National Library of Energy BETA

Sample records for hrc hydrogen release

  1. Cryogenic hydrogen release research.

    SciTech Connect (OSTI)

    LaFleur, Angela Christine

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  2. Hydrogen Release Behavior | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Release Behavior Hydrogen Release Behavior 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. scs_06_moen.pdf (2.28 MB) More Documents & Publications US DRIVE Hydrogen Codes and Standards Technical Team Roadmap Hydrogen.PDF Overview of HyRAM (Hydrogen Risk Assessment Models) Software for Science-Based Safety, Codes, and Standards Webinar Overview of HyRAM (Hydrogen Risk Assessment Models) Software for

  3. Method for releasing hydrogen from ammonia borane

    DOE Patents [OSTI]

    Varma, Arvind; Diwan, Moiz; Shafirovich, Evgeny; Hwang, Hyun-Tae; Al-Kukhun, Ahmad

    2013-02-19

    A method of releasing hydrogen from ammonia borane is disclosed. The method comprises heating an aqueous ammonia borane solution to between about 80-135.degree. C. at between about 14.7 and 200 pounds per square inch absolute (psia) to release hydrogen by hydrothermolysis.

  4. Composition and method for storing and releasing hydrogen

    DOE Patents [OSTI]

    Thorn, David L.; Tumas, William; Ott, Kevin C.; Burrell, Anthony K.

    2010-06-15

    A chemical system for storing and releasing hydrogen utilizes an endothermic reaction that releases hydrogen coupled to an exothermic reaction to drive the process thermodynamically, or an exothermic reaction that releases hydrogen coupled to an endothermic reaction.

  5. Design of the cryogenic hydrogen release laboratory

    SciTech Connect (OSTI)

    Hecht, Ethan S.; Zimmerman, Mark D.; LaFleur, Angela Christine; Ciotti, Michael

    2015-09-01

    A cooperative research and development agreement was made between Linde, LLC and Sandia to develop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. A three-stage heat exchanger will be used to cool gaseous hydrogen using liquid nitrogen, gaseous helium, and liquid helium. A cryogenic line from the heat exchanger into the lab will allow high-fidelity diagnostics already in place in the lab to be applied to cold hydrogen jets. Data from these experiments will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  6. Nano Structure Control and Selectivity of Hydrogen Release from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Structure Control and Selectivity of Hydrogen Release from Hydrogen Storage Pacific Northwest National Laboratory Contact PNNL About This Technology Illustration depicting...

  7. Controlling Foaming in Hydrogen Release from Boranes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Foaming in Hydrogen Release from Boranes Pacific Northwest National Laboratory Contact PNNL About This Technology From left to right: 100mg ammonia borane (AB) pellet;...

  8. Summary of gas release events detected by hydrogen monitoring

    SciTech Connect (OSTI)

    MCCAIN, D.J.

    1999-05-18

    This paper summarizes the results of monitoring tank headspace for flammable gas release events. In over 40 tank years of monitoring the largest detected release in a single-shell tank is 2.4 cubic meters of Hydrogen. In the double-shell tanks the largest release is 19.3 cubic meters except in SY-101 pre mixer pump installation condition.

  9. Hydrogen Centers of Excellence - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Centers of Excellence April 27, 2004 Golden, Colo. - Secretary of Energy Spencer Abraham announced that the Department of Energy (DOE) has selected more than $150 million in hydrogen storage research projects to support President Bush's Hydrogen Fuel Initiative. The awards include the formation of three "Centers of Excellence," at the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory, integrating the expertise of the DOE

  10. Evaluation of sustained release polylactate electron donors for removal of hexavalent chromium from contaminated groundwater

    SciTech Connect (OSTI)

    Brodie, E.L.; Joyner, D. C.; Faybishenko, B.; Conrad, M. E.; Rios-Velazquez, C.; Mork, B.; Willet, A.; Koenigsberg, S.; Herman, D.; Firestone, M. K.; Hazen, T. C.; Malave, Josue; Martinez, Ramon

    2011-02-15

    To evaluate the efficacy of bioimmobilization of Cr(VI) in groundwater at the Department of Energy Hanford site, we conducted a series of microcosm experiments using a range of commercial electron donors with varying degrees of lactate polymerization (polylactate). These experiments were conducted using Hanford Formation sediments (coarse sand and gravel) immersed in Hanford groundwater, which were amended with Cr(VI) and several types of lactate-based electron donors (Hydrogen Release Compound, HRC; primer-HRC, pHRC; extended release HRC) and the polylactate-cysteine form (Metal Remediation Compound, MRC). The results showed that polylactate compounds stimulated an increase in bacterial biomass and activity to a greater extent than sodium lactate when applied at equivalent carbon concentrations. At the same time, concentrations of headspace hydrogen and methane increased and correlated with changes in the microbial community structure. Enrichment of Pseudomonas spp. occurred with all lactate additions, and enrichment of sulfate-reducing Desulfosporosinus spp. occurred with almost complete sulfate reduction. The results of these experiments demonstrate that amendment with the pHRC and MRC forms result in effective removal of Cr(VI) from solution most likely by both direct (enzymatic) and indirect (microbially generated reductant) mechanisms.

  11. Hydrogen Isotope Research Center (HRC), University of Toyama

    Broader source: Energy.gov [DOE]

    Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014.

  12. Hydrogen Release from Simulated Sludge and Saltcake

    SciTech Connect (OSTI)

    Peterson, R.A.

    1999-01-05

    This report describes the results of the Savannah River Technology Center (SRTC) program to address bubble gas release potential as requested by Concentration, Storage and Transfer Engineering. Researchers from the Waste Processing Technology Section (WPTS) and Immobilization Technology Section (ITS) contributed to the results presented.

  13. Kinetics Study of Solid Ammonia Borane Hydrogen Release Modeling and Experimental Validation for Chemical Hydrogen Storage

    SciTech Connect (OSTI)

    Choi, Yong-Joon; Ronnebro, Ewa; Rassat, Scot D.; Karkamkar, Abhijeet J.; Maupin, Gary D.; Holladay, Jamelyn D.; Simmons, Kevin L.; Brooks, Kriston P.

    2014-02-24

    Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which 16.2 wt% hydrogen can be utilized below 200C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300C using both experiments and modeling. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ~20C lower than neat AB and at a rate that is two times faster. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; Auger and fixed bed. The current Auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.

  14. Bulk-scaffolded hydrogen storage and releasing materials and methods for preparing and using same

    DOE Patents [OSTI]

    Autrey, S Thomas [West Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Gutowska, Anna [Richland, WA; Li, Liyu [Richland, WA; Li, Xiaohong S [Richland, WA; Shin, Yongsoon [Richland, WA

    2011-06-21

    Compositions are disclosed for storing and releasing hydrogen and methods for preparing and using same. These hydrogen storage and releasing materials exhibit fast release rates at low release temperatures without unwanted side reactions, thus preserving desired levels of purity and enabling applications in combustion and fuel cell applications.

  15. FY16 SBIR Phase II Release 1 Awards Announced: Includes Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contaminants Detection, Fuel Cell and Hydrogen Catalysis, and Alkaline Membrane Electrolysis | Department of Energy FY16 SBIR Phase II Release 1 Awards Announced: Includes Hydrogen Contaminants Detection, Fuel Cell and Hydrogen Catalysis, and Alkaline Membrane Electrolysis FY16 SBIR Phase II Release 1 Awards Announced: Includes Hydrogen Contaminants Detection, Fuel Cell and Hydrogen Catalysis, and Alkaline Membrane Electrolysis March 25, 2016 - 10:41am Addthis The Energy Department has

  16. Materials for storage and release of hydrogen and methods for preparing and using same

    DOE Patents [OSTI]

    Autrey, Thomas S.; Gutowska, Anna; Shin, Yongsoon; Li, Liyu

    2008-01-08

    The invention relates to materials for storing and releasing hydrogen and methods for preparing and using same. The materials exhibit fast release rates at low release temperatures and are suitable as fuel and/or hydrogen sources for a variety of applications such as automobile engines.

  17. Hydrogen Storage in Nano-Phase Diamond at High Temperature and Its Release

    SciTech Connect (OSTI)

    Tushar K Ghosh

    2008-10-13

    The objectives of this proposed research were: 91) Separation and storage of hydrogen on nanophase diamonds. It is expected that the produced hydrogen, which will be in a mixture, can be directed to a nanophase diamond system directly, which will not only store the hydrogen, but also separate it from the gas mixture, and (2) release of the stored hydrogen from the nanophase diamond.

  18. SBIR/STTR FY16 Phase 1 Release 1 Topics Announced-Includes Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production and Fuel Cell Membrane Topics SBIRSTTR FY16 Phase 1 Release 1 Topics Announced-Includes Hydrogen Production and Fuel Cell Membrane Topics August 18, 2015 - ...

  19. FY16 SBIR Phase II Release 1 Awards Announced: Includes Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    commercializing the first alkaline membrane-based water electrolysis product through ... Hydrogen Production and Fuel Cell Membrane Topics SBIRSTTR FY15 Phase 1 Release 2 ...

  20. NREL Dedicates Advanced Hydrogen Fueling Station - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) today dedicated its 700 bar hydrogen fueling station, the first of its kind in Colorado and in the national lab system, as part of a celebration of National Hydrogen and Fuel Cell Day. The fueling station is part of NREL's new Hydrogen Infrastructure Testing and Research Facility (HITRF), where scientists

  1. SBIR/STTR FY16 Phase I Release 2 Topics Announced-Includes Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery and Two Technology Transfer Opportunities | Department of Energy I Release 2 Topics Announced-Includes Hydrogen Delivery and Two Technology Transfer Opportunities SBIR/STTR FY16 Phase I Release 2 Topics Announced-Includes Hydrogen Delivery and Two Technology Transfer Opportunities November 13, 2015 - 12:22pm Addthis The U.S. Department of Energy has announced the 2016 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Topics,

  2. SBIR/STTR FY16 Phase 1 Release 1 Topics Announced-Includes Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production and Fuel Cell Membrane Topics | Department of Energy 1 Release 1 Topics Announced-Includes Hydrogen Production and Fuel Cell Membrane Topics SBIR/STTR FY16 Phase 1 Release 1 Topics Announced-Includes Hydrogen Production and Fuel Cell Membrane Topics August 18, 2015 - 4:55pm Addthis The U.S. Department of Energy has announced the 2016 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 Topics, including hydrogen production from

  3. SBIR/STTR Release 2 Topics Announced-Includes Hydrogen and Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Topics Announced-Includes Hydrogen and Fuel Cells SBIR/STTR Release 2 Topics Announced-Includes Hydrogen and Fuel Cells October 31, 2014 - 12:05pm Addthis The 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 topics have been released and include two hydrogen and fuel cell related topics: fuel cell-battery electric hybrid trucks and in-line quality control devices for polymer electrolyte membrane (PEM) fuel

  4. NREL Research Advances Hydrogen Production Efforts - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Research Advances Hydrogen Production Efforts December 21, 2015 Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have made advances toward affordable photoelectrochemical (PEC) production of hydrogen. NREL's scientists took a different approach to the PEC process, which uses solar energy to split water into hydrogen and oxygen. The process requires special semiconductors, the PEC materials and catalysts to split the water. Previous work used precious metals

  5. Laboratory Licenses Hydrogen Sensor Technology - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Licenses Hydrogen Sensor Technology Nuclear Filter Technology Awarded Licenses for Fiber Optic Hydrogen Sensor February 23, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) today announced that Nuclear Filter Technology (NucFil) has been awarded licenses to manufacture Fiber Optic Hydrogen Sensors. The licenses, together with a Cooperative Research and Development Agreement (CRADA), allow NucFil to work with scientists and engineers at

  6. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 December 28, 2009 NREL Experiments Advance Hydrogen-Production Technology Recent experiments mark a significant step forward for the photoelectrochemical hydrogen-production process. December 16, 2009 NREL Spearheads Development of Fuel Cell Power Model The Fuel Cell Power Model is a financial tool for analyzing high-temperature, fuel cell-based tri-generation systems. December 11, 2009 Workshop Highlights Near-Term Applications for Renewable Hydrogen Technologies Co-hosted by NREL, the

  7. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 December 14, 2010 Hydrogen Bus Lets Lab Visitors Glimpse Future The hydrogen bus uses the same basic technology as a conventional gasoline-powered engine but runs on renewable hydrogen. October 25, 2010 New Report Identifies Ways to Reduce Cost of Fuel Cell Power Plants A new report by the National Renewable Energy Laboratory details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing

  8. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 December 12, 2011 Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles These projects will help lower the costs and increase the performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. December 6, 2011 DOE Launches Comprehensive Hydrogen Storage Materials Clearinghouse Free access resource aims to accelerate advanced materials research and

  9. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 December 9, 2014 SBIR/STTR Funding Opportunity Deadline December 15-Includes Hydrogen and Fuel Cells This opportunity includes two hydrogen- and fuel cell-related topics: in-line quality control devices for polymer electrolyte membrane (PEM) fuel cells, which is a Technology Transfer Opportunity to leverage NREL technology, and fuel cell-battery electric hybrid trucks. November 12, 2014 Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology

  10. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 December 21, 2015 NREL Research Advances Hydrogen Production Efforts Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have made advances toward affordable photoelectrochemical (PEC) production of hydrogen. December 4, 2015 From the EERE Blog: Colorado Joins the Hydrogen and Fuel Cells Race The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) recently posted a blog about how the state of Colorado is quickly gaining momentum in the

  11. Apparatus and methods for storing and releasing hydrogen

    DOE Patents [OSTI]

    Heung, Leung K.

    2000-01-01

    A rechargeable device that stores and discharges hydrogen is described. The device stores hydrogen in a solid form and supplies hydrogen as a gas when needed. The solid storage medium may be metal hydride in a ground particle form that avoids the need for compaction or other treatment. Dividers partition a container into separate chambers, each provided with a matrix, formed from an appropriate material like a thermally-conductive aluminum foam, which forms a number of cells. For proper chamber size, the ratio of chamber length to container diameter should be between about 0.5 and 2. Metal hydride particles (or other hydrogen storage medium) may be placed within the cells, which help prevent excessive particle settling. The container is provided with a hydrogen transfer port through which hydrogen gas passes upon either discharging from or charging of the metal hydride particles. A filter may be placed within the port to allow hydrogen to flow but prevent particles from escaping. A heat transferring surface is formed by, for instance, a channel that is thermally coupled with the aluminum foam. Fluid flows through the channel to deliver or remove heat during the respective hydrogen discharging or charging processes.

  12. Apparatus and methods for storing and releasing hydrogen

    DOE Patents [OSTI]

    Heung, Leung K.

    2001-01-01

    A rechargeable device that stores and discharges hydrogen is described. The device stores hydrogen in a solid form and supplies hydrogen as a gas when needed. The solid storage medium may be metal hydride in a ground particle form that avoids the need for compaction or other treatment. Dividers partition a container into separate chambers, each provided with a matrix, formed from an appropriate material like a thermally-conductive aluminum foam, which forms a number of cells. For proper chamber size, the ratio of chamber length to container diameter should be between about 0.5 and 2. Metal hydride particles (or other hydrogen storage medium) may be placed within the cells, which help prevent excessive particle settling. The container is provided with a hydrogen transfer port through which hydrogen gas passes upon either discharging from or charging of the metal hydride particles. A filter may be placed within the port to allow hydrogen to flow but prevent particles from escaping. A heat transferring surface is formed by, for instance, a channel that is thermally coupled with the aluminum foam. Fluid flows through the channel to deliver or remove heat during the respective hydrogen discharging or charging processes.

