Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Liquid Biofuels Strategies and Policies in selected  

E-Print Network [OSTI]

June 2011 Liquid Biofuels Strategies and Policies in selected African Countries A review of some of the challenges, activities and policy options for liquid biofuels Prepared for PISCES by Practical Action Biofuels Strategies and Policies in selected African Countries Although this research is funded by DFID

2

Future of Liquid Biofuels for APEC Economies  

SciTech Connect (OSTI)

This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

Milbrandt, A.; Overend, R. P.

2008-05-01T23:59:59.000Z

3

Global Assessments and Guidelines for Sustainable Liquid Biofuel  

E-Print Network [OSTI]

Global Assessments and Guidelines for Sustainable Liquid Biofuel Production in Developing Countries Biofuel Production in Developing Countries FINAL REPORT A GEF Targeted Research Project Organized by Bernd for Sustainable Liquid Biofuels. A GEF Targeted Research Project. Heidelberg/Paris/Utrecht/Darmstadt, 29 February

4

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids  

E-Print Network [OSTI]

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids Luke D. Simoni-Butanol, Extraction, Liquid-Liquid Equilibrium, Excess Gibbs Energy Models, Biofuels #12;1 1. Introduction other organic compounds can be produced biologically, and thus can be considered as biofuel candidates

Stadtherr, Mark A.

5

Biofuels  

SciTech Connect (OSTI)

As David Rotman states in his article on biofuels, the conversion of biomass to liquid fuel is energy intensive--just like the conversion of coal or any other solid fuel to liquid fuel. That implies that the quantity of liquid fuel from biomass and the carbon dioxide released in the production process strongly depend upon the energy source used in the conversion process. Each year, the United States could produce about 1.3 billion tons of renewable biomass for use as fuel. Burning it would release about as much energy as burning 10 million barrels of diesel fuel per day. If converted to ethanol, the biomass would have the energy value of about five million barrels of diesel fuel per day. The remainder of the energy would be used by the biomass-to-liquids conversion plant. If a nuclear reactor or other energy source provides the energy for the biomass-to-liquids plants, the equivalent of over 12 million barrels of diesel fuel can be produced per day. If our goal is to end oil imports and avoid greenhouse-gas releases, we must combine biomass and nuclear energy to maximize biofuels production.

Forsberg, Charles W [ORNL

2008-01-01T23:59:59.000Z

6

A review of life-cycle analysis studies on liquid biofuel systems for the transport sector  

E-Print Network [OSTI]

"Advanced" (or second generation) biofuels · Bioethanol (E100, E85, E10, ETBE) from lignocellu- losicA review of life-cycle analysis studies on liquid biofuel systems for the transport sector Eric D interest in biofuels for climate change mitigation. This article reviews the rich literature of published

7

Biofuels  

ScienceCinema (OSTI)

Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

Kalluri, Udaya

2014-05-23T23:59:59.000Z

8

Biofuels  

SciTech Connect (OSTI)

Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

Kalluri, Udaya

2014-05-02T23:59:59.000Z

9

Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2  

SciTech Connect (OSTI)

Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

None

2010-08-01T23:59:59.000Z

10

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network [OSTI]

Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

11

Sustainable Liquid Biofuels in New Zealand: Can Sustainability Standards Help Distinguish the Good from the Bad?.  

E-Print Network [OSTI]

??Concerns surrounding the environmental and social impacts of biofuel production have led to the rapid development of biofuel sustainability assessment schemes internationally. The New Zealand… (more)

Grimmer, Natalie

2009-01-01T23:59:59.000Z

12

Development of a liquid cyclone process to produce hull-free cottonseed flour from cottonseed fines  

E-Print Network [OSTI]

Directed by: Prof. T. A. Noyes This thesis represents further study into the use of the liquid cyclone to produce a food quality cottonseed flour from the fines fraction from the material stream of a cottonseed oil mill. In the course... cyclone system and piping. New cyclone system and piping pinker. Stone mill. Plow diagram of the first pretreatment. Dyne Screen Flow diagram of the second pretreatment Open and closed view of the pin mill. 10 13 13 19 23 24 25 27 28 29...

Good, Richard Lanier

1973-01-01T23:59:59.000Z

13

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels”, Journal of Quantitativeconverted into liquid biofuels [50–53]. On the other hand,

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

14

Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls  

SciTech Connect (OSTI)

In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system.

Rinard, P.M.; Menlove, H.O.

1996-03-01T23:59:59.000Z

15

The President's Biofuels Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The President's Biofuels Initiative The President's Biofuels Initiative Presentation by Neil Rossmeissl at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed...

16

Sandia National Laboratories: Biofuels Blend Right In: Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends...

17

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli  

E-Print Network [OSTI]

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical ...

Bokinsky, Gregory

18

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuelsliquid fuels derived from

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

19

Sustainability Opportunities and Challenges of the Biofuels Industry.  

E-Print Network [OSTI]

??Liquid biofuels are being produced to displace fossil fuels for transportation, with bioethanol and biodiesel being the primary biofuels produced for this purpose in the… (more)

França, Cesar; Maddigan, Kate

2005-01-01T23:59:59.000Z

20

EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin  

Broader source: Energy.gov [DOE]

NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction  

DOE Patents [OSTI]

The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

2012-11-06T23:59:59.000Z

22

biofuels | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biofuels biofuels Leads No leads are available at this time. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella...

23

Barriers to a biofuels transition in the U.S. liquid fuels sector.  

E-Print Network [OSTI]

??Demand for liquid fuels (i.e., petroleum products) has burdened the U.S. with major challenges, including national security and economic concerns stemming from rising petroleum imports;… (more)

O'Donnell, Michael Joseph

2010-01-01T23:59:59.000Z

24

Use of cottonseed hulls, rice hulls, and ammoniated rice hulls for finishing calves commercially  

E-Print Network [OSTI]

USE OF COTTONSEED HULLS, RICE HULLS, AND AMMONIATED RICE HULLS FOR FINISHING CALVES COMMERCIALLY A Theste NORMAN FINLEY VESTAL Subxnttted to the Graduate CoIlege of the Teaac W hhf Uxdvers@y;M -: partfal AdBHaioct:if the reqsh;~ Air. the.... degree-. -cf MASTER OF SCIENCE August 1967 MaJor Subject: ' Anginal Science . USE OF COTTONSEED HULLS, RICE HULLS, AND AMMONIATED RICE HULLS FOR FINISHING CALVES COMMERCIALLY A Tbesls NORMAN FINLEY VESTAL Approved as to style and content by. ) I...

Vestal, Norman Finley

1967-01-01T23:59:59.000Z

25

Assessing the environmental sustainability of biofuels  

E-Print Network [OSTI]

Biosolids, such as woodpellets or forestry waste, and biogas, produced by anaerobic 44 digestion of biomass, are used primarily for electricity generation and heating, whereas 45 liquid biofuels provide drop-in fuels that can be used directly... /supply have led to preferred practices. 49 Interestingly, within the EU, the current laws controlling the production and use of liquid 50 biofuels are more stringent than for solid biomass and biogas. Liquid biofuels are regulated 51 both by the EU Fuel...

Kazamia, Elena; Smith, Alison G.

2014-09-30T23:59:59.000Z

26

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

SciTech Connect (OSTI)

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01T23:59:59.000Z

27

As corn-based biofuels reach their practical limits, advanced algae-based biofuels are poised to supply  

E-Print Network [OSTI]

SEMTE abstract As corn-based biofuels reach their practical limits, advanced algae-based biofuels of Energy, General Electric, Algenol Biofuels, and Southern Company. Currently a post-doctoral fellow working for Algenol Biofuels, Dr. Lively is expanding his expertise in gas and liquid separations

Reisslein, Martin

28

EMSL - biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biofuels en New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella http:www.emsl.pnl.govemslwebpublications...

29

Hull | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a new pageHuade CountyShouguangHugoHull

30

JAY G. HULL Home Address  

E-Print Network [OSTI]

;Publications: Hull, J.G., Brunelle, T.J., Prescott, A.T., & Sargent, J.D. (2014). A longitudinal study of risk.02.001] Hull, J.G., Draghici, A.M., & Sargent, J.D. (2012). A longitudinal study of risk- glorifying video attributions: An empirical study. Review of Philosophy and Psychology (formerly European Review of Philosophy

Bucci, David J.

31

Metabolic Engineering of oleaginous yeast for the production of biofuels  

E-Print Network [OSTI]

The past few years have introduced a flurry of interest over renewable energy sources. Biofuels have gained attention as renewable alternatives to liquid transportation fuels. Microbial platforms for biofuel production ...

Tai, Mitchell

2012-01-01T23:59:59.000Z

32

MEASUREMENT OF TRITIUM DURING VOLOXIDATION OF ZIRCALOY-2 FUEL HULLS  

SciTech Connect (OSTI)

A straightforward method to evaluate the tritium content of Zircaloy-2 cladding hulls via oxidation of the hull and capture of the volatilized tritium in liquids has been demonstrated. Hull samples were heated in air inside a thermogravimetric analyzer (TGA). The TGA was rapidly heated to 1000 C to oxidize the hulls and release absorbed tritium. To capture tritium, the TGA off-gas was bubbled through a series of liquid traps. The concentrations of tritium in bubbler solutions indicated that tritiated water vapor was captured nearly quantitatively. The average tritium content measured in the hulls was 19% of the amount of tritium produced by the fuel, according to ORIGEN2 isotope generation and depletion calculations. Published experimental data show that Zircaloy-2 oxidation follows an Arrhenius model, and that an initial, nonlinear oxidation rate is followed by a faster, linear rate after 'breakaway' of the oxide film. This study demonstrates that the linear oxidation rate of Zircaloy samples at 974 C is faster than predicted by the extrapolation of data from lower temperatures.

Crowder, M.; Laurinat, J.; Stillman, J.

2010-10-14T23:59:59.000Z

33

Experimental and Modeling Studies of the Characteristics of Liquid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Experimental and Modeling Studies of the Characteristics of Liquid Biofuels for Enhanced Combustion Experimental and Modeling Studies of the Characteristics of Liquid Biofuels for...

34

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

Delucchi, Mark

2006-01-01T23:59:59.000Z

35

SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS  

E-Print Network [OSTI]

373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial Biomass remains a key energy source for several billion people living in developing countries, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy

Kammen, Daniel M.

36

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2010 DOE Vehicle Technologies...

37

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells...

38

Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential  

E-Print Network [OSTI]

1 Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential By Bruce biofuel usage. Biofuel feedstocks are a source of raw material that can be transformed into petroleum for coal. In the USA, liquid fuel biofuel production has not proven to be broadly economically feasible

McCarl, Bruce A.

39

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

Delucchi, Mark

2006-01-01T23:59:59.000Z

40

Biofuels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels The biofuel supply chain affects quantity and quality of water in a variety of ways. The biofuel supply chain affects quantity and quality of water in a variety of ways....

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Biofuels Information Center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase...

42

Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle Microalgae are currently considered as a renewable source of liquid and gaseous biofuels and  

E-Print Network [OSTI]

, and their entrained lipids, can offer several different types of biofuel and bioenergy production options including as well as suitably large and viable markets (Chakraborty et al., 2012; Miao et al., 2012). Both

Collins, Gary S.

43

Hull Wind: A Community Gets Green  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hull Wind A Community Gets Green Community Wind Power National Renewable Energy Laboratory September 18, 2012 Andrew Stern Executive Director Action for Clean Energy, Inc. www....

44

RECIPIENT:Hull Municipal Light Plant STATE: MA PROJECT TITLE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

:: Page 1 01 :L RECIPIENT:Hull Municipal Light Plant STATE: MA PROJECT TITLE: Hull Offshore Wind Research and Development Funding Opportunity Announcement Number Procurement...

45

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

46

Biofuels and Transportation  

E-Print Network [OSTI]

Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

Minnesota, University of

47

of Biofuels Sustainable Feedstocks  

E-Print Network [OSTI]

The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

48

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

sources  in  the  energy  mix  and  the  absolute  amount  in  the  overall  energy  mix  and  10%  in  the  liquid  of   biofuel  in  the  energy  mix.   2. Decrease  GHG-­?

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

49

Future Oppourtunities and Challenges of the Sustainability of Biofuels in Sweden and in the Netherlands.  

E-Print Network [OSTI]

?? Liquid Biofuels mainly Bioethanol and biodiesel are the main replacement for fossil fuels in the current world. But there are questions and concerns about… (more)

Razin, Shair

2012-01-01T23:59:59.000Z

50

The effect of flaxseed hulls on expanded corn meal products  

E-Print Network [OSTI]

Page 14 Environmental Scanning Electron Microscope images of extruadates containing brown flaxseed hulls. A) 25% Brown flaxseed hulls (15% feed moisture); B). 25% Brown flaxseed hulls (12% feed moisture)...56 15 Environmental Scanning Electron...) with 20% brown flaxseed hulls, D) whole ground white (ATX631xRTX436)?????? 80 26 Environmental Scanning Electron Microscope images of Sumac extruadates with and with out brown flaxseed hulls. A) Extrudate with 80% Sumac and 20% Brown...

Barron, Marc Edward

2009-05-15T23:59:59.000Z

51

Sandia National Laboratories: "Bionic" Liquids from Lignin: Joint...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy and ClimateECEnergyRenewable EnergyBiofuels"Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries "Bionic" Liquids...

52

Biofuel Feedstock Inter-Island Transportation  

E-Print Network [OSTI]

Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid of Honolulu Advertiser ISO Tank Container, courtesy of Hawaii Intermodal Tank Transport Petroleum products

53

Biofuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Biomass Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels....

54

Biofuels Market Opportunities  

Broader source: Energy.gov [DOE]

Breakout Session 2C—Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores

55

Hull Wind: A Community Gets Green | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hull Wind: A Community Gets Green Hull Wind: A Community Gets Green U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in...

56

Learning of the rootfactors of incidents potentially impacting the biofuel supply chains from some 100 significant cases  

E-Print Network [OSTI]

Learning of the rootfactors of incidents potentially impacting the biofuel supply chains from some.riviere(cb.ineris.fr guy.marlair@iineris.fr alexis. vignestcbjneris.fr Abstract A biofuel is most often defined as a liquid. There are numerous potential supply chains for the production of biofuels, depending on feedstock, conventional

Paris-Sud XI, Université de

57

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network [OSTI]

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

58

The Hull-White Model: Calibration with Irregular Trinomial Trees  

E-Print Network [OSTI]

The Hull-White Model: Calibration with Irregular Trinomial Trees · The previous calibration of the tree's irregular shape. c 2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1019 #12;The Hull-White the spot rates exactly. c 2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1020 #12;The Hull-White

Lyuu, Yuh-Dauh

59

Displacement Hull Catamaran July 26, 2006  

E-Print Network [OSTI]

hull catamaran, comparing the vessels accelerations in calm water to those in rough water. While the accelerations in rough water were greater than those in calm water, they were not as significant as a planing catamaran in heavy sea conditions. #12;4 Table of Contents Letter of Transmittal

Wood, Stephen L.

