Environmental Engineering, Vanderbilt University, Nashville, TN (United States)

    2012-07-01T23:59:59.000Z

    As the Department of Energy (DOE) continues to remediate its lands, and to consider moving toward long-term stewardship and the development of energy parks on its industrial, remediated land, it is essential to adequately characterize the environment around such facilities to protect society, human health, and the environment. While DOE sites re considering several different land-use scenarios, all of them require adequate protection of the environment. Even if DOE lands are developed for energy parks that are mainly for industrializes sections of DOE lands that will not be remediated to residential standards, there is still the need to consider the protection of human health and the environment. We present an approach to characterization and establishment of teams that will gather the information, and integrate that information for a full range of stakeholders from technical personnel, to public policy makers, and that public. Such information is needed to establish baselines, site new energy facilities in energy parks, protect existing nuclear facilities and nuclear wastes, improve the basis for emergency planning, devise suitable monitoring schemes to ensure continued protection, provide data to track local and regional response changes, and for mitigation, remediation and decommissioning planning. We suggest that there are five categories of information or data needs, including 1) geophysical, sources, fate and transport, 2) biological systems, 3) human health, 4) stakeholder and environmental justice, and 5) societal, economic, and political. These informational needs are more expansive than the traditional site characterization, but encompass a suite of physical, biological, and societal needs to protect all aspects of human health and the environment, not just physical health. We suggest a Site Committee be established that oversees technical teams for each of the major informational categories, with appropriate representation among teams and with a broad involvement of a range of governmental personnel, natural and social scientists, Native Americans, environmental justice communities, and other stakeholders. Such informational teams (and Oversight Committee) would report to a DOE-designated authority or Citizen's Advisory Board. Although designed for nuclear facilities and energy parks on DOE lands, the templates and information teams can be adapted for other hazardous facilities, such as a mercury storage facility at Oak Ridge. (authors)

  16. Human health benefits of ambient sulfate aerosol reductions under Title IV of the 1990 Clean Air Act amendments

    SciTech Connect (OSTI)

    Chestnut, L.G. [Hagler Bailly Consulting, Inc., Boulder, CO (United States); Watkins, A.M. [Environmental Protection Agency, Washington, DC (United States)

    1997-12-31T23:59:59.000Z

    The Acid Rain Provisions (Title IV) of the Clean Air Act Amendments of 1990 call for about a 10 million ton reduction in annual SO{sub 2} emissions in the United States by the year 2010. Although the provisions apply nationwide, most of the reduction will take place in the eastern half of the United States, where use of high sulfur coal for electricity generation is most common. One potentially large benefit of Title IV is the expected reduction in adverse human health effects associated with exposure to ambient sulfate aerosols, a secondary pollutant formed in the atmosphere when SO{sub 2} is present. Sulfate aerosols are a significant constituent of fine particulate (PM{sub 2.5}). This paper combines available epidemiologic evidence of health effects associated with sulfate aerosols and economic estimates of willingness to pay for reductions in risks or incidence of health effects with available estimates of the difference between expected ambient sulfate concentrations in the eastern United States and southeastern Canada with and without Title IV to estimate the expected health benefits of Title IV. The results suggest a mean annual benefit in the eastern United States of $10.6 billion (in 1994 dollars) in 1997 and $40.0 billion in 2010, with an additional $1 billion benefit each year in Ontario and Quebec provinces.

  17. Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado

    SciTech Connect (OSTI)

    Daniels Jeffrey I.,Chapman Jenny B.

    2012-01-01T23:59:59.000Z

    The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

  18. Identification of toxic components in beechwood and petroleum creosotes

    E-Print Network [OSTI]

    Okaygun, Mehmet S.

    1988-01-01T23:59:59.000Z

    the formulation of mixtures which confer wood preservation properties but which minimize health risks. Before a chemical can be used in the industry, whole animal toxicity testing is required. This consists of acute toxicity testing, repeated dose toxicity...-induced rat liver homogenate (S-9 fraction) for activation. Dose related increases in mutation frequencies were reported for both test chemicals following metabolic acti- vation. However, without metabolic activation, the mutagenic frequency...

  19. DOE contractor's meeting on chemical toxicity

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session.

  20. Health risk assessment of environmental exposure to trichloroethylene

    SciTech Connect (OSTI)

    Brown, L.P.; Farrar, D.G.; de Rooij, C.G. (Epidemiology Unit, Alderley Park, Macclesfield, Cheshire (England))

    1990-02-01T23:59:59.000Z

    A review of the animal data showed trichloroethylene (TRI) to be of low acute toxicity. Repeated exposure showed that the target organs were the liver, and to a lesser extent, the kidney. TRI is not mutagenic or only marginally mutagenic. There is no evidence of fetotoxicity or teratogenicity. TRI is judged not to exhibit chronic neurotoxicity. Lifetime bioassays resulted in tumors in both the mouse and the rat. However, because of qualitative and quantitative metabolic differences between rodent and human, no one suitable tumor site can be chosen for human health risk assessment. In addition, of the several epidemiology studies, none has demonstrated a positive association for increased tumor incidence. A review of the health effects in humans shows TRI to be of low acute toxicity and, following chronic high doses, to be hepatotoxic. Environmental exposure to TRI is mainly via the atmosphere, while the contribution from exposure to drinking water and foodstuffs is negligible. The total body burden was calculated as 22 micrograms/day. The safety margin approach based on human health effects showed that TRI levels are well within the safety margin for the human no-observable-effect level (10,000 times lower). The total body burden represents a risk of 1.4 X 10(-5) by linearized multistage modeling. Therefore, by either methodological approach to risk assessment, the environmental occurrence of TRI does not represent a significant health risk to the general population or to the population in areas close to industrial activities. 66 references.

  1. PA-40-201 1 Department of Health and Human Services

    E-Print Network [OSTI]

    Baker, Chris I.

    (s), Year(s), by 5:00 PM local time of applicant organization. AIDS Application Due Date(s) Standard AIDS Organization(s) National Institutes of Health (NIH) Components of Participating Organizations National Cancer Library of Medicine (NLM) Fogarty International Center (FIC) National Center for Complementary

  2. CAirTOX: A compartment model for assessing the fate of and human exposure to toxic-chemical emissions to air

    SciTech Connect (OSTI)

    McKone, T.E.

    1993-10-01T23:59:59.000Z

    CAirTOX has been developed as a spreadsheet model to assist in making a risk assessment of toxic air emissions. With CAirTOX, one can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The multimedia transport and transformation model is a steady-state, but non-equilibrium model that can be used to assess concentrations of contaminants released continuously to air. In Part 1, the authors describe the multimedia transport and transformation model used to determine the fate of air emissions. In Part 2, they describe inputs and data needs for CAirTOX and the development of a set of landscape factors, which can be used to represent regional air basin/water-shed systems in California. In Part 3, they describe the multiple-pathway exposure scenarios and exposure algorithms. In Part 4, they compare the HRA approach and results and the CAirTOX exposure equations. In Part 5, they consider model sensitivity and uncertainty to determine how variability and uncertainty in model inputs affects the precision, accuracy, and credibility of the model output.

  3. Patterns of health and disease have undergone dramatic transitions during human history, reflecting social and

    E-Print Network [OSTI]

    Vermont, University of

    of infectious disease and infant mortality decreased, lengthening life expectancy.At the same time,noninfectious chronic disease rose, accounting for a greater share of over- all mortality. Greater water and air dispersed into new habitats by phoresy (i.e.,one organism transporting another), flight, or wind, but human

  4. Long-term fate of depleted uranium at Aberdeen and Yuma Proving Grounds: Human health and ecological risk assessments

    SciTech Connect (OSTI)

    Ebinger, M.H.; Beckman, R.J.; Myers, O.B. [Los Alamos National Lab., NM (United States); Kennedy, P.L.; Clements, W.; Bestgen, H.T. [Colorado State Univ., Ft. Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1996-09-01T23:59:59.000Z

    The purpose of this study was to evaluate the immediate and long-term consequences of depleted uranium (DU) in the environment at Aberdeen Proving Ground (APG) and Yuma Proving Ground (YPG) for the Test and Evaluation Command (TECOM) of the US Army. Specifically, we examined the potential for adverse radiological and toxicological effects to humans and ecosystems caused by exposure to DU at both installations. We developed contaminant transport models of aquatic and terrestrial ecosystems at APG and terrestrial ecosystems at YPG to assess potential adverse effects from DU exposure. Sensitivity and uncertainty analyses of the initial models showed the portions of the models that most influenced predicted DU concentrations, and the results of the sensitivity analyses were fundamental tools in designing field sampling campaigns at both installations. Results of uranium (U) isotope analyses of field samples provided data to evaluate the source of U in the environment and the toxicological and radiological doses to different ecosystem components and to humans. Probabilistic doses were estimated from the field data, and DU was identified in several components of the food chain at APG and YPG. Dose estimates from APG data indicated that U or DU uptake was insufficient to cause adverse toxicological or radiological effects. Dose estimates from YPG data indicated that U or DU uptake is insufficient to cause radiological effects in ecosystem components or in humans, but toxicological effects in small mammals (e.g., kangaroo rats and pocket mice) may occur from U or DU ingestion. The results of this study were used to modify environmental radiation monitoring plans at APG and YPG to ensure collection of adequate data for ongoing ecological and human health risk assessments.

  5. Human mouth microbes provide insight into health, disease | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault SignInstituteDOEMaterialsHuman

  6. E-Print Network 3.0 - acute liver toxicity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    injury. When injury is acute, the fibrotic response is taken over by regeneration... to carbon tetrachloride-induced toxicity as compared to human ... Source: Groningen,...

  7. Structural Basis of Neutralization of the Major Toxic Component from the Scorpion Centruroides noxius Hoffmann by a Human-derived Single-chain Antibody Fragment

    SciTech Connect (OSTI)

    Canul-Tec, Juan Carlos; Riańo-Umbarila, Lidia; Rudińo-Pińera, Enrique; Becerril, Baltazar; Possani, Lourival D.; Torres-Larios, Alfredo (U. NAM)

    2011-08-09T23:59:59.000Z

    It has previously been reported that several single-chain antibody fragments of human origin (scFv) neutralize the effects of two different scorpion venoms through interactions with the primary toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2). Here we present the crystal structure of the complex formed between one scFv (9004G) and the Cn2 toxin, determined in two crystal forms at 2.5 and 1.9 {angstrom} resolution. A 15-residue span of the toxin is recognized by the antibody through a cleft formed by residues from five of the complementarity-determining regions of the scFv. Analysis of the interface of the complex reveals three features. First, the epitope of toxin Cn2 overlaps with essential residues for the binding of {beta}-toxins to its Na+ channel receptor site. Second, the putative recognition of Css2 involves mainly residues that are present in both Cn2 and Css2 toxins. Finally, the effect on the increase of affinity of previously reported key residues during the maturation process of different scFvs can be inferred from the structure. Taken together, these results provide the structural basis that explain the mechanism of the 9004G neutralizing activity and give insight into the process of directed evolution that gave rise to this family of neutralizing scFvs.

  8. Gas chromatographic determination of pentachlorophenol in human blood and urine

    SciTech Connect (OSTI)

    Atuma, S.S.; Okor, D.I.

    1985-09-01T23:59:59.000Z

    The extraction, identification and quantification of pentachlorophenol (PCP) in human blood and urine are of great importance for monitoring human exposure to this environmental chemical. Although reports abound in the literature on PCP residues, toxicity and environmental fate, there is hardly any information on its existence in the developing tropical countries, particularly in Nigeria. There is therefore the need to survey the status of PCP in Nigerian environment with a view to establishing the potential health hazards resulting from its bioaccumulation. This paper reports a preliminary survey of the residue levels of PCP in human blood and urine of the general population in Bendel State of Nigeria.

  9. Human health and wellbeing in environmental impact assessment in New South Wales, Australia: Auditing health impacts within environmental assessments of major projects

    SciTech Connect (OSTI)

    Harris, Patrick J., E-mail: patrick.harris@unsw.edu.a [Centre for Health Equity Training, Research and Evaluation, part of the UNSW, Research Centre for Primary Health Care and Equity, UNSW, Locked Mail Bag 7103, Liverpool BC, NSW 1871 (Australia); Harris, Elizabeth, E-mail: e.harris@unsw.edu.a [Centre for Health Equity Training, Research and Evaluation, part of the UNSW, Research Centre for Primary Health Care and Equity, UNSW, Locked Mail Bag 7103, Liverpool BC, NSW 1871 (Australia); Thompson, Susan, E-mail: s.thompson@unsw.edu.a [Faculty of the Built Environment, UNSW, Sydney, NSW 2052 (Australia); Harris-Roxas, Ben, E-mail: b.harris-roxas@unsw.edu.a [Centre for Health Equity Training, Research and Evaluation, part of the UNSW, Research Centre for Primary Health Care and Equity, UNSW, Locked Mail Bag 7103, Liverpool BC, NSW 1871 (Australia); Kemp, Lynn, E-mail: l.kemp@unsw.edu.a [Centre for Health Equity Training, Research and Evaluation, part of the UNSW, Research Centre for Primary Health Care and Equity, UNSW, Locked Mail Bag 7103, Liverpool BC, NSW 1871 (Australia)

    2009-09-15T23:59:59.000Z

    Internationally the inclusion of health within environmental impact assessment (EIA) has been shown to be limited. While Australian EIA documentation has not been studied empirically to date, deficiencies in practice have been documented. This research developed an audit tool to undertake a qualitative descriptive analysis of 22 Major Project EAs in New South Wales, Australia. Results showed that health and wellbeing impacts were not considered explicitly. They were, however, included indirectly in the identification of traditional public health exposures associated with the physical environment and to a lesser extent the inclusion of social and economic impacts. However, no health data was used to inform any of the assessments, there was no reference to causal pathways between exposures or determinants and physical or mental health effects, and there was no inclusion of the differential distribution of exposures or health impacts on different populations. The results add conceptually and practically to the long standing integration debate, showing that health is in a position to add value to the EIA process as an explicit part of standard environmental, social and economic considerations. However, to overcome the consistently documented barriers to integrating health in EIA, capacity must be developed amongst EIA professionals, led by the health sector, to progress health related knowledge and tools.

  10. COM: A Method for Mining and Monitoring Human Activity Patterns in Home-based Health Monitoring Systems

    E-Print Network [OSTI]

    Cook, Diane J.

    for the health care system due to the shortage of health care professionals and health care facilities. To remedy population in the coming decades will result in many complications for families, society and the government, such as the shortage of health care professionals and care facilities, an increase in age related diseases and rising

  11. THE INVESTIGATION OF CORROSION PROBLEMS, PRECAUTIONS AND THE NEW SYSTEMS REGARDING TO THE HUMAN HEALTH IN AUTOMOBILE INDUSTRY

    E-Print Network [OSTI]

    M. Evren Sar?yerli; Mercedes-benz Turk; Gökçe S. Sar?yerli

    In every part of our life and in every division of the industry, the corrosion is one of vital problems. It becomes a subject for research and progress in the automotive sector. Based on the knowledge that the lifetime is the most important insurance that is given to the customers by the firms in a though competition, the prevention of corrosion occurs depending on the environmental protection factors and the utilization of new technology. Necessary importance should be given to the human health and the production of vehicle according to the climate changes. On this study, primarily the types of corrosion in the automotive industry has been investigated and then the data of corrosion process and the protection concepts of corrosion have been given. Mostly the dynamic corrosion program and tests that have been applied to the test vehicle took place. And then the process of surface cathodic deep dying and the development of establishment have been mentioned. Lastly, the systems for the prevention of the corrosion with the environmental protection factor determined. The usage of test vehicle met with all the corrosion problems that normally do not happen, the region of corrosion can be easily determined and all the preventive precautions can be taken before corrosion occurs. Nowadays the advanced isolation techniques such as the phosphatising, the surface process, the cathodic deep dying, the coating of surface and the other protection concepts that realize the techniques to continue by the constructive application, the successful results on the surfaces of the vehicles have been taken.

  12. BASELINE PARAMETER UPDATE FOR HUMAN HEALTH INPUT AND TRANSFER FACTORS FOR RADIOLOGICAL PERFORMANCE ASSESSMENTS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Coffield, T; Patricia Lee, P

    2007-01-31T23:59:59.000Z

    The purpose of this report is to update parameters utilized in Human Health Exposure calculations and Bioaccumulation Transfer Factors utilized at SRS for Performance Assessment modeling. The reason for the update is to utilize more recent information issued, validate information currently used and correct minor inconsistencies between modeling efforts performed in SRS contiguous areas of the heavy industrialized central site usage areas called the General Separations Area (GSA). SRS parameters utilized were compared to a number of other DOE facilities and generic national/global references to establish relevance of the parameters selected and/or verify the regional differences of the southeast USA. The parameters selected were specifically chosen to be expected values along with identifying a range for these values versus the overly conservative specification of parameters for estimating an annual dose to the maximum exposed individual (MEI). The end uses are to establish a standardized source for these parameters that is up to date with existing data and maintain it via review of any future issued national references to evaluate the need for changes as new information is released. These reviews are to be added to this document by revision.

  13. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01T23:59:59.000Z

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around two mid-size coal fired power plants. The objectives were to determine if local mercury hot-spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. These programs found the following: (1) At both sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Kincaid plant, there was excess soil Hg along heavily traveled roads. The spatial pattern of soil mercury concentrations did not match the pattern of vegetation Hg concentrations at either plant. (2) At both sites, the subsurface (5-10 cm) samples the Hg concentration correlated strongly with the surface samples (0-5 cm). Average subsurface sample concentrations were slightly less than the surface samples; however, the difference was not statistically significant. (3) An unequivocal definition of background Hg was not possible at either site. Using various assumed background soil mercury concentrations, the percentage of mercury deposited within 10 km of the plant ranged between 1.4 and 8.5% of the RGM emissions. Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. Estimates of the percentage of total Hg deposition ranged between 0.3 and 1.7%. These small percentages of deposition are consistent with the empirical findings of only minor perturbations in environmental levels, as opposed to ''hot spots'', near the plants. The major objective of this study was to determine if there was evidence for ''hot-spots'' of mercury deposition around coal-fired power plants. Although the term has been used extensively, it has never been defined. From a public health perspective, such a ''hot spot'' must be large enough to insure that it did not occur by chance, and it must affect water bodies large enough to support a population of subsistence fishers. The results of this study support the hypothesis that n

  14. National Institutes of Health National Institute of Mental Health

    E-Print Network [OSTI]

    Baker, Chris I.

    National Institutes of Health National Institute of Mental Health Department of Health and HumanNational Institute of Mental Health Division of Intramural Research Programs http://intramural.nimh.nih.gov/ [NIMH of Fellowship Training] National Institutes of Health National Institute of Mental Health Department of Health

  15. of Health Care National Institutes of Health

    E-Print Network [OSTI]

    Bandettini, Peter A.

    of Health Care National Institutes of Health Expanding Horizons Strategic Plan 2005-2009 UR nesmohsirh retir,ztnelinaoJ #12;of Health Care Expanding Horizons Strategic Plan 2005-2009 National Center.S Department of Health and Human Services National Center for Complementary and Alternative Medicine #12;A M mo

  16. CHEMISTRY AND TOXICITY OF

    E-Print Network [OSTI]

    sewer water produced no acute toxicity, and only slightly inhibited Ceriodaphnia reproduction, again) primary treated domestic sewage from greater Vancouver (Annacis Island Wastewater Treatment Plant); (2 exceeded 10 mg/L. Storm sewer water was relatively low in dissolved salts, but contained significant

  17. Toxics Use Reduction Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act, revised significantly in 2006, seeks to mitigate the use of toxic substances and the production of toxic byproducts through reporting requirements as well as resource conservation plans...

  18. transforming human health

    E-Print Network [OSTI]

    Kenny, Paraic

    are in clinical trials: forodesine for treating leukemia and lymphoma, and BCX4208 for gout. Drugs to treat

  19. human health | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of strong brown carbon chromophores. Citation: Laskin J, A Laskin, S Nizkorodov, PJ Roach, PA Eckert, MK Gilles, B Wang, HJ Lee, and Q Hu.2014."Molecular Selectivity of Brown...

  20. EMSL - human health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MS) with high mass resolution (m&61636;m100,000). Solvent mixtures of acetonitrilewater and acetonitriletoluene were used to extract and ionize polar and non-polar...

  1. Winner of the 2014 $500,000 Lemelson-MIT Prize Dr. Sangeeta BhaCa Bha$a's combined clinical and engineering perspec$ve targets the development of miniaturized technologies to impact human

    E-Print Network [OSTI]

    Reif, Rafael

    $a and her trainees have launched ten companies with more than 70 products. She technologies to impact human health in areas ranging from drug toxicity, $ssue$on with probio$c vehicles to fine-tune dosing and delivery control. Methods to improve

  2. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 5. Human health risk assessment (HHRA): Evaluation of potential risks from multipathway exposure to emissions. Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The Human Health Risk Assessment (HHRA) portion of the WTI Risk Assessment involves the integration of information about the facility with site-specific data for the surrounding region and population to characterize the potential human health risks due to emissions from the facility. The estimation of human health risks is comprised of the following general steps: (1) identification of substances of potential concern; (2) estimation of the nature and magnitude of chemical releases from the WTI facility; (3) prediction of the atmospheric transport of the emitted contaminants; (4) determination of the types of adverse effects associated with exposure to the substances of potential concern (referred to as hazard identification), and the relationship between the level of exposure and the severity of any health effect (referred to as dose-response assessment); (5) estimation of the magnitude of exposure (referred to as exposure assessment); and (6) characterization of the health risks associated with exposure (referred to as risk characterization).

  3. Roadmap: Integrated Health Studies Health Services Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Six: [15 Credit Hours] NURS 45010 Health Care Policy and Delivery Systems or NURS 46000 Health CareRoadmap: Integrated Health Studies ­ Health Services ­ Bachelor of Science [EH-BS-IHS-HLSV] College of Education, Health, and Human Services School of Health Sciences Catalog Year: 2012­2013 Page 1 of 3 | Last

  4. Mountain Health Choices Beneficiary Report

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    ................................................................................................................ 42 I. Access to Health Care Mountain Health Choices Beneficiary Report A Report to the West Virginia Bureau for Medical of Health and Human Resources, Bureau for Medical Services. #12; 1 Table of Contents I. EXECUTIVE

  5. 'Sifting the significance from the data' - the impact of high-throughput genomic technologies on human genetics and health care

    E-Print Network [OSTI]

    Clarke, Angus J; Cooper, David N; Krawczak, Michael; Tyler-Smith, Chris; Wallace, Helen M; Wilkie, Andrew O M; Raymond, Frances L; Chadwick, Ruth; Craddock, Nick; John, Ros; Gallacher, John; Chiano, Mathias

    2012-08-02T23:59:59.000Z

    the system of governance also serves other, more institutional purposes. The prospect of internet-based marketing corporations using access to research data and to electronic health records as an op- portunity to market more products seems both manipu- lative...

  6. Occupational Health Nurse

    Broader source: Energy.gov [DOE]

    The Occupational Health Nurse position is located in the Talent Sustainment group within the Human Capital Management (HCM) organization. The Talent Sustainment organization ensures that effective...

  7. assessing health risks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Human Health Risk Assessment CPH 418518 Biology and Medicine Websites Summary: SYLLABUS Introduction to Human Health Risk Assessment CPH 418518 SWES 418518 Time: Tuesday...

  8. assess health risks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Human Health Risk Assessment CPH 418518 Biology and Medicine Websites Summary: SYLLABUS Introduction to Human Health Risk Assessment CPH 418518 SWES 418518 Time: Tuesday...

  9. Health Information Systems for Primary Health Care: Thinking About Participation

    E-Print Network [OSTI]

    Sahay, Sundeep

    Health Information Systems for Primary Health Care: Thinking About Participation Elaine Byrne in supporting primary health care functioning, the design, development and implementation of these systems information systems, human rights 1. Introduction: Primary health care is a crucial element of national health

  10. Overview of ozone human exposure and health risk analyses used in the U.S. EPA's review of the ozone air quality standard.

    SciTech Connect (OSTI)

    Whitfield, R. G.

    1999-03-04T23:59:59.000Z

    This paper presents an overview of the ozone human exposure and health risk analyses developed under sponsorship of the U.S. Environmental Protection Agency (EPA). These analyses are being used in the current review of the national ambient air quality standards (NAAQS) for ozone. The analyses consist of three principal steps: (1) estimating short-term ozone exposure for particular populations (exposure model); (2) estimating population response to exposures or concentrations (exposure-response or concentration-response models); and (3) integrating concentrations or exposure with concentration-response or exposure-response models to produce overall risk estimates (risk model). The exposure model, called the probabilistic NAAQS exposure model for ozone (pNEM/03), incorporates the following factors: hourly ambient ozone concentrations; spatial distribution of concentrations; ventilation state of individuals at time of exposure; and movement of people through various microenvironments (e.g., outdoors, indoors, inside a vehicle) of varying air quality. Exposure estimates are represented by probability distributions. Exposure-response relationships have been developed for several respiratory symptom and lung function health effects, based on the results of controlled human exposure studies. These relationships also are probabilistic and reflect uncertainties associated with sample size and variability of response among subjects. The analyses also provide estimates of excess hospital admissions in the New York City area based on results from an epidemiology study. Overall risk results for selected health endpoints and recently analyzed air quality scenarios associated with alternative 8-hour NAAQS and the current 1-hour standard for outdoor children are used to illustrate application of the methodology.