  13. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 December 5, 2012 New Report Shows Hydrogen and Fuel Cells Industry Supported by Federal Investments A new report focuses on how advanced fuel cell technologies are helping American businesses reduce their energy costs and are driving new market opportunities in the United States. November 8, 2012 NREL Receives Numerous Accolades from Industry and DOE The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) and its employees have garnered awards and recognition from

  14. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 November 4, 2013 New Book Sheds Light on Photoelectrochemical Water Splitting A new book, published as a "Springer Brief in Energy," serves as a how-to guide for researchers engaged in the rapidly growing field of photoelectrochemical water splitting, a promising renewable hydrogen production technology. October 28, 2013 Collaboration Focuses on Cost Effectively Boosting the Performance of Methanol Fuel Cells The results of a collaboration between scientists at the National Renewable

  15. Two step novel hydrogen system using additives to enhance hydrogen release from the hydrolysis of alane and activated aluminum

    SciTech Connect (OSTI)

    Zidan, Ragaiy; Teprovich, Joseph A.; Motyka, Theodore

    2015-12-01

    A system for the generation of hydrogen for use in portable power systems is set forth utilizing a two-step process that involves the thermal decomposition of AlH.sub.3 (10 wt % H.sub.2) followed by the hydrolysis of the activated aluminum (Al*) byproduct to release additional H.sub.2. Additionally, a process in which water is added directly without prior history to the AlH.sub.3:PA composite is also disclosed.

  16. Kinetic and Thermodynamic Investigation of Hydrogen Release from Ethane 1,2-di-amineborane

    SciTech Connect (OSTI)

    Neiner, Doinita; Karkamkar, Abhijeet J.; Bowden, Mark; Choi, Young Joon; Luedtke, Avery T.; Holladay, Jamelyn D.; Fisher, Allison M.; Szymczak, Nathaniel; Autrey, Thomas

    2011-07-18

    The thermodynamics and kinetics of hydrogen (H2) release from ethane 1,2-di-amineborane (EDAB, BH3NH2CH2CH2NH2BH3) were measured using Calvet and differential scanning calorimetry (DSC), pressure-composition isotherms, and volumetric gas-burette experiments. The results presented here indicate that EDAB releases ~ 9 wt.% H2 at temperatures ranging from 100 C to 200 C in two moderately exothermic steps, approximately -101 kJ/mol H2 and -3.81 kJ/mol H2. Isothermal kinetic analysis shows that EDAB is more stable than ammonia borane (AB) at temperatures lower than 100C; however, the rates of hydrogen release are faster for EDAB than for AB at temperatures higher than 120C. In addition, no volatile impurities in the H2 released by EDAB were detected by mass spectrometry upon heating with 1C/min to 200C in a calorimeter.

  17. Hydrogen Gas Retention and Release from WTP Vessels: Summary of Preliminary Studies

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Mahoney, Lenna A.; Rassat, Scot D.; Wells, Beric E.; Bao, Jie; Boeringa, Gregory K.; Buchmiller, William C.; Burns, Carolyn A.; Chun, Jaehun; Karri, Naveen K.; Li, Huidong; Tran, Diana N.

    2015-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release from Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design

  18. SBIR/STTR FY16 Phase 1 Release 2 Topics AnnouncedIncludes Hydrogen Delivery and Two Technology Transfer Opportunities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2016 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Topics, including magnetocaloric materials development for hydrogen delivery and two technology transfer opportunities.

  19. Final Report for the DOE-BES Program Mechanistic Studies of Activated Hydrogen Release from Amine-Boranes

    SciTech Connect (OSTI)

    Larry G. Sneddon; R. Thomas Baker

    2013-01-13

    Effective storage of hydrogen presents one of the most significant technical gaps to successful implementation of the hydrogen economy, particularly for transportation applications. Amine boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been identified as promising, high-capacity chemical hydrogen storage media containing potentially readily released protic (N-H) and hydridic (B-H) hydrogens. At the outset of our studies, dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each significantly increase both the rate and extent of hydrogen release from amine boranes under moderate conditions. Our studies also showed that depending upon the activation method, hydrogen release from amine boranes can occur by very different mechanistic steps and yield different types of spent-fuel materials. The fundamental understanding that was developed during this grant of the pathways and controlling factors for each of these hydrogen-release mechanisms is now enabling continuing discovery and optimization of new chemical-hydride based hydrogen storage systems.

  20. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases

    SciTech Connect (OSTI)

    Peterson, S

    2007-08-15

    Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

  1. SBIR/STTR Phase I Release 1 Award Winners Announced, Includes Four Hydrogen and Fuel Cell Projects

    Broader source: Energy.gov [DOE]

    The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 award winners, including four hydrogen and fuel cell projects in Arizona, Massachusetts, and South Carolina.

  2. SBIR/STTR Phase II Release 1 Award Winners Announced, Includes Two Hydrogen and Fuel Cell Projects

    Broader source: Energy.gov [DOE]

    The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase II Release 1 award winners, including two hydrogen and fuel cell projects in Colorado and New Jersey.

  3. Hydrogen recombiner catalyst test supporting data

    SciTech Connect (OSTI)

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  4. NREL, Xcel Energy Sign Wind to Hydrogen Research Agreement - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL, Xcel Energy Sign Wind to Hydrogen Research Agreement May 8, 2006 Golden, Colo. - The U.S. Department of Energy's (DOE), National Renewable Energy Laboratory (NREL) and Xcel Energy (NYSE: XEL) recently signed a cooperative agreement for an innovative "wind to hydrogen" research, development and demonstration project. Researchers will analyze and compare hydrogen production from wind power and the electric grid. The hydrogen will be produced through electrolysis-the

  5. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  6. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  7. Experimental "Wind to Hydrogen" System Up and Running - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Experimental "Wind to Hydrogen" System Up and Running December 14, 2006 Xcel Energy (NYSE:XEL) and the U.S. Department of Energy's National Renewable Energy Laboratory today unveiled a unique facility that uses electricity from wind turbines to produce and store pure hydrogen, offering what may become an important new template for future energy production. Several dozen journalists, environmental leaders, government officials and Xcel Energy managers today toured the joint

  8. SBIR/STTR FY15 Release 1 Awards Announced—Includes Fuel Cell Catalyst and Hydrogen Contamination Detection R&D

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 Awards, including projects focusing on non-platinum catalysts for fuel cells and detection of contaminants in hydrogen.

  9. Hydrogen.PDF | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen.PDF Hydrogen.PDF Hydrogen.PDF 871916.pdf (1.66 MB) More Documents & Publications Hydrogen Release Behavior Safetygram Gaseous Hydrogen Hydrogen Fuel Cell Engines and Related Technologies Course Manual

  10. SNL Issues Notice of Intent to Release a Request for Quotation for a Hydrogen Station Test Device

    Broader source: Energy.gov [DOE]

    In support of DOE's Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) project launched in April 2014, Sandia National Laboratories (SNL) has posted a notice of intent to issue a Request for Quotation for hydrogen station equipment performance testing device fabrication.

  11. FY17 SBIR Phase I Release 1 FOA Released: Includes Fuel Cell...

    Energy Savers [EERE]

    FY17 SBIR Phase I Release 1 FOA Released: Includes Fuel Cell Catalysts and Hydrogen Delivery FY17 SBIR Phase I Release 1 FOA Released: Includes Fuel Cell Catalysts and Hydrogen ...

  12. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    email mikep@fnal.gov For Immediate Release NRELs John Turner Explores The Sustainable Hydrogen Economy in Energy Colloquium Presentation at Fermilab on Wednesday, July 6;...

  13. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  14. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  15. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  16. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas. Electricity-from the grid or from renewable sources such as wind, solar, geothermal, or biomass-is also currently used to produce hydrogen. In the longer term, solar energy and biomass can be used more directly to generate hydrogen. Natural Gas and Other Fossil Fuels Fossil fuels can be reformed to release the hydrogen from

  17. High capacity hydrogen storage nanocomposite materials

    DOE Patents [OSTI]

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  18. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay Keller of Sandia National Laboratories at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_2_keller.pdf (3.5 MB) More Documents & Publications US DRIVE Hydrogen Codes and Standards Technical Team Roadmap Hydrogen Release Behavior Overview of HyRAM (Hydrogen

  19. News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases News Releases We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. News Releases - 2016» News Releases - 2015» News Releases - 2014» News Releases - 2013» News Releases - 2012» News Releases - 2011» News Releases - 2010» News Releases - 2009» News Releases - 2008» The thermal traits of a leaf, critical for photosynthesis, may be under strong evolutionary selection

  20. スライド 1

    Office of Environmental Management (EM)

    Hydrogen Isotope Research Center (HRC), University of Toyama HRC is one of the largest ... of tritium for fusion reactors (2) Hydrogen isotope behaviors in fusion reactor ...

  1. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary

    SciTech Connect (OSTI)

    Peterson, S

    2007-09-05

    Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an

  2. Fuel cell using a hydrogen generation system

    DOE Patents [OSTI]

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  3. 2006 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search News Search December 14, 2006 Experimental "Wind to Hydrogen" System Up and Running Xcel Energy and the National Renewable Energy Laboratory unveiled a unique facility that uses electricity from wind turbines to produce and store pure hydrogen. November 28, 2006 University of Denver High School Teacher Recognized for Commitment to Renewable Energy Don Cameron,

  4. Prediction of Peak Hydrogen Concentrations for Deep Sludge Retrieval in Tanks AN-101 and AN-106 from Historical Data of Spontaneous Gas Release Events

    SciTech Connect (OSTI)

    Wells, Beric E.; Cooley, Scott K.; Meacham, Joseph E.

    2013-10-21

    Radioactive and chemical wastes from nuclear fuel processing are stored in large underground storage tanks at the Hanford Site. The Tank Operations Contractor is continuing a program of moving solid wastes from single-shell tanks (SSTs) to double-shell tanks (DSTs) and preparing for waste feed delivery (WFD). A new mechanism for a large spontaneous gas release event (GRE) in deep sludge sediments has been postulated. The creation of this potential new GRE hazard, deep sludge gas release events (DSGREs), is the retrieval of sludge waste into a single DST that results in a sediment depth greater than operating experience has demonstrated is safe. The Tank Operations Contractor program of moving solid wastes from SSTs to DSTs and preparing for WFD is being negatively impacted by this sediment depth limit.

  5. Container and method for absorbing and reducing hydrogen concentration

    DOE Patents [OSTI]

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  6. The mobile phase in coals: Its nature and modes of release: Final report: Part 1, Structural inferences from dry catalytic hydrogenation of a subbituminous coal

    SciTech Connect (OSTI)

    Terrer, M.T.; Derbyshire, F.J.

    1986-12-01

    In a study to provide insight into the two component structural model of coal and the mechanisms of coal liquefaction, an approach was adopted in which a subbituminous coal was reacted with hydrogen in the presence of an impregnated molybdenum sulphide catalyst and in the absence of solvent. Reactions were conducted at temperatures between 300 and 400/sup 0/C and for reaction times up to 180 min. The composition and yields of gaseous products, chloroform-soluble liquids and insoluble residues were followed as a function of the reaction conditions by means of different analytical and characterization techniques: gas chromatography; /sup 1/H NMR; elemental analysis; FTIR; solvent swelling in pyridine. 105 refs., 20 figs., 12 tabs.

  7. Extremely weak hydrogen flames

    SciTech Connect (OSTI)

    Lecoustre, V.R.; Sunderland, P.B. [Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742 (United States); Chao, B.H. [Department of Mechanical Engineering, University of Hawaii, Honolulu, HI 96822 (United States); Axelbaum, R.L. [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  8. Hydrogen Production Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes Hydrogen Production Processes Hydrogen can be produced using a number of different processes. Thermochemical processes use heat and chemical reactions to release hydrogen from organic materials such as fossil fuels and biomass. Water (H2O) can be split into hydrogen (H2) and oxygen (O2) using electrolysis or solar energy. Microorganisms such as bacteria and algae can produce hydrogen through biological processes. Thermochemical Processes Some thermal processes use the energy in various

  9. Complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  10. NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model

    SciTech Connect (OSTI)

    Chattopadhyay, Mitali; Kodela, Ravinder; Olson, Kenneth R.; Kashfi, Khosrow

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer NOSH-aspirin is the first dual acting NO and H{sub 2}S releasing hybrid. Black-Right-Pointing-Pointer Its IC{sub 50} for cell growth inhibition is in the low nano-molar range. Black-Right-Pointing-Pointer Structure-activity studies show that the sum of the parts does not equal the whole. Black-Right-Pointing-Pointer NOSH-aspirin reduced tumor growth by 85% in mice bearing a colon cancer xenograft. -- Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) are prototypical anti-cancer agents. However, their long-term use is associated with adverse gastrointestinal effects. Recognition that endogenous gaseous mediators, nitric oxide (NO) and hydrogen sulfide (H{sub 2}S) can increase mucosal defense mechanisms has led to the development of NO- and H{sub 2}S-releasing NSAIDs with increased safety profiles. Here we report on a new hybrid, NOSH-aspirin, which is an NO- and H{sub 2}S-releasing agent. NOSH-aspirin inhibited HT-29 colon cancer growth with IC{sub 50}s of 45.5 {+-} 2.5, 19.7 {+-} 3.3, and 7.7 {+-} 2.2 nM at 24, 48, and 72 h, respectively. This is the first NSAID based agent with such high degree of potency. NOSH-aspirin inhibited cell proliferation, induced apoptosis, and caused G{sub 0}/G{sub 1} cell cycle block. Reconstitution and structure-activity studies representing a fairly close approximation to the intact molecule showed that NOSH-aspirin was 9000-fold more potent than the sum of its parts towards growth inhibition. NOSH-aspirin inhibited ovine COX-1 more than ovine COX-2. NOSH-ASA treatment of mice bearing a human colon cancer xenograft caused a reduction in volume of 85%. Taken together, these results demonstrate that NOSH-aspirin has strong anti-cancer potential and merits further evaluation.

  11. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  12. Autothermal hydrogen storage and delivery systems

    DOE Patents [OSTI]

    Pez, Guido Peter; Cooper, Alan Charles; Scott, Aaron Raymond

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  13. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an excess flow shut-off valve. Hydrogen tanks also have a pressure release device, much like those on natural gas water heaters in our homes. If a leak is

  14. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  15. News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases News Releases Accessible by Topic, Keywords (See "Search Releases") or Chronologically (See "ALL") News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets The thermal traits of a leaf, critical for photosynthesis, may be under strong evolutionary selection that occurs in response to environmental temperatures. Here a thermal leaf image details temperature variation, which greatly affects plant functions since

  16. Hydrogen-storing hydride complexes

    DOE Patents [OSTI]

    Srinivasan, Sesha S.; Niemann, Michael U.; Goswami, D. Yogi; Stefanakos, Elias K.

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  17. Hydrogen Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency » Vehicles » Hydrogen & Fuel Cells Hydrogen & Fuel Cells Watch this video to find out how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. Learn more about hydrogen and fuel cell technology basics. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial

  18. Catalyzed borohydrides for hydrogen storage

    DOE Patents [OSTI]

    Au, Ming

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  19. Workshop Tackles Biological Hydrogen Production - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The primary objective of the workshop was to define the future role of biotechnology, biomimetic chemistry and artificial photosynthesis in the development of innovative ...

  20. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    DOE Patents [OSTI]

    Lueking, Angela; Narayanan, Deepa

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  1. Hydrogen sensor (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Hydrogen sensor Title: Hydrogen sensor A hydrogen sensor for detectingquantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites ...

  2. FINAL RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE AWARDEE: ____________________________________________________ The work under Award No. DE-__________________________, dated ______________, between the United States of America (represented by the Department of Energy, National Energy Technology Laboratory, and the undersigned awardee, having been completed and finally accepted , and in consideration of Final Payment thereunder, the United States of America, its officers, agents and employees are hereby released from all liabilities,

  3. Hydrogen Analysis

    Broader source: Energy.gov [DOE]

    Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  4. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  5. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  6. Press Releases | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial

  7. Press Releases | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial

  8. Press Releases | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial

  9. Hydrogen Scenarios

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OnLocation, Inc., Energy Systems Consulting 1 Hydrogen Scenarios Presentation to the Hydrogen Delivery Analysis Meeting by Frances Wood OnLocation, Inc. Energy Systems Consulting May 9, 2007 OnLocation, Inc., Energy Systems Consulting 2 Outline * Brief summary of NEMS-H2 model * Representation of Hydrogen Delivery * Hydrogen Demand Sensitivities * Integration and Energy System Impacts - A Carbon Policy Scenario Example OnLocation, Inc., Energy Systems Consulting 3 NEMS-H2 Overview OnLocation,

  10. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  11. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  12. Hydrogen Storage

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well as the technical challenges and research goals for storing hydrogen on board a vehicle.

  13. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  14. Helium Release Behavior of Aged Titanium Tritides

    SciTech Connect (OSTI)

    SHANAHAN, KIRKL.