60

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

of ?rst and second generation biofuels: A comprehensive re-of the second generation biofuels and a successful develop-R. Timilsina. Second generation biofuels: Economics and

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Cassava, a potential biofuel crop in China  

E-Print Network [OSTI]

Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

Jansson, C.

2010-01-01T23:59:59.000Z

62

The Future of Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers...

63

Sandia's Biofuels Program  

SciTech Connect (OSTI)

Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

2014-07-22T23:59:59.000Z

64

The President's Biofuels Initiative  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Initiative Neil Rossmeissl Office of the Biomass Program Energy Efficiency and Renewable Energy Why Can't We Regulate Our Way There? 25 20 15 10 5 0 1970 1980 1990 2000...

65

Sandia's Biofuels Program  

ScienceCinema (OSTI)

Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

2014-07-24T23:59:59.000Z

66

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Impacts of Biofuels and Biofuel Blends Bob McCormick (PI) With Teresa Alleman, Jon Burton, Earl Christensen, Gina Chupka, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon...

67

World Biofuels Study  

SciTech Connect (OSTI)

This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

Alfstad,T.

2008-10-01T23:59:59.000Z

68

Bioproducts and Biofuels – Growing Together!  

Broader source: Energy.gov [DOE]

Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

69

BioFuels Atlas Presentation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BioFuels Atlas Kristi Moriarty NREL May 12, 2011 NATIONAL RENEWABLE ENERGY LABORATORY Introduction * BioFuels Atlas is a first-pass visualization tool that allows users to explore...

70

Algal Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to...

71

BioFuels Atlas (Presentation)  

SciTech Connect (OSTI)

Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

Moriarty, K.

2011-02-01T23:59:59.000Z

72

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

Eggert, Anthony

2007-01-01T23:59:59.000Z

73

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

Eggert, Anthony

2007-01-01T23:59:59.000Z

74

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

Fortman, J.L.

2011-01-01T23:59:59.000Z

75

Danielle Goldtooth Paper #6 -Biofuels  

E-Print Network [OSTI]

Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

Lega, Joceline

76

Biofuels in Oregon and Washington  

E-Print Network [OSTI]

PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

77

The Ecological Impact of Biofuels  

E-Print Network [OSTI]

The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

Kammen, Daniel M.

78

National Algal Biofuels Technology Roadmap  

E-Print Network [OSTI]

National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

79

Optimization Online - Convex Hull Pricing in Electricity Markets ...  

E-Print Network [OSTI]

Mar 19, 2015 ... Convex Hull Pricing in Electricity Markets: Formulation, Analysis, and Implementation Challenges. Dane Schiro (dschiro ***at*** iso-ne.com)

Dane Schiro

2015-03-19T23:59:59.000Z

80

New Neutrinos Algal Biofuels  

E-Print Network [OSTI]

New Neutrinos Algal Biofuels Charged-Particle Vision Primordial Soup LOS ALAMOS SCIENCE of Los Alamos and its top-secret laboratory was the mailing address--P. O. Box 1663, Santa Fe, New Mexico Seeing Green: Squeezing Power from Pond Scum OVERCOMING OBSTACLES TO IGNITE ALGAL FUELS THE (LIGHTWEIGHT

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Biofuel impacts on water.  

SciTech Connect (OSTI)

Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

2011-01-01T23:59:59.000Z

82

Georgia Biofuel Directory A directory of Georgia industries that use biofuels.  

E-Print Network [OSTI]

Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

83

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

84

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Photosynthetic Microalgae Producing Biofuels Euntaek Lee,Photosyn- thetic Microalgae Producing Biofuels”, Journal of

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

85

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network [OSTI]

Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

86

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

Gri?ths, and Jane E. Ihrig. Biofuels impact on crop and foodimplications of U.S. biofuels policies in an integrated par-Second generation biofuels: Economics and policies. Energy

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

87

Complexity and Systems Biology of Microbial Biofuels  

E-Print Network [OSTI]

Complexity and Systems Biology of Microbial Biofuels 20-24 June 2011 (All and issues Theme: Biofuel systems and issues (Chair: Nigel Burroughs) 13 (Bielefeld) Biofuels from algae- challenges for industrial levels

Rand, David

88

Mathematical modelling and simulation of biofuel cells.  

E-Print Network [OSTI]

??Bio-fuel cells are driven by diverse and abundant bio-fuels and biological catalysts. The production/consumption cycle of bio-fuels is considered to be carbon neutral and, in… (more)

Osman, Mohamad Hussein

2013-01-01T23:59:59.000Z

89

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

Linda Nostbakken. Will biofuel mandates raise food prices?impacts of alternative biofuel and energy policies. WorkingJust. The welfare economics of a biofuel tax credit and the

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

90

Renewable Chemicals and Advanced Biofuels  

Broader source: Energy.gov [DOE]

Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

91

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Broader source: Energy.gov (indexed) [DOE]

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

92

BioFuels Atlas Presentation  

Broader source: Energy.gov [DOE]

Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

93

Multiphase Flow Modeling of Biofuel Production Processes  

SciTech Connect (OSTI)

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

D. Gaston; D. P. Guillen; J. Tester

2011-06-01T23:59:59.000Z

94

A Prospective Target for Advanced Biofuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

95

Biofuels in Minnesota: A Success Story  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels in Minnesota: A Success Story August 5, 2010 Ralph Groschen, Sr. Ag Marketing Specialist Christina Connelly, Biofuels Manager 1980s set the stage MN had lowe corn...

96

Overview of Governor's Biofuels Coalition and Updates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Governor's Biofuels Coalition and Updates Stacey Simms Governor's Energy Office Biofuels and Local Fuels Program Colorado will have the infrastructure on line when advanced...

97

Researching profitable and sustainable biofuels | Department...  

Broader source: Energy.gov (indexed) [DOE]

Researching profitable and sustainable biofuels Researching profitable and sustainable biofuels November 2, 2010 - 2:00pm Addthis Lindsay Gsell Great Lakes Bioenergy Research...

98

Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...  

Broader source: Energy.gov (indexed) [DOE]

Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los Alamos...

99

Biofuel and Bioenergy implementation scenarios  

E-Print Network [OSTI]

and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costsBiofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André

100

Range-based navigation of AUVs operating near ship hulls  

E-Print Network [OSTI]

In-water ship hull inspection is essential for both routine preventative maintenance as well as for timely detection and neutralization of limpet mines planted on military and commercial vessels. While a host of inspection ...

Kokko, Michael A. (Michael Andrew)

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Take a Closer Look:Biofuels Can Support Environmental, Economic and Social Goals  

SciTech Connect (OSTI)

The US Congress passed the Renewable Fuels Standard (RFS) seven years ago. Since then, biofuels have gone from darling to scapegoat for many environmentalists, policy makers, and the general public. The reasons for this shift are complex and include concerns about environmental degradation, uncertainties about impact on food security, new access to fossil fuels, and overly optimistic timetables. As a result, many people have written off biofuels. However, numerous studies indicate that biofuels, if managed sustainably, can help solve pressing environmental, social and economic problems (Figure 1). The scientific and policy communities should take a closer look by reviewing the key assumptions underlying opposition to biofuels and carefully consider the probable alternatives. Liquid fuels based on fossil raw materials are likely to come at increasing environmental cost. Sustainable futures require energy conservation, increased efficiency, and alternatives to fossil fuels, including biofuels.

Dale, Bruce E. [Michigan State University, East Lansing; Anderson, James [Ford Motor Company; Brown, Dr. Robert C. [Iowa State University; Csonka, Steven [Commerical Aviation Alternative Fuels Initiative (CAAFI); Dale, Virginia H [ORNL; Herwick, Gary [Transportation Fuels Consulting; Jackson, Randall [University of Wisconsin; Johnson, Kristen [Office of Science, Department of Energy; Jordan, Nicholas [University of Minnesota; Kaffka, Stephen R [University of California, Davis; Kline, Keith L [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Malmstrom, Carolyn [Michigan State University, East Lansing; Garlock, Rebecca [Michigan State University, East Lansing; Richard, Tom [Pennsylvania State University; Taylor, Caroline [Energy Biosciences Institute (EBI), Berkeley, California; Wang, Mr. Michael [Argonne National Laboratory (ANL)

2014-01-01T23:59:59.000Z

102

Biofuels: Project summaries  

SciTech Connect (OSTI)

The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

Not Available

1994-07-01T23:59:59.000Z

103

CONNECTICUT BIOFUELS TECHNOLOGY PROJECT  

SciTech Connect (OSTI)

DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

BARTONE, ERIK

2010-09-28T23:59:59.000Z

104

Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected from - Biofuels) Jump

105

Algal Biofuels Strategy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o fBtuIdeasAlgal Biofuels

106

Biofuels | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig SolBiofilm assembly BiofilmBiofuels

107

NREL: Learning - Biofuels Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResults InterpretingBiofuels Basics This

108

Sandia National Laboratories: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latent curingBiofuels

109

Sandia National Laboratories: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuels Assessing the Economic

110

U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets  

E-Print Network [OSTI]

May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

Noble, James S.

111

Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives that are renewable and  

E-Print Network [OSTI]

Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives of biofuels would absorb as much pollution as the fuels release during combustion, since plant stocks can-neutral energy to be realized, new sources of biofuels must be found. The current manufacture of biofuels from

Hill, Wendell T.

112

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

113

Aviation Sustainable Biofuels: An Asian Airline Perspective  

E-Print Network [OSTI]

Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

114

Socio-economic dynamics of biofuel  

E-Print Network [OSTI]

i Socio-economic dynamics of biofuel development in Asia Pacific Christina Schott Jakarta, 2009 #12;ii Socio-economic dynamics of biofuel development in Asia Pacific Socio-economic dynamics of biofuel of many biofuels has turned out to be far from sustainable. The carbon balance often proves to be negative

115

LIHD biofuels: toward a sustainable future  

E-Print Network [OSTI]

LIHD biofuels: toward a sustainable future 115 Linda Wallace, Department of Botany and Microbiology of America www.frontiersinecology.org Will biofuels help to wean the US off of oil, or at least off simple. First, we need to understand what is meant by the term "biofuel". All biofuels are organic

Palmer, Michael W.

116

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

117

Nebraska shows potential to produce biofuel crops  

Broader source: Energy.gov [DOE]

Researchers are searching for ways to change how American farmers and consumers think about biofuels.

118

ABPDU - Advanced Biofuels Process Demonstration Unit  

SciTech Connect (OSTI)

Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

None

2011-01-01T23:59:59.000Z

119

Can biofuels justify current transport policies?  

E-Print Network [OSTI]

with increasing GHG (greenhouse gas) intensity (tar sand, oil shale, etc.) · Biofuels increased consumption

120

Analysis of advanced biofuels.  

SciTech Connect (OSTI)

Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

United Nations Conference on Trade and Development Biofuel production technologies  

E-Print Network [OSTI]

................................................................................................... 5 3 Second-generation biofuels............................................................................................... 9 3.1 Second-generation biochemical biofuels................................................................. 10 3.2 Second-generation thermochemical biofuels

122

The Economics of Trade, Biofuel, and the Environment  

E-Print Network [OSTI]

productivity (e.g. , second-generation biofuels), are showndependence on land. Second generation biofuels are much moreas well as second generation biofuels, may be needed to

Hochman, Gal; Sexton, Steven; Zilberman, David D.

2010-01-01T23:59:59.000Z

123

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

from feedstock crops. Microalgae biofuels and differentproduction of biofuels from microalgae. One strategy toin the current world, microalgae biofuels provide such an

Yu, Wei

2014-01-01T23:59:59.000Z

124

Can feedstock production for biofuels be sustainable in California?  

E-Print Network [OSTI]

tolife.org/biofuels. [US EPA] US Environmental Protection1–9. The path forward for biofuels and biomaterials. Scienceof individual assessment of biofuels. EMPA, Technology and

Kaffka, Stephen R.

2009-01-01T23:59:59.000Z

125

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

Fortman, J.L.

2011-01-01T23:59:59.000Z

126

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network [OSTI]

2004). Growing Energy: How Biofuels Can Help End America'sCreating Markets For Green Biofuels Kalaitzandonakes, N. ,166. Lancaster, C. (2006). Biofuels assurance schemes and

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

127

Biofuels in Minnesota: A Success Story | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels in Minnesota: A Success Story Biofuels in Minnesota: A Success Story This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the...

128

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.Use of US croplands for biofuels increases greenhouse gasesovercome carbon savings from biofuels in Brazil. Proc. Natl.

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

129

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

Land clearing and the biofuel carbon debt. Science 2008,of reactive nitrogen during biofuel ethanol production.of reactive nitrogen during biofuel ethanol production.

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

130

Model estimates food-versus-biofuel trade-off  

E-Print Network [OSTI]

D. 2007. Challenge of biofuel: Filling the tank withoutaddition to policies such as biofuel subsidies and mandates.Whereas biofuel subsidies and man- dates increase the

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

131

Genetic and biotechnological approaches for biofuel crop improvement.  

E-Print Network [OSTI]

Plant genetic engineering for biofuel production: towardsbiomass feedstocks for biofuel production. Genome Biol 2008,3:354-359. 25. Fairless D: Biofuel: the little shrub that

Vega-Sánchez, Miguel E; Ronald, Pamela C

2010-01-01T23:59:59.000Z

132

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

Fortman, J. L.

2010-01-01T23:59:59.000Z

133

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

yields for selected biofuels. (A) Plasmid levels for each ofas candidates for advanced biofuels are toxic to micro-seven representative biofuels. By using a competitive growth

Dunlop, Mary

2012-01-01T23:59:59.000Z

134

Model estimates food-versus-biofuel trade-off  

E-Print Network [OSTI]

D. 2008. Income distribution implica- tions of biofuels.Sustainable Biofuels and Human Security Conference,of Food and Agriculture 2008: Biofuels: Prospects, risks and

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

135

A New Biofuels Technology Blooms in Iowa | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A New Biofuels Technology Blooms in Iowa A New Biofuels Technology Blooms in Iowa Addthis Description Cellulosic biofuels made from agricultural waste have caught the attention of...

136

Algal Biofuels Strategy Spring Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Agenda algaeworkshopagenda.pdf More Documents &...

137

International Trade of Biofuels (Brochure)  

SciTech Connect (OSTI)

In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

Not Available

2013-05-01T23:59:59.000Z

138

New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development  

E-Print Network [OSTI]

New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development DOE Response based on contributions from Office of Biomass Program; Argonne National, Hill, Tilman, Polasky and Hawthorne study ("Land Clearing and the Biofuel Carbon Debt") claims

Minnesota, University of

139

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network [OSTI]

O'Hare M, Kammen DM. 2006. Biofuels Can Contribute to EnergyN. 2004. Growing Energy: How Biofuels Can Help End America’sService Koplow D. 2006. Biofuels - At What Cost? Governement

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

140

Biofuels Impact on DPF Durability  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Impact on DPF Durability Michael J. Lance, Todd J. Toops, Andrew A. Wereszczak, John M.E. Storey, Dane F. Wilson, Bruce G. Bunting, Samuel A. Lewis Sr., and Andrea...

