Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HQ H  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24/07 THU 12:03 FAX 865 241 3897 OIG 0-4 24/07 THU 12:03 FAX 865 241 3897 OIG 0-4 HQ H 1001 DOE F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: DAT May 24, 2007 Audit Report Number: OAS-L-07-12 REPLY TO ATTN OF: IG-32 (A07DN010) SUBJECT: Audit of Continuity of Operations at the Western Area Power Administration TO: Administrator, Western Area Power Administration INTRODUCTION AND OBJECTIVE The Western Area Power Administration (Western) markets and delivers cost-based wholesale hydroelectric power to its customers. Western's wholesale customers in its four regions - Rocky Mountain, Desert Southwest, Sierra Nevada, and Upper Great Plains - provide service to millions of consumers within a 15-state marketing region in the central and western United States. With electricity being such a vital commodity, it is of utmost importance to ensure

2

OIG HQ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I u Mun .o;u rAA 00 2Z41 3897 I u Mun .o;u rAA 00 2Z41 3897 OIG - HQ .001 DOE F 1325.8 (08-93) United States Government Department of Energy memorandum ' DATE: January 28, 2008 Audit Report Number: OAS-L-08-05 REPLY TO ATTN OF: IG-34 (A07ID014) SUBJECT: Audit of the Contact-Handled Transuranic Waste Characterization Capabilities at the Idaho National Laboratory TO: Manager, Carlsbad Field Office Manager, Idaho Operation Office INTRODUCTION AND OBJECTIVE Currently, the Department of Energy (Department) is using two different production lines to characterize and package the Idaho National Laboratory Site's (Idaho) contact-handled transuranic waste for final disposal in the Waste Isolation Pilot Plant (WIPP) in New Mexico. The most prominent is the Advanced Mixed Waste Treatment Project (AMWTP),

3

DOE HQ F 3790.8 | Department of Energy  

Office of Environmental Management (EM)

8 DOE HQ F 3790.8 Form used to report a safety or health hazard to the Safety Inspector andor the Safety and Occupational Health Manager Report of Safety or Health Hazard More...

4

The View from HQ  

National Nuclear Security Administration (NNSA)

A publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs A publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs NA-ASC-500-07-Issue 3 May 2007 The View from HQ by Dimitri Kusnezov I have been spending much of my time these days thinking about science, technology and engineering and the role of the laboratories and how that will be reflected in the Complex of the future. This is on my mind for two reasons: one is my responsibility to

5

The View from HQ  

National Nuclear Security Administration (NNSA)

  NA-ASC-500-07 Issue 2 January 2007 The View from HQ Sitting in airports and planes is risky beyond the obvious dangers now in the news. Uninter- rupted time to think may lead to new ideas. Instinct instructs us that when we hear Wash- ington has some new ideas, the result must be bad. After all, ideas suggest change, which is inherently disruptive. Today the notion of predictivity is on my mind as I am leaving the V&V 2007 meeting in Los Alamos. Predictivity is on my short list of overused, ill-defined words. Washington main- tains a full lexicon of such words-a fair number of which find their way into common usage.

6

DOE HQ Occupational Safety and Health Program | Department of...  

Energy Savers (EERE)

HQ Occupational Safety and Health Program DOE HQ Occupational Safety and Health Program HQ Occupational Safety and Health Program Procedures DOE HQ Occupational Safety and Health...

7

2011 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ 2011 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ 2011 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities. This workforce analysis process continues to cover technical capability needs to address defense nuclear facility and related operational hazards. Individual site summaries developed at the end of each year are a basis for DOE Federal Technical Capability Panel reporting to the Secretary of Energy summarizing DOE's federal technical capabilities for defense nuclear facility safety assurance. 2011 Annual Workforce Analysis and Staffing Plan Report - NA-SH

8

2012 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Workforce Analysis and Staffing Plan Report - NNSA HQ Annual Workforce Analysis and Staffing Plan Report - NNSA HQ 2012 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities. This workforce analysis process continues to cover technical capability needs to address defense nuclear facility and related operational hazards. Individual site summaries developed at the end of each year are a basis for DOE Federal Technical Capability Panel reporting to the Secretary of Energy summarizing DOE's federal technical capabilities for defense nuclear facility safety assurance. 2012 Annual Workforce Analysis and Staffing Plan Report - NA-SH

9

Energy Reduction at HQ | Department of Energy  

Energy Savers (EERE)

HQ Energy Reduction at HQ The Department of Energy (DOE) is setting an example for the entire Federal Government with aggressive but achievable goals for energy reduction at all...

10

Special Inquiry: IO1HQ005 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IO1HQ005 Special Inquiry: IO1HQ005 April 23, 2001 Special Review of the Yucca Mountain Project, IO1HQ005 Special Inquiry: IO1HQ005 More Documents & Publications Special Inquiry:...

11

Quotients of Metric Spaces  

E-Print Network (OSTI)

the properties of quotient spaces of metric spaces. We will use "iff" as an abbreviation for "if and only if". If f is a function from X onto Y, we will write f: X --->> Y....

Herman, Robert A.

1968-01-01T23:59:59.000Z

12

HQ F 331.1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delegation Delegation of Awards Approval PRIVACY ACT STATEMENT ON REVERSE SIDE HQ F 331.1 (04-01) Certification Review of Regulations Approval of Justification 1. Employee Name: 2. Title, Series and Grade: 3. Type of Award: (Monetary or Nonmonetary) 4. Date: 5. Initiator: (Please print or type name) 11. Approving Official: (Please print or type name) 12. Title: 7. Immediate Supervisor of Employee: (If different from line 5, please print or type name) 9. Authorizing Official: (For regulatory review, please print or type name) 6. Title: 10. Title: 8. Title: I have reviewed this award and it is in compliance with the current Headquarters policies and procedures. The following award is hereby approved for issuance: Signature: Signature: Date: Signature: Signature: Organization: Organization: Organization: Date: Date: Date: The position description of the nominee and the performance standards

13

HQ Leave Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HQ Leave Guide HQ Leave Guide HQ Leave Guide The purpose of this guide is to provide you, as a Headquarters employee, advice and guidance concerning issues related to hours of duty, time & attendance, and matters related to taking time off (e.g., annual and sick leave). However, this guide can not provide all encompassing guidance for all situations. In many cases, the answer is subject to office policy and/or supervisory judgment. For these reasons, any questions about how matters in this guide apply to you should first be discussed with your supervisor. HQ Leave Guide Responsible Contacts Myron Alston Human Resources Specialist (Labor & Employee Relations) E-mail myron.alston@hq.doe.gov Phone 202-586-8734 More Documents & Publications DOE Handbook on Leave and Absence

14

HQ Work Control Permit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HQ Work Control Permit HQ Work Control Permit HQ Work Control Permit To ensure safe operations when undertaking work at DOE Headquarters, the Office of Headquarters Health and Safety has developed a Work Permit document (doc) to help ensure the safety of all workers and headquarters employees. The form should be completed and brought to the Office of Headquarters Safety, Health and Security office at GE-112 at the Forrestal facility, or the Germantown Building Manager's office at E-076 for review and sign off. Any questions can be directed to the HQ Health and Safety office on (202) 586-1005. HQ_Work_Control_Permit.docx More Documents & Publications Preliminary Notice of Violation, Petsco and Son, Inc - EA-96-06 OSS 19.10 Barriers and Postings 5/26/95 OSS 19.3 Confined Space Entry 5/23/95

15

HQ Work Control Permit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HQ Work Control Permit HQ Work Control Permit HQ Work Control Permit To ensure safe operations when undertaking work at DOE Headquarters, the Office of Headquarters Health and Safety has developed a Work Permit document (doc) to help ensure the safety of all workers and headquarters employees. The form should be completed and brought to the Office of Headquarters Safety, Health and Security office at GE-112 at the Forrestal facility, or the Germantown Building Manager's office at E-076 for review and sign off. Any questions can be directed to the HQ Health and Safety office on (202) 586-1005. HQ_Work_Control_Permit.docx More Documents & Publications Preliminary Notice of Violation, Petsco and Son, Inc - EA-96-06 OSS 19.3 Confined Space Entry 5/23/95 WA_02_026_UNITED_TECHNOLOGIES_Waiver_of_Domestic_and_Foreign

16

DOE HQ F 4420.1 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE HQ F 4420.1 DOE HQ F 4420.1 DOE HQ F 4420.1 Form used by the Logistics Management Division to track property items provided per requests. CERTIFICATE OF PROPERTY RECEIPT...

17

Handicapped Parking Procedures (HQ) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handicapped Parking Procedures (HQ) Handicapped Parking Procedures (HQ) Handicapped Parking Procedures (HQ) It is the policy of the Department of Energy (DOE) that its parking facility be operated in a manner responsive to the needs of the Department, and for the maximum benefit of its employees. Individuals with temporary or permanent mobility impairment who, because of their condition, have a need to request a handicapped parking permit for the Forrestal or Germantown facilities, should use the following procedures: Complete a Parking Application Complete the Permit Application form DOE F 1400.12. In instances when the Parking Management personnel can visually assess an applicant's mobility impairment (i.e. use of crutches, walker, etc.), a temporary parking permit may be granted. At the time of application, the

18

Origins Program Update Henry Throop, NASA HQ  

E-Print Network (OSTI)

Origins Program Update Henry Throop, NASA HQ Program officer: Origins of Solar Systems (OSS Overview · Origins is one of NASA's core research & analysis (R&A) programs, focusing on... · # 1, 2, 3: NASA Planetary Science Division (Henry Throop), $6M/yr · # 4, 5: NASA Astrophysics Division (Mario

Throop, Henry

19

DOE HQ F 3305.7 | Department of Energy  

Energy Savers (EERE)

HQ F 3305.7 DOE HQ F 3305.7 Form used to inform SES applicants of the status of their applications. NOTIFICATION OF SENIOR EXECUTIVE SERVICES EMPLOYMENT CONSIDERATION More...

20

Purchase Card Policies for Hq | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Procurement Services » Purchase Card Policies for Hq Services » Procurement Services » Purchase Card Policies for Hq Purchase Card Policies for Hq HQ Procurement Services Policies & Operating Procedures Table of Contents PURPOSE RESPONSIBILITIES PERSONAL PROPERTY MANAGEMENT AND PROPERTY ACCOUNTABILITY ADDITIONAL PROHIBITIONS AND RESTRICTIONS PURCHASE CARD FINANCIAL PROCEDURES EMPLOYEES TRANSFERRING WITHIN HEADQUARTERS PROGRAM SUPPORT ADDITIONAL CARDHOLDER AND APPROVING OFFICIAL TRAINING USE OF PRIVATE SECTOR TEMPORARIES STRIPES Purpose To establish Headquarters Procurement Services Policies and Operating Procedures for the use of the Government purchase card at Department of Energy (DOE) - Headquarters (HQ). These Policies supplement the "Policy and Operating Procedures for Use of the GSA SmartPay Purchase

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

HQ Human Resources - Points of Contact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HQ Human Resources - Points of Contact HQ Human Resources - Points of Contact HQ Human Resources - Points of Contact Name Division Phone Room # Email Address ARPA-E Burkley, Tania Executive Resources 202-586-7657 4E-084 Tania.Burkley@hq.doe.gov Powell, NiCole HR Operations 202-287-5252 4E-084 Nicole.Powell@hq.doe.gov Adams, Shelia HR Operations (Benefits,Retirement, OWCP) 202-586-3097 GM-169 Sheila.Adams@hq.doe.gov Peggy Robinson Labor and Employee Relations 202-586-2591 8E-092 Peggy.Robinson@hq.doe.gov ARRA Burkey Tania Executive Resources 202-586-7657 4E-084 Tania.Burkley@hq.doe.gov Coates, Ina HR Operations 202-586-6618 4E-084 Ina.Coates@hq.doe.gov Hawkins, Renee HR Operations (Benefits,Retirement, OWCP) 202-586-2163 GM-169 Renee.Hawkins@hq.doe.gov BPA Matthews-Williams, Kimberly Executive Resources 202-586-9844 4E-084 Kimberly.Matthews-Williams@hq.doe.gov

22

RespbsforHQ-POCS-REDESIGN.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT PROGRAM RECORDS OFFICIAL (PRO) (Activities that require Senior Official oversight or approval) Headquarters * Approve List of Vital Records for Headquarters Program Office * Approve HQ Records Holding Area Access List * Signature Authority for: o DOE F 1324.8, "Records Transfer Form" and SF-135, "Records Transmittal and Receipt (FRC)" o Records Inventory/Disposition Sheet (RIDS) o Destruction Notices * Initial employee's exit certification for records Headquarters and Field * Ensure Records Management Program implementation at Headquarters and Field sites according to 36 CFR Chapter 12 and Departmental policy * Provide Oversight and Conduct Program Assessments of Headquarters &

23

E-Commerce Policies for Hq | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Procurement Services » E-Commerce Policies for Hq Services » Procurement Services » E-Commerce Policies for Hq E-Commerce Policies for Hq HQ Procurement Services Policies & Operating Proceduresfor Program Office Buyers Use of the Strategic Integrated Procurement Enterprise System (STRIPES) The following hyperlinks will take you to the various sections of this document. PURPOSE DEFINITIONS RESPONSIBILITIES OF THE HCA RESPONSIBILITIES OF THE BUYER RESPONSIBILITIES OF THE APPROVING OFFICIAL RESPONSIBILITIES OF THE FINANCE OFFICE PURCHASING AUTHORITY QUALIFICATIONS CONDITIONS FOR USING STRIPES DEBARMENT AND SUSPENSION PERSONAL PROPERTY MANAGEMENT AND PROPERTY ACCOUNTABILITY PROHIBITIONS AND RESTRICTIONS SINGLE PURCHASE DOLLAR LIMIT DOCUMENTATION NEEDED INVOICE APPROVAL AND DEFECTIVE PURCHASES DEPARTING EMPLOYEES

24

DOE HQ F 3293.1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINAL 132412.pdf More Documents & Publications 2014 Headquarters Facilities Master Security Plan - Chapter 15, Outprocessing Employee Separation: Completing HQ F 3293.1, Sec. 7c...

25

HQ Operations Division (HC-32) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Provide information to HQ employee population on employee benefit programs (retirement; health, dental, vision, long-term care, and life insurance; thrift savings plan; flexible...

26

Executive Fleet Vehicles DOE HQ 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motor Vehicle Management Report Motor Vehicle Management Report U.S. Department of Energy - HQ Pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50) November 14, 2011 Background: On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50), executive fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; and be midsize or smaller sedans, except where larger sedans are essential to the agency mission. Within 180 days of the date of the Presidential Memorandum, any executive fleet vehicles that are larger than a midsize sedan or do not comply with alternative fueled

27

Compliance, HQ GILMAD J&ILL STUDY  

Office of Legacy Management (LM)

r-tin E. Biles, Director, DivFsi_on of Safety, Standards and r-tin E. Biles, Director, DivFsi_on of Safety, Standards and Compliance, HQ GILMAD J&ILL STUDY The enclosed report ccntains the result of a survey of desisated areas of Gilman E%ll on the University of Californ-ia at Berkeley Cnrr,pls . The survey ~2s conducted by re~rcsentatives of the Lzwrence Lahorator?es. The third floor and b? veyed. c.sOzsnt floor areas were sur- prior Selection of areas for srlrvey was based on the history of use associated with the I~lanhattan Project and/or early Atomic Energy Coaik5sion activities. IThilc the ;.esults of the survey show the presence of low levels of restdual activity in the two areas surveyed, it is clear that these levels represent r?o health hazard. Key fi~diugs are as follow : 1. Entire survey was free of removable contaxiilation.

28

HQ Emergency Management Team (EMT) | National Nuclear Security  

National Nuclear Security Administration (NNSA)

HQ Emergency Management Team (EMT) | National Nuclear Security HQ Emergency Management Team (EMT) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog HQ Emergency Management Team (EMT) Home > About Us > Our Programs > Emergency Response > Planning for Emergencies > HQ Emergency Management Team (EMT) HQ Emergency Management Team (EMT) NNSA ensures that capabilities are in place to respond to any NNSA and

29

HQ Operations Division (HC-32) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operations Division (HC-32) Operations Division (HC-32) HQ Operations Division (HC-32) Functions Deliver employment operational and advisory services, including position management, recruitment, staffing and classification, reduction in force in Headquarters; Provide operational and advisory support for competitive sourcing initiatives and impacted serviced population; Provide information to HQ employee population on employee benefit programs (retirement; health, dental, vision, long-term care, and life insurance; thrift savings plan; flexible spending accounts; the transit subsidy program; and annual and sick leave, and long-term care through individual consultation, new employee orientation and exit interviews; Deliver a range of human resources personnel processing functions to employees in HQ organizations, including processing actions, OPF

30

VIA ELECTRONIC MAIL TO: fergas@hq.doe.sov  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TO: fergas@hq.doe.sov U.S. Department of Energy (FE-34) Office of Fossil Energy Office of Natural Gas Regulatory Activities Attn: Natural Gas Reports P.O. Box 44375 Washington,...

31

DOE HQ F 4420.1 | Department of Energy  

Office of Environmental Management (EM)

420.1 DOE HQ F 4420.1 Form used by the Logistics Management Division to track property items provided per requests. CERTIFICATE OF PROPERTY RECEIPT More Documents & Publications...

32

DOE HQ F 1410.8 | Department of Energy  

Energy Savers (EERE)

of Incoming Mail More Documents & Publications DOE HQ F 1410.2 2014 Headquarters Facilities Master Security Plan - Chapter 5, Classified Matter Protection and Control DOE F 1500.4...

33

Asian American Pacific Islander Heritage Month - HQ | Department...  

Office of Environmental Management (EM)

Ambassador to the Minorities in Energy Initiative; and Rosie Abriam, President and CEO of the Center for Asian Pacific American Women. Contact Gloria.Smith@hq.doe.gov; 202-586-8383...

34

One Cool Change at Energy HQ | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Cool Change at Energy HQ One Cool Change at Energy HQ One Cool Change at Energy HQ July 6, 2012 - 3:49pm Addthis Officials from the Energy Department and NORESCO cut the ribbon at the new chiller plant in the Forrestal building. The chiller is expected to save $600,000 per year from the Department's energy bills. | Energy Department photo Officials from the Energy Department and NORESCO cut the ribbon at the new chiller plant in the Forrestal building. The chiller is expected to save $600,000 per year from the Department's energy bills. | Energy Department photo Karissa Marcum Public Affairs Specialist, Office of Public Affairs What does this project do? 126 new cool roofs were installed in fiscal year 2012 on buildings across the Department. New solar panels at the Department's Germantown campus in Maryland

35

HQ Energy Services (US), Inc | Open Energy Information  

Open Energy Info (EERE)

HQ Energy Services (US), Inc HQ Energy Services (US), Inc Jump to: navigation, search Name HQ Energy Services (US), Inc Place Connecticut Utility Id 21249 Utility Location Yes Ownership W NERC Location NPCC NERC NPCC Yes RTO PJM Yes ISO NY Yes ISO MISO Yes ISO NE Yes Activity Generation Yes Activity Buying Transmission Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

36

DOE HQ Shuttle Bus Schedule and Route | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HQ Shuttle Bus Schedule and Route DOE HQ Shuttle Bus Schedule and Route DOE HQ Shuttle Bus Schedule and Route The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific authority for the use of appropriated funds to pay for transportation for official purposes is contained in section 1344(a)(1) of Title 31, U.S. Code. Use of this transportation for any other purpose is inappropriate and against the law.

37

One Cool Change at Energy HQ | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Change at Energy HQ Cool Change at Energy HQ One Cool Change at Energy HQ July 6, 2012 - 3:49pm Addthis Officials from the Energy Department and NORESCO cut the ribbon at the new chiller plant in the Forrestal building. The chiller is expected to save $600,000 per year from the Department's energy bills. | Energy Department photo Officials from the Energy Department and NORESCO cut the ribbon at the new chiller plant in the Forrestal building. The chiller is expected to save $600,000 per year from the Department's energy bills. | Energy Department photo Karissa Marcum Public Affairs Specialist, Office of Public Affairs What does this project do? 126 new cool roofs were installed in fiscal year 2012 on buildings across the Department. New solar panels at the Department's Germantown campus in Maryland

38

HQ Mediation Program for Workplace Conflicts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HQ Mediation HQ Mediation Program for Workplace Conflicts HQ Mediation Program for Workplace Conflicts The DOE Headquarters Mediation Program began in 1995. We believe that most workplace conflicts are based on miscommunication, and that it is best to resolve them as early as possible before they enter a formal and adversarial process. We encourage referrals of conflicts at as early a stage as possible, believing that this offers the best opportunity for a lasting resolution. The program uses professional mediators under contract with the Department of Energy. Both parties must voluntarily agree to participate in mediation, and may bring with them a family member, colleague, union representative, or attorney. Mediations are strictly confidential, and information is shared only with those within the agency who need to know in

39

C:\\Forms\\HQ F 1410.4.cdr  

Energy Savers (EERE)

HQ-F-1410.4 (11-79) 2 . SENT F ROM ( NAME OF OFFI CE) 5. RECEI VED BY ( NAME OR OFFI CE) Thank you for your cooperation. Please return promptly. SECTI ON A ( O P T I O N A L F O L...

40

Parking Permit Application, Form HQ F 1400.12 rev 02-10 | Department...  

Energy Savers (EERE)

Permit Application, Form HQ F 1400.12 rev 02-10 More Documents & Publications DOE HQ F 1400.12 Customer Services Handbook, 2010, Office of Administration Ridefinders Application...

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

C:\\Forms\\HQ F 3790.8.cdr  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hazard Action Taken Action by Safety Officer Date Hazard Corrected Copy Distribution: WHITE - Safety Inspector CANARY - Safety and Occupational Health Manager PINK - Suspense...

42

Review of DOE HQ Emergency Response Plans and Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review of Review of DOE Headquarters Emergency Response Plans and Performance March 2003 Prepared by Office of Independent Oversight and Performance Assurance Office of the Secretary of Energy OFFICE OF INDEPENDENT OVERSIGHT AND PERFORMANCE ASSURANCE REVIEW OF DOE HEADQUARTERS EMERGENCY RESPONSE PLANS AND PERFORMANCE EXECUTIVE SUMMARY INTRODUCTION The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted a review of emergency response plans and performance at DOE Headquarters (HQ) in February 2003. The purpose of this review was to evaluate the readiness and effectiveness of the DOE and National Nuclear Security Administration (NNSA) emergency response teams for a postulated emergency at a field site, and the HQ Incident Command Team for an emergency affecting the Forrestal building. In addition,

43

C:\Forms\HQ F 1450.2.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HQ F 1450.2 HQ F 1450.2 (7-82) AUTHORIZED BY (Signature) NAME Do not enter Miss, Mrs. or Mr. (Last, first, middle initial) (Include professional or military title) TELEPHONE NUMBER ROOM NUMBER BUILDING CODE A C T I O N ORGANIZATION ROUTING SYMBOL Instructions: This form is to be used for all directory changes, additions or deletions. Information should be submitted without delay. Type or print all information. Do not use dittos. See reverse side of this form for instructions. ORGANIZATIONAL ROUTING SYMBOL TELEPHONE NO. DATE EMPLOYEE LOCATOR NOTIFICATION INSTRUCTIONS FOR FILLING OUT FORM 1450.2 Name column Telephone Number Organization Routing Symbol Room number Building code Action Type or print the employee's name (last, first, middle initial, professional or military title). List the name exactly as it is listed in the DOE Headquarters directory, including punctua-

44

Gnie mcanique Implementing the Quotient Method Controller  

E-Print Network (OSTI)

of this project was to apply this method on a Ball-on-a- Wheel system. This system consists of a ball rolling the ball-on-a-wheel system it is important to have a sufficiently fast sampling rate. Normal webcamsSECTION DE Génie mécanique Implementing the Quotient Method Controller on the Ball-on-a-Wheel

Lausanne, Ecole Polytechnique Fédérale de

45

Subject: Proposed 216(h) Regulations To: Brian.Mills@hq.doe.gov and Lot.Cooke@hq.doe.gov.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 12, 2012 February 12, 2012 Subject: Proposed 216(h) Regulations To: Brian.Mills@hq.doe.gov and Lot.Cooke@hq.doe.gov. We appreciate the opportunity to review the Proposed Regulation for 216(h) of the FPA (16 U.S.C. 824p(h)) and provide comments. After review of the proposed rule, we believe a few changes to the text could greatly improve in the likelihood of reducing the time and cost of necessary environmental reviews, consultations, and permit processing for electric transmission facilities crossing Federal Lands while increasing the efficiency and coordination intended by that section of the Energy Policy Act of 2005 and the nine-agency MOU. Comments are organized by section, with explanation and proposed changes in the wording of a specific section of the proposed rule made in bold.

