Sample records for hq hazard quotient

  1. Deterministic hazard quotients (HQs): Heading down the wrong road

    SciTech Connect (OSTI)

    Wilde, L.; Hunter, C.; Simpson, J. [Golder Associates Inc., Redmond, WA (United States)

    1995-12-31T23:59:59.000Z

    The use of deterministic hazard quotients (HQs) in ecological risk assessment is common as a screening method in remediation of brownfield sites dominated by total petroleum hydrocarbon (TPH) contamination. An HQ {ge} 1 indicates further risk evaluation is needed, but an HQ {le} 1 generally excludes a site from further evaluation. Is the predicted hazard known with such certainty that differences of 10% (0.1) do not affect the ability to exclude or include a site from further evaluation? Current screening methods do not quantify uncertainty associated with HQs. To account for uncertainty in the HQ, exposure point concentrations (EPCs) or ecological benchmark values (EBVs) are conservatively biased. To increase understanding of the uncertainty associated with HQs, EPCs (measured and modeled) and toxicity EBVs were evaluated using a conservative deterministic HQ method. The evaluation was then repeated using a probabilistic (stochastic) method. The probabilistic method used data distributions for EPCs and EBVs to generate HQs with measurements of associated uncertainty. Sensitivity analyses were used to identify the most important factors significantly influencing risk determination. Understanding uncertainty associated with HQ methods gives risk managers a more powerful tool than deterministic approaches.

  2. Quotients of Metric Spaces

    E-Print Network [OSTI]

    Herman, Robert A.

    1968-01-01T23:59:59.000Z

    the properties of quotient spaces of metric spaces. We will use "iff" as an abbreviation for "if and only if". If f is a function from X onto Y, we will write f: X --->> Y....

  3. HQ

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map is aHOW THE

  4. HQ NTEU | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map is aHOW THEHQ NTEU HQ

  5. DOE HQ Occupational Safety and Health Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1WIPP | DepartmentHQ F 1511.1 DOE HQ

  6. HQ FNVA Questionnaire | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Celland Contractors | DepartmentHANFORD SITE- - -HOW (12-08)HQ

  7. Energy Reduction at HQ | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » AlternativeUpDrain-Water HeatElementsEnergy andHQ Energy

  8. HQ Leave Guide | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoingGuidelines forofHCHEFADelegationHQ

  9. HQ - Human Resources Operations | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meeting wasEngineering and DebuggingDeputyExtremeHQ -

  10. HQ-2011-01822-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meeting wasEngineering andHQ Human Resources -HQTom

  11. HQ-2011-01822-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meeting wasEngineering andHQ Human Resources -HQTom11

  12. HQ Operations Division (HC-32) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Provide information to HQ employee population on employee benefit programs (retirement; health, dental, vision, long-term care, and life insurance; thrift savings plan; flexible...

  13. Cancellation of DOE HQ O 344.1A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-10-08T23:59:59.000Z

    Effectively immediately, HQ O 344.1, Parking, dated 11-2-01, is canceled as is Chg. 1 dated 11-19-04.

  14. WILD QUOTIENT SINGULARITIES OF SURFACES DINO LORENZINI

    E-Print Network [OSTI]

    Lorenzini, Dino J.

    WILD QUOTIENT SINGULARITIES OF SURFACES DINO LORENZINI Abstract. Let (B, MB) be a noetherian in this article three structural properties of wild quotient singularities, which suggest that in general, one exhibit explicitly the resolution graphs of an infinite set of wild Z/2Z-singularities, using some results

  15. Summary of HQ01e magnetic measurements

    SciTech Connect (OSTI)

    Wang, X.; Caspi, S.; Cheng, D. W.; Dietderich, D. R.; Felice, H.; Ferracin, P.; Godeke, A.; Hafalia, A.R.; Joseph, J. M.; Lizarazo, J.; Marchevsky, M.; Sabbi, G. L.; Ghosh, A.; Schmalzle, J.; Wanderer, P.; Ambrosio, G.; Bossert, R.; Chlachidze, G.; DiMarco, J.; Zlobin, A.V.; Milanese, A.; Todesco, E.

    2011-11-28T23:59:59.000Z

    The magnetic measurements of HQ01e, a 1 m long LHC Accelerator Research Program (LARP) high-gradient quadrupole model, were performed at 4.4 K and above 40 K at the magnet test facility of LBNL in July 2011. The 120 mm aperture cos2? Nb{sub 3}Sn magnet was designed with accelerator magnet features including alignment and field quality. Conductor-limited gradient was 195 T/m at 4.4 K. During the measurement, a ramp rate of 10 A/s was used and measurements at the nominal current of 14.2 kA (82% of short-sample limit with a gradient of 160 T/m) were performed using the 250 mm long printed-circuit board rotating probe developed by FNAL. At 14.2 kA, 2.7 units of b{sub 6} and 0.7 units of b{sub 10} were measured. Large persistent current contribution and strong dynamic effects were observed. We analyzed the allowed and non-allowed harmonics obtained during the measurements above 40 K and at the nominal current. Significant change of the skew sextupole occurred between 50 K and 95 K. The allowed multipole and the low-order non-allowed multipoles at the straight section were explained through the rigid displacement of coil blocks with an amplitude less than 100 ?m. We also attempted to correlate the coil asymmetry (a{sub 3} and b{sub 3}) with the measured coil pole azimuthal strain. The dynamic multipole measured at the magnetic straight section varied linearly with the ramp rate of magnet current ranging from 10 A/s to 60 A/s. It was attributed to the inter-strand coupling currents with low crossover resistance. The crossover resistance of the cables at the inner layer of the magnet was estimated to range between 0.2 ?? to 0.7 ??.

  16. DOE HQ F 1500.5 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE HQ FDOE HQ

  17. DOE HQ F 4420.1 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1WIPP | DepartmentHQ F 1511.1 DOE HQ F

  18. Products, weak topologies, quotients and strong topologies.

    E-Print Network [OSTI]

    Ferri, Stefano

    Products, weak topologies, quotients and strong topologies. Stefano Ferri Abstract Again something from finite products of metric spaces, which are well known from the course Analysis I. Given two metric spaces (X, d) and (Y, ) we define the product space X Ă? Y in the following way. As a set we have

  19. Gnie mcanique Implementing the Quotient Method Controller

    E-Print Network [OSTI]

    Lausanne, Ecole Polytechnique Fédérale de

    of this project was to apply this method on a Ball-on-a- Wheel system. This system consists of a ball rolling the ball-on-a-wheel system it is important to have a sufficiently fast sampling rate. Normal webcamsSECTION DE Génie mécanique Implementing the Quotient Method Controller on the Ball-on-a-Wheel

  20. 3/1/11 PSS Budget Telecon Committee Members Present: Jim Green (HQ), Sarah Noble (HQ), Ron Greeley (chair), Fran Bagenal

    E-Print Network [OSTI]

    Rathbun, Julie A.

    3/1/11 PSS Budget Telecon Committee Members Present: Jim Green (HQ), Sarah Noble (HQ), Ron Greeley the 2012 budget release in February. Several PSS members submitted questions in advance, which were to be executed in 2012 and is intended to be a budget neutral action. We have done this in the past and know

  1. DOE HQ F 1420.7 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE HQ F 1420.7

  2. DOE HQ F 1450.2 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE HQ F

  3. DOE HQ F 1511.1 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE HQ FDOE

  4. DOE HQ F 3293.1 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE HQ

  5. DOE HQ F 3305.7 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE HQ05.7 DOE

  6. DOE HQ F 3335.1 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE HQ05.735.1

  7. DOE HQ F 3790.7 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE7 DOE HQ F

  8. DOE HQ F 3790.8 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE7 DOE HQ F8

  9. DOE HQ F 4420.1 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE7 DOE HQ

  10. HQ Voluntary Leave Transfer Program | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHC Policy andHQ Voluntary Leave

  11. HQ_F_1500_5.pdf | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoingGuidelinesHQ_F_1500_5.pdf

  12. DOE Headquarters (HQ) Environmental Management System (EMS) Policy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1WIPP | DepartmentHQ F 1511.1 DOE HQShuttle)

  13. Office of the Chief Information Officer DOERM@hq.doe.gov Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of the Chief Information Officer DOERM@hq.doe.gov Office of IT Planning, Architecture and E-government Records Management Division (IM-23) Employee Separation:...

  14. Office of the Chief Information Officer DOERM@hq.doe.gov

    Energy Savers [EERE]

    including approving RM planning and investment proposals and information architecture plans Ensuring RM efforts are coordinated with HQ and Field sites, including...

  15. ON THE MOTIVE OF A QUOTIENT VARIETY SEBASTIAN DEL BA ~

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    ON THE MOTIVE OF A QUOTIENT VARIETY SEBASTIAN DEL BA ~ NO ROLLIN AND VICENTE NAVARRO AZNAR En with the realization functors and Chow groups. Recently, in the case char k = 0, Guill'en and Navarro Aznar have given. DEL BA ~ NO ROLLIN AND V. NAVARRO AZNAR group, K 0 M k , these decompositions were considered by Denef

  16. WILD QUOTIENT SURFACE SINGULARITIES WHOSE DUAL GRAPHS ARE NOT STAR-SHAPED

    E-Print Network [OSTI]

    Schröer, Stefan

    WILD QUOTIENT SURFACE SINGULARITIES WHOSE DUAL GRAPHS ARE NOT STAR-SHAPED HIROYUKI ITO AND STEFAN- zini on wild quotient singularities in dimension two. Using Kato's theory of log structures and log of Heisenberg groups lead to examples of wild quotient singularities where the dual graph contains at least two

  17. QUESTIONS ON WILD Z/pZ-QUOTIENT SINGULARITIES IN DIMENSION 2

    E-Print Network [OSTI]

    Lorenzini, Dino J.

    QUESTIONS ON WILD Z/pZ-QUOTIENT SINGULARITIES IN DIMENSION 2 DINO LORENZINI 1. Some questions Let A is called a wild cyclic quotient singularity. Let f : X Z be a resolution of the singularity, minimal a terminal chain. Wild Z/pZ-quotient singularities of surfaces are expected to have resolution graphs which

  18. W912HQ-11-D-0004 USACE HUMPHREYS ENGR CTR SPT ACTIVITY

    E-Print Network [OSTI]

    US Army Corps of Engineers

    60604-4107 CODE 10. THIS ACQUISITION IS UNRESTRICTED FAX: NAICS: TEL: CODE 18a. PAYMENT WILL BE MADE 5722 INTEGRITY DRIVE MILLINGTON TN 38054-5005 18b. SUBMIT INVOICES TO ADDRESS SHOWN IN BLOCK 18a OF SOLICITATION IFB RFP CODE SEEADDENDUM BLOCK IS MARKED DESTINATION UNLESS 12. DISCOUNT TERMS F&A HQ (No Collect

  19. Fuzzy Cosets and Quotient Fuzzy AG-subgroups

    E-Print Network [OSTI]

    Amanullah; Imtiaz Ahmad; Muhammad Shah

    2014-03-15T23:59:59.000Z

    In this paper we extend the concept of fuzzy AG-subgroups. We introduce some results in normal fuzzy AG-subgroups. We define fuzzy cosets and quotient fuzzy AG-subgroups, and prove that the sets of their collection form an AG-subgroup and fuzzy AG-subgroup respectively. We also introduce the fuzzy Lagrange's Theorem of AG-subgroup. It is known that the condition $\\mu(xy)=\\mu(yx)$ holds for all $x,y$ in fuzzy subgroups if $\\mu$ is normal, but in fuzzy AG-subgroup we show that it holds without normality.

  20. OIG HQ

    Broader source: Energy.gov (indexed) [DOE]

    May 2009. We recognize that consolidating the two operations will involvetransportation, scheduling, and personnel changes that impact operations beyond the scope of this audit....

  1. HQ1224

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map is aHOW THEHQTo

  2. EA-182 H.Q Energy Services (U.S) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7: H.Q Energy Services

  3. EA-182-A H.Q Energy Services (U.S) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7: H.Q Energy Services-A

  4. EA-182-B H.Q Energy Services (U.S) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7: H.Q Energy Services-AB

  5. EA-182-C H.Q Energy Services (U.S) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7: H.Q Energy Services-ABC

  6. DOE HQ F 331.1 (fillable pdf) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE HQ05.7

  7. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  8. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  9. Effect of Leucovorin (Folinic Acid) on the Developmental Quotient of Children with Down's Syndrome (Trisomy 21)

    E-Print Network [OSTI]

    Boyer, Edmond

    Effect of Leucovorin (Folinic Acid) on the Developmental Quotient of Children with Down's Syndrome deficiency may contribute to mental retardation in Down's syndrome (DS). Methodology: We investigated development of children with Down's syndrome, at least in some subgroups of the DS population, particularly

  10. Hazard Baseline Documentation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-12-04T23:59:59.000Z

    This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

  11. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    Hazardous Waste Management Training Persons (including faculty, staff and students) working with hazardous materials should receive annual training that addresses storage, use, and disposal of hazardous before handling hazardous waste. Departments are re- quired to keep records of training for as long

  12. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  13. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  14. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  15. Hazardous Waste Management (Arkansas)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

  16. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  17. Hazard Analysis Database report

    SciTech Connect (OSTI)

    Niemi, B.J.

    1997-08-12T23:59:59.000Z

    This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

  18. Hazard analysis results report

    SciTech Connect (OSTI)

    Niemi, B.J., Westinghouse Hanford

    1996-09-30T23:59:59.000Z

    This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

  19. WEATHER HAZARDS Basic Climatology

    E-Print Network [OSTI]

    Prediction Center (SPC) Watch Atmospheric conditions are right for hazardous weather ­ hazardous weather is likely to occur Issued by SPC Warning Hazardous weather is either imminent or occurring Issued by local NWS office #12;Outlooks--SPC Storm Prediction Center (SPC) Outlook=Convective Outlook Day 1 Day 2

  20. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GRAMS, W.H.

    2000-12-28T23:59:59.000Z

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

  1. Hazardous Materials and Controlled Hazardous Substances (Maryland)

    Broader source: Energy.gov [DOE]

    A permit is required to own, establish, operate, or maintain a facility in the state of Maryland that transfers quantities of a single hazardous material in excess of 100,000 pounds at any time...