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

National Algal Biofuels Technology Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a number of unique scale-up challenges. Algal Lipid: Precursor to Biofuels Bio-Crude * Biogas * Co-products (e.g., animal feed, fertilizers, industrial enzymes, bioplastics, and...

142

Systems analysis and futuristic designs of advanced biofuel factory concepts.  

SciTech Connect (OSTI)

The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

2007-10-01T23:59:59.000Z

143

Introduction slide 2 Biofuels and Algae Markets, Systems,  

E-Print Network [OSTI]

Introduction slide 2 Biofuels and Algae Markets, Systems, Players and Commercialization Outlook http://www.emerging-markets.com Consultant, Global Biofuels Business Development Author, Biodiesel 2020: A Global Market Survey (2008) Algae 2020: Biofuels Commercialization Outlook (2009) Columnist, Biofuels

144

From Biomass to Biofuels: NREL Leads the Way  

SciTech Connect (OSTI)

This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

Not Available

2006-08-01T23:59:59.000Z

145

Design of a high speed planing hull with a cambered step and surface piercing hydrofoils  

E-Print Network [OSTI]

Design of a high speed planing hull is analyzed by implementing a cambered step and stem, surface piercing hydrofoils, commonly known as a Dynaplane hull. This configuration combines the drag reduction benefits of a stepped ...

Faison, Leon Alexander

2014-01-01T23:59:59.000Z

146

Methods for the economical production of biofuel from biomass  

DOE Patents [OSTI]

Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

2013-04-30T23:59:59.000Z

147

Importance of systems biology in engineering microbes for biofuel production  

E-Print Network [OSTI]

TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

Mukhopadhyay, Aindrila

2011-01-01T23:59:59.000Z

148

BETO Announces June Webinar: Algal Biofuels Consortium Releases...  

Broader source: Energy.gov (indexed) [DOE]

June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results...

149

IOL: Africa's big plans for biofuel Africa's big plans for biofuel  

E-Print Network [OSTI]

IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors to Madagascar, Senegal to South Africa, biofuels is the buzzword as African countries wake up to the possibility of using their vast spaces to grow crops that reduce their fossil fuel bill. Biofuels also carry

150

Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy, these  

E-Print Network [OSTI]

Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy cannot possibly meet U.S. energy demands, and current methods of biofuel production often consume as much energy as they produce. If biofuels are to be viable long-term energy solutions, we need new sources

Hill, Wendell T.

151

Partnering with Industry to Develop Advanced Biofuels  

Broader source: Energy.gov [DOE]

Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

152

NREL: Biomass Research - Microalgal Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

synthesis. Learn about microalgal biofuels capabilities. Printable Version Biomass Research Home Capabilities Projects Biomass Characterization Biochemical Conversion...

153

Legislating Biofuels in the United States (Presentation)  

SciTech Connect (OSTI)

Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

Clark, W.

2008-07-01T23:59:59.000Z

154

Energy 101: Feedstocks for Biofuels and More  

Broader source: Energy.gov [DOE]

See how organic materials are used to create biofuels, reducing dependence on foreign oil and creating jobs.

155

A New Biofuels Technology Blooms in Iowa  

ScienceCinema (OSTI)

Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

Mathisen, Todd; Bruch, Don;

2013-05-29T23:59:59.000Z

156

A New Biofuels Technology Blooms in Iowa  

SciTech Connect (OSTI)

Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

Mathisen, Todd; Bruch, Don

2010-01-01T23:59:59.000Z

157

Algal Biofuels Research Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-08-01T23:59:59.000Z

158

Using System Dynamics to Model the Transition to Biofuels in the United States  

SciTech Connect (OSTI)

Today, the U.S. consumes almost 21 million barrels of crude oil per day; approximately 60% of the U.S. demand is supplied by imports. The transportation sector alone accounts for two-thirds of U.S. petroleum use. Biofuels, liquid fuels produced from domestically-grown biomass, have the potential to displace about 30% of current U.S. gasoline consumption. Transitioning to a biofuels industry on this scale will require the creation of a robust biomass-to-biofuels system-of-systems that operates in concert with the existing agriculture, forestry, energy, and transportation markets. The U.S. Department of Energy is employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol, and to aid decision makers in focusing government actions on the areas with greatest potential to accelerate the deployment of biofuels and ultimately reduce the nationpsilas dependence on imported oil.

Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

2008-01-01T23:59:59.000Z

159

Tailoring next-generation biofuels and their combustion in next-generation engines.  

SciTech Connect (OSTI)

Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W. [Massachusetts Institute of Technology, Cambridge, MA] [Massachusetts Institute of Technology, Cambridge, MA

2013-11-01T23:59:59.000Z

160

Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels  

E-Print Network [OSTI]

thereby  cost-­? effective  biofuels  production.   PMID:  effective  lignocellulosic  biofuels.   Achyuthan  KE,  effective   lignocellulosic  biofuels.  Post-­?synthesis  

Achyuthan, Komandoor

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

The  United  States'  Biofuel  Policies   and  Compliance  Water  Impacts  of  Biofuel  Extend  Beyond   Irrigation."  for  assessing  sustainable  biofuel  production."  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

162

Alumni Scholarship Recipients 1936 -2006 Barbara Ann Hull Harris  

E-Print Network [OSTI]

'51 Dolores R. Dunne Smith* '51 Gerladine E. Curley Somers '51 Roland Suarez '51 Betty J. JarrellAlumni Scholarship Recipients 1936 - 2006 1 1939 Barbara Ann Hull Harris 1940 Gail Martin* '40 Robert Stabler '40 1942 Edna J. Traghber Kulli Geraldine F. Moise Millikan 1943 John McGill* '43, M

Williams, Gary A.

163

School of Engineering and Science Algae Biofuels  

E-Print Network [OSTI]

School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

Fisher, Frank

164

Biofuels and bio-products derived from  

E-Print Network [OSTI]

NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

Ginzel, Matthew

165

Biofuels and indirect land use change  

E-Print Network [OSTI]

Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

166

How sustainable are current transport biofuels?  

E-Print Network [OSTI]

How sustainable are current transport biofuels? Jérémie Mercier 7th BIEE Academic Conference biofuels and what is expected from them? 2) Sustainability impacts of agrofuels and the UK certification Conference - Oxford 24th September 2008 1) What are current transport biofuels and what is expected from them

167

Legislating Biofuels in the United States  

E-Print Network [OSTI]

Legislating Biofuels in the United States Wendy Clark National Renewable Energy Laboratory Golden, Colorado, USA 2008 SAE Biofuels Specifications and Performance Symposium July 7-9, 2008, Paris NREL PR-540 Legislate Biofuels? · Plentiful U.S. biomass resources: energy crops, agricultural and forestry residues

168

Oil To Biofuels Case Study Objectives  

E-Print Network [OSTI]

Oil To Biofuels Case Study Objectives - Critically evaluate the nature of certain societal", and the consequences of various sources. - How could this diagram be modified through the use of biofuels? Research. - What are biomass and biofuels? How are they used, what are their benefits and negative consequences

Auerbach, Scott M.

169

Chromatin landscaping in algae reveals novel regulation pathway for biofuels production  

E-Print Network [OSTI]

regulation pathway for biofuels production Chew Yee Ngan ,regulation pathway for biofuels production Chew Yee Ngan,for the development of biofuels. Biofuels are produced from

Ngan, Chew Yee

2014-01-01T23:59:59.000Z

170

Estimates of US biofuels consumption, 1990  

SciTech Connect (OSTI)

This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

Not Available

1991-10-01T23:59:59.000Z

171

Alternative Transportation Technologies: Hydrogen, Biofuels,  

E-Print Network [OSTI]

@ $50/kW and H2 storage @ $15/kWh) #12;8 CASE 2: ICEV EFFICIENCY · Currently available and projected11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug Methodology and Scenarios · Market Penetration Rates · Oil and CO2 Savings · Fuel, Fuel Cell, Battery

172

Shipboard Fuel Cell Biofuel Introduction  

E-Print Network [OSTI]

Update FuelCell Energy (Frank Wolak) 1230 PNNL SOFC Power Systems Update PNNL (Larry Chick) 1300 PEM Lessons Learned · System Generic Concepts (PEM, HT PEM, MCFC, SOFC) · Shipboard Fuel Cell CharacteristicsShipboard Fuel Cell ­ Biofuel Introduction: This program will demonstrate a shipboard fuel cell

173

Advanced Biofuels Workshop  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and(MillionAugust 1,

174

Hull Wind II: A Case Study of the Development of a Second Large Wind Turbine Installation in the Town of Hull, MA  

E-Print Network [OSTI]

; a capped landfill was chosen. Resource assessment took advantage of the Hull Wind I experience, nearby data made the wind power projects economically feasible; and a citizenry willing to participate actively for salt production. Hull's pursuit of modern wind power began more than 20 years ago, with the 1985

Massachusetts at Amherst, University of

175

YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF  

E-Print Network [OSTI]

YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

176

World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard  

SciTech Connect (OSTI)

This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

Sastri, B.; Lee, A.

2008-09-15T23:59:59.000Z

177

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network [OSTI]

much superior bridge to second-generation biofuels than corncommercialization of second generation biofuels. In addition

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

178

#LabChat Q&A: Biofuels of the Future, Sept. 26 at 2 pm EDT  

Broader source: Energy.gov [DOE]

Our biofuels experts can answer your questions about biofuels, bioenergy and the next generation of fuel.

179

Biofuels Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuel

180

Heartland Biofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridorPart A Permit ApplicationHeartland Biofuel Jump

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Biofuels Digest | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER CONSTRUCTIONBioethanolBiofuels

182

Cobalt Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:ClimaticCoalogix IncCobalt Biofuels

183

Developing genome-enabled sustainable lignocellulosic biofuels technologies  

E-Print Network [OSTI]

Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

184

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

Eggert, Anthony

2007-01-01T23:59:59.000Z

185

Engineering of bacterial methyl ketone synthesis for biofuels  

E-Print Network [OSTI]

ketone synthesis for biofuels Ee-Been Goh†† 1,3 , Edward E.microbes for use as biofuels, such as fatty acid ethylother fatty acid-derived biofuels, such as fatty acid ethyl

Goh, Ee-Been

2012-01-01T23:59:59.000Z

186

Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis  

E-Print Network [OSTI]

Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

2008-01-01T23:59:59.000Z

187

NextSTEPS White Paper: Three Routes Forward for Biofuels  

E-Print Network [OSTI]

NextSTEPS White Paper: Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog NOT CITE #12;Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog 2 Contents ......................................................................................................................................12 1.a. The Need for Low Carbon Biofuels

California at Davis, University of

188

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

Eggert, Anthony

2007-01-01T23:59:59.000Z

189

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.S. (2006) Bonkers about biofuels. Nat. Biotechnol. 24, 755–Schubert, C. (2006) Can biofuels finally take center stage?

Fortman, J. L.

2010-01-01T23:59:59.000Z

190

Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material  

E-Print Network [OSTI]

Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material Erin Baker Keywords: Biofuels; Technology R&D; Uncertainty; Environmental policy 2 #12;1 Introduction This paper contains supplementary material for "Cellulosic Biofuels: Expert Views on Prospects for Advancement

Massachusetts at Amherst, University of

191

Plant and microbial research seeks biofuel production from lignocellulose  

E-Print Network [OSTI]

sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

Bartley, Laura E; Ronald, Pamela C

2009-01-01T23:59:59.000Z

192

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

W. N2O release from agro-biofuel production negates globalcultivation and biofuel production (www.lyxia.com).183 (2001) Amin S. Review on biofuel oil and gas production

Yu, Wei

2014-01-01T23:59:59.000Z

193

The effect of biofuel on the international oil market  

E-Print Network [OSTI]

Paper 1099 The Effect of Biofuel on the International Oilby author(s). The e?ect of biofuel on the international oilto quantify the impact of biofuel on fuel markets, assuming

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

194

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

Biology 2011 3 Engineering biofuel tolerance using ef?uxPublishers Limited Engineering biofuel tolerance using ef?uxFigure 2 When grown with biofuel, strains with bene?cial

Dunlop, Mary

2012-01-01T23:59:59.000Z

195

The Economics of Trade, Biofuel, and the Environment  

E-Print Network [OSTI]

prices. The reason: demand for biofuel increases, and ?rst-The Economics of Trade, Biofuel, and the Environment GalThe Economics of Trade, Biofuel, and the Environment ? Gal

Hochman, Gal; Sexton, Steven; Zilberman, David D.

2010-01-01T23:59:59.000Z

196

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

2009) 55. M. Tredici, Biofuels, 1: 143 (2010) 56. Q. Hu, A.Barbosa, M. H. M. Eppink, Biofuels Bioproducts Biorefining,and recent trends in biofuels. Prog. Energy Combust. Sci. ,

Yu, Wei

2014-01-01T23:59:59.000Z

197

The effect of biofuel on the international oil market  

E-Print Network [OSTI]

that the introduction of biofuels reduces global fossil fuele?ects of introducing biofuels using the cartel-of-nationsthe e?ect of introducing biofuels under a competitive fuel

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

198

Biofuels technology blooms in Iowa | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa May 7, 2010 - 4:45pm Addthis Cellulosic biofuels made from agricultural waste have caught the attention of...

199

Global Biofuels Modeling and Land Use  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu...

200

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

modi?cations. The advances in the biofuel feedstock relevantbiofuel feedstocks will be in- ?uenced by policy concerns and by advances

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Certification and Regulation of Trade in Biofuels.  

E-Print Network [OSTI]

??The recent increase in biofuel production and trade has raised concerns about environmental and other impacts, and has prompted some governments to initiate measures to… (more)

Thomson, Vivien

2012-01-01T23:59:59.000Z

202

Watershed Modeling for Biofuels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

203

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

204

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Energy Savers [EERE]

Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

205

Biofuels and certification. A workshop at the Harvard Kennedy School of Government. Summary report  

SciTech Connect (OSTI)

Liquid biofuels can provide a substitute for fossil fuels in the transportation sector. Many countries have mandated the use of biofuels, by creating targets for their use. If not implemented with care, however, actions that increase biofuel production can put upward pressure on food prices, increase greenhouse gas (GHG) emissions, and exacerbate degradation of land, forest, and water sources. A strong global biofuels industry will not emerge unless these environmental and social concerns are addressed. Interested parties around the world are actively debating the design and implementation of policies to meet the biofuel goals, particularly those established in the United States and Europe. In general, policy options for managing the potential risks and benefits of biofuel development should specify not only clear standards governing biofuel content and production processes, but also certification processes for verifying whether particular biofuels meet those standards, and specific metrics or indicators on which to base the certification. Historically, many standards in the energy and environment fields have ultimately been set or supported by governments. Many of the certification processes have been voluntary, carried out by independent third parties. The biofuels case is a young one, however, with questions of goals, standards, certification, and metrics still in interdependent flux. The workshop focused its discussions on certification issues, but found the discussions naturally reaching into ongoing debates regarding possible goals, standards, and metrics. Many countries are proposing that for a biofuel to qualify as contributing to government-mandated targets or goals, it must be certified to meet certain standards. These standards could be limited to the amount of GHG emitted in the production process or could include a number of other environmental sustainability concerns ranging from deforestation and biodiversity to water resources. While the threat to both forests and food supplies from increased biofuel production is real, it is not clear that setting broad sustainability standards and then requiring sellers to certify that all of those standards have been met is the best way to address these interconnected problems. In particular, if too many standards and related certification requirements are put in place too soon, this could constrain the development of a global biofuels market. In contrast, certification targeted at a specific and limited set of problems and designed with the flexibility to adjust to changes in policies and programs can enhance the public's acceptance of the biofuel option while protecting key social and environmental goals. A second set of questions revolves around the locus of responsibility for certifying whether biofuel production meets sustainability targets. Should the biofuel processing firms, third parties, or governments be responsible for certifying the production of biofuels? This question also elicited significant discussion. While it could be easier to have individual country governments assume the certification of production responsibility, some governments may not have the capacity to implement an effective certification process. Production facilities that comply with international standards should not be kept out of the market because of their government's inability to manage the process. The possible contribution to effective certification of third party organizations or public-private partnerships should not be underestimated.