46

Office of the Chief Information Officer DOERM@hq.doe.gov Office...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office of the Chief Information Officer DOERM@hq.doe.gov Office of IT Planning, Architecture and E-government Records Management Division (IM-23) Employee Separation:...

47

Employee Separation: Completing HQ F 3293.1, Sec. 7c | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GUIDANCE - Completing HQ F 3293 1 Sec 7c FINAL 140320.pdf More Documents & Publications Records Management Exit Procedures Social Media Records and You Social Media Records and...

48

W. E. Mott, Director, Division of Environmental Control Technology, HQ  

Office of Legacy Management (LM)

Eyergy Eyergy pak t??pEOperatlons dak Ridge, Tennessee 37830 December 12, 1977 W. E. Mott, Director, Division of Environmental Control Technology, HQ Germantown, M.S. E-201 REPORT OF FINDINGS: ALLIED CHEMICAL CORPORATION SITES AT NORTH CLAYMONT, DELAWARE; MARCUS HOOK, PENNSYLVANIA, AND BALTIMORE, MARYLAND The following information summarizes our findings and conclusions relative to the reassessment of the subject sites. Information supplied from files of the former Atomic Energy Commission, Division of Raw Materials, indicates the company was engaged during the 1950's in research and development and pilot scale operations on uranium recovery at North Claymont, Delaware, and possibly at other Allied Chemical sites at Marcus Hook, Pa., and Baltimore, Md. under

49

QUOTIENTS, EXACTNESS AND NUCLEARITY IN THE OPERATOR SYSTEM CATEGORY  

E-Print Network (OSTI)

QUOTIENTS, EXACTNESS AND NUCLEARITY IN THE OPERATOR SYSTEM CATEGORY ALI S. KAVRUK, VERN I. PAULSEN system category. We define operator system quotients and exactness in this setting and refine the notion of nuclearity by studying operator systems that preserve various pairs of tensor products. One of our main goals

50

Protocol EM-HQ Review Field Self Assessment Site Specific QAP-QIP February  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM-HQ Review Field Self Assessment Site Specific QAP-QIP EM-HQ Review Field Self Assessment Site Specific QAP-QIP February 2010 Protocol EM-HQ Review Field Self Assessment Site Specific QAP-QIP February 2010 This memorandum serves to transmit the Protocol for EM Review/Field Self-Assessment of Site-Specific QAP/QIP. The subject document is developed as part of continued efforts to ensure technical consistency, transparency, and clarity of QA requirements and expectations. Protocol EM-HQ Review Field Self Assessment Site Specific QAP-QIP February 2010 More Documents & Publications Protocol for EM Review/Field Self-Assessment of Site-Specific QAPs/QIPs Protocol for EM Review/Field Self-Assessment of Site Specific Quality Assurance Programs/Quality Implementation Plans SOPP-43, EM-23 Quality Assurance Oversight

51

Comments on Docket ID: DOE-HQ-2011-0014 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

on Docket ID: DOE-HQ-2011-0014 on Docket ID: DOE-HQ-2011-0014 Comments on Docket ID: DOE-HQ-2011-0014 This letter comprises the comments of the Pacific Gas and Electric Company (PG&E), Southern California Gas Company (SCGC), San Diego Gas and Electric (SDG&E), and Southern California Edison (SCE) in response to the U.S. Department of Energy's (DOE) Request for Information on Regulatory Burden. The signatories of this letter, collectively referred to herein as the California Investor Owned Utilities (CA IOUs) represent some of the largest utility companies in the Western United States, serving over 35 million customers. Comments on Docket ID: DOE-HQ-2011-0014 More Documents & Publications FINAL CA IOU Comment Letter RFI Regulatory Burden O:\IM-20\E-Government Program Office\FDMS\FDMS

52

Comments on Docket ID: DOE-HQ-2011-0014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments on Docket ID: DOE-HQ-2011-0014 Comments on Docket ID: DOE-HQ-2011-0014 Comments on Docket ID: DOE-HQ-2011-0014 This letter comprises the comments of the Pacific Gas and Electric Company (PG&E), Southern California Gas Company (SCGC), San Diego Gas and Electric (SDG&E), and Southern California Edison (SCE) in response to the U.S. Department of Energy's (DOE) Request for Information on Regulatory Burden. The signatories of this letter, collectively referred to herein as the California Investor Owned Utilities (CA IOUs) represent some of the largest utility companies in the Western United States, serving over 35 million customers. Comments on Docket ID: DOE-HQ-2011-0014 More Documents & Publications FINAL CA IOU Comment Letter RFI Regulatory Burden O:\IM-20\E-Government Program Office\FDMS\FDMS

53

FOIA Requests received by DOE Headquarters (HQ) since December 31, 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requests received by DOE Headquarters (HQ) since December 31, 2008 Requests received by DOE Headquarters (HQ) since December 31, 2008 FOIA Request Number Subject Date Received Estimated Completion Date FOIA-2009-000002 Copies of all applications submitted to DOE under the Advanced Technology Vehicles Manufacturing Incentive Program 1/5/2009 5/29/2009 FOIA-2009-000003 Contract number that ITP currently holds and that GSA 332345/DOE RQ52-09NA28647 is replacing or re-competing 1/5/2009 Closed at HQ and transferred to the Savannah River Office on 1/16/2009 FOIA-2009-000004 Copies of all data provided to Senator Coburn in response to his request for information concerning leave usage and absenteeism at the DOE 1/5/2009 ECD is 1/30/2009. Closed on 1/26/2009 FOIA-2009-000005 Information related to the applicants for the DOE's $25

54

Audit Report: HQ-B-98-01 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HQ-B-98-01 HQ-B-98-01 Audit Report: HQ-B-98-01 July 17, 1998 The U.S. Department of Energy's Value Engineering Program Value Engineering (VE) is defined as the organized analysis of the functions of a program, project, system product, item or equipment, building, facility, service, or supply of an executive agency. This analysis reduces these functions to their most basic elements and then looks for cost-efficient alternatives. VE contributes to the overall management objectives of streamlining operations, improving performance, reliability, quality, safety and reducing life-cycle costs. Further, it can result in the increased use of environmentally-sound and energy-efficient practices and materials. VE benefits have been documented by the General Accounting Office, which reported that VE usually produces a net savings of

55

BETTI NUMBERS OF 3SASAKIAN QUOTIENTS OF SPHERES BY TORI  

E-Print Network (OSTI)

BETTI NUMBERS OF 3­SASAKIAN QUOTIENTS OF SPHERES BY TORI Roger Bielawski Abstract. We give a formula for the Betti numbers of 3­Sasakian manifolds or orbifolds which can be obtained as 3­Sasakian], Boyer, Galicki, Mann and Rees have calculated the second Betti number of a 7­dimensional 3­Sasakian

Bielawski, Roger

56

ON THE MOTIVE OF A QUOTIENT VARIETY SEBASTIAN DEL BA ~  

E-Print Network (OSTI)

ON THE MOTIVE OF A QUOTIENT VARIETY SEBASTIAN DEL BA ~ NO ROLLIN AND VICENTE NAVARRO AZNAR En with the realization functors and Chow groups. Recently, in the case char k = 0, Guill'en and Navarro Aznar have given. DEL BA ~ NO ROLLIN AND V. NAVARRO AZNAR group, K 0 M k , these decompositions were considered by Denef

Politècnica de Catalunya, Universitat

57

NASA Research Areas of Interest Released by NASA HQ February 2014  

E-Print Network (OSTI)

NASA Research Areas of Interest Released by NASA HQ February 2014 NASA EPSCoR research priorities), the Office of the Chief Technologist and NASA's ten Centers. Each Mission Directorate, the Office efforts. Information about current NASA research solicitations can be found on NSPIRES at http

Maxwell, Bruce D.

58

NASA Research Areas of Interest Released by NASA HQ June 2012  

E-Print Network (OSTI)

NASA Research Areas of Interest Released by NASA HQ June 2012 NASA EPSCoR research priorities), the Office of the Chief Technologist and NASA's ten Centers. Each Mission Directorate, the Office efforts. Information about current NASA research solicitations can be found on NSPIRES at http

Lawrence, Rick L.

59

NASA Research Areas of Interest Released by NASA HQ April 2013  

E-Print Network (OSTI)

NASA Research Areas of Interest Released by NASA HQ April 2013 NASA EPSCoR research priorities), the Office of the Chief Technologist and NASA's ten Centers. Each Mission Directorate, the Office efforts. Information about current NASA research solicitations can be found on NSPIRES at http

Maxwell, Bruce D.

60

W912HQ-11-D-0004 USACE HUMPHREYS ENGR CTR SPT ACTIVITY  

E-Print Network (OSTI)

60604-4107 CODE 10. THIS ACQUISITION IS UNRESTRICTED FAX: NAICS: TEL: CODE 18a. PAYMENT WILL BE MADE 5722 INTEGRITY DRIVE MILLINGTON TN 38054-5005 18b. SUBMIT INVOICES TO ADDRESS SHOWN IN BLOCK 18a OF SOLICITATION IFB RFP CODE SEEADDENDUM BLOCK IS MARKED DESTINATION UNLESS 12. DISCOUNT TERMS F&A HQ (No Collect

US Army Corps of Engineers

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

How Peer Review Teams will work Cesnik, Catherine M 0 'Darren.Mollot@HQ.DOE.GOV'  

E-Print Network (OSTI)

Marcia, How Peer Review Teams will work I Cesnik, Catherine M 0 'Darren.Mollot@HQ.DOE.GOV' Cc: ~Mc, plume, etc.) already include groups of peers, that their numbers could be considered peer reviewed. Thus that would eliminate the need for duplicate subteams to peer review each subteam. That would leave Bill Rees

Fleskes, Joe

62

Operator Systems: Quotients, Duals and Tensors with Applications to Connes' Embedding  

E-Print Network (OSTI)

Operator Systems: Quotients, Duals and Tensors with Applications to Connes' Embedding Conjecture and Mark Tomforde Banff, Alberta February, 2012 Vern Paulsen Operator Systems: Quotients, Duals and Tensors are the completely bounded maps. Vern Paulsen Operator Systems: Quotients, Duals and Tensors with Applicat #12

Argerami, Martin

63

HQ0614  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Routing Routing Phone Fax Symbol Name Number Number Location OFFICE OF THE SECRETARY OF ENERGY S Office of the Secretary of Energy Ernest J. Moniz, Secretary of Energy ...................................................202-586-6210 202-586-4403 7A-257/FORS DS Office of the Deputy Secretary Daniel B. Poneman, Deputy Secretary of Energy ...............................202-586-5500 202-586-7210 7B-252/FORS Edward B. Held, Associate Deputy Secretary .....................................202-586-2610 7B-222/FORS US Office of the Under Secretary (Vacant), Under Secretary of Energy ...................................................202-586-7700 202-586-0148 7A-219/FORS S-3 Chief Operating Officer for the Under Secretary Daniel B. Poneman, Chief Operating Officer .......................................202-586-5500

64

HQ0723  

Energy Savers (EERE)

J-021GTN AU-31 Office of Nuclear Safety Basis and Facility Design Garrett A. Smith Jr, Director ...301-903-7440...

65

HQ1224  

Office of Environmental Management (EM)

J-040GTN AU-31 Office of Nuclear Safety Basis and Facility Design Garrett A. Smith Jr, Director ...301-903-7440...

66

Fuzzy Cosets and Quotient Fuzzy AG-subgroups  

E-Print Network (OSTI)

In this paper we extend the concept of fuzzy AG-subgroups. We introduce some results in normal fuzzy AG-subgroups. We define fuzzy cosets and quotient fuzzy AG-subgroups, and prove that the sets of their collection form an AG-subgroup and fuzzy AG-subgroup respectively. We also introduce the fuzzy Lagrange's Theorem of AG-subgroup. It is known that the condition $\\mu(xy)=\\mu(yx)$ holds for all $x,y$ in fuzzy subgroups if $\\mu$ is normal, but in fuzzy AG-subgroup we show that it holds without normality.

Amanullah; Imtiaz Ahmad; Muhammad Shah

2014-03-15T23:59:59.000Z

67

Electrical hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

68

Hazards Survey and Hazards Assessments  

Directives, Delegations, and Requirements

This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

1997-08-21T23:59:59.000Z

69

2011 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ NA-10  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

printed 2/17/2012 2:23:00 PM Page 1 of 8 printed 2/17/2012 2:23:00 PM Page 1 of 8 Annual Workforce Analysis and Staffing Plan Report As of December 31, 2011 Reporting Office: NNSA NA-10 HQ (including NA-15 inputs) Section One: Current Mission(s) of the Organization and Potential Changes NNSA Mission: To strengthen United States security through the military application of nuclear energy. NNSA Vision: To be an integrated nuclear security enterprise operating an efficient and agile nuclear weapons complex, recognized as preeminent in technical leadership and program management. Organizational Changes: NNSA is in the final phase of re-organizing. This plan reflects known changes that resulted from the elimination of the ABQ Service Center and re-distribution of the functions and personnel, some of whom were part of the TQP Program. The plan has also

70

AFCGCP-HQ PAGE.002 STATEMENT OF CONSIDERATIONS REQUEST BY SPRINGBORN LABORATORIES, INC. FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 '93 14:33 r M DOE-IPC-CHICAGO 0 '93 14:33 r M DOE-IPC-CHICAGO AFCGCP-HQ PAGE.002 STATEMENT OF CONSIDERATIONS REQUEST BY SPRINGBORN LABORATORIES, INC. FOR AN ADVANCE WAIVER OF U.S. AND FOREIGN RIGHTS UNDER NREL SUBCONTRACT NO. ZAG-3-11219-02 UNDER DOE PRIME CONTRACT NO. DE-AC02- 83CH10093, WAIVER NO. W(A)-93-001, CH0753. The attached petition by Springborn Laboratories, Inc. (hereafter Springborn) is for an advance waiver of patent rights under NREL Subcontract ZAG-3-11219-02 and under DOE Contract No. DE-ACO2-83CH10093. Springborn requests that the Department of Energy grant an advance waiver for the domestic and foreign rights to inventions made in the performance of work under the above identified subcontract and that these rights vest in Springborn subject to the standard march-in, preference for U.S. industry, and the

71

MRR 23 '94 B:44 FROM DOE-IPLD-CHICAGO TO RGCP-HQ OAGE.O00  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23 '94 B:44 FROM DOE-IPLD-CHICAGO TO RGCP-HQ OAGE.O00 23 '94 B:44 FROM DOE-IPLD-CHICAGO TO RGCP-HQ OAGE.O00 * * STATEMENT OF CONSIDERATIONS REQUEST BY THE CARBORUNDUM COMPANY (CARBORUNDUM) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER ITS SUBCONTRACT WITH SOLAR TURBINES INCORPORATED (SOLAR) UNDER DOE CONTRACT NUMBER DE-AC02-92CE40960; W(A)-93-027; CH-0784 The Carborundum Company (Carborundum), has requested a waiver of domestic and foreign patent rights for all subject inventions of its employees under a subcontract it expects to enter under DOE's prime contract with Solar Turbines Incorporated (Solar) for the development of a ceramic stationary gas turbine under contract No. DE-AC02-92CE40960. Carborundum is a wholly owned subsidiary of British Petroleum whose manufacturing and research and development facilities are located primarily in the

72

,"OFFICE OF THE SECRETARY OF ENERGY",,100 ,"OFFICE OF THE CHIEF FINANCIAL OFFICER",,110,,"cf.coop@hq.doe.gov"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

[Worksheet]" [Worksheet]" ,,,"RingCentral" ,"ORGANIZATION",,"Extension","POC","Email" "Departmental Staff & Support Offices" ,"OFFICE OF THE SECRETARY OF ENERGY",,100 ,"OFFICE OF THE CHIEF FINANCIAL OFFICER",,110,,"cf.coop@hq.doe.gov" ,"CHIEF INFORMATION OFFICER",,120,,"im.coop@hq.doe.gov" ,"AS FOR CONGRESSIONAL AND INTERGOVERNMENTAL AFFAIRS",,130,,"ci.coop@hq.doe.gov" ,"OFFICE OF ECONOMIC IMPACT AND DIVERSITY",,140,,"ed.coop@hq.doe.gov" ,"OFFICE OF THE ADMINISTRATOR, EIA",,150 ,"ASSISTANT SECRETARY FOR ENVIRONMENT, SAFETY AND HEALTH",,160 ,"GENERAL COUNSEL",,170,,"gc.coop@hq.doe.gov"

73

An Exploratory Study of Respiratory Quotient Calibration and Association with Postmenopausal Breast Cancer  

Science Journals Connector (OSTI)

...utilization when energy is expended. Fat...regression of the average of the paired log...quotient (FQ) average and other study...reliable information on energy expenditure patterns...self-reported macronutrient consumption to risk reveal few...along with at-home activities. The...

Ross L. Prentice; Marian L. Neuhouser; Lesley F. Tinker; Mary Pettinger; Cynthia A. Thomson; Yasmin Mossavar-Rahmani; Fridtjof Thomas; Lihong Qi; and Ying Huang

2013-12-01T23:59:59.000Z

74

initial rise in respiratory quotient (RQ) was also similar in both groups. However, in rats  

E-Print Network (OSTI)

initial rise in respiratory quotient (RQ) was also similar in both groups. However, in rats fed in rats fed the TC diet the decline in RQ was more progressive and began its decrease only 3-4 h after ad libitum to two groups of eight male Wister rats. Rats fed the TD diet showed the first significant

Paris-Sud XI, Université de

75

Track 3: Exposure Hazards  

Energy.gov (U.S. Department of Energy (DOE))

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

76

Hazard Analysis Database report  

SciTech Connect

This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J.

1997-08-12T23:59:59.000Z

77

Hazardous Materials and Controlled Hazardous Substances (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

A permit is required to own, establish, operate, or maintain a facility in the state of Maryland that transfers quantities of a single hazardous material in excess of 100,000 pounds at any time...

78

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

79

Radiation Hazards Program (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

80

Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 3, 12141218 On Certain Quotient of TemperleyLieb Algebra  

E-Print Network (OSTI)

Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 3, 1214­1218 On Certain Quotient of Temperley­Lieb Algebra Mariya O. VLASENKO Institute of Mathematics of NAS Ukraine, 3 Tereshchenkivs'ka Str., 01601 Kyiv-4, Ukraine E-mail: mariyka@imath.kiev.ua We consider a certain quotient

Popovych, Roman

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

HQ Leave Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leave Guide Leave Guide Purpose of this Guide The purpose of this guide is to provide you, as a Headquarters employee, advice and guidance concerning issues related to hours of duty, time & attendance, and matters related to taking time off (e.g., annual and sick leave). However, this guide can not provide all encompassing guidance for all situations. In many cases, the answer is subject to office policy and/or supervisory judgment. For these reasons, any questions about how matters in this guide apply to you should first be discussed with your supervisor. If your supervisor is unable to answer your specific question or issue, you or your supervisor should contact the Headquarters Employee/Labor Relations Services Team on (202) 586-8731. Who is Covered by this Guide

82

Portland HQ Letterhead  

NLE Websites -- All DOE Office Websites (Extended Search)

request dated September 15, 2008. In that request you asked for copies of all IG referral documents, memoranda andor letters, and DOE program management responses that...

83

HQ FNVA Questionnaire  

Energy.gov (U.S. Department of Energy (DOE))

Please note that foreign nationals participating in the public meeting are subject to advance security screening procedures which require advance notice prior to attendance at the public meeting. If a foreign national wishes to participate in the public meeting, please inform DOE as soon as possible by contacting Ms. Regina Washington at (202) 586-1214 or by e-mail: Regina.Washington@ee.doe.gov so that the necessary procedures can be completed.

84

Portland HQ Letterhead  

NLE Websites -- All DOE Office Websites (Extended Search)

Dear Customers and Stakeholders: It has been a busy year since we kicked-off the Energy Efficiency Post-2011 Review with you last November. This public process has been invaluable...

85

Portland HQ Letterhead  

NLE Websites -- All DOE Office Websites (Extended Search)

The Bonneville Power Administration (BPA) is designing its Integrated Program Review (IPR) process for the Fiscal Year 2014-2015 rate period. The IPR is a consolidated...

86

Portland HQ Letterhead  

NLE Websites -- All DOE Office Websites (Extended Search)

Bonneville Power Administration's (BPA) proposed schedule for the 2007 Supplemental Wholesale Power (WP-07) Rate Case that will revise its power rates for Fiscal Year 2009 in...

87

HQ F 580  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Certi cate of PropertyProperty Removal Authorization NAME(Last, First, MI) Org Code Phone Item Descrip n Make Model Tag Number Serial Number Exp. Date RECEIPT ACKNOWLEDGMENT I...

88

Portland HQ Letterhead  

NLE Websites -- All DOE Office Websites (Extended Search)

dangerous to fish. The list of ideas we are working on is found in the attached statement distributed at the meeting. (See pages 4 - 5.) Participants suggested even more ideas, and...

89

Portland HQ Letterhead  

NLE Websites -- All DOE Office Websites (Extended Search)

BPA and BEF (including its lawyers) regarding the contract prior to Administrator Wright signing the agreement on January 30, 2009. "Communications" are to include all...

90

ALTERNATE APPROACH TO HAZARD CATEGORIZATION FOR SALTSTONE FACILITY AT SRS  

SciTech Connect

The Saltstone Facility at Savannah River Site (SRS) was originally segmented into two segments: the Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). Based on the inventory of radionuclides available for release the SPF and SDF were categorized as Nonreactor Hazard Category (HC)-3. The hazard categorization recognized the SDF will contain contributions of radionuclides which would exceed the HC-2 Threshold Quantity (TQ) in the form of grout. However it was determined not to impact the facility hazard categorization based on the grout being in a solid, monolithic form which was not easily dispersible. But, the impact of a quantity of unset grout expected to be present at the vault following operation of the process was not addressed. A Potential Inadequacy in Safety Analysis (PISA) was later issued based on the hazard categorization determination for the facility not addressing unset grout. This initiated a re-evaluation of the accident scenarios within the hazards analysis. During this re-evaluation, the segmentation of the facility was challenged based on the potential interaction between facility segments; specifically, the leachate return line and the grout transfer line, which were considered separate segments, are located in close proximity at one point. such that for certain events (NPH as well as External Vehicle Impact) both could be damaged simultaneously and spill contents on the ground that could commingle. This would violate the guideline for segmentation. Therefore, the Hazard Categorization (HC) was reevaluated based on the facility being a single segment and including the additional unset grout as part of total inventory. This total inventory far exceeded the limit for HC-2 TQ and made the facility's initial categorization as HC-2. However, alternative analysis methodology based on credible release fractions allowed in DOE-STD-1027-92 (Ref.1) showed that the Saltstone facility could still be categorized as Hazard Category 3 Nuclear Facility with no segmentation. Since it was the first time any facility at SRS tried this alternate approach safety analyst had to face substantial resistance and reservations from both the facility and local DOE customers which were eventually overcome with approval and acceptance from DOE-HQ.