  11. Mutation assays involving blood cells that metabolize toxic substances

    DOE Patents [OSTI]

    Crespi, Charles L. (Downers Grove, IL); Thilly, William G. (Winchester, MA)

    1985-01-01T23:59:59.000Z

    A line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity) is disclosed. Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. Mutation assays using these cells, and other cells with similar characteristics, are also disclosed.

  12. Human Pathogen Importation Importing "Human" Pathogens from Outside Canada

    E-Print Network [OSTI]

    Human Pathogen Importation Importing "Human" Pathogens from Outside Canada 1) Permits be obtained from the Public Health Agency Canada (PHAC) to facilitate customs clearance. 2) If a permit

  13. Tropical Medicine and International Health voLUME 2 NO rr SUPPLEMENT PP Ar-A54 NOVEMBER 1997 Human behaviour and cultural context in disease control

    E-Print Network [OSTI]

    /faith in rural health care. Utilization rates are often low in rural clinics because health care wor

  14. Parental involvement in mental health services for diverse youth

    E-Print Network [OSTI]

    Liang, June

    2010-01-01T23:59:59.000Z

    M. (2002). Mental health services for Latino adolescentsfamilies to mental health services: The role of the familyoutpatient mental health services. New York: Human Sciences

  15. California Environmental Protection Agency Department of Toxic...

    Open Energy Info (EERE)

    California Environmental Protection Agency Department of Toxic Substances Control Jump to: navigation, search Name: California Environmental Protection Agency Department of Toxic...

  16. TOXNET and Beyond-Using the National Library of Medicine's Environmental Health and Toxicology Portal

    SciTech Connect (OSTI)

    Templin-Branner, Wilma

    2011-01-01T23:59:59.000Z

    The purpose of this training is to familiarize participants with reliable online environmental health and toxicology information, from the National Library of Medicine and other reliable sources. Skills and knowledge acquired in this training class will enable participants to access, utilize, and refer others to environmental health and toxicology information. After completing this course, participants will be able to: (1) Identify quality, accurate, and authoritative online resources pertaining to environmental health, toxicology, and related medical information; (2) Demonstrate the ability to perform strategic search techniques to find relevant online information; and (3) Apply the skills and knowledge obtained in this class to their organization's health information needs. NLMs TOXNET (Toxicology Data Network) is a free, Web-based system of databases on toxicology, environmental health, hazardous chemicals, toxic releases, chemical nomenclatures, and specialty areas such as occupational health and consumer products. Types of information in the TOXNET databases include: (1) Specific chemicals, mixtures, and products; (2) Unknown chemicals; and (3) Special toxic effects of chemicals in humans and/or animals.

  17. NTP-CERHR expert panel report on the reproductive anddevelopmental toxicity of hydroxyurea

    SciTech Connect (OSTI)

    Liebelt, E.L.; Balk, S.J.; Faber, W.; Fisher, J.W.; Hughes, C.L.; Lanzkron, S.M.; Lewis, K.M.; Marchetti, F.; Mehendale, H.M.; Rogers,J.M.; Shad, A.T.; Skalko, R.G.; Stanek, E.J.

    2007-01-01T23:59:59.000Z

    The National Toxicology Program (NTP) and the National Institute of Environmental Health Sciences (NIEHS) established the NTP Center for the Evaluation of Risks to Human Reproduction (CERHR) in June 1998. The purpose of CERHR is to provide timely, unbiased, scientifically sound evaluations of human and experimental evidence for adverse effects on reproduction and development caused by agents to which humans may be exposed. Hydroxyurea was selected for evaluation by a CERHR expert panel because of (1) its increasing use in the treatment of sickle cell disease in children and adults, (2) knowledge that it inhibits DNA synthesis and is cytotoxic, and (3) published evidence of its reproductive and developmental toxicity in rodents. Hydroxyurea is FDA-approved for reducing the frequency of painful crises and the need for blood transfusions in adults with sickle cell anemia who experience recurrent moderate-to-severe crises. Hydroxyurea is used in the treatment of cancer, sickle cell disease, and thalassemia. It is the only treatment for sickle cell disease aside from blood transfusion used in children. Hydroxyurea may be used in the treatment of children and adults with sickle cell disease for an extended period of time or for repeated cycles of therapy. Treatment with hydroxyurea may be associated with cytotoxic and myelosuppressive effects, and hydroxyurea is mutagenic.

  18. The toxicity of Nerium oleander in the monkey (Cebus apella): a pathologic study

    E-Print Network [OSTI]

    Schwartz, William Lewis

    1970-01-01T23:59:59.000Z

    of chewing the flowers. Oleander produces dermatitis in 5, 11 certain humans upon contact with the skin ' Spontaneous and experimental oleander toxicity has been reported in many species 5, 8, 11, 30)36, 49, 53 . 11 7, 9, 11, 49 including humans... of Department Member (Member) August 1970 ABSTRACT The Toxicity of Nerium oleander in the Monkey (Cebus ~a ella): A Pathologic Study (August 1970) William Lewis Schwartz, B Sc , D. V M. The Ohio State Vniversity Directed by: Dr. W. W- Bay The toxic...

  19. A framework for human microbiome research

    E-Print Network [OSTI]

    Friedman, Jonathan

    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project ...

  20. THE LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS ON HUMAN HEALTH RISK. PROGRESS REPORT FOR THE PERIOD OF MARCH 2003 - MARCH 2003.

    SciTech Connect (OSTI)

    SULLIVAN,T.M.LIPFERT,F.D.MORRIS,S.M.

    2003-05-01T23:59:59.000Z

    This report presents a follow-up to previous assessments of the health risks of mercury that BNL performed for the Department of Energy. Methylmercury is an organic form of mercury that has been implicated as the form of mercury that impacts human health. A comprehensive risk assessment report was prepared (Lipfert et al., 1994) that led to several journal articles and conference presentations (Lipfert et al. 1994, 1995, 1996). In 2001, a risk assessment of mercury exposure from fish consumption was performed for 3 regions of the U.S (Northeast, Southeast, and Midwest) identified by the EPA as regions of higher impact from coal emissions (Sullivan, 2001). The risk assessment addressed the effects of in utero exposure to children through consumption of fish by their mothers. Two population groups (general population and subsistence fishers) were considered. Three mercury levels were considered in the analysis, current conditions based on measured data, and hypothetical reductions in Hg levels due to a 50% and 90% reduction in mercury emissions from coal fired power plants. The findings of the analysis suggested that a 90% reduction in coal-fired emissions would lead to a small reduction in risk to the general population (population risk reduction on the order of 10{sup -5}) and that the population risk is born by less than 1% of the population (i.e. high end fish consumers). The study conducted in 2001 focused on the health impacts arising from regional deposition patterns as determined by measured data and modeling. Health impacts were assessed on a regional scale accounting for potential percent reductions in mercury emissions from coal. However, quantitative assessment of local deposition near actual power plants has not been attempted. Generic assessments have been performed, but these are not representative of any single power plant. In this study, general background information on the mercury cycle, mercury emissions from coal plants, and risk assessment are provided to provide the basis for examining the impacts of local deposition. A section that covers modeling of local deposition of mercury emitted from coal power plants follows. The code ISCST3 was used with mercury emissions data from two power plants and local meteorological conditions to assess local deposition. The deposition modeling results were used to estimate the potential increase in mercury deposition that could occur in the vicinity of the plant. Increased deposition was assumed to lead to a linearly proportional increase in mercury concentrations in fish in local water bodies. Fish are the major pathway for human health impacts and the potential for increased mercury exposure was evaluated and the risks of such exposure estimated. Based on the findings recommendations for future work and conclusions are provided. Mercury is receiving substantial attention in a number of areas including: understanding of mercury deposition, bioaccumulation, and transport through the atmosphere, and improvements to the understanding of health impacts created by exposure to mercury. A literature review of key articles is presented as Appendix A.

  1. Diagnostic health risk assessment of electronic waste on the general population in developing countries' scenarios

    SciTech Connect (OSTI)

    Frazzoli, Chiara, E-mail: chiara.frazzoli@iss.i [Food and Veterinary Toxicology Unit and WHO/FAO Collaborating Centre for Veterinary Public Health - Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita, viale Regina Elena 299, 00161 Rome (Italy); Noodles Onlus, Nutrition and food safety and wholesomeness (Italy); Orisakwe, Orish Ebere [Toxicology Unit, Department of Pharmacology, Nnamdi Azikiwe University, College of Health Sciences Nnewi Campus, Nnewi, Anambra State (Nigeria); Noodles Onlus, Nutrition and food safety and wholesomeness (Italy); Dragone, Roberto [Institute of Nanostructured Materials (ISMN), Consiglio Nazionale delle Ricerche, at the Department of Chemistry of the 'Sapienza' University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Noodles Onlus, Nutrition and food safety and wholesomeness (Italy); Mantovani, Alberto [Food and Veterinary Toxicology Unit and WHO/FAO Collaborating Centre for Veterinary Public Health - Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita, viale Regina Elena 299, 00161 Rome (Italy); Noodles Onlus, Nutrition and food safety and wholesomeness (Italy)

    2010-11-15T23:59:59.000Z

    E-waste is the generic name for technological waste. Even though aspects related to e-waste environmental pollution and human exposure are known, scientific assessments are missing so far on the actual risks for health sustainability of the general population exposed to e-waste scenarios, such as illicit dumping, crude recycling and improper treatment and disposal. In fact, further to occupational and direct local exposure, e-waste scenarios may impact on the environment-to-food chain, thus eliciting a widespread and repeated exposure of the general population to mixtures of toxicants, mainly toxic chemical elements, polycyclic aromatic hydrocarbons and persistent organic pollutants. In the absence of any clear policy on e-waste flow management, the situation in the e-waste receiver countries may become quite scary; accordingly, here we address a diagnostic risk assessment of health issues potentially elicited by e-waste related mixtures of toxicants. Scientific evidence available so far (mainly from China) is discussed with special attention to the concept of health sustainability, i.e. the poor health burden heritage perpetuated through the mother-to-child dyad. Endocrine disruption and neurotoxicity are specifically considered as examples of main health burden issues relevant to perpetuation through life cycle and across generations; toxicological information are considered along with available data on environmental and food contamination and human internal exposure. The risk from exposure to e-waste related mixtures of toxicants of vulnerable subpopulation like breast-fed infants is given special attention. The diagnostic risk assessment demonstrates how e-waste exposure poses an actual public health emergency, as it may entrain significant health risks also for generations to come. Exposure scenarios as well as specific chemicals of major concern may vary in different contexts; for instance, only limited information is available on e-waste related exposures in a major site of e-waste dumping such as West Africa. Therefore, considerations are also given on data gaps possibly fitting a systematic risk assessment of the e-waste health impacts in different subscenarios as well as possible protective factors for exposed subpopulations.

  2. Health effects associated with energy conservation measures in commercial buildings

    SciTech Connect (OSTI)

    Stenner, R.D.; Baechler, M.C.

    1990-09-01T23:59:59.000Z

    Indoor air quality can be impacted by hundreds of different chemicals. More than 900 different organic compounds alone have been identified in indoor air. Health effects that could arise from exposure to individual pollutants or mixtures of pollutants cover the full range of acute and chronic effects, including largely reversible responses, such as rashes and irritations, to the irreversible toxic and carcinogenic effects. These indoor contaminants are emitted from a large variety of materials and substances that are widespread components of everyday life. Pacific Northwest Laboratory conducted a search of the peer-reviewed literature on health effects associated with indoor air contaminants for the Bonneville Power Administration to aid the agency in the preparation of environmental documents. Results are reported in two volumes. Volume 1 summarizes the results of the search of the peer-reviewed literature on health effects associated with a selected list of indoor air contaminants. In addition, the report discusses potential health effects of polychlorinated biphenyls and chlorofluorocarbons. All references to the literature reviewed are found in this document Volume 2. Volume 2 provides detailed information from the literature reviewed, summarizes potential health effects, reports health hazard ratings, and discusses quantitative estimates of carcinogenic risk in humans and animals. Contaminants discussed in this report are those that; have been measured in the indoor air of a public building; have been measured (significant concentrations) in test situations simulating indoor air quality (as presented in the referenced literature); and have a significant hazard rating. 38 refs., 7 figs., 23 tabs.

  3. assessing human risks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Human Health Risk Assessment CPH 418518 Biology and Medicine Websites Summary: SYLLABUS Introduction to Human Health Risk Assessment CPH 418518 SWES 418518 Time: Tuesday...

  4. All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our environment from heavy

    E-Print Network [OSTI]

    George, Steven C.

    and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our the environment by recycling universal wastes, contact EH&S at (949) 824-6200 or visit: www.ehs.uci.edu Mercury lamp recycling separates a number of materials for further use in new products. · The mercury is reused

  5. On-Line Microbial Whole Effluent Toxicity Monitoring for Industrial Wastewater

    SciTech Connect (OSTI)

    Mathews, S; Hoppes, W; Mascetti, M; Campbell, C G

    2002-09-17T23:59:59.000Z

    In this study a respirometer is tested for its ability to act as an early upset warning device and whole effluent toxicity monitor for industrial discharge. Industrial discharge water quality is commonly evaluated by comparing measured chemical concentrations to target values or regulatory limits established by governmental agencies. Unless the regulatory values are based upon empirical data, the actual effect of the discharge on aquatic systems is unknown. At the same time assessing the environmental toxicology of wastewater discharges is complicated by synergistic relationships among chemical constituents producing greater total toxicity. For example, metals may be more toxic in waters with low total hardness or more soluble at lower pH. An alternative approach that we are investigating is whole effluent toxicity testing. This study investigates the measurement of whole effluent toxicity through an on-line respirometer that measures toxicity to microorganisms comprising activated sludge. In this approach the oxygen uptake rate is monitored and used as an indicator of microbial activity or health. This study investigates the use of an online whole effluent toxicity testing system to provide early upset warning and the consistency of measured response to low pH. Repeated exposure of the microorganisms to low pH results in reduced sensitivity of the microbial population. We investigate whether this reduction in sensitivity results from physiological acclimation or changes in species composition. We identify promising applications, where, with proper calibration, respirometry based toxicity monitoring appear to be well suited for relative comparisons of whole effluent toxicity.

  6. Emissions of airborne toxics from coal-fired boilers: Mercury

    SciTech Connect (OSTI)

    Huang, H.S.; Livengood, C.D.; Zaromb, S.

    1991-09-01T23:59:59.000Z

    Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

  7. DEPARTMENTOFHEALTHANDHUMANSERVICES National Institutes of Health

    E-Print Network [OSTI]

    Baker, Chris I.

    DEPARTMENTOFHEALTHANDHUMANSERVICES National Institutes of Health Office of Extramural Research 9000 Institutes of Health (NIH), part of the Department of Health and Human Services (DHHS), is the principal health research agency of the U.S. Federal Government. The Office of Extramural Research (OER) provides

  8. Health Behavior Health Promotion -Prevention

    E-Print Network [OSTI]

    Meagher, Mary

    chronic disease complications Improve quality of life Reduce health care costs #12;ImpactHealth Behavior Health Promotion - Prevention Modification of Health Attitudes and Health Behavior #12;Health Promotion: An Overview Basic philosophy Good health = individual and collective goal

  9. Mutation assays involving blood cells that metabolize toxic substances

    DOE Patents [OSTI]

    Crespi, C.L.; Thilly, W.G.

    1999-08-10T23:59:59.000Z

    The present invention pertains to a line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity). Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. The invention also includes mutation assays using these cells, and other cells with similar characteristics. 3 figs.

  10. Mutation assays involving blood cells that metabolize toxic substances

    DOE Patents [OSTI]

    Crespi, Charles L. (Marblehead, MA); Thilly, William G. (Winchester, MA)

    1999-01-01T23:59:59.000Z

    The present invention pertains to a line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity). Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. The invention also includes mutation assays using these cells, and other cells with similar characteristics.

  11. Toxic Remediation System And Method

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alameda County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1996-07-23T23:59:59.000Z

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  12. Differential toxicity of heterocyclic aromatic amines and their mixture in metabolically competent HepaRG cells

    SciTech Connect (OSTI)

    Dumont, Julie, E-mail: Julie.Dumont@pasteur-lille.f [Inserm U991, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Universite de Rennes 1, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Josse, Rozenn, E-mail: Rozenn.Josse@univ-rennes1.f [Inserm U991, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Universite de Rennes 1, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Lambert, Carine, E-mail: Carine.Lambert45@gmail.co [Inserm U991, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Universite de Rennes 1, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Antherieu, Sebastien, E-mail: Sebastien.Antherieu@univ-rennes1.f [Inserm U991, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Universite de Rennes 1, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Le Hegarat, Ludovic, E-mail: l.lehegarat@afssa.f [Agence Francaise de Securite Sanitaire des Aliments, F-35300 Fougeres (France); Aninat, Caroline, E-mail: Caroline.Aninat@univ-rennes1.f [Inserm U991, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Universite de Rennes 1, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Robin, Marie-Anne, E-mail: Marie-Anne.Robin@inserm.f [Inserm U991, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Universite de Rennes 1, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Guguen-Guillouzo, Christiane, E-mail: Christiane.Guillouzo@univ-rennes1.f [Inserm U991, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France); Universite de Rennes 1, Faculte des Sciences Pharmaceutiques et Biologiques, F-35043 Rennes cedex (France)

    2010-06-01T23:59:59.000Z

    Human exposure to heterocyclic aromatic amines (HAA) usually occurs through mixtures rather than individual compounds. However, the toxic effects and related mechanisms of co-exposure to HAA in humans remain unknown. We compared the effects of two of the most common HAA, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), individually or in combination, in the metabolically competent human hepatoma HepaRG cells. Various endpoints were measured including cytotoxicity, apoptosis, oxidative stress and DNA damage by the comet assay. Moreover, the effects of PhIP and/or MeIQx on mRNA expression and activities of enzymes involved in their activation and detoxification pathways were evaluated. After a 24 h treatment, PhIP and MeIQx, individually and in combination, exerted differential effects on apoptosis, oxidative stress, DNA damage and cytochrome P450 (CYP) activities. Only PhIP induced DNA damage. It was also a stronger inducer of CYP1A1 and CYP1B1 expression and activity than MeIQx. In contrast, only MeIQx exposure resulted in a significant induction of CYP1A2 activity. The combination of PhIP with MeIQx induced an oxidative stress and showed synergistic effects on apoptosis. However, PhIP-induced genotoxicity was abolished by a co-exposure with MeIQx. Such an inhibitory effect could be explained by a significant decrease in CYP1A2 activity which is responsible for PhIP genotoxicity. Our findings highlight the need to investigate interactions between HAA when assessing risks for human health and provide new insights in the mechanisms of interaction between PhIP and MeIQx.

  13. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Environmental Management (EM)

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  14. Community Health Map: A geospatial and multivariate data visualization tool for public health datasets

    E-Print Network [OSTI]

    Shneiderman, Ben

    on health care. The U.S. Department of Health and Human Services keeps track of a variety of health care that enables users to visualize health care data in multivariate space as well as geospatially. It is designed a compre- hensible and powerful interface for policy makers to visualize health care quality, public health

  15. Applied Health Sciences May 6, 2010 Class of 2010

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Applied Health Sciences May 6, 2010 Class of 2010 PRESIDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Charlotte A. Tate PRESENTATION OF DEGREE CANDIDATES (see list on page 12) Biomedical and Health Information in · Biomedical Visualization · Health Informatics · Health Information Management Disability and Human

  16. The Use of Remotely Sensed Bioelectric Action Potentials to Evaluate Episodic Toxicity Events and Ambient Toxicity

    E-Print Network [OSTI]

    Waller, W. Tom; Acevedo, Miguel F.; Allen, H. J.; Schwalm, F. U.

    The exposure of an organism to a toxicant is defined by the magnitude, duration, and frequency with which the organism(s) interact with the toxicant(s). Predicting the exposure of organisms to toxicants during episodic events such as those resulting...

  17. The Use of Remotely Sensed Bioelectric Action Potentials to Evaluate Episodic Toxicity Events and Ambient Toxicity 

    E-Print Network [OSTI]

    Waller, W. Tom; Acevedo, Miguel F.; Allen, H. J.; Schwalm, F. U.

    1996-01-01T23:59:59.000Z

    The exposure of an organism to a toxicant is defined by the magnitude, duration, and frequency with which the organism(s) interact with the toxicant(s). Predicting the exposure of organisms to toxicants during episodic events such as those resulting...

  18. Community Health & Public Health

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Community Health & Public Health Preparedness in the Marcellus Shale Era 2011 Pennsylvania Public Photo credit: Pittsburgh Tribune- Review, Keith Hodan #12;Safety by the Numbers PA Marcellus Citations. Conference presentation, Spain. · County Commissioners Association of Pennsylvania (CCAP). (2010). Marcellus

  19. LAND AND WATER USE CHARACTERISTICS AND HUMAN HEALTH INPUT PARAMETERS FOR USE IN ENVIRONMENTAL DOSIMETRY AND RISK ASSESSMENTS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Jannik, T.; Karapatakis, D.; Lee, P.; Farfan, E.

    2010-08-06T23:59:59.000Z

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) Regulatory Guides. Within the regulatory guides, default values are provided for many of the dose model parameters but the use of site-specific values by the applicant is encouraged. A detailed survey of land and water use parameters was conducted in 1991 and is being updated here. These parameters include local characteristics of meat, milk and vegetable production; river recreational activities; and meat, milk and vegetable consumption rates as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors to be used in human health exposure calculations at SRS are documented. Based on comparisons to the 2009 SRS environmental compliance doses, the following effects are expected in future SRS compliance dose calculations: (1) Aquatic all-pathway maximally exposed individual doses may go up about 10 percent due to changes in the aquatic bioaccumulation factors; (2) Aquatic all-pathway collective doses may go up about 5 percent due to changes in the aquatic bioaccumulation factors that offset the reduction in average individual water consumption rates; (3) Irrigation pathway doses to the maximally exposed individual may go up about 40 percent due to increases in the element-specific transfer factors; (4) Irrigation pathway collective doses may go down about 50 percent due to changes in food productivity and production within the 50-mile radius of SRS; (5) Air pathway doses to the maximally exposed individual may go down about 10 percent due to the changes in food productivity in the SRS area and to the changes in element-specific transfer factors; and (6) Air pathway collective doses may go down about 30 percent mainly due to the decrease in the inhalation rate assumed for the average individual.

  20. Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardize...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardized Materials and Rapid Assays. Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardized...

  1. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01T23:59:59.000Z

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  2. Toxicity evaluation and hazard review for Rigid Foam

    SciTech Connect (OSTI)

    Archuleta, M.M.; Stocum, W.E.

    1994-02-01T23:59:59.000Z

    Rigid Foam is a chemical delay foam used to completely encapsulate an object or to block access to an area. Prior studies have indicated that the final foam product is essentially non-toxic. The purpose of this study was to evaluate and summarize the current chemical and toxicological data available on the components of Rigid Foam and to update the information available on the toxicity of the final Rigid Foam product. Since the possibility exists for a partial deployment of Rigid Foam where only one of the components is released, this study also examined the toxicity of its chemical constituents. Rigid Foam is composed of an {open_quotes}A{close_quotes} and {open_quotes}B{close_quotes} Component. The {open_quotes}A{close_quotes} component is primarily a polymeric isocyanate and the {open_quotes}B{close_quotes} component is a mixture of polyols. In addition to the primary constituents, dichlorodifluoromethane and trichlorofluoromethane are present as blowing agents along with catalysts and silicone surfactants necessary for foaming. The pre-deployed {open_quotes}A{close_quotes} and {open_quotes}B{close_quotes} components are stored in separate vessels and are brought together in static mixing nozzles for dispersal. The results of this evaluation indicate that a completely deployed Rigid Foam under normal conditions is essentially non-toxic as determined previously. However, in the event of a partial deployment or deployment of an individual component directly at an unprotected individual, the degree of hazard is increased due to the toxic and corrosive nature of the individual constituents. The health hazard would depend on the properties of the material to which the person was exposed.

  3. Space Science Technology Health General Sci-fi & Gaming Oddities International Business Politics Education Entertainment Sports Better Than The Human Eye

    E-Print Network [OSTI]

    Rogers, John A.

    Education Entertainment Sports Better Than The Human Eye Posted on: Monday, 17 January 2011, 22:22 CST Tiny a curvilinear camera, much like the human eye, with the significant feature of a zoom capability, unlike the human eye. The "eyeball camera" has a 3.5x optical zoom, takes sharp images, is inexpensive to make

  4. Home National World Business Sports Cricket Entertainment Health Science Bollywood Celebs Geekwerks New curvilinear camera adds a zoom to the `human eye'

    E-Print Network [OSTI]

    Rogers, John A.

    Geekwerks New curvilinear camera adds a zoom to the `human eye' From ANI Washington, Jan 18: Researchers have developed a curvilinear camera that mimics the human eye, but has the added feature of zooming-vision surveillance, robotic vision, endoscopic imaging and consumer electronics. "We were inspired by the human eye

  5. addressing complex health: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    work is properly cited. This article considers some of the effects of health sector reform on human resources for health (HRH) in developing countries and countries in...