Devereaux, Charan; Lee, Henry

2009-06-01T23:59:59.000Z

206

Five Harvesting Technologies are Making Biofuels More Competitive...  

Office of Environmental Management (EM)

Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

207

Improved Method for Isolation of Microbial RNA from Biofuel Feedstock...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics....

208

Vehicle Technologies Office Merit Review 2014: Biofuel Impacts...  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519 Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement...

209

California: Advanced 'Drop-In' Biofuels Power the Navy's Green...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

210

Fueling the Navy's Great Green Fleet with Advanced Biofuels ...  

Broader source: Energy.gov (indexed) [DOE]

Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes...

211

Algal Biofuels Strategy: Report on Workshop Results and Recent...  

Energy Savers [EERE]

Algal Biofuels Strategy: Report on Workshop Results and Recent Work Algal Biofuels Strategy: Report on Workshop Results and Recent Work Breakout Session 3B-Integration of Supply...

212

California: Cutting-Edge Biofuels Research and Entrepreneurship...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground California: Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground April 18, 2013...

213

National Alliance for Advanced Biofuels and Bioproducts Synopsis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) This Synopsis of the NAABB Full...

214

Conversion Technologies for Advanced Biofuels - Bio-Oil Production...  

Energy Savers [EERE]

Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

215

Algal Biofuels Strategy Workshop - Fall Event | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Fall Event Algal Biofuels Strategy Workshop - Fall Event The U.S. Department of Energy's (DOE) Bioenergy Technologies Office's (BETO's) Algae Program hosted the Algal Biofuels...

216

Biofuels and Barbecue Chips: Small Business Develops Process...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile Chemicals Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile...

217

Sustainability for the Global Biofuels Industry: Minimizing Risks...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing...

218

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy...

219

Nanotechnology and algae biofuels exhibits open July 26 at the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

220

National Alliance for Advanced Biofuels and Bioproducts Synopsis...  

Broader source: Energy.gov (indexed) [DOE]

Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010, the...

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Microbial who-done-it for biofuels | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

who-done-it for biofuels Microbial who-done-it for biofuels New technique identifies populations within a microbial community responsible for biomass deconstruction The microbial...

222

Growing Energy - How Biofuels Can Help End America's Oil Dependence...  

Broader source: Energy.gov (indexed) [DOE]

Growing Energy - How Biofuels Can Help End America's Oil Dependence Growing Energy - How Biofuels Can Help End America's Oil Dependence America's oil dependence threatens our...

223

Advanced and Cellulosic Biofuels and Biorefineries: State of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and...

224

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Biofuel alternatives to ethanol: pumping the microbialproducts, pharmaceuticals, ethanol fuel and more. Even so,producing biofuel. Although ethanol currently dominates the

Fortman, J.L.

2011-01-01T23:59:59.000Z

225

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products...

226

Bioproducts: Enabling Biofuels and Growing the Bioeconomy  

Broader source: Energy.gov [DOE]

Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts: Enabling Biofuels and Growing the Bioeconomy Katy Christiansen and Nichole Fitzgerald, AAAS Fellows, Bioenergy Technologies Office, U.S. Department of Energy

227

GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO  

E-Print Network [OSTI]

Biodiesel Ethanol & Biodiesel No known biofuels program North America: RFS2 & LCFS implementation Growth for Ethanol and at a smaller scale for Biodiesel Source: Hart Energy's Global Biofuels Center Supply Total Demand Ethanol Biodiesel MillionLiters 2010 2015 2020 · Ethanol demand represents 73

228

Hull Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind FarmWould YouHowardHuecoHull Wind

229

Producing biofuels using polyketide synthases  

DOE Patents [OSTI]

The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

2013-04-16T23:59:59.000Z

230

ECCO Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified as ASHRAEDuval County, Texas:E BiofuelsMitigationECBECCO

231

Biofuels International | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriersBiofuels AmericaIndiana

232

Border Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,BonnerBorder Biofuels Jump to:

233

Acciona Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2Abrams,Acciona Biofuels Jump to:

234

WHEB Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane JumpWHEB Biofuels Jump to:

235

Sandia National Laboratories: Research: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecovery Act Solar TestNationalBiofuels Overcoming

236

Sandia National Laboratories: Biofuels Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuels Assessing the

237

Hydrodynamics of high speed planing hulls with partially ventilated bottom and hydrofoils  

E-Print Network [OSTI]

The influence of a cambered shaped bottom step on the performance of sea going V-stepped planing hulls is investigated using numerical methods. The shape of the step was designed to decrease the Drag/Lift ratio of the hull ...

Sheingart, Zvi

2014-01-01T23:59:59.000Z

238

ORIGINAL ARTICLE Development of a mobile welding robot for double-hull structures  

E-Print Network [OSTI]

ORIGINAL ARTICLE Development of a mobile welding robot for double-hull structures in shipbuilding describes the development of a self- driving mobile welding robot. The robot is used to weld U-shaped welding areas in enclosed double-hull structures. In order to place itself inside the double

Kim, Jongwon

239

WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE  

E-Print Network [OSTI]

1 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE J. F. Manwell, J. G. Mc turbine at Windmill Point in Hull, Massachusetts represents a high point in the long history of wind, through the installation of a 40 kW Enertech machine in the 1980's to the installation of the new turbine

Massachusetts at Amherst, University of

240

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network [OSTI]

biofuel production processes, the ability to measure environmental performance, and environmental goals all advance.

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Special Seminar Realizing the Full Potential of Algal Biofuels  

E-Print Network [OSTI]

of Algal Biofuels Dr. Ronald R. Chance Senior Scientific Advisor, Physical Sciences Algenol Biofuels Fort: Although biofuels have great potential as lower-carbon-footprint, drop-in fuels for existing transportation, economic viability, and achievable reduction in carbon footprint. A cyanobacteria-based biofuels system

Garfunkel, Eric

242

Growing the renewable chemicals and advanced biofuels cluster in MN  

E-Print Network [OSTI]

Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

Levinson, David M.

243

US Biofuels Baseline and impact of extending the  

E-Print Network [OSTI]

June 2011 US Biofuels Baseline and impact of extending the $0.45 ethanol blenders baseline projections for agricultural and biofuel markets.1 That baseline assumed current biofuel policy for cellulosic biofuels was assumed to expire at the end of 2012. This report compares a slightly modified

Noble, James S.

244

Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities  

E-Print Network [OSTI]

Review Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities interests in biofuels. Biofuels are viewed by many policy makers as a key to reducing reliance on foreign concerns, and by reports questioning the rationale that biofuels substantially reduce carbon emissions. We

245

Scrap biofuels targets and focus on improved public transport  

E-Print Network [OSTI]

Scrap biofuels targets and focus on improved public transport Friends of the Earth's biofuels campaigner Kenneth Richter argues that biofuel targets are a distraction from tried-and-tested ways to biofuel crops such as rapeseed have changed as more research has been done into their impact

246

Potential Land Use Implications of a Global Biofuels Industry  

E-Print Network [OSTI]

In this paper we investigate the potential production and implications of a global biofuels industry. We

Gurgel, Angelo C.

247

VIEWLS Final recommendations report Shift Gear to Biofuels  

E-Print Network [OSTI]

VIEWLS Final recommendations report 1 Shift Gear to Biofuels Results and recommendations from the VIEWLS project November 2005 #12;Shift Gear to Biofuels Final report of the VIEWLS project 2 #12;Shift Gear to Biofuels Final report of the VIEWLS project 3 Preface Biofuels are fuels made from

248

RESEARCH ARTICLE A model for improving microbial biofuel production using  

E-Print Network [OSTI]

RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels

Dunlop, Mary

249

EPA and RFS2: Market Impacts of Biofuel Mandate  

E-Print Network [OSTI]

July 2012 EPA and RFS2: Market Impacts of Biofuel Mandate Waiver Options The EPA is required by law to implement biofuel use mandates and it has proposed to waive the cellulosic biofuels other than cellulosic biofuels. If other mandates are decreased, then that imperative to replace

Noble, James S.

250

Global Biofuel Use, 1850-2000.  

SciTech Connect (OSTI)

This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, {approx}220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, {approx}180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at {approx}1200 {+-} 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

Fernandes, S. D.; Trautmann, N. M.; Streets, D. G.; Roden, C. A.; Bond, T. C.; Decision and Information Sciences; Univ. of Illinois

2007-05-30T23:59:59.000Z

251

Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels  

SciTech Connect (OSTI)

This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

2012-01-01T23:59:59.000Z

252

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

investment into second generation biofuels, and the amountinvestment in second generation biofuels and GHG abatement.investment into second generation biofuels. Because of the

Seguin, Charles

2012-01-01T23:59:59.000Z

253

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels  

E-Print Network [OSTI]

of microbial hosts for biofuels production. Metab Eng 2008,delivers next-generation biofuels. Nat Biotechnol 27.furfural (HMF). Biotechnol Biofuels 2008, 1:12. 40. Trinh

Kuk Lee, Sung

2010-01-01T23:59:59.000Z

254

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

of U.S. Croplands for Biofuels Increases Greenhouse GasesLife-Cycle Assessment of Biofuels. Environmental Science &cellulosic ethanol. Biotechnol Biofuels 6 (1), 51. Elliott,

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

255

Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels  

E-Print Network [OSTI]

a Short Rotation Woody Crop for Biofuels Q. J. Hart 1,? , O.for cellulosic derived biofuels. The ability to accuratelycrops for bioenergy and biofuels applications. In vitro

Hart, Quinn James

2014-01-01T23:59:59.000Z

256

Versatile microbial surface-display for environmental remediation and biofuels production  

E-Print Network [OSTI]

engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

Hawkes, Daniel S

2008-01-01T23:59:59.000Z

257

E-Print Network 3.0 - assessing biofuel crop Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

541040990370.pdf 12;BiofuelsBiofuels: Technology, Markets and Policies: Technology, Markets... and Policies Debate on biofuels needs to distiguish between - ... Source:...

258

Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries  

E-Print Network [OSTI]

Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

Morrow, III, William R.

2013-01-01T23:59:59.000Z

259

The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization  

E-Print Network [OSTI]

enzymes to inform in vivo biofuel production optimization Byenzymes to inform in vivo biofuel production optimization byE & Keasling JD (2008) Biofuel alternatives to ethanol:

Garcia, David Ernest

2013-01-01T23:59:59.000Z

260

Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production  

E-Print Network [OSTI]

carboxylate platform for biofuel production E.B. Hollisterbiomass conversion and biofuel production. Keywords: mixedbiomass conversion and biofuel production. Materials and

Hollister, E.B.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli  

E-Print Network [OSTI]

metabolite remodeling and biofuel production in Escherichiathrough engineered biofuel pathways. A) Overexpression ofPP, Keasling JD: Advanced biofuel production in microbes.

2012-01-01T23:59:59.000Z

262

For switchgrass cultivated as biofuel in California, invasiveness limited by several steps  

E-Print Network [OSTI]

United States. In selecting biofuel crops, a balance must bethe degree of risk that a biofuel crop (including cultivarsthe risk potential of biofuel crops: qualitative and

DiTomaso, Joseph M; Barney, Jacob N; Mann, J Jeremiah; Kyser, Guy

2013-01-01T23:59:59.000Z

263

Switchgrass is a promising, high-yielding crop for California biofuel  

E-Print Network [OSTI]

both as forage and as a biofuel crop, switchgrass may bepanic grass grown as a biofuel in southern England. Bioresfor switchgrass for biofuel systems. Biomass Bioenergy 30:

2011-01-01T23:59:59.000Z

264

Comparative genomics of xylose-fermenting fungi for enhanced biofuel production  

E-Print Network [OSTI]

fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.

Wohlbach, Dana J.

2011-01-01T23:59:59.000Z

265

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

Dunlop, Mary

2012-01-01T23:59:59.000Z

266

Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research.  

E-Print Network [OSTI]

fication of targets for biofuel research. Front. Plant Sci.identification of targets for biofuel research Rita Sharmawall modification. Keywords: biofuel, cell wall, database,

Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K; Ronald, Pamela C

2013-01-01T23:59:59.000Z

267

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

Steen E, Keasling JD (2008) Biofuel alternatives to ethanol:gene expression. Microbial biofuel production is one areaet al. 2008). Typical biofuel production processes start

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

268

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

Impacts of United States Biofuel Policies: The Importance ofcoproduct substitution in the biofuel era. Agribusiness 27 (CGE: assessing the EU biofuel mandates with the MIRAGE-BioF

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

269

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

E-Print Network [OSTI]

Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

Goyal, Garima

2011-01-01T23:59:59.000Z

270

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

1999. K. Collins. The role of biofuels and other factors inan underproduction of biofuels, but when it does, secondis the promotion of biofuels as alternatives to fossil

Seguin, Charles

2012-01-01T23:59:59.000Z

271

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

Indirect  emissions  from  biofuels:  How   important?"  study  of  the  EU  biofuels  mandate.  Washington,  DC,  in  India  and   Sweden."  Biofuels,  Bioproducts  and  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

272

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

potential for great impact. Biofuels are a promising form ofbe engineered to produce biofuels, the fuels are often toxicKeywords Feedback control Á Biofuels Á Biological control

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

273

Biofuels: A Solution for Climate Change  

SciTech Connect (OSTI)

Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

Woodward, S.

1999-10-04T23:59:59.000Z

274

How sustainable biofuel business really is? : Today's issues on biofuel production.  

E-Print Network [OSTI]

??Demand for biofuels has skyrocketed during the recent years. While high price of oil might have been the main driver for this phenomenon, the risen… (more)

Kollanus, Iris-Maria

2013-01-01T23:59:59.000Z

275

Biofuels in the European Union : Analysis of the Development of the Common Biofuels Policy.  