Roy, B.

2009-04-28T23:59:59.000Z

91

Surveillance Guides - Hazards Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazards Control Hazards Control 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing controls to mitigate hazards affecting the public, worker, and environment. 2.0 References 2.1 DOE 4330.4B Maintenance Management Program 2.2 48 CFR 1970.5204-2 Department of Energy Acquisition Regulations 3.0 Requirements Implemented This surveillance is conducted to verify implementation of DOE 450.4-1A Volume 2 Appendix E core expectation #3 (CE II-3). CE II-3: An integrated process has been established and is utilized to develop controls which mitigate the identified hazards present within a facility or activity. The set of controls ensure adequate protection of the public, worker, and the environment and are established as agreed upon by DOE.

92

CHSP: HAZARD CONTROLS  

NLE Websites -- All DOE Office Websites (Extended Search)

HYGIENE HYGIENE AND SAFETY PLAN CHSP SITE MAP HAZARD CONTROLS CONTROLS FOR HAZARDOUS MATERIALS arrow image WORK PRACTICE CONTROLS arrow image CHEMICAL STORAGE GUIDELINES DECOMISSIONING LAB AND SHOP SPACES SPECIFIC CONTROLS AND PROCEDURES arrow image EMERGENCY PROCEDURES AND EQUIPMENT arrow image APPENDICES arrow image FAQs QUESTIONS Search the CHSP: > Go spacer image EH&S Home PUB 3000 LBNL Home LBNL A-Z Index LBNL Search LBNL Phone Book Privacy & Security Notice spacer spacer image spacer image spacer image HAZARD CONTROLS This section discusses control procedures for limiting employee exposure to chemical hazards. Technical Areas Technical areas include laboratories, shops, workrooms, and similar areas where non-administrative activities are performed. For the purpose of the

93

Hazardous Waste Management (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

94

WEATHER HAZARDS Basic Climatology  

E-Print Network (OSTI)

) Wildfires (Jun 02) Recent Declared Disasters in Colorado No Map from FEMA provided #12;National WeatherWEATHER HAZARDS Basic Climatology Colorado Climate Center Funding provided by NOAA Sectoral

95

Automated Job Hazards Analysis  

Energy.gov (U.S. Department of Energy (DOE))

AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

96

State of Colorado Wildfire Hazard  

E-Print Network (OSTI)

State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 the May 2001 Report to the Governor, Colorado Wildland Urban Interface; Section 2 includes the Hazard the status of the Wildland Urban Interface in Colorado; the hazards that exist; mitigation measures

97

Hazardous Waste Disposal Sites (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

98

Chemical process hazards analysis  

SciTech Connect

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

99

Missouri Hazardous Waste Management Law (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

100

Report Wildland Fire Area Hazard  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. How to report wildland fire hazard Use the following form to report any wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. Fill out this form as completely as possible so we can better assess the hazard. All submissions will be assessed as promptly as possible. For assistance with a non-emergency situation, contact the Operations Support Center at 667-6211. Name (optional): Hazard Type (check one): Wildlife Sighting (check box if animal poses serious threat) Trails (access/egress)

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Identifying and modeling safety hazards  

SciTech Connect

The hazard model described in this paper is designed to accept data over the Internet from distributed databases. A hazard object template is used to ensure that all necessary descriptors are collected for each object. Three methods for combining the data are compared and contrasted. Three methods are used for handling the three types of interactions between the hazard objects.

DANIELS,JESSE; BAHILL,TERRY; WERNER,PAUL W.

2000-03-29T23:59:59.000Z

102

Cold Weather Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Cold Weather Hazards June 2010 NSA_cwh_Rev10.doc 1 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Cold Weather Hazards Winter Conditions at the North Slope of Alaska The North Slope of Alaska is north of the Arctic Circle at latitudes ranging from 69 to 72 degrees. Barrow, the largest town on the North Slope (pop. 4500), is the site of a National Weather Service Station, which has been active for several decades, so the climatology of the Alaska arctic coastal region as represented by Barrow is relatively well known. The North Slope is covered with ice and snow typically eight months of the year (October-May). During part of November, all of December, and most of January, the sun does not come above the horizon; this

103

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

104

Savannah River Site offsite hazardous waste shipment data validation report. Revision 1  

SciTech Connect

The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

1995-05-01T23:59:59.000Z

105

Enhancing Railroad Hazardous Materials Transportation Safety...  

Office of Environmental Management (EM)

Enhancing Railroad Hazardous Materials Transportation Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials...

106

Department of Transportation Pipeline and Hazardous Materials...  

Office of Environmental Management (EM)

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration...

107

O:\IM-20\E-Government Program Office\FDMS\FDMS database\DOE\2011\DOE-HQ-2011-0014 - Daniel Cohen - GC\Comments from FDMS\Dan Manole DRAFT-0004.html  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14%20-%20Daniel%20Cohen%20-%20GC/Comments%20from%20FDMS/Dan%20Manole%20DRAFT-0004.html[3/23/2011 2:21:55 PM] 14%20-%20Daniel%20Cohen%20-%20GC/Comments%20from%20FDMS/Dan%20Manole%20DRAFT-0004.html[3/23/2011 2:21:55 PM] PUBLIC SUBMISSION As of: March 23, 2011 Received: March 21, 2011 Status: Pending_Post Tracking No. 80c0d039 Comments Due: April 04, 2011 Submission Type: Web Docket: DOE-HQ-2011-0014 Reducing Regulatory Burden Comment On: DOE-HQ-2011-0014-0001 Reducing Regulatory Burden Document: DOE-HQ-2011-0014-DRAFT-0004 Comment on FR Doc # 2011-02368 Submitter Information Name: Dan Manole Address: 2700 Crestridge Court N/A Suwanee, GA, 30024 Email: dan_manole@irco.com Phone: 770-291-2378 Submitter's Representative: Dan Manole Organization: Hussmann General Comment See attached file(s) Attachments DOE-HQ-2011-0014-DRAFT-0004.1: Comment on FR Doc # 2011-02368 From: Dan Manole, Regulatory Compliance Manager, Hussmann Corporation

108

Experiment Hazard Class 11 - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Hydrogen 1 - Hydrogen Applicability This hazard classification applies to all experiments and processes involving the use of gaseous hydrogen. This class includes work performed in the Experiment Hall Beamline Stations and any preparatory/setup/testing work performed in the LOM laboratories. Other hazard controls such as fire protection and life safety regulations may apply to experiments of this hazard class. A summary of controls for hydrogen use is available in the hydrogen summary document. Experiment Category Experiments involving previously reviewed hazard controls qualify for categorized as medium risk. Experiments involving new equipment or modified hazard control schemes are categorized as high risk. Experiment Hazard Control Verification Statements Engineered Controls - Applicable controls for storage and use of

109

Hazardous Substances Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Commissioner of the Department of Agriculture has the authority to promulgate regulations declaring specified substances to be hazardous and establishing labeling, transportation, storage, and...

110

REPORT NO. 8 radiation hazards  

E-Print Network (OSTI)

REPORT NO. 8 REVISED guidance for the control of radiation hazards in uranium mining SEPTEMBER 1967 OF RADIATION HAZARDS IN URANIUM MINING SEPTEMBER 1967 Staff Report of the FEDERAL RADIATION COUNCIL #12;FEDERAL...... .... .._ _.... Section I. Introduction. . . Section II. The Radiation Environment AssociatedWith Uranium Mining. Section

111

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

Sheridan, Jennifer

112

Potential Health Hazards of Radiation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation More Documents &...

113

O:\IM-20\E-Government Program Office\FDMS\FDMS database\DOE\2011\DOE-HQ-2011-0014 - Daniel Cohen - GC\Comments from FDMS\Charles W Adams DRAFT-0005.html  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

%20Daniel%20Cohen%20-%20GC/Comments%20from%20FDMS/Charles%20W%20Adams%20DRAFT-0005.html[3/23/2011 2:17:13 PM] %20Daniel%20Cohen%20-%20GC/Comments%20from%20FDMS/Charles%20W%20Adams%20DRAFT-0005.html[3/23/2011 2:17:13 PM] PUBLIC SUBMISSION As of: March 23, 2011 Received: March 21, 2011 Status: Pending_Post Tracking No. 80c0d05f Comments Due: April 04, 2011 Submission Type: Web Docket: DOE-HQ-2011-0014 Reducing Regulatory Burden Comment On: DOE-HQ-2011-0014-0001 Reducing Regulatory Burden Document: DOE-HQ-2011-0014-DRAFT-0005 Comment on FR Doc # 2011-02368 Submitter Information Name: Charles W Adams Address: A.O. Smith Corporation 11270 W. PARK PLACE MILWAUKEE, WI, 53224 Email: cadams@aosmith.com Phone: 414-359-4274 Organization: A.O. Smith Corporation General Comment I am commenting on behalf of A.O. Smith Water Products Company, the largest manufacturer of residential and commercial water heaters in the USA. We are members of the Air-conditioning,

114

ARM - SGP Rural Driving Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Rural Driving Hazards Rural Driving Hazards SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on unpaved, dirt and gravel, roads. Visitors should be aware of the driving hazards this presents by taking the following precautions: Proceed cautiously: Many rural roads have unmarked and blind intersections. Slow down: Sanded and gravel raods can cause a vehicle to swerve. Maintain a safe following distance: During the dry season, vehicles

115

Surveillance Guides - Identification of Hazards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identification of Hazards Identification of Hazards 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs. Surveillance activities encompass maintenance and implementation of safety basis documentation (SARs, ISBs, BIOs, JCOs, HASPs etc) as well as activity level hazards identification via JHAs, AJHAs, JSAs etc.) 2.0 References 2.1 DOE 4330.4B Maintenance Management Program 2.2 48 CFR 1970 Department of Energy Acquisition Regulations 2.3 DOE O 5480.21, Unreviewed Safety Questions 2.4 DOE O 5480.23, Nuclear Safety Analysis Reports 3.0 Requirements Implemented This surveillance verifies implementation of guiding principle #5 and core value #2 as specified in 48 CFR 1970.5204-2 (b) (5) and (c) (2) respectively. Additionally, it verifies implementation of

116

Portable sensor for hazardous waste  

SciTech Connect

Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps.

Piper, L.G.

1994-12-31T23:59:59.000Z

117

LOG HAZARD REGRESSION Huiying Sun  

E-Print Network (OSTI)

LOG HAZARD REGRESSION by Huiying Sun Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991 .................................................................... .................................................................... .................................................................... .................................................................... THE UNIVERSITY OF BRITISH COLUMBIA September, 1999 c flHuiying Sun, 1999 #12; Abstract We propose using

Heckman, Nancy E.

118

HQ Voluntary Leave Transfer Program  

Energy.gov (U.S. Department of Energy (DOE))

Find out how you can apply, based on a medical emergency, to receive annual leave donated by other employees.

119

Bulletin No. 233 Ergonomic Hazards of the  

E-Print Network (OSTI)

July, 2004 Bulletin No. 233 Ergonomic Hazards of the Seated Posture Ergonomic Hazards of the Seated it is possible for these injuries to heal themselves when the ergonomic hazard is removed, cases do exist where;PAGE 2 ERGONOMIC HAZARDS of the SEATED POSTURE BULLETIN NO. 233 Ergonomic interventions to reduce

Martin, Jeff

120

Hazardous Wastes Management (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radiological hazards of alpha-contaminated waste  

SciTech Connect

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

122

Thoughts on Hazard Assessment (Oct)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazard Assessment of Chemical Air Hazard Assessment of Chemical Air Contaminants Measured in Residences J.M. Logue, T.E. McKone, M. H. Sherman, B.C. Singer Environmental Energy Technologies Division June 2010 Funding was provided by the U.S. Dept. of Energy Building Technologies Program, Office of Energy Efficiency and Renewable Energy under DOE Contract No. DE-AC02-05CH11231; by the U.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control through Interagency Agreement I-PHI-01070, and by the California Energy Commission through Contract 500-08-06. LBNL Report Number 3650-E 1 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States

123

Subsurface Fire Hazards Technical Report  

SciTech Connect

The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated.

Logan, R.C.

1999-09-27T23:59:59.000Z

124

WHC fire hazards analysis policy  

SciTech Connect

The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

Evans, C.B.

1994-04-01T23:59:59.000Z

125

Suggested Approaches for Probabilistic Flooding Hazard Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Suggested Approaches for Probabilistic Flooding Hazard Assessment Ahmed Jemie Dababneh, Ph.D., P.E. and Jeffrey Oskamp, E.I.T. Presentation for U.S. Department of Energy Natural Phenomena Hazards Meeting October 22, 2014

126

Massachusetts Hazardous Waste Management Act (Massachusetts)  

Energy.gov (U.S. Department of Energy (DOE))

This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

127

CONTROL OF HAZARDOUS ENERGY 12.A GENERAL  

E-Print Network (OSTI)

on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program by the contractor-managed HECP (e.g., QA's on construction sites, etc.), they shall comply with the contractor and implementation of these activities. Each shall inform the other of their HECPs and Hazardous Energy Control (HEC

US Army Corps of Engineers

128

OSHA List of Hazardous Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

OSHA List of Hazardous Chemicals OSHA List of Hazardous Chemicals ACETALDEHYDE ACETAMIDE ACETIC ACID ACETIC ANHYDRIDE ACETONE ACETONItr ILE ACETYLAMINOFLUORENE, 2- ACETYLENE ACETYLENE DICHLORIDE ACETYLENE TETRABROMIDE ACETYLSALICYLIC ACID (ASPIRIN) ACROLEIN ACRYLAMIDE ACRYLIC ACID ACRYLONITRILE ACTINOMYCIN D ADRIAMYCIN AFLATOXINS ALDRIN ALLYL ALCOHOL ALLYL CHLORIDE ALLYL GLYCIDYL ETHER (AGE) ALLYL PROPYL DISULFIDE ALUMINA ALUMINUM, METAL DUST, AS AL ALUMINUM, PYRO POWDERS, AS AL ALUMINUM, SOLUBLE SALTS, AS AL ALUMINUM, WELDING FUMES, AS AL ALUMINUM, ALKYLS, NOT OTHERWISE CLASSIFIED, AS AL ALUMINUM OXIDE, AS AL AMINOANTHRAQUINONE (AAQ), AMINOAZOTOLUENE, O- AMINOBIPHENYL, 4- AMINOETHANOL, 2- AMINO-2-METHYLANTHRAQUINONE, 1- AMINO-5-(5-NITRO-2-FURYL)- -1, 3,4-THIADIADIAZOLE, 2- AMINOPYRIDINE, 2- AMINO-1,2,4-TRIAZOLE, 3-

129

Implementation of the hazardous debris rule  

SciTech Connect

Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

Sailer, J.E.

1993-01-05T23:59:59.000Z

130

O:\IM-20\E-Government Program Office\FDMS\FDMS database\DOE\2012\Document List 03-02-2012 10-10-11-600\Document List 03-02-2012 10-10-11-600_docs\DOE-HQ-2012-0004-DRAFT-0005.html  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5.html[2/3/2012 12:41:43 PM] 5.html[2/3/2012 12:41:43 PM] PUBLIC SUBMISSION As of: February 03, 2012 Received: January 17, 2012 Status: Pending_Post Tracking No. 80f99189 Comments Due: January 20, 2012 Submission Type: Web Docket: DOE-HQ-2012-0004 U.S. Department of Energy Audit Guidance: For-Profit Recipients Comment On: DOE-HQ-2012-0004-0001 Audit Guidance: For-Profit Recipients Document: DOE-HQ-2012-0004-DRAFT-0005 Comment on FR Doc # 2011-32622 Submitter Information Name: Carol Hellmann Address: US Dept of Energy 1617 Cole Blvd Golden, CO, 80401 Email: carol.hellmann@go.doe.gov Phone: 7203561529 Organization: Golden Field Office Government Agency Type: Federal Government Agency: DOE General Comment I read through the new draft. I think it addresses many of the questions that I had. The one thing I

131

Hazardous and Radioactive Mixed Waste  

Directives, Delegations, and Requirements

To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

1982-12-31T23:59:59.000Z

132

BNL | CFN: Transport of Hazardous Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation of Hazardous Materials and Nanomaterials Transportation of Hazardous Materials and Nanomaterials The following contains guidance for transporting materials to and from BNL and for on-site transfers. All staff and users must adhere to Laboratory guidelines when making plans to move materials either by commercial carrier or in rented or personal vehicles. BNL hazardous material transport guidelines apply for products that meet the definition of hazardous materials according to 49 CFR 171.8 and any nanomaterial that has known hazardous properties (toxic, flammable, reactive). BNL guidelines are also provided for all other nanomaterials even if they have not been identified as hazardous materials. Some materials may be transported in personal vehicles as per "Materials of Trade" (MOT) guidance. The regulations for transporting MOT are much

133

Hazardous Waste Management (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Transportation Utility Program Info State Arkansas Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7-202.) The Hazardous Waste Program is based off of the Federal Resource Conservation and Recovery Act set forth in 40 CFR parts 260-279. Due to the great similarity to the

134

Hazardous waste management in the Pacific basin  

SciTech Connect

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

135

Freeze Concentration Applied to Hazardous Waste Management  

E-Print Network (OSTI)

steps to remove or destroy the hazardous components prior to discharge. Incineration is widely used to destroy a broad range of these hazardous components. Its disposal efficiency is often used when defining the Best Available Technology for EPA... standards. However, high water content streams are expensive to incinerate since the incinerator must be designed to handle the feed volume even though the water in the feed is in itself harmless. Some hazardous components require operating temperatures...

Ruemekorf, R.

136

Computer Viruses and Other Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Viruses and Other Hazards Computer Viruses and Other Hazards Name: Paul Status: other Grade: 12+ Location: IL Country: USA Date: May 2, 2011 Question: What is a Computer Virus? What do viruses do? How do viruses Spread? How do I prevent a virus? What are Trojan Horse programs? Malware? Phishing? Replies: Paul From National Institute of Science and Technology Which is the US government office in charge of this problem and should be your reference for this subject At this URL: http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pdf Please find the following definitions from paragraph 5: 5.1.1 Virus: A virus is designed to self-replicate-make copies of itself-and distribute the copies to other files, programs, or computers. Viruses insert themselves into host programs and propagate when the infected program is executed, generally by user interaction (e.g., opening a file, running a program, clicking on a file attachment). Viruses have many purposes-some are designed to play annoying tricks, whereas others have destructive intent. Some viruses present themselves as jokes while performing secret destructive functions. There two major types of viruses are compiled viruses, which are executed by the operating system, and interpreted viruses, which are executed by an application.

137

Hazard of intermittent noise exposures  

Science Journals Connector (OSTI)

The chief shortcoming of the equal energy hypothesisthe notion that equal products of time and intensity provide equal hazardis that the recuperative powers of the auditory system are essentially ignored. A single sustained stimulus is regarded as no more dangerous than an intermittent one of the same total energy. A two?year study of the effect of intermittency on the TTS produced in normal young adults by 6? or 8?h exposures to octave bands of noise whose center frequencies ranged from 250 to 4000 Hz indicates that even for the most hazardous noise (the 4000?Hz OB) cutting the cumulative exposure time in half by interjecting regular quiet periods will permit an increase in level of 5 dB for constant TTS at least up to about 100 dB SPL. At 1000 Hz the trading relation is 67 dB for halving time and at 250 Hz is even greater. Thus the 5?dBA?per?halving?time relation employed by the present OSHA standard is essentially correct for intermittent noise except perhaps above 100 to 105 dBA where the equal?energy hypothesis may be more appropriate for spectra with high?frequency dominance. A single 5?dBA correction for intermittency is an oversimplification. [Research supported by the National Institute for Occupational Safety and Health Public Health Service.

W. D. Ward

1974-01-01T23:59:59.000Z

138

Hazardous Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental Management is tasked regulating hazardous waste management facilities and practices. Provisions pertaining to permitting, site approval, construction, reporting, transportation, and remediation practices and fees are discussed in these

139

Louisiana Hazardous Waste Control Law (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

140

Oil and Hazardous Substance Discharge Preparedness (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hazardous Waste Management System-General (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

142

Identification of Hazards, 3/9/95  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs. Surveillance activities encompass maintenance and implementation of safety...

143

Mission Support Alliance, LLC Volpentest Hazardous Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organization (FERO) roles and responsibilities, training requirements and the conduct of operations. Each project is responsible for developing and maintaining EP Hazards...

144

Hazardous Material Packaging for Transport - Administrative Procedures  

Directives, Delegations, and Requirements

To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

1986-09-30T23:59:59.000Z

145

Fire hazards analysis of central waste complex  

SciTech Connect

This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

Irwin, R.M.

1996-05-30T23:59:59.000Z

146

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

147

Extremely Hazardous Substances Risk Management Act (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

148

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products  

E-Print Network (OSTI)

be damaged when corrosive chemicals are put down the drain. Burning hazardous wastes simply distributes themHousehold Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products containing toxic chemicals. These wastes CANNOT be disposed of in regular garbage. Any

de Lijser, Peter

149

Lawn and Garden Tool Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Root Out Lawn and Garden Tool Hazards For many Americans, working outdoors on the lawn and in the garden is a great way to exercise and relax. However, safety experts warn that, if caution is not employed with lawn and garden tools, you could wind up spending more time indoors, starting with a trip to a hospital emergency room. "The most frequent injuries are from lawn mowers, which are unforgiving machines," cautions John Drengenberg, manager of Consumer Affairs for Underwriters Laboratories Inc., Northbrook, Ill., a not-for-profit product safety testing organization. "Statistics tell us that each year lawn mower accidents send close to 85,000 people to emergency rooms. But that's not all. Nearly 15,000 others need medical treatment for injuries from trimmers and other power garden

150

POTENTIAL HEALTH HAZARDS OF RADIATION  

SciTech Connect

During World War II and the Cold War, the federal government developed and operated industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Some of these sites processed uranium and vanadium, and upon closure, left behind millions of cubic yards of mill tailings on the sites and throughout the nearby communities. The U.S. Department of Energy (DOE) administers the cleanup of these areas to minimize the risks to the public and environment from exposure to the tailings and the radon gas they produce.

none,

2009-05-19T23:59:59.000Z

151

Why is Eastern Redcedar a Hazardous Fuel?  