    2004-07-27

    One sample of bulk Ti has been loaded with a 50 per cent / 50 per cent deuterium/tritium mixture and statically aged for 6.5 years. Thermal desorption of the sample shows an initial release of hydrogen isotopes followed by 3He release. Subsequent D2 loading/desorption was used to quantify the trapped tritium heel. The sample shows an excess hydrogen capacity as a second thermal desorption peak that partially disappears and shifts with annealing at 923-973K. The main hydrogen desorption peak also shifts to higher temperature, indicating a partial reversal of the tritium-decay induced damage by annealing.

  15. Interested in Hydrogen and Fuel Cell Technologies? Help Shape...

    Broader source: Energy.gov (indexed) [DOE]

    The Energy Department recently released a new video in its popular Energy 101 series showing how fuel cell technology generates clean electricity from hydrogen to power our ...

  16. U.S. DRIVE Partnership Releases Accomplishments Report

    Broader source: Energy.gov [DOE]

    The U.S. DRIVE Partnership has released its 2014 Accomplishments Report, which includes significant technical accomplishments in advanced combustion and emission control, electrical and electronics, electrochemical energy storage, fuel cells, materials, vehicle systems analysis, codes and standards, hydrogen storage, grid interaction, fuel pathway integration, hydrogen delivery, and hydrogen production.

  17. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen can be produced using diverse, domestic resources. Fossil fuels, such as natural gas and coal, can be converted to produce hydrogen, and the use of carbon capture, utilization, and storage can reduce the carbon footprint of these processes. Hydrogen can also be produced from low carbon and renewable resources, including biomass grown from non-food crops and splitting water using electricity from wind, solar, geothermal, nuclear, and hydroelectric. This diversity of potential

  18. Hydrogen Liquefaction

    Broader source: Energy.gov (indexed) [DOE]

    Equilibrium Liquid Hydrogen is 0.2% Ortho, 99.8% Para 3 Liquid Supply North America ... Forecourt: attributes & challenges (NFPA-55) Energy & Capital: LH2 will ...

  19. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Dispensing Hydrogen Fuel to Vehicles Dispensing Hydrogen Fuel to Vehicles Photo of a person dispensing hydrogen into a vehicle fuel tank The technology used for storing hydrogen onboard vehicles directly affects the design and selection of the delivery system and infrastructure. In the near term, 700 bar gaseous onboard storage has been chosen by the original equipment manufacturers for the first vehicles to be released commercially, and 350 bar is the chosen pressure for

  20. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search TODO: Add description Related Links List of Companies in Hydrogen Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from...

  1. Hydrogen Bibliography

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  2. Hydrogen Fusion An Opportunity for Global Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process of Hydrogen Fusion Hydrogen fusion, the process that powers our sun and the stars, is the most fundamental energy source in the visible universe. Directly, it provides sunlight, while indirectly it is the driver behind all "renewable" energies (solar-thermal and photovoltaic, wind, biomass and ocean- thermal). Even the fossil fuels (oil, gas and coal), which were derived over long periods of time from ancient biomass, are by-products of hydrogen fusion. The energy released

  3. code release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    code release - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  4. Container for hydrogen isotopes

    DOE Patents [OSTI]

    Solomon, David E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  5. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  6. Renewable Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen NREL Hydrogen Technologies and Systems Center Dr. Robert J. Remick November 16, 2009 NREL/PR-560-47433 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. U.S. Dependence on Imported Oil National Renewable Energy Laboratory Innovation for Our Energy Future 2 Energy Solutions are Challenging We need a balanced portfolio of options- including clean, domestic energy

  7. SBIR/STTR FY15 Release 1 Awards Announced-Includes Fuel Cell...

    Energy Savers [EERE]

    Release 1 Awards Announced-Includes Fuel Cell Catalyst and Hydrogen Contamination Detection R&D SBIR... DOE's key hydrogen objectives are to reduce the cost of producing and ...

  8. Morphology of Gas Release in Physical Simulants

    SciTech Connect (OSTI)

    Daniel, Richard C.; Burns, Carolyn A.; Crawford, Amanda D.; Hylden, Laura R.; Bryan, Samuel A.; MacFarlan, Paul J.; Gauglitz, Phillip A.

    2014-07-03

    This report documents testing activities conducted as part of the Deep Sludge Gas Release Event Project (DSGREP). The testing described in this report focused on evaluating the potential retention and release mechanisms of hydrogen bubbles in underground radioactive waste storage tanks at Hanford. The goal of the testing was to evaluate the rate, extent, and morphology of gas release events in simulant materials. Previous, undocumented scoping tests have evidenced dramatically different gas release behavior from simulants with similar physical properties. Specifically, previous gas release tests have evaluated the extent of release of 30 Pa kaolin and 30 Pa bentonite clay slurries. While both materials are clays and both have equivalent material shear strength using a shear vane, it was found that upon stirring, gas was released immediately and completely from bentonite clay slurry while little if any gas was released from the kaolin slurry. The motivation for the current work is to replicate these tests in a controlled quality test environment and to evaluate the release behavior for another simulant used in DSGREP testing. Three simulant materials were evaluated: 1) a 30 Pa kaolin clay slurry, 2) a 30 Pa bentonite clay slurry, and 3) Rayleigh-Taylor (RT) Simulant (a simulant designed to support DSGREP RT instability testing. Entrained gas was generated in these simulant materials using two methods: 1) application of vacuum over about a 1-minute period to nucleate dissolved gas within the simulant and 2) addition of hydrogen peroxide to generate gas by peroxide decomposition in the simulants over about a 16-hour period. Bubble release was effected by vibrating the test material using an external vibrating table. When testing with hydrogen peroxide, gas release was also accomplished by stirring of the simulant.

  9. Confinement of hydrogen at high pressure in carbon nanotubes

    DOE Patents [OSTI]

    Lassila, David H.; Bonner, Brian P.

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  10. Storing Hydrogen

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  11. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  12. NREL: Hydrogen and Fuel Cells Research - Energy Department Announces New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tools for Hydrogen Fueling Infrastructure Deployment Energy Department Announces New Tools for Hydrogen Fueling Infrastructure Deployment April 21, 2015 The Energy Department has announced two new tools and the release of two reports developed through H2USA to support hydrogen fueling infrastructure deployment. H2USA is a public-private partnership launched in 2013 to overcome the critical barriers to hydrogen infrastructure and enable the commercialization of fuel cell electric vehicles.

  13. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  14. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials...

  15. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  16. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    DOE Patents [OSTI]

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  17. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOE Patents [OSTI]

    Zidan, Ragaiy; Ritter, James A.; Ebner, Armin D.; Wang, Jun; Holland, Charles E.

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  18. Press Releases - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsroom Press Releases Newsroom Press Releases Media Contacts Photo Gallery The Hanford Story Hanford Blog Hanford YouTube Channel

  19. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  20. Hydrogen Technology Validation

    SciTech Connect (OSTI)

    2008-11-01

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  1. Hydrogen scavengers

    DOE Patents [OSTI]

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  2. Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

  3. Method and apparatus for controlling accidental releases of tritium

    DOE Patents [OSTI]

    Galloway, Terry R. [Berkeley, CA

    1980-04-01

    An improvement in a tritium control system based on a catalytic oxidation reactor wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release.

  4. Method and apparatus for controlling accidental releases of tritium

    DOE Patents [OSTI]

    Galloway, T.R.

    1980-04-01

    An improvement is described in a tritium control system based on a catalytic oxidation reactor wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release. 1 fig.

  5. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  6. FY17 SBIR Phase I Release 1 Topics Announced: Includes Fuel Cell Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Hydrogen Delivery | Department of Energy FY17 SBIR Phase I Release 1 Topics Announced: Includes Fuel Cell Catalysts and Hydrogen Delivery FY17 SBIR Phase I Release 1 Topics Announced: Includes Fuel Cell Catalysts and Hydrogen Delivery July 21, 2016 - 1:22pm Addthis The U.S. Department of Energy (DOE) has announced the 2017 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 topics, including two subtopics focused on hydrogen and fuel

  7. Hydrogen detector

    DOE Patents [OSTI]

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  8. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of ...

  9. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Environmental Management (EM)

    1007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen threshold cost is defined as the ...

  10. Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems...

    Open Energy Info (EERE)

    Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name: Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place:...

  11. Potential of High-Throughput Experimentation with Ammonia Borane Solid Hydrogen Storage Materials (presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of High-Throughput Experimentation with Ammonia Borane Solid Hydrogen Storage Materials Jonathan L. Male Pacific Northwest National Laboratory June 26, 2006 US Department of Energy Energy Efficiency and Renewable Energy (Chemical) Hydrogen Storage DOE EERE Chemical Hydrogen Center * Controlling release of hydrogen from NH 3 BH 3 - Regeneration of NH 3 BH 3 - Engineering, experiment and theory - Materials Discovery DOE BES Hydrogen Fuel Initiative * Structure and dynamics (Neutron and NMR) -

  12. DOE Releases 2013 Fuel Cell Technologies Market Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Releases 2013 Fuel Cell Technologies Market Report DOE Releases 2013 Fuel Cell Technologies Market Report November 12, 2014 - 11:13am Addthis The Energy Department today released the 2013 Fuel Cell Technologies Market Report, detailing trends in the U.S. fuel cell and hydrogen technologies market. The report highlights continued growth in fuel cell commercial deployments, including material handling equipment such as forklifts as well as combined heat and power systems and back-up and

  13. Press Releases - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Richland Operations Office Newsroom Press Releases Richland Operations Office Richland Operations Office River Corridor Central Plateau Groundwater Mission Support Newsroom Press Releases News Calendar

  14. Press Releases - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of River Protection Newsroom Press Releases Office of River Protection About ORP ORP Projects & Facilities Newsroom Photos & Multimedia ORP Events Press Releases Contracts & ...

  15. Latest News Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Release Release Date: Contact: Shelley Martin, DOE National Energy Technology Laboratory, 304-285-0228, contact.publicaffairs@netl.doe.gov 2016 2015 2014 2013

  16. SBIR/STTR Release 2 Funding Opportunity Deadline December 15-Includes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells | Department of Energy Funding Opportunity Deadline December 15-Includes Hydrogen and Fuel Cells SBIR/STTR Release 2 Funding Opportunity Deadline December 15-Includes Hydrogen and Fuel Cells December 8, 2014 - 3:49pm Addthis The Department of Energy (DOE) has issued its FY 2015 Phase I Release 2 Funding Opportunity Announcement (DE-FOA-0001227) for the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs. This FOA includes

  17. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  18. CTP Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    CTP Hydrogen Jump to: navigation, search Name: CTP Hydrogen Place: Westborough, Massachusetts Zip: 1581 Sector: Hydro, Hydrogen Product: CTP Hydrogen is an early stage company...

  19. Hydrogen Production: Microbial Biomass Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microbial Biomass Conversion Hydrogen Production: Microbial Biomass Conversion Photo of a fermentation reactor Microbial biomass conversion processes take advantage of the ability of microorganisms to consume and digest biomass and release hydrogen. Depending on the pathway, this research could result in commercial-scale systems in the mid- to long-term timeframe that could be suitable for distributed, semi-central, or central hydrogen production scales, depending on the feedstock used. How

  20. Hydrogen Storage Grand Challenge Centers of Excellence | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Centers of Excellence Hydrogen Storage Grand Challenge Centers of Excellence DOE's Hydrogen Storage Grand Challenge Centers of Excellence and partners, led by NREL, SNL, and LANL grand_challenge_centers.pdf (62.21 KB) More Documents & Publications Hydrogen Storage Grand Challenge Individual Projects Final Solar and Wind H2 Report EPAct 812.doc Microsoft Word - H2 National Release 2.doc

  1. NREL: Learning - Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

  2. Heat Release Rates

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  3. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Diverse Domestic Resources Hydrogen from Diverse Domestic Resources Distributed Generation Transportation HIGH EFFICIENCY HIGH EFFICIENCY & RELIABILITY & RELIABILITY ZERONEAR...

  4. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  5. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search Hydrogen Companies Loading map... "format":"googlemaps3","type":"SATELLITE","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":1000,"o...

  6. Potential Release Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PRS Potential Release Sites Legacy sites where hazardous materials are found to be above acceptable levels are collectively called potential release sites. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Less than 10 percent of the total number of potential release sites need to go through the full corrective action process. What are potential release sites? Potential release sites are areas around the Laboratory and

  7. Preliminary Release: March 28, 2011",,,,,,,,,,,,"Released: April 2013","Released

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,,,,,,,,,,"Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April

  8. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  9. Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

  10. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  11. Hydrogen Generator Appliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J slide presentation: hydrogen Generator appliance Gus Block, Nuvera Fuel Cells

  12. Amineborane Based Chemical Hydrogen Storage - Final Report

    SciTech Connect (OSTI)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  13. Method of generating hydrogen-storing hydride complexes

    DOE Patents [OSTI]

    Srinivasan, Sesha S; Niemann, Michael U; Goswami, D. Yogi; Stefanakos, Elias K

    2013-05-14

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  14. WIPP News Release Archives Index

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP News Release Archives 2006 News Releases 2005 News Releases 2004 News Releases 2003 News Releases 2002 News Releases 2001 News Releases 2000 News Releases 1999 News Releases 1998 News Releases 1997 News Releases 1996 News Releases 1995 News Releases Back to 2007 News Releases If you have any questions regarding the above, contact: Dennis Hurtt, Team Leader Office of Public Affairs DOE, Carlsbad Field Office P.O. Box 3090 Carlsbad, NM 88221-3090 Phone: 505/234-7327 Fax: 505/234-7025 E-mail:

  15. Hydrogen Pipeline Discussion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and

  16. Metastable Metal Hydrides for Hydrogen Storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  17. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  18. Final Report: Metal Perhydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One Li

  19. SANDIA REPORT SAND2014-3416 Unlimited Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SANDIA REPORT SAND2014-3416 Unlimited Release Printed April 2014 Safety, Codes and Standards for Hydrogen Installations: Hydrogen Fueling System Footprint Metric Development A.P. Harris, Daniel E. Dedrick, Chris LaFleur, Chris San Marchi Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

  20. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held ... More Documents & Publications Hydrogen Permeability and Integrity of Hydrogen Delivery ...

  1. Hydrogen Power Inc formerly Hydrogen Power International and...

    Open Energy Info (EERE)

    Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name: Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.)...

  2. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE ...

  3. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  4. ELECTROMAGNETIC RELEASE MECHANISM

    DOE Patents [OSTI]

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  5. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  6. Hydrogen Materials Advanced Research Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  7. Hydrogen Safety Knowledge Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Partners Best Practices - LANL, SNL, NREL, NASA, Hydrogen Safety Panel, and IEA HIA Tasks 19 and 22 Incident Reporting - NASA and Hydrogen Safety Panel 3 Objectives H2...

  8. Hydrogen Storage Basics

    Broader source: Energy.gov [DOE]

    Developing safe, reliable, compact, and cost-effective hydrogen storage technologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be...

  9. Hydrogen Program Overview

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  10. Hydrogen Fuel Quality (Presentation)

    SciTech Connect (OSTI)

    Ohi, J.

    2007-05-17

    Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

  11. Hydrogen Generation for Refineries

    Broader source: Energy.gov (indexed) [DOE]

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen ... or otherwise restricted information 2 Hydrogen from Heavy, Renewable and Waste Oils - ...

  12. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  13. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  14. Hydrogen Delivery Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... nines" purity, i.e., 99.9999%, unlike standard "pipeline grade" hydrogen purity of 99.95%. ... National Fire Protection Association (NFPA) 2: Hydrogen Technologies Code and local codes. ...

  15. Hydrogen & Fuel Cells

    Broader source: Energy.gov [DOE]

    Hydrogen is an energy carrier that can be produced from clean, diverse and abundant domestic energy resources. Fuel cells use the energy from hydrogen in a highly efficient way -- with only water and heat as byproducts.

  16. Hydrogen Storage- Basics

    Broader source: Energy.gov [DOE]

    Storing enough hydrogen on-board a vehicle to achieve a driving range of greater than 300 miles is a significant challenge. On a weight basis, hydrogen has nearly three times the energy content of...