E-Print Network [OSTI]

??Biofuels are increasingly being promoted as substitute fuels in the transport sector. Many countries are establishing support measures for the production and use of such… (more)

Haugsbř, Miriam Sřgnen

2012-01-01T23:59:59.000Z

276

Near-zero emissions combustor system for syngas and biofuels  

SciTech Connect (OSTI)

A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

277

Clean heat, steam, and electricity from rice hull gasification  

SciTech Connect (OSTI)

PRM Energy Systems, Inc., (PRME) has completed the installation of a 330 ton/day biomass gasification system for Cargill Rice Milling of Greenville, Mississippi. The system was activated on November 1, 1995. Using the information and experience gained from the operation of previous installations, PRME scaled up its already proven technology by a factor of four and designed the model KC-218 to meet the needs of this particular facility. The PRME model KC-218 system converts unground rice hulls/straw and other biomass fuels to combustible gas which is burned in the boiler furnace delivering 115 million Btus/hr to an existing boiler/power island 5.0 MW of electricity and 15,000 pounds per hour of process steam for this rice parboiling facility.

Bailey, R.W.; Bailey, R. Jr. [PRM Energy Systems, Inc., Hot Springs, AR (United States)

1996-12-31T23:59:59.000Z

278

Energy 101: Feedstocks for Biofuels and More  

Broader source: Energy.gov [DOE]

See how organic materials like corn stover, wheat straw, and woody plants are being used to create homegrown biofuels in the United States—all while reducing our dependence on foreign oil and creating jobs in rural America.

279

Biofuels grant..........................3 Urban design video.................3  

E-Print Network [OSTI]

· Biofuels grant..........................3 · Urban design video.................3 A monthly report represent- ing regional organizations, local governments, and regulatory agencies. TIRP is intended, and fostering collaboration between government and academia. Dawn Spanhake, CTS assistant director of program

Minnesota, University of

280

Overview of Governor's Biofuels Coalition and Updates  

Broader source: Energy.gov [DOE]

At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Stacey Simms (Colorado Governor's Energy Office) provided an update on Biofuels in Colorado.

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES  

SciTech Connect (OSTI)

While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or �clearing house� for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

2013-05-07T23:59:59.000Z

282

Biofuels Report Final | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuelBiofuels

283

Liquid Wall Science in other Scientific Pursuits and Applications  

E-Print Network [OSTI]

/sheet/ribbon/sphere casting, flood/jet soldering, ocean waves, hull design, ocean/river hydraulic engineering, surfing, liquid, wetted-wall absorbers/chemical reactor, condensers, vertical tube evaporator, film cooling of turbine vortices; ·Low Joule and Viscous dissipation; ·Insignificant effect on the hydraulic drag. 2-D turbulence

Abdou, Mohamed

284

Biofuels: Project summaries. Research summaries, Fiscal year 1992  

SciTech Connect (OSTI)

Domestic transportation fuels are almost exclusively derived from petroleum and account for about two-thirds of total US petroleum consumption. In 1990, more than 40% of the petroleum used domestically was imported. Because the United States has only 5% of the world`s petroleum reserves, and the countries of the Middle East have about 75%, US imports are likely to continue to increase. With our heavy reliance on oil and without suitable substitutes for petroleum-based transportation fuels, the United States is extremely vulnerable, both strategically and economically, to fuel supply disruptions. In addition to strategic and economic affairs, the envirorunental impacts of our use of petroleum are becoming increasingly evident and must be addressed. The US Department of Energy`s (DOE`s) Office of Energy Efficiency and Renewable Energy (EE), through its Biofuels Systems Division (BSD), is addressing these issues. The BSD is aggressively pursuing research on biofuels-liquid and gaseous fuels produced from renewable domestic feedstocks such as forage grasses, oil seeds, short-rotation tree crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams.

Not Available

1993-05-01T23:59:59.000Z

285

Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production  

SciTech Connect (OSTI)

Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

Kevin L Kenney

2011-09-01T23:59:59.000Z

286

A tool to create hydrodynamically optimized hull-forms with geometrical constraints from internal arrangements  

E-Print Network [OSTI]

Internal arrangements and bulky equipment like machinery have been treated for many years as a secondary aspect of the ship design. Traditionally, in the design process, the centerpiece of the effort is the hull and its ...

Nestoras, Konstantinos, Nav.E. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

287

Advanced perception, navigation and planning for autonomous in-water ship hull inspection  

E-Print Network [OSTI]

Inspection of ship hulls and marine structures using autonomous underwater vehicles has emerged as a unique and challenging application of robotics. The problem poses rich questions in physical design and operation, ...

Hover, Franz S.

2013-04-24T23:59:59.000Z

288

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

due to first and second generation biofuels and uncertaintyIntroducing First and Second Generation Biofuels into GTAP

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

289

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

Electricity CNG F-T Diesel Bio-Diesel Methanol Ethanol (1)bio) Carbon Emissions (MMTCe/year) Ethanol Use (Quads) Biofuel Gasoline/DieselBio) Ethanol Use (Quads) Carbon Index (MMTCe/Quad) Biofuel Gasoline/Diesel

Eggert, Anthony

2007-01-01T23:59:59.000Z

290

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

Electricity CNG F-T Diesel Bio-Diesel Methanol Ethanol (1)bio) Carbon Emissions (MMTCe/year) Ethanol Use (Quads) Biofuel Gasoline/DieselBio) Ethanol Use (Quads) Carbon Index (MMTCe/Quad) Biofuel Gasoline/Diesel

Eggert, Anthony

2007-01-01T23:59:59.000Z

291

BETO Live Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results  

Office of Energy Efficiency and Renewable Energy (EERE)

Dr. Jose Olivares of Los Alamos National Laboratory will present the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts (NAABB). NAABB is...

292

Production cost and supply chain design for advanced biofuels.  

E-Print Network [OSTI]

??The U.S. government encourages the development of biofuel industry through policy and financial support since 1978. Though first generation biofuels (mainly bio-based ethanol) expand rapidly… (more)

Li, Yihua

2013-01-01T23:59:59.000Z

293

Unintended Environmental Consequences of a Global Biofuels Program  

E-Print Network [OSTI]

Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but ...

Melillo, Jerry M.

294

Video: A New Biofuels Technology Blooms in Iowa  

Broader source: Energy.gov [DOE]

Cellulosic biofuels made from agricultural residue have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

295

Biofuels News, Spring/Summer 2001, Vol. 4, No. 2  

SciTech Connect (OSTI)

Newsletter for the DOE biofuels program. This issue contains articles on the National Energy Policy Plan, national energy policy, the proposed budget for biofuels, and new faces at DOE.

Tuttle, J.

2001-07-13T23:59:59.000Z

296

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

biofuel production. Two pumps consistently survived thethe native E. coli pump Molecular Systems Biology 2011 3biofuel tolerance using ef?ux pumps MJ Dunlop et al A A.

Dunlop, Mary

2012-01-01T23:59:59.000Z

297

From Processing Juice to Producing Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

From Processing Juice to Producing Biofuels From Processing Juice to Producing Biofuels June 25, 2010 - 4:00pm Addthis Lindsay Gsell INEOS Bio -- one of the 17 global companies of...

298

The Farmer's Conundrum: Income from Biofuels or Protect the Soil...  

Broader source: Energy.gov (indexed) [DOE]

The Farmer's Conundrum: Income from Biofuels or Protect the Soil? The Farmer's Conundrum: Income from Biofuels or Protect the Soil? July 1, 2010 - 11:39am Addthis Lindsay Gsell...

299

A Realistic Technology and Engineering Assessment of Algae Biofuel Production  

E-Print Network [OSTI]

microalgae biofuel technologies for both oil and biogas production, provides an initial assessment of the US or wastewater treatment, (2) biofuel outputs--either biogas only or biogas plus oil, and (3) farm size

Quinn, Nigel

300

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

bio-diesel is favored in several European countries, ethanol dominates the majority of the world biofuel market,

Fortman, J.L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

bio-diesel is favored in several European countries, ethanol dominates the majority of the world biofuel market,

Fortman, J. L.

2010-01-01T23:59:59.000Z

302

Biomass and Biofuels: Technology and Economic Overview (Presentation)  

SciTech Connect (OSTI)

Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

Aden, A

2007-05-23T23:59:59.000Z

303

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

jet engines. Recently, there have been several reports of efforts to engineer microorganisms to produce advanced biofuels

Dunlop, Mary

2012-01-01T23:59:59.000Z

304

World Biofuels Assessment; Worldwide Biomass Potential: Technology Characterizations (Milestone Report)  

SciTech Connect (OSTI)

Milestone report prepared by NREL to estimate the worldwide potential to produce and transport ethanol and other biofuels.

Bain, R. L.

2007-12-01T23:59:59.000Z

305

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Biochemical composition of microalgae from the green algalof Selected Photosynthetic Microalgae Producing Biofuelsof Selected Photosyn- thetic Microalgae Producing Biofuels”,

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

306

Sustainability for the Global Biofuels Industry Minimizing Risks...  

Broader source: Energy.gov (indexed) [DOE]

Industry Minimizing Risks and Maximizing Opportunities Sustainability for the Global Biofuels Industry Minimizing Risks and Maximizing Opportunities Conservation International...

307

Sustainability for the Global Biofuels Industry: Minimizing Risks...  

Energy Savers [EERE]

Opportunities Webinar Transcript Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Webinar Transcript Webinar transcript....

308

The Impact of Biofuel Mandates on Land Use Suhail Ahmad  

E-Print Network [OSTI]

The Impact of Biofuel Mandates on Land Use by Suhail Ahmad B.E., Avionics Engineering National, Technology and Policy Program #12;#12;3 The Impact of Biofuel Mandates on Land Use by Suhail Ahmad Submitted of Master of Science in Technology and Policy ABSTRACT The use of biofuels in domestic transportation sector

309

REVIEW PAPER Microalgae as second generation biofuel. A review  

E-Print Network [OSTI]

REVIEW PAPER Microalgae as second generation biofuel. A review Nirbhay Kumar Singh & Dolly Wattal not require arable land for cultivation. Biofuel is regarded as a proven clean energy source and several biofuel has been known for several years and is frequently modified and upgraded. In view of this

Boyer, Edmond

310

II. Greenhouse gas markets, carbon dioxide credits and biofuels17  

E-Print Network [OSTI]

15 II. Greenhouse gas markets, carbon dioxide credits and biofuels17 The previous chapter analysed biofuels production. GHG policies18 that create a carbon price either through an emissions trading system or directly by taxing GHG emissions also generate increased demand for biofuels. They do so by raising

311

Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum  

E-Print Network [OSTI]

9/20/2012 1 Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum Bangkok, Thailand 19-21 September 2012 Biofuel Policy Group Asian Institute of Technology Outline of the Presentation 1. Objectives of this Presentation 2. Background 3. Status of Biofuel Development in ASEAN 4

312

California Policy Should Distinguish Biofuels by Differential Global Warming Effects  

E-Print Network [OSTI]

California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

Kammen, Daniel M.

313

International Symposium Transport and Air Pollution Session 6: Biofuels 2  

E-Print Network [OSTI]

1Sth International Symposium Transport and Air Pollution Session 6: Biofuels 2 Determination of VOC components in the exhaust of light vehicles fuelled with different biofuels F. Gazier 1,4*, A. De/bende 1 of the emissions shows changes with the composition of the biofuel in the levels of hydrocarbons, aromatic

Paris-Sud XI, Université de

314

FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP  

E-Print Network [OSTI]

FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP AT PACIFIC NORTHWEST NATIONAL LABORATORY Position Description The overall project objective is to utilize marine microalgae for biofuels (i.e., lipids for biodiesel or jet biofuel) production. The student will set up a series

Wildermuth, Mary C

315

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network [OSTI]

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

316

USDA Biofuels Strategic Production Report June 23, 2010  

E-Print Network [OSTI]

USDA Biofuels Strategic Production Report June 23, 2010 1 A USDA Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022 I. INTRODUCTION The U.S. Department of Agriculture. The strategy targets barriers to the development of a successful biofuels market that will achieve, or surpass

317

Biofuels' Time of Transition Achieving high performance in a world  

E-Print Network [OSTI]

Biofuels' Time of Transition Achieving high performance in a world of increasing fuel diversity #12;2 Table of contents #12;3 Introduction Up close: Highlights of Accenture's first biofuels study An evolving biofuels industry 1 Consumer influence Guest commentary on land-use change In focus: The food

Kammen, Daniel M.

318

Biofuels, Climate Policy, and the European Vehicle Fleet  

E-Print Network [OSTI]

Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

319

September 2010 FAPRI-MU US Biofuels, Corn Processing,  

E-Print Network [OSTI]

September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

Noble, James S.

320

Invitation/Program Technology Watch Day on Future Biofuels  

E-Print Network [OSTI]

Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Global biofuel drive raises risk of eviction for African farmers  

E-Print Network [OSTI]

Global biofuel drive raises risk of eviction for African farmers African farmers risk being forced from their lands by investors or government projects as global demand for biofuels encourages changes at risk if African farmland is turned over to growing crops for biofuel. With growing pressure to find

322

Global Biofuel Production and Food Security: Implications for Asia Pacific  

E-Print Network [OSTI]

Global Biofuel Production and Food Security: Implications for Asia Pacific 56th AARES Annual Conference Fremantle, Western Australia 7-10 February 2012 William T. Coyle #12;Global Biofuel Production and Food Security: Making the Connection --Past analysis and the evidence about biofuels and spiking

323

Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad  

E-Print Network [OSTI]

Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad Department of Political Science between media framing and public opinion on the issue of biofuels--transportation fuels made from plants, animal products, or organic waste. First, the paper investigates how media framing of biofuels has

324

Recycling Water: one step to making algal biofuels a reality  

E-Print Network [OSTI]

Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

Fay, Noah

325

Metabolic Engineering for Improved Biofuel Yield in a Marine  

E-Print Network [OSTI]

Metabolic Engineering for Improved Biofuel Yield in a Marine Cyanobacterium/conclusion · future work that will be done to increase biofuel yield #12;Problems? · Many na@al renewable source of energy -Biofuel produc@on from aqua@c photoautotroph

Petta, Jason

326

ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR  

E-Print Network [OSTI]

ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES Keith L. Kline Gbadebo A Government or any agency thereof. #12;ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES To Support the DOE study of Worldwide Potential to Produce Biofuels with a focus on U.S. Imports Keith L

Pennycook, Steve

327

Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production  

E-Print Network [OSTI]

Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production How can the US of biodiversity. The future of the biofuel industry will depend on public investment and trust that industry for increasing biofuel production have already come under fire because of real and perceived threats

328

Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices  

E-Print Network [OSTI]

Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices A. Zebda1,2 , S. Cosnier1 the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal further developments. Following recent developments in nano- and biotechnology, state-of-the-art biofuel

Boyer, Edmond

329

Nottingham Business School Biofuels Market and Policy Governance  

E-Print Network [OSTI]

a dramatic growth in the global production and consumption of biofuels, as a rapidly- rising numberNottingham Business School Biofuels Market and Policy Governance The last decade has seen triggered growing concerns about the downsides from different types of biofuel. This, in turn, presents

Evans, Paul

330

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

REPORT Engineering microbial biofuel tolerance and export using efflux pumps Mary J Dunlop1 export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced

Dunlop, Mary

331

Economics of Current and Future Biofuels  

SciTech Connect (OSTI)

This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

Tao, L.; Aden, A.