E-Print Network (OSTI)

Why is Eastern Redcedar a Hazardous Fuel? Why is Eastern Redcedar a Hazardous Fuel? Homes built the destruction of fire-tolerant trees if a wildfire moves through the area. Creating fuel breaks (such ignite it. · When ERC grows in forests and wood- lands, it acts as a ladder fuel to allow fire to climb

Balasundaram, Balabhaskar "Baski"

152

Fire and explosion hazards of oil shale  

SciTech Connect

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

Not Available

1989-01-01T23:59:59.000Z

153

Energy and solid/hazardous waste  

SciTech Connect

This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

None

1981-12-01T23:59:59.000Z

154

THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT  

E-Print Network (OSTI)

THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT Offered by The College of Architecture and The Hazard Reduction and Recovery Center Texas A&M University #12;2 THE GRADUATE CERTIFICATE IN ENVIRONMENTAL..................................................................................3 C. Approved Courses in the College of Architecture .............................4 D. Approved

155

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

156

Transporting & Shipping Hazardous Materials at LBNL  

NLE Websites -- All DOE Office Websites (Extended Search)

EHSS EHSS Industrial Hygiene Group HazMat Transport/Shipping Home Biological & Infectious Substances Chemicals Compressed Gas Cryogens Dry Ice Engineered Nanomaterials Gasoline Lithium Betteries Radioactive Materials Waste: Hazardous, Biohazardous, Medical or Radioactive Mixed Hazardous Materials Personal/Rental Vehicles HazMat Transport/Shipping Transporting and shipping hazardous materials can be dangerous, but both activities can be done safely - much of it by the researchers themselves. Each of the items below is subject to some transportation or shipping restrictions. Click on the applicable hazardous material icon below to learn how you can safely (and legally) transport that hazardous material and to learn what laboratory resources are available to you for your shipping needs.

157

Assesment and Prediction of Natural Hazards from Satellite Imagery  

E-Print Network (OSTI)

31(5) real-time assessments of natural hazards have beenAssessment and Prediction of Natural Hazards from Satellite459470 Assessment and prediction of natural hazards from

Gillespie, Thomas; Chu, Jasmine; Frankenberg, Elizabeth; Thomas, Duncan

2007-01-01T23:59:59.000Z

158

PTS 13.1 Radioactive And Hazardous Material Transportation 4...  

Office of Environmental Management (EM)

PTS 13.1 Radioactive And Hazardous Material Transportation 41300 PTS 13.1 Radioactive And Hazardous Material Transportation 41300 The objective of this surveillance is to...

159

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network (OSTI)

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Fluorescent are hazardous waste, so take care to ensure the tubes remain intact during removal and storage. Fluorescent

Wilcock, William

160

Hazardous Waste Generator Treatment Permit by Rule | Open Energy...  

Open Energy Info (EERE)

the Hazardous Waste Generator Treatment by Rule. Authors Colorado Department of Public Health and Environment and Hazardous Materials and Waste Management Division Published...

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assessment of Health Hazards of Repeated Inhalation of Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

162

New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free Web-based tool that can quickly calculate potential visual hazards from proposed solar...

163

Abatement of Air Pollution: Hazardous Air Pollutants (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe maximum allowable stack concentrations and hazard limiting values for the emission of hazardous air pollutants. The regulations also discuss sampling procedures for...

164

October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday...  

Office of Environmental Management (EM)

Seismic Hazard Analysis For Nuclear Facilities At The Hanford Site, Eastern Washington, USA Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook A Probabilistic Approach to...

165

Hazardous Waste Compliance Program Plan  

SciTech Connect

The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

Potter, G.L.; Holstein, K.A.

1994-05-01T23:59:59.000Z

166

Mobile machine hazardous working zone warning system  

DOE Patents (OSTI)

A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

Schiffbauer, W.H.; Ganoe, C.W.

1999-08-17T23:59:59.000Z

167

Mobile machine hazardous working zone warning system  

DOE Patents (OSTI)

A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

168

Hazards Control Department annual technology review, 1987  

SciTech Connect

This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

Griffith, R.V.; Anderson, K.J. (eds.)

1988-07-01T23:59:59.000Z

169

Enhancing Railroad Hazardous Materials Transportation Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Railroad Hazardous g Railroad Hazardous g Materials Transportation Safety Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Radioactive Materials Program Manager Radioactive Materials Program Manager H d M t i l Di i i H d M t i l Di i i Hazmat Hazardous Materials Division Hazardous Materials Division Federal Railroad Administration Federal Railroad Administration Presentation for the Presentation for the DOE NTSF Meeting DOE NTSF Meeting May 10 May 10- -12, 2011 12, 2011 Our Regulated Community * More than 550 l d railroads * 170,000 miles of track * 220,000 employees * 1.3 million railcars * 20,000 locomotives Hazmat * 3,500 chemical shippers * Roughly 2 Million Roughly 2 Million annual HM shipments HM-232E Introduction * Notice of Proposed Rulemaking d b * Issued December 21, 2006 * Interim Final Rule

170

All Hazard Awareness Employee Pocket Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazard Hazard Awareness Employee Pocket Guide produced by Emergency Services Program For emergencies dial x7911 911 from cell phones berkeley lab Lawrence Berkeley National Laboratory 2 Emergency Preparedness Response FOR EMERGENCY RESPONSE x7911 911 from cell phones Employee Pocket Guide 3 FOR EMERGENCY RESPONSE x7911 911 from cell phones Employee Emergency Response Expectations Before an emergency: * Accept personal responsibility for your own safety. * Prepare your personal/family emergency plan. * Review your Building Emergency Plan (BEP) or Emergency Response Guide. * Know the location of all your building's exits and Assembly Areas. * Know the specific hazards in your area and the response procedures for each hazard. * Understand how to report an emergency.

171

CONTROL of SUBSTANCES HAZARDOUS TO HEALTH (COSHH)  

E-Print Network (OSTI)

working practice and will encourage the evolution of a positive health and safety culture within the orgCONTROL of SUBSTANCES HAZARDOUS TO HEALTH (COSHH) Guidance Notes on Risk Assessment HEALTH & SAFETY............................................................................................................9 2.6. Safety Data Sheets (SDS

172

Hazards Control Department 1995 annual report  

SciTech Connect

This annual report of the Hazards Control Department activities in 1995 is part of the department`s efforts to foster a working environment at Lawrence Livermore National Laboratory (LLNL) where every person desire to work safely.

Campbell, G.W.

1996-09-19T23:59:59.000Z

173

Owning Hazard, A Tragedy Barbara Young Welke*  

E-Print Network (OSTI)

of Minnesota. This play is part of her ongoing research on the history of products liability. In addition in the ownership of hazard from the individuals who suffered injury, to the enterprises involved in manufacturing

Barrett, Jeffrey A.

174

Improving Tamper Detection for Hazardous Waste Security  

SciTech Connect

Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

2003-02-26T23:59:59.000Z

175

Lab optimizes burning of hazardous wastes  

Science Journals Connector (OSTI)

A new thermal destruction laboratory has gone into operation at Midwest Research Institute, Kansas City, Mo. The bench-scale facility, which can accommodate gram quantities of hazardous wastes in liquid, slurry, or solid forms, is used to determine ...

WARD WORTHY

1981-08-31T23:59:59.000Z

176

Probabilistic seismic hazard maps for Panama  

Science Journals Connector (OSTI)

Probabilistic seismic hazard maps in term of Modified Mercalli (MM) intensity are derived by applying the Cornell-McGuire method to four earthquake source zones in Panama and adjacent areas. The maps contain es...

Aristoteles Vergara Muoz

1991-01-01T23:59:59.000Z

177

Gis Technology in Mapping Landslide Hazard  

Science Journals Connector (OSTI)

In the recent years, the ever-increasing diffusion of GIS technology has facilitated the application of quantitative ... potential of such technological advancements, landslide hazard mapping remains a major, lar...

Alberto Carrara; Mauro Cardinali

1995-01-01T23:59:59.000Z

178

Home insulation may increase radiation hazard  

Science Journals Connector (OSTI)

... pose a potential health hazard, by increasing exposure to low levels of the radioactive gas radon. ... .Radon-222 is produced as part of the decay chain of uranium-238. Both the ...

David Dickson

1978-11-30T23:59:59.000Z

179

Hazard Baseline Downgrade Effluent Treatment Facility  

SciTech Connect

This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility.

Blanchard, A.

1998-10-21T23:59:59.000Z

180

Cold Vacuum Drying Facility hazard analysis report  

SciTech Connect

This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

Krahn, D.E.

1998-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

umces-safety@umces.edu Hazard Communication umces-  

E-Print Network (OSTI)

umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers, cabinets

Boynton, Walter R.

182

umces-safety@umces.edu Hazard Communication umces-  

E-Print Network (OSTI)

Communication umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers

Boynton, Walter R.

183

Rules and Regulations for Hazardous Waste Management (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

184

Experiment Hazard Class 15.2 - USDA Soil Permit  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - USDA Regulated Soil 2 - USDA Regulated Soil Applicability This hazard classification applies to all experiments involving soils regulated by the United States Department of Agricultute (USDA). Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. Experiment Category Experiments involving this hazard class categorized as low risk experiments unless other hazard classes apply. Experiment Hazard Control Verification Statements Engineered Controls - None required. Procedural Controls - All work with regulated soils must be performed in compliance with the APS Protocols for Handling, Storage, and Disposal of Untreated Foreign Soil and Regulated Domestic Soil. The APS protocols state the requirements for handling, storage, shipment, and disposal of regulated

185

Natural Phenomena Hazards Modeling Project: Seismic Hazard Models for Department of Energy Sites  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the US. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. This report summarizes the final seismic hazard models and response spectra recommended for each site and the methodology used to develop these models. 15 references, 2 figures, 1 table.

Coats, D.W.; Murray, R.C.

1984-11-01T23:59:59.000Z

186

Repository Subsurface Preliminary Fire Hazard Analysis  

SciTech Connect

This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

Richard C. Logan

2001-07-30T23:59:59.000Z

187

Implementing DOE guidance for hazards assessments at Rocky Flats Plant  

SciTech Connect

Hazards Assessments are performed for a variety of activities and facilities at Rocky Flats Plant. Prior to 1991, there was no guidance for performing Hazards Assessments. Each organization that performed Hazards Assessments used its own methodology with no attempt at standardization. In 1991, DOE published guidelines for the performance of Hazards Assessments for Emergency Planning (DOE-EPG-5500.1, ``Guidance for a Hazards Assessment Methodology``). Subsequently, in 1992, DOE published a standard for the performance of Hazards Assessments (DOE-STD-1027-92, ``Hazard Categorization and Accident Analysis, Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports``). Although these documents are a step in the direction of standardization, there remains a great deal of interpretation and subjective implementation in the performance of Hazards Assessments. Rocky Flats Plant has initiated efforts to develop a uniform and standard process to be used for Hazards Assessments.

Zimmerman, G.A.

1993-06-01T23:59:59.000Z

188

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

189

Remote vacuum compaction of compressible hazardous waste  

DOE Patents (OSTI)

A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

190

Remote vacuum compaction of compressible hazardous waste  

DOE Patents (OSTI)

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1998-10-06T23:59:59.000Z

191

DOE HQ Shuttle Bus Route and Schedule  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shuttle Bus Route and Schedule Shuttle Bus Route and Schedule The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific authority for the use of appropriated funds to pay for transportation for official purposes is contained in section 1344(a)(1) of Title 31, U.S. Code. Use of this transportation for any other purpose is

192

Microsoft Word - HQ prjct mgmt gde  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTMENT OF ENERGY DEPARTMENT OF ENERGY INFORMATION MANAGEMENT PROJECT MANAGEMENT GUIDE September 1998 DEPARTMENT OF ENERGY INFORMATION MANAGEMENT PROJECT MANAGEMENT GUIDE September 1998 Change Control Page The change control page will be used to record information for controlling and tacking modifications made the Project Management Guide. Revision Date: mm/dd/yy Author: Author Name a. Section(s): Page Number(s): Summary of Change(s) b. Section(s): Page Number(s): Summary of Change(s) c. Section(s): Page Number(s): Summary of Change(s) Revision Date: mm/dd/yy Author: Author Name a. Section(s): Page Number(s): Summary of Change(s) b. Section(s): Page Number(s): Summary of Change(s) c. Section(s):

193

Microsoft Word - HQ ISM System Description Final  

National Nuclear Security Administration (NNSA)

NA-1 SD 450.4-1 NA-1 SD 450.4-1 Approved: 10-23-07 National Nuclear Security Administration Headquarters Integrated Safety Management System Description This NNSA Headquarters Integrated Safety Management System Description describes the NNSA Headquarters role in establishing expectations and accomplishing work in a safe and environmentally sound manner to successfully execute the NNSA mission and strategic goals. NNSA senior managers strongly support and are personally committed to implementation of the policy and principles of Integrated Safety Management. Approved: &? .> ,& o & k Thomas P. D7Ago, tino Administrator h Table of Contents EXECUTIVE SUMMARY .............................................................................................................

194

DOE HQ F 5631.2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5631.2 5631.2 (01-99) All Other Editions Are Obsolete U.S. DEPARTMENT OF ENERGY HEADQUARTERS CLEARANCE REQUEST AND NOTIFICATION PART I - REQUEST FOR CLEARANCE ACTION PART I I - CLEARANCE NOTIFICATION (Forward completed PART 1 with enclosures to Office of Safeguards and Security (OSS)) PRIVACY ACT STATEMENT ON REVERSE OF BLUE COPY 1. REQUESTOR 8. CLEARANCE REQUESTED 1. DOE clearance has been: 4. Applicant's current clearance status: Note: For DOE employees/consultants, it is the responsibility of the servicing Personnel Office to forward this information to the requesting office. For DOE contractors/consultants, the requesting DOE program office will notify the contractor security official of this information. Notification to the individual may be made orally; in no case will this notification be made to the individual in writing.

195

HQ EMS Policy | Department of Energy  

Energy Savers (EERE)

Independent Oversight Review, DOE Headquarters Facilities - March 2002 Customer Services Handbook, 2010, Office of Administration Plain Language Compliance Report (2014)...

196

Microsoft Word - WillowstickHQ.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

RMOTC in October 2004 with the concept of demonstrating its AquaTrack technology at Teapot Dome. The following summer, Willowstick conducted an electromagnetic groundwater...

197

DOE HQ Special Needs in an Emergency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

) Go to Stairwell or ) Go to Stairwell or Area of Refuge 2) Contact Emergency Responders 3) Follow Instructions Key Points to remember During an Emergency What an employee should do during an emergency: 1) Go to the nearest stairwell or area of refuge. 2) Contact emergency responders using the emergency call butt on or a telephone. Provide responders with your name, the name of anyone with you, your locati on and the assistance you need. 3) Follow the instructi ons provided. You may be told:  Remain in your current locati on  Move to another area of refuge in the building  Move to an elevator that is being used by emergency responders to assist with evacuati ons  Att empt to evacuate the building If you are directed to evacuate or decide on your own to evacuate, allow faster

198

Montana Hazardous Waste Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental Quality is authorized to enact regulations pertaining to all aspects of hazardous waste storage and disposal, and the Act addresses permitting requirements for disposal

199

Burning hazardous waste in cement kilns  

SciTech Connect

The cement manufacturing process is one of the oldest in the world, having been in practice for over 2000 years. It is also one of the most energy intensive, with up to 65 percent of the cost of the product attributable to energy consumption. In addition to high energy demand, the process conditions include extremely high temperatures. Cement clinker forms when the correct mixture of raw materials is heated to 2650/sup 0/ F. This requires combustion temperatures exceeding 3000/sup 0/ F. under oxidizing conditions. To accomplish this, gas temperatures above 2000/sup 0/ F. occur for several seconds (typically five seconds), which is much longer than residence times in permitted hazardous waste incinerators. These conditions are extremely favorable to the destruction of organic compounds and have led to extensive investigation into the potential for burning hazardous waste in cement kilns. Cement kilns consuming hazardous wastes have been tested for air emissions under various operating conditions. The substantial body of information on the emissions and handling of hazardous wastes from these studies has demonstrated that effective destruction of wastes can be accomplished with the added benefits of energy conservation and no significant change in air emissions.

Chadbourne, J.F.; Helmsteller, A.J.

1983-06-01T23:59:59.000Z

200

Appendix B: Wastes and Potential Hazards for  

E-Print Network (OSTI)

muds and other drilling wastes 01 05 05* oil-containing drilling muds and wastes M Oil-containing muds or their compounds and should be considered under the following hazards: H5 to H7, H10, H11, or H14. 01 05 drilling and wastes should be assessed on the basis of the concentration of oil present in the waste. Typically

Siddharthan, Advaith

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network (OSTI)

; Herrmann, 1981) and secondary oil recovery in western Colorado at the Rangely oil field (Gibbs et al. 1973COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah

Sheehan, Anne F.

202

Preliminary Hazards Analysis Plasma Hearth Process  

SciTech Connect

This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1993-11-01T23:59:59.000Z

203

Control Of Hazardous Energy Lockout/Tagout  

E-Print Network (OSTI)

Control Of Hazardous Energy Lockout/Tagout Millersville University - Office Of Environmental Health & Safety Scope & Application The Lockout/Tagout program applies to the control of energy during servicing of this program is to establish procedures for affixing appropriate lockout or tagout devices to energy

Hardy, Christopher R.

204

Hazardous waste treatment and environmental remediation research  

SciTech Connect

Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

Not Available

1989-09-29T23:59:59.000Z

205

Assessment of Natural Hazard Damage and Reconstruction: A Case Study from Band Aceh, Indonesia  

E-Print Network (OSTI)

Thomas. 2007. Assessment and prediction of natural hazardsAssessment of Natural Hazard Damage and Reconstruction: AWorking Paper Series Assessment of Natural Hazard Damage and

Gillespie, Thomas; Frankenberg, Elizabeth; Braughton, Matt; Cooke, Abigail M.; Armenta, Tiffany; Thomas, Duncan

2009-01-01T23:59:59.000Z

206

E-Print Network 3.0 - agency listed hazardous Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Listing of Hazardous Waste 40 CFR... Hazardous Waste Management Regulations 6 NYCRR 371 Identification and Listing of Hazardous Waste 6 NYCRR 372... Substance Bulk Storage...

207

Hazard Communications Training Deadline Approaches | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazard Communications Training Deadline Approaches Hazard Communications Training Deadline Approaches Hazard Communications Training Deadline Approaches November 1, 2013 - 8:45am Addthis Hazard Communications Training Deadline Approaches 10 CFR 851, Worker Safety and Health Program, requires all DOE Federal and contractor employees with hazardous chemicals in their workplaces to complete new Hazard Communication Standard Training. The major changes to the standard include hazard classification, labeling, Safety Data Sheets, information and training. In order to assist you with meeting this deadline, training materials can be found at: http://orise.orau.gov/ihos/hottopics/training.htm; or http://efcog.org/wg/esh_cslm/index.htm The Hazard Communication Standard can be found at: https://www.osha.gov/dsg/hazcom/ghs-final-rule.html

208

Hazardous devices teams showcase skills at Robot Rodeo June 24...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Bomb squads compete in timed scenarios at Los...

209

ORISE Resources: Hospital All-Hazards Self-Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

partners with CDC to develop Hospital All-Hazards Self-Assessment to identify gaps in planning efforts The Hospital All-Hazards Self-Assessment, or HAH, is designed to help...

210

ARM 17-53 - Hazardous Waste | Open Energy Information  

Open Energy Info (EERE)

Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-53 - Hazardous WasteLegal Abstract Sets forth rules...

211

EPA Citizens Guide to Hazardous Waste Permitting Process | Open...  

Open Energy Info (EERE)

Citizens Guide to Hazardous Waste Permitting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Citizens Guide to Hazardous Waste Permitting...

212

Hazardous Waste Facility Permit Fact Sheet | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Facility Permit Fact SheetLegal Abstract Hazardous Waste Facility Permit Fact Sheet,...

213

6 CCR 1007-3: Hazardous Waste | Open Energy Information  

Open Energy Info (EERE)

1007-3: Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 6 CCR 1007-3: Hazardous WasteLegal Abstract This...

214

ADEQ Managing Hazardous Waste Handbook | Open Energy Information  

Open Energy Info (EERE)

Hazardous Waste Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Managing Hazardous Waste HandbookLegal Abstract...

215

EPA Hazardous Waste TSDF Guide | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: EPA Hazardous Waste TSDF GuideLegal Abstract Guidance document prepared by the EPA for hazardous waste...

216

EM Eliminates Potential Safety Hazard at SRS | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Safety Hazard at SRS EM Eliminates Potential Safety Hazard at SRS September 30, 2014 - 12:00pm Addthis Shown here is H-Canyon, where workers recently dissolved the last...

217

Application of release rate data to hazard load calculations  

Science Journals Connector (OSTI)

The author illustrates methods of applying heat, smoke and toxic gas release rate data to calculating fire hazard loading values.

Edwin E. Smith

1974-08-01T23:59:59.000Z

218

Mapping future hazards for south east London Dr Stephen Blenkinsop  

E-Print Network (OSTI)

) Vulnerability information Risk maps #12;Heat Outputs · 5km heat wave prediction grids. · 1km pro-rata disaggregated temperature & heat wave projection grids. · 1km relative heat wave hazard grid combining heat wave hazard (relative). · 200m heat wave risk grids combining relative heat wave hazard with predictions

Wirosoetisno, Djoko

219

Identifying Lawn and Garden Tool Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Root Out Lawn and Garden Tool Hazards Root Out Lawn and Garden Tool Hazards For many Americans, working outdoors on the lawn and in the garden is a great way to exercise and relax. However, safety experts warn that, if caution is not employed with lawn and garden tools, you could wind up spending more time indoors, starting with a trip to a hospital emergency room. "The most frequent injuries are from lawn mowers, which are unforgiving machines," cautions John Drengenberg, manager of Consumer Affairs for Underwriters Laboratories Inc., Northbrook, Ill., a not-for-profit product safety testing organization. "Statistics tell us that each year lawn mower accidents send close to 85,000 people to emergency rooms. But that's not all. Nearly 15,000 others need medical treatment for injuries from trimmers and other power garden

220

Experiment Hazard Class 2 - Cryogenic Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - Cryogenic Systems 2 - Cryogenic Systems Applicability This hazard classification applies to all experiments involving the use of cryogenic systems. Experiment Hazard Control Verification Statements General requirements The use of detectors/alarms, warning signs, and adequate ventilation are recommended for areas where release of a cryogen can result in an oxygen-deficient atmosphere. Cryogenic systems and vessels are always insulated to reduce heat exchange and are labeled with the common name of the cryogen. Cryogenic systems are pressure protected and equipment are insptected and maintained. The use of flammable cryogens requires technical consultation. Initial consultation may be obtained from the divisional ESH Coordinator. A written emergency evacuation response plan must be available

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hazard Analysis Reports for Nuclear Explosive Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NA-STD-3016-2006 NA-STD-3016-2006 May 2006 DOE LIMITED STANDARD HAZARD ANALYSIS REPORTS FOR NUCLEAR EXPLOSIVE OPERATIONS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-NA-STD-3016-2006 iii FORWARD This Department of Energy (DOE)/National Nuclear Security Administration (NNSA) technical standard is approved for use by the Assistant Deputy Administrator for Military Application and Stockpile Operations (NA-12), and is available for use to prepare Nuclear Explosive Operation (NEO) Hazard Analysis Reports (HARs) as required by 10 CFR 830, "Nuclear Safety Management." This Standard is

222

Radioactivity in mushrooms: A health hazard?  

Science Journals Connector (OSTI)

Abstract Mushrooms are a complementary foodstuff and considered to be consumed locally. The demand for mushrooms has increased in recent years, and the mushroom trade is becoming global. Mushroom origin is frequently obscured from the consumer. Mushrooms are considered excellent bioindicators of environmental pollution. The accumulation of radionuclides by mushrooms, which are then consumed by humans or livestock, can pose a radiological hazard. Many studies have addressed the radionuclide content in mushrooms, almost exclusively the radiocaesium content. There is a significant lack of data about their content from some of the main producer countries. An exhaustive review was carried out in order to identify which radionuclide might constitute a health hazard, and the factors conditioning it. Regulatory values for the different radionuclides were used. The worldwide range for radiocaesium, 226Ra, 210Pb, and 210Po surpasses those values. Appropriate radiological protection requires that the content of those radionuclides in mushrooms should be monitored.