  2. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  3. Surveillance Guides - Hazards Control

    Broader source: Energy.gov (indexed) [DOE]

    briefings adequately address controls for the identified hazards? Examples would be lockouttagout requirements, hold points, confined space, radiological work permits, fire...

  4. Radiation Hazards Program (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

  5. Hazardous Material Security (Maryland)

    Broader source: Energy.gov [DOE]

    All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

  6. ALTERNATE APPROACH TO HAZARD CATEGORIZATION FOR SALTSTONE FACILITY AT SRS

    SciTech Connect (OSTI)

    Roy, B.

    2009-04-28T23:59:59.000Z

    The Saltstone Facility at Savannah River Site (SRS) was originally segmented into two segments: the Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). Based on the inventory of radionuclides available for release the SPF and SDF were categorized as Nonreactor Hazard Category (HC)-3. The hazard categorization recognized the SDF will contain contributions of radionuclides which would exceed the HC-2 Threshold Quantity (TQ) in the form of grout. However it was determined not to impact the facility hazard categorization based on the grout being in a solid, monolithic form which was not easily dispersible. But, the impact of a quantity of unset grout expected to be present at the vault following operation of the process was not addressed. A Potential Inadequacy in Safety Analysis (PISA) was later issued based on the hazard categorization determination for the facility not addressing unset grout. This initiated a re-evaluation of the accident scenarios within the hazards analysis. During this re-evaluation, the segmentation of the facility was challenged based on the potential interaction between facility segments; specifically, the leachate return line and the grout transfer line, which were considered separate segments, are located in close proximity at one point. such that for certain events (NPH as well as External Vehicle Impact) both could be damaged simultaneously and spill contents on the ground that could commingle. This would violate the guideline for segmentation. Therefore, the Hazard Categorization (HC) was reevaluated based on the facility being a single segment and including the additional unset grout as part of total inventory. This total inventory far exceeded the limit for HC-2 TQ and made the facility's initial categorization as HC-2. However, alternative analysis methodology based on credible release fractions allowed in DOE-STD-1027-92 (Ref.1) showed that the Saltstone facility could still be categorized as Hazard Category 3 Nuclear Facility with no segmentation. Since it was the first time any facility at SRS tried this alternate approach safety analyst had to face substantial resistance and reservations from both the facility and local DOE customers which were eventually overcome with approval and acceptance from DOE-HQ.

  7. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    SEMMENS, L.S.

    2001-04-20T23:59:59.000Z

    The K East (KE)/K West (KW) Basins in the 100 K Area of the Hanford Site have been used for storage of irradiated N Reactor and single-pass reactor fuel. Remaining spent fuel is continuing to be stored underwater in racks and canisters in the basins while fuel retrieval activities proceed to remove the fuel from the basins. The Spent Nuclear Fuel (SNF) Project is adding equipment to the facility in preparation for removing the fuel and sludge from the basins In preparing this hazard analysis, a variety of hazard analysis techniques were used by the K Basins hazard analysis team, including hazard and operability studies, preliminary hazard analyses, and ''what if'' analyses (WHC-SD-SNF-PHA-001, HNF-2032, HNF-2456, and HNF-SD-SNF-SAD-002). This document summarizes the hazard analyses performed as part of the safety evaluations for the various modification projects and combines them with the original hazard analyses to create a living hazard analysis document. As additional operational activities and modifications are developed, this document will be updated as needed to ensure it covers all the hazards at the K Basins in a summary form and to ensure the subsequent safety analysis is bounding. This hazard analysis also identifies the preliminary set of design features and controls that the facility could rely on to prevent or reduce the frequency or mitigate consequences of identified accident conditions based on their importance and significance to safety. The operational controls and institutional programs relied on for prevention or mitigation of an uncontrolled release are identified as potential technical safety requirements. All operational activities and energy sources at the K Basins are evaluated in this hazard analysis. Using a systematic approach, this document identifies hazards created by abnormal operating conditions and external events (e.g., earthquakes) that have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and complies with the requirements of 10 CFR 830.

  8. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  9. Hazardous Sites Cleanup Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste...

  10. Integrable N = 2 Landau-Ginzburg Theories from Quotients of Fusion Rings

    E-Print Network [OSTI]

    Eli J. Mlawer; Harold A. Riggs; Howard J. Schnitzer

    1993-10-14T23:59:59.000Z

    The discovery of integrable $N=2$ supersymmetric Landau-Ginzburg theories whose chiral rings are fusion rings suggests a close connection between fusion rings, the related Landau-Ginzburg superpotentials, and $N=2$ quantum integrability. We examine this connection by finding the natural $SO(N)_K$ analogue of the construction that produced the superpotentials with $Sp(N)_K$ and $SU(N)_K$ fusion rings as chiral rings. The chiral rings of the new superpotentials are not directly the fusion rings of any conformal field theory, although they are natural quotients of the tensor subring of the $SO(N)_K$ fusion ring. The new superpotentials yield solvable (twisted $N=2$) topological field theories. We obtain the integer-valued correlation functions as sums of $SO(N)_K$ Verlinde dimensions by expressing the correlators as fusion residues. The $SO(2n+1)_{2k+1}$ and $SO(2k+1)_{2n+1}$ related topological Landau-Ginzburg theories are isomorphic, despite being defined via quite different superpotentials.

  11. Hazardous Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

  12. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  13. Proceedings Hazards and Disasters

    E-Print Network [OSTI]

    Wang, Hai

    Liang-Chun Chen, Jie-Ying Wu, Yi-Chung Liu, Sung-Ying Chien HAZARDS EDUCATION BY GEOGRAPHERS: A DECADE-DISASTER CONDOMINIUM HOUSING RECONSTRUCTION AND HOUSEHOLD CHARACTERISTICS............. 35 Jie-Ying Wu, Liang-Chun Chen

  14. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  15. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  16. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  17. HQ F 580

    Broader source: Energy.gov (indexed) [DOE]

    Certi cate of PropertyProperty Removal Authorization NAME(Last, First, MI) Org Code Phone Item Descrip n Make Model Tag Number Serial Number Exp. Date RECEIPT ACKNOWLEDGMENT I...

  18. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Bonneville Power Administration (BPA) is designing its Integrated Program Review (IPR) process for the Fiscal Year 2014-2015 rate period. The IPR is a consolidated...

  19. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration's (BPA) proposed schedule for the 2007 Supplemental Wholesale Power (WP-07) Rate Case that will revise its power rates for Fiscal Year 2009 in...

  20. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12, 2011 In reply refer to: DKR-7 To Customers and Interested Parties: The Bonneville Power Administration's (BPA) annual report is out, and for the first time in three years, BPA...

  1. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. HASS (IG-30) DEPUTY INSPECTOR GENERAL FOR AUDITS AND INSPECTIONS FROM: STEPHEN J. WRIGHT ADMINISTRATOR AND CHIEF EXECUTIVE OFFICER SUBJECT: RESPONSE TO DRAFT AUDIT REPORT ON...

  2. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thank you for your interest in maintaining reliable power system operation and fish protection during occasional periods of high water in the Columbia River system. More...

  3. HQ F 580

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map is aHOW THE (12-08)

  4. HQ Leave Guide

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map is aHOW THE

  5. HQ F 580

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoingGuidelines forofHCHEFADelegation

  6. HQ F 580

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoingGuidelines forofHCHEFADelegation

  7. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014 In reply refer to: PE-1 Dear

  8. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014 In reply refer to: PE-1 DearJune 18,

  9. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014 In reply refer to: PE-1 DearJune 18,

  10. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014 In reply refer to: PE-1 DearJune

  11. The View from HQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceThe

  12. The View from HQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceThe publication of the Office of

  13. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 1 54InOutput-Based

  14. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 1

  15. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In reply

  16. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In

  17. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In RE:

  18. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In RE:

  19. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In RE:

  20. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In

  1. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In0, 2010

  2. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In0,

  3. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In0,0 In

  4. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In0,0

  5. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In0,0

  6. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008 In0,027,

  7. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008

  8. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008July 2,

  9. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008July 2,6,

  10. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14, 2008July

  11. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    - Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

  12. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  13. State of Colorado Wildfire Hazard

    E-Print Network [OSTI]

    State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 the May 2001 Report to the Governor, Colorado Wildland Urban Interface; Section 2 includes the Hazard the status of the Wildland Urban Interface in Colorado; the hazards that exist; mitigation measures

  14. Chemical process hazards analysis

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  15. Identification of Aircraft Hazards

    SciTech Connect (OSTI)

    K. Ashley

    2006-12-08T23:59:59.000Z

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  16. Environmental Hazards and

    E-Print Network [OSTI]

    Murphy, Bob

    . 2. Pollution -Mexico. 3. Transboundary pollution. 4. Conservation of natural resources - UnitedEnvironmental Hazards and Bioresource Management in the United States- Mexico Borderlands Edited. -(Special studies ;v. 3) Includes bibliographical references. ISBN 0-87903-503-X 1. Pollution -United States

  17. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  18. Hazardous Waste Management (North Dakota)

    Broader source: Energy.gov [DOE]

    The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

  19. Montana Hazardous Waste Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

  20. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23T23:59:59.000Z

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  1. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

  2. Hazardous Materials Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSiteAboutRadioactiveHazardous

  3. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping ApplicationEnvironment AtGraduateHazard

  4. Fire Hazards Listing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified| DepartmentFindingHazards Listing

  5. Hazardous Substances Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Commissioner of the Department of Agriculture has the authority to promulgate regulations declaring specified substances to be hazardous and establishing labeling, transportation, storage, and...

  6. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  7. Hazardous Waste Transporter Permits (Connecticut)

    Broader source: Energy.gov [DOE]

    Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

  8. Nebraska Hazardous Waste Regulations (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

  9. Hazardous Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    "Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

  10. REPORT NO. 8 radiation hazards

    E-Print Network [OSTI]

    REPORT NO. 8 REVISED guidance for the control of radiation hazards in uranium mining SEPTEMBER 1967 OF RADIATION HAZARDS IN URANIUM MINING SEPTEMBER 1967 Staff Report of the FEDERAL RADIATION COUNCIL #12;FEDERAL...... .... .._ _.... Section I. Introduction. . . Section II. The Radiation Environment AssociatedWith Uranium Mining. Section

  11. Hazardous Waste Management Standards and Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

  12. Hazardous Waste Facility Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

  13. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  14. Method of recycling hazardous waste

    SciTech Connect (OSTI)

    NONE

    1999-11-11T23:59:59.000Z

    The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

  15. Hazardous and Industrial Waste (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

  16. Hazardous Waste Management Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the...

  17. Hazardous Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

  18. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

  19. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    SciTech Connect (OSTI)

    R. Longwell; J. Keifer; S. Goodin

    2001-01-22T23:59:59.000Z

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

  20. LOG HAZARD REGRESSION Huiying Sun

    E-Print Network [OSTI]

    Heckman, Nancy E.

    LOG HAZARD REGRESSION by Huiying Sun Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991 .................................................................... .................................................................... .................................................................... .................................................................... THE UNIVERSITY OF BRITISH COLUMBIA September, 1999 c flHuiying Sun, 1999 #12; Abstract We propose using

  1. Toxic hazards of underground excavation

    SciTech Connect (OSTI)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01T23:59:59.000Z

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  2. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

    1994-06-01T23:59:59.000Z

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  3. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  4. Bulletin No. 233 Ergonomic Hazards of the

    E-Print Network [OSTI]

    Martin, Jeff

    July, 2004 Bulletin No. 233 Ergonomic Hazards of the Seated Posture Ergonomic Hazards of the Seated it is possible for these injuries to heal themselves when the ergonomic hazard is removed, cases do exist where;PAGE 2 ERGONOMIC HAZARDS of the SEATED POSTURE BULLETIN NO. 233 Ergonomic interventions to reduce

  5. Radiological hazards of alpha-contaminated waste

    SciTech Connect (OSTI)

    Rodgers, J.C.

    1982-01-01T23:59:59.000Z

    The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

  6. HQ F 331.1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoingGuidelines forofHCHEFADelegation of

  7. INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION

    SciTech Connect (OSTI)

    R.J. Garrett

    2005-02-17T23:59:59.000Z

    The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology for this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.

  8. WHC fire hazards analysis policy

    SciTech Connect (OSTI)

    Evans, C.B.

    1994-04-01T23:59:59.000Z

    The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

  9. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover bodies (without needles) Container: Sturdy and leakproof with Hazardous Glass label. Either: Plastic resistant, leakproof plastic carboy with green sharps label. Do not fill these containers completely. Leave

  10. Massachusetts Hazardous Waste Management Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

  11. Oklahoma Hazardous Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility...

  12. Georgia Hazardous Site Response Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Site Response Act is Georgia’s version of Superfund. The Act provides for graduated fees on the disposal of hazardous waste, a trust fund to enable the EPD to clean up or plan...

  13. D-Area Preliminary Hazards Analysis

    SciTech Connect (OSTI)

    Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Paik, I.R. [Westinghouse Safety Management Solutions, , ()

    1998-04-01T23:59:59.000Z

    A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

  14. CONTROL OF HAZARDOUS ENERGY 12.A GENERAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program by the contractor-managed HECP (e.g., QA's on construction sites, etc.), they shall comply with the contractor and implementation of these activities. Each shall inform the other of their HECPs and Hazardous Energy Control (HEC

  15. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    -hazardous solid chemicals may go in the trash. Have you disposed of "waste-like", legacy and unknown c Manage anyFocus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  16. Canister Storage Building (CSB) Hazard Analysis Report

    SciTech Connect (OSTI)

    POWERS, T.B.

    2000-03-16T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

  17. Implementation of the hazardous debris rule

    SciTech Connect (OSTI)

    Sailer, J.E.