2009-06-01T23:59:59.000Z

332

Feeding value of ammoniated rice hulls, cottonseed hulls and Coastal Bermudagrass hay in high-concentrate rations for lactating dairy cows  

E-Print Network [OSTI]

'tl. nut au%arse effects on rate of growth. ! o" and and Ford (30) called attention to the importance of suppl sentatlon with protegn, m marais and Vitamin A wnen race hulls . ue used to replace 15 to 25 percent of the prairie hay in the diet...

Sekhara Rao, Basavarju Purna Chandra

1969-01-01T23:59:59.000Z

333

Biofuel Feedstock Assessment For Selected Countries  

SciTech Connect (OSTI)

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

2008-02-01T23:59:59.000Z

334

Biofuel Feedstock Assessment for Selected Countries  

SciTech Connect (OSTI)

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

2008-02-18T23:59:59.000Z

335

Kinetics and Solvent Effects in the Synthesis of Ionic Liquids  

E-Print Network [OSTI]

in diesel fuel 19 and extractants in the recovery of ethanol and butanol for biofuel applications. 20 1.1. IL Background ILs have shown versatility in many fields of research and applications, so the question is what are ILs, and what makes ILs so... with ionic liquids. Chem. Commun. 2001, 2494-2495. 20. Fadeev, A. G.; Meagher, M. M., Opportunities for ionic liquids in recovery of biofuels. Chem. Commun. 2001, 295-296. 21. Lancaster, L., Organic reactivity in ionic liquids: some mechanistic insights...

Schleicher, Jay C.

2007-12-12T23:59:59.000Z

336

Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs,  

E-Print Network [OSTI]

Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs, which can be run in three consecutive weeks, give students the opportunity to explore the chemical properties of biofuels from three different perspectives. During the first week students

337

The current status of liquid biofuels in Chile .  

E-Print Network [OSTI]

??Chile depends on foreign sources for energy. A solution for this problem is needed to guarantee stability and economic development. Public policies have been proposed… (more)

García, A. E.

2011-01-01T23:59:59.000Z

338

Experimental and Modeling Studies of the Characteristics of Liquid Biofuels  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive Summit on WindMarch

339

National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)  

SciTech Connect (OSTI)

Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

Not Available

2010-06-01T23:59:59.000Z

340

Biofuel from Bacteria and Sunlight: Shewanella as an Ideal Platform for Producing Hydrocarbons  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: The University of Minnesota is developing clean-burning, liquid hydrocarbon fuels from bacteria. The University is finding ways to continuously harvest hydrocarbons from a type of bacteria called Shewanella by using a photosynthetic organism to constantly feed Shewanella the sugar it needs for energy and hydrocarbon production. The two organisms live and work together as a system. Using Shewanella to produce hydrocarbon fuels offers several advantages over traditional biofuel production methods. First, it eliminates many of the time-consuming and costly steps involved in growing plants and harvesting biomass. Second, hydrocarbon biofuels resemble current petroleum-based fuels and would therefore require few changes to the existing fuel refining and distribution infrastructure in the U.S.

None

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough  

E-Print Network [OSTI]

the flexibility to run on numerous biomass feedstocks including wood chips, tall grasses, corn stover (residual biofuels from cellulosic biomass. The company's Consolidated Bioprocessing method converts non-food biomass feedstocks #12;into cellulosic ethanol through the use of a patented process that eliminates the need

342

Method for Removing Precipitates in Biofuel  

Energy Innovation Portal (Marketing Summaries) [EERE]

At ORNL the application of ultrasonic energy, or sonication, has been shown to successfully remove or prevent the formation of 50–90% of the precipitates in biofuels. Precipitates can plug filters as biodiesel is transported from one location to another, and often cannot be detected by visual inspection....

2010-12-08T23:59:59.000Z

343

Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products  

E-Print Network [OSTI]

Analyses of the Biofuels-Critical Phytochemical Coniferylscreening; monolignols; biofuels 1. Introduction Plantfacing cost-effective biofuels [3]. Lignin analyses will

Achyuthan, Komandoor

2013-01-01T23:59:59.000Z

344

Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales  

E-Print Network [OSTI]

D. Land availability for biofuel production. Environ. Sci.of land available for biofuel production. Environ. Sci.so marginal land for biofuel crops is limited. Energy Policy

Lewis, Sarah M

2014-01-01T23:59:59.000Z

345

Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production  

E-Print Network [OSTI]

For CO 2 Fixation and Biofuel Production Halil Berberoglufor CO 2 mitigation and biofuel productions namely (i)this technology”, (2) culture of biofuel producing algae is

Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

2009-01-01T23:59:59.000Z

346

Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales  

E-Print Network [OSTI]

Q. ; Tyner, W.E. ; Lu, X. Biofuels, cropland expansion, andfor lignocellulosic biofuels. Science 2010, 329, 790–792.feedstocks for cellulosic biofuels. F1000 Biol. Rep. 2012,

Lewis, Sarah M

2014-01-01T23:59:59.000Z

347

2 million tons per year: A performing biofuels supply chain for  

E-Print Network [OSTI]

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

348

Biofuel Conversion Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuel Conversion

349

Best Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuels LLC Jump to:

350

Raven Biofuels International Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRaus Power Ltd Jump to: navigation,Raven Biofuels

351

Continental Biofuels Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text is derivedCoReturn toContinental Biofuels

352

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff  

E-Print Network [OSTI]

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

Hall, Sharon J.

353

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

biomass = second- generation biofuels. Source: Fingerman andIFPRI 2005). A second generation of biofuels will yieldsecond generation of biofu- els (high-yield biomass) will fare bet- ter than existing biofuels.

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

354

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants  

E-Print Network [OSTI]

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

355

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network [OSTI]

75 My View on the use of Biofuels in Low Carbon FuelCLCAs of Byproduct-based Biofuels . . . . . . . 49 5 FullLCA GHG Emissions of Biofuels using various Co-product

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

356

Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis  

E-Print Network [OSTI]

Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

Kammen, Daniel M.; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew; Nemet, Gregory F; Delucchi, Mark

2008-01-01T23:59:59.000Z

357

Agricultural expansion induced by biofuels: Comparing predictions of market?equilibrium models to historical trends  

E-Print Network [OSTI]

of Food and Agriculture - Biofuels: Prospects, risks andISBN 069112051X. C Hausman. Biofuels and Land Use Change:Use of US croplands for biofuels increases greenhouse gases

Rajagopal, Deepak

2011-01-01T23:59:59.000Z

358

Cellulosic Biofuels: Expert Views on Prospects for Advancement and Jeffrey Keisler  

E-Print Network [OSTI]

Cellulosic Biofuels: Expert Views on Prospects for Advancement Erin Baker and Jeffrey Keisler funding and the likelihood of achieving advances in cellulosic biofuel technologies. While in collecting more information on this technology. Keywords: Biofuels; Technology R&D; Uncertainty

Massachusetts at Amherst, University of

359

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production  

E-Print Network [OSTI]

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

360

Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic  

E-Print Network [OSTI]

Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic that anaerobic biofuel production could be significantly improved via directed evolution of a sugar transporter: cellodextrin transporter; cellobiose utilization; cellulosic biofuel; anaerobic fermentation; directed

Zhao, Huimin

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

conse- quences: How the U.S. biofuel tax credit with a man-Land clearing and the biofuel carbon debt. Science 319:1235–D. 2007. Challenge of biofuel: Filling the tank without

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

362

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial  

E-Print Network [OSTI]

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

Boyer, Edmond

363

Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries  

E-Print Network [OSTI]

impact study of the EU Biofuels Mandate. 2010: p. 1-125.Indirect Emissions from Biofuels: How Important? Science,of U.S. Croplands for Biofuels Increases Greenhouse Gases

Morrow, III, William R.

2013-01-01T23:59:59.000Z

364

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

optimal subsidy of biofuels. For the fossil fuel component,fossil fuel and underinvestment in second generation biofuel. With biofuel subsidies,fossil fuel. The flatter the marginal cost function, the higher the subsidy,

Seguin, Charles

2012-01-01T23:59:59.000Z

365

Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

366

http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf...  

Broader source: Energy.gov (indexed) [DOE]

http:www.energy.govmediaF...BiofuelsLowerGasPrices.pdf http:www.energy.govmediaF...BiofuelsLowerGasPrices.pdf http:www.energy.govmediaF...BiofuelsLowerGasPrice...

367

Hull/Mooring/Riser coupled motion simulations of thruster-assisted moored platforms  

E-Print Network [OSTI]

responses. Investigation of the performance of thruster-assisted moored offshore platforms was conducted in terms of six-degree-of-freedom motions and mooring line/riser top tensions by means of a fully coupled hull/mooring/riser dynamic analysis program...

Ryu, Sangsoo

2005-02-17T23:59:59.000Z

368

Determination of efficiency of anechoic or decoupling hull coatings using water tank acoustic measurements  

E-Print Network [OSTI]

Determination of efficiency of anechoic or decoupling hull coatings using water tank acoustic and radiated noise, respectively. Measurement of test panels in a water tank gives only the reflection in a water tank has already been presented in a previous paper [2]. The purpose of the present paper

Paris-Sud XI, Université de

369

Advanced Perception, Navigation and Planning for Autonomous In-Water Ship Hull Inspection  

E-Print Network [OSTI]

commercialized at scale. On the other hand, unmanned underwater vehicles have become extraordinarily capable. Leonard Abstract Inspection of ship hulls and marine structures using autonomous underwater vehicles has-capacity com- munications, autonomous underwater vehicles (AUVs) move freely and therefore usually require on

Kaess, Michael

370

Assessing Habitat for Avian Species in Assessing Habitat for Avian Species in an Integrated Forage/Biofuels an Integrated Forage/Biofuels  

E-Print Network [OSTI]

in an Integrated Forage/Biofuels an Integrated Forage/Biofuels Management System Management System in the Midin NWSG mixes beneficial to forage, biofuels production, and wildlife habitatp , 3. identify wildlife habitat benefits associated with varying forage and biofuels management strategies 4. identify optimum

Gray, Matthew

371

An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Emission MitigationGreenhouse Gas Emission Mitigation  

E-Print Network [OSTI]

An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Afforestation, Forest management, Biofuels, Ag soil, Animals, Fertilization, Rice, Grassland expansion, Manure of Biofuel strategies Examine the dynamics of mitigation strategies #12;PolicyPolicy ContextContext U

McCarl, Bruce A.

372

Techno-Economic Analysis of Bioconversion of Methane into Biofuel and Biochemical (Poster)  

SciTech Connect (OSTI)

In light of the relatively low price of natural gas and increasing demands of liquid transportation fuels and high-value chemicals, attention has begun to turn to novel biocatalyst for conversion of methane (CH4) into biofuels and biochemicals [1]. A techno-economic analysis (TEA) was performed for an integrated biorefinery process using biological conversion of methane, such as carbon yield, process efficiency, productivity (both lipid and acid), natural gas and other raw material prices, etc. This analysis is aimed to identify research challenges as well provide guidance for technology development.

Fei, Q.; Tao, L.; Pienkos, P .T.; Guarnieri, M.; Palou-Rivera, I.

2014-10-01T23:59:59.000Z

373

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

of interest is the carbon intensity of the transportationthis scenario. The carbon intensity is defined here as thebetween the biofuels carbon intensity and the total

Eggert, Anthony

2007-01-01T23:59:59.000Z

374

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

of interest is the carbon intensity of the transportationthis scenario. The carbon intensity is defined here as thebetween the biofuels carbon intensity and the total

Eggert, Anthony

2007-01-01T23:59:59.000Z

375

Alternative Energy Science and Policy: Biofuels as a Case Study.  

E-Print Network [OSTI]

??This dissertation studies the science and policy-making of alternative energy using biofuels as a case study, primarily examining the instruments that can be used to… (more)

Ammous, Saifedean H.

2011-01-01T23:59:59.000Z

376

An industry analysis of the South African biofuels industry.  

E-Print Network [OSTI]

??Biofuels have been used as an energy source for heating and cooking since the beginning of time. However, recent changes in the demand for energy,… (more)

Cilliers, Bronwyn Lee

2012-01-01T23:59:59.000Z

377

Biofuels Sustainability Certification Schemes: Challenges, Feasibility and Possible Approaches.  

E-Print Network [OSTI]

??The focus of this research is to develop and apply an analytical framework for evaluating the effectiveness and practicability of sustainability certification schemes for biofuels,… (more)

Visconti, Gloria and#60;1971and#62

2010-01-01T23:59:59.000Z

378

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

costs and benefits of biodiesel and ethanol biofuels. Proc.187 24 Fukuda, H. et al. (2001) Biodiesel fuel production by26 Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol.

Fortman, J. L.

2010-01-01T23:59:59.000Z

379

Biofuels in South Africa : factors influencing production and consumption.  

E-Print Network [OSTI]

?? Interest in the biofuels industry in South Africa is driven largely by high oil prices and a strain on energy resources and logistics. This… (more)

Chambers, David

2010-01-01T23:59:59.000Z

380

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

Eggert, Anthony

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

Eggert, Anthony

2007-01-01T23:59:59.000Z

382

Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463...  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Impacts on Aftertreatment Devices Michael J. Lance and Todd J. Toops Oak Ridge National Laboratory June 20 th , 2014 PM055 This presentation does not contain any...

383

Navigating Roadblocks on the Path to Advanced Biofuels Deployment  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

384

Algal Biofuels Research Laboratory (Fact Sheet), NREL (National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Algal Biofuels Research Laboratory Enabling fundamental understanding of algal biology and composition of algal biomass to help develop superior bioenergy strains NREL is a...

385

Assessing Impact of Biofuel Production on Regional Water Resource...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wu, ANL, 81512 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wuwebinar.pdf More Documents & Publications Breaking the...

386

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

costs and benefits of biodiesel and ethanol biofuels. Proc.History and policy of biodiesel in Brazil. Energy Policyincluding ethanol and biodiesel is expected to grow rapidly

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

387

The Science Behind Cheaper Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The...

388

Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...  

Energy Savers [EERE]

Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctabwebinarcarbohydrates...

389

Vietnam-Status and Potential for the Development of Biofuels...  

Open Energy Info (EERE)

Vietnam-Status and Potential for the Development of Biofuels and Rural Renewable Energy AgencyCompany Organization: Asian Development Bank Sector: Energy Focus Area: Renewable...

390

Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery  

Broader source: Energy.gov (indexed) [DOE]

Integrated Pilot- Scale Biorefinery for Producing Ethanol from Hybrid Algae Algenol Biofuels Inc., together with its partners, will construct an integrated pilot-scale...

391

Whole Turf Algae to biofuels-final-sm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Whole Turf Algae Polyculture Biofuels The production and conversion of whole turf algae polyculture maximizes fuels, chemicals and nutrients New Approach to Algal Biomass...

392

Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctabwebinarbiooilsupgrading.pdf More...

393

Environmental impact Assessments – sufficient to verify sustainable biofuels?.  