  6. Mobile Source Air Toxics Rule (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    On February 9, 2007, the Environmental Protection Agency (EPA) released its MSAT2 rule, which will establish controls on gasoline, passenger vehicles, and portable fuel containers. The controls are designed to reduce emissions of benzene and other hazardous air pollutants. Benzene is a known carcinogen, and the EPA estimates that mobile sources produced more than 70% of all benzene emissions in 1999. Other mobile source air toxics, including 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, and naphthalene, also are thought to increase cancer rates or contribute to other serious health problems.

  7. INSTITUTE FOR PUBLIC HEALTH AND MEDICINE AT

    E-Print Network [OSTI]

    Engman, David M.

    INSTITUTE FOR PUBLIC HEALTH AND MEDICINE AT NORTHWESTERN MEDICINE CENTER FOR PATIENT- CENTERED FOR PUBLIC HEALTH AND MEDICINE AT NORTHWESTERN MEDICINE CENTER FOR PATIENT-CENTERED OUTCOMES "Our work often seeks to understand human behavior and its interface with pressing health issues. We focus on the human

  8. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    Kolker, A.; Sarofim, A.F.; Palmer, C.A.; Huggins, F.E.; Huffman, G.P.; Lighty, J.; Veranth, J.; Helble, J.J.; Wendt, J.O.L.; Ames, M.R.; Finkelman, R.; Mamani-Paco, M.; Sterling, R.; Mroczkowsky, S.J.; Panagiotou, T.; Seames, W.

    1999-05-10T23:59:59.000Z

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environ-mental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 January 1999 to 31 March 1999. During this period, a full Program Review Meeting was held at the University of Arizona. At this meeting, the progress of each group was reviewed, plans for the following 9 month period were discussed, and action items (principally associated with the transfer of samples and reports among the various investigators) were identified.

  9. Toxic hazards of underground excavation

    SciTech Connect (OSTI)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01T23:59:59.000Z

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  10. The Health Risks: Seafood Contamination, Harmful Algal

    E-Print Network [OSTI]

    health products from the sea. What is the central issue? Why should I care? How will OHH researchThe Health Risks: Seafood Contamination, Harmful Algal Blooms and Polluted Beaches Seafood associated public health costs. Announcing a New Interagency Report on Oceans and Human Health Research

  11. Cellular Toxicity Induced by the Photorelease of a Caged Bioactive Molecule: Design of a Potential Dual-Action Ru(II) Complex

    E-Print Network [OSTI]

    Turro, Claudia

    ,*, and Claudia Turro*, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 similar experimental conditions. The lack of toxicity imparted by 1 is explained by the exchange of only with visible light (irr 455 nm). A 34-fold increase in toxicity toward Hs-27 human skin cells was observed

  12. Chronic Toxicity and Reproduction Studies of

    E-Print Network [OSTI]

    unknown authors

    as an unwanted by-product of certain processes associated with the chlorination of hydrocarbons. Studies were conducted to assess the potential long-term toxicity of HCBD. In a reproduction study conducted in rats, dose levels of 20 or 2.0 mg/kg-day of HCBD induced slight maternal toxicity

  13. Rangeland Risk Management for Texans: Toxic Plants

    E-Print Network [OSTI]

    Hart, Charles R.

    2000-11-01T23:59:59.000Z

    Toxic plants can cause serious losses to livestock, but with the information in this leaflet producers will know how to manage grazing to minimize the danger of toxic plants. It is important to recognize problems early and know how to deal with them....

  14. Rangeland Risk Management for Texans: Toxic Plants 

    E-Print Network [OSTI]

    Hart, Charles R.

    2000-11-01T23:59:59.000Z

    Toxic plants can cause serious losses to livestock, but with the information in this leaflet producers will know how to manage grazing to minimize the danger of toxic plants. It is important to recognize problems early and know how to deal with them....

  15. University Services University Health and Safety

    E-Print Network [OSTI]

    Minnesota, University of

    Management Storm and Waste Water Compliance Promote Environmental Health Drinking Water Quality Human with environmental, health and safety standards, rules and best practices. Through partnerships with units with Capital Planning and Project Management, Facilities Management and academic departments throughout

  16. Toxicities of selected substances to freshwater biota

    SciTech Connect (OSTI)

    Hohreiter, D.W.

    1980-05-01T23:59:59.000Z

    The amount of data available concerning the toxicity of various substances to freshwater biota is so large that it is difficult to use in a practical situation, such as environmental impact assessment. In this document, summary tables are presented showing acute and/or chronic toxicity of selected substances for various groups of aquatic biota. Each entry is referenced to its original source so that details concerning experimental conditions may be consulted. In addition, general information concerning factors modifying toxicity, synergisms, evidence of bioaccumulation, and water quality standards and criteria for the selected substances is given. The final table is a general toxicity table designed to provide an easily accessible and general indication of toxicity of selected substances in aquatic systems.

  17. Innovative . Flexible . RegionalInnovative . Flexible . Regional Health Care

    E-Print Network [OSTI]

    Shihadeh, Alan

    Executive Master in Innovative . Flexible . RegionalInnovative . Flexible . Regional Health Care Learning Outcomes Health Systems, Policy and Reform - Communicating with Policy Makers - Evidence - Human Resources Management - Data and Decision Making Executive Master in Health Care Leadership (EMHCL

  18. USGS National Wildlife Health Center Diagnostic Case Submission Guidelines

    E-Print Network [OSTI]

    USGS National Wildlife Health Center Diagnostic Case Submission Guidelines The following guidelines broadly outline the framework used by the National Wildlife Health Center (NWHC to the submitting agency, its wildlife populations, or domestic animal and human health. Type of Specimens

  19. Health effects of risk-assessment categories

    SciTech Connect (OSTI)

    Kramer, C.F.; Rybicka, K.; Knutson, A.; Morris, S.C.

    1983-10-01T23:59:59.000Z

    Environmental and occupational health effects associated with exposures to various chemicals are a subject of increasing concern. One recently developed methodology for assessing the health impacts of various chemical compounds involves the classification of similar chemicals into risk-assessment categories (RACs). This report reviews documented human health effects for a broad range of pollutants, classified by RACs. It complements other studies that have estimated human health effects by RAC based on analysis and extrapolation of data from animal research.

  20. Commentary Biodiesel Exhaust: The Need for Health Effects Research

    E-Print Network [OSTI]

    Kimberly J. Swanson; Michael C. Madden; Andrew J. Ghio

    2007-01-01T23:59:59.000Z

    BACKGROUND: Biodiesel is a diesel fuel alternative that has shown potential of becoming a commercially accepted part of the United States ’ energy infrastructure. In November 2004, the signing of the Jobs Creation Bill HR 4520 marked an important turning point for the future production of biodiesel in the United States because it offers a federal excise tax credit. By the end of 2005, industry production was 75 million gallons, a 300 % increase in 1 year. Current industry capacity, however, stands at just over 300 million gallons/year, and current expansion and new plant construction could double the industry’s capacity within a few years. Biodiesel exhaust emission has been extensively characterized under field and laboratory conditions, but there have been limited cytotoxicity and mutagenicity studies on the effects of biodiesel exhaust in biologic systems. OBJECTIVES: We reviewed pertinent medical literature and addressed recommendations on testing specific research needs in the field of biodiesel toxicity. DISCUSSION: Employment of biodiesel fuel is favorably viewed, and there are suggestions that its exhaust emissions are less likely to present any risk to human health relative to petroleum diesel emissions. CONCLUSION: The speculative nature of a reduction in health effects based on chemical composition of biodiesel exhaust needs to be followed up with investigations in biologic systems. KEY WORDS: air pollution, biodiesel, diesel exhaust, diesel fuels, lung diseases, vehicle emissions. Environ Health Perspect 115:496–499 (2007). doi:10.1289/ehp.9631 available via

  1. Enhanced toxic cloud knockdown spray system for decontamination applications

    DOE Patents [OSTI]

    Betty, Rita G. (Rio Rancho, NM); Tucker, Mark D. (Albuquerque, NM); Brockmann, John E. (Albuquerque, NM); Lucero, Daniel A. (Albuquerque, NM); Levin, Bruce L. (Tijeras, NM); Leonard, Jonathan (Albuquerque, NM)

    2011-09-06T23:59:59.000Z

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  2. Rangeland Drought Management for Texans: Toxic Range Plants

    E-Print Network [OSTI]

    Hart, Charles R.; Carpenter, Bruce B.

    2001-05-03T23:59:59.000Z

    Toxic plants can pose a major threat to livestock during a drought. This publication explains the importance of knowing which plants are toxic, keeping the range healthy, and preventing toxic plant problems....

  3. Rangeland Drought Management for Texans: Toxic Range Plants 

    E-Print Network [OSTI]

    Hart, Charles R.; Carpenter, Bruce B.

    2001-05-03T23:59:59.000Z

    Toxic plants can pose a major threat to livestock during a drought. This publication explains the importance of knowing which plants are toxic, keeping the range healthy, and preventing toxic plant problems....

  4. Audio visual information fusion for human activity analysis

    E-Print Network [OSTI]

    Thagadur Shivappa, Shankar

    2010-01-01T23:59:59.000Z

    recorded in a health smart home,” in LREC 2010 workshop onto the system. Health smart homes and assisted living forintelligent vehicles, smart homes and natural human-computer

  5. acute organ toxicity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    toxic properties (more) Pessala, Piia 2008-01-01 29 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging environmental...

  6. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    SciTech Connect (OSTI)

    Mortensen, Holly M., E-mail: mortensen.holly@epa.gov [Office of Research and Development, US Environmental Protection Agency, National Center for Computational Toxicology, US EPA, 109 TW Alexander Dr., Mailcode B205-01, Research Triangle Park, NC 27711 (United States); Euling, Susan Y. [Office of Research and Development, US Environmental Protection Agency, National Center for Environmental Assessment, US EPA, 1200 Pennsylvania Ave., NW, Mail Code 8623P, Washington, DC 20460 (United States)

    2013-09-15T23:59:59.000Z

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.

  7. Analysis of Senate Bill 576: Health Care Coverage for Tobacco Cessation Services

    E-Print Network [OSTI]

    California Health Benefits Review Program (CHBRP)

    2005-01-01T23:59:59.000Z

    dependence: A US public health service report. The tobaccoHuman Services. Public Health Service. Javitz HS, Swan GE,Health. U.S. Public Health Service (PHS). (2000). Treating

  8. Environmental Health Perspectives VOLUME 110 | NUMBER 12 | December 2002 1239 DDT and Its Metabolites Alter Gene Expression in Human Uterine Cell Lines

    E-Print Network [OSTI]

    McLachlan, John

    Environmental Health Perspectives · VOLUME 110 | NUMBER 12 | December 2002 1239 DDT and Its- trichloroethane (DDT) and its metabolites, have been shown to mimic estrogen, binding to and activating the ERs, thereby often pro- ducing estrogen-like effects (2,16­21). DDT and its metabolites have displayed harmful

  9. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08T23:59:59.000Z

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

  10. Roadmap: School Health Education -Health and Physical Education -Bachelor of Science in Education

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: School Health Education - Health and Physical Education - Bachelor of Science in Education [EH-BSE-SHED-HPE] College of Education, Health and Human Services School of Health Sciences Catalog Year: 2012-2013 Page 1 of 3 | Last Updated: 22-May-12/JS This roadmap is a recommended semester

  11. Roadmap: School Health Education -Health and Physical Education -Bachelor of Science in Education

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: School Health Education - Health and Physical Education - Bachelor of Science in Education [EH-BSE-SHED-HPE] College of Education, Health and Human Services School of Health Sciences Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 4-June-13/JS This roadmap is a recommended semester

  12. Staff summary of Issues & Recommendations Toxic Contamination

    E-Print Network [OSTI]

    effects caused by the hydropower system. In particular, investigate whether exposure to toxics and operation of the federal hydropower system: "Fishery resources are clearly affectedby the development and operation of the federal hydropower system. Dam presence can beassociatedwith the accumulation

  13. Differences in growth and toxicity of Karenia

    E-Print Network [OSTI]

    Neely, Tatum Elizabeth

    2006-08-16T23:59:59.000Z

    Harmful algal blooms (HABs) in the Gulf of Mexico are primarily caused by dense aggregations of the dinoflagellate species, Karenia brevis. Karenia brevis produces a highly toxic neurotoxin, brevetoxin which has been shown to cause Neurotoxic...

  14. Differences in growth and toxicity of Karenia 

    E-Print Network [OSTI]

    Neely, Tatum Elizabeth

    2006-08-16T23:59:59.000Z

    Harmful algal blooms (HABs) in the Gulf of Mexico are primarily caused by dense aggregations of the dinoflagellate species, Karenia brevis. Karenia brevis produces a highly toxic neurotoxin, brevetoxin which has been shown to cause Neurotoxic...

  15. Toxicity of trifluoroacetate to aquatic organisms

    SciTech Connect (OSTI)

    Berends, A.G.; Rooij, C.G. de [Solvay S.A., Brussels (Belgium); Boutonnet, J.C. [Elf Atochem, Levallois-Perret (France); Thompson, R.S. [Zeneca Ltd., Devon (United Kingdom). Brixham Environmental Lab.

    1999-05-01T23:59:59.000Z

    As a result of the atmospheric degradation of several hydrofluorocarbons and hydrochlorofluorocarbons, trifluoroacetate (TFA) will be formed. Through precipitation, TFA will enter aquatic ecosystems. To evaluate the impact on the aquatic environment, an aquatic toxicity testing program was carried out with sodium trifluoroacetate (NaTFA). During acute toxicity tests, no effects of NaTFA on water fleas (Daphnia magna) and zebra fish (Danio retrio) were found at a concentration of 1,200 mg/L. A 7-d study with duckweed (Lemna gibba Ge) revealed a NOEC of 300 mg/L. On the basis of the results of five toxicity tests with Selenastrum capricornutum, they determined a NOEC of 0.12 mg/L. However, algal toxicity tests with NaTFA and Chlorella vulgaris, Scenedesmus subspicatus, Chlamydomonas reinhardtii, Dunaliella tertiolecta, Eugelan gracilis, Phaeodactylum tricornutum, Navicula pelliculosa, Skeletonema costatum, Anabaena flos-aquae, and Microcystis aeruginosa resulted in EC50 values that were all higher than 100 mg/L. The toxicity of TFA to S. capricornutum could be due to metabolic defluorination to monofluoroacetate (MFA), which is known to inhibit the citric acid cycle. A toxicity test with MFA and S. capricornutum revealed it to be about three orders of magnitude more toxic than TFA. However, a bioactivation study revealed that defluorination of TFA was less than 4%. On the other hand, S. capricornutum exposed to a toxic concentration of NaTFA showed a recovery of growth when citric acid was added, suggesting that TFA (or a metabolite of TFA) interferes with the citric acid cycle. A recovery of the growth of S. capricornutum was also found when TFA was removed from the test solutions. Therefore, TFA should be considered algistatic and not algicidic for S. capricornutum. On the basis of the combined results of the laboratory tests and a previously reported semi-field study, they can consider a TFA concentration of 0.10 mg/L as safe for the aquatic ecosystem.

  16. Reducing Livestock Losses To Toxic Plants

    E-Print Network [OSTI]

    McGinty, Allan; Machen, Richard V.

    2000-04-25T23:59:59.000Z

    TexasAgriculturalExtensionService The Texas A&M University System Reducing Livestock Losses to Toxic Plants B-1499 Sand Shinnery L Perennial Broomweed Texas Agricultural Extension Service a71 Zerle L. Carpenter, Director a71 The Texas A&M University... ................... ...... ... 6 BehaviorModification.................................. 7 Management Techniques forReducingToxic Plant Losses... 8 LiteratureCited........................................ 9 Poisonous Plants ofTexas...............................10 Editor: Judy Winn...

  17. Toxicity of Bitterweed (Actinea odorata) for Sheep.

    E-Print Network [OSTI]

    Boughton, I. B (Ivan Bertrand); Hardy, W. T. (William Tyree)

    1937-01-01T23:59:59.000Z

    TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, RFCAZOS COUNTY, TEXAS BULLETIN NO. 552 AUGUST, 1937 DIVISION OF VETERINARY SCIENCE TOXICITY OF BI'FTERWEED" FOR SHEEP (*Actinea odorata) AGRICULTURAL... AND MECHANICMIJ COLLEGE OF TEXAS T. 0. WALTON, President Previous feeding tests and field observations* have established the toxicity of bitterweed (Actinea odorata) for sheep. The experi- ments reported herein prove that the minimum lethal dose of the fresh...

  18. Residual Toxicities of Insecticides to Cotton Insects.

    E-Print Network [OSTI]

    Hightower, B. G.; Gaines, J. C.

    1960-01-01T23:59:59.000Z

    Summary Results of experiments conducted to determine leafworm, the salt-marsh caterpillar and the garden the effect of natural or simulated climatic conditions webworm. on the residual toxicities of several chlorinated hydro- carbon... variety of weathering conditions. Based on residual properties alone, toxaphene and dieldrin ranked with endrin and Sevin, but the initial toxicities of dieldrin and endrin to the boll weevil were appreciably greater than those of toxaphene...

  19. Residual Toxicities of Insecticides to Cotton Insects. 

    E-Print Network [OSTI]

    Hightower, B. G.; Gaines, J. C.

    1960-01-01T23:59:59.000Z

    Summary Results of experiments conducted to determine leafworm, the salt-marsh caterpillar and the garden the effect of natural or simulated climatic conditions webworm. on the residual toxicities of several chlorinated hydro- carbon... variety of weathering conditions. Based on residual properties alone, toxaphene and dieldrin ranked with endrin and Sevin, but the initial toxicities of dieldrin and endrin to the boll weevil were appreciably greater than those of toxaphene...

  20. Toxicity of Bitterweed (Actinea odorata) for Sheep. 

    E-Print Network [OSTI]

    Boughton, I. B (Ivan Bertrand); Hardy, W. T. (William Tyree)

    1937-01-01T23:59:59.000Z

    TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, RFCAZOS COUNTY, TEXAS BULLETIN NO. 552 AUGUST, 1937 DIVISION OF VETERINARY SCIENCE TOXICITY OF BI'FTERWEED" FOR SHEEP (*Actinea odorata) AGRICULTURAL... AND MECHANICMIJ COLLEGE OF TEXAS T. 0. WALTON, President Previous feeding tests and field observations* have established the toxicity of bitterweed (Actinea odorata) for sheep. The experi- ments reported herein prove that the minimum lethal dose of the fresh...

  1. Reducing Livestock Losses To Toxic Plants 

    E-Print Network [OSTI]

    McGinty, Allan; Machen, Richard V.

    2000-04-25T23:59:59.000Z

    TexasAgriculturalExtensionService The Texas A&M University System Reducing Livestock Losses to Toxic Plants B-1499 Sand Shinnery L Perennial Broomweed Texas Agricultural Extension Service a71 Zerle L. Carpenter, Director a71 The Texas A&M University... ................... ...... ... 6 BehaviorModification.................................. 7 Management Techniques forReducingToxic Plant Losses... 8 LiteratureCited........................................ 9 Poisonous Plants ofTexas...............................10 Editor: Judy Winn...

  2. EAT SMART Sources: Heart Health

    E-Print Network [OSTI]

    -1- EAT SMART Sources: Heart Health American Dietetic Association Complete Food and Nutrition Guide and Promotion; Home and Garden Bulletin Number 252; August 1992. Heart Attach Signs, U.S. Department of Health and Human Services: National Institutes of Heart, Lung, and Blood Institute, NIH Publication No. 01

  3. Emissions Trading and Air Toxics Emissions: RECLAIM and Toxics Regulation in the South Coast Air Basin

    E-Print Network [OSTI]

    Cohen, Nancy J.

    1993-01-01T23:59:59.000Z

    Emissions Trading and Air Toxics Emissions: RECLAIM anda mar- ket-based emissions trading program called theimpacts cre- ated by emissions trading programs that affect

  4. Oxygen Toxicity Calculations by Erik C. Baker, P.E.

    E-Print Network [OSTI]

    Read, Charles

    1 Oxygen Toxicity Calculations by Erik C. Baker, P.E. Management of exposure to oxygen toxicity myself using the good ole' FORTRAN programming language, I found that incorporating oxygen toxicity for others. Background Two oxygen toxicity parameters are typically "tracked" in technical diving

  5. ENVIRONMENTALENVIRONMENTALENVIRONMENTAL SCIENCE & HEALTHSCIENCE & HEALTHSCIENCE & HEALTH

    E-Print Network [OSTI]

    Krylov, Anna I.

    development, fisheries management, protected-area planning and assessment, and human health issues. Notable related to energy, water, transportation, etc., and help develop strategies for protecting human Courses ENST 387: Economics for Natural Resources and the Environment -- An introduction to the economic

  6. Combustion & Health

    E-Print Network [OSTI]

    Hamilton, W.

    2012-01-01T23:59:59.000Z

    ) ? Combustion of fossil fuels for ? Electricity ? Industrial processes ? Vehicle propulsion ? Cooking and heat ? Other ? Munitions ? Fireworks ? Light ? Cigarettes, hookahs? FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? SCALE (think health... for public health and strategies to reduce GHG ? Reduce CO2 emissions by 50% by 2030 ? Reduction in PM2.5 deaths greatly offset costs in all models FFCOMBUSTION & HEALTH FFCOMBUSTION: PM EXPOSURE ? Combustion is source of most concern ? Health...

  7. Comparison of standard acute toxicity tests with rapid-screening toxicity tests

    SciTech Connect (OSTI)

    Toussaint, M.W.; Shedd, T.R.; VanDerSchal, W.H.; Leather, G.R.

    1995-10-01T23:59:59.000Z

    This study compared the relative sensitivity of five inexpensive, rapid toxicity tests to the sensitivity of five standard aquatic acute toxicity tests through literature review and testing. The rapid toxicity tests utilized organisms that require little culturing or handling prior to testing: a freshwater rotifer (Branchionus ccalyciflorus); brine shrimp (Artemia salina); lettuce (Lactuca sativa); and two microbial tests (Photo bacterium phosphoreum - Microtox test, and a mixture of bacterial species - the polytox test). Standard acute toxicity test species included water fleas (Daphnia magna and Ceriadaphnta dubia), green algae (Setenastrum capricarnutum), fathead minnows (Pimephalespromelas), and mysid shrimp (Mysidopsis bahia). Sensitivity comparisons between rapid and standard acute toxicity tests were based on LC5O/EC50 data from 11 test chemicals. Individually, the lettuce and rotifer tests ranked most similar in sensitivity to the standard tests, while Microtox fell just outside the range of sensitivities represented by the group of standard acute toxicity tests. The brine shrimp and Polytox tests were one or more orders of magnitude different from the standard acute toxicity tests for most compounds. The lettuce, rotifer, and Microtox tests could be used as a battery for preliminary toxicity screening of chemicals. Further evaluation of complex real-world environmental samples is recommended.

  8. A comparison of standard acute toxicity tests with rapid-screening toxicity tests

    SciTech Connect (OSTI)

    Toussaint, M.W. [Geo-Centers, Inc., Fort Washington, MD (United States); Shedd, T.R. [Army Biomedical Research and Development Lab., Frederick, MD (United States); Schalie, W.H. van der [Environmental Protection Agency, Washington, DC (United States); Leather, G.R. [Hood Coll., Frederick, MD (United States). Dept. of Biology

    1995-05-01T23:59:59.000Z

    This study compared the relative sensitivity of five inexpensive, rapid toxicity tests to the sensitivity of five standard aquatic acute toxicity tests through literature review and testing. The rapid toxicity tests utilized organisms that require little culturing or handling prior to testing: a freshwater rotifer (Branchionus calyciflorus); brine shrimp (Artemia salina); lettuce (Lactuca sativa); and two microbial tests (Photobacterium phosphoreum--Microtox{reg_sign} test, and a mixture of bacterial species--the Polytox{reg_sign} test). Standard acute toxicity test species included water fleas (Daphnia magna and Ceriodaphnia dubia), green algae (Selenastrum capricornutum), fathead minnows (Pimephales promelas), and mysid shrimp (Mysidopsis bahia). Sensitivity comparisons between rapid and standard acute toxicity tests were based on LC50/EC50 data from 11 test chemicals. Individually, the lettuce and rotifer tests ranked most similar in sensitivity to the standard tests, while Microtox fell just outside the range of sensitivities represented by the group of standard acute toxicity tests. The brine shrimp and Polytox tests were one or more orders of magnitude different from the standard acute toxicity tests for most compounds. The lettuce, rotifer, and Microtox tests could be used as a battery for preliminary toxicity screening of chemicals. Further evaluation of complex real-world environmental samples is recommended.

  9. Reference manual for toxicity and exposure assessment and risk characterization. CERCLA Baseline Risk Assessment

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 1980) (CERCLA or Superfund) was enacted to provide a program for identifying and responding to releases of hazardous substances into the environment. The Superfund Amendments and Reauthorization Act (SARA, 1986) was enacted to strengthen CERCLA by requiring that site clean-ups be permanent, and that they use treatments that significantly reduce the volume, toxicity, or mobility of hazardous pollutants. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (USEPA, 1985; USEPA, 1990) implements the CERCLA statute, presenting a process for (1) identifying and prioritizing sites requiring remediation and (2) assessing the extent of remedial action required at each site. The process includes performing two studies: a Remedial Investigation (RI) to evaluate the nature, extent, and expected consequences of site contamination, and a Feasibility Study (FS) to select an appropriate remedial alternative adequate to reduce such risks to acceptable levels. An integral part of the RI is the evaluation of human health risks posed by hazardous substance releases. This risk evaluation serves a number of purposes within the overall context of the RI/FS process, the most essential of which is to provide an understanding of ``baseline`` risks posed by a given site. Baseline risks are those risks that would exist if no remediation or institutional controls are applied at a site. This document was written to (1) guide risk assessors through the process of interpreting EPA BRA policy and (2) help risk assessors to discuss EPA policy with regulators, decision makers, and stakeholders as it relates to conditions at a particular DOE site.