    1993-01-05T23:59:59.000Z

    Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

  18. NGNP SITE 2 HAZARDS ASSESSMENT

    SciTech Connect (OSTI)

    Wayne Moe

    2011-10-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

  19. Hazardous and Radioactive Mixed Waste

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-12-31T23:59:59.000Z

    To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

  20. ARM - SGP Rural Driving Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtendedRural Driving Hazards

  1. Hazardous waste management in the Pacific basin

    SciTech Connect (OSTI)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

    1994-11-01T23:59:59.000Z

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  2. Freeze Concentration Applied to Hazardous Waste Management

    E-Print Network [OSTI]

    Ruemekorf, R.

    steps to remove or destroy the hazardous components prior to discharge. Incineration is widely used to destroy a broad range of these hazardous components. Its disposal efficiency is often used when defining the Best Available Technology for EPA... standards. However, high water content streams are expensive to incinerate since the incinerator must be designed to handle the feed volume even though the water in the feed is in itself harmless. Some hazardous components require operating temperatures...

  3. Hazardous Liquid Pipelines and Storage Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

  4. DC Hazardous Waste Management (District of Columbia)

    Broader source: Energy.gov [DOE]

    This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

  5. Hazardous Waste Management System-General (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

  6. Chapter 38 Hazardous Waste Permitting Process (Kentucky)

    Broader source: Energy.gov [DOE]

    This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements...

  7. Hazardous Waste Minimum Distance Requirements (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste and other land uses. The regulations require an...

  8. Identification of Hazards, 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

  9. Mission Support Alliance, LLC Volpentest Hazardous Materials...

    Broader source: Energy.gov (indexed) [DOE]

    Organization (FERO) roles and responsibilities, training requirements and the conduct of operations. Each project is responsible for developing and maintaining EP Hazards...

  10. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    POWERS, T.B.

    1999-05-11T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

  11. Hazardous Material Transportation Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

  12. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30T23:59:59.000Z

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  13. Louisiana Hazardous Waste Control Law (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

  14. Fire hazards analysis of central waste complex

    SciTech Connect (OSTI)

    Irwin, R.M.

    1996-05-30T23:59:59.000Z

    This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  15. Extremely Hazardous Substances Risk Management Act (Delaware)

    Broader source: Energy.gov [DOE]

    This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

  16. Oil and Hazardous Substance Discharge Preparedness (Minnesota)

    Broader source: Energy.gov [DOE]

    Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

  17. Comparison of Hazard Analysisp y Requirements of I&C

    E-Print Network [OSTI]

    ) M di l D i A id tShip Accident (Ferry Sewol) Medical Device Accident (Therac-25) 3 NPP Accident­ Software Fault Tree Analysis ­ By AECL, Nancy Leveson Name of Software Hazards No % Remarks For construct hazard 4 7For construct hazard 4 7 Initialization hazard 4 7 IF-THEN-ELSE construct hazard 38 67 CASE

  18. Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS

    E-Print Network [OSTI]

    Kääb, Andreas

    and other forms of creeping mountain permafrost may be the source of a number of hazards. Rock glaciers of large rock avalanche disasters are examples of mountain hazards. In the case of the September 20, 2002, rock-ice avalanche at Kolka-Karmadon in the Russian Caucasus, a combined rock-ice avalanche

  19. Why is Eastern Redcedar a Hazardous Fuel?

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Why is Eastern Redcedar a Hazardous Fuel? Why is Eastern Redcedar a Hazardous Fuel? Homes built the destruction of fire-tolerant trees if a wildfire moves through the area. Creating fuel breaks (such ignite it. · When ERC grows in forests and wood- lands, it acts as a ladder fuel to allow fire to climb

  20. THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT

    E-Print Network [OSTI]

    THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT Offered by The College of Architecture and The Hazard Reduction and Recovery Center Texas A&M University #12;2 THE GRADUATE CERTIFICATE IN ENVIRONMENTAL..................................................................................3 C. Approved Courses in the College of Architecture .............................4 D. Approved

  1. Natural phenomena hazards, Hanford Site, Washington

    SciTech Connect (OSTI)

    Conrads, T.J.

    1998-09-29T23:59:59.000Z

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

  2. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  3. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    None

    1981-12-01T23:59:59.000Z

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  4. Sustainable System for Residual Hazards Management

    SciTech Connect (OSTI)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-06-01T23:59:59.000Z

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today’s waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous longterm management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by externalintrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the longterm success of the prescribed system. In fact, given that society has become more reliant on and confident of engineered controls, there may be a growing tendency to be even less concerned with institutional controls.

  5. Uintah -a scalable framework for hazard analysis Martin Berzins

    E-Print Network [OSTI]

    Utah, University of

    Uintah - a scalable framework for hazard analysis Martin Berzins Scientific Computing and Imaging of Uintah to a petascale problem in hazard analysis arising from "sympathetic" explosions in which. Devices containing such materials undergo extensive testing for hazard classification prior

  6. Assessment of Health Hazards of Repeated Inhalation of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

  7. Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations is to help maintain accountability and track data on the hazardous and nonhazardous waste sites in...

  8. DOE Standard 1020 - Natural Phenomena Hazard analysis and Design...

    Broader source: Energy.gov (indexed) [DOE]

    1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities...

  9. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  10. Evaluation of the SRS Seismic Hazard Considering the EPRI 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Evaluation of...

  11. New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free Web-based tool that can quickly calculate potential visual hazards from proposed solar...

  12. A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...

    Open Energy Info (EERE)

    atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than...

  13. Hazardous Waste Compliance Program Plan

    SciTech Connect (OSTI)

    Potter, G.L.; Holstein, K.A.

    1994-05-01T23:59:59.000Z

    The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

  14. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01T23:59:59.000Z

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  15. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20T23:59:59.000Z

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  16. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

    1992-01-01T23:59:59.000Z

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  17. WESF natural phenomena hazards survey

    SciTech Connect (OSTI)

    Wagenblast, G.R., Westinghouse Hanford

    1996-07-01T23:59:59.000Z

    A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

  18. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17T23:59:59.000Z

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  19. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  20. 283-E and 283-W hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-26T23:59:59.000Z

    This report documents the hazards assessment for the 200 area water treatment plants 283-E and 283-W located on the US DOE Hanford Site. Operation of the water treatment plants is the responsibility of ICF Kaiser Hanford Company (ICF KH). This hazards assessment was conducted to provide emergency planning technical basis for the water treatment plants. This document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A which requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  1. Hazards Control Department annual technology review, 1987

    SciTech Connect (OSTI)

    Griffith, R.V.; Anderson, K.J. (eds.)

    1988-07-01T23:59:59.000Z

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  2. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12T23:59:59.000Z

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  3. Massachusetts Hazardous Waste Facility Siting Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct,...

  4. Hazardous Waste Management Act (South Dakota)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive...

  5. Improving Tamper Detection for Hazardous Waste Security

    SciTech Connect (OSTI)

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-02-26T23:59:59.000Z

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

  6. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20T23:59:59.000Z

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  7. Oil or Hazardous Spills Releases Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Oil or Hazardous Spills Law requires notice to the Environmental Protection Division of the State Department of Natural Resources Emergency Operations Center when there is a spill or release of...

  8. CONTROL of SUBSTANCES HAZARDOUS TO HEALTH (COSHH)

    E-Print Network [OSTI]

    working practice and will encourage the evolution of a positive health and safety culture within the orgCONTROL of SUBSTANCES HAZARDOUS TO HEALTH (COSHH) Guidance Notes on Risk Assessment HEALTH & SAFETY............................................................................................................9 2.6. Safety Data Sheets (SDS

  9. Rainfall-induced Landslide Hazard Rating System

    E-Print Network [OSTI]

    Chen, Yi-Ting, Civ. E., Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    This research develops a Landslide Hazard Rating System for the rainfall-induced landslides in the Chenyulan River basin area in central Taiwan. This system is designed to provide a simplified and quick evaluation of the ...

  10. Hazardous materials transportation and emergency response programs

    SciTech Connect (OSTI)

    Joy, D.S.; Fore, C.S.

    1983-01-01T23:59:59.000Z

    This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).

  11. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2002-03-28T23:59:59.000Z

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

  12. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    J. L. Kubicek

    2001-09-07T23:59:59.000Z

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

  13. Hazard Baseline Downgrade Effluent Treatment Facility

    SciTech Connect (OSTI)

    Blanchard, A.

    1998-10-21T23:59:59.000Z

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility.

  14. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  15. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  16. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  17. Advanced Technology for Railway Hydraulic Hazard Forecasting

    E-Print Network [OSTI]

    Huff, William Edward 1988-

    2012-12-05T23:59:59.000Z

    Page 1.1 Map of Total Railway Hydraulic Hazard Events from 1982-2011 ............ 2 1.2 90 mi Effective Radar Coverage for Reliable Rainfall Rate Determination ....................................................................... 5 3... Administration (FRA) for the period of 1982-2011. This data was compiled from the FRA Office of Safety Analysis website (FRA, 2011). A map of the railway hydraulic hazard events over the same time period is displayed in Figure 1.1. Table 1.1. U.S. Railway...

  18. Rules and Regulations for Hazardous Waste Management (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

  19. umces-safety@umces.edu Hazard Communication umces-

    E-Print Network [OSTI]

    Boynton, Walter R.

    umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers, cabinets

  20. umces-safety@umces.edu Hazard Communication umces-

    E-Print Network [OSTI]

    Boynton, Walter R.

    Communication umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers

  1. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOE Patents [OSTI]

    Wasserman, Stephen R. (Darien, IL); Anderson, Kenneth B. (Lisle, IL); Song, Kang (Woodridge, IL); Yuchs, Steven E. (Naperville, IL); Marshall, Christopher L. (Naperville, IL)

    1998-01-01T23:59:59.000Z

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  2. Repository Subsurface Preliminary Fire Hazard Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2001-07-30T23:59:59.000Z

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

  3. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2006-07-31T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  4. Advanced Materials Laboratory hazards assessment document

    SciTech Connect (OSTI)

    Barnett, B.; Banda, Z.

    1995-10-01T23:59:59.000Z

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  5. Robots, systems, and methods for hazard evaluation and visualization

    DOE Patents [OSTI]

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15T23:59:59.000Z

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  6. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01T23:59:59.000Z

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  7. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06T23:59:59.000Z

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  8. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01T23:59:59.000Z

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  9. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    SciTech Connect (OSTI)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01T23:59:59.000Z

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

  10. Preliminary Hazards Analysis Plasma Hearth Process

    SciTech Connect (OSTI)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

    1993-11-01T23:59:59.000Z

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

  11. Control Of Hazardous Energy Lockout/Tagout

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Control Of Hazardous Energy Lockout/Tagout Millersville University - Office Of Environmental Health & Safety Scope & Application The Lockout/Tagout program applies to the control of energy during servicing of this program is to establish procedures for affixing appropriate lockout or tagout devices to energy

  12. Burning hazardous waste in cement kilns

    SciTech Connect (OSTI)

    Chadbourne, J.F.; Helmsteller, A.J.

    1983-06-01T23:59:59.000Z

    The cement manufacturing process is one of the oldest in the world, having been in practice for over 2000 years. It is also one of the most energy intensive, with up to 65 percent of the cost of the product attributable to energy consumption. In addition to high energy demand, the process conditions include extremely high temperatures. Cement clinker forms when the correct mixture of raw materials is heated to 2650/sup 0/ F. This requires combustion temperatures exceeding 3000/sup 0/ F. under oxidizing conditions. To accomplish this, gas temperatures above 2000/sup 0/ F. occur for several seconds (typically five seconds), which is much longer than residence times in permitted hazardous waste incinerators. These conditions are extremely favorable to the destruction of organic compounds and have led to extensive investigation into the potential for burning hazardous waste in cement kilns. Cement kilns consuming hazardous wastes have been tested for air emissions under various operating conditions. The substantial body of information on the emissions and handling of hazardous wastes from these studies has demonstrated that effective destruction of wastes can be accomplished with the added benefits of energy conservation and no significant change in air emissions.

  13. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22T23:59:59.000Z

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  14. COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD

    E-Print Network [OSTI]

    Sheehan, Anne F.

    COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah Hughes University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 Key Terms: earthquake

  15. The Transboundary Movement of Hazardous Waste in the Mediterranean Regional Context

    E-Print Network [OSTI]

    Scovazzi, Tullio

    2000-01-01T23:59:59.000Z

    HAZARDOUS WASTE IN MEDITERRANEAN Moreover, the Mediterranean Protocol,Protocol Area by transboundary movements of hazardous wastes (wastes subject to this Protocol; Annex II: List of hazardous

  16. E-Print Network 3.0 - agency listed hazardous Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Listing of Hazardous Waste 40 CFR... Hazardous Waste Management Regulations 6 NYCRR 371 Identification and Listing of Hazardous Waste 6 NYCRR 372... Substance Bulk Storage...

  17. Potential for Improved Intelligence Quotient Using Volumetric Modulated Arc Therapy Compared With Conventional 3-Dimensional Conformal Radiation for Whole-Ventricular Radiation in Children

    SciTech Connect (OSTI)

    Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Stinauer, Michelle; Rogers, Brion [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States)] [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Madden, Jennifer R. [Department of Neuro-Oncology, The Children's Hospital, Aurora, Colorado (United States)] [Department of Neuro-Oncology, The Children's Hospital, Aurora, Colorado (United States); Wilkening, Greta N. [Department of Pediatrics, The Children's Hospital, Aurora, Colorado (United States)] [Department of Pediatrics, The Children's Hospital, Aurora, Colorado (United States); Liu, Arthur K. [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States)] [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States)

    2012-12-01T23:59:59.000Z

    Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobe sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.

  18. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOE Patents [OSTI]

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28T23:59:59.000Z

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  19. Hazardous waste management in the Texas construction industry

    E-Print Network [OSTI]

    Sprinkle, Donald Lee

    1991-01-01T23:59:59.000Z

    This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations...

  20. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.