E-Print Network [OSTI]

??The European Union requires that 10% of the energy in the transport sector shall come from renewable sources by 2020. In addition, biofuels used for… (more)

Englund, Oskar

2010-01-01T23:59:59.000Z

394

The impacts of biofuels production in rural Kansas: local perceptions.  

E-Print Network [OSTI]

??This dissertation examines the discourse of biofuels development in Kansas as promoted by rural growth machines. Corn-based ethanol production capacity and use in the United… (more)

Iaroi, Albert

2013-01-01T23:59:59.000Z

395

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

and benefits of biodiesel and ethanol biofuels. Proc. Natl.Bacteria engineered for fuel ethanol production: currentGenetic engineering of ethanol production in Escherichia

Fortman, J. L.

2010-01-01T23:59:59.000Z

396

U.S. Baseline Briefing Book Projections for Agricultural and Biofuel Markets  

E-Print Network [OSTI]

U.S. Baseline Briefing Book Projections for Agricultural and Biofuel, biofuel, government cost and farm income projections in this report were prepared by the team at FAPRIMU

Noble, James S.

397

Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into  

E-Print Network [OSTI]

Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

Paris-Sud XI, Université de

398

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness chemicals and biofuels since it could r

Paris-Sud XI, Université de

399

E-Print Network 3.0 - algal biofuels ponds Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences 3 Introduction slide 2 Biofuels and Algae Markets, Systems, Summary: of Algal Biofuels and Products Phase 1: 2010 For High Value...

400

E-Print Network 3.0 - advanced biofuels production Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomass supply, . . . how much land? Future Biofuel Production... Program Section 9005: Bioenergy Program for Advanced Biofuels ... Source: Gray, Matthew - Department of...

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

E-Print Network 3.0 - advanced biofuel production Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomass supply, . . . how much land? Future Biofuel Production... Program Section 9005: Bioenergy Program for Advanced Biofuels ... Source: Gray, Matthew - Department of...

402

Sustainability standards for biofuels : analyses of the current standards and recommendations of the future direction .  

E-Print Network [OSTI]

??Past decades have seen development and expansion of biofuels industry around the world thanks to the environmental and economic contribution that biofuels have promised. As… (more)

Lee, Leebong

2014-01-01T23:59:59.000Z

403

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

45 2.4.2 Biofuelwith Non-convex iii 2.4.1 Biofuelal. Model estimates food-versus-biofuel trade-o?. California

Seguin, Charles

2012-01-01T23:59:59.000Z

404

A literature review of the market effects of federal biofuel policy and recommendations for future policy.  

E-Print Network [OSTI]

??The United States has had a federal biofuels policy since the 1970s. The purpose of this policy was to help the development of a biofuel… (more)

Ayers, Alex

2012-01-01T23:59:59.000Z

405

OAS Support for the Implementation of the US-Brazil Biofuels...  

Open Energy Info (EERE)

Implementation of the US-Brazil Biofuels Bilateral Agreement Jump to: navigation, search Name OAS Support for the Implementation of the US-Brazil Biofuels Bilateral Agreement...

406

The grass is half-full : new biofuels from field to wheel ; New biofuels from field to wheel .  

E-Print Network [OSTI]

??The current biofuels market in the United States is dominated by ethanol made from corn. But corn ethanol has limitations that will prevent it from… (more)

Moseman, Andrew (Andrew Garet)

2008-01-01T23:59:59.000Z

407

Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler  

SciTech Connect (OSTI)

This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

Sharon Falcone Miller; Bruce G. Miller [Pennsylvania State University, University Park, PA (United States). Energy Institute

2007-12-15T23:59:59.000Z

408

Economic Assessment ofEconomic Assessment of BiofuelBiofuel Support PoliciesSupport Policies  

E-Print Network [OSTI]

Changecomparedtobaseline #12;Impact ofImpact of biofuelbiofuel support removal on biodiesel production,support removal on biodiesel production, 20132013--2017 average2017 average -40% -20% 0% 20% Changecomparedtobaseline;Policy IssuesPolicy Issues · How far does biofuel production and consumption in OECD countries depend

409

ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann*  

E-Print Network [OSTI]

1 ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann* , Mariano Martín Center for Advanced Process Decision-making; Department of Chemical Engineering Carnegie Mellon University, Pittsburgh amount of water consumption [18]. 2nd generation biofuels try to overcome these problems by using non

Grossmann, Ignacio E.

410

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion  

E-Print Network [OSTI]

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels strategies. Advances in both areas in turn strongly depend on the progress in developing high- throughput

Singh, Anup

411

III. Commercial viability of second generation biofuel technology27  

E-Print Network [OSTI]

bioenergy28 production in 2005 was less that 1 EJ and global oil consumption in 2005 was 190 EJ. Under to introduce a large cellulosic biofuels industry without dramatically disturbing agricultural markets. If unrestricted bioenergy trade is allowed, we project that the main biofuels producers would be Africa, Latin

412

Biofuel derived from Microalgae Corn-based Ethanol  

E-Print Network [OSTI]

Biofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each;Definitions Biofuel: clean fuel made from animal and plant fats and tissues (Hollebone, 2008) Ethanol species (sizes from a few- a few hundred µm) (Wikipedia, 2008) #12;How is ethanol produced from corn

Blouin-Demers, Gabriel

413

Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)  

SciTech Connect (OSTI)

In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

Not Available

2011-09-01T23:59:59.000Z

414

The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities  

SciTech Connect (OSTI)

The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producersâ?? attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A â??multi-methodâ?ť or â??mixed methodâ?ť research methodology was employed for each case study.

Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

2013-02-11T23:59:59.000Z

415

The readers point vessel: hull analysis of an eighteenth century merchant sloop excavated in St. Ann's Bay, Jamaica  

E-Print Network [OSTI]

's Bay, Jamaica in 1994. Excavators removed overburden and the ballast pile, recovering over 600 artifacts associated with the vessel-After exposing well-preserved hull remains, divers recorded the ship's structure. The vessel is preserved from the base...

Cook, Gregory D.

1997-01-01T23:59:59.000Z

416

Wind versus Biofuels for Addressing Climate, Health, and Energy  

SciTech Connect (OSTI)

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

Jacobson, Mark Z.

2007-01-29T23:59:59.000Z

417

Wind vs. Biofuels: Addressing Climate, Health and Energy  

SciTech Connect (OSTI)

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

Professor Mark Jacobson

2007-01-29T23:59:59.000Z

418

Traffic lights for crop-based biofuels  

E-Print Network [OSTI]

attention to reputational risk, and finding markets, as consumer lobby groups demand greater transparency about where and how products are produced. As Hatcher [13] notes, “losing the trust of stakeholders can be fatal”. Nobody wants algae or cellulosic... 4(4), e5261 (2009). 10 Shi AZ, Koh LP, Tan HTW. The biofuel potential of municipal solid waste. GCB Bioenergy 1(5), 317-320 (2009). 11 Kuzovkina YA, Quigley MF. Willows Beyond Wetlands: Uses of Salix L. Species for Environmental Projects. Water...

Phalan, Ben

419

E Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified as ASHRAEDuval County, Texas:E Biofuels LLC Jump to:

420

Argonaut BioFuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata,Koblitz Jump to:Argonaut BioFuels Jump to:

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Biofuels America Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriersBiofuels America Inc

422

Biofuels Power Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriersBiofuels

423

Borger Biofuels LLLP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,BonnerBorder BiofuelsOpenBorger

424

Novare Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) |Agny JumpNationalNovare Biofuels Inc Jump

425

Pan Am Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPTAct YearBiofuels Inc Jump to:

426

ASAlliances Biofuels Defunct | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2 Jump to:ASAlliances Biofuels

427

Amereco Biofuels Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place:AlwitraAmberley,Amereco Biofuels Corp Jump

428

Biofuels - Biomass Feedstock - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuel Research at Brazil

429

Biofuels: Anywhere, anytime | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuel Research atThe photosynthetic

430

Winning the Biofuel Future | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3WindowsBiofuel Future

431

Tees Valley Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley Biofuels Jump to: navigation,

432

the impact of industrial biofuels on people and global hunger Meals per gallon  

E-Print Network [OSTI]

the impact of industrial biofuels on people and global hunger Meals per gallon #12;Contents Executive summary 2 Chapter 1: Introduction 6 Chapter 2: Industrial biofuels ­ the context 8 What's driving the EU industrial biofuel boom? 9 Chapter 3: What's wrong with industrial biofuels? 12 Industrial

433

BEE 4900/AEM 6900. Biofuels: The Economic and Environmental Interactions (offered Spring 2008)  

E-Print Network [OSTI]

BEE 4900/AEM 6900. Biofuels: The Economic and Environmental Interactions (offered Spring 2008 and Economics of BioFuels. Questions addressed include the environmental and economic impacts of biofuel use and whether the use of biofuels justifies public policy intervention. The class will consist of a colloquium

Walter, M.Todd

434

Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities Solicitation  

E-Print Network [OSTI]

Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities biofuels production facility? A.1 An existing biofuels facility is an existing facility that, as of the application due date of PON-13-601, produces (or did produce) biofuels in California. Q.2 Must an eligible

435

Biofuels `101'Michael Wilcox, Dayton Lambert and Kelly Tiller Assistant Professors, Department of Agricultural Economics  

E-Print Network [OSTI]

Biofuels `101'Michael Wilcox, Dayton Lambert and Kelly Tiller Assistant Professors, Department vehicle emissions. Biofuels Non-petroleum sources of transportation fuels include natu- ral gas (2.2 percent) and biofuels (1.1 percent). While used in small amounts now, demand for biofuels (ethanol

Grissino-Mayer, Henri D.

436

Biofuels in Africa May Help Achieve Global Goals, Experts Say | Worldwatch Institute Login | Register | Shopping Cart  

E-Print Network [OSTI]

Biofuels in Africa May Help Achieve Global Goals, Experts Say | Worldwatch Institute Login Contact Us Sign Up for e-mail updates Home » Online Features » e2 - Eye on Earth Biofuels in Africa May for developing biofuels from sugar cane and other crops. Photo by Steve McNicholas Africa can use the biofuels

437

Biotests for hazard assessment of biofuel fermentation Sebastian Heger,a  

E-Print Network [OSTI]

Biotests for hazard assessment of biofuel fermentation Sebastian Heger,a Kerstin Bluhm,a Matthew T accelerated during the last decade. In this context, biofuels are one potential replacement for fossil fuels on toxicity of biofuels and biofuel combustion. Furthermore, for a complete understanding of the environmental

Angenent, Lars T.

438

An assessment of biofuel use and burning of agricultural waste in the developing world Rosemarie Yevich  

E-Print Network [OSTI]

and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use.9Pg C (as CO2) from burning of biofuels and field residues together is small, but non-negligible when

Jacob, Daniel J.

439

Liquid-Liquid Extraction Processes  

E-Print Network [OSTI]

Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

Fair, J. R.; Humphrey, J. L.

1983-01-01T23:59:59.000Z

440

Estimating the variable cost for high-volume and long-haul transportation of densified biomass and biofuel  

SciTech Connect (OSTI)

This article analyzes rail transportation costs of products that have similar physical properties as densified biomass and biofuel. The results of this cost analysis are useful to understand the relationship and quantify the impact of a number of factors on rail transportation costs of denisfied biomass and biofuel. These results will be beneficial and help evaluate the economic feasibility of high-volume and long-haul transportation of biomass and biofuel. High-volume and long-haul rail transportation of biomass is a viable transportation option for biofuel plants, and for coal plants which consider biomass co-firing. Using rail optimizes costs, and optimizes greenhouse gas (GHG) emissions due to transportation. Increasing bioenergy production would consequently result in lower GHG emissions due to displacing fossil fuels. To estimate rail transportation costs we use the carload waybill data, provided by Department of Transportation’s Surface Transportation Board for products such as grain and liquid type commodities for 2009 and 2011. We used regression analysis to quantify the relationship between variable transportation unit cost ($/ton) and car type, shipment size, rail movement type, commodity type, etc. The results indicate that: (a) transportation costs for liquid is $2.26/ton–$5.45/ton higher than grain type commodity; (b) transportation costs in 2011 were $1.68/ton–$5.59/ton higher than 2009; (c) transportation costs for single car shipments are $3.6/ton–$6.68/ton higher than transportation costs for multiple car shipments of grains; (d) transportation costs for multiple car shipments are $8.9/ton and $17.15/ton higher than transportation costs for unit train shipments of grains.

Jacob J. Jacobson; Erin Searcy; Md. S. Roni; Sandra D. Eksioglu

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lipid extraction from microalgae using a single ionic liquid  

DOE Patents [OSTI]

A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

2013-05-28T23:59:59.000Z

442

Drop-in replacement biofuels : meeting the challenge  

E-Print Network [OSTI]

This thesis presents a discussion on the challenges that must be met to fulfill the U.S. Navy's strategic imperatives for its energy vision. It provides an introduction to drop-in replacement biofuels, the options amongst ...

Bhargava, Alok (Alok Kishore)

2011-01-01T23:59:59.000Z

443

Biofuels, Climate Policy and the European Vehicle Fleet  

E-Print Network [OSTI]

We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

Rausch, Sebastian

444

Public Attitudes and Elite Discourse in the Realm of Biofuels  

Broader source: Energy.gov [DOE]

Breakout Session 3D—Building Market Confidence and Understanding III: Engaging Key Audiences in Bioenergy Public Attitudes and Elite Discourse in the Realm of Biofuels Ashlie B. Delshad, Assistant Professor of Political Science, West Chester University of Pennsylvania

445

Impacts of Biofuel Produc3on on Minnesota Agricultural  

E-Print Network [OSTI]

Impacts of Biofuel Produc3on on Minnesota Agricultural Transporta3on Jerry of renewable fuels that must be used each year for transportation fuel, home heating or jet fuel. The volumes

Minnesota, University of

446

The effect of biofuel on the international oil market  

E-Print Network [OSTI]

countries, at times when crude oil prices surged during 2002Texas Intermediate price of crude oil. To this end, we knowcrude oil and biofuels in 2007 (see Table 1). Speci?cally, we use price

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

447

Optimal supply chain and product design of biofuels.  

E-Print Network [OSTI]

??Growth of a biomass-to-biofuels industry has the potential to reduce oil imports, support agriculture and forestry growth, foster a domestic biorefinery industry, and reduce greenhouse… (more)

Marvin, William Alexander

2013-01-01T23:59:59.000Z

448

Algal Biofuels R&D at NREL (Brochure)  

SciTech Connect (OSTI)

An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

Not Available

2012-09-01T23:59:59.000Z

449

Navigating Roadblocks on the Path to Advanced Biofuels Deployment  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Arunas Chesonis, Chief Executive Officer and Chairman of the Board, Sweetwater Energy

450

Transitioning to Biofuels: A System-of-Systems Perspective; Preprint  

SciTech Connect (OSTI)

Using the existing fuel supply chain infrastructure as a framework, this paper discusses a vision for transitioning to a larger biofuels industry and the challenges associated with a massive market and infrastructure transformation.

Riley, C.; Sandor, D.