  10. Combined toxicity of four toxicants (Cu, Cr, oil, oil dispersant) to Artemia salina

    SciTech Connect (OSTI)

    Verriopoulos, G.; Moraitou-Apostolopoulou, M.; Milliou, E.

    1987-03-01T23:59:59.000Z

    In sea waters multicontaminant pollution appears to be the rule rather than the exception. For a realistic approach to pollution effects it is essential to estimate the combined toxicity of two or more chemicals. There is a need to understand the mechanisms of quantify the effects of multiple toxicity in order to provide responsible authorities with rational estimate of the effects of chemical mixtures. Thus the potential toxic effects of mixtures of toxicants has recently become a subject of growing scientific interest. In this paper the authors have tried to estimate the joint toxicity of some pollutants commonly found in nearshore polluted waters: two metals, copper and chromium; an oil (Tunesian crude oil zarzaitine type); and an oil dispersant (Finasol OSR-2).

  11. Instructions for use JICA's Assistance in Health

    E-Print Network [OSTI]

    Tsunogai, Urumu

    and clinical care eg, strengthen health systems including the development of human resources, facilitiesInstructions for use #12;1 JICA's Assistance in Health Ryuji MATSUNAGA International Cooperation's Assistance in Health Example of JICA Programme/Projects 2 #12;An Overview of Japan's ODA 3 #12;Japan's ODA

  12. An inexpensive apparatus for toxicity screening

    SciTech Connect (OSTI)

    Lo Pinto, R.W.; Santelli, J. [Fairleigh Dickinson Univ., Teaneck, NJ (United States)

    1995-12-31T23:59:59.000Z

    An inexpensive apparatus was fabricated to monitor and record changes in the motility patterns of small aquatic invertebrates, such as Artemia salina and Daphnia magna, during acute toxicity tests. Within hours of exposure to a range toxicant concentrations the motility patterns change in a way that predicts the EC50. The work to date suggests there is a correlation between the EC50 following a 60 hour exposure, and motility data collected within the first 40 minutes of the test. The apparatus may be useful to speed range finding tests and for shortening the duration of acute toxicity tests of an effluent or receiving water. The apparatus may also be used to quantify erratic swimming in surviving organisms when a test is terminated.

  13. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles

    SciTech Connect (OSTI)

    Roedel, Erik Q., E-mail: Erik.Roedel@amedd.army.mil [Department of General Surgery, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Cafasso, Danielle E., E-mail: Danielle.Cafasso@amedd.army.mil [Department of General Surgery, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Lee, Karen W.M., E-mail: Karen.W.Lee@amedd.army.mil [Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Pierce, Lisa M., E-mail: Lisa.Pierce@amedd.army.mil [Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859 (United States)

    2012-02-15T23:59:59.000Z

    Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24 h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals. -- Highlights: ? Intratracheal instillation of W–Ni–Co and W–Ni–Fe induces lung inflammation in rats. ? W–Ni–Co and W–Ni–Fe alter expression of oxidative stress and toxicity genes. ? W–Ni–Co induces a greater oxidative burst response than W–Ni–Fe in lung macrophages.

  14. Genomic mosaicism in the human brain

    E-Print Network [OSTI]

    Westra, Jurjen Willem

    2008-01-01T23:59:59.000Z

    Zlokovic BV (2008) The blood-brain barrier in health andmosaicism in the human brain ………………………………………. Chapter Threethe Alzheimer’s disease brain ………………………………. Chapter Five DNA

  15. Bioinformatics for the human microbiome project

    E-Print Network [OSTI]

    Gevers, Dirk

    Microbes inhabit virtually all sites of the human body, yet we know very little about the role they play in our health. In recent years, there has been increasing interest in studying human-associated microbial communities, ...

  16. Survey of Geothermal Solid Toxic Waste

    SciTech Connect (OSTI)

    Darnell, A.J.; Gay, R.L.; Klenck, M.M.; Nealy, C.L.

    1982-09-30T23:59:59.000Z

    This is an early survey and analysis of the types and quantities of solid toxic wastes to be expected from geothermal power systems, particularly at the Salton Sea, California. It includes a literature search (48 references/citations), descriptions of methods for handling wastes, and useful quantitative values. It also includes consideration of reclaiming metals and mineral byproducts from geothermal power systems. (DJE 2005)

  17. Wind Turbines and Health A Rapid Review of the Evidence

    E-Print Network [OSTI]

    Firestone, Jeremy

    of the evidence from current literature on the issue of wind turbines and potential impacts on human health: There are no direct pathological effects from wind farms and that any potential impact on humans can be minimised regarding wind turbines and their potential effect on human health. It is important to note that these views

  18. Health assessment for Oronogo-Duenweg Mining Belt, Jasper County, Missouri, Region 7. CERCLIS No. MDD980686281. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1990-06-18T23:59:59.000Z

    The Oronogo-Duenweg Mining Belt site, Jasper County, Missouri, has been proposed by the U.S. Environmental Protection Agency (EPA) for inclusion on the National Priorities List (NPL). Referred to as the Missouri portion of the Tri-State (Missouri, Kansas, and Oklahoma) Mining District, the site comprises approximately 20 square miles and was the location of the most concentrated mining effort in the Tri-State District. As a result of commercial zinc and lead mining operations that occurred from about 1850 until the late 1960s, shallow groundwater, surface water, sediment, and surface soil are contaminated with heavy metals (zinc, lead, cadmium, and nickel). Municipalities in the area use both surface water and a deep aquifer for water supplies; individual households outside these centers rely on a shallow aquifer for water. Based upon information reviewed, the Agency for Toxic Substances and Disease Registry (ATSDR) has concluded that this site is of public health concern because of the risk to human health resulting from probable exposure to hazardous substances at concentrations that may result in adverse human health effects.

  19. Scaling up Primary Health Services in Rural Tamil Nadu: Public Investment Requirements and Health Sector Reform

    E-Print Network [OSTI]

    Scaling up Primary Health Services in Rural Tamil Nadu: Public Investment Requirements and Health two key questions in this paper: 1) In terms of state-wide scaling up of rural services in the area of primary health, what will it cost financially and in terms of human resources to scale-up these services

  20. Relationship Between Composition and Toxicity of Engine Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Samples Relationship Between Composition and Toxicity of Engine Emission Samples 2003 DEER Conference Presentation: Lovelace Respiratory Research Institute...

  1. UNO Student Health Services Patient's Bill of Rights and Responsibilities

    E-Print Network [OSTI]

    Kulp, Mark

    health care program. UNO Student Health Services Human Performance Center Rm. 109 (504) 280-6387 wwwUNO Student Health Services Patient's Bill of Rights and Responsibilities Patient's Bill of Rights to the Health Service regarding its operations and the right to change caregivers for any reason. #12;Patient

  2. MSc in Environmental Health The Place of Useful Learning

    E-Print Network [OSTI]

    Mottram, Nigel

    ? Environmental Health is the assessment & management of environmental influences on human health, including study and the corresponding breadth of the degree reflect rapid technological progress. Environmental impact assessmentMSc in Environmental Health The Place of Useful Learning #12;What is Environmental Health

  3. REVIEW Open Access Toxic marine microalgae and shellfish poisoning

    E-Print Network [OSTI]

    Hays, Graeme

    REVIEW Open Access Toxic marine microalgae and shellfish poisoning in the British isles: history The relationship between toxic marine microalgae species and climate change has become a high profile and well examine the current state of toxic microalgae species around the UK, in two ways: first we describe

  4. Seeing Toxic Algae Before it Blooms By Steve Ress

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Seeing Toxic Algae Before it Blooms By Steve Ress Researchers at the University of Nebraska of toxic blue-green algae before the bacteria that produce it can grow into a full-scale bloom. Now UNL and monitor in real-time, the water-borne agents that can cause toxic blue- green algae to flourish and become

  5. The toxicity of certain new chlorinated hydrocarbons to cotton pests

    E-Print Network [OSTI]

    Merkl, Marvin Eugene

    1953-01-01T23:59:59.000Z

    THE TOXICITY OF CERTAIN NEW CHLORINATED HYDROCARBONS TO COTTON PESTS A Dissertation 5y MARVIN EUGENE MERKL Approved as to style and content by: Chairman of CouBlttee Head of Departnent May 19*3 THE TOXICITY OF CERTAIN NEW CHLORINATED... .....................................................78 CONCLUSIONS............................................... ..81 BIBLIOGRAPHI .............................................. ..82 Pag? FIGURES 1* Dosage-?ortality curve for the toxicity of endrin to aphids...

  6. The toxicity of certain new chlorinated hydrocarbons to cotton pests 

    E-Print Network [OSTI]

    Merkl, Marvin Eugene

    1953-01-01T23:59:59.000Z

    THE TOXICITY OF CERTAIN NEW CHLORINATED HYDROCARBONS TO COTTON PESTS A Dissertation 5y MARVIN EUGENE MERKL Approved as to style and content by: Chairman of CouBlttee Head of Departnent May 19*3 THE TOXICITY OF CERTAIN NEW CHLORINATED... .....................................................78 CONCLUSIONS............................................... ..81 BIBLIOGRAPHI .............................................. ..82 Pag? FIGURES 1* Dosage-?ortality curve for the toxicity of endrin to aphids...

  7. Global Health and Economic Impacts of Future Ozone Pollution

    E-Print Network [OSTI]

    Webster, Mort D.

    We assess the human health and economic impacts of projected 2000-2050 changes in ozone pollution using the MIT Emissions Prediction and Policy Analysis-Health Effects (EPPA-HE) model, in combination with results from the ...

  8. Office of Student Services Health Science Campus MS 1026

    E-Print Network [OSTI]

    Moore, Paul A.

    Avenue Toledo, OH 43614-2598 419-383-5810 BSN Consortium Planning Guide Bowling Green State University College of Health & Human Services Nursing Advisor - Health Center Rm. 102 Bowling Green, OH 43403 419

  9. Mechanisms of olfactory toxicity of the herbicide 2,6-dichlorobenzonitrile: Essential roles of CYP2A5 and target-tissue metabolic activation

    SciTech Connect (OSTI)

    Xie Fang; Zhou Xin; Behr, Melissa; Fang Cheng; Horii, Yuichi; Gu Jun; Kannan, Kurunthachalam; Ding Xinxin, E-mail: xding@wadsworth.or

    2010-11-15T23:59:59.000Z

    The herbicide 2,6-dichlorobenzonitril (DCBN) is a potent and tissue-specific toxicant to the olfactory mucosa (OM). The toxicity of DCBN is mediated by cytochrome P450 (P450)-catalyzed bioactivation; however, it is not known whether target-tissue metabolic activation is essential for toxicity. CYP2A5, expressed abundantly in both liver and OM, was previously found to be one of the P450 enzymes active in DCBN bioactivation in vitro. The aims of this study were to determine the role of CYP2A5 in DCBN toxicity in vivo, by comparing the extents of DCBN toxicity between Cyp2a5-null and wild-type (WT) mice, and to determine whether hepatic microsomal P450 enzymes (including CYP2A5) are essential for the DCBN toxicity, by comparing the extents of DCBN toxicity between liver-Cpr-null (LCN) mice, which have little P450 activity in hepatocytes, and WT mice. We show that the loss of CYP2A5 expression did not alter systemic clearance of DCBN (at 25 mg/kg); but it did inhibit DCBN-induced non-protein thiol depletion and cytotoxicity in the OM. Thus, CYP2A5 plays an essential role in mediating DCBN toxicity in the OM. In contrast to the results seen in the Cyp2a5-null mice, the rates of systemic DCBN clearance were substantially reduced, while the extents of DCBN-induced nasal toxicity were increased, rather than decreased, in the LCN mice, compared to WT mice. Therefore, hepatic P450 enzymes, although essential for DCBN clearance, are not necessary for DCBN-induced OM toxicity. Our findings form the basis for a mechanism-based approach to assessing the potential risks of DCBN nasal toxicity in humans.

  10. Health Sciences and Nursing Health Sociology ------------------------------------------------------------------------------------------

    E-Print Network [OSTI]

    Miyashita, Yasushi

    related to health problems and health care systems, through developing and applying theories, concepts44 Health Sciences and Nursing Health Sociology in interdisciplinary academic fields, involving health, medicine and nursing as well as the field of sociology

  11. Health Economics College of Public Health and Health Professions

    E-Print Network [OSTI]

    Kane, Andrew S.

    of health, the demand for health care, health insurance theory, the demand for health insurance, the health insurance market and managed care, the market for physicians' services, production and cost of health care care environment. #12;2 Apply general and health economics concepts and show demonstrated competence

  12. Toxic species evolution from guayule fireplace logs

    E-Print Network [OSTI]

    Soderman, Kristi Lee

    1988-01-01T23:59:59.000Z

    and cellulosic material from bagasse are generated as co-products of rubber extraction. The cellulosic material uses which are favored at this time require combustion. Bagasse affords the potential for use as biomass fuel in the production of process steam... of chromium, if present in the hexavalent state, no unusually toxic constituents were found in the smoke particulates, gaseous state or as condensible liquids for flaming and smoldering combustion of guayule fireplace logs. Butylhydroxytoluene (BHT), a...

  13. Toxicity Data to Determine Refrigerant Concentration Limits

    SciTech Connect (OSTI)

    Calm, James M.

    2000-09-30T23:59:59.000Z

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  14. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect (OSTI)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01T23:59:59.000Z

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  15. Health physics and public health activities at hazardous wastes sites

    SciTech Connect (OSTI)

    Charp, P.A. [Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States)

    1995-12-31T23:59:59.000Z

    The Agency for Toxic Substances and Disease Registry (ATSDR) has worked with the U.S. Environmental Protection Agency (EPA) at several sites contaminated with radioactive materials. The Navajo Brown Vandever (B-V) uranium mine site near Bluewater, New Mexico, and the Austin Avenue Radiation Site (AAR) in Lansdowne, Pennsylvania were the subject of ATSDR health advisories. The sites were contamined with uranium or uranium byproducts but the identification of potential health effects and actions taken to prevent or reduce exposures were approached from different perspectives. At B-V contaminants included uranium and mine tailings, radium, and radon. Contaminants at the site and physical hazards were removed. At AAR, radium and radon were located in residential settings. Residents who might have had annual exposures greater than accepted standards or recommendations were relocated and contaminated building demolished.

  16. assessing health worker: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Technologies and Information Sciences Websites Summary: Human health impacts for Renewable Energy scenarios from the EnerGEO Platform of Integrated running the EnerGEO...

  17. Assessing the health risk of solar development on contaminated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 11, 2013 Tweet EmailPrint A recently published report from Argonne's Environmental Science (EVS) division presents a methodology for assessing potential human health...

  18. Emergency Response Health Physics

    SciTech Connect (OSTI)

    Mena, RaJah [National Security Technologies, LLC, Remote Sensing Laboratory–Nellis; Pemberton, Wendy [National Security Technologies, LLC, Remote Sensing Laboratory–Nellis; Beal, William [Remote Sensing Laboratory at Andrews

    2012-05-01T23:59:59.000Z

    Health physics is an important discipline with regard to understanding the effects of radiation on human health; however, there are major differences between health physics for research or occupational safety and health physics during a large-scale radiological emergency. The deployment of a U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) monitoring and assessment team to Japan in the wake of the March 2011 accident at Fukushima Daiichi Nuclear Power Plant yielded a wealth of lessons on these difference. Critical teams (CMOC (Consequence Management Outside the Continental U.S.) and CMHT (Consequence Management Home Team) ) worked together to collect, compile, review, and analyze radiological data from Japan to support the response needs of and answer questions from the Government of Japan, the U.S. military in Japan, the U.S. Embassy and U.S. citizens in Japan, and U.S. citizens in America. This paper addresses the unique challenges presented to the health physicist or analyst of radiological data in a large-scale emergency. A key lesson learned was that public perception and the availability of technology with social media requires a diligent effort to keep the public informed of the science behind the decisions in a manner that is meaningful to them.

  19. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA)

    1994-01-01T23:59:59.000Z

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  20. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOE Patents [OSTI]

    Chang, S.G.

    1994-07-26T23:59:59.000Z

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  1. Fact Sheet HEALTH SCIENCE

    E-Print Network [OSTI]

    Su, Xiao

    · Long Term Care Administrator · Training Coordinator · Clinical Health Education Specialist · Health Media Director · Long Term Care Facilities Manager Fact Sheet HEALTH SCIENCE Highlights · Health Science

  2. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

    E-Print Network [OSTI]

    Rau, Don C.

    consequences through its longstanding support for the Maternal-Fetal Medicine Unit and the Neonatal Research and improving the care and treatment of preterm and low birth weight infants, to work with the Office of the NIH-fetal gestations, due in a large part to the increased use of assisted reproductive technologies. Between 1980

  3. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH

    E-Print Network [OSTI]

    Rau, Don C.

    Budget FY 2015 Budget Page No. Organization Chart #12;OAR-3 Institute / Center FY 2013 Actual FY 2014 Enacted FY 2015 President's Budget FY 2015 +/- FY...........................................................................................................................2 Budget Authority by Institute and Center

  4. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Roadmap Initiative has the potential to have a profound and positive impact on how American medical. Because the Roadmap recognizes that one of the most powerful and unifying concepts of 21st century biology central to the research enterprise. Second is the Roadmap's requirement to "re-engineer the national

  5. Department of Health and Human Services National Institutes of Health

    E-Print Network [OSTI]

    Rau, Don C.

    Videocast Website: http://videocast.nih.gov/ Contact Number: 301-594-7232 AGENDA OPEN PORTION - Thursday

  6. Department of Health and Human Services PUBLIC HEALTH SERVICE

    E-Print Network [OSTI]

    Baker, Chris I.

    Committee for Responsible Medicine Jonathan Balcombe, Ph.D., Physicians Committee for Responsible Medicine

  7. Toxic chemical considerations for tank farm releases. Revision 1

    SciTech Connect (OSTI)

    Van Keuren, J.C.

    1995-11-01T23:59:59.000Z

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one.

  8. ATHENA, the Desktop Human "Body"

    SciTech Connect (OSTI)

    Iyer, Rashi; Harris, Jennifer

    2014-09-29T23:59:59.000Z

    Creating surrogate human organs, coupled with insights from highly sensitive mass spectrometry technologies, a new project is on the brink of revolutionizing the way we screen new drugs and toxic agents. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is developing four human organ constructs - liver, heart, lung and kidney - that are based on a significantly miniaturized platform. Each organ component will be about the size of a smartphone screen, and the whole ATHENA "body" of interconnected organs would fit neatly on a desk. "By developing this 'homo minutus,' we are stepping beyond the need for animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs," said Rashi Iyer, a senior scientist at Los Alamos National Laboratory, the lead laboratory on the five-year, $19 million multi-institutional effort. The project is supported by the Defense Threat Reduction Agency (DTRA). Some 40 percent of pharmaceuticals fail their clinical trials, Iyer noted, and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success.

  9. ATHENA, the Desktop Human "Body"

    ScienceCinema (OSTI)

    Iyer, Rashi; Harris, Jennifer

    2015-01-05T23:59:59.000Z

    Creating surrogate human organs, coupled with insights from highly sensitive mass spectrometry technologies, a new project is on the brink of revolutionizing the way we screen new drugs and toxic agents. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is developing four human organ constructs - liver, heart, lung and kidney - that are based on a significantly miniaturized platform. Each organ component will be about the size of a smartphone screen, and the whole ATHENA "body" of interconnected organs would fit neatly on a desk. "By developing this 'homo minutus,' we are stepping beyond the need for animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs," said Rashi Iyer, a senior scientist at Los Alamos National Laboratory, the lead laboratory on the five-year, $19 million multi-institutional effort. The project is supported by the Defense Threat Reduction Agency (DTRA). Some 40 percent of pharmaceuticals fail their clinical trials, Iyer noted, and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success.

  10. Reduction in Work Force Unclassified Staff Office of Human Resources

    E-Print Network [OSTI]

    Howat, Ian M.

    Reduction in Work Force ­ Unclassified Staff 9.15 Office of Human Resources Applies to: Regular by the Health System. Health System employees should contact their human resource department for further information. The Ohio State University ­ Office of Human Resources Page 1 of 1 Policy 9.15 Reduction in Work

  11. Health Physicist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a Health Physicist in the Facility Operations Division, Oak Ridge Office of Environmental Management (OREM). The selectee will be regarded as a...

  12. THE UNIVERSITY Of TENNESSEE Health Science Center

    E-Print Network [OSTI]

    Cui, Yan

    THE UNIVERSITY Of TENNESSEE Health Science Center Human Resources 910 Madison Ave, Suite 722 Memphis, TN 38163 Tel: (901) 448-5600 Fax: (901) 448-5170 THE UNIVERSITY OF TENNESSEE HEALTH SCIENCE the Personnel Records of UT public domain. This gives any citizen of the State of Tennessee the right to view

  13. Office of Domestic and International Health Studies

    Broader source: Energy.gov [DOE]

    The Office of Domestic and International Health Studies engages in the conduct of international scientific studies that may provide new knowledge and information about the human response to ionizing radiation in the workplace or people exposed in communities as a result of nuclear accidents, including providing health and environmental monitoring services to populations specified by law.

  14. Toxicity Analysis of Polycyclic Aromatic Hydrocarbon Mixtures

    E-Print Network [OSTI]

    Naspinski, Christine S.

    2010-01-16T23:59:59.000Z

    Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment and are generated by many sources. Though the potential of PAH-rich mixtures to cause health effects has been known for almost a century, there are still unanswered...

  15. Uranium Exerts Acute Toxicity by Binding to Pyrroloquinoline Quinone Cofactor

    SciTech Connect (OSTI)

    Michael R. VanEngelen; Robert I. Szilagyi; Robin Gerlach; Brady E. Lee; William A. Apel; Brent M. Peyton

    2011-02-01T23:59:59.000Z

    Uranium as an environmental contaminant has been shown to be toxic to eukaryotes and prokaryotes; however, no specific mechanisms of uranium toxicity have been proposed so far. Here a combination of in vivo, in vitro, and in silico studies are presented describing direct inhibition of pyrroloquinoline quinone (PQQ)-dependent growth and metabolism by uranyl cations. Electrospray-ionization mass spectroscopy, UV-vis optical spectroscopy, competitive Ca2+/uranyl binding studies, relevant crystal structures, and molecular modeling unequivocally indicate the preferred binding of uranyl simultaneously to the carboxyl oxygen, pyridine nitrogen, and quinone oxygen of the PQQ molecule. The observed toxicity patterns are consistent with the biotic ligand model of acute metal toxicity. In addition to the environmental implications, this work represents the first proposed molecular mechanism of uranium toxicity in bacteria, and has relevance for uranium toxicity in many living systems.

  16. Study downplays health concerns

    SciTech Connect (OSTI)

    Stringer, J.

    1996-03-13T23:59:59.000Z

    A government-funded study has concluded that reformulated gasoline containing methyl tert-butyl ether (MTBE) does not increase short-term health risks when compared with gasoline that does not contain the additive. The study, performed by the Health Effects Institute (Cambridge, MA), compared data from dozens of animal, human, and epidemiological studies of health effects linked to oxygenates, including MTBE and ethanol, but did not find enough evidence to warrant an immediate reduction in oxygenate use. However, the study did recommend that additional research be conducted on possible health consequences associated with the gasoline additives, including neurotoxic effects, if oxygenates continue to be used long term. Oxygenates have been used in gasoline since 1992, when EPA mandated that several municipalities use MTBE or other oxygenates in reformulated gasoline to reduce carbon monoxide emissions and meet Clean Air Act requirements. Shortly after the program began, residents in areas where the oxygenates were used complained of nausea, headaches, and dizziness. The institute says the study--funded by EPA and the Centers for Disease Control--will be used for a broader review of gasoline oxygenates by the White House Office of Science and Technology Policy.