J. Guilln; A. Baeza

2014-01-01T23:59:59.000Z

223

The HIT method: A hazard identification technique  

SciTech Connect

This report explains a technique for analyzing systems and operations to identify hazards and needed controls. The HIT method can be used both as a design tool and as a risk analysis tool. As a design tool, this method identifies requirements for design criteria. As part of a risk analysis effort, HIT identifies potential accident sequences that can become part of the safety analysis documentation. Within this report the HIT method is described in detail with emphasis on application of the technique.

Howard, H.H.; Faust, C.L.

1990-01-01T23:59:59.000Z

224

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOT/PHMSA DOT/PHMSA A ti iti Activities Michael Conroy U S Department of Transportation - 1 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety Radioactive Materials U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Overview * Harmonization with International Regulations * Update on Revisions to International Regulations * Recent Letters of Interpretation * Update on Rulemakings * PHMSA Information Resources - 2 - * PHMSA Information Resources 2 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration HM-230 Harmonized with 2000 Version of IAEA's 1996 Edition - 3 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

225

Hazardous Materials Incident Response Procedure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA's 29 CFR 1910.120(q), for facility response. This model has been adopted and applied to work for response to transportation accidents involving radioactive material or other hazardous materials incidents Hazardous Materials Incident Response Procedure.docx More Documents & Publications Handling and Packaging a Potentially Radiologically Contaminated Patient Decontamination Dressdown at a Transportation Accident Involving Radioactive Material Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

226

Hazardous Sites Cleanup Act (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Sites Cleanup Act (Pennsylvania) Hazardous Sites Cleanup Act (Pennsylvania) Hazardous Sites Cleanup Act (Pennsylvania) < Back Eligibility Agricultural Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Pennsylvania Program Type Environmental Regulations Grant Program Provider Department of Environmental Protection This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste treatment and disposal facilities in order to protect public health and safety, foster economic growth and protect the environment. Pennsylvania law establishes a fund to provide to the Department the

227

Hazardous Waste Management Act (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive regulatory program of hazardous waste management, and the South Dakota Department of Environment

228

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Siting of Industrial 1: Siting of Industrial Hazardous Waste Facilities (New York) Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Siting and Permitting Provider NY Department of Environmental Conservation These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used for the purpose of treating, storing, compacting, recycling, exchanging or disposing of industrial hazardous waste materials, including treatment, compacting,

229

Staged mold for encapsulating hazardous wastes  

DOE Patents (OSTI)

A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

1990-01-01T23:59:59.000Z

230

Oklahoma Hazardous Waste Management Act (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility engaged in the operation of storing, treating or disposing of hazardous waste or storing recyclable materials. The Department shall not issue a permit for the treatment, disposal or temporary storage of any liquid hazardous waste in a

231

CRAD, Packaging and Transfer of Hazardous Materials and Materials of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transfer of Hazardous Materials and Materials Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials

232

Experiment Hazard Class 10.2 - UV Light  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - Ultraviolet Light 2 - Ultraviolet Light Applicability This hazard classification applies to all experiments involving the use of ultraviolet radiation generating equipment.Ultraviolet light (UV) is non-ionizing radiation in the 180 to 400-nanometer wavelength region of the electromagnetic spectrum. Ultraviolet light poses hazards: Eyes hazards - inflammation, cataracts, retinal damage Skin hazards - sunburn, accelerate wrinkling, increased risk of skin cancer Invisible Possible ozone generation Experiment Category Experiments involving only experiment hazard class 10.2 qualify for medium risk. The addition of other hazard classes may require the experiment to be categorized as high risk and undergo additional reviews. Experiment Hazard Control Verification Statements Engineered Controls - Shield or contain UV as close to the source as

233

Potential for Improved Intelligence Quotient Using Volumetric Modulated Arc Therapy Compared With Conventional 3-Dimensional Conformal Radiation for Whole-Ventricular Radiation in Children  

SciTech Connect

Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobe sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.

Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Stinauer, Michelle; Rogers, Brion [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States)] [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Madden, Jennifer R. [Department of Neuro-Oncology, The Children's Hospital, Aurora, Colorado (United States)] [Department of Neuro-Oncology, The Children's Hospital, Aurora, Colorado (United States); Wilkening, Greta N. [Department of Pediatrics, The Children's Hospital, Aurora, Colorado (United States)] [Department of Pediatrics, The Children's Hospital, Aurora, Colorado (United States); Liu, Arthur K. [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States)] [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States)

2012-12-01T23:59:59.000Z

234

Method and apparatus for using hazardous waste form non-hazardous aggregate  

SciTech Connect

This patent describes an apparatus for converting hazardous waste into non-hazardous, non-leaching aggregate, the apparatus. It comprises: a source of particulate solid materials, volatile gases and gaseous combustion by-products; oxidizing means comprising at least one refractory-lined, water-cooled, metal-walled vessel; means for introducing the particulate solid material, volatile gases and gaseous combustion by-products to the oxidizing means; means for inducing combustion in the oxidizing means, the heat of combustion forming molten slag and noncombustible fines from noncombustible material; means for accumulating the slag; means for introducing the noncombustible fines to the molten slag; means for removing the mixture from the apparatus; and means for cooling the mixture to form the non-hazardous, non-leaching aggregates.

Kent, J.M.; Robards, H.L. Jr.

1992-07-28T23:59:59.000Z

235

Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility  

SciTech Connect

This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

Reidel, S.P.

1994-01-06T23:59:59.000Z

236

Hydrates represent gas source, drilling hazard  

SciTech Connect

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

237

Animals as sentinels of environmental health hazards  

SciTech Connect

The Committee on Animals as Monitors of Environmental Hazards was formed when the Agency for Toxic Substance and Disease Registry requested that the National Academy of Sciences gather an NRC committee to review and evaluate the usefulness of animal epidemiologic studies for human risk assessment and recommend the types of data that should be collected. With specific questions in mind, the committee attempted to determine how animals could be used for ecological and human health risk determinations as well as to provide an early-warning system for risk assessment and management.

Glickman, L.T.; Fairbrother, A.; Guarino, A.M.; Bergman, H.L.; Buck, W.B.

1991-08-01T23:59:59.000Z

238

Experiment Hazard Class 5.3 High Pressure Vessels  

NLE Websites -- All DOE Office Websites (Extended Search)

3 High Pressure Vessels 3 High Pressure Vessels Applicability This hazard classification applies to working with pressure vessels and systems. Other hazard classifications and associated controls may apply to experiments in this hazard class. Experiment Category Experiments involving previously reviewed hazard controls are catergorized as medium risk experiments. Experiments involving new equipment, processes or materials, or modified hazard control schemes are categorized as high risk experiments. Hazard Control Plan Verification Statements Engineered Controls - The establishment of applicable controls in accordance with the (American Society of Mechanical Engineers) ASME Boiler and Pressure Code, ASME B.31 Piping Code and applicable federal, state, and local codes. Verify vessel is stampled with ASME Code Symbol or allowable

239

Experiment Hazard Class 13.0 - High Voltage  

NLE Websites -- All DOE Office Websites (Extended Search)

3.0 - High Voltage 3.0 - High Voltage Applicability This hazard classification applies to all experiments involving the use of High Voltage Equipment. Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. The inspection of electric equipment is covered under the APS Policy For User Electric Equipment Inspections. NOTE: Unless required Argonne training has been completed, users are not authorized to perform electrical work. Experiment Category All Hazard Class 13 experiments are categorized as medium risk experiments. Experiment Hazard Control Verification Statements Engineered Controls - Determined by review and results of a DEEI inspection of the equipment. Procedural Controls - Determined by review and results of a DEEI

240

Experiment Hazard Class 7.2 - BSL - 2 Biohazards  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - BSL-2 Biohazards 2 - BSL-2 Biohazards Applicability This hazard classification applies to all experiments requiring Biosafety Level 2 (BSL-2) precautions. Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. Experiments involving human subjects/materials or living animals, even if not biohazardous, are included in this Hazard Class. Biosafety Level 2 is similar to Biosafety Level 1 and is suitable for work involving agents of moderate potential hazard to personnel and the environment. It differs from BSL-1 in that (1) laboratory personnel have specific training in handling pathogenic agents and are directed by competent scientists; (2) access to the laboratory is limited when work is being conducted; (3) extreme precautions are taken with contaminated sharp

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, 688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas SUMMARY This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant facility to stage wastes at the U.S. Department of Energy's Pantex Plant in Amarillo, Texas. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 29, 1993 EA-0688: Finding of No Significant Impact Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas January 29, 1993 EA-0688: Final Environmental Assessment Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

242

Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste Harmless Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste Harmless April 2, 2012 - 12:00pm Addthis Neil Smith puts a trained eye on the pressure and flow of a food-grade com¬pound being injected into an under¬ground plume of hazardous waste near the X-720 Maintenance Facility at the DOE Piketon Site. The sodium lactate compound promotes bacterial growth in the groundwater that turns hazardous waste into harmless end-products. Neil Smith puts a trained eye on the pressure and flow of a food-grade com¬pound being injected into an under¬ground plume of hazardous waste near the X-720 Maintenance Facility at the DOE Piketon Site. The sodium lactate compound promotes bacterial growth in the groundwater that turns

243

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Electric Company Smart Grid Project Atlantic City Electric Electric Company Smart Grid Project Atlantic City Electric Company Smart Grid Project Mays Landing New Jersey Maryland District of Columbia Avista Utilities Smart Grid Project Avista Utilities Smart Grid Project Spokane Washington Idaho Consolidated Edison Company of New York Inc Smart Grid Project Consolidated Edison Company of New York Inc Smart Grid Project New York New York New Jersey El Paso Electric Smart Grid Project El Paso Electric Smart Grid Project El Paso Texas New Mexico Hawaii Electric Co Inc Smart Grid Project Hawaii Electric Co Inc Smart Grid Project Oahu Hawaii Memphis Light Gas and Water Division Smart Grid Project Memphis Light Gas and Water Division Smart Grid Project Memphis Tennessee Municipal Electric Authority of Georgia Smart Grid Project Municipal

244

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Project Center for the Commercialization of Electric Project Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Austin Texas Columbus Southern Power Company doing business as AEP Ohio Smart Grid Demonstration Project Columbus Southern Power Company doing business as AEP Ohio Smart Grid Demonstration Project Columbus Ohio Consolidated Edison Company of New York Inc Smart Grid Demonstration Project Consolidated Edison Company of New York Inc Smart Grid Demonstration Project New York New York Kansas City Power Light Company Smart Grid Demonstration Project Kansas City Power Light Company Smart Grid Demonstration Project Kansas City Missouri Long Island Power Authority Smart Grid Demonstration Project Long Island Power Authority Smart Grid Demonstration Project Uniondale New York

245

HQ State HQ City Primary Awardee Brief Project Description Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Primary Awardee Primary Awardee Brief Project Description Project Locations Recovery Act Funding* Participant Share Total Project Value Including Cost Share Los Angeles Los Angeles Department of Water and Power Implement a smart grid demonstration at university campus properties and technology transfer laboratories to establish a fully-integrated Smart Grid system and suite of technologies as applied to demand response, conduct a comprehensive portfolio of behavioral studies, demonstrate next- generation cyber security technologies, and demonstrate the integration of substantial number of PHEVs into Smart Grid. Los Angeles, CA $60,280,000 $60,280,000 $120,560,000 Rosemead Southern California Edison Company Demonstrate an integrated, scalable model of a Smart Grid System from transmission through

246

HQ State HQ City Name of Primary Selectee Project Type Project Title and Brief Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Participant Participant Share Total Project Value Including Cost Share AZ Fort Defiance Navajo Tribal Utility Authority Company Smart Grid Workforce Training (Topic B) Navajo Tribal Utility Authority Smart Grid Workforce Training Program - Develop a workforce that is well-trained and committed to the mission of modernizing NTUA's distribution services, including an expeditious and well-built smart grid system. The training program is designed to maximize employment opportunities for citizens of the Navajo Nation located on the reservation. Arizona New Mexico $704,486 $704,486 $1,408,972 $704,486 $704,486 $1,408,972 Glendale Glendale Community College Developing and Enhancing Workforce Training Programs (Topic A) Southern California Utility Initiative - Expand training curricula and

247

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Company Smart Grid Project Baltimore Gas Company Smart Grid Project Baltimore Gas and Electric Company Smart Grid Project Baltimore Maryland Black Hills Power Inc Smart Grid Project Black Hills Power Inc Smart Grid Project Rapid City South Dakota North Dakota Minnesota Black Hills Colorado Electric Utility Co Smart Grid Project Black Hills Colorado Electric Utility Co Smart Grid Project Pueblo Colorado CenterPoint Energy Smart Grid Project CenterPoint Energy Smart Grid Project Houston Texas Central Maine Power Company Smart Grid Project Central Maine Power Company Smart Grid Project Augusta Maine Cheyenne Light Fuel and Power Company Smart Grid Project Cheyenne Light Fuel and Power Company Smart Grid Project Cheyenne Wyoming City of Fulton Missouri Smart Grid Project City of Fulton Missouri

248

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Battelle Memorial Institute Pacific Northwest Division Smart Grid Demonstration Battelle Memorial Institute Pacific Northwest Division Smart Grid Demonstration Project Battelle Memorial Institute Pacific Northwest Division Smart Grid Demonstration Project Richland Washington Beacon Power Corporation Smart Grid Demonstration Project Beacon Power Corporation Smart Grid Demonstration Project Tyngsboro Massachusetts Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Austin Texas City of Painesville Smart Grid Demonstration Project City of Painesville Smart Grid Demonstration Project Painesville Ohio Columbus Southern Power Company doing business as AEP Ohio Smart Grid Demonstration Project Columbus Southern Power Company doing business

249

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Burbank Water and Power Burbank Water and Power Smart Grid Project Burbank California Central Lincoln People s Utility District Smart Grid Project Central Lincoln People s Utility District Smart Grid Project Newport Oregon City of Anaheim Smart Grid Project City of Anaheim Smart Grid Project Anaheim California City of Auburn IN Smart Grid Project City of Auburn IN Smart Grid Project Auburn Indiana City of Fort Collins Utilities Smart Grid Project City of Fort Collins Utilities Smart Grid Project Fort Collins Colorado City of Leesburg Florida Smart Grid Project City of Leesburg Florida Smart Grid Project Leesburg Florida City of Naperville Illinois Smart Grid Project City of Naperville Illinois Smart Grid Project Naperville Illinois City of Wadsworth OH Smart Grid Project City of Wadsworth OH Smart

250

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Beacon Power Beacon Power Corporation Smart Grid Demonstration Project Tyngsboro Massachusetts City of Painesville Smart Grid Demonstration Project City of Painesville Smart Grid Demonstration Project Painesville Ohio Duke Energy Business Services LLC Smart Grid Demonstration Project Duke Energy Business Services LLC Smart Grid Demonstration Project Charlotte North Carolina East Penn Manufacturing Co Smart Grid Demonstration Project East Penn Manufacturing Co Smart Grid Demonstration Project Lyon Station Pennsylvania Ktech Corporation Smart Grid Demonstration Project Ktech Corporation Smart Grid Demonstration Project Albuquerque New Mexico New York State Electric Gas Corporation Smart Grid Demonstration Project New York State Electric Gas Corporation Smart Grid Demonstration Project

251

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Company Smart Grid Project Atlantic City Electric Company Smart Grid Project Atlantic City Electric Company Smart Grid Project Mays Landing New Jersey Maryland District of Columbia Avista Utilities Smart Grid Project Avista Utilities Smart Grid Project Spokane Washington Idaho Baltimore Gas and Electric Company Smart Grid Project Baltimore Gas and Electric Company Smart Grid Project Baltimore Maryland Black Hills Power Inc Smart Grid Project Black Hills Power Inc Smart Grid Project Rapid City South Dakota North Dakota Minnesota Black Hills Colorado Electric Utility Co Smart Grid Project Black Hills Colorado Electric Utility Co Smart Grid Project Pueblo Colorado Burbank Water and Power Smart Grid Project Burbank Water and Power Smart Grid Project Burbank California CenterPoint Energy Smart Grid Project CenterPoint Energy Smart Grid

252

HQ State HQ City Name of Primary Selectee Project Type Project Title and Brief Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Project Value Total Project Value Including Cost Share AZ Fort Defiance Navajo Tribal Utility Authority Company Smart Grid Workforce Training (Topic B) Navajo Tribal Utility Authority Smart Grid Workforce Training Program - Develop a workforce that is well-trained and committed to the mission of modernizing NTUA's distribution services, including an expeditious and well- built smart grid system. The training program is designed to maximize employment opportunities for citizens of the Navajo Nation located on the reservation. Arizona New Mexico $704,486 $1,408,971 $704,486 $1,408,971 Glendale Glendale Community College Developing and Enhancing Workforce Training Programs (Topic A) Southern California Utility Initiative - Expand training curricula and programs in the Southern California region. The project will raise awareness and

253

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Carolinas LLC Smart Grid Project Duke Energy Carolinas Carolinas LLC Smart Grid Project Duke Energy Carolinas LLC Smart Grid Project Charlotte North Carolina Entergy Services Inc Smart Grid Project Entergy Services Inc Smart Grid Project New Orleans Louisiana ISO New England Incorporated Smart Grid Project ISO New England Incorporated Smart Grid Project Holyoke Massachusetts Connecticut Maine New Hampshire Rhode Island Vermont Midwest Energy Inc Smart Grid Project Midwest Energy Inc Smart Grid Project Hays Kansas Midwest Independent Transmission System Operator Smart Grid Project Midwest Independent Transmission System Operator Smart Grid Project Carmel Indiana Iowa Illinois Michigan Minnesota Missouri Montana North Dakota Ohio Pennsylvania South Dakota Wisconsin New York Independent System Operator Inc Smart Grid Project New York

254

Fire hazard analysis for the fuel supply shutdown storage buildings  

SciTech Connect

The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

REMAIZE, J.A.

2000-09-27T23:59:59.000Z

255

HAZARD CATEGORIZATION OF ENVIRONMENTAL RESTORATION SITES AT HANFORD WASHINGTON  

SciTech Connect

Environmental restoration activities, defined here as work to identify and characterize contaminated sites and then contain, treat, remove or dispose of the contamination, now comprises a significant fraction of work in the DOE complex. As with any other DOE activity, a safety analysis must be in place prior to commencing restoration. The rigor and depth of this safety analysis is in part determined by the site's hazard category. This category in turn is determined by the facility's hazardous material inventory and the consequences of its release. Progressively more complicated safety analyses are needed as a facility's hazard category increases from radiological to hazard category three (significant local releases) to hazard category two (significant on-site releases). Thus, a facility's hazard category plays a crucial early role in helping to determine the level of effort devoted to analysis of the facility's individual hazards. Improper determination of the category can result in either an inadequate safety analysis in the case of underestimation of the hazard category, or an unnecessarily cumbersome analysis in the case of overestimation. Contaminated sites have been successfully categorized and safely restored or remediated at the former DOE production site at Hanford, Washington. This paper discusses various means used to categorize former plutonium production or support sites at Hanford. Both preliminary and final hazard categorization is discussed. The importance of the preliminary (initial) hazard categorization in guiding further DOE involvement and approval of the safety analyses is discussed. Compliance to DOE direction provided in ''Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports'', DOE-STD-1027-92, is discussed. DOE recently issued 10 CFR 830, Subpart B which codifies previous DOE safety analysis guidance and orders. The impact of 10 CFR 830, Subpart B on hazard categorization is also discussed.

BISHOP, G.E.

2001-05-01T23:59:59.000Z

256

ENVIRONMENTAL ASSESSMENT FOR HAZARDOUS WASTE STAGING FACILITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HAZARDOUS WASTE STAGING FACILITY HAZARDOUS WASTE STAGING FACILITY Project 39GF71024-GPDI21000000 . PANTEX PLANT AMARILLO, TEXAS DOE/EA-0688 JUNE 1993 MASTER DiSTRiBUTiON OF THIS DOCUMENT IS UNLIMITEI) ffrl TABLE OF CONTENTS Section Page 1.0 Need for Action 1 2.0 Description of Proposed Facility Action 3.0 Location of the Action 8 4.0 Alternatives to Proposed Action 9 4.1 No Action 9 4.2 Redesign and Modify Existing staging Facilities 9 4.3 Use Other Existing Space at Pantex Plant 9 4.4 Use Temporary Structures 9 4.5 Stage Waste at Other Sites 10 4.6 Stage Wastes Separately 10 5.0 Environmental Impacts of Proposed Action 10 5.1 Archeology 10 5.2 FloodplainlW etlands 10 5.3 Threatened and Endangered Species 10 5.4 Surrounding La,nd Use 11 5.5 Construction 11 5.6 Air Emissions 11

257

Rapid guide to hazardous air pollutants  

SciTech Connect

Concise and easy to use, this book brings together a wealth of hard-to-gather information in one compact pocket guide. It offers--in alphabetical order--detailed profiles of the 189 elements and compounds determined to be hazardous air pollutants by the 1990 Amendments of the Clean Air Act. The profile for each pollutant includes: fundamental identification data (CAS number, molecular formula, formula weight, synonyms); uses (primarily in the manufacture of chemicals and as a component in the manufacturing process); physical properties (such as boiling point, density, vapor pressures, color); chemical properties (such as air/water reactivity, reactivity with skin or metal, flash point, heat of combustion); health risks, including toxic exposure guidelines, toxicity data, and acute and chronic risks; hazard risks (the substance`s potential for accidents, fires, explosions, corrosion, and chemical incompatibility); exposure routes tracking the activities, environment, sources, and occupations that tend to lead to exposure; regulatory status, listing the primary laws and citations of regulated chemicals; and important additional information on symptoms, first aid, firefighting methods, protective equipment, and safe storage.

Beim, H.J.; Spero, J.; Theodore, L.

1998-12-31T23:59:59.000Z

258

Method and apparatus for incinerating hazardous waste  

DOE Patents (OSTI)

An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

Korenberg, Jacob (York, PA)

1990-01-01T23:59:59.000Z

259

Natural Phenomena Hazards (NPH) Meeting- October 2011  

Energy.gov (U.S. Department of Energy (DOE))

On October 25-26, 2011, the DOE Chief of Nuclear Safety (CNS) hosted a Natural Phenomena Hazards (NPH) working meeting in Germantown, Maryland. The meeting brought together approximately 80 experts involved in the characterization of, and mitigation against, natural hazards that can impact critical facilities. The meeting was valuable for sharing and discussing research in NPH analysis and mitigation, as well as best practices and lessons learned. Representatives from DOE Headquarters and site offices, four National Laboratories, the Defense Nuclear Facilities Safety Board, the U.S. Nuclear Regulatory Commission (NRC), and several DOE prime contractors and other private sector firms participated in the meeting. The meeting featured thirty five discussion topics over the two days. Presentation slides from most of these topics are available here, as well as papers on several topics from those speakers who chose to provide them. Questions about the NPH meeting can be directed to Dr. Steve McDuffie of the CNS staff at 509-373-6766, or stephen.mcduffie@rl.doe.gov.