  17. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline hpwgw_permeability_integrity_feng.pdf (1.41 MB) More Documents & Publications Hydrogen permeability and Integrity of hydrogen

  18. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing

  19. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  20. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

  1. Hydrogen Compatible Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Compatible Materials Workshop November 3 rd , 2010 Research, Engineering, and Applications Center for Hydrogen Sandia National Laboratory, Livermore, CA Introduction: On November 3 rd , 2010, Sandia National Labs hosted a workshop focused on hydrogen compatible materials and components. The goals of the workshop were two-fold, 1) to identify gaps in hydrogen compatible materials R&D, and 2) to develop international R&D pathways that address the identified R&D gaps. This

  2. WIPP News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current News Releases March 20, 2015 - Event News Release #2 WIPP Emergency Operations Center Deactivated March 20, 2015 - Event News Release #1 Emergency Operation Center Activated as Precautionary Measure for Offsite Event November 25, 2014 CBFO and WIPP Volunteerism Helps Little Ones This Winter Karing for Kids Koat Drive November 10, 2014 CBFO and WIPP Commemorations for Veterans Day 2014 Photo 1: Veterans Commeration at Skeen-Whitlock, Nov. 6, 2014 Photo 2: Veterans Commeration at

  3. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sdahl@fnal.gov For Immediate Release Children's Science Adventures at Fermilab Offer Summer Fun - and Learning, Too BATAVIA, Illinois-Summertime is a bright season of...

  4. Press Releases | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases New Hybrid Electrolyte for Solid-State Lithium Batteries December 21, 2015 Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory have...

  5. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    email bland@fnal.gov For Immediate Release Fermilab Colloquium Series Offers Free Public Talks on World Energy Situation Beginning Wednesday, April 13 BATAVIA,...

  6. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 1999 For immediate release PRESS ADVISORY: SIGN UP FOR COVERAGE OF MAIN INJECTOR DEDICATION ON TUESDAY, JUNE 1; RICHARDSON, HASTERT TO SPEAK Batavia, Ill.Secretary of...

  7. Purification of Hydrogen

    DOE Patents [OSTI]

    Newton, A S

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  8. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  9. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  10. Flash hydrogenation of coal

    DOE Patents [OSTI]

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  11. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  12. Hydrogen Storage Materials Database Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES ... 12132011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database ...

  13. Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical ...

  14. Hydrogen Strategic Focus for Hawaii

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen storage is a significant challenge for the development and viability of hydrogen-powered vehicles. On-board hydrogen storage in the range of approximately 5-13 kg is required to enable a driving range of greater than 300 miles for the full platform of light-duty automotive vehicles using fuel cell power plants. Hydrogen Storage Technologies Current on-board hydrogen storage approaches involve compressed hydrogen gas tanks, liquid hydrogen tanks, cryogenic compressed hydrogen, metal

  15. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous

  16. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  17. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect (OSTI)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  18. Renewable Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Renewable Hydrogen Welcoming presentations at the Delivering Renewable Hydrogen Workshop: A Focus on Near-Term Applications, Nov. 16, 2009, Palm Springs, CA renewable_hydrogen_workshop_nov16_remick.pdf (1.11 MB) More Documents & Publications National Hydrogen Learning Demonstration Status CoolCab Truck Thermal Load Reduction Hydrogen Transmission and Distribution Workshop

  19. Audit Manual (Release 8)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deputy Inspector General for Audits and Inspections AUDIT MANUAL Release 8 Revised 2014 Revised 2014 TOC-1 Release 8 OFFICE OF INSPECTOR GENERAL OFFICE OF AUDITS AUDIT MANUAL TABLE OF CONTENTS Page List of Acronyms ...................................................................................................................LOA-1 PART I -- INTRODUCTION CHAPTER 1 -- INTRODUCTION TO THE AUDIT MANUAL A. Purpose of the Audit Manual

  20. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  1. Technical Reference on Hydrogen Compatibility of Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    321 Unlimited Release Printed September 2012 Technical Reference for Hydrogen Compatibility of Materials C. San Marchi B.P. Somerday Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract

  2. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  3. Hydrogen and Fuel Cell Technologies Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source: US DOE 10/2010 Hydrogen and Fuel Cell Technologies Update Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel Cell Seminar & Exposition San Antonio, TX October 19, 2010 Agenda * Overview * RD&D Progress * Analysis & Key Publications * Budget Update * Next Steps - DOE Releases Program Plan for Stakeholder Input - Upcoming Workshops & Solicitations Source: US DOE 10/2010 2  Double Renewable Energy Capacity by 2012  Invest

  4. Hydrogen behavior in ice condenser containments

    SciTech Connect (OSTI)

    Lundstroem, P.; Hongisto, O.; Theofanous, T.G.

    1995-09-01

    A new hydrogen management strategy is being developed for the Loviisa ice condenser containment. The strategy relies on containment-wide natural circulations that develop, once the ice condenser doors are forced open, to effectively produce a well-mixed behavior, and a correspondingly slow rise in hydrogen concentration. Levels can then be kept low by a distributed catalytic recombiner system, and (perhaps) an igniter system as a backup, while the associated energy releases can be effectively dissipated in the ice bed. Verification and fine-tuning of the approach is carried out experimentally in the VICTORIA facility and by associated scaling/modelling studies. VICTORIA represents an 1/15th scale model of the Loviisa containment, hydrogen is simulated by helium, and local concentration measurements are obtained by a newly developed instrument specifically for this purpose, called SPARTA. This paper is focused on experimental results from several key experiments that provide a first delineation of key behaviors.

  5. Hydrogen Diffusion through Multiple Packaging Layers

    SciTech Connect (OSTI)

    McAllister, J.; Mohiuddin, A.

    2010-05-05

    For this scenario, hydrogen is generated in a container that is eventually stored within a drum or some type of long range storage container. When preparing for long-term storage, the hydrogen container (HC) is placed in a plastic bag (PB1). The PB1 is then placed inside an inner drum (ID). The ID is placed inside a plastic bag (PB2) which is then placed within an outer drum (OD). One or more ODs are then storage is a large container (LC). Filtered vents or vent holes are located on all the container barriers to prevent pressurization and allow gases to flow in and out of the HC. The LC is vented to the atmosphere with four vent paths for this example. The source of hydrogen generation for this study is not important. Any source that generates hydrogen in elemental form (i.e., H{sub 2}) is a candidate for the purposes of this generic evaluation. The released hydrogen accumulates inside the waste packaging. Depending on the permeability of the packaging layers, some of the accumulated hydrogen may diffuse out of the packaging layers and into the space surrounding the drums. Since the drums are confined in the LC, the hydrogen accumulates in the LC as it did inside the drums if venting of the LC does not occur. If accumulation in the LC is allowed without venting, the confinement is eventually breached or the hydrogen is consumed by reaction with other chemical species. One possible reaction is combustion with oxygen. Such a reaction can be explosive, and from this possibility arises the safety concern.

  6. Hydrogen Material Compatibility for Hydrogen ICE | Department...

    Broader source: Energy.gov (indexed) [DOE]

    pm04smith.pdf (1.52 MB) More Documents & Publications Hydrogen Materials Compatibility for the H-ICE Engine Friction Reduction Through Surface Finish and Coatings Vehicle ...

  7. NREL Scientists Find Key Function for Ferredoxins in Algae Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production - News Releases | NREL Scientists Find Key Function for Ferredoxins in Algae Hydrogen Production Two of six iron-rich proteins shown to have role in algae metabolism; discovery could lead to enhanced hydrogen production February 10, 2014 Scientists at the Energy Department's National Renewable Energy Laboratory have demonstrated that just two of six iron-sulfur-containing ferredoxins in a representative species of algae promote electron transfers to and from hydrogenases. The

  8. NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure April 30, 2014 A new project led by the Energy Department's National Renewable Energy Laboratory (NREL) and Sandia National Laboratories will support H2USA, a public-private partnership co-launched by industry and the Energy Department, and will work to ensure that hydrogen fuel cell vehicle owners have a positive fueling experience as fuel cell electric vehicles are introduced starting in 2014-2015. By tackling the

  9. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  10. Theoretical Studies of Hydrogen Storage Alloys.

    SciTech Connect (OSTI)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  11. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  12. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  13. News Releases - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases » News Releases - 2016 News Releases - 2016 We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. August» July» June» May» April» March» February» January» James TenCate James TenCate elected Acoustical Society of America fellow TenCate's research focuses on nonlinear acoustics and elasticity, seismology and nonlinear imaging. - 8/30/16 The thermal traits of a leaf,

  14. DOCUMENT RELEASE FORM C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE FORM C (1) Document Number: RPP-RPT-431 74 (2) Revision Number: (3) Effective Date: 9/30/2009 (4) Document Type: El Digital Image El Hard copy (a) Number of pages (including the DRF) or 107 E PDF E] Video number of digital images (5) Release Type 0 New El Cancel El Page Change El complete Revision (6) Document Title: 2009 Auto-TOR for Tank 241 -T-204 (7) Change/Release Initial Issuance Description: (8) Change Initial Issuance Justification: (9) Associated (a) Structure Location: (c)

  15. Data Release Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Release Page This page provides links to data (histograms, error matrices, ntuples, etc.) released in association with MINERvA publications. MINERvA Collaboration, L. Aliaga, M. Kordosky, T. Golan et al,"Neutrino Flux Predictions for the NuMI Beam" hep-ex/1607.00704.[Data Release Page] MINERvA Collaboration, Z. Wang, C.M. Marshall et al.,"First Evidence of Coherent Production of K + in Neutrino Interactions on Carbon Nuclei"hep-ex/1606.08890. MINERvA Collaboration, C.M.

  16. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  17. Dispersion of Hydrogen Clouds

    SciTech Connect (OSTI)

    Michael R. Swain; Eric S. Grilliot; Matthew N. Swain

    2000-06-30

    The following is the presentation of a simplification of the Hydrogen Risk Assessment Method previously developed at the University of Miami. It has been found that for simple enclosures, hydrogen leaks can be simulated with helium leaks to predict the concentrations of hydrogen gas produced. The highest concentrations of hydrogen occur near the ceiling after the initial transients disappear. For the geometries tested, hydrogen concentrations equal helium concentrations for the conditions of greatest concern (near the ceiling after transients disappear). The data supporting this conclusion is presented along with a comparison of hydrogen, LPG, and gasoline leakage from a vehicle parked in a single car garage. A short video was made from the vehicle fuel leakage data.

  18. Hydrogenation of carbonaceous materials

    DOE Patents [OSTI]

    Friedman, Joseph; Oberg, Carl L.; Russell, Larry H.

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  19. FOR IMMEDIATE RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IMMEDIATE RELEASE Media Contacts: January 23, 2012 Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov DOE Considers Natural Gas Utility Service Options Proposal Includes...

  20. News Releases Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 cool science and technology stories from Argonne in 2015 http:www.anl.govarticles10-cool-science-and-technology-stories-argonne-2015 December 23, 2015 News Releases Feed...

  1. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    release MiniBooNE opens the box Results from Fermilab experiment resolve long-standing neutrino question BATAVIA, Illinois-Scientists of the MiniBooNE1 experiment at the...

  2. HYDROGEN ISOTOPE TARGETS

    DOE Patents [OSTI]

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  3. National Hydrogen Energy Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop Washington, DC April 2-3, 2002 United States Department of Energy November 2002 PRODUCTION * DELIVERY * STORAGE * CONVERSION * APPLICATIONS * PUBLIC EDUCATION AND OUTREACH PRODUCTION * DELIVERY * STORAGE * CONVERSION * APPLICATIONS * PUBLIC EDUCATION AND OUTREACH vii As we act on President Bush's National

  4. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  5. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  6. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  7. Hawaii Renewable Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Program State & Regional Initiatives Webinar 14 October 2009 Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute Chenoa Farnsworth Partner Kolohala Holdings, LLP Overview * Hawaii's Energy Situation * Mitch Ewan * Hawaii Power Park Project * Mitch Ewan * The Renewables-to-Hydrogen Fund * Chenoa Farnsworth Hawaii - Most Petroleum Dependent State Petroleum dependence for electricity - top six states Highest Electricity Prices in U.S. Hawaii and US

  8. Rad-Release

    ScienceCinema (OSTI)

    None

    2013-05-28

    The R&D 100 Award winning Rad-Release Chemical Decontamination Technology is a highly effective (up to 99% removal rate), affordable, patented chemical-foam-clay decontamination process tailored to specific radiological and metal contaminants, which is applicable to a wide variety of substrates. For more information about this project, visit http://www.inl.gov/rd100/2011/rad-release/

  9. WIPP News Releases - 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back to current year news releases 2006 News Releases December 12 Idaho National Laboratory Waste Stream Cleared for Shipment to WIPP November 15 WIPP Reaches 4-Million-Hour Safety Milestone October 16 State of New Mexico Issues Permit for Remote-Handled Waste at WIPP September 11 WIPP receives 5,000th shipment March 29 DOE Waste Isolation Pilot Plant Receives EPA Recertification

  10. Rad-Release

    SciTech Connect (OSTI)

    2011-01-01

    The R&D 100 Award winning Rad-Release Chemical Decontamination Technology is a highly effective (up to 99% removal rate), affordable, patented chemical-foam-clay decontamination process tailored to specific radiological and metal contaminants, which is applicable to a wide variety of substrates. For more information about this project, visit http://www.inl.gov/rd100/2011/rad-release/

  11. Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Ceder, Gerbrand; Marzari, Nicola

    2011-08-31

    The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

  12. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    SciTech Connect (OSTI)

    Alan C. Cooper

    2012-05-03

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  13. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO); Deb, Satyen K. (Boulder, CO)

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  14. President's Hydrogen Fuel Initiative

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

  15. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  16. Florida Hydrogen Initiative

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  17. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, Joseph C.; Brehm, William F.

    1982-01-01

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  18. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  19. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  20. Hydrogen Delivery and Fueling

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  1. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  2. Hydrogen Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen does not exist freely in nature: it is only produced from other sources of energy, so it is often referred to as an energy carrier, that is, an efficient way to store and transport energy. A photo of a Ford hydrogen-powered internal combustion engine (H2ICE) bus at NREL's National Wind Technology Center (NWTC). A

  3. President's Hydrogen Fuel Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... modular design Improved MEA fabrication 1990 1995 Technology Validation Strategy ... codes for hydrogen applications (i.e., NFPA 5000) by the National Fire Protection ...

  4. HYDROGEN TO THE HIGHWAYS

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  5. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  6. Hydrogen Safety Sensors

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  7. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  8. Detroit Commuter Hydrogen Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  9. Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources » Hydrogen Hydrogen July 19, 2016 How to Fill Up Your Fuel Cell Electric Vehicle 5 Things to Know When Filling Up Your Fuel Cell Electric Vehicle Filling up your fuel cell electric vehicle is just as easy as filling up a gasoline powered car. The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) offers five tips to follow when filling up at a hydrogen fuel station for the first time. July 11, 2016 D.C. Showcases Cutting-Edge Hydrogen Fueling Station Demo The

  10. Hydrogen Generator Appliance

    Broader source: Energy.gov [DOE]

    Presentation by Gus Block, Nuvera Fuel Cells, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois.

  11. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Environmental Management (EM)

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop The Hydrogen, Hydrocarbons, ...

  12. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  13. Massachusetts Hydrogen Coalition | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Coalition Jump to: navigation, search Logo: Massachusetts Hydrogen Coalition Name: Massachusetts Hydrogen Coalition Address: 100 Cummings Center Place: Beverly,...

  14. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  15. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T.; Li, Yingwel; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  16. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  17. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  18. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  19. Green Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company Jump to: navigation, search Logo: Green Hydrogen Company Name: Green Hydrogen Company Abbreviation: GH2 Address: Green Hydrogen Company, Head Office, 9...

  20. Safe Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen LLC Jump to: navigation, search Name: Safe Hydrogen LLC Place: Lexington, Massachusetts Sector: Hydro, Hydrogen Product: Focused on hydrogen storage, through a 'slurry' of...

  1. Hydrogen Car Co | Open Energy Information

    Open Energy Info (EERE)

    Car Co Jump to: navigation, search Name: Hydrogen Car Co Place: Los Angeles, California Zip: 90036 Sector: Hydro, Hydrogen Product: The Hydrogen Car Company produces hydrogen...