  17. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21T23:59:59.000Z

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  18. Review The Toxicity of Depleted Uranium

    E-Print Network [OSTI]

    Wayne Briner

    Abstract: Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  19. Global Health Research | 2 Global Health Research

    E-Print Network [OSTI]

    Rambaut, Andrew

    Global Health Research | 2 Global Health Research Supporting researchers in low- and middle-income countries to carry out health- related research within their own countries. Gl bal Health #12;3 | Global Health Research #12;Global Health Research | 4 We are a global charitable foundation dedicated

  20. HEALTH ECONOMICS Health Econ. (in press)

    E-Print Network [OSTI]

    Scharfstein, Daniel

    health services/economics; costs and cost analysis; health services/utilization; quality of health careHEALTH ECONOMICS Health Econ. (in press) Published online in Wiley InterScience (www and ROBERT BLACKb a Department of Population and Family Health Sciences, Johns Hopkins Bloomberg School

  1. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    "--today we hear that word bantered about more than ever. Whether the context is national (health care reformCollege of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection March 2010 Volume VIII (7) Greetings health sciences' colleagues, community

  2. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    with a variety of topics including substance abuse, worksite health promotion, health care cost containment the importance of health care as well as the promotion, protection and maintenance of health. Without a doubt things in the area of health promotion and health care. As the COHS look to the future, we need to take

  3. The toxicity of different emulsions of toxaphene to cotton insects

    E-Print Network [OSTI]

    Selby, James Winford

    1952-01-01T23:59:59.000Z

    . Summary of the cotton boll weevil toxicity tests ~ . LS 5. Analysis of cotton bolL weevil control data ob- tained in the laboratory and field teste ~ ~ ~ ~ ~ 20 4 ~ Summary of the cotton boll weevil toxicity test in the Laboratorye ~ ~ ~ ~ ~ ~ ~ ~ e... ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ 21 6 Summary of the saltish caterpillar toxicity tests ~ ~ ~ eo ~ ~ ~ ~ ~ e( ~ ~ ~ ~ ~ ~ ee ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ e ~ a ~ ~ ~ ~ ~ 22 6 ~ Vedian lethal dosage {KID) of the test materials as obtained fran the Laboratory...

  4. Studies on Toxic Substances of Locoweeds, Astragalus earlei and Others. 

    E-Print Network [OSTI]

    Wender, S. H. (Simon Harold); Fraps, G. S. (George Stronach)

    1944-01-01T23:59:59.000Z

    G. S. FRAPS and S. H. WENDER Division of Chemistry TEXAS AGRICULTURAL EXPERIMENT STATION A. R. CONNER, Director College Station, Texas BULLETIN NO. 650 JUNE 1944 STUDIES ON TOXIC SUBSTANCES OF LOCOWEEDS, ASTRAGALUS EARLEI AND OTHERS... AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS GIBB GILCHRIST, President D-19-744-1500 [Blank Page in Original Bulletin] The concentrated toxic preparation of the loco weed contains several closely related toxic substances. The compounds precipi- tated...

  5. The toxicity of different emulsions of toxaphene to cotton insects 

    E-Print Network [OSTI]

    Selby, James Winford

    1952-01-01T23:59:59.000Z

    . Summary of the cotton boll weevil toxicity tests ~ . LS 5. Analysis of cotton bolL weevil control data ob- tained in the laboratory and field teste ~ ~ ~ ~ ~ 20 4 ~ Summary of the cotton boll weevil toxicity test in the Laboratorye ~ ~ ~ ~ ~ ~ ~ ~ e... ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ 21 6 Summary of the saltish caterpillar toxicity tests ~ ~ ~ eo ~ ~ ~ ~ ~ e( ~ ~ ~ ~ ~ ~ ee ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ e ~ a ~ ~ ~ ~ ~ 22 6 ~ Vedian lethal dosage {KID) of the test materials as obtained fran the Laboratory...

  6. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    SciTech Connect (OSTI)

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25T23:59:59.000Z

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  7. Linking coral reef health and human welfare

    E-Print Network [OSTI]

    Walsh, Sheila Marie

    2009-01-01T23:59:59.000Z

    Baselines and degradation of coral reefs in the northernBaselines and degradation of coral reefs in the northern2006) Fisheries Resources: Coral ReefFishes. Solomon Islands

  8. Linking coral reef health and human welfare

    E-Print Network [OSTI]

    Walsh, Sheila Marie

    2009-01-01T23:59:59.000Z

    create a balanced factorial design. An additional 13 sitesa balanced natural factorial experimental design to test theusing a natural factorial experimental design (Fig. 1-1),

  9. Overview of toxicity data and risk assessment methods for evaluating the chemical effects of depleted uranium compounds.

    SciTech Connect (OSTI)

    Hartmann, H. M.; Monette, F. A.; Avci, H. I.; Environmental Assessment

    2000-10-01T23:59:59.000Z

    In the United States, depleted uranium is handled or used in several chemical forms by both governmental agencies and private industry (primarily companies producing and machining depleted uranium metal for military applications). Human exposure can occur as a result of handling these compounds, routine low-level effluent releases to the environment from processing facilities, or materials being accidentally released from storage locations or during processing or transportation. Exposure to uranium can result in both chemical and radiological toxicity, but in most instances chemical toxicity is of greater concern. This article discusses the chemical toxic effects from human exposure to depleted uranium compounds that are likely to be handled during the long-term management and use of depleted uranium hexafluoride (UF{sub 6}) inventories in the United States. It also reviews representative publications in the toxicological literature to establish appropriate reference values for risk assessments. Methods are described for evaluating chemical toxicity caused by chronic low-level exposure and acute exposure. Example risk evaluations are provided for illustration. Preliminary results indicate that chemical effects of chronic exposure to uranium compounds under normal operating conditions would be negligibly small. Results also show that acute exposures under certain accident conditions could cause adverse chemical effects among the populations exposed.

  10. alleviates ammonium toxicity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    actinomycetes. When... Morales-Bermudez, Marciano 2012-06-07 115 In vitro toxicity assessment of chitosan nanoparticles. Open Access Theses and Dissertations Summary:...

  11. agent toxicity testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tristan Behrens, Koen Hindriks, Jomi Hbner, Mehdi Dastani Abstract It is our goal Zachmann, Gabriel 5 766 Combinatorial QSAR Modeling of Chemical Toxicants Tested against...

  12. acetaminophen toxicity evidence: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - No national standards - Less Bertini, Robert L. 17 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging...

  13. acute toxic radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vole Population genetics Comparative Baker, Robert J. 39 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging environmental...

  14. acute urinary toxicity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    they generally lack sufficient dis Cunningham, Ian 39 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging environmental...

  15. acute acetaminophen toxicity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conduct, may therefore underestimate Rosenheim, Jay A. 36 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging environmental...

  16. acute toxic encephalopathy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conduct, may therefore underestimate Rosenheim, Jay A. 42 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging environmental...

  17. acute toxicity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conduct, may therefore underestimate Rosenheim, Jay A. 27 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging environmental...

  18. acute acrolein toxicity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conduct, may therefore underestimate Rosenheim, Jay A. 36 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging environmental...

  19. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    SciTech Connect (OSTI)

    Ellis, K.J.

    1986-01-01T23:59:59.000Z

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs.

  20. Protecting Patients, Preserving Integrity, Advancing Health

    E-Print Network [OSTI]

    Chapman, Michael S.

    values of protecting the integrity of their research, the well being of the human subjects whoProtecting Patients, Preserving Integrity, Advancing Health: Accelerating the Implementation of COI of Interest in Human Subjects Research February 2008 #12;Protecting Patients, Preserving Integrity, Advancing

  1. Evaluation of exposure limits to toxic gases for nuclear reactor control room operators

    SciTech Connect (OSTI)

    Mahlum, D.D.; Sasser, L.B. (Pacific Northwest Lab., Richland, WA (United States))

    1991-07-01T23:59:59.000Z

    We have evaluated ammonia, chlorine, Halon (actually a generic name for several halogenated hydro-carbons), and sulfur dioxide for their possible effects during an acute two-minute exposure in order to derive recommendations for maximum exposure levels. To perform this evaluation, we conducted a search to find the most pertinent literature regarding toxicity in humans and in experimental animals. Much of the literature is at least a decade old, not an unexpected finding since acute exposures are less often performed now than they were a few years ago. In most cases, the studies did not specifically examine the effects of two-minute exposures; thus, extrapolations had to be made from studies of longer-exposure periods. Whenever possible, we gave the greatest weight to human data, with experimental animal data serving to strengthen the conclusion arrived at from consideration of the human data. Although certain individuals show hypersensitivity to materials like sulfur dioxide, we have not attempted to factor this information into the recommendations. After our evaluation of the data in the literature, we held a small workshop. Major participants in this workshop were three consultants, all of whom were Diplomates of the American Board of Toxicology, and staff from the Nuclear Regulatory Commission. Our preliminary recommendations for two-minute exposure limits and the rationale for them were discussed and consensus reached on final recommendations. These recommendations are: (1) ammonia-300 to 400-ppm; (2) chlorine-30 ppm; (3) Halon 1301-5%; Halon 1211-2%; and (4) sulfur dioxide-100 ppm. Control room operators should be able to tolerate two-minute exposures to these levels, don fresh-air masks, and continue to operate the reactor if the toxic material is eliminated, or safely shut down the reactor if the toxic gas remains. 96 refs., 9 tabs.

  2. Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes

    SciTech Connect (OSTI)

    Nadanaciva, Sashi [Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer, Inc., Groton, CT 06340 (United States); Aleo, Michael D. [Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340 (United States); Strock, Christopher J. [Cyprotex US, Watertown, MA 02472 (United States); Stedman, Donald B. [Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340 (United States); Wang, Huijun [Computational Sciences, Pfizer Inc., Groton, CT 06340 (United States); Will, Yvonne, E-mail: yvonne.will@pfizer.com [Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer, Inc., Groton, CT 06340 (United States)

    2013-10-15T23:59:59.000Z

    To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs) as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary.

  3. Toxic chemical considerations for tank farm releases

    SciTech Connect (OSTI)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  4. OccupationalSafety andHealthResearchCenter

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    Disorders, Safety, Slips/Trips/Falls, Work Organization w w w.oshrc.ic tas.vt.edu Separating humans from the safety and health of workers. OSHRC, formally known as the Center for Innova- tion in Construction Safety for Occupational Safety and Health (NIOSH) to innova- tively improve health and safety in the construction sector

  5. Communication and Effectiveness in Primary Health Jean Carletta

    E-Print Network [OSTI]

    Carletta, Jean

    Communication and Effectiveness in Primary Health Care Teams Jean Carletta Human Communication.Carletta@edinburgh.ac.uk ABSTRACT Primary health care team members need to communicate effectively with each other in order of cross-disciplinary team meetings, we describe communication in primary health care teams, explore

  6. CERTIFICATION OF HEALTH CARE PROVIDER FOR EMPLOYEE'S PREGNANCY DISABILITY

    E-Print Network [OSTI]

    Eirinaki, Magdalini

    CERTIFICATION OF HEALTH CARE PROVIDER FOR EMPLOYEE'S PREGNANCY DISABILITY HUMAN RESOURCES Employee this form to your medical provider. Section II must be fully completed by the health care provider Department/College name: Campus Phone: I authorize my health care provider to complete this form and provide

  7. Poor Nutrition and Health Concerns in Low Income Population

    E-Print Network [OSTI]

    and foodborne illness, reduced indigent health care costs and improved quality of life. Contact: Dean McPoor Nutrition and Health Concerns in Low Income Population An estimated one out of every six in 1995 as a cooperative endeavor among the Texas A&M AgriLife Extension Service, Texas Health and Human

  8. Assessing the potential toxicity of resuspended sediment

    SciTech Connect (OSTI)

    Bonnet, C.; Babut, M.; Ferard, J.F.; Martel, L.; Garric, J.

    2000-05-01T23:59:59.000Z

    Two moderately contaminated freshwater sediments (Sorel Harbour, St. Lawrence River, Canada) were subjected to a suspension event. The objective was to assess the environmental impact of the disposal of dredged material in water, in particular, the short-term effects of dumping on the water column and the long-term effects of dredged sediment deposits. In a series of microcosms, the sediments were left to stand for 25 d under flow-through conditions. In a second series of microcosms, sediments were vigorously suspended for 15 min before being left to settle and were submitted to the same treatment as reference sediments during the following 25 d. Physicochemical and biological parameters (Daphnia magna and Hydra attenuata survival) were measured in overlying water throughout the experiment. Sediment toxicity was assessed with Chironomus tentans and Hyalella azteca exposed to sediments collected at both the beginning and end of the 25-d period. Pore-water toxicity was evaluated with D. magna. During the suspension process, in the Sorel Harbour mixed sediment overlying water, the authors observed effects on H. attenuata survival and ammonia and metals (chromium, copper, and zinc) releases. Meanwhile, in reference (nonmixed) and mixed sediments as well as in associated pore waters, there were no significant chemical modifications no biological effects after the 25-d experiments. The developed approach, which attempts to simulate a dumping process, aims at allowing the assessment of the short- and long-term hazards resulting from a resuspension process in overlying water and in resettled sediments using both chemical and biological measurements.

  9. acute toxicity test: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    toxicity test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The weaker points of fish acute toxicity...

  10. Evaluation of Sediment Toxicity Using a Suite of Assessment Tools

    E-Print Network [OSTI]

    Kelley, Matthew A

    2010-01-15T23:59:59.000Z

    of sediment toxicity. The goal of this research was to provide information which could help increase the accuracy with which predictions of toxicity could be made at hazardous sites. A calibration study was conducted using model PAHs, PCBs, a binary PAH...

  11. Relative Leaching and Aquatic Toxicity of Pressure-Treated Wood

    E-Print Network [OSTI]

    Florida, University of

    Relative Leaching and Aquatic Toxicity of Pressure-Treated Wood Products Using Batch Leaching Tests treated with one of five different waterborne chemical preservatives, were leached using 18-h batch- treated wood at concentrations above the U.S. federal toxicity characteristic limit (5 mg/L). All

  12. A Strategy for Designing Inhibitors of -Amyloid Toxicity*

    E-Print Network [OSTI]

    Kiessling, Laura

    patients (1, 2). The deposition of A in the form of amyloid fibrils is believed by many to be causally aggregated into amyloid fibrils, the peptide is toxic to neuronal cells. Here, an approach to the design of amyloid fibril formation is not necessary for abrogation of toxicity. -Amyloid peptide (A )1 is the major

  13. Health risk assessment of environmental exposure to 1,1,1-trichloroethane

    SciTech Connect (OSTI)

    Verschuuren, H.G.; de Rooij, C.G. (Dow Europe, Horgen (Switzerland))

    1990-02-01T23:59:59.000Z

    In 1986 a survey was published by CEFIC on the occurrence of chlorinated solvents in ambient air, in surface water, and in ground water. The present article concentrates on 1,1,1-trichloroethane (1,1,1-T), and puts into perspective the environmental occurrence and the toxicity. Critical toxicological data are briefly discussed. As no evidence of a carcinogenic effect of 1,1,1-T is apparent, the no-adverse-effect levels in chronic inhalation exposure in rats (875 ppm) and mice (1500 ppm) form the basis for the estimation of potential risk to human health. Environmental exposure to 1,1,1-T is mainly via the atmosphere (120 micrograms/day); the contributions of drinking water (2 micrograms/day) and food (3 micrograms/kg) are negligible. Safety margins are calculated by comparing the no-adverse-effect levels in rat and mouse studies with the total body burden. Safety margins are also calculated after converting no-adverse-effect levels into estimated internal dose levels by physiologically based pharmacokinetic modeling. Safety margins vary with the starting point, but are of the order of 10(5) for the general population and more than 10(4) for the population close to industrial activities. It may be concluded that the risk of a potential health effect resulting from environmental exposure to 1,1,1-trichloroethane is negligible. 43 references.

  14. Aquatic Toxicity Information Retrieval Data Base (ACQUIRE). Data file

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The purpose of Acquire is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for ACQUIRE. Independently compiled data files that meet ACQUIRE parameter and quality assurance criteria are also included. Selected toxicity test results and related testing information for any individual chemical from laboratory and field aquatic toxicity effects are included for tests with freshwater and marine organisms. The total number of data records in ACQUIRE is now over 105,300. This includes data from 6000 references, for 5200 chemicals and 2400 test species. A major data file, Acute Toxicity of Organic Chemicals (ATOC), has been incorporated into ACQUIRE. The ATOC file contains laboratory acute test data on 525 organic chemicals using juvenile fathead minnows.

  15. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    , College of Health Sciences. · "Innovative Ways to Address Idaho's Healthcare Needs: Long-Term CareCollege of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection February 2011 Volume IX (3) Since the last COHS newsletter, the faculty

  16. Students' Health Service Hampton House Health Centre

    E-Print Network [OSTI]

    Bristol, University of

    .bristol.ac.uk/infectious-diseases/meningitis www.bristol.ac.uk/infectious-diseases/mumps www.bristol.ac.uk/infectious-diseases/measles. Health care / Health care Student support Health care Registering with a doctor It is important that you register' Health Service The Students' Health Service (SHS) offers full general practice care, including: ·travel

  17. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    today. In politics, in education, in health care, in society in general we are so turned inwardCollege of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection April/May 2010 Volume VIII (8) WOW! Spring semester of 2010 is almost

  18. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    College of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection April 2011 Volume IX (4) The end of the spring semester is quickly approaching accreditation review. Similarly, the Environmental and Occupational Health program also had a very positive

  19. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    SciTech Connect (OSTI)

    Rashedinia, Marzieh; Lari, Parisa [Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Abnous, Khalil, E-mail: Abnouskh@mums.ac.r [Pharmaceutical Research Center, Department of Medicinal Chemistry, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Hosseinzadeh, Hossein, E-mail: Hosseinzadehh@mums.ac.ir [Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2013-10-01T23:59:59.000Z

    Acrolein, a member of reactive ?,?-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including ?-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased.

  20. RELATIONSHIP BETWEEN COMPOSITION AND TOXICITY OF ENGINE EMISSION SAMPLES

    SciTech Connect (OSTI)

    (1)Mauderly, J; Seagrave, J; McDonald; J (2)Eide,I (3)Zielinska, B (4)Lawson, D

    2003-08-24T23:59:59.000Z

    Differences in the lung toxicity and bacterial mutagenicity of seven samples from gasoline and diesel vehicle emissions were reported previously [1]. Filter and vapor-phase semivolatile organic samples were collected from normal and high-emitter gasoline and diesel vehicles operated on chassis dynamometers on the Unified Driving Cycle, and the compositions of the samples were measured in detail. The two fractions of each sample were combined in their original mass collection ratios, and the toxicity of the seven samples was compared by measuring inflammation and tissue damage in rat lungs and mutagenicity in bacteria. There was good agreement among the toxicity response variables in ranking the samples and demonstrating a five-fold range of toxicity. The relationship between chemical composition and toxicity was analyzed by a combination of principal component analysis (PCA) and partial least squares regression (PLS, also known as projection to latent surfaces). The PCA /PLS analysis revealed the chemical constituents co-varying most strongly with toxicity and produced models predicting the relative toxicity of the samples with good accuracy. The results demonstrated the utility of the PCA/PLS approach, which is now being applied to additional samples, and it also provided a starting point for confirming the compounds that actually cause the effects.

  1. Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

  2. The subchronic toxicity of Roridin A in sheep

    E-Print Network [OSTI]

    Thormahlen, Keller Andrew

    1988-01-01T23:59:59.000Z

    THE SUBCKKNIC TOXICITY OF BORIDIN A IN SHEEP A Thesis Submitted to the Graduate College of Texas A & M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Toxicology THE SDBC...(BKKIC TOXICITY OF RORIDIN A IN SHEEP A Thesis Approved as to style and content by: E. 1. Bailey, Jr (Chairman of Committee) Bennie J. (~) z. P Timo y D. Hu. llips (~) J. D. McCrady (Head of Department) August 1988 The Subchronic Toxicity of Roridin A...

  3. The subchronic toxicity of Roridin A in sheep 

    E-Print Network [OSTI]

    Thormahlen, Keller Andrew

    1988-01-01T23:59:59.000Z

    THE SUBCKKNIC TOXICITY OF BORIDIN A IN SHEEP A Thesis Submitted to the Graduate College of Texas A & M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Toxicology THE SDBC...(BKKIC TOXICITY OF RORIDIN A IN SHEEP A Thesis Approved as to style and content by: E. 1. Bailey, Jr (Chairman of Committee) Bennie J. (~) z. P Timo y D. Hu. llips (~) J. D. McCrady (Head of Department) August 1988 The Subchronic Toxicity of Roridin A...

  4. Global Health Seminar Series

    E-Print Network [OSTI]

    Klein, Ophir

    Bay Area Global Health Seminar Series Moving beyond millennium targets in global health: The challenges of investing in health and universal health coverage Although targets can help to focus global health efforts, they can also detract attention from deeper underlying challenges in global health

  5. Students' Health Service Hampton House Health Centre

    E-Print Network [OSTI]

    Bristol, University of

    .ac.uk/infectious-diseases. Health care / Student support Other NHS services NHS 111 NHS 111 is a telephone service, giving in an emergency. Student support / Health care Student support Health care Registering with a doctor practice care, including: · travel immunisation and advice · contraceptive advice · sexual health testing

  6. Annual Women's Health Forum Global Women's Health

    E-Print Network [OSTI]

    Kay, Mark A.

    5th Annual Women's Health Forum Global Women's Health Hosted by The Stanford WSDM* Center May 21;3 Welcome to the 5th Annual Women's Health Forum - hosted by the Stanford WSDM Center, also known as the Stanford Center for Health Research on Women and Sex Differences in Medicine. The Stanford WSDM Center

  7. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    College of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection December 2009 January 2010 Volume VIII (5) Moving from the Superficial the superficial level so that the result is the formation of deep relationships, caring, compassion, justice, love

  8. Center for Health & Counseling Services Health Services

    E-Print Network [OSTI]

    Rainforth, Emma C.

    College How is West Nile diagnosed? If a health care provider suspects WNV, samples of the patient's bloodCenter for Health & Counseling Services Health Services 505 Ramapo Valley Road, Mahwah, NJ 07430 Nile Virus outbreak is the biggest since the virus was first identified in the United States, health

  9. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    the sweeping changes associated with health care reform. Health care reform represents the most significant health care legislation since the development of Medicare and Medicaid in 1965. It has tremendous potential ramification for the future of our college. Health care reform will dramatically increase

  10. Bachelor of Science, Environmental and Occupational Health, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Environmental and Occupational Health, 2014-2015 Name ID# Date General Degree and Humanities 3-4 DLS ENGL 202 Technical Communication 3 DLS ENVHLTH 102 Global Environmental Health 3 BIOL 192 320 Community Environmental Health Management ENVHLTH 415 Occupational Safety and Health ENVHLTH 416

  11. Bachelor of Science, Environmental and Occupational Health, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Environmental and Occupational Health, 2013-2014 Name ID# Date General Degree and Humanities 3-4 DLS ENGL 202 Technical Communication 3 DLS ENVHLTH 102 Global Environmental Health 3 BIOL 192 320 Community Environmental Health Management ENVHLTH 415 Occupational Safety and Health ENVHLTH 416

  12. Bachelor of Science, Environmental and Occupational Health, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Environmental and Occupational Health, 2012-2013 Name ID# Date General Degree and Humanities 3-4 DLS ENGL 202 Technical Communication 3 DLS ENVHLTH 102 Global Environmental Health 3 BIOL 192 Management ENVHLTH 320 Community Environmental Health Management ENVHLTH 415 Occupational Safety and Health

  13. The emerging role and benefits of boundary analysis in spatio-temporal epidemiology and public health

    E-Print Network [OSTI]

    to study human health outcomes, correlates and determinants. Epidemiology has a strong clinical tradition-time change; health outcomes; environmental exposures; health-environment association 1. Introduction of the ingredients of living that are determinants of individual health status and outcomes. From this perspective

  14. Division of Human Resources Termination Of

    E-Print Network [OSTI]

    Meyers, Steven D.

    Division of Human Resources Termination Of Domestic Partnership Health Stipend Questions (813) 974 Insurance Stipend will terminate as of the Effective Date on this Termination of Domestic Partnership Health. ______ The Domestic Partnership Declaration attested to and filed by me with USF shall be and is terminated

  15. Air Pollution Control Regulations: No. 22- Air Toxics (Rhode Island)

    Broader source: Energy.gov [DOE]

    Permits are required to construct, install, or modify any stationary source which has the potential to increase emissions of a listed toxic air contaminant by an amount greater than the minimum...

  16. acid toxicity tolerance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dimensions into chains 60 Some factors in liquid supplements affecting urea toxicity Texas A&M University - TxSpace Summary: in ruminants. Sheep and cattle were drenched with...

  17. air toxic emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Topic Index 1 Zhao, Y., and H.C. Frey, "Development of Probabilistic Emission Inventory of Air Toxics for Jacksonville, FL," Proceedings, Annual Meeting of the Air & Waste...

  18. air toxics emission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Topic Index 1 Zhao, Y., and H.C. Frey, "Development of Probabilistic Emission Inventory of Air Toxics for Jacksonville, FL," Proceedings, Annual Meeting of the Air & Waste...

  19. air toxics emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Topic Index 1 Zhao, Y., and H.C. Frey, "Development of Probabilistic Emission Inventory of Air Toxics for Jacksonville, FL," Proceedings, Annual Meeting of the Air & Waste...

  20. Electrically Heated High Temperature Incineration of Air Toxics

    E-Print Network [OSTI]

    Agardy, F. J.; Wilcox, J. B.

    In-Process Technology has placed a prototype of its patented, electrically heated, packed-bed air toxics oxidizer at a northern California chemical plant. This thermal oxidizer is capable of handling a wide range of chlorinated and non...

  1. Toxicity studies with Sesbania spp. in domestic and laboratory animals

    E-Print Network [OSTI]

    Whall, Jeffrey DePass

    1982-01-01T23:59:59.000Z

    May 1982 Major Subject: Veterinary Toxicology TOXICITY STUDIES WITH SESBANIA SPP. IN DOMESTIC AND LABORATORY ANIMALS A Thesis by JEFFREY DEPASS WHALL Approved as to style and content by: (- ~ -) Chy an of Comm ttee) Head f Depar t) (Member...