    SciTech Connect (OSTI)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01T23:59:59.000Z

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

  1. Permit Fees for Hazardous Waste Material Management (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

  2. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25T23:59:59.000Z

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  3. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    be shipped directly from site and recycled through the WA State Hazardous Waste Service Contract. Please call

  4. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28T23:59:59.000Z

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  5. NIH POLICY MANUAL 3034 -Working with Hazardous Materials

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NIH POLICY MANUAL 3034 - Working with Hazardous Materials Issuing Office: ORS/DOHS (301) 496-2960 Release Date: 3/21/06 1. Explanation of Material Transmitted: This release establishes NIH policy and procedure governing work with hazardous chemicals as described in the NIH Hazard Communication Program

  6. Mapping future hazards for south east London Dr Stephen Blenkinsop

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    ) Vulnerability information Risk maps #12;Heat Outputs · 5km heat wave prediction grids. · 1km pro-rata disaggregated temperature & heat wave projection grids. · 1km relative heat wave hazard grid combining heat wave hazard (relative). · 200m heat wave risk grids combining relative heat wave hazard with predictions

  7. Preliminary hazards analysis for the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.J.

    1993-10-01T23:59:59.000Z

    This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

  8. Diesel particles -a health hazard 1 Diesel particles

    E-Print Network [OSTI]

    Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

  9. Microsoft Word - HQ prjct mgmt gde

    Broader source: Energy.gov (indexed) [DOE]

    requirements required for the project and resource rates for each resource unit (staff, bulk material, etc.) to calculate project costs. If actual rates are unknown, the rates...

  10. DOE HQ F 5631.2

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department2013U.S.

  11. DOE HQ Shuttle Bus Route and Schedule

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department2013U.S.Shuttle Bus

  12. DOE HQ Special Needs in an Emergency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department2013U.S.Shuttle Bus) Go

  13. DOE HQ F 580 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE7 DOE631.2

  14. HQ EMS Policy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHC Policy and ServicesEMS

  15. HQ Work Control Permit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map is aHOW THEHQTo ensure

  16. Handicapped Parking Procedures (HQ) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable Projects FactHandbook on

  17. RespbsforHQ-POCS-REDESIGN.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReplyof Energy Residential NetworkResources »POINT

  18. Property Representatives Lists - HQ | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergyProjectProjects Projects

  19. Microsoft Word - WillowstickHQ.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs535:UFC5, 2010UPDATES: MarchCHanfordModernA

  20. Microsoft Word - HQ ISM System Description Final

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining theMembershipFiscalMarch1Q

  1. RespbsforHQ-POCS-REDESIGN.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReportNuclearGas5, FirstBase andResources »

  2. Nat. Hazards Earth Syst. Sci., 6, 779802, 2006 www.nat-hazards-earth-syst-sci.net/6/779/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -induced hazards that are representative for a whole class of hazards: Accidents due to nuclear power plants (NPP- ments (like embassies in the case of conventional threats) dis- play in the eye of potential aggressors

  3. O:\IM-20\E-Government Program Office\FDMS\FDMS database\DOE\2012\Document List 03-02-2012 10-10-11-600\Document List 03-02-2012 10-10-11-600_docs\DOE-HQ-2012-0004-DRAFT-0005.html

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1,database\DOE\2011\DOE-HQ-2011-0014

  4. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

    1995-01-01T23:59:59.000Z

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  5. Shedding a new light on hazardous waste

    SciTech Connect (OSTI)

    Reece, N.

    1991-02-01T23:59:59.000Z

    The sun's ability to detoxify waterborne chemicals has long been known; polluted streams, for example, become cleaner as they flow through sunlit areas. Solar detoxification harnesses this natural degradation process for beneficial ends, producing simple, nonhazardous substances from hazardous organic chemicals. Solar detoxification systems now being developed break down these chemicals without using the fossil fuels required by conventional technologies. Sunlight destroys hazardous waste because of the distinctive properties of photons, the packets of energy that make up sunlight. Low-energy photons add thermal energy that will heat toxic chemicals; high-energy photons add the energy needed to break the chemical bonds of these chemicals. The detoxification process discussed here takes advantage of this latter group of photons found in the ultraviolet portion of the solar spectrum. 4 figs.

  6. Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and

    E-Print Network [OSTI]

    ten Brink, Uri S.

    Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region" Uri S. ten Brink, William H. Bakun), Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic

  7. The HIT method: A hazard identification technique

    SciTech Connect (OSTI)

    Howard, H.H.; Faust, C.L.

    1990-01-01T23:59:59.000Z

    This report explains a technique for analyzing systems and operations to identify hazards and needed controls. The HIT method can be used both as a design tool and as a risk analysis tool. As a design tool, this method identifies requirements for design criteria. As part of a risk analysis effort, HIT identifies potential accident sequences that can become part of the safety analysis documentation. Within this report the HIT method is described in detail with emphasis on application of the technique.

  8. Natural phenomena hazards site characterization criteria

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  9. WHC natural phenomena hazards mitigation implementation plan

    SciTech Connect (OSTI)

    Conrads, T.J.

    1996-09-11T23:59:59.000Z

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  10. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1990-01-01T23:59:59.000Z

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  11. Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part

    E-Print Network [OSTI]

    Wilcock, William

    Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part of your work assignment. The University's Hazard Communication the hazard communication training you need? A combination of hazard communication training resources

  12. Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility

    SciTech Connect (OSTI)

    Reidel, S.P.

    1994-01-06T23:59:59.000Z

    This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

  13. Method and apparatus for using hazardous waste form non-hazardous aggregate

    SciTech Connect (OSTI)

    Kent, J.M.; Robards, H.L. Jr.

    1992-07-28T23:59:59.000Z

    This patent describes an apparatus for converting hazardous waste into non-hazardous, non-leaching aggregate, the apparatus. It comprises: a source of particulate solid materials, volatile gases and gaseous combustion by-products; oxidizing means comprising at least one refractory-lined, water-cooled, metal-walled vessel; means for introducing the particulate solid material, volatile gases and gaseous combustion by-products to the oxidizing means; means for inducing combustion in the oxidizing means, the heat of combustion forming molten slag and noncombustible fines from noncombustible material; means for accumulating the slag; means for introducing the noncombustible fines to the molten slag; means for removing the mixture from the apparatus; and means for cooling the mixture to form the non-hazardous, non-leaching aggregates.

  14. Hydrates represent gas source, drilling hazard

    SciTech Connect (OSTI)

    Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

    1997-12-01T23:59:59.000Z

    Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

  15. Hazardous Material Shipments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960Options forHazardous

  16. Enhancing Railroad Hazardous Materials Transportation Safety

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES AND INTER-JURISDICTIONAL CHALLENGESRailroad Hazardous g Materials

  17. Rapid guide to hazardous air pollutants

    SciTech Connect (OSTI)

    Beim, H.J.; Spero, J.; Theodore, L.

    1998-12-31T23:59:59.000Z

    Concise and easy to use, this book brings together a wealth of hard-to-gather information in one compact pocket guide. It offers--in alphabetical order--detailed profiles of the 189 elements and compounds determined to be hazardous air pollutants by the 1990 Amendments of the Clean Air Act. The profile for each pollutant includes: fundamental identification data (CAS number, molecular formula, formula weight, synonyms); uses (primarily in the manufacture of chemicals and as a component in the manufacturing process); physical properties (such as boiling point, density, vapor pressures, color); chemical properties (such as air/water reactivity, reactivity with skin or metal, flash point, heat of combustion); health risks, including toxic exposure guidelines, toxicity data, and acute and chronic risks; hazard risks (the substance`s potential for accidents, fires, explosions, corrosion, and chemical incompatibility); exposure routes tracking the activities, environment, sources, and occupations that tend to lead to exposure; regulatory status, listing the primary laws and citations of regulated chemicals; and important additional information on symptoms, first aid, firefighting methods, protective equipment, and safe storage.

  18. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob (York, PA)

    1990-01-01T23:59:59.000Z

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  19. Management of hazardous medical waste in Croatia

    SciTech Connect (OSTI)

    Marinkovic, Natalija [Medical School University of Zagreb, Department for Chemistry and Biochemistry, Salata 3b, 10 000 Zagreb (Croatia)], E-mail: nmarinko@snz.hr; Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar ['Andrija Stampar' School of Public Health, Medical School University of Zagreb, Rockefellerova 4, 10 000 Zagreb (Croatia); Pavic, Tomo [Ministry of Health and Social Welfare, Ksaver 200, 10 000 Zagreb (Croatia)

    2008-07-01T23:59:59.000Z

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  20. The Hazard Posed by Depleted Uranium Munitions

    E-Print Network [OSTI]

    Steve Fetter And; Steve Fetter A

    This paper assesses the radiological and chemical hazards resulting from the use of depleted uranium (DU) munitions. Due to the low radioactivity of DU, radiological hazards to individuals would become significant in comparison to natural background radiation doses only in cases of prolonged contact---for example, when shards of a DU penetrator remain embedded in a soldier's body. Although the radiation doses to virtually all civilians would be very low, the cumulative "population dose" resulting from the dispersal of hundreds of tons of DU, as occurred during the Gulf War, could result in up to ten cancer deaths. It is highly unlikely that exposures of persons downwind from the use of DU munitions or consuming food or water contaminated by DU dust would reach the estimated threshold for chemical heavy-metal effects. The exposures of soldiers in vehicles struck by DU munitions could be much higher, however, and persons who subsequently enter such vehicles without adequate respiratory protection could potentially be at risk. Soldiers should be trained to avoid unnecessary exposure to DU, and vehicles struck by DU munitions should be made inaccessible to curious civilians. INTRODUCTION

  1. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect (OSTI)

    REMAIZE, J.A.

    2000-09-27T23:59:59.000Z

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  2. HAZARD CATEGORIZATION OF ENVIRONMENTAL RESTORATION SITES AT HANFORD WASHINGTON

    SciTech Connect (OSTI)

    BISHOP, G.E.

    2001-05-01T23:59:59.000Z

    Environmental restoration activities, defined here as work to identify and characterize contaminated sites and then contain, treat, remove or dispose of the contamination, now comprises a significant fraction of work in the DOE complex. As with any other DOE activity, a safety analysis must be in place prior to commencing restoration. The rigor and depth of this safety analysis is in part determined by the site's hazard category. This category in turn is determined by the facility's hazardous material inventory and the consequences of its release. Progressively more complicated safety analyses are needed as a facility's hazard category increases from radiological to hazard category three (significant local releases) to hazard category two (significant on-site releases). Thus, a facility's hazard category plays a crucial early role in helping to determine the level of effort devoted to analysis of the facility's individual hazards. Improper determination of the category can result in either an inadequate safety analysis in the case of underestimation of the hazard category, or an unnecessarily cumbersome analysis in the case of overestimation. Contaminated sites have been successfully categorized and safely restored or remediated at the former DOE production site at Hanford, Washington. This paper discusses various means used to categorize former plutonium production or support sites at Hanford. Both preliminary and final hazard categorization is discussed. The importance of the preliminary (initial) hazard categorization in guiding further DOE involvement and approval of the safety analyses is discussed. Compliance to DOE direction provided in ''Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports'', DOE-STD-1027-92, is discussed. DOE recently issued 10 CFR 830, Subpart B which codifies previous DOE safety analysis guidance and orders. The impact of 10 CFR 830, Subpart B on hazard categorization is also discussed.

  3. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Broader source: Energy.gov (indexed) [DOE]

    M.; Im, J.; Tullis, J. A remote sensing and GIS-assisted spatial decision support system for hazardous waste site monitoring. Photogramm. Eng. Remote Sensing 2009, 75,...

  4. Fees For Disposal Of Hazardous Waste Or Substances (Alabama)

    Broader source: Energy.gov [DOE]

    The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

  5. Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)

    Broader source: Energy.gov [DOE]

    This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also establishes recordkeeping and reporting standards....

  6. EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program

    Broader source: Energy.gov [DOE]

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

  7. Dust: A major environmental hazard on the earth's moon

    SciTech Connect (OSTI)

    Heiken, G.; Vaniman, D.; Lehnert, B.

    1990-01-01T23:59:59.000Z

    On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

  8. Title 40 CFR 300 National Oil and Hazardous Substances Pollution...

    Open Energy Info (EERE)

    National Oil and Hazardous Substances Pollution Contingency Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

  9. Chapter 31 Identification and Listing of Hazardous Waste (Kentucky)

    Broader source: Energy.gov [DOE]

    This administrative regulation establishes the general provisions necessary for identification and listing of a hazardous waste. The regulation also establishes the criteria for identifying the...

  10. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

  11. Program Review, Workplace Inspections, Hazards Analysis And Abatement

    Broader source: Energy.gov [DOE]

    This document provides guidance information and suggested procedures for performing program review, workplace inspections, hazards analysis, and abatement, successfully at DOE Federal employee worksites.

  12. asteroid impact hazard: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peter 2015-01-01 87 Ten years after wildfires: How does varying tree mortality impact fire hazard and forest resiliency? Environmental Sciences and Ecology Websites Summary: 30...

  13. additive hazards model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of spatial occurrence of landslides by discriminant analysis Boyer, Edmond 212 Lesson 1. Natural Hazards & Natural Disasters Geosciences Websites Summary: Lesson 1. Natural...

  14. Packaging and Transfer of Hazardous Materials and Materials of...

    Broader source: Energy.gov (indexed) [DOE]

    PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSANevada Site Office Facility Representative Division Performance...

  15. Prevention, Abatement, and Control of Hazardous Substance Release (Iowa)

    Broader source: Energy.gov [DOE]

    The Department of Natural Resources is authorized to establish rules regarding the prevention and mitigation of hazardous substance release. These sections contain information on the notification...

  16. South Carolina Hazardous Waste Management Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Department of Health and Environmental Control is authorized to promulgate rules and regulations to prevent exposure of persons, animals, or the environment to hazardous waste. The construction...

  17. October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday...

    Office of Environmental Management (EM)

    Tuesday, October 21st Session Presentations October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday, October 21st Session Presentations Presentations Relative Movements for...

  18. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Office of Environmental Management (EM)

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final...

  19. Surveillance Guide - OSS 19.5 Hazardous Waste Operations and...

    Broader source: Energy.gov (indexed) [DOE]

    RL Facility Representative Program March 21, 1995 Surveillance Guide OSS 19.5 Revision 0 Hazardous Waste Operations and Emergency Response Page 6 of Error Bookmark...

  20. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...

    Energy Savers [EERE]

    for NNSA's Los Alamos National Laboratory (LANL), located in Los Alamos, New Mexico. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at...