260

Chapter 38 Hazardous Waste Permitting Process (Kentucky) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Hazardous Waste Permitting Process (Kentucky) 8 Hazardous Waste Permitting Process (Kentucky) Chapter 38 Hazardous Waste Permitting Process (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements for containers, tanks,

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Standards Applicable to Generators of Hazardous Waste 2 Standards Applicable to Generators of Hazardous Waste (Kentucky) Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also

262

Hazardous and Industrial Waste (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a facility. The statute also

263

Oil or Hazardous Spills Releases Law (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Georgia Program Type Environmental Regulations Safety and Operational Guidelines Provider Georgia Department of Natural Resources The Oil or Hazardous Spills Law requires notice to the Environmental

264

Hazardous Waste Transporter Permits (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide

265

Safety Analysis, Hazard and Risk Evaluations [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Analysis, Hazard Safety Analysis, Hazard and Risk Evaluations Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Safety Analysis, Hazard and Risk Evaluations Bookmark and Share NE Division personnel had a key role in the creation of the FCF Final Safety Analysis Report (FSAR), FCF Technical Safety Requirements (TSR)

266

Georgia Hazardous Waste Management Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act Hazardous Waste Management Act Georgia Hazardous Waste Management Act < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Hazardous Waste Management Act (HWMA) describes a

267

Nebraska Hazardous Waste Regulations (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Hazardous Waste Regulations (Nebraska) Nebraska Hazardous Waste Regulations (Nebraska) Nebraska Hazardous Waste Regulations (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal restrictions

268

DC Hazardous Waste Management (District of Columbia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces

269

Hazardous Waste Management (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Hazardous Waste Management (North Dakota) Hazardous Waste Management (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and treatment as

270

Thermal radiation hazards associated with marine LNG spills  

Science Journals Connector (OSTI)

Estimates of hazardous distances associated with a vapor cloud resulting from a major LNG ship accident have been based on predictions...

James H. Stannard Jr.

1977-02-01T23:59:59.000Z

271

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by B&W Technical Services, Pantex and Pro2Serve October, 2011

272

Approaches for Developing Uniform Hazard Spectra at Critical Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Approaches for Developing Uniform Hazard Spectra at Critical Facilities Andrew Maham, Tom Houston, Carl J. Costantino DOE NPH Meeting, Germantown, MD October 2014

273

South Carolina Hazardous Waste Management Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health and Environmental Control is authorized to promulgate rules and regulations to prevent exposure of persons, animals, or the environment to hazardous waste. The construction...

274

Sandia National Laboratories: Solar Glare Hazard Analysis Tool...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Honolulu Port Solar Glare Hazard Analysis Tool Available for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar...

275

EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program  

Energy.gov (U.S. Department of Energy (DOE))

The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

276

Dust: A major environmental hazard on the earth's moon  

SciTech Connect

On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

Heiken, G.; Vaniman, D.; Lehnert, B.

1990-01-01T23:59:59.000Z

277

Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...  

Energy Savers (EERE)

for NNSA's Los Alamos National Laboratory (LANL), located in Los Alamos, New Mexico. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at...

278

Chapter 31 Identification and Listing of Hazardous Waste (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

This administrative regulation establishes the general provisions necessary for identification and listing of a hazardous waste. The regulation also establishes the criteria for identifying the...

279

Title 40 CFR 261 Identification and Listing of Hazardous Waste...  

Open Energy Info (EERE)

Waste (2014). Retrieved from "http:en.openei.orgwindex.php?titleTitle40CFR261IdentificationandListingofHazardousWaste&oldid793417" Categories: References...

280

Sandia National Laboratories: Solar Glare Hazard Analysis Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia developed the Solar Glare Hazard Analysis Tool...

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Program Review, Workplace Inspections, Hazards Analysis And Abatement  

Energy.gov (U.S. Department of Energy (DOE))

This document provides guidance information and suggested procedures for performing program review, workplace inspections, hazards analysis, and abatement, successfully at DOE Federal employee worksites.

282

Fees For Disposal Of Hazardous Waste Or Substances (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

283

Weather and the Transport of Hazardous Materials | Department...  

Office of Environmental Management (EM)

and the Transport of Hazardous Materials More Documents & Publications The Role of GIS in Decision Support Systems Section 180(c) Ad Hoc Working Group Transportation Plan Ad...

284

CRAD, Hazardous Waste Management - December 4, 2007 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2007 Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30) This Criteria Review and Approach Document (HSS CRAD...

285

EPA Hazardous Waste Generators Website | Open Energy Information  

Open Energy Info (EERE)

Generators Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Hazardous Waste Generators Website Abstract This webpage provides general...

286

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...  

Open Energy Info (EERE)

evidence to suggest that particle aggregation is particularly successful in removing glass shards with high surface areasmass ratios. The primary atmospheric hazard of...

287

Consumer perspectives on household hazardous waste management in Japan  

Science Journals Connector (OSTI)

We give an overview of the management systems of household hazardous waste (HHW) in Japan and discuss the management systems and their...

Misuzu Asari; Shin-ichi Sakai

2011-02-01T23:59:59.000Z

288

Title 40 CFR 300 National Oil and Hazardous Substances Pollution...  

Open Energy Info (EERE)

National Oil and Hazardous Substances Pollution Contingency Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

289

Environmental Assessment Proposed Changes to the Sanitary Biosolids Land Application Program on the Oak Ridge Reservation Oak Ridge, Tennessee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

56 56 Environmental Assessment Proposed Changes to the Sanitary Biosolids Land Application Program on the Oak Ridge Reservation Oak Ridge, Tennessee February 2003 U.S. Department of Energy Oak Ridge Operations i ACRONYMS AND ABBREVIATIONS ac acres ALARA as low as reasonably achievable AMSA American Metropolitan Sewer Association CEQ Council on Environmental Quality CSF cancer slope factor DOE U.S. Department of Energy EA environmental assessment EFPC East Fork Poplar Creek EPA U.S. Environmental Protection Agency EPS Effluent Polishing System (West End Treatment Facility) FONSI Finding of No Significant Impact g gram ha hectares HEAST Health Effects Assessment Summary Tables HI hazard index HQ hazard quotient IDP Industrial Discharge Permit IRIS Integrated Risk Information System kg kilogram

290

Final Record of Decision for the Madison Site, Madison, Illinois, May 2000.  

Office of Legacy Management (LM)

FINAL FINAL RECORD OF DECISION FOR THE MADISON SITE MADISON, ILLINOIS MAY 2000 U.S. Army Corps of Engineers St. Louis District Office Formerly Utilized Sites Remedial Action Program Madison Site Record of Decision May 2000 iv ACRONYMS AND ABBREVIATIONS AEC Atomic Energy Commission ALARA as low as reasonably achievable ARAR applicable or relevant and appropriate requirement CERCLA Comprehensive Environmental Response, Compensation, and Liability Act cm centimeter(s) COC chemical contaminant of concern DOE United States Department of Energy ft feet ft 2 square feet FUSRAP Formerly Utilized Sites Remedial Action Program HI Hazard index HQ Hazard quotient IDNS Illinois Department of Nuclear Safety IEPA Illinois Environmental Protection Agency in inch(es) m meter(s) m 2 square meter(s) m 3 cubic meter(s)

291

ASD Facility Hazard Analysis Document - Building 400  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical Safety Procedures Radiological, Environmental & Chemical Training References Radiological, Environmental & Chemical Procedures Additional Safety Tool References DC Power Supplies DC voltages < 72 Volts DC currents < 450 Amps Lifting < 75 lbs Supplies mounted in NEMA enclosures Rack doors locked Power source signage 120/208 VAC covered Emergency stop buttons Flashing strobes LOTO 1,7 31020101-00025 3108-00006 310202-00089 3102-00064 2202-00006 Power Supplies Hot Work Permits 6, 7 NA NA NA A ASD108/400 Hi Power DC Power Supply DC voltages < 72 Volts DC currents < 2600 Amps AC voltages < 600 Volts Supplies built in NEMA enclosures

292

Mr. James Bearzi, Chief Hazardous Waste Bureau  

NLE Websites -- All DOE Office Websites (Extended Search)

Carlsbad Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number NM4890139088 - TSDF Dear Mr. Bearzi: As required under Permit Condition IV.F.5.e, the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of the loss of two hydrogen and methane monitoring sampling lines. The sampling lines involved were in Panel 3 Rooms 7 and 6. These lines are identified as 7E (exhaust side) and 61 (inlet side). These line losses were previously reported to the NMED on September 2, 2010 and September 28, 2010, respectively.

293

ASD Facility Hazard Analysis Document - Building 420  

NLE Websites -- All DOE Office Websites (Extended Search)

20 20 Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical Safety Procedures Radiological, Environmental & Chemical Training References Radiological, Environmental & Chemical Procedures Additional Safety Tool References DC Power Supplies DC voltages < 300 Volts DC currents < 500 Amps AC voltages < 600 Volts Lifting < 350 lbs Supplies mounted in relay racks Rack doors locked or bolted closed Power source signage 120/208/480 VAC covered Lifting fixture Emergency stop buttons Flashing strobes LOTO 1, 7 2202-00006 2402-00002 240201-00002 240202-00003 240204-00003 31020101-00025 2202-00004 2202-00006 2202-00009 220209-00057 31020101-00025 Power Supplies Hot Work Permits

294

Weather and the Transport of Hazardous Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FHWA FHWA R d W h M P FHWA R d W h M P FHWA Road Weather Management Program FHWA Road Weather Management Program " "Weather and the transport of Hazardous Materials" Ray Murphy Office of Technical Services Ray Murphy, Office of Technical Services U.S. DOT - Federal Highway Administration Breako t Session Using Technolog to Dispatch U.S. DOE National Transportation Stakeholder Forum Breakout Session: Using Technology to Dispatch and Monitor Shipments During Adverse Conditions Presentation Contents Presentation Contents * * Context Context Cl Cl I iti ti I iti ti * * Clarus Clarus Initiative Initiative * * Connected Vehicles & Weather Connected Vehicles & Weather Connected Vehicles & Weather Connected Vehicles & Weather U.S. DOE National Transportation Stakeholder Forum

295

ASD Facility Hazard Analysis Document - Building 413  

NLE Websites -- All DOE Office Websites (Extended Search)

13 13 Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical Safety Procedures Radiological, Environmental & Chemical Training References Radiological, Environmental & Chemical Procedures Additional Safety Tool References DC Power Supplies DC voltages < 200 Volts DC currents < 200 Amps AC voltages < 600 Volts Lifting < 350 lbs Supplies mounted in relay racks Rack doors locked or bolted closed Power source signage 120/208/480 VAC covered Lifting fixture Emergency stop buttons Flashing strobes LOTO 1, 7 1110-00124 31020101-00025 1110-00125 Power Supplies Hot Work Permits 6, 7 NA NA NA A ASD108/400 GESPAC Power Supply Control Units 120 VAC Fans Fan blades covered 1, 7 Power Supplies Hot Work Permit

296

ASD Facility Hazard Analysis Document - Building 412  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical Safety Procedures Radiological, Environmental & Chemical Training References Radiological, Environmental & Chemical Procedures Additional Safety Tool References DC Power Supplies DC voltages < 300 Volts DC currents < 500 Amps AC voltages < 600 Volts Lifting < 350 lbs Supplies mounted in relay racks Rack doors locked or bolted closed Power source signage 120/208/480 VAC covered Lifting fixture Emergency stop buttons Flashing strobes LOTO 1, 7 2502-00005 2502-00006 2502-00007 2502-00008 2502-00010 250201-00028 250202-00001 2502-00006 2502-00007 250206-00007 2202-00006 2202-00009 250203-00006 250204-00002 250205-00004

297

Emerging electromembrane technologies in hazardous management  

SciTech Connect

A new generalized index of ecological estimation of different technological process is suggested. It is the number of salt equivalents which contaminate environment when a production unit is making. The quantity of salt equivalent have been calculated not only as necessary amount for the technological process by itself, but as amount of energy and different materials for an entire technology. The estimation of different methods of water treatment is shown. The electrodialysis is the most ecological method of water desalination in comparison with others. This conclusion was spreaded on other electromembrane technologies in hazardous management. Such as: (1) Brackish water desalination, (2) Acid rain prevention, (3) Recuperation of pure heavy metals from rinse galvanic water.

Grebenyuk, V.D. [Institute of Colloid and Water Chemistry, Kiev (Ukraine); Grebenyuk, O.V. [Dega Enterprises of NY, Inc., Flushing, NY (United States)

1995-12-31T23:59:59.000Z

298

Improving tamper detection for hazardous waste security  

SciTech Connect

After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

Johnston, R. G. (Roger G.); Garcia, A. R. E. (Anthony R. E.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Martinez, R. K. (Ronald K.); Martinez, D. D. (Debbie D.); Lopez, L. N. (Leon N.)

2002-01-01T23:59:59.000Z

299

327 Building fire hazards analysis implementation plan  

SciTech Connect

In March 1998, the 327 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U.S. Department of Energy, Richland Operations Office (DOE-E) for implementation by B and W Hanford Company (BWC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in five areas and provided nine recommendations (11 items) to bring the 327 Building into compliance. A status is provided for each recommendation in this document. BWHC will use this Implementation Plan to bring the 327 Building and its operation into compliance with DOE Order 5480.7A and IUD 5480.7.

BARILO, N.F.

1999-05-10T23:59:59.000Z

300

Consider multishaft compressors for hazardous applications  

SciTech Connect

API specifies two types of centrifugal compressors: single-shaft (inline) and integrally geared. The latter are mainly air compressors, and API 672, which specifies the design, manufacturing and testing of these compressors, recommends that they may be used for gas services other than air that are nonhazardous and non-toxic. These compressors offer high efficiency, high control range, lower mechanical losses, lower investment and extremely compact design. Advances in gear making technology and design make API 672 compressors highly competitive in certain applications. The single-shaft compressor is used for general refinery services, is governed by API 617, and applicable for air or gas. There is no restriction on the type of gas. Therefore, this compressor is universally applicable for any gas--hazardous or nonhazardous. A large variety of integrally-geared multishaft compressors are available with respect to the number of stages, type of gas, type of drive and pressure range. These compressors have enormous range in terms of volumetric flows, pressure ratios, allowable inlet and discharge pressures, and attainable drive speeds. API 672 compressors find large applications in process, plant and instrument air service, air separation plants, etc. Apart from air, the gases handled by API 672 compressors had been for other nonhazardous applications such as nitrogen, steam, etc. Contrary to API 672 stipulations, multishaft compressors have been used for along time in hazardous applications like refinery offgas, CH{sub 4}, oxygen, or mixtures of NH{sub 3} and CO{sub 2}, CO, HCN, etc., or even dry chlorine.

Roy, G.K. [Pt. Indo-Rama Synthetics, West Java (Indonesia)

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MULTI-HAZARD RESISTANT HIGHWAY BRIDGE PIERS HAVING  

E-Print Network (OSTI)

of California to its main suspension bridges and the detailed shots of the Golden Gate and Brooklyn bridgesMULTI-HAZARD RESISTANT HIGHWAY BRIDGE PIERS HAVING CONCRETE-FILLED STEEL TUBE Shuichi FUJIKURA1 of a multi-hazard bridge pier concept, i.e., a bridge pier system capable of providing an adequate level

Bruneau, Michel

302

The shape of the hazard function for cancer incidence  

Science Journals Connector (OSTI)

A population-based cohort consisting of 126,141 men and 122,208 women born between 1874 and 1931 and at risk for breast or colorectal cancer after 1965 was identified by linking the Utah Population Data Base and the Utah Cancer Registry. The hazard function ... Keywords: Breast cancer, Colorectal cancer, Hazard function, Survival analysis, Truncation

K. M. Boucher; R. A. Kerber

2001-06-01T23:59:59.000Z

303

Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction  

E-Print Network (OSTI)

. Current weather radar detection and prediction sys- tems primarily rely on numerical models. We proposeOpen problem: Dynamic Relational Models for Improved Hazardous Weather Prediction Amy McGovern1, #12;Dynamic Relational Models for Improved Hazardous Weather Prediction Radar velocity Radar

McGovern, Amy

304

Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS  

E-Print Network (OSTI)

OF SUBSTANCES HAZARDOUS TO HEALTH REGULATIONS (COSHH) and the DANGEROUS SUBSTANCES AND EXPLOSIVE ATMOSPHERES Involving the Use of Hazardous Chemicals. COSHH requires health risks to be assessed and controlled by dangerous substances. The sections below correspond approximately to the sections in the form. The major

305

Chemical Applications of Electrohydraulic Cavitation for Hazardous Waste Control  

E-Print Network (OSTI)

to the destruction or transformation of hazardous chemical substances such as high-temperature incineration, amended activated sludge digestion, anaerobic digestion and conventional physicochemical treatment. Pulsed-power plasma discharge technology may have.... Current approaches to the treatment of hazardous chemical wastes include high temperature incineration, chemical oxidation with and UV light, membrane separation, activated carbon adsorption, substrate-specific biodegration, electron beam bombardment...

Hoffmann, M. R.

306

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill  

E-Print Network (OSTI)

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill Jorge G. Zornberg, M, Inc. OII Superfund landfill in southern California. This cover system constitutes the first ET cover:6 427 CE Database subject headings: Evapotranspiration; Coating; Landfills; Hazardous waste; Design

Zornberg, Jorge G.

307

Experiment Hazard Class 8.1 - Radioactive Materials/Samples  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Radioactive Materials 1 - Radioactive Materials Applicability This hazard classification applies to all experiments involving radioactive materials as samples. The requirements of this hazard class also apply to sealed radioactive sources that are used as a sample (i.e. a target for x-ray radiation). Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. The current requirements can be found in the APS Policy for Conducting Radioactive Sample Experiments in APS Experiment Enclosures. NOTE: The APS must be notified of shipment of any radioactive materials to the site well in advance of the proposed experiment. All radioactive materials must arrive through Argonne Receiving in Building 46 and the Argonne Materials Control & Accountability group (MC&A). Please contact

308

Hazardous Waste Facility Siting Program (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Siting Program (Maryland) Facility Siting Program (Maryland) Hazardous Waste Facility Siting Program (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level nuclear waste facilities. This legislation describes the factors considered by the Board in making siting decisions. The Board is authorized to enact rules and regulations pertaining to the siting of hazardous and low-level nuclear

309

DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Standard 1020 - Natural Phenomena Hazard analysis and Design DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities Department of Energy (DOE) Standard (STD)-1020-2012, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities, provides criteria and guidance for the analysis and design of facility structures, systems, and components (SSCs) that are necessary to implement the requirements of DOE Order (O) 420.1C, Facility Safety, and to ensure that the SSCs will be able to effectively perform their intended safety functions under the effects of natural phenomena hazards (NPHs). This Standard also provides criteria and guidance for the use of industry building codes and voluntary

310

CRAD, Hazardous Waste Management - December 4, 2007 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 December 4, 2007 Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30) Line management ensures that the requirements for generating, storing, treating, transporting, and disposing of hazardous waste, universal waste, and used oil, established under 40 CFR Subchapter I, applicable permits, and DOE requirements have been effectively implemented for federal and contractor employees, including subcontractors. Written programs and plans are in place and updated when conditions or requirements change. Employees have been properly trained for the wastes they handle. Documentation of waste characterizations, manifests, land disposal restrictions,

311

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego  

Open Energy Info (EERE)

Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego And Mount St Helens Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego And Mount St Helens Details Activities (0) Areas (0) Regions (0) Abstract: The large amount of scientific data collected on the Mount St. Helens eruption has resulted in significant changes in thinking about the atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than previously thought. The Mount St. Helens eruption released much fine ash in the upper atmosphere. These silicates were removed very rapidly due to a process of particle aggregation (Sorem, 1982;

312

Protocol, High Hazard Nuclear Facility Project Oversight - November 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Hazard Nuclear Facility Project Oversight - November High Hazard Nuclear Facility Project Oversight - November 2012 Protocol, High Hazard Nuclear Facility Project Oversight - November 2012 November 2012 Protocol for High Hazard Nuclear Facility Project Oversight The purpose of this protocol is to establish the requirements and responsibilities for managing and conducting Office of Health, Safety and Security (HSS) independent oversight of high-hazard nuclear facility projects. As part of the Department of Energy's (DOE) self regulatory framework for safety and security, DOE Order 227.1, Independent Oversight Program, assigns HSS the responsibility for implementing an independent oversight program. It also requires the HSS Office of Enforcement and Oversight to conduct independent evaluations of safety and security. This

313

Experiment Hazard Class 7.1 - BSL - 1 Biohazards  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - BSL-1 Biohazards 1 - BSL-1 Biohazards Applicability This hazard classification applies to all experiments involving biohazards requiring Biosafety Level 1 (BSL-1). Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. Biosafety Level 1 is suitable for work involving well-characterized agents not known to consistently cause disease in healthy adult humans, and work that is of minimal potential hazard to laboratory personnel and the environment. The laboratory is not necessarily separated from the general traffic patterns in the building. However, laboratories should have doors for access control. A biohazard sign, though not required for BSL1, may be posted at the entrance to the laboratory. Work is generally conducted on open bench tops using standard

314

Natural Phenomena Hazards (NPH) Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Phenomena Hazards (NPH) Workshop Natural Phenomena Hazards (NPH) Workshop Natural Phenomena Hazards (NPH) Workshop The Energy Department Natural Phenomena Hazards (NPH) Workshop, sponsored by the Chief of Nuclear Safety and the Chief of Defense Nuclear Safety, was held October 25-26, 2011, in Germantown, Maryland. The workshop brought together approximately 80 experts involved in the characterization of, and mitigation against, natural hazards that can impact nuclear facilities. The workshop featured twenty presentations as well as a breakout session devoted to discussing the status of the commonly used structural analysis code SASSI, a System for Analysis of Soil-Structure Interaction. A Method for Evaluating Fire after Earthquake Scenarios for Single Buildings_1.pdf Addressing Uncertainties in Design Inputs - A Case Study of Probabilistic

315

Natural Phenomena Hazards (NPH) Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Phenomena Hazards (NPH) Workshop Natural Phenomena Hazards (NPH) Workshop Natural Phenomena Hazards (NPH) Workshop The Energy Department Natural Phenomena Hazards (NPH) Workshop, sponsored by the Chief of Nuclear Safety and the Chief of Defense Nuclear Safety, was held October 25-26, 2011, in Germantown, Maryland. The workshop brought together approximately 80 experts involved in the characterization of, and mitigation against, natural hazards that can impact nuclear facilities. The workshop featured twenty presentations as well as a breakout session devoted to discussing the status of the commonly used structural analysis code SASSI, a System for Analysis of Soil-Structure Interaction. A Method for Evaluating Fire after Earthquake Scenarios for Single Buildings_1.pdf Addressing Uncertainties in Design Inputs - A Case Study of Probabilistic

316

Microsoft Word - 3.3 Activity Hazard Documents 0913.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Activity Activity Hazard Documents Activity Hazard Documents (AHDs) are formal work authorizations, as described in ES&H Manual, Chapter 6, Appendix D, that are required for higher hazard activities, as described in the AFRD Hazards, Equipment, and Authorizations Review form. When planning a new experiment or project, the first step is to contact the AFRD ES&H Coordinator to assist in determining whether an AHD or other type of work authorization is needed. Short-term, moderate hazard work may be eligible for authorizations under the Task-Based JHA. Electrical work requires authorization from the employee's supervisor (see ES&H Manual, Section 8.8.2). Writing an AHD The process of writing and obtaining approvals for a new AHD can typically take several

317

Experiment Hazard Class 12 - Electrical and Electronic Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - Electrical and Electronic Equipment 2 - Electrical and Electronic Equipment Applicability This hazard classification applies to all experiments involving electrical and electronic equipment. Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. The inspection of electric equipment is covered under the APS Policy For User Electric Equipment Inspections. Electrical hazards does not include work involving equipment where ALL of the following apply: (1) equipment use only in accordance with operating instructions AND/OR involves just plugging/unplugging, AND; (2) The equipment is either NRTL-listed or displays an Argonne barcoded ELECTRICAL SAFETY APPROVED sticker, AND; (3) The work involves no attempts to remove covers or panels that might expose energized electrical components.

318

Fire Hazards Analysis for the 200 Area Interim Storage Area  

SciTech Connect

This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

JOHNSON, D.M.