  2. Toxic Chemical Release Inventory reporting ``Qs & As``. Environmental Guidance

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This document offers guidance on toxic chemical release inventory reporting, pursuant to Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA) at DOE sites.

  3. Adsorbed Polymer and NOM Limits Adhesion and Toxicity of Nano

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Adsorbed Polymer and NOM Limits Adhesion and Toxicity of Nano Scale Zerovalent Iron to E. coli Z H. Here we assess the effect that adsorbed synthetic polymers and natural organic matter

  4. Electrically Heated High Temperature Incineration of Air Toxics 

    E-Print Network [OSTI]

    Agardy, F. J.; Wilcox, J. B.

    1990-01-01T23:59:59.000Z

    In-Process Technology has placed a prototype of its patented, electrically heated, packed-bed air toxics oxidizer at a northern California chemical plant. This thermal oxidizer is capable of handling a wide range of chlorinated and non...

  5. acute lethal toxicity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 21 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging...

  6. acute regional toxicity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    injection or rapid (more) Litonius, Erik 2012-01-01 34 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging environmental...

  7. acute skin toxicity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carcinogenic Hexavalent Cr(VI) is most toxic and most soluble Induces (depleted uranium) 4 oxidation states (+4, +6 most common) U(VI) water-soluble, U(IV)...

  8. acute toxicity sensitivity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Morel; Er Complexing; Faust Steemann Nielsen 1978-01-01 37 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging environmental...

  9. adriamycin induced toxic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carcinogenic Hexavalent Cr(VI) is most toxic and most soluble Induces (depleted uranium) 4 oxidation states (+4, +6 most common) U(VI) water-soluble, U(IV)...

  10. air toxics exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Three Toxic Air Pollutants in Oregon 0.00 2.00 4.00 6.00 8.00 10.00 12 12;Sources of Air Pollution 12;Air Pollutants Criteria Pollutants - Short list - National...

  11. Drilling fluids and reserve pit toxicity

    SciTech Connect (OSTI)

    Leuterman, A.J.J.; Jones, F.V.; Chandler, J.E. (M-I Drilling Fluids Co. (US))

    1988-11-01T23:59:59.000Z

    Drilling fluids are now classified as exempt under the Resource Conservation and Recovery Act (RCRA) hazardous waste laws. Since 1986, however, the U.S. Environmental Protection Agency (EPA) has been studying reserve pit contents to determine whether oilfield wastes should continue under this exemption. Concerns regarding reserve pit contents and disposal practices have resulted in state and local governmental regulations that limit traditional methods of construction, closure, and disposal of reserve pit sludge and water. A great deal of attention and study has been focused on drilling fluids that eventually reside in reserve pits. In-house studies show that waste from water-based drilling fluids plays a limited role (if any) in possible hazards associated with reserve pits. Reserve pit water samples and pit sludge was analyzed and collated. Analyses show that water-soluble heavy metals (Cr, Pb, Zn and Mn) in reserve pits are generally undetectable or, if found in the total analysis, are usually bound to clays or organics too tightly to exceed the limitations as determined by the EPA toxicity leachate test. The authors' experience is that most contamination associated with reserve pits involves high salt content from produced waters and/or salt formations, lead contamination from pipe dope, or poorly designed pits, which could allow washouts into surface waters or seepage into groundwater sources. The authors' analyses show that reserve its associated with water-based drilling fluid operations should not be classified as hazardous; however, careful attention attention should be paid to reserve pit construction and closure to help avoid any adverse environmental impact.

  12. Isolation and identification of a toxic metabolite of Phomopsis sp.

    E-Print Network [OSTI]

    Samples, Daniel Robert

    1982-01-01T23:59:59.000Z

    ISOLATION AND IDENTIFICATION OF A TOXIC MEl'ABOLITE OF PHOMOPSIS SP. A Thesis by DANIEL ROBERT SAMPLES Submitted to the Graduate College of' Texas A&B University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... MAY 1982 Major Subject~ Veterinary Toxicology ISOLATION AND IDENTIFICATION OF A TOXIC METABOLITE OF PHOMOPSIS SP. A Thesis by DANIEL ROBERT SAMPLES Approved as to style and content by: (Chairman of Committee) (Membe (Mem ) (Head of Departme t...

  13. The recognition of toxic contaminants in sea water by bioassay

    E-Print Network [OSTI]

    Duke, Thomas Wade

    1960-01-01T23:59:59.000Z

    THE RECOGNITION OF TOXIC CONTAMINANTS IN SEA WATER BY BIOASSAY A Thesis By THOMAS WADE DUKE Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE January 1960 Major Subject: Biological Oceanography THE RECOGNITION OF TOXIC CONTAMINANTS IN SEA li'ATER BY BIOASSAY A Thesis THOMAS O'ADE DUKE Approved as to style and content by: ( airman o emmy ee wi, ( ea of Depar me...

  14. Evaluating guayule resin fractions for mutagenicity and toxicity

    E-Print Network [OSTI]

    Avirett, Donald Baker

    1992-01-01T23:59:59.000Z

    EVALUATING GUAYULE RESIN FRACTIONS FOR NUTAGENICITY AND TOXICITY A Thesis by DONALD BAKER AVIRETT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1992 Major Subject: Industrial Hygiene EVALUATING GUAYULE RESIN FRACTIONS FOR MUTAGENICITY AND TOXICITY A Thesis by DONALD BAKER AVIRETT Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

  15. The recognition of toxic contaminants in sea water by bioassay 

    E-Print Network [OSTI]

    Duke, Thomas Wade

    1960-01-01T23:59:59.000Z

    THE RECOGNITION OF TOXIC CONTAMINANTS IN SEA WATER BY BIOASSAY A Thesis By THOMAS WADE DUKE Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE January 1960 Major Subject: Biological Oceanography THE RECOGNITION OF TOXIC CONTAMINANTS IN SEA li'ATER BY BIOASSAY A Thesis THOMAS O'ADE DUKE Approved as to style and content by: ( airman o emmy ee wi, ( ea of Depar me...

  16. A golden opportunity: Researchers making progress in understanding toxic algae 

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    Researchers making progress in understanding toxic algae A golden opportunity tx H2O | pg. 21 have examined the organism in coastal, saline environments. ?Our research team represents one of the few in the world that is focused on the dynamics... throughout Texas. Although it can exist in waters without being harmful, the algae has caused major fish kills in five of the state?s river systems. When this algae has explosive increases in its population, called ?blooms,? it secretes toxic chemicals...

  17. Isolation and identification of a toxic metabolite of Phomopsis sp. 

    E-Print Network [OSTI]

    Samples, Daniel Robert

    1982-01-01T23:59:59.000Z

    ISOLATION AND IDENTIFICATION OF A TOXIC MEl'ABOLITE OF PHOMOPSIS SP. A Thesis by DANIEL ROBERT SAMPLES Submitted to the Graduate College of' Texas A&B University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... MAY 1982 Major Subject~ Veterinary Toxicology ISOLATION AND IDENTIFICATION OF A TOXIC METABOLITE OF PHOMOPSIS SP. A Thesis by DANIEL ROBERT SAMPLES Approved as to style and content by: (Chairman of Committee) (Membe (Mem ) (Head of Departme t...

  18. Toxic and deadly: Working to manage algae in Lake Granbury 

    E-Print Network [OSTI]

    Wythe, Kathy

    2010-01-01T23:59:59.000Z

    Toxic and deadly Working to manage algae in Lake Granbury Lake Granbury, located about 33 miles southwest of Fort Worth, is a recreation haven for water enthusiasts. In recent years, however, bacteria and golden algae have threatened the lake... of water and the presence of pathogens. These E. coli sources can be from sewage overflows, polluted stormwater runoff, or malfunctioning septic systems. Toxic golden algae blooms have killed fish in Lake Granbury and Lake Whitney, downstream...

  19. Toxic and deadly: Working to manage algae in Lake Granbury 

    E-Print Network [OSTI]

    Wythe, Kathy

    2011-01-01T23:59:59.000Z

    Toxic and deadly Working to manage algae in Lake Granbury Lake Granbury, located about 33 miles southwest of Fort Worth, is a recreation haven for water enthusiasts. In recent years, however, bacteria and golden algae have threatened the lake... of water and the presence of pathogens. These E. coli sources can be from sewage overflows, polluted stormwater runoff, or malfunctioning septic systems. Toxic golden algae blooms have killed fish in Lake Granbury and Lake Whitney, downstream...

  20. Toxic Release Inventory (TRI), Iowa, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  1. Toxic Release Inventory (TRI), Delaware, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  2. Toxic Release Inventory (TRI), Colorado, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  3. Toxic Release Inventory (TRI), Massachusetts, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  4. Toxic Release Inventory (TRI), Illinois, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  5. Toxic Release Inventory (TRI), Florida, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  6. Toxic Release Inventory (TRI), Wisconsin, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  7. Toxic Release Inventory (TRI), Kentucky, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off-site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  8. Toxic Release Inventory (TRI), Connecticut, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility; the first nine digit alphanumeric number a facility holds under the National Pollutant Discharge Elimination Systems.

  9. Toxic Release Inventory (TRI), Ohio, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  10. Toxic Release Inventory (TRI), Utah, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  11. Toxic Release Inventory (TRI), Hawaii, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  12. Toxic Release Inventory (TRI), Missouri, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  13. Toxic Release Inventory (TRI), Minnesota, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  14. Toxic Release Inventory (TRI), Michigan, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  15. Toxic Release Inventory (TRI), Georgia, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  16. Toxic Release Inventory (TRI), Arkansas, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  17. Toxic Release Inventory (TRI), Kansas, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off-site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  18. Toxic Release Inventory (TRI), Nevada, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  19. Toxic Release Inventory (TRI), Nebraska, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  20. Toxic Release Inventory (TRI), Maryland, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  1. Toxic Release Inventory (TRI), Oklahoma, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  2. Toxic Release Inventory (TRI), Arizona, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  3. Toxic Release Inventory (TRI), Louisiana, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  4. Toxic Release Inventory (TRI), Montana, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  5. Toxic Release Inventory (TRI), Indiana, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  6. Toxic Release Inventory (TRI), Alaska, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year.Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  7. Toxic Release Inventory (TRI), Pennsylvania, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility; the first nine digit alphanumeric number a facility holds under the National Pollutant Discharge Elimination Systems.

  8. Toxic Release Inventory (TRI), Oregon, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  9. Toxic Release Inventory (TRI), Vermont, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  10. Toxic Release Inventory (TRI), Mssissippi, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  11. Toxic Release Inventory (TRI), Tennessee, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  12. Toxic Release Inventory (TRI), California, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  13. Toxic Release Inventory (TRI), Washington, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  14. Toxic Release Inventory (TRI), Wyoming, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  15. Toxic Release Inventory (TRI), Idaho, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  16. Toxic Release Inventory (TRI), Alabama, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year.Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  17. Toxic Release Inventory (TRI), Texas, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  18. Toxic Release Inventory (TRI), Maine, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  19. assess fluid responsiveness: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Repository Summary: health impacts in LCA. Background and Key References Life cycle assessment (health impacts and hence the relevance to address human toxic impacts in...

  20. r e v i e w OrganicAnswers toToxic Questions

    E-Print Network [OSTI]

    disasters--gasoline leaking into groundwater from under- ground storage tanks or toxic chemicals from

  1. Public health assessment for V and M/Albaladejo Norte Ward (a/k/a V and M/Albaladejo Farms site), Vega Baja, Vega Baja County, Puerto Rico, Region 2: CERCLIS Number PRD987366101. Final report

    SciTech Connect (OSTI)

    NONE

    1998-12-30T23:59:59.000Z

    The Agency for Toxic Substances and Disease Registry (ATSDR) published a Site Review and Update for the V and M/Albaladejo Farms site on May 7, 1997. The site includes the V and M property and the Albaladejo farm. Total acreage is unknown. Several small plots within the site were formerly used for dumping plastic-coated electrical cables, electrical equipment, car batteries, and transformers. To total quantity of waste brought onto the site and the date when activities began are not known. Some wastes were burned, presumably to recover copper, aluminum, and lead. ATSDR prepared public health consultations in 1995 that concluded that site soils posed a potential health concern and concurred with EPA`s proposed cleanup levels. EPA also will investigate groundwater quality to determine whether remedial activities are needed to protect the aquifer that supplies off-site public wells that serve large numbers of residents in Vega Baja. ATSDR concluded that the site poses no apparent public health hazard. The proposed soil removal and proposed groundwater investigation and any required followup groundwater remediation should minimize the potential for future exposures and adverse human health effects.

  2. Introduction Health Sciences

    E-Print Network [OSTI]

    Banbara, Mutsunori

    with the originality and creativity to establish total health care, (2advanced healthcare specialists with abundant and researchers who can put total health care into practice. 21 20084 2 3 total health care #1232 Introduction Guide Entrance Life Career Inquiries Health Sciences Health Problems

  3. winter 2015 Health Informatics

    E-Print Network [OSTI]

    California at Davis, University of

    UinG anD PrOfeSSiOnal eDUCatiOn HEALTH INFORMATICS ANd ANALYTICS #12;2 Advancing Health Care Through.S. health care prior to commencing study. High-quality, Convenient Online Learning Format All courses, computer science and health care. In this introductory course, gain broad exposure to the field of health

  4. Exploring Cyberbullying and Other Toxic Behavior in Team Competition Online Games

    E-Print Network [OSTI]

    Kwak, Haewoon; Han, Seungyeop

    2015-01-01T23:59:59.000Z

    In this work we explore cyberbullying and other toxic behavior in team competition online games. Using a dataset of over 10 million player reports on 1.46 million toxic players along with corresponding crowdsourced decisions, we test several hypotheses drawn from theories explaining toxic behavior. Besides providing large-scale, empirical based understanding of toxic behavior, our work can be used as a basis for building systems to detect, prevent, and counter-act toxic behavior.

  5. Public Health Surveillance of Toxic Cyanobacteria in Freshwater Systems Using Remote Detection Methods

    E-Print Network [OSTI]

    Mackie, Trina Nicole

    2010-01-01T23:59:59.000Z

    Quality Control Board (2010b). Staff Report for the Klamath River TotalQuality Control Board (2010a). Final Staff Rport for the Klamath River TotalQuality control Board (NCRWQCB) is in the process of finalizing and adopting a Total

  6. National Center for Environmental Health Agency for Toxic Substances and Disease Registry

    E-Print Network [OSTI]

    to implement community- based interventions, build local coalitions, and track the impact of the disease://www.cdc.gov/asthma/stateprofiles/ Asthma_in_NYS.pdf CS247509-N #12;2 Reducing children's lead exposure is perhaps the greatest

  7. Public Health Surveillance of Toxic Cyanobacteria in Freshwater Systems Using Remote Detection Methods

    E-Print Network [OSTI]

    Mackie, Trina Nicole

    2010-01-01T23:59:59.000Z

    Adequate characterization of the entire reservoir wouldCharacterization 2.1 Introduction This research involved field data collection in two field sites: the Iron Gate and Copco reservoirs

  8. Public Health Surveillance of Toxic Cyanobacteria in Freshwater Systems Using Remote Detection Methods

    E-Print Network [OSTI]

    Mackie, Trina Nicole

    2010-01-01T23:59:59.000Z

    Technical Memorandum. Ashland, Aquatic Ecosystem Sciences :Technical Memorandum. Ashland, Aquatic Ecosystem Sciences :and Fisheries Program. Ashland, Aquatic Ecosystem Sciences :

  9. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH Part A--Toxic/Hazardous Substances & Environmental Engineering

    E-Print Network [OSTI]

    Rockne, Karl J.

    for the remediation of the residual chloroethene. We hypothesized that ethyl lactate, a ``green'' solvent, could serve

  10. Public Health Surveillance of Toxic Cyanobacteria in Freshwater Systems Using Remote Detection Methods

    E-Print Network [OSTI]

    Mackie, Trina Nicole

    2010-01-01T23:59:59.000Z

    to collect data throughout the reservoir, a preliminaryWater Data Summary for Klamath Reservoirs MEAN MEDIANground data collection for these reservoirs. The wavelengths

  11. Sandia Energy - Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Home Stationary Power Energy Conversion Efficiency Wind Energy Materials, Reliability, & Standards Structural Health Monitoring Structural Health...

  12. Medicine and public health in a multiethnic world 

    E-Print Network [OSTI]

    Bhopal, Raj

    2009-01-01T23:59:59.000Z

    Achievement of medical and public health goals requires mutual understanding between professionals and the public, a challenge in diverse societies. Despite their massive diversity humans belong to one species, with race ...

  13. Addressing Genetics Delivering Health

    E-Print Network [OSTI]

    Rambaut, Andrew

    Addressing Genetics Delivering Health A strategy for advancing the dissemination and application of genetics knowledge throughout our health professions Funded by Hilary Burton September 2003 Executive education of health workers q providing strategic overview of education programme q collaborating

  14. DIRECTORY OF HEALTH SERVICES

    E-Print Network [OSTI]

    Yates, Andrew

    a centralized resource of regional health care services for persons with developmental disabilitiesDIRECTORY OF HEALTH SERVICES FOR BRONX RESIDENTS WITH DEVELOPMENTAL DISABILITIES 2012 Compiled Albert Einstein College of Medicine in collaboration with Health Services Committee, Bronx Developmental

  15. Developing Human Performance Measures

    SciTech Connect (OSTI)

    Jeffrey Joe; Bruce Hallbert; Larry Blackwood; Donald Dudehoeffer; Kent Hansen

    2006-05-01T23:59:59.000Z

    Through the reactor oversight process (ROP), the U.S. Nuclear Regulatory Commission (NRC) monitors the performance of utilities licensed to operate nuclear power plants. The process is designed to assure public health and safety by providing reasonable assurance that licensees are meeting the cornerstones of safety and designated crosscutting elements. The reactor inspection program, together with performance indicators (PIs), and enforcement activities form the basis for the NRC’s risk-informed, performance based regulatory framework. While human performance is a key component in the safe operation of nuclear power plants and is a designated cross-cutting element of the ROP, there is currently no direct inspection or performance indicator for assessing human performance. Rather, when human performance is identified as a substantive cross cutting element in any 1 of 3 categories (resources, organizational or personnel), it is then evaluated for common themes to determine if follow-up actions are warranted. However, variability in human performance occurs from day to day, across activities that vary in complexity, and workgroups, contributing to the uncertainty in the outcomes of performance. While some variability in human performance may be random, much of the variability may be attributed to factors that are not currently assessed. There is a need to identify and assess aspects of human performance that relate to plant safety and to develop measures that can be used to successfully assure licensee performance and indicate when additional investigation may be required. This paper presents research that establishes a technical basis for developing human performance measures. In particular, we discuss: 1) how historical data already gives some indication of connection between human performance and overall plant performance, 2) how industry led efforts to measure and model human performance and organizational factors could serve as a data source and basis for a framework, 3) how our use of modeling and simulation techniques could be used to develop and validate measures of human performance, and 4) what the possible outcomes are from this research as the modeling and simulation efforts generate results.

  16. University Health Care Health Sciences Center

    E-Print Network [OSTI]

    Feschotte, Cedric

    University Health Care Health Sciences Center 30 N. 1900 E. 6DOW /DNH &LW\\ 87 84132-2204 Phone and your child. University Health Care School of Medicine Division of Pediatric Nephrology & Hypertension care physician after each visit. x If you would like a copy of your child's clinic note you must

  17. Health and Counselling Services SFU Health Promotion

    E-Print Network [OSTI]

    Health and Counselling Services SFU Health Promotion A division of Student Services HEALTHY CAMPUS COMMUNITY 2 0 1 3 R E P O R T #12;Dr. Tim Rahilly Dr. Nancy Johnston FOREWORD The health and well. We have a responsibility as a caring community to create a setting that not only supports students

  18. Reclamation of automotive batteries: Assessment of health impacts and recycling technology. Task 2: Assessment of health impacts; Final report

    SciTech Connect (OSTI)

    Unnasch, S.

    1999-04-01T23:59:59.000Z

    The task 2 report compares the relative health and hazard impacts of EV battery recycling technologies. Task 2 compared the relative impact of recycling EV batteries in terms of cancer, toxicity, and ecotoxicological potential, as well as leachability, flammability, and corrosivity/reactivity hazards. Impacts were evaluated for lead-acid, nickel-cadmium, nickel-metal hydride, sodium sulfur, sodium-nickel chloride, lithium-iron sulfide and disulfide, lithium-polymer, lithium-ion, and zinc-air batteries. Health/hazard impacts were evaluated for recycling methods including smelting, electrowinning, and other appropriate techniques that apply to different battery technologies.

  19. ORISE: Health Physics Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational...

  20. ORISE: Public Health Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communication Public Health Communication The Oak Ridge Institute for Science and Education (ORISE) assists government agencies and organizations in addressing public health...

  1. ORISE: Public Health Preparedness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by convening community-based workshops and key stakeholder meetings aimed at managing a health care surge during a public health emergency. By identifying and involving key...

  2. Health Effects Support Document for Hexachlorobutadiene Health Effects Support Document

    E-Print Network [OSTI]

    For Hexachlorobutadiene

    2003-01-01T23:59:59.000Z

    The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of the Environmental Protection Agency (EPA) to establish a list of contaminants to aid the agency in regulatory priority setting for the drinking water program. In addition, SDWA requires EPA to make regulatory determinations for no fewer than five contaminants by August 2001. The criteria used to determine whether or not to regulate a chemical on the CCL are the following: The contaminant may have an adverse effect on the health of persons. The contaminant is known to occur or there is a substantial likelihood that the contaminant will occur in public water systems with a frequency and at levels of public health concern. In the sole judgment of the administrator, regulation of such contaminant presents a meaningful opportunity for health risk reduction for persons served by public water systems. The Agency’s findings for the three criteria are used in making a determination to regulate a contaminant. The Agency may determine that there is no need for regulation when a contaminant fails to meet one of the criteria. This document provides the health effects basis for the regulatory determination for hexachlorobutadiene. In arriving at the regulatory determination, data on toxicokinetics, human

  3. SNRB{trademark} air toxics monitoring. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process as well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.

  4. Suffolk County Department of Health Services

    E-Print Network [OSTI]

    . heavy metal sludges, mixtures and solutions in excess of the allowable concentrations listed in Title 6 ground or finished floor elevation. #12;Page #2 2.2 Commissioner - Commissioner of Suffolk County present, an actual or potential hazard to human health, or to the drinking water supply, if such substance

  5. An update on environmental, health and safety issues of interest to the photovoltaic industry

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Viren, J.; Fthenakis, V.M.

    1992-08-01T23:59:59.000Z

    There is growing interest in the environmental, health, and safety issues related to new photovoltaic technologies as they approach commercialization. Such issues include potential toxicity of II--VI compounds; the impacts of new environmental regulations on module manufacturers; and, the need for recycling of spent modules and manufacturing wastes. This paper will review these topics. 20 refs.

  6. Does Health Insurance and Seeing the Doctor Keep You Out of the Hospital? We obtain estimates of associations between health insurance and hospitalization and between

    E-Print Network [OSTI]

    Mateo, Jill M.

    health care reform debate, as illustrated by the quote from Kathleen Sebelius, Secretary of the U at a presentation of this research at the American Enterprise Institute for their comments. #12;1 "Our health care.S. Department of Health and Human Services. Indeed, primary care is central focus of the Patient Protection

  7. The current use of studies on promoters and cocarcinogens in quantitative risk assessment. Environ. Health Perspect

    E-Print Network [OSTI]

    J. F. Stara; D. Mukerjee; R. Mcgaughy; T P. Durkint; M. L. Dourson

    1983-01-01T23:59:59.000Z

    Several of the priority pollutants discussed in EPA's Ambient Water Quality Criteria documents have been reported to have promotion or cocarcinogenic activity. For example, phenol appears to have tumor-promoting activity in mice when repeatedly applied after initiation with either 7,12-dimethyl-1,2-benzanthracene (DMBA) or benzo(a)pyrene (BaP). Similarly, it has been reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent promoter of liver tumors as well as a cocarcinogen. However, in developing guidelines to derive ambient water quality criteria, it became apparent that satisfactory approaches had not been developed for using promotion/cocarcinogen data in human health risk estimation, nor were available promotion and/or cocarcinogen data on individual chemicals strong enough to permit a defensible quantitative risk estimation, if such approaches had existed. For this reason, the criteria derived for pollutants with reported promotion/cocarcinogenic activities were based on approaches for carcinogenic (e.g., TCDD), toxic (e.g., fluoranthene) or organoleptic effects (e.g., 2,4-dichlorophenol). Nonetheless, with advances in studies on both the biological mechanisms and dose/response patterns of promoters and cocarcinogens, it may be possible to develop a scientifically valid quantitative approach to use this type of data for derivation of ambient water quality criteria or other risk assessments. Some progress toward this goal and the problems associated with this effort are discussed.

  8. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    SciTech Connect (OSTI)

    Ivanov, Vladimir N., E-mail: vni3@columbia.edu [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States); Hei, Tom K. [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States)

    2013-04-01T23:59:59.000Z

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 ?M) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ? Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ? Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ? Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ? Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT.