  2. The Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: The Hydrogen Company Abbreviation: HydroGen Address: The Hydrogen Company, HydroGen Engineering and Consulting, Head Office, 9...

  3. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  4. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transportation | Department of Energy Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_ramsden.pdf (1.5 MB) More Documents & Publications Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis

  5. The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy Presentation given by Newton Pimenta and Cristiano Pinto of the State University of Campinas at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_12_ohi.pdf (621.46 KB) More Documents & Publications Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop

  6. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  7. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines. hpwgw_code_hayden.pdf (105.33 KB) More Documents & Publications Hydrogen Transmission and Distribution Workshop American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components

  8. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  9. Hydrogen evolution reaction catalyst

    DOE Patents [OSTI]

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  10. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  11. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  12. NMR Studies of Molecular Hydrogen in Hydrogenated Amorphous Silicon

    SciTech Connect (OSTI)

    Su, T.; Chen, S.; Taylor, P. C.; Crandall, R. S.; Mahan, A. H.

    2000-01-01

    Using NMR, the concentrations of molecular hydrogen have been measured directly in hydrogenated amorphous silicon made by the hot wire chemical vapor deposition (HWCVD) technique.

  13. Why Hydrogen? Hydrogen from Diverse Domestic Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of FreedomCAR & Fuels PartnershipDOE Delivery Program President's Hydrogen Fuel Initiative Hydrogen Posture Plan: An Integrated Research, Development and...

  14. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Broader source: Energy.gov (indexed) [DOE]

    Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to ...

  15. NREL: Hydrogen and Fuel Cells Research - NREL Hydrogen Expert...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Hydrogen Expert Sees Promise in New Discovery Photoelectrochemical pioneer John ... January 8, 2014 Producing hydrogen directly from the sun -- and in a way that is ...

  16. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60-42773 February 2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy...

  17. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 32525.pdf More Documents & Publications Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Hydrogen Delivery ...

  18. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  19. New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle Markets

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories, supported by the DOE’s Vehicle Technologies and Fuel Cell Technologies Offices, recently released the workshop report “Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles.” Held in September 2014, the workshop considered common opportunities and challenges in expanding the use of hydrogen and natural gas as transportation fuels.

  20. Seventy-eight Teams Race Innovative Solar and Hydrogen Model Cars - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Seventy-eight Teams Race Innovative Solar and Hydrogen Model Cars Students Recognized for Creativity and Talent in Energy Education Event May 16, 2009 Seventy-eight teams from 29 Colorado middle schools participated in today's Junior Solar Sprint and Hydrogen Fuel Cell car competitions hosted by the U.S. Department of Energy's National Renewable Energy Laboratory. The student teams raced solar or hydrogen powered vehicles that they designed and built themselves. The fastest

  1. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  2. Altitude release mechanism

    DOE Patents [OSTI]

    Kulhanek, Frank C.

    1977-01-01

    An altitude release mechanism for releasing a radiosonde or other measuring instrument from a balloon carrying it up into the atmosphere includes a bottle partially filled with water, a tube sealed into the bottle having one end submerged in the water in the bottle and the free end extending above the top of the bottle and a strip of water-disintegrable paper held within the free end of the tube linking the balloon to the remainder of the package. As the balloon ascends, the lowered atmospheric air pressure causes the air in the bottle to expand, forcing the water in the bottle up the tubing to wet and disintegrate the paper, releasing the package from the balloon.

  3. Renewable Hydrogen: The Environmental Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen: The Environmental Perspective Tyson Eckerle Energy Independence Now Delivering Renewable Hydrogen Workshop November 16 th , 2009. Energy Independence Now Why are we here? California Hydrogen Highway SB 1505 co-authors (w/ UCS) Hydrogen Advocates A consistent pro-hydrogen voice Renewable Hydrogen Environmental Perspective SB 1505 Opportunity Government role Harnessing the environmental community The Environmental Community Who are we talking about? NGOs, academics, customers, concerned

  4. Powertech: Hydrogen Expertise Storage Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertech: Hydrogen Expertise Storage Needs Angela Das, P.Eng. March 2013 Powertech Hydrogen Expertise - Testing World's leading test agency for high pressure hydrogen components * Operate the equivalent of 4 hydrogen fueling stations for hydrogen gas cycle testing of OEM 700 bar fuel systems Test all carbon fiber tank designs worldwide * Also use various Type 3 and Type 4 designs for test facilities Powertech Hydrogen Expertise - Stations 700 bar Retail Stations 700 bar Retail Stations (Shell

  5. Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  6. DOCUMENT RELEASE FORM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 (2) Revision Number: 0 (3) Effective Date: 9/28/2009 (4) Document Type: [] Digital Image El Hard copy (a) Number of pages (including the DRF) or 74 0PDF E] Video number of digital images (5) Release Type E New El cancel l Page Change El complete Revision (6) Document Title: 2009 Auto-TCR for Tank 241-13-204 (7) Change/Release Initial Issuance Description: (8) Change Initial Issuance Justification: (9) Associated (a) Structure Location: (c) Building Number: Structure, System, and Component N/A

  7. DOCUMENT RELEASE FORM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31 97 (2) Revision Number: 0 -- (3) Effective Date: 9/30/2009 (4) Document Type: E] Digital Image l Hard copy (a) Number of pages (including the DRF) or 84 0 POE E Video number of digital images (5) Release Type Z New 1:1 Cancel liiPage Change Elcomplete Revision (6) Document Title: 2009 Auto-TOR for Tank 241 -TY-1 05 (7) Change/Release Initial Issuance Description: (8) Change Initial Issuance Justification: (9) Associated (a) Structure Location: (c) Building Number: Structure, System, and

  8. ARM - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Related Links TWP-ICE Home Tropical Western Pacific Home ARM Data Discovery Browse Data Post-Experiment Data Sets Weather Summary (pdf, 6M) New York Workshop Presentations Experiment Planning TWP-ICE Proposal Abstract Detailed Experiment Description Science Plan (pdf, 1M) Operations Plan (pdf, 321K) Maps Contact Info Related Links Daily Report Report Archives Press Media Coverage TWP-ICE Fact Sheet (pdf, 211K) Press Releases TWP-ICE Images ARM flickr site <=""

  9. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  10. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  11. Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Hydrogen Energy Place: Surrey, England, United Kingdom Zip: KT13 0NY Sector: Carbon, Hydro, Hydrogen Product: Surrey-based BP subsidiary...

  12. Hydrogen Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ventures Jump to: navigation, search Logo: Hydrogen Ventures Name: Hydrogen Ventures Address: 1219 N. Studabaker Road Place: Long Beach, California Zip: 90811 Region: Southern CA...

  13. New Materials for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry ...

  14. New Materials for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Materials for Hydrogen Pipelines Bart Smith, Jimmy Mays, Barbara Frame, Mike Simonson, Cliff Eberle, Jim Blencoe, and Tim Armstrong Hydrogen Pipeline R&D Project Review Meeting ...

  15. Hydrogen from biomass: state of the art and research challenges

    SciTech Connect (OSTI)

    Milne, Thomas A; Elam, Carolyn C; Evans, Robert J

    2002-02-01

    The report was prepared for the International Energy Agency (IEA) Agreement on the Production and Utilization of Hydrogen, Task 16, Hydrogen from Carbon-Containing Materials. Hydrogen's share in the energy market is increasing with the implementation of fuel cell systems and the growing demand for zero-emission fuels. Hydrogen production will need to keep pace with this growing market. In the near term, increased production will likely be met by conventional technologies, such as natural gas reforming. In these processes, the carbon is converted to CO2 and released to the atmosphere. However, with the growing concern about global climate change, alternatives to the atmospheric release of CO2 are being investigated. Sequestration of the CO2 is an option that could provide a viable near-term solution. Reducing the demand on fossil resources remains a significant concern for many nations. Renewable-based processes like solar- or wind-driven electrolysis and photobiological water splitting hold great promise for clean hydrogen production; however, advances must still be made before these technologies can be economically competitive. For the near-and mid-term, generating hydrogen from biomass may be the more practical and viable, renewable and potentially carbon-neutral (or even carbon-negative in conjunction with sequestration) option. Recently, the IEA Hydrogen Agreement launched a new task to bring together international experts to investigate some of these near- and mid-term options for producing hydrogen with reduced environmental impacts. This review of the state of the art of hydrogen production from biomass was prepared to facilitate in the planning of work that should be done to achieve the goal of near-term hydrogen energy systems. The relevant technologies that convert biomass to hydrogen, with emphasis on thermochemical routes are described. In evaluating the viability of the conversion routes, each must be put in the context of the availability of

  16. Revisited reaction-diffusion model of thermal desorption spectroscopy experiments on hydrogen retention in material

    SciTech Connect (OSTI)

    Guterl, Jerome Smirnov, R. D.; Krasheninnikov, S. I.

    2015-07-28

    Desorption phase of thermal desorption spectroscopy (TDS) experiments performed on tungsten samples exposed to flux of hydrogen isotopes in fusion relevant conditions is analyzed using a reaction-diffusion model describing hydrogen retention in material bulk. Two regimes of hydrogen desorption are identified depending on whether hydrogen trapping rate is faster than hydrogen diffusion rate in material during TDS experiments. In both regimes, a majority of hydrogen released from material defects is immediately outgassed instead of diffusing deeply in material bulk when the evolution of hydrogen concentration in material is quasi-static, which is the case during TDS experiments performed with tungsten samples exposed to flux of hydrogen isotopes in fusion related conditions. In this context, analytical expressions of the hydrogen outgassing flux as a function of the material temperature are obtained with sufficient accuracy to describe main features of thermal desorption spectra (TDSP). These expressions are then used to highlight how characteristic temperatures of TDSP depend on hydrogen retention parameters, such as trap concentration or activation energy of detrapping processes. The use of Arrhenius plots to characterize retention processes is then revisited when hydrogen trapping takes place during TDS experiments. Retention processes are also characterized using the shape of desorption peaks in TDSP, and it is shown that diffusion of hydrogen in material during TDS experiment can induce long desorption tails visible aside desorption peaks at high temperature in TDSP. These desorption tails can be used to estimate activation energy of diffusion of hydrogen in material.

  17. Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station.

    SciTech Connect (OSTI)

    LaFleur, Angela Christine; Muna, Alice Baca; Groth, Katrina M.

    2015-08-01

    Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

  18. Electron Charged Graphite-based Hydrogen Storage Material

    SciTech Connect (OSTI)

    Dr. Chinbay Q. Fan R&D Manager Office of Technology and Innovations Phone: 847 768 0812

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  19. Photoelectrochemical hydrogen production

    SciTech Connect (OSTI)

    Rocheleau, R.; Misra, A.; Miller, E.

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  20. WIPP News Releases - 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 News Releases September 30 Westinghouse Earns Mine Safety Award for 16th Consecutive Year July 9 Westinghouse TRU Solutions LLC Earns Corporate Award For Air Monitoring Initiative April 12 WIPP Receives Waste Characterized With Mobile System February 12 Ava Holland Joins DOE Carlsbad Field Office As Quality Assurance Manager January 7 WIPP Receives 500th Waste Shipment

  1. STEP Utility Data Release Form

    Broader source: Energy.gov [DOE]

    STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  2. SBIR/STTR Phase I Release 2 Technical Topics Announced for FY14 Fuel Cell Topics Included

    Broader source: Energy.gov [DOE]

    Phase I Release 2 technical topics include prototype fuel cell-battery electric hybrid trucks for waste transportation and novel membranes and non-platinum group metal catalysts for direct methanol as well as hydrogen fuel cells.

  3. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  4. President's Hydrogen Fuel Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed

  5. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  6. Thermochemical method for producing hydrogen from hydrogen sulfide

    SciTech Connect (OSTI)

    Herrington, D.R.

    1984-02-21

    Hydrogen is produced from hydrogen sulfide by a 3-step, thermochemical process comprising: (a) contacting hydrogen sulfide with carbon dioxide to form carbonyl sulfide and water, (b) contacting the carbonyl sulfide produced in (a) with oxygen to form carbon monoxide and sulfur dioxide, and (c) contacting the carbon monoxide produced in (b) with water to form carbon dioxide and hydrogen.

  7. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  8. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  9. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  10. Bacterial Fermentative Hydrogen Production

    Broader source: Energy.gov [DOE]

    Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  11. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring

  12. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  13. National Hydrogen Energy Roadmap

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

  14. The Hydrogen Connection

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-05-01

    As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

  15. Advanced Hydrogen Liquefaction Process

    SciTech Connect (OSTI)

    Schwartz, Joseph; Kromer, Brian; Neu, Ben; Jankowiak, Jerome; Barrett, Philip; Drnevich, Raymond

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased the understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.

  16. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  17. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  18. Method of producing hydrogen

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  19. Safetygram Gaseous Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen is a colorless, odorless, tasteless, highly flammable gas. It is also the lightestweight gas. Since hydrogen is noncorrosive, special materials of construction are not usually required. The American Society of Mechanical Engineers (ASME) code and the American National Standards Institute (ANSI) Pressure Piping code specify vessel and piping design requirements for the pressures and temperatures involved. Applicable Dangerous Goods regulations specify requirements for vessels used for transportation.

  20. Hydrogen Compatibility of Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen

  1. Hydrogen Equipment Certification Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Certification Guide U.S. Department of Energy Fuel Cell Technologies Office December 10 th , 2015 Presenter: Nick Barilo Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program Manager DOE Host: Will James - DOE Fuel Cell Technologies Office 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 / / Hydrogen Equipment Certification Guide: Introduction and Kickoff for the Stakeholder Review Nick Barilo PNNL

  2. Hydrogen and Infrastructure Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of Energy Fuel Cell Technologies Program Fuel Cells: Diverse Fuels and Applications More than $40 million from the 2009 American Recovery and Reinvestment Act to fund 12 projects to deploy up to 1,000 fuel cells Recovery Act Funding for Fuel Cells COMPANY AWARD APPLICATION Delphi Automotive $2.4 M Auxiliary Power FedEx

  3. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production and Delivery Learn how NREL is developing and advancing a number of pathways to renewable hydrogen production. Text Version Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen

  4. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Workshop | Department of Energy and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop Presentation by Sunita Satyapal, U.S. Department of Energy Fuel Cell Technologies Program Manager, at the Hydrogen Infrastructure Market Readiness Workshop, February 16, 2011, in Washington, D.C. DOE Hydrogen and Fuel Cell Overview (1.66 MB) More Documents & Publications DOE

  5. Investigation of Flammable Gas Releases from High Level Waste Tanks during Periodic Mixing

    SciTech Connect (OSTI)

    Swingle, R.F.

    1999-01-07

    The Savannah River Site processes high-level radioactive waste through precipitation by the addition of sodium tetraphenylborate in a large (approximately 1.3 million gallon) High Level Waste Tank. Radiolysis of water produces a significant amount of hydrogen gas in this slurry. During quiescent periods the tetraphenylborate slurry retains large amounts of hydrogen as dissolved gas and small bubbles. When mixing pumps start, large amounts of hydrogen release due to agitation of the slurry. Flammability concerns necessitate an understanding of the hydrogen retention mechanism in the slurry and a model of how the hydrogen releases from the slurry during pump operation. Hydrogen concentration data collected from the slurry tank confirmed this behavior in the full-scale system. These measurements also provide mass transfer results for the hydrogen release during operation. The authors compared these data to an existing literature model for mass transfer in small, agitated reactors and developed factors to scale this existing model to the 1.3 million gallon tanks in use at the Savannah River Site. The information provides guidance for facility operations.

  6. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  7. Hydrogen Delivery Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  8. Hydrogen Distribution and Delivery Infrastructure

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challenges to delivering hydrogen for use as a widespread energy carrier, and the research goals for hydrogen delivery.

  9. Examining hydrogen transitions.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  10. Destabilized and catalyzed borohydride for reversible hydrogen storage

    DOE Patents [OSTI]

    Mohtadi, Rana F.; Nakamura, Kenji; Au, Ming; Zidan, Ragaiy

    2012-01-31

    A process of forming a hydrogen storage material, including the steps of: providing a first material of the formula M(BH.sub.4).sub.X, where M is an alkali metal or an alkali earth metal, providing a second material selected from M(AlH.sub.4).sub.x, a mixture of M(AlH.sub.4).sub.x and MCl.sub.x, a mixture of MCl.sub.x and Al, a mixture of MCl.sub.x and AlH.sub.3, a mixture of MH.sub.x and Al, Al, and AlH.sub.3. The first and second materials are combined at an elevated temperature and at an elevated hydrogen pressure for a time period forming a third material having a lower hydrogen release temperature than the first material and a higher hydrogen gravimetric density than the second material.