2008-06-01T23:59:59.000Z

451

The impact of biofuel mandates on land use  

E-Print Network [OSTI]

The use of biofuels in domestic transportation sector in the United States and European Union is attributed mainly to the binding mandates, Renewable Fuel Standard in the US and European Directive on the Promotion of ...

Ahmad, Suhail, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

452

Webinar: Biofuels for the Environment and Communities | Department...  

Broader source: Energy.gov (indexed) [DOE]

to 2:00PM EDT Online The Energy Department (DOE) will present a live webinar titled "Biofuels for the Environment and Communities" on Wednesday April 22, 2015, from 1:00 p.m. to...

453

Workshop on Conversion Technologies for Advanced Biofuels - Bio...  

Broader source: Energy.gov (indexed) [DOE]

Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. ctabwebinarbiooilsintro.pdf...

454

Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies  

SciTech Connect (OSTI)

The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

Soloiu, Valentin

2012-03-31T23:59:59.000Z

455

Support to Biofuels in Latin America and the Caribbean  

Broader source: Energy.gov [DOE]

Breakout Session 3C—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Support to Biofuels in Latin America and the Caribbean Arnaldo Vieira de Carvalho, Lead Energy Specialist, Inter-American Development Bank

456

Air China will conduct China's first biofuel test flight (photo: Boeing announces major initiatives to develop, commercialize and fly sustainable jet biofuels in China  

E-Print Network [OSTI]

Air China will conduct China's first biofuel test flight (photo: Boeing) Boeing announces major initiatives to develop, commercialize and fly sustainable jet biofuels in China Fri 28 May 2010 ­ Boeing a sustainable aviation biofuels industry in the country. The US aircraft manufacturer says the strategic

457

Biofuels Company Builds New Facility in Nebraska | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainable Transportation » BioenergyBiofuelBiofuels

458

Hope or Hype? What is Next for Biofuels? (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Science at the Theater: From the sun to your gas tank: A new breed of biofuels may help solve the global energy challenge and reduce the impact of fossil fuels on global warming. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who are developing ways to convert the solar energy stored in plants into liquid fuels. Jay Keasling is one of the foremost authorities in the ?eld of synthetic biology. He is applying this research toward the production of advanced carbon-neutral biofuels that can replace gasoline on a gallon-for-gallon basis. Keasling is Berkeley Labs Acting Deputy Director and the Chief Executive Of?cer of the U.S. Department of Energys Joint BioEnergy Institute. Jim Bristow is deputy director of programs for the U.S. Department of Energy Joint Genome Institute (JGI), a national user facility in Walnut Creek, CA. He developed and implemented JGIs Community Sequencing Program, which provides large-scale DNA sequencing and analysis to advance genomics related to bioenergy and environmental characterization and cleanup. Susanna Green Tringe is a computational biologist with the U.S. Department of Energy Joint Genome Institute (JGI). She helped pioneer the ?eld of metagenomics, a new strategy for isolating, sequencing, and characterizing DNA extracted directly from environmental samples, such as the contents of the termite gut, which yielded enzymes responsible for breakdown of wood into fuel.

Keasling, Jay; Bristow, Jim; Tringe, Susannah Green

2011-04-28T23:59:59.000Z

459

An Analysis of Wind Power Development in the Town of Hull, MA  

SciTech Connect (OSTI)

Over the past three decades the Town of Hull, MA has solidified its place in U.S. wind energy history through its leadership in community-based generation. This is illustrated by its commissioning of the first commercial-scale wind turbine on the Atlantic coastline, the first suburban-sited turbine in the continental United States, pursuit of community-based offshore wind, and its push toward creating an energy independent community. The town's history and demographics are briefly outlined, followed by experience in projects to provide wind power, including pre-construction and feasibility efforts, financial aspects, and market/industry factors.

Adams, Christopher

2013-06-30T23:59:59.000Z

460

Convex Hull of N Planar Brownian Motions: Exact Results and an Application to Ecology  

E-Print Network [OSTI]

We compute exactly the mean perimeter and area of the convex hull of N independent planar Brownian paths each of duration T, both for open and closed paths. We show that the mean perimeter = \\alpha_N, \\sqrt{T} and the mean area = \\beta_N T for all T. The prefactors \\alpha_N and \\beta_N, computed exactly for all N, increase very slowly (logarithmically) with increasing N. This slow growth is a consequence of extreme value statistics and has interesting implication in ecological context in estimating the home range of a herd of animals with population size N.

Julien Randon-Furling; Satya N. Majumdar; Alain Comtet

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Biofuel supply chain challenges and analysis  

E-Print Network [OSTI]

Liquid fuels such as gasoline and diesel are traditionally derived from petroleum. Since petroleum has the potential to be exhausted, there is interest in large scale production of fuels from renewable sources. Currently, ...

Chung, Sooduck

2010-01-01T23:59:59.000Z

462

NREL Research on Converting Biomass to Liquid Fuels  

ScienceCinema (OSTI)

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

None

2013-05-29T23:59:59.000Z

463

NREL Research on Converting Biomass to Liquid Fuels  

SciTech Connect (OSTI)

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

None

2010-01-01T23:59:59.000Z

464

Enhanced Carbon Concentration in Camelina: Development of a Dedicated, High-value Biofuels Crop  

SciTech Connect (OSTI)

PETRO Project: UMass is developing an enhanced, biofuels-producing variant of Camelina, a drought-resistant, cold-tolerant oilseed crop that can be grown in many places other plants cannot. The team is working to incorporate several genetic traits into Camelina that increases its natural ability to produce oils and add the production of energy-dense terpene molecules that can be easily converted into liquid fuels. UMass is also experimenting with translating a component common in algae to Camelina that should allow the plants to absorb higher levels of carbon dioxide (CO2), which aids in enhancing photosynthesis and fuel conversion. The process will first be demonstrated in tobacco before being applied in Camelina.

None

2012-01-01T23:59:59.000Z

465

Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)  

SciTech Connect (OSTI)

This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

Not Available

2011-10-01T23:59:59.000Z

466

Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels.  

E-Print Network [OSTI]

??Agro-biofuels are expected to reduce the emissions of greenhouse gases because CO2 emitted during the combustion of the biofuels has recently been taken from the… (more)

Ambus, Per

2011-01-01T23:59:59.000Z

467

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness available for the production of bio-product or biofuels. In comparison with wood lignins which contain

Paris-Sud XI, Université de

468

Sustainability standards for biofuels : analyses of the current standards and recommendations of the future direction  

E-Print Network [OSTI]

Past decades have seen development and expansion of biofuels industry around the world thanks to the environmental and economic contribution that biofuels have promised. As more and more people became concerned about the ...

Lee, Leebong

2014-01-01T23:59:59.000Z

469

Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development  

E-Print Network [OSTI]

Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development Jason W and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development. PLoS Genet 7(9): e1002219. doi:10

Sinskey, Anthony J.

470

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness into synthetic biofuels. A gasification step converts the feed into a synthesis gas (CO and H2 mixture), which

Paris-Sud XI, Université de

471

Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders  

Broader source: Energy.gov [DOE]

Breakout Session 3D—Building Market Confidence and Understanding III: Engaging Key Audiences in Bioenergy Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Matt Merritt, Director, Public Relations, POET–DSM Advanced Biofuels

472

Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability  

Broader source: Energy.gov [DOE]

Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

473

Genes related to xylose fermentation and methods of using same for enhanced biofuel production  

DOE Patents [OSTI]

The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

Wohlbach, Dana J.; Gasch, Audrey P.

2014-08-05T23:59:59.000Z

474

I-65, America's First BioFuels Corridor: Timeline and Map  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

65 America's First BioFuels Corridor Timeline www.I65BioFuelsCorridor.com Corridor Partners 1 10 2 5 4 3 6 7 8 9 I 65 America's First BioFuels Corridor Timeline...

475

E85/b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles from Lake Michigan to the Gulf of Mexico E85b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles from Lake...

476

DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise  

Broader source: Energy.gov [DOE]

Plenary I: Progress in Advanced Biofuels DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director–Science and Technology External Affairs, DuPont

477

Impacts of Biofuel Production and Navigation Impediments on Agricultural Transportation and Markets  

E-Print Network [OSTI]

This study investigated the impacts of U.S. biofuel production and barge navigation impediments on agricultural transportation and markets. Both past and future impacts of U.S. biofuel production levels mandated by the Renewable Fuel Standards...

Ahmedov, Zafarbek

2013-08-22T23:59:59.000Z

478

"The Promise and Challenge of Algae as Renewable Sources of Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

"The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 - Transcript "The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 -...

479

I-65, America's First BioFuels Corridor: Timeline and Map | Department...  

Broader source: Energy.gov (indexed) [DOE]

I-65, America's First BioFuels Corridor: Timeline and Map I-65, America's First BioFuels Corridor: Timeline and Map At the May 1, 2008 joint quarterly Web conference of DOE's...

480

Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation...  

Broader source: Energy.gov (indexed) [DOE]

7.8.2011: Cyanobacteria, Biofuels and Next-Generation Batteries Geek-Up7.8.2011: Cyanobacteria, Biofuels and Next-Generation Batteries July 8, 2011 - 5:02pm Addthis Chains of...

Note: This page contains sample records for the topic "hulls biofuels liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

BETO Ranks High in Biofuels Digest's Top 125 in the Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BETO Ranks High in Biofuels Digest's Top 125 in the Advanced Bioeconomy BETO Ranks High in Biofuels Digest's Top 125 in the Advanced Bioeconomy February 6, 2015 - 4:18pm Addthis...

482

Biofuels: Helping to Move the Industry to the Next Level | Department...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels: Helping to Move the Industry to the Next Level Biofuels: Helping to Move the Industry to the Next Level November 16, 2010 - 6:25pm Addthis Jonathan Silver Jonathan Silver...

483

Supply Chain Sustainability Analysis of Three Biofuel Pathways  

SciTech Connect (OSTI)

The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

2013-11-01T23:59:59.000Z

484

E-Print Network 3.0 - advancing biofuels technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crops Federal Initiative Accomplishments Summary: Lignocellulosic Biofuels from New Bioenergy Crops Federal Initiative Accomplishments 2009 Lead... , is developing a...

485

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

Biofuels are a promising form of alternative energy that may replace existing fuel sources such as gasoline, jet

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

486

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

Biofuels are a promising form of alternative energy that may replace existing fuel sources such as gasoline, jet

Dunlop, Mary

2012-01-01T23:59:59.000Z

487

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

cell However, the fuel synthesis stage can be limited by the fact that biofuels are often toxic to microbial

Dunlop, Mary

2012-01-01T23:59:59.000Z

488

Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries  

E-Print Network [OSTI]

A Genome May Reduce Your Carbon Footprint. The Plant Genome,reduce the lifecycle carbon footprint of biofuels. Hence, in

Morrow, III, William R.

2013-01-01T23:59:59.000Z

489

The Recent National Academy of Sciences Study on the Economic and Environmental Impacts of Biofuel Policy  

E-Print Network [OSTI]

The Recent National Academy of Sciences Study on the Economic and Environmental Impacts of Biofuel, Renewable Fuel Standard: Potential Economic and Environmental Effects of U.S. Biofuel Policy. Professor was that the U.S. is unlikely to meet the Renewable Fuel Standard (RFS) for 2022 for cellulosic biofuels. Wally

Ginzel, Matthew

490

Africa Becoming a Biofuel Battleground Western companies are pushing to acquire vast  

E-Print Network [OSTI]

Africa Becoming a Biofuel Battleground Western companies are pushing to acquire vast stretches of African land to meet the world's biofuel needs By Horand Knaup Western companies are pushing to acquire vast stretches of African land to meet the world's biofuel needs. Local farmers and governments

491

16 CSA News March 2013 thanol from corn has been the primary biofuel for liq-  

E-Print Network [OSTI]

16 CSA News March 2013 E thanol from corn has been the primary biofuel for liq- uid fuels in the United States, but perennial cellulosic biofuels are on the horizon. Intensive corn production with large of nitrogen losses on large, tile-drained fields planted with perennial biofuels in the Midwest of the United

DeLucia, Evan H.

492

Review of Optimization Models for Integrated Process Water Networks and their Application to Biofuel Processes  

E-Print Network [OSTI]

to Biofuel Processes Ignacio E. Grossmann1, Mariano MartĂ­n2 and Linlin Yang1 1Department Chemical Engineering of these techniques to biofuel plants, which are known to consume large amounts of water. Introduction. Although water stress [1]. Since chemical, petroleum, and especially biofuel processes consume significant amounts

Grossmann, Ignacio E.

493

SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel production  

E-Print Network [OSTI]

REVIEW AND SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either for biofuel productivity and resilience. We argue that a community engineering approach that manages

494

NextSTEPS White Paper: Four-Page Summary Three Routes Forward for Biofuels1  

E-Print Network [OSTI]

NextSTEPS White Paper: Four-Page Summary Three Routes Forward for Biofuels1: Incremental forward for biofuels and their associated technologies. We seek to: · Highlight policy incentives that encourage certain types of biofuel innovation. · Spotlight the distinctions between the routes in terms

California at Davis, University of

495

Energy Policy 35 (2007) 35503570 Biofuels: What a Biopact between North and South could achieve  

E-Print Network [OSTI]

Energy Policy 35 (2007) 3550­3570 Viewpoint Biofuels: What a Biopact between North and South could, commentators on the world's energy issues have yet to recognize the enormous contribution that biofuels to do with the peaking of oil supplies. Once the equation between biofuels and high-cost, land

496

Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts  

E-Print Network [OSTI]

Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts Willow on recycled paper #12;1 Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts to agricultural production, including growing biofuels, and (ii) Observed Land Supply Response (OLSR

497

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness the Hemicellulosic Fraction of Biomass into Biofuel F. Ben Chaabane and R. Marchal IFP Energies nouvelles the Hemicellulosic Fraction of Biomass into Biofuel -- Hemicelluloses are polymers composed mainly of C5 sugars

Paris-Sud XI, Université de

498

FAPRI-MU Biofuel Baseline FAPRI-MU Report #02-13  

E-Print Network [OSTI]

FAPRI-MU Biofuel Baseline March 2013 FAPRI-MU Report #02-13 Providing objective analysis for more of Education, Office of Civil Rights. #12;1 Executive Summary This report takes a closer look at the biofuels portion of the U.S. Agricultural and Biofuels Baseline released by the Food and Agricultural Policy

Noble, James S.

499

Climate change and health costs of air emissions from biofuels and gasoline  

E-Print Network [OSTI]

Climate change and health costs of air emissions from biofuels and gasoline Jason Hilla,b,1 on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels. fine particulate matter ethanol

Weiblen, George D

500

BIOFUELS FOR TRANSPORT IN THE 21st WHY FIRE SAFETY IS A REAL ISSUE  

E-Print Network [OSTI]

BIOFUELS FOR TRANSPORT IN THE 21st CENTURY: WHY FIRE SAFETY IS A REAL ISSUE Guy Marlair1 , Patricia's), with thé new century venue we are assisting of a booming industry regarding biofuels of biofuels for transport. This contribution is a fîrst output from a National research program named

Paris-Sud XI, Université de