2000-01-06T23:59:59.000Z

319

Hazardous waste research and development in the Pacific Basin  

SciTech Connect

The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

320

Nat. Hazards Earth Syst. Sci., 6, 779802, 2006 www.nat-hazards-earth-syst-sci.net/6/779/2006/  

E-Print Network (OSTI)

-induced hazards that are representative for a whole class of hazards: Accidents due to nuclear power plants (NPP) or air traffic, and terrorism. For the analysis of accidents, risk is measured with respect to getting statistics leading to an expected value of risk. Terrorism risk is assessed by the attraction certain ele

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

WIPP Hazardous Waste Facility Permit Update  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification request that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)

Kehrman, B.; Most, W. [Washington Regulatory and Environmental Services, 4021 National Parks Highway, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

322

Hazard screening application guide. Safety Analysis Report Update Program  

SciTech Connect

The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

none,

1992-06-01T23:59:59.000Z

323

Resource Management Services: Water Regulation, Parts 595-599: Hazardous Substances (New York)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations aim to prevent the release of hazardous substances into surface water and groundwater resources. They contain guidance for facilities which store and process hazardous substances,...

324

Massachusetts Oil and Hazardous Material Release Prevention and Response Act, State Superfund Law (Massachusetts)  

Energy.gov (U.S. Department of Energy (DOE))

This Act contains information on prevention strategies for hazardous material release, permits for facilities managing hazardous waste, and response tactics and liability in the event such release...

325

Order Module--THE CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT...  

Energy Savers (EERE)

Order Module--THE CONTROL OF HAZARDOUS ENERGY (LOCKOUTTAGOUT) FAMILIAR LEVEL Order Module--THE CONTROL OF HAZARDOUS ENERGY (LOCKOUTTAGOUT) FAMILIAR LEVEL The familiar level of...

326

E-Print Network 3.0 - avoiding hazards caused Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

published... . If so, the hazardous energy must be controlled using an appropriate lockout procedure (see Control... of Hazardous Energy: General Requirements). This procedure...

327

E-Print Network 3.0 - arrows radiological hazards Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

published... . If so, the hazardous energy must be controlled using an appropriate lockout procedure (see Control... of Hazardous Energy: General Requirements). This procedure...

328

H.A.R. 11-261 - Hazardous Waste Management | Open Energy Information  

Open Energy Info (EERE)

11-261 - Hazardous Waste ManagementLegal Abstract The State of Hawaii Department of Health regulates hazardous waste management under this chapter of the administrative rules....

329

Hazardous Waste Management (North Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(North Carolina) (North Carolina) Hazardous Waste Management (North Carolina) < Back Eligibility Commercial Industrial Construction Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Environmental Regulations Safety and Operational Guidelines Siting and Permitting Provider Department of Environment and Natural Resources These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for surface impoundments and location standards for facilities. An applicant applying for a permit for a hazardous waste facility shall

330

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi) Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type

331

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

332

Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheet, Preliminary Notice of Violation: Four Hazardous Energy Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL On October 17, 2012, the National Nuclear Security Administration (NNSA) issued a Preliminary Notice of Violation (PNOV) to Los Alamos National Security, LLC (LANS) for violations of Department of Energy (DOE) worker safety and health program requirements. LANS is the management and operating contractor for NNSA's Los Alamos National Laboratory (LANL), located in Los Alamos, New Mexico. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL More Documents & Publications Sandia Sled Track PNOV Press Release Fact Sheet LANS PNOV Fact Sheet LANS PNOV

333

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

334

Experiment Hazard Class 7.5 - Human Tissue/Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

5 - Human Tissue/Materials 5 - Human Tissue/Materials Applicability This hazard classification applies to all experiments involving biohazards requiring the use of human tissue/materials. Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. Human tissue/materials must also be evaluated for their biosafety level and as such will have to go through the process for that particular Biosafety Level. IMPORTANT NOTE: For non-Argonne employees, all experiment protocols involving human tissue are required to be either reviewed or declared exempt from review by their home institution's Institutional Review Board (IRB). Documentation of the review should be filed in the ESAF system and with the APS BioSafety Officer (BSO) (Nena Moonier 2-8504,

335

Digging Begins at Hazardous Hanford Burial Ground - River Corridor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Digging Begins at Hazardous Hanford Burial Ground - River Corridor Digging Begins at Hazardous Hanford Burial Ground - River Corridor Contractor Spent Two Years Preparing to Remediate 618-10 Digging Begins at Hazardous Hanford Burial Ground - River Corridor Contractor Spent Two Years Preparing to Remediate 618-10 August 3, 2011 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE Cameron.Hardy@rl.doe.gov 509-376-5365 Todd Nelson, Washington Closure media@wch-rcc.com 509-372-9097 RICHLAND, WASH. - After careful preparation and characterization, the Department of Energy's (DOE) River Corridor contractor, Washington Closure Hanford, has begun remediation of one of the most hazardous burial grounds tackled to date on the Hanford Site's River Corridor. The $57 million American Recovery and Reinvestment Act project began with nearly two years of preparation and characterization before reaching their

336

A collaborative program for earthquake fault hazard characterization and community  

E-Print Network (OSTI)

for the Reno, Nevada area R.N. Frary, J.N. Louie, W.J. Stephenson, J.K. Odum, L.M. Liberty, S;Project overview Complex geology Growing urban area Need for Urban Hazard Maps Collaboration

337

Geologic Hazards Associated With a Proposed Dam on the Yarlung-  

E-Print Network (OSTI)

such reports (Biron and Dodin, 2007). However, given the persistent media reports, the pressing water-resources downstream in the Brahmapu- tra system in northeastern India and Bangladesh, and hazards asso- ciated

Kidd, William S. F.

338

Trends and Opportunities in Industrial Hazardous Waste Minimization  

E-Print Network (OSTI)

This paper describes trends and opportunities in Resource Conservation and Recovery Act hazardous waste minimization. It uses U.S. Environmental Protection Agency data gathered since 1989 from over 20,000 facilities that account for almost all...

Atlas, M.

339

Climate change and geomorphological hazards in the eastern European Alps  

Science Journals Connector (OSTI)

...traditional hazard-management framework that focuses on emergency management responses and procedures...an integrated risk-management approach with an ex ante and scenario...integrates natural-science and social-science...

2010-01-01T23:59:59.000Z

340

Category 3 threshold quantities for hazard categorization of nonreactor facilities  

SciTech Connect

This document provides the information necessary to determine Hazard Category 3 threshold quantities for those isotopes of interest not listed in WHC-CM-4-46, Section 4, Table 1.''Threshold Quantities.''

Mandigo, R.L.

1996-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chapter 2 - Threats and Hazards at Educational Institutions  

Science Journals Connector (OSTI)

Abstract This chapter describes the threats and hazards currently facing school administrators. It separately covers school districts (K-12) and higher education (colleges and universities), and includes information about legislation and protection measures.

Philip Purpura

2014-01-01T23:59:59.000Z

342

Job Hazard Analysis Manual Updated 10/6/04  

E-Print Network (OSTI)

and fire hazards from area Electrical Shock Improper grounding, improper operations and maintenance Lockout Activation during repair Auto start and/or human error Lockout/Tagout Noise Equipment Operation Use Hearing

Escher, Christine

343

Order Module--self-study program: HAZARDOUS WASTE OPERATIONS...  

Energy Savers (EERE)

also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste...

344

A Multimedia Study of Hazardous Waste Landfill Gas Migration  

Science Journals Connector (OSTI)

Hazardous waste landfills pose uniquely challenging environmental problems which arise as a result of the chemical complexity of waste sites, their involvement of many environmental media, and their very size ...

Robert D. Stephens; Nancy B. Ball; Danny M. Mar

1986-01-01T23:59:59.000Z

345

Is thioacetamide a serious health hazard in inorganic chemistry laboratories?  

Science Journals Connector (OSTI)

Is thioacetamide a serious health hazard in inorganic chemistry laboratories? ... The dangerous properties of thioacetamide seemingly are not well known by many of those who use it; presented here is a collection of data on its toxic effects. ...

Hannu Elo

1987-01-01T23:59:59.000Z

346

RFPs Due for Hazardous Fuel Wood to Energy Grant  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Forest Service requests proposals for the 2014 Hazardous Fuel Wood to Energy (W2E) Grant. The outcome anticipated under this funding mechanism will advance the United States Department of...

347

ADEQ Hazardous Waste Management website | Open Energy Information  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Hazardous Waste Management websiteLegal Abstract The ADEQ provides links and information related to...

348

Title 40 CFR 270: EPA Administered Programs: The Hazardous Waste...  

Open Energy Info (EERE)

: EPA Administered Programs: The Hazardous Waste Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 270:...

349

RCRA Hazardous Waste Part A Permit Application: Instructions...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste Part A Permit Application: Instructions and Form (EPA Form 8700-23) Abstract This...

350

Hazardous Waste Part A Permit Application | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Part A Permit ApplicationLegal Abstract Detailed instructions for filing a RCRA...

351

Hawaii HEPCRA Hazardous Chemical Storage and Tier II Reporting...  

Open Energy Info (EERE)

II Reporting Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii HEPCRA Hazardous Chemical Storage and Tier II Reporting Webpage Author...

352

Hawaii DOH Hazardous Waste Section Webpage | Open Energy Information  

Open Energy Info (EERE)

Section Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii DOH Hazardous Waste Section Webpage Abstract This webpage provides an overview...

353

Hazardous Waste: Resource Pack for Trainers and Communicators | Open Energy  

Open Energy Info (EERE)

Hazardous Waste: Resource Pack for Trainers and Communicators Hazardous Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency/Company /Organization: International Solid Waste Association (ISWA), United Nations Development Programme (UNDP), United Nations Industrial Development Organization (UNIDO) Sector: Energy, Land, Water Focus Area: Renewable Energy, - Waste to Energy Phase: Evaluate Options Topics: Adaptation, Implementation, Low emission development planning, -LEDS Resource Type: Guide/manual, Training materials Website: www.trp-training.info/ Cost: Paid Language: English References: Training Resource Pack[1] "The new TRP+ provides a structured package of notes, technical summaries, visual aids and other training material concerning the (hazardous) waste

354

Experiment Hazard Class 8.3 - X-Ray Generators  

NLE Websites -- All DOE Office Websites (Extended Search)

3 - X-Ray Generators 3 - X-Ray Generators Applicability This hazard classification applies to all experiments involving the use of X-Ray Generators (other than the APS storage ring). As specified in LMS-PROC-109 a Radiation Generating Device (RGD) must be registered with the Argonne RGD Safety Officer using the ANL-847 form. The RGD will be assigned an inventory number, hazard class, RWP requirement, and inspection and survey frequencies. Experiment Category Experiments the Experiment Hazard Class are always categorized as High Risk. Experiment Hazard Control Verification Statements Engineered Controls - As determined in LMS-PROC-109. Samples chambers and all beam paths are fully enclosed by barriers. Class 2 and higher RGDs require an interlock to fail-safe beam shutter/beam stop or radiation

355

Hazard Assessment of Chemical Air Contaminants Measured in Residences  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazard Assessment of Chemical Air Contaminants Measured in Residences Hazard Assessment of Chemical Air Contaminants Measured in Residences Title Hazard Assessment of Chemical Air Contaminants Measured in Residences Publication Type Journal Article LBNL Report Number LBNL-3650E Year of Publication 2011 Authors Logue, Jennifer M., Thomas E. McKone, Max H. Sherman, and Brett C. Singer Journal Indoor Air Volume 21 Start Page 92 Issue 2 Pagination 92-109 Date Published 04/2011 Keywords resave Abstract Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants were representative of concentrations in residences in the United States. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants are identified as contaminants of concern for chronic health effects in a large fraction of homes. Nine pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on robustness of reported concentration data and fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3- butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM2.5. Activity-based emissions are shown to pose potential acute health hazards for PM2.5, formaldehyde, CO, chloroform, and NO2.

356

Sandia National Laboratories, California Hazardous Materials Management Program annual report.  

SciTech Connect

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2011-02-01T23:59:59.000Z

357

Method of recovering hazardous waste from phenolic resin filters  

DOE Patents (OSTI)

The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

Meikrantz, David H. (Idaho Falls, ID); Bourne, Gary L. (Idaho Falls, ID); McFee, John N. (Albuquerque, NM); Burdge, Bradley G. (Idaho Falls, ID); McConnell, Jr., John W. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

358

Seismic Hazards at Kilauea and Mauna LOA Volcanoes, Hawaii  

SciTech Connect

A significant seismic hazard exists in south Hawaii from large tectonic earthquakes that can reach magnitude 8 and intensity XII. This paper quantifies the hazard by estimating the horizontal peak ground acceleration (PGA) in south Hawaii which occurs with a 90% probability of not being exceeded during exposure times from 10 to 250 years. The largest earthquakes occur beneath active, unbuttressed and mobile flanks of volcanoes in their shield building stage.

Klein, Fred W.

1994-04-22T23:59:59.000Z

359

Hazard classification criteria for non-nuclear facilities  

SciTech Connect

Sandia National Laboratories` Integrated Risk Management Department has developed a process for establishing the appropriate hazard classification of a new facility or operation, and thus the level of rigor required for the associated authorization basis safety documentation. This process is referred to as the Preliminary Hazard Screen. DOE Order 5481.1B contains the following hazard classification for non-nuclear facilities: high--having the potential for onsite or offsite impacts to large numbers of persons or for major impacts to the environment; moderate--having the potential for considerable onsite impacts but only minor offsite impacts to people or the environment; low--having the potential for only minor onsite and negligible offsite impacts to people or the environment. It is apparent that the application of such generic criteria is more than likely to be fraught with subjective judgment. One way to remove the subjectivity is to define health and safety classification thresholds for specific hazards that are based on the magnitude of the hazard, rather than on a qualitative assessment of possible accident consequences. This paper presents the results of such an approach to establishing a readily usable set of non-nuclear facility hazard classifications.

Mahn, J.A.; Walker, S.A.

1997-03-01T23:59:59.000Z

360

Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document  

SciTech Connect

The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Reuse in Hazard Analysis: Identification and Shamus P. Smith and Michael D. Harrison  

E-Print Network (OSTI)

, for example, Hazard and Op- erability Studies (HAZOP) [11], Failure Modes and Effect Analysis (FMEA) [6

Harrison, Michael

362

October 2014 Natural Phenomena Hazards (NPH) Meeting- Tuesday, October 21st Session Presentations  

Energy.gov (U.S. Department of Energy (DOE))

Presentations from the October 2014 Natural Phenomena Hazards Meeting - Tuesday, October 21st Session

363

October 2014 Natural Phenomena Hazards (NPH) Meeting- Wednesday, October 22nd Soil Structure Interaction Presentations  

Energy.gov (U.S. Department of Energy (DOE))

Presentations for the Soil Structure Interaction session at the October 2014 Natural Phenomena Hazards (NPH) Meeting.

364

October 2014 Natural Phenomena Hazards (NPH) Meeting- Wednesday, October 22nd Session Presentations  

Energy.gov (U.S. Department of Energy (DOE))

Presentations from the October 2014 Natural Phenomena Hazards Meeting - Tuesday, October 21st Session

365

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

366

Hazard Assessment of Chemical Air Contaminants Measured in Residences  

SciTech Connect

Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

2010-05-10T23:59:59.000Z

367

A new seismic hazard analysis using FOSM algorithms  

Science Journals Connector (OSTI)

Abstract From recent lessons, it is evident that earthquake prediction is immature and impractical as of now. Under the circumstances, seismic hazard analysis is considered a more practical approach for earthquake hazard mitigation, by estimating the annual rate of earthquake ground motions (or seismic hazard) based on seismicity and other geological evidences. Like other earthquake studies for the high-seismicity region around Taiwan, this study aims to conduct a new seismic hazard assessment for the region using the well-established FOSM (first-order second-moment) algorithm, on the record of 55,000 earthquakes observed in the past 110 years. The new seismic hazard analysis from a different perspective shows that the annual rate for earthquake-induced PGA to exceed the current design value (i.e., 0.23g) in two major cities in Taiwan should be relatively low, with it no greater than 0.0006 per year. Besides, the FOSM estimates were found very close to those with Monte Carlo Simulation (MCS), mainly because the skewness of the three random variables (i.e., earthquake magnitude, location, and model error) considered in the probabilistic analysis is not very large.

J.P. Wang; Yih-Min Wu

2014-01-01T23:59:59.000Z

368

Experiment Hazard Class 8.2 - Sealed Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

2 -Sealed Sources 2 -Sealed Sources Applicability This hazard classification applies to all experiments involving the use of DOE exempt and non-exempt radioactive sealed sources. Experiment Category Experiments in this Experiment Hazard Class are always categorized as low risk experiments. Experiment Hazard Control Verification Statements Engineered Controls - None. Procedural Controls - Sealed sources must be secured when no experimenter is present. Design Reviews and Equipment Inspections - Sealed sources must be checked out from the Beamline Sealed Source Custodian and logged into the RMS System. Sources will be exempt or non-exempt as determined by RSO-HP personnel. Training - GERT (ESH 738) for exempt sealed sources ANL Radiation Worker I or II (ESH 700 or ESH 702) for non-exempt sealed

369

ASD Facility Hazard Analysis Document - Building 400-EAA  

NLE Websites -- All DOE Office Websites (Extended Search)

-EAA -EAA Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical Safety Procedures Radiological, Environmental & Chemical Training References Radiological, Environmental & Chemical Procedures Additional Safety Tool References Blue Oven Temperature to 600° F voltage 208 VAC Signage 1 NA 6, 7 Physical Agents Training NA NA NA A ASD108/400 Compressed Air Line 65-130 PSI Regulator Pressure relief NA NA 6, 7 ESH119 NA NA A ASD108/400 Various Shop Tools (lathe, drill press, grinder, belt sander, shears, hand tools) Eye hazard Pinch points Abrasive Rotating machinery 120 VAC Hydraulic pressure Guarding Anti-restart devices 1 NA 6, 7 NA NA NA A ASD108/400 Water Flow Test Stand Pressure Slip hazard NA

370

Ensuring Safe Shipment of Hazardous Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring Safe Shipment of Hazardous Materials Ensuring Safe Shipment of Hazardous Materials Ensuring Safe Shipment of Hazardous Materials March 28, 2013 - 12:00pm Addthis A truck carries a waste shipment from Brookhaven National Laboratory in New York. EM completed legacy cleanup activities at the site last year. A truck carries a waste shipment from Brookhaven National Laboratory in New York. EM completed legacy cleanup activities at the site last year. Emergency responders participate in a training exercise in the Transportation Emergency Preparedness Program (TEPP), which also recently released its annual report. Administered by EM’s Office of Packaging and Transportation, TEPP ensures federal, state, tribal and local responders have access to the plans, training and technical assistance necessary to safely, efficiently and effectively respond to radiological transportation accidents.

371

PO*WW*ER mobile treatment unit process hazards analysis  

SciTech Connect

The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented PO*WW*ER mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat aqueous mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses evaporation to separate organics and water from radionuclides and solids, and catalytic oxidation to convert the hazardous into byproducts. This process hazards analysis evaluated a number of accident scenarios not directly related to the operation of the MTU, such as natural phenomena damage and mishandling of chemical containers. Worst case accident scenarios were further evaluated to determine the risk potential to the MTU and to workers, the public, and the environment. The overall risk to any group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

Richardson, R.B.

1996-06-01T23:59:59.000Z

372

Incineration of hazardous wastes from the petroleum industry in Nigeria  

Science Journals Connector (OSTI)

Persistent hazardous wastes are produced in the recovery, processing and upgrading of crude petroleum in Nigeria. However, recent developments in environmental pollution control are drawing increasing attention to the problems of hazardous wastes. The ever-increasing need to control these wastes from the petroleum industry often compels the chemical engineer to specify methods of treatment and disposal. Present methods for disposal are becoming increasingly undesirable for a number of reasons, and incineration is being considered as an alternative. This paper reviews the extent of hazardous waste generation from the Nigerian petroleum industry and its environmental implications. It also examines the current disposal methods and the incineration technology option. The major chemical engineering concepts of the incineration process and the principles guiding their operations are discussed. The potential for the use of incineration is examined, as well as information that would aid the choice of incineration system for new applications.

O.O. Bello; J.A. Sonibare; S.R.A. Macaulay; A.O. Okelana; A.O. Durojaiye

2004-01-01T23:59:59.000Z

373

Hazardous-waste analysis plan for LLNL operations  

SciTech Connect

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

374

A hazard separation system for dismantlement of nuclear weapon components  

SciTech Connect

Over the next decade, the US Department of Energy (DOE) must retire and dismantle many nuclear weapon systems. In support of this effort, Sandia National Laboratories (SNL) has developed the Hazard Separation System (HSS). The HSS combines abrasive waterjet cutting technology and real-time radiography. Using the HSS, operators determine the exact location of interior, hazardous sub-components and remove them through precision cutting. The system minimizes waste and maximizes the recovery of recyclable materials. During 1994, the HSS was completed and demonstrated. Weapon components processed during the demonstration period included arming, fusing, and firing units; preflight control units; neutron generator subassemblies; and x-units. Hazards removed included radioactive krytron tubes and gap tubes, thermal batteries, neutron generator tubes, and oil-filled capacitors. Currently, the HSS is being operated at SNL in a research and development mode to facilitate the transfer of the technology to other DOE facilities for support of their dismantlement operations.

Lutz, J.D.; Purvis, S.T.; Hospelhorn, R.L.; Thompson, K.R.

1995-04-01T23:59:59.000Z

375

Hazardous Waste Management Regulations (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations (Mississippi) Regulations (Mississippi) Hazardous Waste Management Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the Mississippi Department of Environmental Quality requires that each generator of greater than 220

376

Hazardous Waste Minimum Distance Requirements (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimum Distance Requirements (Connecticut) Minimum Distance Requirements (Connecticut) Hazardous Waste Minimum Distance Requirements (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste

377

Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATEMENT. Approved for public release; distribution is unlimited. STATEMENT. Approved for public release; distribution is unlimited. DOE-STD-1020-2012 December 2012 _________________ Supersedes DOE-STD-1020-2002 DOE STANDARD Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities U.S. Department of Energy AREA NPHZ Washington, D.C. 20585 NOT MEASUREMENT SENSITIVE DOE-STD-1020-2012 This document is available on the Department of Energy Technical Standards Program Web page at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1020-2012 i Foreword Department of Energy (DOE) Standard (STD)-1020-2012, Natural Phenomena Hazards

378

Hazardous Waste Facilities Siting (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Siting (Connecticut) Facilities Siting (Connecticut) Hazardous Waste Facilities Siting (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure,

379

Georgia Hazardous Site Response Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Response Act (Georgia) Site Response Act (Georgia) Georgia Hazardous Site Response Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Public Benefits Fund Provider Georgia Department of Natural Resources The Georgia Hazardous Site Response Act is Georgia's version of

380

Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATEMENT. Approved for public release; distribution is unlimited. STATEMENT. Approved for public release; distribution is unlimited. DOE-STD-1020-2012 December 2012 _________________ Supersedes DOE-STD-1020-2002 DOE STANDARD Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities U.S. Department of Energy AREA NPHZ Washington, D.C. 20585 NOT MEASUREMENT SENSITIVE DOE-STD-1020-2012 This document is available on the Department of Energy Technical Standards Program Web page at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1020-2012 i Foreword Department of Energy (DOE) Standard (STD)-1020-2012, Natural Phenomena Hazards

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Survey of hazardous materials used in nuclear testing  

SciTech Connect

The use of hazardous'' materials in routine underground nuclear tests at the Nevada Test Site has been reviewed. In addition the inventory of test yields, originally reported in 1976 has been updated. A trail down-hole inventory'' has been conducted for a selected test. The inorganic hazardous materials introduced during testing (with the exception of lead and the fissionable materials) produce an incremental change in the quantity of such materials already present in the geologic media surrounding the test points. 1 ref., 3 tabs.