  11. WIPP News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 News Releases December 1 State Renews WIPP Facility Permit November 18 National TRU Program Director Selected November 18 Waste Isolation Pilot Plant Receives Second EPA Recertification October 7 WIPP Receives 9,000th Shipment September 7 Carlsbad Field Office Manager Transition July 2 DOE Awards Technical Assistance Contract for Carlsbad Field Office June 14 WIPP Completes California Sites Cleanup May 3 DOE Extends Management and Operations Contract at Waste Isolation Pilot Plant May 3 DOE

  12. WIPP News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 News Releases December 21 WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs December 13 Carlsbad Field Office Recognized by New Mexico and DOE for Environmental Excellence at WIPP Click on photo below for larger image. November 10 Carlsbad Field Office Manager Selected November 9 WIPP Receives Top Safety Award November 9 Photos of New WIPP Transportation Exhibit's Debut at the National Museum of Nuclear Science and History Click on photos below for larger images. November 2

  13. WIPP News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 News Releases October 29 WIPP Environmental Initiatives Earn DOE Recognition Click on photo below for larger image. October 24 WIPP Security Contractor Receives DOE Voluntary Protection Program Award Click on photo below for larger image. October 17 WIPP Employees Among Honorees for Nuclear Footprint Reduction October 3 DOE Exceeds 2012 TRU Waste Cleanup Goal at Los Alamos National Laboratory September 19 DOE Awards Grant to New Mexico Environment Department for Waste Isolation Pilot Plant

  14. WIPP News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 News Releases December 18 CBFO Selects Quality Assurance Director Click on photo below for larger image. December 2 Carlsbad Field Office Deputy Manager Selected Click on photo below for larger image. September 20 WIPP Management and Operating Contractor Recognized for Continuous Safety Performance Click on photo below for larger image. September 18 WIPP Receives Top Mine Safety Award September 18 WIPP Honored for Sustainability August 2 WIPP Employee Inducted Into Mine Rescue Hall of Fame -

  15. WIPP News Releases - 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 News Releases December 18 50,000 Containers Safety Disposed at WIPP August 14 Drum Involved in Idaho Incident Not Shippable to WIPP July 31 Marchetti New CEO of Washington TRU Solutions March 25 HUBZone, Great Opportunity for Small Businesses February 18 TRU Solutions Announces $20,500 in Scholarships For Eddy and Lea County Students January 14 Washington TRU Solutions LLC Announces New Name and New General Manager

  16. WIPP News Releases - 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 News Releases December 27 Empty WIPP truck overturns December 12 Dr. Dave Moody to Lead the Carlsbad Field Office December 7 WIPP Satellite Tracking System Relocates to Carlsbad November 23 Statement of Vernon Daub, Acting Manager of DOE's Carlsbad Field Office, Regarding New Mexico Environment Department's Issuance of a Draft Hazardous Waste Facility Permit for WIPP October 7 DOE Awards WIPP Independent Oversight Contract August 11 DOE Awards Technical Assistance Contract to Support Carlsbad

  17. 1995 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search NREL Funding Reductions to Further Impact Lab's Work Force (12/22/95) World Renewable Energy Congress To Be Held In Denver In 1996 (12/18/95) NREL Researchers Use Sunlight to Power Laser (12/14/95) National Renewable Energy Laboratory To Reduce Staff (11/3/95)

  18. 1998 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search Popular Science Recognizes Innovative Solar Technologies - (12/16/98) Kazmerski Leads National Center for Solar Research - (12/1/98) MRI, Battelle and Bechtel to Manage National Renewable Energy Lab - (11/19/98) Prestigious Council to Advise National Renewable Energy Lab - (11/19/98) Tour Opens Doors, Minds to Solar Energy - (10/5/98) MRI, Battelle, Bechtel Team Wins National

  19. 2002 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search Director of National Bioenergy Center Named - (12/12/02) Scientific American' Recognizes Solar Cell Research - (11/11/02) UPS Fleet Study Quantifies the Reliability, Low Emissions of CNG Trucks - (10/29/02) Energy Department Honors Solar Decathlon Winners - (10/05/02) Winner of Solar Decathlon to be Announced - (10/04/02) Solar Decathlon Engineering Design Results Announced -

  20. 2003 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search News Search December 22, 2003 Renewable Energy a Smart Choice for Farmers and Ranchers December 10, 2003 Georgia Tech's Rohatgi Wins Second Annual Rappaport Award December 9, 2003 Acclaim for Three Leaders at Annual NREL Stakeholders Reception November 14, 2003 World Renewable Energy Congress Provides International Forum November 12, 2003 NREL and Company Researchers Team Up

  1. 2004 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search News Search December 21, 2004 NREL Recognizes Solar Pioneer with National Honor November 23, 2004 NREL Recognizes Solar Pioneer with National Honor November 17, 2004 Basalt Middle School Teacher Recognized for Renewable Energy Efforts October 5, 2004 NREL Theorist Recognized for Highest Citation Impact September 24, 2004 NREL Selects Contractor for New Science & Technology

  2. 2005 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search News Search November 17, 2005 Lakewood High School Teacher Recognized for Introduction of Renewable Energy Curriculum Students taking technology classes at Lakewood High School this semester are learning about more than construction, technical theater and computer aided drafting (CAD); they are learning about energy issues within their community. October 31, 2005 Agreement

  3. 2007 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search News Search December 4, 2007 Energy Lab Sets Aggressive Greenhouse Gas Reduction Goal The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has pledged to reduce its greenhouse gas emissions by 75 percent from 2005 to 2009. The new goal is part of NREL's participation in the Environmental Protection Agency's (EPA) Climate Leaders program. November 8, 2007

  4. 2010 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search News Search December 17, 2010 NREL Employees Significantly Increase Their Community Support For the second year in a row, employees of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) pledged significantly more to community organizations during its annual charitable giving campaign this holiday season. December 2, 2010 Scientists Generate Two

  5. 2011 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search News Search December 20, 2011 NREL Licenses Technology to Increase Solar Cell Efficiency The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announced today that Natcore Technology Inc. has been granted a patent license agreement to develop a line of black silicon products. December 15, 2011 NREL Scientists Report First Solar Cell Producing More

  6. 2012 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search News Search December 21, 2012 NREL Names New Executive The U.S. Department of Energy's National Renewable Energy Laboratory today named Barbara Goodman as Associate Laboratory Director for Renewable Fuels and Vehicle Systems to replace Dale Gardner who is retiring at the end of the year. December 20, 2012 Concentrated Solar Power with Thermal Energy Storage Can Help Utilities'

  7. 2013 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search News Search December 12, 2013 NREL Seeks Leaders for National Executive Energy Academy The Energy Department's National Renewable Energy Laboratory (NREL) is accepting applications for its 2014 Executive Energy Leadership Academy. NREL's Executive Energy Leadership Academy, also known as Energy Execs, is a program for non-technical decision-makers throughout the country to

  8. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-28 November 7, 2001 For immediate release Press contact: Judy Jackson (630-840-3351; jjackson@fnal.gov High resolution graphics at www.fnal.gov/pub/presspass/images/NuTev_images.html Neutrino Measurement Surprises Fermilab Physicists Batavia, Ill.-Scientists at the Department of Energy's Fermi National Accelerator Laboratory have found a surprising discrepancy between predictions for the behavior of neutrinos and the way the subatomic particles actually behave. Although the difference is tiny,

  9. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  10. 2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station 2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station December 16, 2013 - ...

  11. Hydrogen Scenarios | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scenarios Hydrogen Scenarios Presentation by Frances Wood of OnLocation Inc. at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 deliv_analysis_wood.pdf (190.7 KB) More Documents & Publications DOE Hydrogen Transition Analysis Workshop Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007, Discussion Session Highlights, Comments, and Action Items

  12. Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Hydrogen Delivery A viable hydrogen infrastructure requires that hydrogen be able to be delivered from where it's produced to the point of end-use, such as a dispenser at a refueling station or stationary power site. Infrastructure includes the pipelines, trucks, storage facilities, compressors, and dispensers involved in the process of delivering fuel. Delivery technology for hydrogen infrastructure is currently available commercially, and several U.S. companies deliver bulk hydrogen

  13. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    SciTech Connect (OSTI)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  14. HyRAM (Hydrogen Risk Assessment Models) v. 1.0 (alpha)

    Energy Science and Technology Software Center (OSTI)

    2014-12-19

    HyRAM is a software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing the impact of hydrogen hazards (thermal effects from jet fires, thermal pressure effects from deflagrations) on people and structures. HyRAM incorporates generic probabilities for equipment failures for nine types of components, and probabilistic models for the impactmore » of heat flux on humans and structures, with computationally and experimentally validated models of hydrogen release and flame physics. Version 1.0.0.280 can be used to quantify the likelihood and thermal consequences associated with gaseous hydrogen releases from user-defined hydrogen installations.« less

  15. HyRAM (Hydrogen Risk Assessment Models) v. 1.0 (alpha)

    SciTech Connect (OSTI)

    Groth, Katrina M.; Hecht, Ethan; Reynolds, John T.; Ekoto, Isaac W.; Walkup, Gregory W.

    2014-12-19

    HyRAM is a software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing the impact of hydrogen hazards (thermal effects from jet fires, thermal pressure effects from deflagrations) on people and structures. HyRAM incorporates generic probabilities for equipment failures for nine types of components, and probabilistic models for the impact of heat flux on humans and structures, with computationally and experimentally validated models of hydrogen release and flame physics. Version 1.0.0.280 can be used to quantify the likelihood and thermal consequences associated with gaseous hydrogen releases from user-defined hydrogen installations.

  16. Media Release Media Contact FOR IMMEDIATE RELEASE Heather Rasmussen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Media Release Media Contact FOR IMMEDIATE RELEASE Heather Rasmussen September 22, 2011 Communication Specialist (801) 819-7623 hrasmussen@wecc.biz WECC releases its first-ever transmission plan for the Western Interconnection The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection. Looking ahead to 2020, the Plan focuses on how to meet the Western Interconnection's transmission requirements;

  17. Evaluation of Hydrogen Sensors: Cooperative Research and Development Final Report, CRADA Number CRD-14-547

    SciTech Connect (OSTI)

    Buttner, William

    2015-10-01

    In preparation for the projected 2015 release of commercial hydrogen fuel cell vehicles, KPA has been contracted by Toyota Motors to develop a hydrogen safety system for vehicle repair facilities. Repair facility safety designs will include hydrogen sensors. KPA will identify critical sensor specifications for vehicle repair facilities. In collaboration with NREL, KPA will select and purchase commercial hydrogen sensors that meet or nearly meet requirements for deployment in vehicle repair facility. A two-phase field deployment plan to verify sensor performance has been developed.

  18. Magnetic liquefier for hydrogen

    SciTech Connect (OSTI)

    1992-12-31

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

  19. Storage material for hydrogen

    SciTech Connect (OSTI)

    Bernauer, O.; Zlegler, K.

    1984-05-01

    A storage material for hydrogen comprising an alloy with the following composition: Ti(V/sub 1//sub -/ /SUB a/ /sub -/ /SUB b/ Fe /SUB a/ Al /SUB b/) /SUB x/ Cr /SUB y/ Mn/sub 2//sub -/ /SUB x/ /sub -/ /SUB y/, wherein: x = greater than 1, less than 2 y = 0 to approximately 0.2 x + y = not greater than 2 a = 0 to approximately 0.25 b = 0 to approximately 0.33 a + b = not greater than approximately 0.35 (1 - a - b) . x = not less than 1 This storage material for hydrogen can, in the cold state, absorb a maximum of 3.2% by weight of H/sub 2/ and already possesses, at low temperatures, a high reaction speed for the absorption of hydrogen. During the absorption of hydrogen, the storage material exhibits self-heating to high temperatures. Thus, in addition to its use for storing hydrogen, it is also particularly suitable for use in preheating systems for hydride-type storage units of motor vehicles.

  20. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, John P.; Way, J. Douglas

    1997-01-01

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  1. Hydrogen-Selective Membrane

    DOE Patents [OSTI]

    Collins, John P.; Way, J. Douglas

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  2. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  3. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  4. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2

  5. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  6. FOR IMMEDIATE RELEASE CIV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    _ FOR IMMEDIATE RELEASE CIV FRIDAY, AUGUST 21, 2015 (202) 514-2007 WWW.JUSTICE.GOV TTY (866) 544-5309 SANDIA CORPORATION AGREES TO PAY $4.7 MILLION TO RESOLVE ALLEGATIONS RELATED TO LOBBYING ACTIVITIES WASHINGTON - The Justice Department announced today that Sandia Corporation has agreed to pay $4,790,042 to resolve allegations that Sandia violated the Byrd Amendment and the False Claims Act by using federal funds for activities related to lobbying Congress and federal agencies to obtain a

  7. WIPP News Releases - 2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 News Releases November 4 Detwiler Resumes Position at DOE Headquarters October 14 WIPP Mine Rescue Team First in Missouri October 12 DOE Announces WIPP Contract Negotiations October 6 Washington TRU Solutions is Mine Operator of the Year September 28 Washington Group International Named Tops in Safety July 24 No Damage to WIPP Cargo in Roswell Traffic Accident July 22 WIPP Mine Rescue Team Wins "Overall Contest" at Nationals July 2 DOE Prevails in WIPP Court Case July 1 $1M to Fund

  8. Manhattan Project app released

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » Manhattan Project app released At the Bradbury Latest Issue:September 2016 all issues All Issues » submit Manhattan Project app available NOW! Downloadable through iTunes June 1, 2016 The opening graphic of the Los Alamos: Secret City of the Manhattan Project app Los Alamos: Secret City of the Manhattan Project is available through iTunes for free! We let you know about it. We provided a short video so you could get a feel for what the Los Alamos: Secret City of the Manhattan Project app is

  9. Pion Production Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pion Production Data Release This page gives the updated results for three different MINERvA Publications: Cross sections for neutrino and antineutrino induced pion production on hydrocarbon in the few-GeV region using MINERvA hep-ex/1606.07127 and Single neutral pion production by charged current antinu interactions on plastic scintillator at Enu ∼ 4 GeV hep-ex/1503.02107 and Charged Pion Production from CH in a Neutrino Beam hep-ex/1406.6415 Data Ancillary files for this result are available

  10. WIPP News Releases - 1995

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 News Releases Westinghouse WID Earns DOE Quality Award - 11/08/95 DOE Accelerates WIPP Schedule - 10/20/95 WIPP Celebrates National Quality Month - 10/13/95 Assistant DOE Secretary Transfers WIPP Technology - 10/10/95 DOE Extends EIS Public Comment Period - 10/06/95 DOE Closes Underground Experimental Area - 09/28/95 SEIS Meetings Held For WIPP - 09/12/95 Lee Named Deputy GM For Westinghouse WID - 08/25/95 WIPP Transportation System At Trade Show - 07/11/95 Technology Transfer - 07/07/95

  11. WIPP News Releases - 1996

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 News Releases DOE to Hold Public Hearings Next Week in Albuquerque on WIPP SEIS - 12/31/96 DOE to Hold Public Hearings Next Week in Santa Fe on WIPP SEIS - 12/31/96 DOE Announces North Augusta Public Hearing for WIPP SEIS - 12/17/96 DOE Announces Denver Area Public Hearing for WIPP SEIS - 12/17/96 DOE Announces Richland Public Hearing for WIPP SEIS - 12/17/96 DOE Announces Santa Fe Public Hearings for WIPP SEIS - 12/17/96 DOE Announces Boise Public Hearing for WIPP SEIS - 12/17/96 DOE

  12. 1996 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search Companies Selected for Small Wind Turbine Project - (11/27/96) DOE Forms National Center for Photovoltaics - (11/19/96) The Brightest in Solar Homes to Shine in Public Tour - (10/4/96) New NREL Research Facility Slashes Energy Use by 66 Percent - (10/3/96) Agreement Moves Nevada Solar Plant Step Closer to Reality - (10/3/96) Would-Be Solar Electric Homeowners Sought For