  1. NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ Governor 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 875056303 Phone (50S) 476-6000 Fax...

  2. The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard;

    E-Print Network [OSTI]

    Torgersen, Christian

    The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard; light-gray areas have a lower ash fall hazard. Information is based on data during the past 10,000 years. Bottom, from left

  3. A complete electrical hazard classification system and its application

    SciTech Connect (OSTI)

    Gordon, Lloyd B [Los Alamos National Laboratory; Cartelli, Laura [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of electrical hazards. The new comprehensive electrical hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards. Based on this electrical hazard classification system, many new tools have been developed, including (a) work controls for these hazards, (b) better selection of PPE for R&D work, (c) improved training, and (d) a new Severity Ranking Tool that is used to rank electrical accidents and incidents with various forms of electrical energy.

  4. 327 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    BARILO, N.F.

    1999-05-10T23:59:59.000Z

    In March 1998, the 327 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U.S. Department of Energy, Richland Operations Office (DOE-E) for implementation by B and W Hanford Company (BWC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in five areas and provided nine recommendations (11 items) to bring the 327 Building into compliance. A status is provided for each recommendation in this document. BWHC will use this Implementation Plan to bring the 327 Building and its operation into compliance with DOE Order 5480.7A and IUD 5480.7.

  5. Potential health hazards of radiation. Fact Sheet

    SciTech Connect (OSTI)

    none,

    2009-05-19T23:59:59.000Z

    During World War II and the Cold War, the federal government developed and operated industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Some of these sites processed uranium and vanadium, and upon closure, left behind millions of cubic yards of mill tailings on the sites and throughout the nearby communities. The U.S. Department of Energy (DOE) administers the cleanup of these areas to minimize the risks to the public and environment from exposure to the tailings and the radon gas they produce.

  6. Improving tamper detection for hazardous waste security

    SciTech Connect (OSTI)

    Johnston, R. G. (Roger G.); Garcia, A. R. E. (Anthony R. E.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Martinez, R. K. (Ronald K.); Martinez, D. D. (Debbie D.); Lopez, L. N. (Leon N.)

    2002-01-01T23:59:59.000Z

    After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

  7. MULTI-HAZARD RESISTANT HIGHWAY BRIDGE PIERS HAVING

    E-Print Network [OSTI]

    Bruneau, Michel

    of California to its main suspension bridges and the detailed shots of the Golden Gate and Brooklyn bridgesMULTI-HAZARD RESISTANT HIGHWAY BRIDGE PIERS HAVING CONCRETE-FILLED STEEL TUBE Shuichi FUJIKURA1 of a multi-hazard bridge pier concept, i.e., a bridge pier system capable of providing an adequate level

  8. Overview of hazardous-waste regulation at federal facilities

    SciTech Connect (OSTI)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01T23:59:59.000Z

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  9. Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction

    E-Print Network [OSTI]

    McGovern, Amy

    . Current weather radar detection and prediction sys- tems primarily rely on numerical models. We proposeOpen problem: Dynamic Relational Models for Improved Hazardous Weather Prediction Amy McGovern1, #12;Dynamic Relational Models for Improved Hazardous Weather Prediction Radar velocity Radar

  10. Chemical Applications of Electrohydraulic Cavitation for Hazardous Waste Control

    E-Print Network [OSTI]

    Hoffmann, M. R.

    to the destruction or transformation of hazardous chemical substances such as high-temperature incineration, amended activated sludge digestion, anaerobic digestion and conventional physicochemical treatment. Pulsed-power plasma discharge technology may have.... Current approaches to the treatment of hazardous chemical wastes include high temperature incineration, chemical oxidation with and UV light, membrane separation, activated carbon adsorption, substrate-specific biodegration, electron beam bombardment...

  11. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28T23:59:59.000Z

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  12. Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs)

    E-Print Network [OSTI]

    through prevention, minimization, and recycling · Classroom or one-on-one waste generator training, other DOE and University waste organizations · Flammable waste cans, 30-gallon, 55-gallon drums (steelCompliance of Hazardous Waste Satellite Accumulation Areas (SAAs) All Hazardous waste generated

  13. Fire Hazards Analysis for the 200 Area Interim Storage Area

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-01-06T23:59:59.000Z

    This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

  14. Hazardous waste research and development in the Pacific Basin

    SciTech Connect (OSTI)

    Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

    1989-01-01T23:59:59.000Z

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

  15. Evaluation of Horizontal Seismic Hazard of Shahrekord, Iran

    SciTech Connect (OSTI)

    Amiri, G. Ghodrati [Iran University of Science and Technology--Islamic Azad University of Shahrekord, Narmak, Tehran 16846 (Iran, Islamic Republic of); Dehkordi, M. Raeisi [Department of Civil Engineering, Islamic Azad University of Shahrekord (Iran, Islamic Republic of); Amrei, S. A. Razavian [College of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Kamali, M. Koohi [Department of Civil Engineering, Islamic Azad University of Shahrekord (Iran, Islamic Republic of)

    2008-07-08T23:59:59.000Z

    This paper presents probabilistic horizontal seismic hazard assessment of Shahrekord, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 75, 225, 475 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2007. The seismic sources that affect the hazard in Shahrekord were identified within the radius of 150 km and the recurrence relationships of these sources were generated. Finally four maps have been prepared to indicate the earthquake hazard of Shahrekord in the form of iso-acceleration contour lines for different hazard levels by using SEISRISK III software.

  16. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    ALLETE Inc d b a Minnesota Power Smart Grid Project ALLETE Inc d b a Minnesota Power Smart Grid Project Duluth Minnesota American Transmission Company LLC II Smart Grid Project...

  17. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresents new ClimateProject Better PlaceMays

  18. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresents new ClimateProject Better

  19. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresents new ClimateProject BetterCorporation Inc

  20. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresents new ClimateProject BetterCorporation

  1. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresents new ClimateProject

  2. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresents new ClimateProjectBurbank California

  3. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresents new ClimateProjectBurbank

  4. HQ State HQ City Name of Primary Selectee Project Type Project Title and Brief Project Description

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map is aHOW THEHQ NTEU

  5. HQ State HQ City Primary Awardee Brief Project Description Project Locations

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map is aHOW THEHQ

  6. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows,Progressive LightingFrogCity

  7. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows,Progressive

  8. E-Print Network 3.0 - assessing hazards aircraft Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hazard. Dark-gray areas have a higher ash fall hazard; light-gray areas have... a lower ash fall hazard. Information is based on data during the past 10,000 years. Bottom, from...

  9. WIPP Hazardous Waste Facility Permit Update

    SciTech Connect (OSTI)

    Kehrman, B.; Most, W. [Washington Regulatory and Environmental Services, 4021 National Parks Highway, Carlsbad, NM 88220 (United States)

    2006-07-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification request that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)

  10. Hazard screening application guide. Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    none,

    1992-06-01T23:59:59.000Z

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  11. Massachusetts Oil and Hazardous Material Release Prevention and Response Act, State Superfund Law (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act contains information on prevention strategies for hazardous material release, permits for facilities managing hazardous waste, and response tactics and liability in the event such release...

  12. Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used...

  13. Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York)

    Broader source: Energy.gov [DOE]

    These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators,...

  14. E-Print Network 3.0 - avoiding hazards caused Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    published... . If so, the hazardous energy must be controlled using an appropriate lockout procedure (see Control... of Hazardous Energy: General Requirements). This procedure...

  15. E-Print Network 3.0 - arrows radiological hazards Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    published... . If so, the hazardous energy must be controlled using an appropriate lockout procedure (see Control... of Hazardous Energy: General Requirements). This procedure...

  16. Resource Management Services: Water Regulation, Parts 595-599: Hazardous Substances (New York)

    Broader source: Energy.gov [DOE]

    These regulations aim to prevent the release of hazardous substances into surface water and groundwater resources. They contain guidance for facilities which store and process hazardous substances,...

  17. E-Print Network 3.0 - acid gas hazards Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND SCOPE Arizona State University... Management, generate a variety of hazardous chemical wastes. ASU is classified as a hazardous waste generator... ) and has been assigned...

  18. 324 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    BARILO, N.F.

    1999-05-10T23:59:59.000Z

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U S. Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480 7A. Additionally, one observation was provided. A status is provided for each recommendation in this document. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process BWHC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480 7A and RLID 5480.7.

  19. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect (OSTI)

    Thate, J.E.

    1992-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  20. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect (OSTI)

    Dominick, J

    2008-12-18T23:59:59.000Z

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

  1. EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant...

  2. Category 3 threshold quantities for hazard categorization of nonreactor facilities

    SciTech Connect (OSTI)

    Mandigo, R.L.

    1996-02-13T23:59:59.000Z

    This document provides the information necessary to determine Hazard Category 3 threshold quantities for those isotopes of interest not listed in WHC-CM-4-46, Section 4, Table 1.''Threshold Quantities.''

  3. Job Hazard Analysis Manual Updated 10/6/04

    E-Print Network [OSTI]

    Escher, Christine

    and fire hazards from area Electrical Shock Improper grounding, improper operations and maintenance Lockout Activation during repair Auto start and/or human error Lockout/Tagout Noise Equipment Operation Use Hearing

  4. Trends and Opportunities in Industrial Hazardous Waste Minimization

    E-Print Network [OSTI]

    Atlas, M.

    This paper describes trends and opportunities in Resource Conservation and Recovery Act hazardous waste minimization. It uses U.S. Environmental Protection Agency data gathered since 1989 from over 20,000 facilities that account for almost all...

  5. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  6. Hazardous Materials Shipping Policy for Laboratories Policy Statement

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Page 1 Hazardous Materials Shipping Policy for Laboratories Policy Statement In order to ensure shall follow the procedures established in this policy. Reason for Policy/Purpose Transportation # Policy Statement............................................................................... 1 Reason

  7. RCRA Hazardous Waste Part A Permit Application: Instructions...

    Open Energy Info (EERE)

    Part A Permit Application: Instructions and Form (EPA Form 8700-23) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste Part A Permit...

  8. Geologic Hazards Associated With a Proposed Dam on the Yarlung-

    E-Print Network [OSTI]

    Kidd, William S. F.

    such reports (Biron and Dodin, 2007). However, given the persistent media reports, the pressing water-resources downstream in the Brahmapu- tra system in northeastern India and Bangladesh, and hazards asso- ciated

  9. Order Module--self-study program: HAZARDOUS WASTE OPERATIONS...

    Energy Savers [EERE]

    also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste...

  10. RFPs Due for Hazardous Fuel Wood to Energy Grant

    Broader source: Energy.gov [DOE]

    The U.S. Forest Service requests proposals for the 2014 Hazardous Fuel Wood to Energy (W2E) Grant.  The outcome anticipated under this funding mechanism will advance the United States Department of...

  11. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS

    SciTech Connect (OSTI)

    Unknown

    2000-10-09T23:59:59.000Z

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved.

  12. Cold Vacuum Drying (CVD) Facility Hazards Analysis Report

    SciTech Connect (OSTI)

    CROWE, R.D.

    2000-08-07T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) Hazard Analysis to support the CVDF Final Safety Analysis Report and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports,'' and implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports.''

  13. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2011-02-01T23:59:59.000Z

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  14. Hazard classification criteria for non-nuclear facilities

    SciTech Connect (OSTI)

    Mahn, J.A.; Walker, S.A.

    1997-03-01T23:59:59.000Z

    Sandia National Laboratories` Integrated Risk Management Department has developed a process for establishing the appropriate hazard classification of a new facility or operation, and thus the level of rigor required for the associated authorization basis safety documentation. This process is referred to as the Preliminary Hazard Screen. DOE Order 5481.1B contains the following hazard classification for non-nuclear facilities: high--having the potential for onsite or offsite impacts to large numbers of persons or for major impacts to the environment; moderate--having the potential for considerable onsite impacts but only minor offsite impacts to people or the environment; low--having the potential for only minor onsite and negligible offsite impacts to people or the environment. It is apparent that the application of such generic criteria is more than likely to be fraught with subjective judgment. One way to remove the subjectivity is to define health and safety classification thresholds for specific hazards that are based on the magnitude of the hazard, rather than on a qualitative assessment of possible accident consequences. This paper presents the results of such an approach to establishing a readily usable set of non-nuclear facility hazard classifications.

  15. Nat. Hazards Earth Syst. Sci., 11, 26632675, 2011 www.nat-hazards-earth-syst-sci.net/11/2663/2011/

    E-Print Network [OSTI]

    Boyer, Edmond

    is responsible for studying the safety and hazards of abandoned mines. One of the main scientific aims- gan on new extraction facilities and the mine operator kindly agreed to collaborate on the experiment

  16. Putting It Down: Hazardous-Waste Management in the Throwaway Culture

    E-Print Network [OSTI]

    Stockton, Wendy

    1981-01-01T23:59:59.000Z

    protocols existed for these indicators. 68 Even granting that EPA's testing criteria for hazardous waste

  17. Hazard Communication Definitions Chemical means any substance or mixture of substances

    E-Print Network [OSTI]

    Slatton, Clint

    hazard or a health hazard, a simple asphyxiant, combustible dust, pyrophoric gas or hazard not otherwise of the following hazardous effects: explosive; flammable (gases, aerosols, liquids or solids); oxidizer (liquid a phrase that describes recommended measures that should be taken to minimize or prevent adverse effects

  18. Reuse in Hazard Analysis: Identification and Shamus P. Smith and Michael D. Harrison

    E-Print Network [OSTI]

    Harrison, Michael

    , for example, Hazard and Op- erability Studies (HAZOP) [11], Failure Modes and Effect Analysis (FMEA) [6

  19. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect (OSTI)

    Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

    1993-11-01T23:59:59.000Z

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  20. Frequency Analysis of Aircraft hazards for License Application

    SciTech Connect (OSTI)

    K. Ashley

    2006-10-24T23:59:59.000Z

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  1. Organic and inorganic hazardous waste stabilization using combusted oil shale

    SciTech Connect (OSTI)

    Sorini, S.S.; Lane, D.C.