  9. Master's Degree in Agriculture Plant Health Management Option Option Title: Master of Science (MS) in Agriculture: Plant Health

    E-Print Network [OSTI]

    Collins, Gary S.

    Master's Degree in Agriculture ­ Plant Health Management Option Option Title: Master of Science (MS) in Agriculture: Plant Health Management Department(s) or Program(s): Supported of Agricultural, Human, and Natural Resource Sciences (CAHNRS) Contact Name: Dr. Kim Kidwell, Director MS

  10. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt

    2002-08-15T23:59:59.000Z

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  11. CHEIBA TRUST Health Insurance

    E-Print Network [OSTI]

    CHEIBA TRUST Health Insurance Anthem Blue Cross and Blue Shield www.anthem.com BlueAdvantage Point of Service Plan (HMO/POS) Prime Health Plan (PPO) and Custom Plus Health Plan Phone.................................................................................................................1-800-542-9402 Provider Directories Health and Dental www.anthem.com HMO Chiropractic Landmark

  12. IMMUNIZATION HEALTH SERVICES CHECKLIST

    E-Print Network [OSTI]

    Matsuda, Noboru

    (regardless of insurance coverage), as well as current staff and faculty. We offer medical care, health1 HEALTH AND IMMUNIZATION GUIDE #12;2 HEALTH SERVICES CHECKLIST Immunization Form due (one timeEdu and Haven Courses completed by: August 11, 2014 WWW.CMU.EDU/HEALTH-SERVICES Questions? Contact us at 412

  13. IMMUNIZATION HEALTH SERVICES CHECKLIST

    E-Print Network [OSTI]

    Matsuda, Noboru

    . We offer medical care, health promotion and insurance services, including: Alcohol and Drug1 HEALTH AND IMMUNIZATION GUIDE #12;2 HEALTH SERVICES CHECKLIST Immunization Form due (one time ­ September 5, 2014 Spring Semester 2015 ­ January 31, 2015 Summer Semester 2015 ­ June 15, 2015 WWW.CMU.EDU/HEALTH

  14. POSTGRADUATE Health Sciences

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    .Sc.Courses Cancer Care 54 Dementia 55 Gerontological Nursing 56 Mental Health 57 Midwifery 59 Nursing 60 Palliative Care 61 Postgraduate Diplomas Clinical Health Sciences Education 62 Nursing (Specialist) 63 HigherPOSTGRADUATE COURSES 2012 Health Sciences TheUniversityofDublinPostgraduateCourses2012Health

  15. Oregon Health & Science University

    E-Print Network [OSTI]

    Chapman, Michael S.

    to high-quality health care for all, especially Oregonians. 4. Help meet Oregon's health and science, however, has changed dramatically. National and statewide health care reform alters the ways care, including the changing health care environment, new and disruptive technologies, globalization, changing

  16. Graduate Assistant Health Insurance

    E-Print Network [OSTI]

    Johnson, Eric E.

    Center (formerly NMSU Student Health Center) for all outpatient primary health care services. Campus:30 pm by Appt- Psychiatry & Women's Health · 7:30 am- 4:30 pm Urgent Care Evaluation, Pharmacy, Lab, X ­ prescription medications ­ testing & procedures ­ office visits for part-time students #12;United Health Care

  17. High-Dose-Rate Brachytherapy as Monotherapy Delivered in Two Fractions Within One Day for Favorable/Intermediate-Risk Prostate Cancer: Preliminary Toxicity Data

    SciTech Connect (OSTI)

    Ghilezan, Michel, E-mail: mghilezan@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital and Rose Cancer Institute, Royal Oak, Michigan (United States); Martinez, Alvaro; Gustason, Gary; Krauss, Daniel; Antonucci, J. Vito; Chen, Peter; Fontanesi, James; Wallace, Michelle; Ye Hong; Casey, Alyse; Sebastian, Evelyn; Kim, Leonard; Limbacher, Amy [Department of Radiation Oncology, William Beaumont Hospital and Rose Cancer Institute, Royal Oak, Michigan (United States)

    2012-07-01T23:59:59.000Z

    Purpose: To report the toxicity profile of high-dose-rate (HDR)-brachytherapy (BT) as monotherapy in a Human Investigation Committee-approved study consisting of a single implant and two fractions (12 Gy Multiplication-Sign 2) for a total dose of 24 Gy, delivered within 1 day. The dose was subsequently increased to 27 Gy (13.5 Gy Multiplication-Sign 2) delivered in 1 day. We report the acute and early chronic genitourinary and gastrointestinal toxicity. Methods and Materials: A total of 173 patients were treated between December 2005 and July 2010. However, only the first 100 were part of the IRB-approved study and out of these, only 94 had a minimal follow-up of 6 months, representing the study population for this preliminary report. All patients had clinical Stage T2b or less (American Joint Committee on Cancer, 5th edition), Gleason score 6-7 (3+4), and prostate-specific antigen level of {<=}12 ng/mL. Ultrasound-guided HDR-BT with real-time dosimetry was used. The prescription dose was 24 Gy for the first 50 patients and 27 Gy thereafter. The dosimetric goals and constraints were the same for the two dose groups. Toxicity was scored using the National Cancer Institute Common Terminology Criteria for Adverse Events, version 3. The highest toxicity scores encountered at any point during follow-up are reported. Results: The median follow-up was 17 months (range, 6-40.5). Most patients had Grade 0-1 acute toxicity. The Grade 2 acute genitourinary toxicity was mainly frequency/urgency (13%), dysuria (5%), hematuria, and dribbling/hesitancy (2%). None of the patients required a Foley catheter at any time; however, 8% of the patients experienced transient Grade 1 diarrhea. No other acute gastrointestinal toxicities were found. The most common chronic toxicity was Grade 2 urinary frequency/urgency in 16% of patients followed by dysuria in 4% of patients; 2 patients had Grade 2 rectal bleeding and 1 had Grade 4, requiring laser treatment. Conclusions: Favorable-risk prostate cancer patients treated with a single implant HDR-BT to 24-27 Gy in two fractions within 1 day have excellent tolerance with minimal acute and chronic toxicity. Longer follow-up is needed to confirm these encouraging early results.

  18. Review article Aluminium toxicity in plants: a review

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Review article Aluminium toxicity in plants: a review G.R. ROUTa, S. SAMANTARAYb, P. DASb* a Plant Biotechnology Division, Regional Plant Resource Centre, Bhubaneswar- 751 015, Orissa, India b Plant Physiology and Biochemistry Laboratory, Regional Plant Resource Centre, Bhubaneswar- 751 015, Orissa, India (Received 31 May

  19. In vivo toxicity studies of europium hydroxide nanorods in mice

    SciTech Connect (OSTI)

    Patra, Chitta Ranjan [Department of Biochemistry and Molecular Biology, 200 First Street S.W, Guggenheim 1321A, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN 55905 (United States)], E-mail: patra.chittaranjan@mayo.edu; Abdel Moneim, Soha S. [Gastroenterology and Hepatology, GI Research Unit, 200 First Street S.W, Guggenheim 1034, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN 55905 (United States); Wang, Enfeng; Dutta, Shamit; Patra, Sujata [Department of Biochemistry and Molecular Biology, 200 First Street S.W, Guggenheim 1321A, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN 55905 (United States); Eshed, Michal [Department of Chemistry and Kanbar Laboratory for Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel); Mukherjee, Priyabrata [Department of Biochemistry and Molecular Biology, 200 First Street S.W, Guggenheim 1321A, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN 55905 (United States); Department of Biomedical Engineering, 200 First Street S.W, Guggenheim 1334, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN 55905 (United States); Gedanken, Aharon [Department of Chemistry and Kanbar Laboratory for Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel); Shah, Vijay H. [Gastroenterology and Hepatology, GI Research Unit, 200 First Street S.W, Guggenheim 1034, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN 55905 (United States); Mukhopadhyay, Debabrata [Department of Biochemistry and Molecular Biology, 200 First Street S.W, Guggenheim 1321A, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN 55905 (United States); Department of Biomedical Engineering, 200 First Street S.W, Guggenheim 1334, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN 55905 (United States)

    2009-10-01T23:59:59.000Z

    Lanthanide nanoparticles and nanorods have been widely used for diagnostic and therapeutic applications in biomedical nanotechnology due to their fluorescence and pro-angiogenic properties to endothelial cells, respectively. Recently, we have demonstrated that europium (III) hydroxide [Eu{sup III}(OH){sub 3}] nanorods, synthesized by the microwave technique and characterized by several physico-chemical techniques, can be used as pro-angiogenic agents which introduce future therapeutic treatment strategies for severe ischemic heart/limb disease, and peripheral ischemic disease. The toxicity of these inorganic nanorods to endothelial cells was supported by several in vitro assays. To determine the in vivo toxicity, these nanorods were administered to mice through intraperitoneal injection (IP) everyday over a period of seven days in a dose dependent (1.25 to 125 mg kg{sup -1} day{sup -1}) and time dependent manner (8-60 days). Bio-distribution of europium elements in different organs was analyzed by inductively coupled plasma mass spectrometry (ICPMS). Short-term (S-T) and long-term (L-T) toxicity studies (mice euthanized on days 8 and 60 for S-T and L-T, respectively) show normal blood hematology and serum clinical chemistry with the exception of a slight elevation of liver enzymes. Histological examination of nanorod-treated vital organs (liver, kidney, spleen and lungs) showed no or only mild histological changes that indicate mild toxicity at the higher dose of nanorods.

  20. Acute toxicity of organic solvents on Artemia salina

    SciTech Connect (OSTI)

    Barahona-Gomariz, M.V.; Sanz-Barrera, F.; Sanchez-Fortun, S. (Complutense Univ. of Madrid (Spain))

    1994-05-01T23:59:59.000Z

    Organic solvents can make their way into the environment as industrial wastes and components of pesticide formulation. In laboratory bioassays, the use of organic formulations. In laboratory bioassays, the use of organic solvents is often unavoidable, since many pesticides and organic pollutants have low water solubility and must be dissolved in organic solvents prior to addition into experimental systems. In the toxicant bioassays, invertebrates with special reference to aquatic arthropod species are of recent interest as test models due to the need for developing nonmammalian test systems. Toxic effects of organic solvents have been tested with a few aquatic species, but information on the comparative toxicity of solvents towards Artemia salina is not available. Artemia salina have, within recent years, gained popularity as test organisms for short-term toxicity testing. Because Artemia salina exhibit rapid development and growth within 48 hr after hatch, their potential as a model organism for toxicology screening has been considered. To do this, synchronous populations of Artemia salina at different development intervals must be available.

  1. Tolerance of nitrobacter to toxicity of some Nigerian crude oils

    SciTech Connect (OSTI)

    Okpokwasili, G.C.; Odokuma, L.O. (Univ. of Port Harcourt (Nigeria))

    1994-03-01T23:59:59.000Z

    Crude oil spillage in aquatic systems affects thousands of aquatic species including bacteria. Some of the crude oil components are rapidly evaporated or biologically degraded. Other components continue to remain for several months and perhaps several years. Some of these components may be toxic to microorganisms, while some may stimulate microbial activity especially at low concentrations. The use of bacteria as bioassay organisms is now gaining wide acceptance. It offers a number of advantages such as ease of handling, economy of space, short life cycles and low cost. Their uses in bioassays are based on cell lysis, mutagenic properties and the inhibition of physiological processes such as respiration. Recently, a number of workers have proposed the use of Nitrobacter as a test organism. The organism has a number of advantages in toxicity testing: obligate autotrophy, its sensitivity to various toxicants and its predominance in wastewater environments are some of them . Of recent, the inhibition of bacterial enzyme biosynthesis have been suggested in bacterial assays. The objective of this study was to determine the effects of six Nigerian crude oils on the cell reproduction rate (LC, lethal concentration), cellular respiration (EC, effective concentration) and biosynthesis of enzyme responsible for nitrite oxidation (IC, inhibition concentration) in Nitrobacter. In addition, the goal was to identify which of these was the most sensitive to crude oil and which may thus be used for detecting the toxicity of these chemicals. 18 refs., 2 figs., 1 tab.

  2. Acute and Genetic Toxicity of Municipal Landfill Leachate

    E-Print Network [OSTI]

    Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

    to be representative of landfills of differing ages and types of wastes. Each sample was tested through three genetic toxicity bioassays (The Aspergillus diploid assay, the Bacillus DNA repair assay and the Salmonella/microsome assay) to measure the ability of each...

  3. Acute and Genetic Toxicity of Municipal Landfill Leachate 

    E-Print Network [OSTI]

    Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

    1991-01-01T23:59:59.000Z

    to be representative of landfills of differing ages and types of wastes. Each sample was tested through three genetic toxicity bioassays (The Aspergillus diploid assay, the Bacillus DNA repair assay and the Salmonella/microsome assay) to measure the ability of each...

  4. Survey of toxicity and carcinogenity of mineral deposits

    SciTech Connect (OSTI)

    Furst, A.; Harding-Barlow, I.

    1981-11-03T23:59:59.000Z

    The toxicities and biogeochemical cycles of arsenic, cadmium, chromium, lead and nickel are reviewed in some detail, and other trace elements briefly mentioned. These heavy metals are used as a framework within which the problem of low-level radioactive waste disposal can be compared. (ACR)

  5. Energy Systems and Population Health

    SciTech Connect (OSTI)

    Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A.; Barnes, Brendon; Chaurey, Akanksha; Dhanapala, Kiran N.

    2004-04-12T23:59:59.000Z

    It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy to rural and urban health facilities allows increased delivery and coverage of 3 various health services and interventions such as tests and treatments, better storage of medicine and vaccines, disinfection of medical equipment by boiling or radiation, and more frequent and efficient health system encounters through mobile clinics or longer working hours; and so on. In fact, while the dominant view of development-energy-health linkages has been that improvements in energy and health are outcomes of the socioeconomic development process (e.g., the ''energy ladder'' framework discussed below), it has even been argued that access to higher quality energy sources and technologies can initiate a chain of demographic, health, and development outcomes by changing the household structure and socioeconomic relationships. For example, in addition to increased opportunities for food and income production, reduced infant mortality as a result of transition to cleaner fuels or increased coverage of vaccination with availability of refrigerators in rural clinics may initiate a process of ''demographic transition'' to low-mortality and low-fertility populations (14). Such a transition has historically been followed with further improvements in maternal and child health and increased female participation in the labor markets and other economic activities.

  6. Environmental Public Health Performance Standards

    E-Print Network [OSTI]

    Environmental Public Health Performance Standards Environmental Health Program Self Agency: Total Environmental Health Program Budget: #12;Environmental Public Health Performance Standards (v. 2.0); Environmental Health Program Assessment Instrument, 1/7/2010 Page 2 Proportion

  7. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    SciTech Connect (OSTI)

    Pereira, Claudia V.; Oliveira, Paulo J. [CNC—Center for Neuroscience and Cell Biology, University of Coimbra (Portugal)] [CNC—Center for Neuroscience and Cell Biology, University of Coimbra (Portugal); Will, Yvonne [Compound Safety Prediction, Pfizer Global Research and Development, Groton, CT (United States)] [Compound Safety Prediction, Pfizer Global Research and Development, Groton, CT (United States); Nadanaciva, Sashi, E-mail: sashi.nadanaciva@pfizer.com [Compound Safety Prediction, Pfizer Global Research and Development, Groton, CT (United States)] [Compound Safety Prediction, Pfizer Global Research and Development, Groton, CT (United States)

    2012-10-15T23:59:59.000Z

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ? mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ? CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ? Strain-dependent mitochondrial capacity differences were measured. ? Strain-dependent differences in response to mitochondrial toxicants were observed.

  8. Clean Water Alliance Colorado Citizens Against ToxicWaste, Inc. Defenders of the Black Hills EARTHWORKS High Country

    E-Print Network [OSTI]

    Alliance for a Safe Environment · Nuclear Information and Resource Service · Sierra Club Nuclear Free rule provides the highest level of protective measures for human health and the environment the impacts of offsite contamination and radioactive releases from the White Mesa Mill, as documented

  9. Graduate School of Public Health (Graduate School of Public Health) (Dept. of Public Health)`

    E-Print Network [OSTI]

    Kim, Guebuem

    including environmental health covering concept of contents and meanings. (Health Care Management-3-0 History of Health & Medical Care , , . , , , . This course reviews Graduate School of Public Health #12;#12;(Graduate School of Public Health) (Dept. of Public

  10. A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogs

    E-Print Network [OSTI]

    Cummings, Molly E.

    A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogs natural variation among poison frog species measured with spectral reflectance and toxicity assays, we components using natural variation among poison frog species. Poison frogs (Dendrobatidae) display some

  11. Integrated Toxic Plant Management Handbook: Livestock Poisoning Plants of the Trans-Pecos Region of Texas

    E-Print Network [OSTI]

    Hart, Charles R.; McGinty, Allan; Carpenter, Bruce B.

    2001-01-11T23:59:59.000Z

    Photographs, plant descriptions, and symptoms of poisoning help ranchers identify toxic plants that may be harmful to their livestock in West Texas. There is also information on grazing, livestock management, and toxic plant control....

  12. Integrated Toxic Plant Management Handbook: Livestock Poisoning Plants of the Trans-Pecos Region of Texas 

    E-Print Network [OSTI]

    Hart, Charles R.; McGinty, Allan; Carpenter, Bruce B.

    2001-01-11T23:59:59.000Z

    Photographs, plant descriptions, and symptoms of poisoning help ranchers identify toxic plants that may be harmful to their livestock in West Texas. There is also information on grazing, livestock management, and toxic plant control....

  13. Toxicity of oiled wetland sediments influenced by natural and enhanced bioremediation 

    E-Print Network [OSTI]

    Mueller, Danica Christine

    1998-01-01T23:59:59.000Z

    were set aside for petroleum bioremediation studies. Phase I began in December of 1994 and monitored sediment toxicity associated with intrinsic petroleum degradation. Acute toxicity was evaluated using the Microtox 100% Test on sediment elutriates from...

  14. Environment, Safety, and Health Risk Assessment Program (ESHRAP)

    SciTech Connect (OSTI)

    Eide, Steven Arvid; Thomas Wierman

    2003-12-01T23:59:59.000Z

    The Environment, Safety and Health Risk Assessment Program (ESHRAP) models human safety and health risk resulting from waste management and environmental restoration activities. Human safety and health risks include those associated with storing, handling, processing, transporting, and disposing of radionuclides and chemicals. Exposures to these materials, resulting from both accidents and normal, incident-free operation, are modeled. In addition, standard industrial risks (falls, explosions, transportation accidents, etc.) are evaluated. Finally, human safety and health impacts from cleanup of accidental releases of radionuclides and chemicals to the environment are estimated. Unlike environmental impact statements and safety analysis reports, ESHRAP risk predictions are meant to be best estimate, rather than bounding or conservatively high. Typically, ESHRAP studies involve risk predictions covering the entire waste management or environmental restoration program, including such activities as initial storage, handling, processing, interim storage, transportation, and final disposal. ESHRAP can be used to support complex environmental decision-making processes and to track risk reduction as activities progress.

  15. Captain Planet Takes on Hazard Transfer: Combining the Forces of Market, Legal and Ethical Decisionmaking to Reduce Toxic Exports

    E-Print Network [OSTI]

    Giampetro-Meyer, Andrea

    2009-01-01T23:59:59.000Z

    infra Part II; see generally Toxic EXPORTS, supra note 5.82. Toxic EXPORTS, supra note 5. See infra Part II. 83.of California). 31. Toxic EXPORTS, supra note 5, at 9. Clapp

  16. Review of organic nitrile incineration at the Toxic Substances Control Act Incinerator

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    Lockheed Martin Energy Systems, Inc. (LMES) operates the East Tennessee Technology Park (ETTP), formerly called the Oak Ridge K-25 Site, where uranium was enriched under contract with the US Department of Energy (DOE). Currently, ETTP missions include environmental management, waste management (WM), and the development of new technologies. As part of its WM mission, ETTP operates the TSCA (Toxic Substances Control Act) Incinerator (TSCAI) for treatment of hazardous waste and polychlorinated biphenyls (PCBs) contaminated with low-level radioactivity. Beginning in the autumn of 1995, employees from diverse ETTP buildings and departments reported experiencing headaches, fatigue, depression, muscle aches, sleeplessness, and muscle tremors. These symptoms were judged by a physician in the ETTP Health Services Department to be consistent with chronic exposures to hydrogen cyanide (HCN). The National Institute for Occupational Safety and Health (NIOSH) was called in to perform a health hazard evaluation to ascertain whether the employees` illnesses were in fact caused by occupational exposure to HCN. The NIOSH evaluation found no patterns for employees` reported symptoms with respect to work location or department. NIOSH also conducted a comprehensive air sampling study, which did not detect airborne cyanides at the ETTP. Employees, however, expressed concerns that the burning of nitrile-bearing wastes at the TSCAI might have produced HCN as a combustion product. Therefore, LMES and DOE established a multidisciplinary team (TSCAI Technical Review Team) to make a more detailed review of the possibility that combustion of nitrile-bearing wastes at the TSCAI might have either released nitriles or created HCN as a product of incomplete combustion (PIC).

  17. The Genetic Architecture of Methotrexate Toxicity Is Similar in Drosophila melanogaster and Humans

    E-Print Network [OSTI]

    Kislukhin, G.; King, E. G; Walters, K. N; Macdonald, S. J; Long, A. D

    2013-01-01T23:59:59.000Z

    patients with acute lymphoblastic leukemia. Haemotologicachemotherapy for acute myelogenous leukemia associated within childhood acute lymphoblastic leukemia and malignant

  18. The Genetic Architecture of Methotrexate Toxicity Is Similar in Drosophila melanogaster and Humans

    E-Print Network [OSTI]

    Kislukhin, G.; King, E. G; Walters, K. N; Macdonald, S. J; Long, A. D

    2013-01-01T23:59:59.000Z

    patients with acute lymphoblastic leukemia. Haemotologicain childhood acute lymphoblastic leukemia and malignantof childhood acute lymphoblastic leukemia. Blood 100: 3832–

  19. Human Exposure to Toxic Materials The New York-New Jersey Metropolitan Region

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    of facilities for manufacture of lead- acid batteries directly exposes workers to air- borne particles and has, and the food we eat. As an example, con- sider someof the routes for exposureto lead. Lead has been used often brought about substantial pollution of the surrounding land. Run-off carrying lead from the site

  20. Potential Health Effects of Marcellus Shale Activities: The Need for Public

    E-Print Network [OSTI]

    Sibille, Etienne

    . #12;Implications of the Gulf Oil Spill to Marcellus Shale Activities - Environmental and human health salt (Proprietary) 10.0 - 30.0% #12;Implications of the Gulf Oil Spill to Marcellus Shale ActivitiesPotential Health Effects of Marcellus Shale Activities: The Need for Public Health Surveillance

  1. Roadmap: Integrated Health Studies -Health Sciences Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Six: [14 Credit Hours] NURS 45010 Health Care Policy and Delivery Systems or NURS 46000 Health Care 41581 Health Psychology (3) or SOC 42563 Sociology in Health and Health Care (3) 3 Health Science 45080 Physiology of Exercise 3 PHIL 40005 Health Care Ethics 3 General Elective (lower or upper

  2. Reliability of Quantitative Ultrasonic Assessment of Normal-Tissue Toxicity in Breast Cancer Radiotherapy

    SciTech Connect (OSTI)

    Yoshida, Emi J.; Chen Hao [Department of Radiation Oncology, Emory University, Atlanta, GA (United States); Torres, Mylin [Department of Radiation Oncology, Emory University, Atlanta, GA (United States); Winship Cancer Institute, Emory University, Atlanta, GA (United States); Andic, Fundagul [Winship Cancer Institute, Emory University, Atlanta, GA (United States); Liu Haoyang [Department of Radiation Oncology, Emory University, Atlanta, GA (United States); Chen Zhengjia [Winship Cancer Institute, Emory University, Atlanta, GA (United States); Department of Statistics, Emory University, Atlanta, GA (United States); Sun, Xiaoyan [Department of Statistics, Emory University, Atlanta, GA (United States); Curran, Walter J. [Department of Radiation Oncology, Emory University, Atlanta, GA (United States); Winship Cancer Institute, Emory University, Atlanta, GA (United States); Liu Tian, E-mail: tliu34@emory.edu [Department of Radiation Oncology, Emory University, Atlanta, GA (United States); Winship Cancer Institute, Emory University, Atlanta, GA (United States)

    2012-02-01T23:59:59.000Z

    Purpose: We have recently reported that ultrasound imaging, together with ultrasound tissue characterization (UTC), can provide quantitative assessment of radiation-induced normal-tissue toxicity. This study's purpose is to evaluate the reliability of our quantitative ultrasound technology in assessing acute and late normal-tissue toxicity in breast cancer radiotherapy. Method and Materials: Our ultrasound technique analyzes radiofrequency echo signals and provides quantitative measures of dermal, hypodermal, and glandular tissue toxicities. To facilitate easy clinical implementation, we further refined this technique by developing a semiautomatic ultrasound-based toxicity assessment tool (UBTAT). Seventy-two ultrasound studies of 26 patients (720 images) were analyzed. Images of 8 patients were evaluated for acute toxicity (<6 months postradiotherapy) and those of 18 patients were evaluated for late toxicity ({>=}6 months postradiotherapy). All patients were treated according to a standard radiotherapy protocol. To assess intraobserver reliability, one observer analyzed 720 images in UBTAT and then repeated the analysis 3 months later. To assess interobserver reliability, three observers (two radiation oncologists and one ultrasound expert) each analyzed 720 images in UBTAT. An intraclass correlation coefficient (ICC) was used to evaluate intra- and interobserver reliability. Ultrasound assessment and clinical evaluation were also compared. Results: Intraobserver ICC was 0.89 for dermal toxicity, 0.74 for hypodermal toxicity, and 0.96 for glandular tissue toxicity. Interobserver ICC was 0.78 for dermal toxicity, 0.74 for hypodermal toxicity, and 0.94 for glandular tissue toxicity. Statistical analysis found significant changes in dermal (p < 0.0001), hypodermal (p = 0.0027), and glandular tissue (p < 0.0001) assessments in the acute toxicity group. Ultrasound measurements correlated with clinical Radiation Therapy Oncology Group (RTOG) toxicity scores of patients in the late toxicity group. Patients with RTOG Grade 1 or 2 had greater ultrasound-assessed toxicity percentage changes than patients with RTOG Grade 0. Conclusion: Early and late radiation-induced effects on normal tissue can be reliably assessed using quantitative ultrasound.