  13. 1997 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search Local Middle School Receives School-to-Career Grant - (12/24/97) Free Consumer Workshops On Solar & Wind Power For Farm & Ranch At National Western Stock Show - (12/9/97) NREL Funds Research into Low-Cost Solar Electricity - (12/8/97) NREL Provides PV Holiday Lights for Christmas Tree - (12/2/97) Energy Saving Buildings Win National and Local Honors - (11/21/97)

  14. 1999 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search Sunlight Helps Laboratory Get Ready for Y2K - (12/27/99) NREL Hosts Free Workshops on Solar and Wind Energy - (12/15/99) Seminar Explores Benefits of Using Solar Power for Disaster Management - (11/17/99) Choices for a Brighter Future - (11/12/99) Better "Bugs" Lead to Cheaper Ethanol from Biomass - New Agreements Could Boost U.S. Biofuels Industry - (11/10/99)

  15. 2008 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search News Search December 11, 2008 Alternative Fuels and Advanced Vehicle Data Center Creates New Tool to Calculate Ways to Cut Gas Use A business owner with a fleet of 10 heavy-duty diesel trucks wants to cut diesel use by 10 percent. Would using a biodiesel blend or investing in onboard power sources that reduce engine idling achieve the biggest drop in petroleum use? An average

  16. 2009 WIPP News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 News Releases December 21 Magnum Minerals to Buy WIPP Salt October 14 Agreement Reached Between WTS and Union Employees October 1 Truck Accident Did Not Involve WIPP Shipment September 18 WIPP Completes First RH-TRU Shipment from VNC July 24 DOE Issues Statement Concerning Debates Over Waste Disposal in Salt June 25 DOE Carlsbad Field Office Opens Local Recovery Act Office June 18 DOE Announces the Transfer of the WIPP Water Line to the City of Carlsbad June 3 Los Alamos National Laboratory

  17. Hydrogen Regional Infrastructure Program in Pennsylvania

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhD Melissa Klingenberg, PhD Hydrogen Program Hydrogen Program Air Products and Chemicals, Inc. (APCI) Hydrogen Separation Hydrogen Sensors Resource Dynamics Corporation (RDC) Tradeoff/Sensitivity Analyses of Hydrogen Delivery Approaches EDO Fiber Science High Pressure/High Strength Composite Material Development and Prototyping CTC * Program Management * Hydrogen

  18. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  19. Risk associated with the use of barriers in hydrogen refueling stations.

    SciTech Connect (OSTI)

    LaChance, Jeffrey L.; Phillips, Jesse; Houf, William G.

    2010-03-01

    Separation distances are used in hydrogen refueling stations to protect people, structures, and equipment from the consequences of accidental hydrogen releases. Specifically, hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure, the resulting separation distances can be unacceptably large. One possible mitigation strategy to reduce exposure to hydrogen flames is to incorporate barriers around hydrogen storage, process piping, and delivery equipment. The effectiveness of barrier walls to reduce hazards at hydrogen facilities has been previously evaluated using experimental and modeling information developed at Sandia National Laboratories. The effect of barriers on the risk from different types of hazards including direct flame contact, radiation heat fluxes, and overpressures associated with delayed hydrogen ignition has subsequently been evaluated and used to identify potential reductions in separation distances in hydrogen facilities. Both the frequency and consequences used in this risk assessment and the risk results are described. The results of the barrier risk analysis can also be used to help establish risk-informed barrier design requirements for use in hydrogen codes and standards.

  20. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  1. Hydrogen production from microbial strains

    DOE Patents [OSTI]

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  2. Hydrogen Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen Production Hydrogen Production Hydrogen is the simplest element on earth-it consists of only one proton and one electron-and it is an energy carrier, not an energy source. Hydrogen can store and deliver usable energy, but it doesn't typically exist by itself in nature and must be produced from compounds that contain it. WHY STUDY HYDROGEN PRODUCTION Hydrogen can be used in fuel cells to generate power using a chemical reaction rather than combustion, producing only water and

  3. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  4. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  5. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  6. Hydrogen Storage System Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Challenges Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29 th , 2015 Mike Veenstra Ford Research & Advanced Engineering Production fuel cell vehicles are being produced or planned by every major automotive OEM Toyota Honda Hyundai (credit: SA / ANL) Customer Expectations Driving Range Refueling Time Cargo Space Vehicle Weight Durability Cost Safety 0.0 2.0 4.0 6.0 8.0 10.0 Gasoline Hydrogen (700 bar) Natural

  7. Hydrogen Sensor Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3a. The Agenda HYDROGEN SENSOR WORKSHOP AGENDA June 8 th , 2011  Chicago, IL 8:00 am - 8:30 am Registration Workshop will take place in a room at the Convention Center. Exact room 21. 8:30 am - 8:50 am Welcome Remarks William Buttner, NREL DOE Fuel Cell and Hydrogen Program; Role of Sensors 8:50 am - 9:00 am Scott McWorter, SRNL; DOE 9:00 am - 9:20 am 2007 Workshop Robert Glass/Lawrence Livermore National Laboratory 2011 Workshop Background and Objectives; Technology Update Robert Burgess,

  8. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results ...

  9. Florida Hydrogen Initiative Inc | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Initiative Inc Jump to: navigation, search Name: Florida Hydrogen Initiative Inc Place: Florida Sector: Hydro, Hydrogen Product: Provides grants to aid the development of...

  10. Air Liquide Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name: Air Liquide Hydrogen Energy Address: 6, Rue Cognacq-Jay Place: Paris, France Zip: 75321 Sector:...

  11. Hydrogen Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Ltd Jump to: navigation, search Name: Hydrogen Solar Ltd Place: Guildford, United Kingdom Zip: GU2 7YG Sector: Hydro, Hydrogen, Solar Product: Hydrogen Solar Ltd is...

  12. National Hydrogen Association | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association Jump to: navigation, search Name: National Hydrogen Association Place: Washington, Washington, DC Zip: 20036 Sector: Hydro, Hydrogen Product: The source for...

  13. Highline Hydrogen Hybrids | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Hybrids Jump to: navigation, search Name: Highline Hydrogen Hybrids Place: farmington, Arkansas Zip: 72730-1500 Sector: Hydro, Hydrogen, Vehicles Product: US-based...

  14. Chevron Hydrogen Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

  15. The London Hydrogen Partnership | Open Energy Information

    Open Energy Info (EERE)

    London Hydrogen Partnership Jump to: navigation, search Name: The London Hydrogen Partnership Place: London, United Kingdom Zip: SE1 2AA Sector: Hydro, Hydrogen Product: The London...

  16. Hunterston Hydrogen Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hunterston Hydrogen Ltd Jump to: navigation, search Name: Hunterston Hydrogen Ltd Place: Anglesey, United Kingdom Zip: LL65 4RJ Sector: Hydro, Hydrogen, Wind energy Product:...

  17. German Hydrogen Association DWV | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association DWV Jump to: navigation, search Name: German Hydrogen Association (DWV) Place: Berlin, Germany Zip: 12205 Sector: Hydro, Hydrogen Product: String...

  18. Hydrogen Engine Center HEC | Open Energy Information

    Open Energy Info (EERE)

    Engine Center HEC Jump to: navigation, search Name: Hydrogen Engine Center (HEC) Place: Algona, Iowa Zip: IA 50511 Sector: Hydro, Hydrogen Product: The Hydrogen Engine Center (HEC)...

  19. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  20. 2013 Biological Hydrogen Production Workshop Summary Report ...

    Energy Savers [EERE]

    Biological Hydrogen Production Workshop Summary Report 2013 Biological Hydrogen Production Workshop Summary Report November 2013 summary report for the 2013 Biological Hydrogen ...

  1. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Broader source: Energy.gov (indexed) [DOE]

    Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines. hpwgwcodehayden.pdf (105.33 KB) More Documents & ...

  2. Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2008-04-01

    Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

  3. NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage Storing hydrogen for renewable energy technologies can be challenging, especially for intermittent resources such as solar and wind. Whether for stationary, portable, or transportation applications, cost-effective, high-density energy storage is necessary for enabling the technologies that can change our energy future and reduce greenhouse gas emissions. Hydrogen can play an important role in transforming our energy future if hydrogen storage technologies are improved. With

  4. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Research Facility Video (Text Version) Hydrogen Infrastructure Testing and Research Facility Video (Text Version) Below is the text version of the Hydrogen Infrastructure Testing and Research Facility video. Welcome to the U.S. Department of Energy's National Renewable Energy Laboratory. Through DOE support and in collaboration with industry, NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen

  5. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  6. NREL: Hydrogen and Fuel Cells Research - Pathways to Renewable Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video (Text Version) Pathways to Renewable Hydrogen Video (Text Version) Below is the text version of the Pathways to Renewable Hydrogen video. Voiceover: It is the most plentiful element in the universe and it's a key component in the suite of renewable options needed as we transition to a cleaner, more secure energy strategy. Keith Wipke: Hydrogen is a really important part of the portfolio of our energy in this country. Voiceover: In nature hydrogen is combined with other elements but,

  7. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 22, 2002-July 22, 2002 | Department of Energy Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 A report showing a comparative scooping economic analysis of 19 pathways for producing, handling, distributing, and dispensing hydrogen for fuel cell vehicle applications. 32525.pdf (1.48 MB) More Documents & Publications Analysis of a Cluster

  8. A Radically New Method for Hydrogen Storage in Hollow Glass Microspheres

    SciTech Connect (OSTI)

    James E. Shelby; Matthew M. Hall; Michael J. Snyder; Peter B. Wachtel

    2009-07-13

    The primary goal of this project is to demonstrate that hydrogen gas can be rapidly extracted from hollow glass microspheres (HGMS) using a photo-induced heating effect. The results of the project demonstrate that diffusion of hydrogen is readily induced by exposure to light from an IR lamp in transition metal-doped HGMS filled to as much as 5,000 psi with hydrogen gas, which contain approximately 2.2 wt% hydrogen. Doped HGMS in conjunction with optically induced outgassing provide a solution to the traditional limitation of HGMS i.e., the slow release of hydrogen from HGMS that are heated using a furnace. This information will also be invaluable in designing process changes for future production of HGMS able to hold higher pressures of hydrogen.

  9. Quick release engine cylinder

    DOE Patents [OSTI]

    Sunnarborg, Duane A.

    2000-01-01

    A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.

  10. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J.

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  11. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  12. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  13. Process for thermochemically producing hydrogen

    DOE Patents [OSTI]

    Bamberger, Carlos E.; Richardson, Donald M.

    1976-01-01

    Hydrogen is produced by the reaction of water with chromium sesquioxide and strontium oxide. The hydrogen producing reaction is combined with other reactions to produce a closed chemical cycle for the thermal decomposition of water.

  14. Oxidation resistant organic hydrogen getters

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Buffleben, George M.

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  15. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  16. High-Pressure Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  17. Hydrogen Distribution and Delivery Infrastructure

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

  18. Hydrogen Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  19. Hydrogen Production: Photoelectrochemical Water Splitting

    Broader source: Energy.gov [DOE]

    In photoelectrochemical (PEC) water splitting, hydrogen is produced from water using sunlight and specialized semiconductors called photoelectrochemical materials, which use light energy to directly dissociate water molecules into hydrogen and oxygen.

  20. Maritime Hydrogen Fuel Cell project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... SunShot Grand Challenge: Regional Test Centers Maritime Hydrogen Fuel Cell project HomeTag:Maritime Hydrogen Fuel Cell project - Pete Devlin, of the Department of Energy's Fuel ...

  1. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with

  2. 2010 Report Released | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Report Released | National Nuclear Security Administration Facebook Twitter Youtube Flickr ... Home About Us Our History NNSA Timeline 2010 Report Released 2010 Report Released ...

  3. Photovoltaic hydrogen production

    SciTech Connect (OSTI)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J.

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  4. Hydrogen storage gets new hope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable hydrogen-based vehicles. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  5. Hydrogen Materials Advanced Research Consortium

    Broader source: Energy.gov [DOE]

    An overview of the organization and scientific activities of the Hydrogen Materials—Advanced Research Consortium (HyMARC).

  6. International Hydrogen Infrastructure Update Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download the presentation slides from the Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Update" held on August 30, 2016.

  7. Analysis of Potential Hydrogen Risk in the PWR Containment

    SciTech Connect (OSTI)

    Deng Jian; Xuewu Cao [Shanghai Jiaotong University, Shanghai (China)

    2006-07-01

    Various studies have shown that hydrogen combustion is one of major risk contributors to threaten the integrity of the containment in a nuclear power plant. That hydrogen risk should be considered in severe accident strategies in current and future NPPs has been emphasized in the latest policies issued by the National Nuclear Safety Administration of China (NNSA). According to a deterministic approach, three typical severe accident sequences for a PWR large dry containment, such as the large break loss-of-coolant (LLOCA), the station blackout (SBO), and the small break loss-of-coolant (SLOCA) are analyzed in this paper with MELCOR code. Hydrogen concentrations in different compartments are observed to evaluate the potential hydrogen risk. The results show that there is a great amount of hydrogen released into the containment, which causes the containment pressure to increase and some potential in-consecutive burning. Therefore, certain hydrogen management strategies should be considered to reduce the risk to threaten the containment integrity. (authors)

  8. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  9. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  10. HydroGen | Open Energy Information

    Open Energy Info (EERE)

    HydroGen Jump to: navigation, search Logo: HydroGen Name: HydroGen Address: Head Office, 9 GreenMeadows Place: Cardiff, Wales Country: United Kingdom Sector: Hydro, Hydrogen,...

  11. Preliminary Release: August 19, 2011",,,,,,,,,,,,,"Released: April 2013","Releas

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,,,,,,,,,,,"Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April 2013","Released: April

  12. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    SciTech Connect (OSTI)

    Li, Ming; Kang, Zhan; Huang, Xiaobo

    2015-08-28

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  13. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  14. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop: Agenda and Objectives Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop:...

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Controlled Hydrogen Fleet & Infrastructure Analysis National FCEV Learning Demonstration: All Composite Data Products National Hydrogen Learning ...

  16. Upcoming Webinar December 16: International Hydrogen Infrastructure...

    Office of Environmental Management (EM)

    Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges ...

  17. Hydrogen Infrastructure Market Readiness Workshop: Preliminary...

    Broader source: Energy.gov (indexed) [DOE]

    Preliminary results from the Hydrogen Infrastructure Market Readiness Workshop held ... More Documents & Publications Hydrogen Infrastructure Market Readiness: Opportunities and ...

  18. Hydrogen Risk Assessment Model (HyRAM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical ...

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Environmental Management (EM)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE ...

  20. International Hydrogen Infrastructure Challenges Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE ...

  1. Interaction between hydrogen molecules and metallofullerenes...

    Office of Scientific and Technical Information (OSTI)

    Interaction between hydrogen molecules and metallofullerenes. Citation Details In-Document Search Title: Interaction between hydrogen molecules and metallofullerenes. Within ...

  2. National Hydrogen Learning Demonstration Status | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning Demonstration Status National Hydrogen Learning Demonstration Status Download presentation slides from the Fuel Cell Technologies Program webinar "National Hydrogen ...

  3. Webinar: International Hydrogen Infrastructure Challenges Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Webinar: International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and ...

  4. Liquid Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Liquid Hydrogen Delivery Liquid Hydrogen Delivery Hydrogen is most commonly transported and delivered as a liquid when high-volume transport is needed in the absence of pipelines. To liquefy hydrogen it must be cooled to cryogenic temperatures through a liquefaction process. Trucks transporting liquid hydrogen are referred to as liquid tankers. Liquefaction Gaseous hydrogen is liquefied by cooling it to below -253°C (-423°F). Once hydrogen is liquefied it can be stored at

  5. Novel Hydrogen Carriers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Novel Hydrogen Carriers Novel Hydrogen Carriers Hydrogen carriers store hydrogen in some other chemical state rather than as free hydrogen molecules. Additional research and analyses are underway to investigate novel liquid or solid hydrogen carriers for use in delivery. Carriers are a unique way to deliver hydrogen by hydriding a chemical compound at the site of production and then dehydriding it either at the point of delivery or once it is onboard the fuel cell vehicle.