    1991-04-01T23:59:59.000Z

    A laboratory study was conducted at the Western Research Institute to evaluate the ability of combusted oil shale to stabilize organic and inorganic constituents of hazardous wastes. The oil shale used in the research was a western oil shale retorted in an inclined fluidized-bed reactor. Two combustion temperatures were used, 1550{degrees}F and 1620{degrees}F (843{degrees}C and 882{degrees}C). The five wastes selected for experimentation were an API separator sludge, creosote-contaminated soil, mixed metal oxide/hydroxide waste, metal-plating sludge, and smelter dust. The API separator sludge and creosote-contaminated soil are US EPA-listed hazardous wastes and contain organic contaminants. The mixed metal oxide/hydroxide waste, metal-plating sludge (also an EPA-listed waste), and smelter dust contain high concentrations of heavy metals. The smelter dust and mixed metal oxide/hydroxide waste fail the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metalplating sludge fails the TCLP for chromium. To evaluate the ability of the combusted oil shales to stabilize the hazardous wastes, mixtures involving varying amounts of each of the shales with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest.

  2. AN ENHANCED HAZARD ANALYSIS PROCESS FOR THE HANFORD TANK FARMS

    SciTech Connect (OSTI)

    SHULTZ MV

    2008-05-15T23:59:59.000Z

    CH2M HILL Hanford Group, Inc., has expanded the scope and increased the formality of process hazards analyses performed on new or modified Tank Farm facilities, designs, and processes. The CH2M HILL process hazard analysis emphasis has been altered to reflect its use as a fundamental part of the engineering and change control process instead of simply being a nuclear safety analysis tool. The scope has been expanded to include identification of accidents/events that impact the environment, or require emergency response, in addition to those with significant impact to the facility worker, the offsite, and the 100-meter receptor. Also, there is now an expectation that controls will be identified to address all types of consequences. To ensure that the process has an appropriate level of rigor and formality, a new engineering standard for process hazards analysis was created. This paper discusses the role of process hazards analysis as an information source for not only nuclear safety, but also for the worker-safety management programs, emergency management, environmental programs. This paper also discusses the role of process hazards analysis in the change control process, including identifying when and how it should be applied to changes in design or process.

  3. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    SciTech Connect (OSTI)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10T23:59:59.000Z

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  4. Federal Agency Hazardous Waste Compliance Docket (docket). Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The Federal Facilities Hazardous Waste Compliance Docket (``docket``) identifies Federal facilities that may be contaminated with hazardous substances and that must be evaluated to determine if they pose a risk to public health or the environment The docket, required by Section 120(c) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), also provides a vehicle for making information about potentially contaminated facilities available to the public. Facilities listed on the docket must complete site assessments that provide the Environmental Protection Agency (EPA) with information needed to determine whether or not the facility should be included on he National Priorities List (NPL). This Information Brief, which revises the previous Federal Agency Hazardous Waste Compiliance Docket Information Brief, provides updated information on the docket listing process, the implications of listing, and facility status after listing.

  5. Hazardous-waste analysis plan for LLNL operations

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12T23:59:59.000Z

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  6. Glass Formulation and Fabrication Laboratory, Building 864, Hazards assessment document

    SciTech Connect (OSTI)

    Banda, Z.; Wood, C.L.

    1995-08-01T23:59:59.000Z

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Glass Formulation and Fabrication Laboratory, Building 864. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 threshold is 96 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  7. Simulation Technology Laboratory Building 970 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.L.; Starr, M.D.

    1994-11-01T23:59:59.000Z

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  8. Survey of hazardous materials used in nuclear testing

    SciTech Connect (OSTI)

    Bryant, E.A.; Fabryka-Martin, J.

    1991-02-01T23:59:59.000Z

    The use of hazardous'' materials in routine underground nuclear tests at the Nevada Test Site has been reviewed. In addition the inventory of test yields, originally reported in 1976 has been updated. A trail down-hole inventory'' has been conducted for a selected test. The inorganic hazardous materials introduced during testing (with the exception of lead and the fissionable materials) produce an incremental change in the quantity of such materials already present in the geologic media surrounding the test points. 1 ref., 3 tabs.

  9. Containment and stabilization technologies for mixed hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Buelt, J.L.

    1993-05-01T23:59:59.000Z

    A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications.

  10. Modern tornado design of nuclear and other potentially hazardous facilities

    SciTech Connect (OSTI)

    Stevenson, J.D. [J.D. Stevenson Consulting Engineer, Cleveland, OH (United States); Zhao, Y. [Battele Energy Systems Group, Columbus, OH (United States)

    1996-01-01T23:59:59.000Z

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

  11. UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and

    E-Print Network [OSTI]

    Northern British Columbia, University of

    chemical waste, hazardous solid chemical waste (i.e. items that have been contaminated with hazardous are preferred for all hazardous liquid chemical waste. - Plastic bags are preferred for all hazardous solidUNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all

  12. Modelling and Hazard Analysis for Contaminated Sediments Using Stamp Model

    E-Print Network [OSTI]

    Boyer, Edmond

    Modelling and Hazard Analysis for Contaminated Sediments Using Stamp Model Karim Hardy* , Franck or contaminants) of contaminated sediments have become very efficient. These technologies, which are particularly sections. The first describes the Novosol® process for treating contaminated sediments. The second

  13. Studies on Hazard Characterization for Performance-based Structural Design

    E-Print Network [OSTI]

    Wang, Yue

    2010-07-14T23:59:59.000Z

    -based design procedures. This research examined and extended the state-of-the-art in hazard characterization (wind and surge) and risk-based design procedures (seismic). State-of-the-art hurricane models (including wind field, tracking and decay models...

  14. Sorting and disposal of hazardous laboratory Radioactive waste

    E-Print Network [OSTI]

    Maoz, Shahar

    Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

  15. Focus Sheet | Hydrofluoric Acid Health hazards of hydrofluoric acid

    E-Print Network [OSTI]

    Wilcock, William

    Focus Sheet | Hydrofluoric Acid Health hazards of hydrofluoric acid Hydrofluoric acid (HF characterized by weight loss, brittle bones, anemia, and general ill health. Safe use If possible, avoid working to exposures. #12;Focus Sheet | Hydrofluoric Acid Environmental Health and Safety Environmental Programs Office

  16. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    JOHNSON, B.H.

    1999-08-19T23:59:59.000Z

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  17. Phase 2 fire hazard analysis for the canister storage building

    SciTech Connect (OSTI)

    Sadanaga, C.T., Westinghouse Hanford

    1996-07-01T23:59:59.000Z

    The fire hazard analysis assesses the risk from fire in a facility to ascertain whether the fire protection policies are met. This document provides a preliminary FHA for the CSB facility. Open items have been noted in the document. A final FHA will be required at the completion of definitive design, prior to operation of the facility.

  18. Fire Hazards Analysis for the Inactive Equipment Storage Sprung Structure

    SciTech Connect (OSTI)

    MYOTT, C.F.

    2000-02-03T23:59:59.000Z

    The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objective of DOE Order 5480.1A are met. The order acknowledges a graded approach commensurate with the hazards involved.

  19. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    air pollution control agency and the Department of Labor and Industries (L&I) at least ten (10) days construction and renovation projects. Asbestos is a stringently regulated hazardous material and many Construction projects which impact existing building materials must include an environmental consultant

  20. Landslide hazard zonation in Namasigue and El Triunfo, Southern Honduras

    E-Print Network [OSTI]

    Perotto-Baldivieso, Humberto Lauro

    2000-01-01T23:59:59.000Z

    was to test two models to determine the feasibility of creating landslide hazard maps. Data were used to determine how landslide occurrence was affected by the variables in the model. Four easily observable variables were used for both models: slope, aspect...

  1. Recent Electrical Events Highlight Equipment-Failure Hazards

    E-Print Network [OSTI]

    Recent Electrical Events Highlight Equipment-Failure Hazards FOR DETAILS: Occurrence Reports: NA Investigators: Antonia Tallarico, 665-6988 Mark Hunsinger, 665-1496 Susan Voss, 667-5979 LANL Chief Electrical-OA at 665-0033. February 14, 2007 LANL 2007-0004 GUIDANCE: Resources at hand LIR 402-600-01.3, "Electrical

  2. Virginia Wetlands Report Sea Level Rise & Other Coastal Hazards

    E-Print Network [OSTI]

    Virginia Wetlands Report Sea Level Rise & Other Coastal Hazards: The Risks of Coastal Living See. Climate change is bringing increased temperatures, rising sea level, more frequent storms and increased in tide levels. From these records it is not only clear that water levels are rising, they appear

  3. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    project having the potential to impact lead-containing building materials, including lead paint. ResultsUNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Lead Basis, lead-containing materials have the potential to negatively impact the health of construction workers

  4. Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS

    E-Print Network [OSTI]

    ;safety data or the condition of the substance is in doubt due to its age, it should be disposed and fresh with regard to all aspects of handling hazardous substances including receipt, storage, use, transport and disposal. Likewise, DSEAR requires assessment and control of fire and explosion risks presented

  5. The Hazardous Waste/Mixed Waste Disposal Facility

    SciTech Connect (OSTI)

    Bailey, L.L.

    1991-01-01T23:59:59.000Z

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

  6. The Hazardous Waste/Mixed Waste Disposal Facility

    SciTech Connect (OSTI)

    Bailey, L.L.

    1991-12-31T23:59:59.000Z

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

  7. loods. Earthquakes. Winter storms. Fire. Hazardous spills. Public safety

    E-Print Network [OSTI]

    Tullos, Desiree

    , break, or cause a fire--such as a water heater or bookshelf ). Annually inspect your home for hazards to your home. What would you do if basic services--water, gas, electricity, or telephones--were cut off the water, gas, and electric- ity at the main switches. Keep necessary tools near gas and water shut

  8. Coding Hazardous Tree Failures for a Data Management System

    E-Print Network [OSTI]

    Standiford, Richard B.

    management; computer programs; coding. The Author Lee A. Paine is a forest pathologist, stationed in Berkeley in the manual on the indicated pages. Page 7, just above H. Property or Person Directly Affected, insert: CityCoding Hazardous Tree Failures for a Data Management System Lee A. Paine PACIFIC SOUTHWEST

  9. Surface Fire Hazards Analysis Technical Report-Constructor Facilities

    SciTech Connect (OSTI)

    R.E. Flye

    2000-10-24T23:59:59.000Z

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

  10. Electrical Sitchgear Building No. 5010-ESF Fire Hazards Technical Report

    SciTech Connect (OSTI)

    N.M. Ruonavaara

    2001-05-08T23:59:59.000Z

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives, identified in DOE Order 420.1, Change 2, Fire Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire or related event; (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of the employees, the public, and the environment; (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; (4) Property losses from a fire and related events exceeding defined limits established by DOE; and (5) Critical process controls and safety class systems being damaged as a result of a fire and related event.

  11. Hazards Data Distribution System (HDDS) Explorer Help Documentation

    E-Print Network [OSTI]

    Hazards Data Distribution System (HDDS) Explorer Help Documentation Version 1.1 March 2014 #12;Page: ii Document History Number Date and Sections Notes 1 August 2013 Original document 1.0 2 September information on Access to Events #12;Page: iii Table of contents Document History

  12. QUOTIENTS OF STANDARD HILBERT MODULES WILLIAM ARVESON

    E-Print Network [OSTI]

    Arveson, William

    normal if the self-commutators T k Tj - TjT k of its ambient operators are all compact, and more, appropriately, to linear relations through an iteration procedure, and we give a concrete description specifically, p-essentially normal if the self-commutators belong to the Schatten class Lp - p being a number

  13. Bicyclic semigroups of left I-quotients

    E-Print Network [OSTI]

    Ghroda, Nassraddin

    2011-01-01T23:59:59.000Z

    In this article we study left I-orders in the bicyclic monoid $\\mathcal{B}$. We give necessary and sufficient conditions for a subsemigroup of $\\mathcal{B}$ to be a left I-oreder in $\\mathcal{B}$. We then prove that any left I-order in $\\mathcal{B}$ is straight.

  14. Nat. Hazards Earth Syst. Sci., 6, 941954, 2006 www.nat-hazards-earth-syst-sci.net/6/941/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on the discontinuity and natural slope features. First, to obtain rock source areas (RSAs), data obtained from Sciences Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy of the rockfall hazard was determined by various techniques basing on the selec- tion of a rockfall source

  15. Nat. Hazards Earth Syst. Sci., 8, 6779, 2008 www.nat-hazards-earth-syst-sci.net/8/67/2008/

    E-Print Network [OSTI]

    Boyer, Edmond

    Hazards and Earth System Sciences Is there a trend in extremely high river temperature for the next is corrected by the medium cluster length, which represents thermal inertia of water during extremely hot-evaluate the extreme hot tempera- tures, which the rivers water could reach in the next decades, by taking the climatic

  16. Electrical Hazards The greater hazards related to electricity are electrical shock and fire. Electrical shock occurs when

    E-Print Network [OSTI]

    Petriu, Emil M.

    , the amount of current, the duration of exposure, and whether the skin is wet or dry. Water is a good for the level of hazard. Lab coats (knee-length) and proper footwear are required for work involving chemicals or moving machinery. · Leave behind protective equipment (lab coats, gloves, etc.) when leaving the work

  17. Nat. Hazards Earth Syst. Sci., 8, 559571, 2008 www.nat-hazards-earth-syst-sci.net/8/559/2008/

    E-Print Network [OSTI]

    Kääb, Andreas

    frequently affect the slopes of ice-capped volcanoes. They can be triggered by volcano-ice interac- tions Hazards and Earth System Sciences Assessing lahars from ice-capped volcanoes using ASTER satellite data reservoirs are supposed to be a more realistic scenario for lahar genera- tion than sudden ice melting

  18. LAB HAZARD CHECKLIST Please check the hazards that are associated with your lab and complete the section

    E-Print Network [OSTI]

    Firestone, Jeremy

    Radiation Hazards ­Any work involving class 3b or 4 lasers Flammable Gas ­ Compressed gas cylinders that contain flammable gas Toxic Gas ­ Compressed gas cylinders that contain toxic gas Flammable Materials release Radioactive Materials ­ Radiochemicals and sealed radiation sources Radio Frequency or Microwave

  19. Emergency response planning for railroad transportation related spills of oil or other hazardous materials

    E-Print Network [OSTI]

    Reeder, Geoffrey Benton

    1995-01-01T23:59:59.000Z

    awareness. Americans began to ask, "What if something similar happened here?" Chemicals with hazardous properties have become part of daily life. Industry, government, and the public have become aware of the need to respond to problems involving hazardous...