  3. Dose Dependent Response to Cyclodextrin Infusion in a Rat Model of Verapamil Toxicity

    E-Print Network [OSTI]

    Mottram, Allan R.; Bryant, Sean M; Aks, Steven E

    2012-01-01T23:59:59.000Z

    Model of Verapamil Toxicity Allan R. Mottram, MD* Sean M.Address for Correspondence: Allan R. Mottram, MD, University

  4. Human Ecology Human ecology Research

    E-Print Network [OSTI]

    Wang, Z. Jane

    Channel, Latin America. STUDIOS Architecture. #12;HUMAN ECOLOGY · APRIL 2005 1 Lisa Staiano-Coico, Ph Frey spins a green alternative for textiles. Fibers from rapidly renewable materials

  5. Space, light, and time : prospective analysis of Circadian illumination for health-based daylighting with applications to healthcare architecture

    E-Print Network [OSTI]

    Pechacek, Christopher S. (Christopher Scott)

    2008-01-01T23:59:59.000Z

    Light in architecture can be studied for its objective or perceptual effects. This thesis describes an objective link between human health and architectural design. Specifically, the link between daylight and human circadian ...

  6. One-Two-Three Punch Clobbers Toxic Algae, Restores Fremont Lake

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    One-Two-Three Punch Clobbers Toxic Algae, Restores Fremont Lake Final Report Fremont Lake #20 Water-two-three punch to knockout toxic algae and restore water quality in Nebraska's numerous sandpit lakes. "It seems to help rid the too-often toxic algae prone Fremont State Lakes of the oily green scum that can close them

  7. BIOMEDICAL AND HEALTH Assessing the Environmental, Health

    E-Print Network [OSTI]

    Magee, Joseph W.

    BIOMEDICAL AND HEALTH Assessing the Environmental, Health and Safety Impact of Nanoparticles are urgently needed to support risk assessments and regulatory policy decisions regarding materials containing · Environmental Protection Agency · DuPont · BASF · Evonik · Cabot · General Electric Approach The quartz crystal

  8. Misonidazole with dexamethasone rescue: an escalating dose toxicity study

    SciTech Connect (OSTI)

    Tanasichuk, H.; Urtasun, R.C.; Fulton, D.S.; Raleigh, J.

    1984-09-01T23:59:59.000Z

    Neurotoxicity induced by misonidazole (MISO) and desmethylmisonidazole (DMM) has become the dose limiting factor in clinical work. In 1981, the authors reported a preliminary study suggestive that Dexamethasone (DEXA) does have a protective effect against peripheral neuropathies (PN) resulting from toxicity of misonidazole. The authors are presently investigating the use of DEXA, with escalating doses of MISO in an attempt to modify its neurotoxicity. To date, 16 patients have been registered to receive total doses of MISO given in 9 equally divided doses over 3 weeks. DEXA is given 3 days prior to the first dose and continues for the duration of therapy. All patients receive palliative radiation. No toxicity was seen at the total dose of 13.5 gm/M/sub 2/. One grade I PN occurred in the first four patients receiving 15.5 gm/M/sub 2/. Six additional patients were entered at this dose level and no further incidence of PN was observed.

  9. Collection and cultivation methods of Acartia tonsa for toxicity testing

    SciTech Connect (OSTI)

    Hood, C.A. [Baker Hughes INTEQ, Houston, TX (United States); Mayo, R.R. [ENSR Environmental Toxicology Lab., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    Acartia tonsa were located and collected from Galveston Bay, Texas in June 1995, using plankton nets and transported to the laboratory for culture. After literature searching and laboratory experimentation. A simple reliable method was designed to culture A. tonsa. This method requires a minimum of glassware and supplies. Adult A. tonsa are placed in one gallon bell jars filled with natural seawater. The jars are then maintained in a water bath at a constant temperature. Water changes are conducted twice weekly and organisms are fed daily with a mixture of algae, Skeletonema costatum, isocrysis galbana, and Thalassiosira sp. Gravid females are then isolated in generators for 24 hours to obtain known age neonates. The neonates are maintained up to a specific age and then are used in toxicity tests such as the ``Determination of the Acute Lethal Toxicity to Marine Copepods,`` required in the United Kingdom for all chemicals used for offshore drilling fluid applications.

  10. Evidence of Southern Health

    E-Print Network [OSTI]

    Acton, Scott

    POS Evidence of Coverage Southern Health Services, Inc. SH.POS.11-09 #12;Table of Contents SH................................................................................................10 Facts about Southern Health .....................................................................12 Members' Responsibilities to Know How and When to Seek Care ............................13 Section

  11. ORISE: Health Promotion and Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Promotion and Outreach Health Promotion & Outreach The Oak Ridge Institute for Science and Education (ORISE) provides health promotion and outreach support to government...

  12. Open Defecation and the Human Waste Crisis in India

    E-Print Network [OSTI]

    Mozaffar, Parveen

    2014-05-31T23:59:59.000Z

    This thesis analyzes the human waste crisis in India. The lack of sanitation facilities as well as open defecation seriously impacts India's ability to achieve its sanitation goals by 2015. More importantly, if the World Health Organization...

  13. Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    E-Print Network [OSTI]

    Holder, Jason W.

    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, ...

  14. Systemic toxicity of dermally applied crude oils in rats

    SciTech Connect (OSTI)

    Feuston, M.H.; Mackerer, C.R.; Schreiner, C.A.; Hamilton, C.E. [Stonybrook Labs., Inc., Princeton, NJ (United States)] [Stonybrook Labs., Inc., Princeton, NJ (United States)

    1997-12-31T23:59:59.000Z

    Two crude oils, differing in viscosity (V) and nitrogen (N) and sulfur (S) content, were evaluated for systemic toxicity, In the Crude I (low V, low N, low S) study, the material was applied to the clipped backs of rats at dose levels of 0, 30, 125, and 500 mg/kg. In the Crude II (high V, high N, moderate S) study, the oil was applied similarly at the same dose levels. The crude oils were applied for 13 wk, 5 d/wk. Exposure sites were not occluded. Mean body weight gain (wk 1-14) was significantly reduced in male rats exposed to Crude II; body weight gain of all other animals was not adversely affected by treatment. An increase in absolute (A) and relative (R) liver weights and a decrease in A and R thymus weights were observed in male and female rats exposed to Crude II at 500 mg/kg; only liver weights (A and R) were adversely affected in male and female rats exposed to Crude I. In general, there was no consistent pattern of toxicity for serum chemistry endpoints; however, more parameters were adversely affected in Crude II-exposed female rats than in the other exposed groups. A consistent pattern of toxicity for hematology endpoints was observed among male rats exposed to Crude I and male and female rats exposed to Crude II. Parameters affected included: Crudes I and II, red blood cell count, hemoglobin, and hematocrit, Crude II, platelet count. Microscopic evaluation of tissues revealed the following treatment-related findings: Crude I, treated skin, thymus, and thyroid; Crude II, bone marrow, treated skin, thymus, and thyroid. The LOEL (lowest observable effect level) for skin irritation and systemic toxicity (based on marginal effects on the thyroid) for both crude oils was 30 mg/kg; effects were more numerous and more pronounced in animals exposed to Crude II. Systemic effects are probably related to concentrations of polycyclic aromatic compounds (PAC) found in crude oil.

  15. Reactive formulations for a neutralization of toxic industrial chemicals

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuqueruqe, NM); Betty, Rita G. (Rio Rancho, NM)

    2006-10-24T23:59:59.000Z

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  16. Toxic and deadly: Working to manage algae in Lake Granbury

    E-Print Network [OSTI]

    Wythe, Kathy

    2011-01-01T23:59:59.000Z

    Toxic and deadly Working to manage algae in Lake Granbury Lake Granbury, located about 33 miles southwest of Fort Worth, is a recreation haven for water enthusiasts. In recent years, however, bacteria and golden algae have threatened the lake...?s water quality. Educating citizens about water quality issues affecting Lake Granbury and determining ways to manage the deadly algae are the focus of two Texas Water Resources Institute (TWRI) projects. Lake Granbury, a critical water supply...

  17. Toxic and deadly: Working to manage algae in Lake Granbury

    E-Print Network [OSTI]

    Wythe, Kathy

    2010-01-01T23:59:59.000Z

    Toxic and deadly Working to manage algae in Lake Granbury Lake Granbury, located about 33 miles southwest of Fort Worth, is a recreation haven for water enthusiasts. In recent years, however, bacteria and golden algae have threatened the lake...?s water quality. Educating citizens about water quality issues affecting Lake Granbury and determining ways to manage the deadly algae are the focus of two Texas Water Resources Institute (TWRI) projects. Lake Granbury, a critical water supply...

  18. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect (OSTI)

    Ivan Diaz-Loya, E. [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Allouche, Erez N., E-mail: allouche@latech.edu [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Eklund, Sven; Joshi, Anupam R. [Department of Chemistry, Louisiana Tech University, Ruston, LA 71272 (United States); Kupwade-Patil, Kunal [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

  19. Use of neomysis mercedis (crustacea: mysidacea) for estuarine toxicity tests

    SciTech Connect (OSTI)

    Brandt, O.M.; Fujimura, R.W.; Finlayson, B.J. (Aquatic Toxicology Laboratory, Elk Grove, CA (United States))

    1993-03-01T23:59:59.000Z

    The mysid Neomysis mercedis was examined as a test organism for use in acute toxicity tests at intermediate salinities characteristic of estuarine waters. Several sensitive invertebrate species are available for marine assessments (mysids) and freshwater tests (cladocerans), but few are available for estuarine toxicity tests. Observations in the laboratory indicate that Neomysis mercedis can be reared successfully at a temperature of 17[degrees]C, a salinity of 2%, and a population density less than 5/L. Brine shrimp nauplii Artemia salina, algae, and commercial foods were used to sustain mysid cultures. Neomysis mercedis is vivaparous and can complete its life cycle in 3-4 months. Neomysis mercedis is as sensitive as or more sensitive to toxicants than the marine mysid Mysidopsis bahia and the freshwater cladocerans Daphnia magna, Ceriodaphnia dubia, and Simocephalus serrulatus. The mean 96-h LC50 values (concentrations lethal to half the test animals) for N. mercedis, in increasing order, were 0.20 [mu]g/L for thiobencarb, and for malathion, 14 [mu]g/L for carbofuran, 150 [mu]g/L for copper sulfate, 280 [mu]g/L for thiobencarb, and 1,600 [mu]g/L for molinate. Neonates (5 d postrelease) were generally more sensitive than older juveniles. Coefficients of variation (100[center dot]SD/mean) of LC50 values varied from 21 to 35%. 37 refs., 2 figs., 7 tabs.

  20. Air toxics evaluation of ABB Combustion Engineering Low-Emission Boiler Systems

    SciTech Connect (OSTI)

    Wesnor, J.D. [ABB/Combustion Engineering, Inc., Windsor, CT (United States)

    1993-10-26T23:59:59.000Z

    The specific goals of the program are to identify air toxic compounds that might be emmitted from the new boiler with its various Air Pollution Control device for APCD alternatives in levels of regulatory concern. For the compounds thought to be of concern, potential air toxic control methodologies will be suggested and a Test Protocol will be written to be used in the Proof of Concept and full scale tests. The following task was defined: Define Replations and Standards; Identify Air Toxic Pollutants of Interest to Interest to Utility Boilers; Assesment of Air Toxic By-Products; State of the Art Assessment of Toxic By-Product Control Technologies; and Test Protocol Definition.

  1. Environmental Health & Safety

    E-Print Network [OSTI]

    Environmental Health & Safety Sub Department Name 480 Oak Rd, Stanford, CA 94305 T 650.723.0448 F 650.725.3468 DEPUTY DIRECTOR, ENVIRONMENTAL HEALTH AND SAFETY Exempt, Full-Time (100% FTE) Posted May 1, 2014 The Department of Environmental Health and Safety (EH&S) at Stanford University seeks

  2. Health Insurance Marketplace

    E-Print Network [OSTI]

    Acton, Scott

    options. You may be able to get coverage now through existing programs. Visit HealthCare.gov to learn more, and coinsurance. You'll want to consider these details while you're exploring your options. Visit HealthCare will offer essential health benefits, including doctor visits, preventive care, hospitalization

  3. Being Interactive Health Care

    E-Print Network [OSTI]

    Being Interactive Treating Health Care T he numbers are staggering. In a chilling report, the U care, training staff, and accrediting staff and health-care facilities, which involve determin- ing.ahrq.gov/clinic/ptsafety/summary.htm). Pressures on Health Care To come up with a credible approach for improv- ing patient safety, we need

  4. Global Health Seminar Series

    E-Print Network [OSTI]

    Klein, Ophir

    Bay Area Global Health Seminar Series Monday, January 27, 2014 2:30pm ­ 4:00pm (Reception to follow at the Center for Health Policy and the Woods Institute for the Environment. He studies how economic, political, and natural environments affect population health in developing countries using a mix of experimental

  5. Health Psychology Chapter Eleven

    E-Print Network [OSTI]

    Meagher, Mary

    % of health care research focuses on mortality or physiological indicators of morbidity to determine treatmentHealth Psychology Chapter Eleven: Management of Chronic Illness #12;Quality of Life: What outcome. #12;Kaplan's Model Argues that the most important indicators of health and wellness

  6. HEALTH CARE ASSOCIATION

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    HEALTH CARE COMPLIANCE ASSOCIATION 5780 Lincoln Drive · Suite 120 · Minneapolis, MN 55436 · 888 of the following document, "Evaluating and Improving a Compliance Program, A Resource for Health care Board Members, Health care Executives and Compliance Officers." This resource is now available to all HCCA members

  7. Public Health FAT FACTORS

    E-Print Network [OSTI]

    Qian, Ning

    : THE UNITED STATES SPENDS MORE ON HEALTH CARE THAN ANY OTHER COUNTRY. YET WE CONTINUE TO FALL FAR BEHIND States spends an astonishing percent of our gross domestic product on health care--significantly moreColumbia Public Health HOT TOPIC Climate Change FAT FACTORS Obesity Prevention BOOK SMART

  8. Student Health Benefit Plan

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    and programs tailored to the needs of students. The SHBP coordinates care with University Health Services (UHS), UMass Amherst's fully accredited health center. UHS provides comprehensive primary care, walk-in care2 2013-2014 Student Health Benefit Plan (SHBP) Designed for the Students of Policy Period: August 1

  9. STUDENT MENTAL HEALTH POLICY

    E-Print Network [OSTI]

    Martin, Ralph R.

    pastoral care as well as teaching Take positive steps to promote students well-being Ensure the health students to make contact with their GP or local mental health services. The Duty of Care and Negligence1 STUDENT MENTAL HEALTH POLICY Revised January 2013 #12;2 A. INTRODUCTION 1. Context Widening

  10. Horizon Health EAP Services

    E-Print Network [OSTI]

    Yates, Andrew

    /09) HorizonCareLinkSM ­ All the help you need online Horizon Health EAP also provides services through counselors- Child care or elder care services- Pet care and veterinarians- Adoption resources- Health clubsHorizon Health EAP Services Employee Assistance Program with Telephone and 3 Face

  11. PRIVACY OF HEALTH INFORMATION

    E-Print Network [OSTI]

    and civil fraud and abuse regulations. Finally, HIPAA was intended to streamline the health care system through the adoption of consistent standards for transmitting uniform electronic health care data between providers of health care services (e.g. MCW) and payers (e.g. Medicare). In order to adopt transmission

  12. PUBLIC HEALTH Noroviruses

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    under special circumstances. Usually, health care providers will first try to rule out other germs or worsen, contact your health care provider. #12;What can you do to prevent NLV infection? Follow the tips), or the diarrhea is very bad, call your health care provider for advice. Are there any restrictions for people

  13. Engineering VA Health Care

    E-Print Network [OSTI]

    Adams, Mark

    Engineering VA Health Care The Department of Veterans Affairs is offering a unique career to all regions of the country and toward numerous health care leadership roles. B.S. degree or M engineers to be effective Healthcare Technology Program Managers in the Veterans Health Administration

  14. Millersville University Health Services Confidentiality and Privacy of Health Information

    E-Print Network [OSTI]

    Hardy, Christopher R.

    will share your health information with other designated business associates (ie: laboratories, radiology facilities) o Health Services may use and disclose health information to contact you o Health Services may

  15. Leadership in Health Care Systems: Health Care Organization Management

    E-Print Network [OSTI]

    Goldman, Steven A.

    Leadership in Health Care Systems: Health Care Organization Management and Leadership Track: ­ Health Care Organization, Management and Leadership ­ Clinical Research Coordinator ­ Clinical Nurse in health care ethics ­ Public mission ­ Fiscal stewardship ­ Inclusiveness and diversity ­ Theory based

  16. The Local Board of Health Environmental Health Primer

    E-Print Network [OSTI]

    The Local Board of Health Environmental Health Primer Risk Assessment Factsheet environmental,M.,andToscano,W.(Eds).(2007).Risk Assessment for Environmental Health. · NationalAssociationofLocalBoardsofHealth.(2011).RiskAssessment assessment

  17. Current concepts on airborne particles and health

    SciTech Connect (OSTI)

    Mauderly, J.L.

    1994-11-01T23:59:59.000Z

    Epidemiological evidence of associations between environmental particulate concentrations and both acute and chronic health effects has grown with numerous recent studies conducted in the US and other countries. An association between short-term changes in particulate levels and acute mortality now seems certain. The association is consistent among studies and coherent among indicators of mortality and morbidity. Effects observed at surprisingly low pollution levels have raised concern for current exposures even in modestly polluted cities. Toxicology did not predict the acute mortality effect, and causal mechanisms are difficult to rationalize. Present data suggest that the fine fraction of particulate pollution is more toxic than larger particles, but the contribution of specific particulate species is poorly understood.

  18. The South African Disease: Apartheid Health and Health Services by Cedric de Beer

    E-Print Network [OSTI]

    Robb, Judith

    1988-01-01T23:59:59.000Z

    Apartheid Health and Health Services. Trenton, N.J. :Given that health and health services are directly relatedApartheid Health and Health Services, examines the truth of

  19. Mutagenic and toxic activity of environmental effluents from underground coal gasification experiments

    SciTech Connect (OSTI)

    Timourian, H.

    1982-05-01T23:59:59.000Z

    Using bacterial bioassays, the authors have screened for the presence of mutagens and toxins in extracts from groundwater, and in tar from product gas, at the Hoe Creek II and III in situ coal gasification sites. The sites exhibited different potential biological hazards, suggesting that different gasification processes may represent different human health concerns. It was found that mutagens are present in groundwater, they persist for at least 2 years after gasification has been terminated, and they show a change in activity with time, possibly in parallel with changes in chemical composition. The tar may represent a disposal problem, since it is mutagenic, but with a low level of activity.

  20. Certification of Health Care Provider for Employee's Serious Health Condition

    E-Print Network [OSTI]

    Subramanian, Venkat

    of Health Care Provider for Employee's Serious Health Condition (Family and Medical Leave Act) SECTION I health condition to submit a medical certification issued by the employee's health care provider. Please: __________________________________________________________________________________ First Middle Last SECTION III: For Completion by the HEALTH CARE PROVIDER INSTRUCTIONS to the HEALTH

  1. Evaluation of Chemical Warfare Agent Percutaneous Vapor Toxicity: Derivation of Toxicity Guidelines for Assessing Chemical Protective Ensembles.

    SciTech Connect (OSTI)

    Watson, A.P.

    2003-07-24T23:59:59.000Z

    Percutaneous vapor toxicity guidelines are provided for assessment and selection of chemical protective ensembles (CPEs) to be used by civilian and military first responders operating in a chemical warfare agent vapor environment. The agents evaluated include the G-series and VX nerve agents, the vesicant sulfur mustard (agent HD) and, to a lesser extent, the vesicant Lewisite (agent L). The focus of this evaluation is percutaneous vapor permeation of CPEs and the resulting skin absorption, as inhalation and ocular exposures are assumed to be largely eliminated through use of SCBA and full-face protective masks. Selection of appropriately protective CPE designs and materials incorporates a variety of test parameters to ensure operability, practicality, and adequacy. One aspect of adequacy assessment should be based on systems tests, which focus on effective protection of the most vulnerable body regions (e.g., the groin area), as identified in this analysis. The toxicity range of agent-specific cumulative exposures (Cts) derived in this analysis can be used as decision guidelines for CPE acceptance, in conjunction with weighting consideration towards more susceptible body regions. This toxicity range is bounded by the percutaneous vapor estimated minimal effect (EME{sub pv}) Ct (as the lower end) and the 1% population threshold effect (ECt{sub 01}) estimate. Assumptions of exposure duration used in CPE certification should consider that each agent-specific percutaneous vapor cumulative exposure Ct for a given endpoint is a constant for exposure durations between 30 min and 2 hours.

  2. Direct from CDC Environmental Health

    E-Print Network [OSTI]

    health specialists atAColorado's Tri-County Health Department, as well as at health departments in other, and Douglas counties, and have become more engaged in city planning. Tri-County's environmental health special

  3. Representative Seroprevalences of Brucellosis in Humans and Livestock in Kyrgyzstan

    E-Print Network [OSTI]

    Richner, Heinz

    Representative Seroprevalences of Brucellosis in Humans and Livestock in Kyrgyzstan Bassirou Bonfoh), 60 Togolok Moldo Street, Bishkek, Kyrgyzstan 3 Veterinary Public Health Institute, Vetsuisse Faculty, Swiss Red Cross, 187/1 Sydykova Street, Bishkek, Kyrgyzstan 5 Swiss Tropical and Public Health Institute

  4. Drug-free Workplace Policy Responsible Administrative Unit: Human Resources

    E-Print Network [OSTI]

    .0 BACKGROUND AND PURPOSE Mines is committed to protecting the health, safety and well-being of all employees significant health, safety and well-being concerns within the Mines working and learning environment. 1 Institutional Alcohol Policy. #12;Drug-free Workplace Policy Responsible Administrative Unit: Human Resources

  5. Can you recognize victims of human trafficking among the

    E-Print Network [OSTI]

    Kay, Mark A.

    signs of physical abuse and torture · Substance abuse or addictions · Malnourishment and serious dental, phobias and panic attacks Preventive health care for victims of human trafficking is virtually non their lives by connecting them to basic services related to: · Housing · Health care · Immigration assistance

  6. Potential adverse health effects of wood smoke

    SciTech Connect (OSTI)

    Pierson, W.E.; Koenig, J.Q.; Bardana, E.J. Jr.

    1989-09-01T23:59:59.000Z

    The use of wood stoves has increased greatly in the past decade, causing concern in many communities about the health effects of wood smoke. Wood smoke is known to contain such compounds as carbon monoxide, nitrogen oxides, sulfur oxides, aldehydes, polycyclic aromatic hydrocarbons, and fine respirable particulate matter. All of these have been shown to cause deleterious physiologic responses in laboratory studies in humans. Some compounds found in wood smoke--benzo(a)pyrene and formaldehyde--are possible human carcinogens. Fine particulate matter has been associated with decreased pulmonary function in children and with increased chronic lung disease in Nepal, where exposure to very high amounts of wood smoke occurs in residences. Wood smoke fumes, taken from both outdoor and indoor samples, have shown mutagenic activity in short-term bioassay tests. Because of the potential health effects of wood smoke, exposure to this source of air pollution should be minimal.29 references.

  7. Toxic Release Inventory (TRI), Puerto Rico, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  8. Toxic Release Inventory (TRI), Kansas, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  9. Toxic Release Inventory (TRI), Nebraska, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  10. Toxic Release Inventory (TRI), New Hampshire, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  11. Toxic Release Inventory (TRI), Montana, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  12. Toxic Release Inventory (TRI), Utah, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  13. Toxic Release Inventory (TRI), Texas, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  14. Toxic Release Inventory (TRI), Idaho, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  15. Toxic Release Inventory (TRI), Rhode Island, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  16. Toxic Release Inventory (TRI), Florida, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  17. Toxic Release Inventory (TRI), New Hampshire, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  18. Toxic Release Inventory (TRI), Oklahoma, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  19. Toxic Release Inventory (TRI), West Virginia, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  20. Toxic Release Inventory (TRI), South Dakota, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.