  6. Deep Sludge Gas Release Event Analytical Evaluation

    SciTech Connect (OSTI)

    Sams, Terry L.

    2013-08-15

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical

  7. Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Releases Press Releases RSS August 1, 2016 Press Releases NREL Technique Leads to Improved Solar Cells Scientists at the Energy Department's National Renewable Energy Laboratory (NREL), in collaboration with researchers at Shanghai Jiao Tong University (SJTU), devised a method to improve perovskite solar cells, making them more efficient and reliable with higher reproducibility. July 28, 2016 Battery500 Consortium to Spark EV Innovations: Pacific Northwest National Laboratory-led, 5-year

  8. Accident Investigation Report- Radiological Release

    Broader source: Energy.gov [DOE]

    On February 14, 2014, an airborne radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following the event, the investigation was broken into two phases. The Phase 1 report focused on how the radiological material was released into the atmosphere and Phase 2, performed once limited access to the underground was re‐established, focused on the source of the released radiological material.

  9. COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS

    SciTech Connect (OSTI)

    S.O. Bader

    1999-10-18

    The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be

  10. Solid evacuated microspheres of hydrogen

    DOE Patents [OSTI]

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  11. Waste/By-Product Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WASTE/BY-PRODUCT HYDROGEN Ruth Cox DOE/DOD Workshop January 13, 2011 January 13, 2011 Fuel Cell and Hydrogen Energy Association The Fuel Cell and Hydrogen Energy Association FCHEA ƒ Trade Association for the industry ƒ Member driven - Market focused ƒ Developers, suppliers, customers, nonprofits, government Ad ƒ Advocacy ƒ Safety and standardization ƒ Education ƒ Strategic Alliances Fuel Cell and Hydrogen Energy Association O M b Our Members 5 W t /B d t H d Waste/By-product Hydrogen

  12. Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste

    SciTech Connect (OSTI)

    Callis, E.L.; Marshall, R.S.; Cappis, J.H.

    1997-04-01

    The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent.

  13. Thermochemical production of hydrogen

    DOE Patents [OSTI]

    Dreyfuss, Robert M.

    1976-07-13

    A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal and Z represents a metalloid selected from the arsenic-antimony-bismuth and selenium-tellurium subgroups of the periodic system: 2MO + Z + SO.sub.2 .fwdarw. MZ + MSO.sub.4 (1) mz + h.sub.2 so.sub.4 .fwdarw. mso.sub.4 + h.sub.2 z (2) 2mso.sub.4 .fwdarw. 2mo + so.sub.2 + so.sub.3 + 1/20.sub.2 (3) h.sub.2 z .fwdarw. z + h.sub.2 (4) h.sub.2 o + so.sub.3 .fwdarw. h.sub.2 so.sub.4 (5) the net reaction is the decomposition of water into hydrogen and oxygen.

  14. PHOTOBIOLOGICAL HYDROGEN RESEARCH

    SciTech Connect (OSTI)

    Philippidis, George; Tek, Vekalet

    2009-07-01

    The project objectives are to develop bio-hydrogen production by:  Cloning the structural and subunit genes (cooKMUX and cooLH resp.) of the O{sub 2}- tolerant NiFe-hydrogenase from the photosynthetic bacterium Rubrivivax gelatinosus CBS strain in collaboration with NREL.  Cloning the active site maturation genes (hypA-F) of the CBS hydrogenase in collaboration with NREL.  Transforming the structural and subunits genes, along with the maturation genes, into E. coli and determining the minimum number of genes required for expression of a functional hydrogenase.  Upon expression of a functional hydrogenase, purifying and characterizing the recombinant hydrogenase from E. coli and performing bioreactor studies to optimize hydrogen production by E. coli.

  15. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A.; Wang, Tao; Ebner, Armin D.; Holland, Charles E.

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  16. Commercializing solar hydrogen production

    SciTech Connect (OSTI)

    Holmes, J.T.; Prairie, M.R.

    1991-01-01

    This paper discusses the need for a government-supported program to commercialize hydrogen production methods which use solar energy as the main source of energy. Current methods use hydrocarbons and generate large amounts of carbon dioxide. The paper describes results from a literature survey performed to identify technologies using direct solar energy that were likely to succeed on an industrial scale in the near term. Critical parameters included calculated efficiencies, measured efficiencies, and development status. The cost of solar collectors is cited as the reason most promising solar hydrogen research is not taken to the pilot plant stage. The author recommends use of existing DOE facilities already in operation for pilot plant testing. 14 refs. (CK)

  17. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOE Patents [OSTI]

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  18. Advanced hydrogen utilization technology demonstration

    SciTech Connect (OSTI)

    Hedrick, J.C.; Winsor, R.E.

    1994-06-01

    This report presents the results of a study done by Detroit Diesel Corporation (DDC). DDC used a 6V-92TA engine for experiments with hydrogen fuel. The engine was first baseline tested using methanol fuel and methanol unit injectors. One cylinder of the engine was converted to operate on hydrogen fuel, and methanol fueled the remaining five cylinders. This early testing with only one hydrogen-fueled cylinder was conducted to determine the operating parameters that would later be implemented for multicylinder hydrogen operation. Researchers then operated three cylinders of the engine on hydrogen fuel to verify single-cylinder idle tests. Once it was determined that the engine would operate well at idle, the engine was modified to operate with all six cylinders fueled with hydrogen. Six-cylinder operation on hydrogen provided an opportunity to verify previous test results and to more accurately determine the performance, thermal efficiency, and emissions of the engine.

  19. Polymer system for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  20. Polymer formulations for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    1998-11-17

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  1. Polymer formulations for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  2. DOE Releases Electricity Subsector Cybersecurity Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline DOE Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline May ...

  3. Environmental Justice Interagency Working Group releases "Promising...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Justice Interagency Working Group releases "Promising Practices for EJ Methodologies in NEPA Reviews" Environmental Justice Interagency Working Group releases ...

  4. Flash hydrogenation of biomass

    SciTech Connect (OSTI)

    Steinberg, M

    1980-01-01

    It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

  5. National Hydrogen Learning Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, Chris Ainscough, Genevieve Saur February 6, 2012 DOE's Informational Webinar Series National Hydrogen Learning Demonstration Status This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC v8 National Renewable Energy Laboratory 2

  6. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. Jeff Martin TDA Research Inc. 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Overview *

  7. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  8. Hydrogen Infrastructure Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Strategies Prof. Joan Ogden University of California, Davis Presented at the NREL Workshop on Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Sacramento, CA April 3, 2008 H 2 2 H 2 TRANSITION => MULTIPLE TRANSITIONS Vehicle technology Fuel Supply infrastructure New, low carbon primary supply ALL ALT FUELS/VEHICLES FACE THESE ISSUES TO SOME DEGREE FIRST STEPS OF THESE TRANSITIONS ARE UNDERWAY (Though Not Exclusively Tied to H 2 ) FOCUS OF

  9. Hydrogen Pathway Cost Distributions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric

  10. System for exchange of hydrogen between liquid and solid phases

    DOE Patents [OSTI]

    Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

    1985-02-22

    The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  11. System for exchange of hydrogen between liquid and solid phases

    DOE Patents [OSTI]

    Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.

    1988-01-01

    The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  12. Measurement of uptake and release of tritium by tungsten

    SciTech Connect (OSTI)

    Nakayama, M.; Torikai, Y.; Saito, M.; Penzhorn, R.D.; Isobe, K.; Yamanishi, T.; Kurishita, H.

    2015-03-15

    Tungsten is currently contemplated as plasma facing material for the divertor of future fusion machines. In this paper the uptake of tritium by tungsten and its release behavior have been investigated. Tungsten samples have been annealed at various temperatures and loaded at also different temperatures with deuterium containing 7.2 % tritium at a pressure of 1.2 kPa. A specific system was designed to assess the release of tritiated water and molecular tritium by the samples. Due to the rather low solubility of hydrogen isotopes in tungsten it is particularly important to be aware of the presence of hydrogen traps or thin oxide films. As shown in this work, traps or oxide films may affect the retention capability of tungsten and lead to significantly modified release properties. It became clear that there were capture sites that had different thermal stability and different capture intensity in tungsten after polishing, or oxide films that were grown on the surface of tungsten and had barrier effects.

  13. Students to race their innovative solar, hydrogen and lithium ion battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model cars Saturday - News Releases | NREL Students to race their innovative solar, hydrogen and lithium ion battery model cars Saturday May 10, 2012 Middle school students from around the state will participate in the Junior Solar Sprint, Hydrogen Fuel Cell, and Lithium Ion Battery car competitions on Saturday, May 12, at Dakota Ridge High School in Littleton. Sponsored by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), the competitions give students the

  14. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  15. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  16. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Research Facility Hydrogen Infrastructure Testing and Research Facility Text Version The Hydrogen Infrastructure Testing and Research Facility (HITRF) at NREL's Energy Systems Integration Facility (ESIF) consists of hydrogen storage, compression, and dispensing capabilities for fuel cell vehicle fueling and component testing. The HITRF is the first facility of its kind in Colorado and will be available to industry for use in research and development activities. In addition to fueling

  17. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production Cost Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Cost Analysis NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11 states across the nation. This analysis included centralized plants producing the Department of Energy (DOE) target of 50,000 kg of hydrogen per day, using both wind and grid electricity. The use of wind and grid electricity can be balanced either by power or cost, including or excluding the purchase of peak summer electricity. Current wind incentives-such

  18. NREL Releases Updated Typical Meteorological Year Data Set - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Releases Updated Typical Meteorological Year Data Set May 1, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) today released an updated typical meteorological year (TMY) data set derived from the 1991-2005 National Solar Radiation Data Base update. The TMY3 data and user's manual are available at http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3. The new data sets update and expand the TMY2 data sets released by NREL in 1994. The TMY3 data

  19. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage ...

  20. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Broader source: Energy.gov (indexed) [DOE]

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  1. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable electrolysis. Photo by Dennis Schroeder, NREL NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment, and buildings. View the Hydrogen Program video on NREL's YouTube channel to learn more about the basics of NREL's hydrogen and fuel cell

  2. Alternative Fuels Data Center: Hydrogen Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production

  3. Alternative Fuels Data Center: Hydrogen Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Related Links to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Related Links on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Related Links on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Google Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Delicious Rank Alternative Fuels Data Center: Hydrogen Related Links on

  4. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - Current Technology Hydrogen Storage - Current Technology Hydrogen storage is a significant challenge for the development and viability of hydrogen-powered vehicles. On-board hydrogen storage in the range of approximately 5-13 kg is required to enable a driving range of greater than 300 miles for the full platform of light-duty automotive vehicles using fuel cell power plants. Hydrogen Storage Technologies Current on-board hydrogen storage approaches involve compressed hydrogen gas

  5. Hydrogen Pipeline Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Hydrogen Pipeline Working Group The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations conducting hydrogen pipeline research for the Department of Energy to better understand and minimize hydrogen embrittlement and to identify improved and new materials for hydrogen pipelines. Hydrogen Pipeline Working Group Workshops: September 25-26,

  6. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  7. Nanocrystalline materials for hydrogen storage

    SciTech Connect (OSTI)

    Schulz, R.; Boily, S.; Zaluski, L.; Zaluska, A.; Tessier, P.; Strom Olsen, J.O.

    1995-11-01

    The paper describes the advantages and disadvantages of using nanocrystalline hydrides for hydrogen storage and transportation. The method of fabrication, the microstructure of the alloys and the hydrogen absorption-desorption properties of these new materials are presented. The results are compared with those of conventional hydrides. Nanocrystalline hydrides have numerous advantages compared to conventional metal hydrides. The alloys, before hydrogenation, can be formed directly by mechanically alloying the elemental components. Since the crystal size is already very small, they do not usually decripitate during hydrogen absorption and, therefore, they maintain their structural integrity upon cycling. The numerous grain boundaries help the hydrogen diffusion and enhance the absorption-desorption kinetics. The mechanical alloying technique allows a precise control of the component and sorption properties off the alloys. This paper discusses the properties of two nanocrystalline hydrogen absorbing materials: FeTi and Mg{sub 2}Ni.

  8. Liquid Hydrogen Absorber for MICE

    SciTech Connect (OSTI)

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  9. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    SciTech Connect (OSTI)

    Wilking, S. Ebert, S.; Herguth, A.; Hahn, G.

    2013-11-21

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550?C seems to be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects.

  10. Hydrogen desorption kinetics for aqueous hydrogen fluoride and remote hydrogen plasma processed silicon (001) surfaces

    SciTech Connect (OSTI)

    King, Sean W. Davis, Robert F.; Carter, Richard J.; Schneider, Thomas P.; Nemanich, Robert J.

    2015-09-15

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C). The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.

  11. DOE Hydrogen Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Mark Paster U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Program January, 2005 A Bold New Approach is Required 0 4 8 12 16 20 24 28 32 1970 1980 1990 2000 2010 2020 2030 2040 2050 Petroleum (MMB/Day Oil Equivalent) Actual Projection U.S. Oil Production EIA 2003 Base Case Extended Oil Consumption With Average Fuel Efficiency Automobile & Light Truck Oil Use U.S. Transportation Oil Consumption U.S. Refinery Capacity Source: DOE/EIA, International Petroleum

  12. Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H-Prize Competition | Department of Energy Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize Competition Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize Competition March 27, 2014 - 1:52pm Addthis The Energy Department recently released a new video in its popular Energy 101 series showing how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but

  13. SBIR/STTR FY15 Phase 2 Awards Announced-Includes Hydrogen Production and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCEV Systems | Department of Energy 5 Phase 2 Awards Announced-Includes Hydrogen Production and FCEV Systems SBIR/STTR FY15 Phase 2 Awards Announced-Includes Hydrogen Production and FCEV Systems March 23, 2015 - 3:37pm Addthis The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase 2 Release 1 Awards, including three Office of Science projects focusing on hydrogen production from electrolysis and

  14. Efficient hydrogen production made easy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient hydrogen production made easy Efficient hydrogen production made easy Understanding how to use a simple, room-temperature treatment to drastically change the properties of materials could lead to a revolution in renewable fuels production and electronic applications. June 13, 2016 New research from Los Alamos National Laboratory researchers, "Efficient Hydrogen Evolution in Transition Metal Dichalcogenides via a Simple One-Step Hydrazine Reaction," not only presents one of

  15. Compressed Hydrogen Storage Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monday, February 14, 2011 - Compressed Hydrogen Storage Purpose: Identify strategies and R&D needs for lowering the cost of high pressure hydrogen storage systems. Meeting scope includes the on-board system including but limited to its design, materials of construction, manufacturing processes and operating specifications. The meeting scope does not include the refueling infrastructure, such as hydrogen dispensing, compression and cooling, nor the vehicle powertrain, such as fuel cell, ICE

  16. Hydrogen Contamination Detector Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Contamination Detector Workshop DOE Fuel Cell Technologies Office Hosted by: SAE International, Troy, Michigan June 12, 2014 (8:30 AM - 3:00 PM) Workshop Objective: The objective of the Hydrogen Contamination Detector (HCD) Workshop is to gather input from stakeholders on requirements, technologies and the research and development (R&D) gaps associated with the detection of contamination at hydrogen fueling stations. This input will help identify current state-of-the-art detection

  17. Hydrogen Fueling Station Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Presented by Tom Joseph at the National Hydrogen Assocation Conference and Hydrogen Expo joseph_infrastructure_for_emerging_markets.pdf (1.17 MB) More Documents & Publications Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment Slides | Department of Energy

    An Overview of the Hydrogen Fueling Infrastructure

  18. Hydrogen Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable

  19. hydrogen | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen Why Coal to Hydrogen Syngas derived from most high pressure gasification processes already contains a significant amount of hydrogen (H2), which can be increased through water gas shift (WGS) and be readily separated into a pure H2 product meeting industry product quality standards. There are several conventional H2 separation processes, but modern installations preferentially choose pressure swing adsorption (PSA), which is a well-proven technology offering high availability and low

  20. hydrogen | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    hydrogen NNSA lab recognized for innovation to power electric cars The expertise and capabilities of NNSA's labs are recognized for powering innovation in the nuclear industry - and now for powering hydrogen fuel cell electric vehicles. The recent 2016 Annual Merit Review Awards recognized significant achievements in the Department of Energy... Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here