  20. Application of probabilistic consequence analysis to the assessment of potential radiological hazards of fusion reactors

    E-Print Network [OSTI]

    Sawdye, Robert William

    1978-01-01T23:59:59.000Z

    A methodology has been developed to provide system reliability criteria based on an assessment of the potential radiological hazards associated with a fusion reactor design and on hazard constraints which prevent fusion ...

  1. A model for determining the fate of hazardous constituents in waste during in-vessel composting

    E-Print Network [OSTI]

    Bollineni, Prasanthi

    1994-01-01T23:59:59.000Z

    Composting is one of the techniques that has evolved as a safe disposal and predisposal alternative to the stringent regulations on hazardous waste disposal. The implementation of this technique needs careful evaluation of the processes a hazardous...

  2. Inter-relation between technical and jurisdictional aspects of hazardous waste management in Houston

    E-Print Network [OSTI]

    Vasavada, Nishith Maheshbhai

    1987-01-01T23:59:59.000Z

    of hazardous waste such as dump sites, landfills, hazardous material spills, underground storage tanks and others come from journals and reports. This literature is used for background information and for evaluating the Hazardous Waste Issues Groundwater... related Transport, ation related Wastewater related Spills Transportation Pretreatment Small quantity Generators Dump sites Landfi 1 Is Plant-site contamination Underground storage tanks Figure I-Hazardous waste ismm classification current...

  3. RCRA, superfund and EPCRA hotline training module. Introduction to: Hazardous waste identification (40 cfr part 261) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module introduces a specific hazardous waste identification process, which involves asking and analyzing a series of questions about any waste being evaluated. It analyzes in detail the Resource Conservation and Recovery Act (RCRA) definition of `hazardous waste.` It explains concepts that are essential to identifying a RCRA hazardous waste: hazardous waste listing, hazardous waste characteristics, the `mixture` and `derived-from` rules, the `contained-in` policy, and the hazardous waste identification rules (HWIR).

  4. The evaluation of an analytical protocol for the determination of substances in waste for hazard classification

    E-Print Network [OSTI]

    Boyer, Edmond

    1 The evaluation of an analytical protocol for the determination of substances in waste for hazard The classification of waste as hazardous could soon be assessed in Europe using largely the hazard properties of its knowledge of the component constituents of a given waste will therefore be necessary. An analytical protocol

  5. ELECTRICAL SAFETY HAZARDS HANDBOOK Littelfuse is the global leader in circuit protection

    E-Print Network [OSTI]

    ELECTRICAL SAFETY HAZARDS HANDBOOK #12;Littelfuse is the global leader in circuit protection's Leading Provider of Circuit Protection Solutions #12;LITTELFuSE ELECTRICAL SAFETY HAZARDS HANDBOOK This Electrical Safety Hazards Handbook was developed for general education purposes only and is not intended

  6. Introduction to NIH Hazard Communication Program The National Institutes of Health's comprehensive Occupational Safety and Health

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Introduction to NIH Hazard Communication Program The National Institutes of Health's comprehensive Occupational Safety and Health Program has been established to provide NIH employees with places and conditions of employment in which the risk of exposures to potential hazards is minimized. The NIH Hazard Communication

  7. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect (OSTI)

    T. M. Blakley; W. D. Schofield

    2007-09-10T23:59:59.000Z

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  8. Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer

    E-Print Network [OSTI]

    . Keywords: Indoor air quality; hazard analysis; residential; criteria pollutants; VOCs; air toxics Citation Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control through

  9. Pressure Vessel Burst Program: Automated hazard analysis for pressure vessels

    SciTech Connect (OSTI)

    Langley, D.R. [Aerospace Corp., Kennedy Space Center, FL (United States); Chrostowski, J.D. [ACTA Inc., Torrance, CA (United States); Goldstein, S. [Aerospace Corp., El Segundo, CA (United States); Cain, M. [General Physics Corp., Titusville, FL (United States)

    1996-12-31T23:59:59.000Z

    The design, development, and use of a Windows based software tool, PVHAZARD, for pressure vessel hazard analysis is presented. The program draws on previous efforts in pressure vessel research and results of a Pressure Vessel Burst Test Study. Prior papers on the Pressure Vessel Burst Test Study have been presented to the ASME, AIAA, JANNAF, NASA Pressure Systems Seminar, and to a DOD Explosives Safety Board subcommittee meeting. Development and validation is described for simplified blast (overpressure/impulse) and fragment (velocity and travel distance) hazard models. The use of PVHAZARD in making structural damage and personnel injury estimates is discussed. Efforts in-progress are reviewed including the addition of two-dimensional and three-dimensional (2D and 3D) hydrodynamic code analyses to supplement the simplified models, and the ability to assess barrier designs for protection from fragmentation.

  10. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    SciTech Connect (OSTI)

    Boyd D. Christensen; Annette L. Schafer

    2013-11-01T23:59:59.000Z

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

  11. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    SciTech Connect (OSTI)

    Boyd D. Christensen; Annette L. Schafer

    2014-02-01T23:59:59.000Z

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

  12. Hydrothermal oxidation of Navy shipboard excess hazardous materials

    SciTech Connect (OSTI)

    LaJeunesse, C.A.; Haroldsen, B.L.; Rice, S.F.; Brown, B.G.

    1997-03-01T23:59:59.000Z

    This study demonstrated effective destruction, using a novel supercritical water oxidation reactor, of oil, jet fuel, and hydraulic fluid, common excess hazardous materials found on-board Navy vessels. This reactor uses an advanced injector design to mix the hazardous compounds with water, oxidizer, and a supplementary fuel and it uses a transpiring wall to protect the surface of the reactor from corrosion and salt deposition. Our program was divided into four parts. First, basic chemical kinetic data were generated in a simple, tubular-configured reactor for short reaction times (<1 second) and long reaction times (>5 seconds) as a function of temperature. Second, using the data, an engineering model was developed for the more complicated industrial reactor mentioned above. Third, the three hazardous materials were destroyed in a quarter-scale version of the industrial reactor. Finally, the test data were compared with the model. The model and the experimental results for the quarter-scale reactor are described and compared in this report. A companion report discusses the first part of the program to generate basic chemical kinetic data. The injector and reactor worked as expected. The oxidation reaction with the supplementary fuel was initiated between 400 {degrees}C and 450 {degrees}C. The released energy raised the reactor temperature to greater than 600 {degrees}C. At that temperature, the hazardous materials were efficiently destroyed in less than five seconds. The model shows good agreement with the test data and has proven to be a useful tool in designing the system and understanding the test results. 16 refs., 17 figs., 11 tabs.

  13. Conversion of hazardous materials using supercritical water oxidation

    DOE Patents [OSTI]

    Rofer, Cheryl K. (Los Alamos, NM); Buelow, Steven J. (Los Alamos, NM); Dyer, Richard B. (Los Alamos, NM); Wander, Joseph D. (Parker, FL)

    1992-01-01T23:59:59.000Z

    A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

  14. Fire hazards evaluation for light duty utility arm system

    SciTech Connect (OSTI)

    HUCKFELDT, R.A.

    1999-02-24T23:59:59.000Z

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

  15. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

    2006-10-03T23:59:59.000Z

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  16. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

  17. Chemical Hazards and Safety Issues in Fusion Safety Design

    SciTech Connect (OSTI)

    Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

    2003-09-15T23:59:59.000Z

    Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard.

  18. Fire hazard analysis of the radioactive mixed waste trenchs

    SciTech Connect (OSTI)

    McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-04-27T23:59:59.000Z

    This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

  19. Ross Hazardous and Toxic Materials Handling Facility: Environmental Assessment.

    SciTech Connect (OSTI)

    URS Consultants, Inc.

    1992-06-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) owns a 200-acre facility in Washington State known as the Ross Complex. Activities at the Ross Complex routinely involve handling toxic substances such as oil-filled electrical equipment containing polychlorinated biphenyls (PCBs), organic and inorganic compounds for preserving wood transmission poles, and paints, solvents, waste oils, and pesticides and herbicides. Hazardous waste management is a common activity on-site, and hazardous and toxic substances are often generated from these and off-site activities. The subject of this environmental assessment (EA) concerns the consolidation of hazardous and toxic substances handling at the Complex. This environmental assessment has been developed to identify the potential environmental impacts of the construction and operation of the proposal. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) to determine if the proposed action is likely to have a significant impact on the environment. In addition to the design elements included within the project, mitigation measures have been identified within various sections that are now incorporated within the project. This facility would be designed to improve the current waste handling practices and to assist BPA in meeting Federal and state regulations.

  20. Method for encapsulating hazardous wastes using a staged mold

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1989-01-01T23:59:59.000Z

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  1. Mission: Possible. Center of Excellence for Hazardous Materials Management

    SciTech Connect (OSTI)

    Bartlett, W.T.; Prather-Stroud, W. [Center of Excellence for Hazardous Materials Management, 505 North Main Street, Carlsbad, NM 88220 (United States)

    2006-07-01T23:59:59.000Z

    The Center of Excellence for Hazardous Materials Management (CEHMM) was established in May 2004 as a nonprofit research organization. Its purpose is to develop a sustainable technical/scientific community located in Carlsbad, New Mexico, that interacts worldwide to find solutions to hazardous materials management issues. An important part of the mission is to achieve improved protection of worker safety, human health, and the environment. Carlsbad has a large technical community due to the presence of the Waste Isolation Pilot Plant (WIPP) and its many contractors and support organizations. These groups include the Carlsbad Environmental Monitoring and Research Center, Washington Group International, Los Alamos National Laboratory, and Sandia National Laboratories. These organizations form the basis of a unique knowledge community with strengths in many areas, such as geosciences, actinide chemistry, environmental monitoring, and waste transportation. CEHMM works cooperatively with these organizations and others to develop projects that will maintain this knowledge community beyond the projected closure date of WIPP. At present, there is an emphasis in bio-monitoring, air monitoring, hazardous materials educational programs, and endangered species remediation. CEHMM is also currently working with a group from the American Nuclear Society to help facilitate their conference scheduled for April 2006 in Carlsbad. CEHMM is growing rapidly and is looking forward to a diverse array of new projects. (authors)

  2. A modeling framework for investment planning in interdependent infrastructures in multi-hazard environments.

    SciTech Connect (OSTI)

    Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.; Nozick, Linda Karen; Prince, Michael

    2013-09-01T23:59:59.000Z

    Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research&Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorist's actions based on assumptions regarding their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.

  3. R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet All hazardous material must be inventoried and accounted for by a Marine Technician BEFORE being

    E-Print Network [OSTI]

    Wilcock, William

    R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet · All hazardous material must be inventoried and accounted for by a Marine Technician BEFORE being loaded aboard the vessel. · The correct inventory forms. · All safety equipment such as eye protection, aprons, gloves, respirators, etc. must

  4. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01T23:59:59.000Z

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  5. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01T23:59:59.000Z

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  6. FOIA Requests received by DOE Headquarters (HQ) since December...

    Energy Savers [EERE]

    between DOE and Aerosys Incorporated regarding the DOE's program for consumer products for central air conditioners and central air conditioning heat pumps 1302009...

  7. HQ Emergency Management Team (EMT) | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    protective actions) The EMT provides briefings andor reports to NNSA and Department of Energy senior management, coordinatesprovides support to field response operations, and...

  8. California department of education HQ block 225: California's valedictorian

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Dickerhoff, Darryl J; Fentress, Curtis; Popowski, Matt

    2009-01-01T23:59:59.000Z

    and fully integrated design resulted in a building that out-integrated into the exterior envelope design and are capable of generating up to 2% of the building’design-build office building in the state’s history. The integrated

  9. California department of education HQ block 225: California's valedictorian

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Dickerhoff, Darryl J; Fentress, Curtis; Popowski, Matt

    2009-01-01T23:59:59.000Z

    Education headquarters. Electrical Engineer Rosendin Electric, The Engineering Enterprise Energy Modeler Taylor Engineering Sustainable

  10. H.Q. Klingons of Ohio Issue 1

    E-Print Network [OSTI]

    1991-01-01T23:59:59.000Z

    H .Q. Kl ingons Columbus, OH oJ oHto Vol ume lssue I August I 199l Welcome! This is the premier issue of the Newsletter of our group here in oHlO- As this is our first. we have Uet to sgree upon a name for thisniisi"tter" He ore thererore...

  11. California department of education HQ block 225: California's valedictorian

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Dickerhoff, Darryl J; Fentress, Curtis; Popowski, Matt

    2009-01-01T23:59:59.000Z

    on underfloor fan-coil units. The ease of repositioningUnderfloor variable speed fan-coil units at the buildingvariable speed fan-coil units are ducted to linear bar

  12. HQ Mediation Program for Workplace Conflicts | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    for Mediation Agreement to Mediate - form Settlement Agreement - form Mediation Videos by the Department of the Navy Mediation Videos by the Department of Veterans Affairs...

  13. 2010 Annual Workforce Analysis and Staffing Plan Report- NNSA HQ

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  14. 2013 Annual Workforce Analysis and Staffing Plan Report- NNSA HQ

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  15. 2011 Annual Workforce Analysis and Staffing Plan Report- NNSA HQ

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  16. 2014 Annual Workforce Analysis and Staffing Plan Report- NNSA HQ

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  17. HQ Employee/Labor Management Relations Division (HC-33) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    and support services to Headquarters employees covering such areas as child care, elder care, employee assistance programs, health and wellness, career transition and programs...

  18. HQ Emergency Management Team (EMT) | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of GoldHAWCHIGS flux4-00nHPSSHPSS

  19. DOE HQ F 1511.1 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department2013U.S. Department

  20. DOE HQ F 472.1 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department2013U.S. DepartmentFair

  1. DOE HQ F 1400.12 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G 242.1-1Guidance2

  2. DOE HQ F 1400.18 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G 242.1-1Guidance28

  3. DOE HQ F 1410.2 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G 242.1-1Guidance282

  4. DOE HQ F 1410.4 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G 242.1-1Guidance2824

  5. DOE HQ F 1410.8 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G

  6. DOE HQ F 3780.2 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE

  7. DOE HQ F 5631.2 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE7 DOE631.2

  8. DOE HQ F 580-2 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE7 DOE631.2-2

  9. DOE HQ Occupational Safety and Health Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE7

  10. DOE HQ Shuttle Bus Schedule and Route | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYG 242.1-1 DOE G20.7 DOE7Shuttle Bus

  11. HQ Human Resources - Points of Contact | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHC Policy and ServicesEMSHQ

  12. HQ Mediation Program for Workplace Conflicts | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHC Policy and

  13. Memorandum for Improving DOE HQ Recruitment and Hiring Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page - AirFrom: LeoNEPA |~ e ~ u t

  14. Presentation 2014 AAPI Heritage Month, Department of Energy HQ | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department of EnergyPrepare for Winter with Energyof

  15. HQ Confined Space Program, Policy 2010-001

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoingGuidelines forofHCHEFA andHIl

  16. HQ Operations Division (HC-32) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoingGuidelines

  17. One Cool Change at Energy HQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Engines | Department ofAftertreatment and

  18. DOE HQ F 472.1 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5QualityDOE

  19. 2012 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergy

  20. Asian American Pacific Islander Heritage Month - HQ | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access toEnergy 5 BTOofthe United

  1. Email to Congestionstudy.comments@hq.doe.gov

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatementNOTElectricityof Energy776 I Street,

  2. Email to Congestionstudy.comments@hq.doe.gov

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatementNOTElectricityof Energy776 I Street,lines

  3. Special Inquiry: IO1HQ005 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergySpecial Inquiry:

  4. C:\Forms\HQ F 1400.12.cdr

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimateC C l l o o s sF.

  5. C:\Forms\HQ F 1410.4.cdr

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimateC C l l o o s

  6. C:\Forms\HQ F 1410.8.cdr

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimateC C l l o o s U.S.

  7. C:\Forms\HQ F 1450.2.cdr

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimateC C l l o o s

  8. C:\Forms\HQ F 3305.7.cdr

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimateC C l l o o s305.7

  9. C:\Forms\HQ F 3790.7.cdr

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimateC C l l o o s305.77

  10. C:\Forms\HQ F 3790.8.cdr

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimateC C l l o o

  11. HTWOS and System Planning Briefing to DOE-HQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meeting wasEngineering andHQHSI Bestscientists

  12. Special Inquiry: I01HQ003 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S.Improve Emitter Efficiency UnderDepartment of EnergyJulyApril

  13. HQ Energy Services (US), Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPower Finance Jump to: navigation,Inc (Minnesota)US),

  14. W. E. Mott, Director, Division of Environmental Control Technology, HQ

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March 20, 1995 W.Eyergy pak

  15. Compliance, HQ GILMAD J&ILL STUDY

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_BayoRECORD OF^_.Ther-tin E.

  16. Control of hazardous energy sources (lockout/tagout procedures)

    SciTech Connect (OSTI)

    Seidel, K.G.

    1991-01-01T23:59:59.000Z

    The Occupational Safety and Health Administration (OSHA) Standard 29 CFR 1910.147 addresses practices and procedures that are necessary to disable machinery or equipment and to prevent the release of potentially hazardous energy during maintenance operations. The standard contains definitive criteria for establishing an effective program for locking out or tagging out energy isolating devices. The standard contains major training requirements for those authorized to use the energy isolating devices and those that are affected by their use. Periodic inspections are required at least annually to ensure that the energy control procedures continue to be implemented properly.

  17. SYNTHESIS OF SAFETY ANALYSIS AND FIRE HAZARD ANALYSIS METHODOLOGIES

    SciTech Connect (OSTI)

    Coutts, D

    2007-04-17T23:59:59.000Z

    Successful implementation of both the nuclear safety program and fire protection program is best accomplished using a coordinated process that relies on sound technical approaches. When systematically prepared, the documented safety analysis (DSA) and fire hazard analysis (FHA) can present a consistent technical basis that streamlines implementation. If not coordinated, the DSA and FHA can present inconsistent conclusions, which can create unnecessary confusion and can promulgate a negative safety perception. This paper will compare the scope, purpose, and analysis techniques for DSAs and FHAs. It will also consolidate several lessons-learned papers on this topic, which were prepared in the 1990s.

  18. Environmental Hazards Assessment Program. Quarterly report, July--September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The objectives of the EHAP program stated in the proposal to DOE are to: (1) develop a holistic, national basis for risk assessment, risk management, and risk communication which recognizes the direct impact of environmental hazards on the health and well-being of all, (2) develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects, and (3) identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management.

  19. Solar Processes for the Destruction of Hazardous Chemicals

    SciTech Connect (OSTI)

    Blake, D. M.

    1993-06-01T23:59:59.000Z

    Solar technologies are being developed to address a wide range of environmental problems. Sunlight plays a role in the passive destruction of hazardous substances in soil, water, and air. Development of processes that use solar energy to remediate environmental problems or to treat process wastes is underway in laboratories around the world. This paper reviews progress in understanding the role of solar photochemistry in removing man-made chemicals from the environment, and developing technology that uses solar photochemistry for this purpose in an efficient manner.

  20. Hazardous Waste Facility Permit Public Comments to Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960OptionsHazardous Waste

  1. Hazardous Waste Facility Permit Public Comments to Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960OptionsHazardous Waste

  2. The WIPP Hazardous Waste Facility Permit Improvements--2007 Update

    SciTech Connect (OSTI)

    Kehrman, R.; Most, W. [Washington Regulatory and Environmental Services, Carlsbad, NM (United States)

    2007-07-01T23:59:59.000Z

    The most significant changes to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit to date were completed during the past year with the implementation of significant revisions to the Waste Analysis Plan and the authorization to dispose of remote-handled transuranic waste. The modified Permit removes the requirement for reporting headspace gas sampling and analysis results for every container of transuranic mixed waste and provides for the use of radiography and visual examination to confirm a statistically representative subpopulation of the waste stream in each waste shipment as well as other changes that streamline the analytical data management process. Implementation began on November 17, 2006. (authors)

  3. Compact cyclone filter train for radiological and hazardous environments

    DOE Patents [OSTI]

    Bench, Thomas R. (Pittsburgh, PA)

    1998-01-01T23:59:59.000Z

    A compact cyclone filter train for the removal of hazardous and radiologi particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

  4. Compact cyclone filter train for radiological and hazardous environments

    DOE Patents [OSTI]

    Bench, T.R.

    1998-04-28T23:59:59.000Z

    A compact cyclone filter train is disclosed for the removal of hazardous and radiological particles from a gaseous fluid medium. This filter train permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired. 3 figs.

  5. Sandia National Laboratories: Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSitingMolten Salt TestGlare Hazard Analysis

  6. From: vonPuttkamer, Jesco H. (HQ-CJ000) To: Von Puttkamer, Jesco H. (HQ-CE010);

    E-Print Network [OSTI]

    Waliser, Duane E.

    (= Negative), "no purple dots" on the MCD (Microbial Capture Device) and a (nominal) incubation bag temperature of 80 degC.] Lonchakov set up new Bubble dosimeters for recording radiation traces electronics box. [A total of eight Bubble dosimeter detectors (A01-A08) were initialized in the Bubble

  7. Subject: Proposed 216(h) Regulations To: Brian.Mills@hq.doe.gov and Lot.Cooke@hq.doe.gov.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization|Energy High|Study:Fuel

  8. Fire hazard analysis for Plutonium Finishing Plant complex

    SciTech Connect (OSTI)

    MCKINNIS, D.L.

    1999-02-23T23:59:59.000Z

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  9. Environmental and occupational hazards of the anesthesia workplace

    SciTech Connect (OSTI)

    Kole, T.E.

    1990-10-01T23:59:59.000Z

    Our present state of research and knowledge strongly suggests that the volatile agents, halothane, enflurane and isoflurane, present only a minimal threat to our environment. Nitrous oxide, however, has ozone-depleting potential as well as a greenhouse gas effect which may contribute much to the problem of global warming over the next few decades. Release of anesthetic gases into the atmosphere presents a small problem in contrast to other sources of ozone-depleting chemicals and greenhouse gases, but anesthesia providers have a responsibility to minimize unnecessary atmospheric pollution by reevaluating the use of N2O, using low flows of gases and exploring the use of activated charcoal absorption in the scavenging systems to remove volatile agents. Infectious waste, radiation, lasers, chemicals and waste gases pose possible occupational health hazards in the operating room. Each of us should play a critical role in monitoring harmful substances and should actively practice techniques which would lessen the hazards. We should be cognizant of the fact that sources not yet introduced into our environment may have adverse effects on our health and that vigilance and education are key factors in maintaining a safe work environment.24 references.

  10. Occupational exposures to uranium: processes, hazards, and regulations

    SciTech Connect (OSTI)

    Stoetzel, G.A.; Fisher, D.R.; McCormack, W.D.; Hoenes, G.R.; Marks, S.; Moore, R.H.; Quilici, D.G.; Breitenstein, B.D.

    1981-04-01T23:59:59.000Z

    The United States Uranium Registry (USUR) was formed in 1978 to investigate potential hazards from occupational exposure to uranium and to assess the need for special health-related studies of uranium workers. This report provides a summary of Registry work done to date. The history of the uranium industry is outlined first, and the current commercial uranium industry (mining, milling, conversion, enrichment, and fuel fabrication) is described. This description includes information on basic processes and areas of greatest potential radiological exposure. In addition, inactive commercial facilities and other uranium operations are discussed. Regulation of the commercial production industry for uranium fuel is reported, including the historic development of regulations and the current regulatory agencies and procedures for each phase of the industry. A review of radiological health practices in the industry - facility monitoring, exposure control, exposure evaluation, and record-keeping - is presented. A discussion of the nonradiological hazards of the industry is provided, and the final section describes the tissue program developed as part of the Registry.

  11. Hazardous Waste/Mixed Waste Treatment Building throughput study

    SciTech Connect (OSTI)

    England, J.L.; Kanzleiter, J.P.

    1991-12-18T23:59:59.000Z

    The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

  12. Hazard Categorization Reduction via Nature of the Process Argument

    SciTech Connect (OSTI)

    Chelise A. Van De Graaff; Dr. Chad Pope; J. Todd Taylor

    2012-05-01T23:59:59.000Z

    This paper documents the Hazard Categorization (HC) and Critical Safety Evaluation (CSE) for activities performed using an Inspection Object (IO) in excess of the single parameter subcritical limit of 700 g of U-235. By virtue of exceeding the single parameter subcritical limit and the subsequent potential for criticality, the IO HC is initially categorized as HC2. However, a novel application of the nature of the process argument was employed to reduce the IO HC from HC2 to less than HC3 (LTHC3). The IO is composed of five separate uranium metal plates that total no greater than 3.82 kg of U-235 (U(20)). The IO is planned to be arranged in various configurations. As the IO serves as a standard for experimentation aimed at establishing techniques for detection of fissionable materials, it may be placed in close proximity to various reflectors, moderators, or both. The most reactive configurations of the IO were systematically evaluated and shown that despite the mass of U-235 and potential positioning near various reflectors and moderators, the IO cannot be assembled into a critical configuration. Therefore, the potential for criticality does not exist. With Department of Energy approval, a Hazards Assessment Document with high-level (facility-level) controls on the plates negates the potential for criticality and satisfies the nature of the process argument to reduce the HC from HC2 to LTHC3.

  13. M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1

    SciTech Connect (OSTI)

    Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

    1994-05-01T23:59:59.000Z

    This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

  14. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELIMINARY DESIGN HAZARD ANALYSIS SUPPLEMENT 1

    SciTech Connect (OSTI)

    FRANZ GR; MEICHLE RH

    2011-07-18T23:59:59.000Z

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  15. A mathematical model to predict leaching of hazardous inorganic wastes from solidified/stabilized waste forms

    E-Print Network [OSTI]

    Sabharwal, Krishan

    1993-01-01T23:59:59.000Z

    and Reauthorization Act (SARA). The other important law dealing with hazardous wastes is the Resource Conservation and Recovery Act (RCRA), enacted in 1976 and significantly amended by the Hazardous and Solid Waste Amendments of 1984, RCRA provides "cradle... in 1980 to provide funding and enforcement authority to the EPA for cleaning up the numerous hazardous waste sites existing in the United States. In 1986, the act was made more comprehensive with the addition of the Superfund Amendments...

  16. Examining Local Jurisdictions' Capacity and Commitment For Hazard Mitigation Policies and Strategies along the Texas Coast

    E-Print Network [OSTI]

    Husein, Rahmawati

    2012-07-16T23:59:59.000Z

    local jurisdiction land use planning may be absent (Beatley, 2009; Burby, 2003; Burby, 2006). Second, this research will seek to provide useful approaches for measuring capacity and commitment at the local level based on the literature and empirical.... The biophysical hazard events that take place in the coastal area are often defined as coastal hazards (Beatley, 2009). In addition, Klee (1999) states that the coastal hazard zone ?extends inland from the shorelines which are likely to be affected...

  17. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01T23:59:59.000Z

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

  18. OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95

    Broader source: Energy.gov [DOE]

     The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are...

  19. Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

  20. Automated accountability of hazardous materials at AlliedSignal Inc., Kansas City Division

    SciTech Connect (OSTI)

    Depew, P.L.

    1993-12-01T23:59:59.000Z

    The Department of Energy`s (DOE) Kansas City Plant (KCP), currently operated by AlliedSignal Inc. has developed a comprehensive Hazardous Material Information System (HMIS). The purpose of this system is to provide a practical and automated method to collect, analyze and distribute hazardous material information to DOE, KCP associates, and regulatory agencies. The drivers of the HMIS are compliance with OSHA Hazard Communications, SARA reporting, pollution prevention, waste minimization, control and tracking of hazards, and emergency response. This report provides a discussion of this system.