Bryant, E.A.; Fabryka-Martin, J.

1991-02-01T23:59:59.000Z

382

Containment and stabilization technologies for mixed hazardous and radioactive wastes  

SciTech Connect

A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications.

Buelt, J.L.

1993-05-01T23:59:59.000Z

383

Studies on Hazard Characterization for Performance-based Structural Design  

E-Print Network (OSTI)

size parameters, and a measure of storm kinetic energy were used to develop wind-surge and wind-surge-energy models, which can be used to characterize the wind-surge hazard at a level of accuracy suitable for PBE applications. These models provide a...

Wang, Yue

2010-07-14T23:59:59.000Z

384

Reliability analysis of common hazardous waste treatment processes  

SciTech Connect

Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

Waters, R.D. [Vanderbilt Univ., Nashville, TN (United States)

1993-05-01T23:59:59.000Z

385

Focus Sheet | Hydrofluoric Acid Health hazards of hydrofluoric acid  

E-Print Network (OSTI)

Focus Sheet | Hydrofluoric Acid Health hazards of hydrofluoric acid Hydrofluoric acid (HF characterized by weight loss, brittle bones, anemia, and general ill health. Safe use If possible, avoid working to exposures. #12;Focus Sheet | Hydrofluoric Acid Environmental Health and Safety Environmental Programs Office

Wilcock, William

386

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network (OSTI)

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

387

Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility  

SciTech Connect

This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

JOHNSON, B.H.

1999-08-19T23:59:59.000Z

388

Phase 2 fire hazard analysis for the canister storage building  

SciTech Connect

The fire hazard analysis assesses the risk from fire in a facility to ascertain whether the fire protection policies are met. This document provides a preliminary FHA for the CSB facility. Open items have been noted in the document. A final FHA will be required at the completion of definitive design, prior to operation of the facility.

Sadanaga, C.T., Westinghouse Hanford

1996-07-01T23:59:59.000Z

389

Fire Hazards Analysis for the Inactive Equipment Storage Sprung Structure  

SciTech Connect

The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objective of DOE Order 5480.1A are met. The order acknowledges a graded approach commensurate with the hazards involved.

MYOTT, C.F.

2000-02-03T23:59:59.000Z

390

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network (OSTI)

Construction projects which impact existing building materials must include an environmental consultant air pollution control agency and the Department of Labor and Industries (L&I) at least ten (10) daysUNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Asbestos

Wilcock, William

391

Virginia Wetlands Report Sea Level Rise & Other Coastal Hazards  

E-Print Network (OSTI)

Virginia Wetlands Report Sea Level Rise & Other Coastal Hazards: The Risks of Coastal Living See. Climate change is bringing increased temperatures, rising sea level, more frequent storms and increased in tide levels. From these records it is not only clear that water levels are rising, they appear

392

Incident and Hazard Reporting and Investigation Procedure Category: Campus Life  

E-Print Network (OSTI)

: (a) serious injury/illness or dangerous goods/hazardous substances must be reported to Health Management 1. LEGISLATION/ENTERPRISE AGREEMENT/POLICY SUPPORTED Health & Safety Policy Occupational Safety and Health Act, 1984 Occupational Safety and Health Regulations, 1996 2. IMPLEMENTATION PRINCIPLES 2

393

U.S. Chemical Safety and Hazard Investigation Board  

E-Print Network (OSTI)

U.S. Chemical Safety and Hazard Investigation Board Hon. Rafael Moure-Eraso Chairperson Hon. John S issued the following recommendations to Texas Tech University pursuant to our investigation with the responsibility of ensuring that remedial actions are implemented in a timely manner. I am writing to inform you

Rock, Chris

394

Natural Hazards manuscript No. (will be inserted by the editor)  

E-Print Network (OSTI)

choices on, for example, the level of acceptable risk to be made a priori and these choices are not solely · acceptable risk J. Douglas · T. Ulrich · C. Negulescu RIS/RSI, BRGM, 3 avenue Claude-Guillemin, BP 36009Natural Hazards manuscript No. (will be inserted by the editor) Risk-targeted seismic design maps

Paris-Sud XI, Université de

395

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

396

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

397

Surface Fire Hazards Analysis Technical Report-Constructor Facilities  

SciTech Connect

The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

R.E. Flye

2000-10-24T23:59:59.000Z

398

Electrical Sitchgear Building No. 5010-ESF Fire Hazards Technical Report  

SciTech Connect

The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives, identified in DOE Order 420.1, Change 2, Fire Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire or related event; (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of the employees, the public, and the environment; (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; (4) Property losses from a fire and related events exceeding defined limits established by DOE; and (5) Critical process controls and safety class systems being damaged as a result of a fire and related event.

N.M. Ruonavaara

2001-05-08T23:59:59.000Z

399

A model for determining the fate of hazardous constituents in waste during in-vessel composting  

E-Print Network (OSTI)

Composting is one of the techniques that has evolved as a safe disposal and predisposal alternative to the stringent regulations on hazardous waste disposal. The implementation of this technique needs careful evaluation of the processes a hazardous...

Bollineni, Prasanthi

1994-01-01T23:59:59.000Z

400

E-Print Network 3.0 - arsenic-induced health hazards Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

health hazards Search Powered by Explorit Topic List Advanced Search Sample search results for: arsenic-induced health hazards Page: << < 1 2 3 4 5 > >> 1 UNIVERSITY OF WASHINGTON...

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

AAC R-18-8-260 Hazardous Waste Management System | Open Energy...  

Open Energy Info (EERE)

R-18-8-260 Hazardous Waste Management System Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: AAC R-18-8-260 Hazardous Waste...

402

I.C. 39-44 - Idaho Hazardous Waste Management Act | Open Energy...  

Open Energy Info (EERE)

- Idaho Hazardous Waste Management Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 39-44 - Idaho Hazardous Waste...

403

Application of probabilistic consequence analysis to the assessment of potential radiological hazards of fusion reactors  

E-Print Network (OSTI)

A methodology has been developed to provide system reliability criteria based on an assessment of the potential radiological hazards associated with a fusion reactor design and on hazard constraints which prevent fusion ...

Sawdye, Robert William

1978-01-01T23:59:59.000Z

404

Modeling household adoption of earthquake hazard adjustments: a longitudinal panel study of Southern California and Western Washington residents  

E-Print Network (OSTI)

This research, aimed at advancing the theory of environmental hazard adjustment processes by contrasting households from three cities in a high seismic hazard area with households from three other cities in a moderate seismic hazard area...

Arlikatti, Sudha S

2006-10-30T23:59:59.000Z

405

October 2014 Natural Phenomena Hazards (NPH) Meeting- Wednesday, October 22nd Session Presentations  

Energy.gov (U.S. Department of Energy (DOE))

Presentations from the Wednesday, October 22nd Session of the October 2014 Natural Phenomena Hazards (NPH) Meeting

406

Software Approach to Hazard Detection Using On-line Analysis of Safety Constraints  

E-Print Network (OSTI)

Software Approach to Hazard Detection Using On-line Analysis of Safety Constraints Beth Schroedey. The research here addresses the problem of enhancing software safety through hazard detection. The premise.gatech.edu Abstract Hazard situations in safety-critical systems are typically complex, so there is a need for means

Plale, Beth

407

ELECTRICAL SAFETY HAZARDS HANDBOOK Littelfuse is the global leader in circuit protection  

E-Print Network (OSTI)

ELECTRICAL SAFETY HAZARDS HANDBOOK #12;Littelfuse is the global leader in circuit protection's Leading Provider of Circuit Protection Solutions #12;LITTELFuSE ELECTRICAL SAFETY HAZARDS HANDBOOK This Electrical Safety Hazards Handbook was developed for general education purposes only and is not intended

408

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

409

Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer  

E-Print Network (OSTI)

. Keywords: Indoor air quality; hazard analysis; residential; criteria pollutants; VOCs; air toxics Citation Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control through

410

Transporting & Shipping Hazardous Materials at LBNL: Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemicals Chemicals Hand-Carry Self-Transport by Vehicle Ship by Common Carrier Conduct Field Work Hand-Carry Employees may hand-carry small quantities of hazardous materials between adjacent buildings and in connecting spaces (i.e., hallways, stairs, etc.) within buildings, provided it can be done safely and without spilling the materials. Staff must use hand carts, drip trays, or another type of secondary container to contain any spills should they occur during self-transport. Hazardous materials hand-carried between non-adjacent buildings should be packaged to a higher level of integrity. As a best practice, package these substances following the General Requirements listed under the Self-Transport by Vehicle. As with any work involving chemicals, staff must also have completed

411

Agencies complete comprehensive investigation for radioactive and hazardous  

NLE Websites -- All DOE Office Websites (Extended Search)

Printer-friendly icon Printer-Friendly June 29, 2007 Agencies complete comprehensive investigation for radioactive and hazardous waste landfill; agree to extend document submittal milestone The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (IDEQ), and U.S. Environmental Protection Agency (EPA) have completed a CERCLA (Superfund) Remedial Investigation and Baseline Risk Assessment and Feasibility Study of a radioactive and hazardous waste landfill at the U.S. Department of Energy�s Idaho Radioactive Waste Management Complex (RWMC). The results of these investigations are found in two documents: the Remedial Investigation and Baseline Risk Assessment for Operable Unit 7-13/-14 and the Feasibility Study for Operable Unit 7-13/-14. Both documents are available in the Administrative Record at http://ar.inel.gov/. The documents are also available at the INL Technical Library in Idaho Falls and Boise State University�s Albertsons Library.

412

State of Tennessee Hazardous Waste Management Permit, TNHW-127  

NLE Websites -- All DOE Office Websites (Extended Search)

Class 1 1 Modification, Dated: 10/20/06 TABLE OF CONTENTS U.S. DEPARTMENT OF ENERGY, Y-12 NATIONAL SECURITY COMPLEX OAK RIDGE, TENNESSEE HAZARDOUS WASTE CONTAINER STORAGE AND TREATMENT UNITS BUILDINGS 9206, 9212, 9720-12, 9811-9, AND 9812 AND THE ORGANIC HANDLING UNIT EPA ID NUMBER: TN3 89 009 0001 Page Number I. STANDARD CONDITIONS A. EFFECT OF PERMIT I-1 B. SEVERABILITY I-1 C. DEFINITIONS I-2 D. GENERAL DUTIES AND REQUIREMENTS I-4 E. CONFIDENTIAL INFORMATION I-10 F. DOCUMENTS TO BE MAINTAINED AT THE FACILITY I-10 G. ANNUAL MAINTENANCE FEE I-10 H. REQUIRED NOTICES I-10 I. ORDER OF PRECEDENCE I-11 J. PERMIT STRUCTURE I-11 II. GENERAL FACILITY CONDITIONS A. HAZARDOUS WASTES TO BE MANAGED II-1 B. MAINTENANCE OF THE FACILITY II-1

413

State of Tennessee Hazardous Waste Management Permit, TNHW-122  

NLE Websites -- All DOE Office Websites (Extended Search)

Class 1 1 Modification, Dated: 12/18/06 TABLE OF CONTENTS U.S. DEPARTMENT OF ENERGY, Y-12 NATIONAL SECURITY COMPLEX OAK RIDGE, TENNESSEE HAZARDOUS WASTE CONTAINER STORAGE AND TREATMENT UNITS BUILDINGS 9720-9, 9720-25, AND 9720-31 EPA ID NUMBER: TN3 89 009 0001 Page Number I. STANDARD CONDITIONS A. EFFECT OF PERMIT I-1 B. SEVERABILITY I-1 C. DEFINITIONS I-2 D. GENERAL DUTIES AND REQUIREMENTS I-4 E. CONFIDENTIAL INFORMATION I-10 F. DOCUMENTS TO BE MAINTAINED AT THE FACILITY I-10 G. ANNUAL MAINTENANCE FEE I-10 H. REQUIRED NOTICES I-10 I. ORDER OF PRECEDENCE I-11 J. PERMIT STRUCTURE I-11 II. GENERAL FACILITY CONDITIONS A. HAZARDOUS WASTES TO BE MANAGED II-1 B. MAINTENANCE OF THE FACILITY II-1 C. SAMPLING, ANALYSIS, AND MONITORING II-1

414

Pressure Vessel Burst Program: Automated hazard analysis for pressure vessels  

SciTech Connect

The design, development, and use of a Windows based software tool, PVHAZARD, for pressure vessel hazard analysis is presented. The program draws on previous efforts in pressure vessel research and results of a Pressure Vessel Burst Test Study. Prior papers on the Pressure Vessel Burst Test Study have been presented to the ASME, AIAA, JANNAF, NASA Pressure Systems Seminar, and to a DOD Explosives Safety Board subcommittee meeting. Development and validation is described for simplified blast (overpressure/impulse) and fragment (velocity and travel distance) hazard models. The use of PVHAZARD in making structural damage and personnel injury estimates is discussed. Efforts in-progress are reviewed including the addition of two-dimensional and three-dimensional (2D and 3D) hydrodynamic code analyses to supplement the simplified models, and the ability to assess barrier designs for protection from fragmentation.

Langley, D.R. [Aerospace Corp., Kennedy Space Center, FL (United States); Chrostowski, J.D. [ACTA Inc., Torrance, CA (United States); Goldstein, S. [Aerospace Corp., El Segundo, CA (United States); Cain, M. [General Physics Corp., Titusville, FL (United States)

1996-12-31T23:59:59.000Z

415

Radiological Hazard of Spallation Products in Accelerator-Driven System  

SciTech Connect

The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs.

Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu. [Tokyo Institute of Technology (Japan)

2002-09-15T23:59:59.000Z

416

Hazardous-environment problems: Mobile robots to the rescue  

SciTech Connect

This paper presents a rationale for employing a spectrum of similar mobile robots to conduct appropriate common missions for the following five hazardous-environment issues: (1) dismantlement of nuclear weapons; (2) environmental restoration and waste management of US Department of Energy weapons sites; (3) operations in nuclear power plants and other facilities; (4) waste chemical site remediation and cleanup activities; and (5) assistance in handling toxic chemical/radiation accidents. Mobile robots have been developed for several hazardous-environment industries, the most visible ones being construction/excavation/tunneling, explosive ordnance/bomb disposal (EOD), fire-fighting, military operations, mining, nuclear, and security. A summary of the range of functions that mobile robots are currently capable of conducting is presented.

Meieran, H.B. (PHD Technologies, Inc., Pittsburgh, PA (United States))

1992-01-01T23:59:59.000Z

417

Technologies for environmental cleanup: Toxic and hazardous waste management  

SciTech Connect

This is the second in a series of EUROCOURSES conducted under the title, ``Technologies for Environmental Cleanup.`` To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste.

Ragaini, R.C.

1993-12-01T23:59:59.000Z

418

National Environmental Policy Act Hazards Assessment for the TREAT Alternative  

SciTech Connect

This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements.

Boyd D. Christensen; Annette L. Schafer

2014-02-01T23:59:59.000Z

419

Assessing homeland chemical hazards outside the military gates: industrial hazard threat assessments for department of defense installations  

Science Journals Connector (OSTI)

As part of comprehensive joint medical surveillance measures outlined by the Department of Defense, the US Army Center for Health Promotion and Preventive Medicine (USACHPPM) is beginning to assess environmental health threats to continental US military installations. A common theme in comprehensive joint medical surveillance, in support of Force Health Protection, is the identification and assessment of potential environmental health hazards, and the evaluation and documentation of actual exposures in both a continental US and outside a continental US setting. For the continental US assessments, the USACHPPM has utilized the US Environmental Protection Agency (EPA) database for risk management plans in accordance with Public Law 106-40, and the toxic release inventory database, in a state-of the art geographic information systems based program, termed the Consequence Assessment and Management Tool Set, or CATS, for assessing homeland industrial chemical hazards outside the military gates. As an example, the US EPA toxic release inventory and risk management plans databases are queried to determine the types and locations of industries surrounding a continental US military installation. Contaminants of concern are then ranked with respect to known toxicological and physical hazards, where they are then subject to applicable downwind hazard simulations using applicable meteorological and climatological data sets. The composite downwind hazard areas are mapped in relation to emergency response planning guidelines (ERPG), which were developed by the American Industrial Hygiene Association to assist emergency response personnel planning for catastrophic chemical releases. In addition, other geographic referenced data such as transportation routes, satellite imagery and population data are included in the operational, equipment, and morale risk assessment and management process. These techniques have been developed to assist military medical planners and operations personnel in determining the industrial hazards, vulnerability assessments and health risk assessments to continental United States military installations. These techniques and procedures support the Department of Defense Force Protection measures, which provides awareness of a terrorism threat, appropriate measures to prevent terrorist attacks and mitigate terrorism's effects in the event that preventive measures are ineffective.

Jeffrey S Kirkpatrick; Jacqueline M Howard; David A Reed

2002-01-01T23:59:59.000Z

420

2012 Annual Workforce Analysis and Staffing Plan Report - SC HQ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington, DC 20585 Washington, DC 20585 MEMORANDUM TO KAREN L. BOARDMAN CHAIRPERSON FEDERAL TECHNICAL CAP ABILITY PANEL FROM: 1osEPH A. MCBREA a wi.~ '/t'f // c. DEPUTY DIRECT FOR FIELD OPE~ TIONS OFFICE OF SCIE CE SUBJECT: Annual Workforce Ail ysis and Staffing Plan Report for Calendar Year 2012 In response to your memo dated October 24, 2012, enclosed is the Office of Science (SC) Headquarters Workforce Analysis and Staffing Plan Report for Calendar Year 2012. The subject report was prepared in accordance with your guidance and represents the necessary resources required to provide oversight of Building 325 at Pacific Northwest National Laboratory, the only defense nuclear facility overseen by SC-Headquarters. If you have any questions, please contact me, or you may contact Carol Sohn at

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2011 Annual Workforce Analysis and Staffing Plan Report - SC HQ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deputy Director for Field Operations Deputy Director for Field Operations Office of Science Washington, DC 20585 December 15, 2011 MEMORANDUM FOR KAREN L. BOARDMAN, CHAIR FEDERAL TECHNICAL CAPABILITY PANEL I tlVM £]{ -.,;A 1 i-f:..-f'l FROM: JOSEPH A. MCBREARTY' ,____.- ~ SUBJECT: DEPUTY DIRECTOR F Fl D OPERATIONS Annual Workforce Ana ysis and Staffing Plan Report for Calendar Year 2011 In response to your memo dated October 13, 2011, enclosed is the Office of Science (SC) Headquarters Workforce Analysis and Staffing Plan Report for Calendar Year 2011. The subject report was prepared in accordance with your guidance and represents the necessary resources required to provide oversight of Building 325 at Pacific Northwest National Laboratory, the only defense nuclear facility overseen by

422

C:\Forms\HQ F 1400.12.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F. F. 1400.12 (03-00) INSTRUCTIONS: U.S. DEPARTMENT OF ENERGY LAST NAME SIGNING THIS APPLICATION CERTIFIES THAT YOU ARE NOT A PARTICIPANT IN THE SEET PROGRAM, OR OTHER GOVERNMENT SUBSIDY PROGRAMS. WORK PHONE WORK PHONE WORK PHONE WORK PHONE YEARS FEDERAL SERVICE YEARS FEDERAL SERVICE YEARS FEDERAL SERVICE YEARS FEDERAL SERVICE FEDERAL FEDERAL FEDERAL CONTRACTOR CONTRACTOR CONTRACTOR CAR NO 1, MAKE CAR NO 1, MAKE CAR NO 1, MAKE CAR NO 1, MAKE LAST NAME LAST NAME LAST NAME FIRST NAME FIRST NAME FIRST NAME CAR NO 2, MAKE CAR NO 2, MAKE CAR NO 2, MAKE CAR NO 2, MAKE ST ST ST ST ST ST ST ST TAG NUMBER TAG NUMBER TAG NUMBER TAG NUMBER TAG NUMBER TAG NUMBER TAG NUMBER TAG NUMBER SIGNATURE SIGNATURE SIGNATURE SIGNATURE EXT DOE ROUTE SYMBOL DOE ROUTE SYMBOL DOE ROUTE SYMBOL DOE ROUTE SYMBOL EMPLOYER EMPLOYER EMPLOYER EMPLOYER HOME ADDRESS (Street,

423

Memorandum for Improving DOE HQ Recruitment and Hiring Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

~ ~ e ~ u t ~ ~ l o ~ f @ i j Washington, DC 20585 hlEMORANDUM TO DEPARTMENTAL ELEh@NT& FROM: SUBJECT: DANIEL B. P O N W Improving the Headquarters' Hiring Processes Secretary Chu has set forth an athbitious agenda for the D of Energy i f l - a f d a to build a clean, secure, and prosperous energy future for our Nation. Fulfilling that agenda requires that we act with urgency and purpose. Success will depend largely on ow ability to recruit and retain a dedicated, high-performing workforce. To accomplish our expanded mission, the Department will hire hundreds of new employees during the next year. At Headquarters, we must make certain that we have the capacity to hire staff quickly yet wisely. We have already begun to strengthen the Headquarters' hiring process by launching such initiatives as accelerated procedures for

424

2011 Annual Workforce Analysis and Staffing Plan Report - HSS HQ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 MEMORANDUM FOR KAREN L. BOARDMAN CHAIRPERSON FROM: SUBJECT: FEDERAL TECHNICAL CAPABILITY PA~EL (FTCP) PATRICIA R. WORTHINGTON, Ph~ 1 ~ DIRECTOR '- OFFICE OF HEALTH AND SAFETY OFFICE OF HEALTH, SAFETY AND SECURITY Office of Health, Safety and Security Annual Workforce Analysis and Staffing Plan Report for Calendar Year 2011 In accordance with the guidance memo of October 13, 2011, the Annual Workforce Analysis and Staffing Plan Report for the Office of Health, Safety and Security (HSS), is attached. If you have any questions, please call me at (301) 903-5926 or the HSS Alternate FTCP Agent, Bradley K. Davy, at (301) 903-2473. Attachment @ Printed with soy ink on recycled paper Annual Workforce Analysis and Staffing Plan Report as of December 31, 2011

425

2011 Annual Workforce Analysis and Staffing Plan Report - EM HQ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KAREN L. BOARDMAN KAREN L. BOARDMAN CHAIRPERSON FROM: SUBJECT: FEDERAL TECHNICAL MATTHEW B. MOUR DEPUTY ASSISTANT S SAFETY AND SECUR Y PROGRAM ENVIRONMENTAL MANAGEMENT Annual Workforce Analysis and Staffing Plan Report for Environmental Management The Office of Environmental Management performed a technical workforce analysis per DOE 0 426.1, Federal Technical Capability Order, and your memorandum of October 13 2011, "Annual Workforce Analysis and Staffing Plan Report of Calendar Year 2011." A summary report, using the template provided in your memorandum, is attached for Federal Technical Capability Panel (FTCP) review and incorporation into the FTCP Annual Report to the Secretary of Energy. If you any questions, please contact me at (202) 586-5151.

426

2012 Annual Workforce Analysis and Staffing Plan Report - EM HQ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13 13 MEMORANDUM FOR KAREN L. BOARDMAN CHAIRPERSON FEDERAL TECHNICAL CAPABILITY PANEL FROM: MATTHEW B. Mouf h i DEPUTY ASSISTANT SE ARY FOR SUBJECT: SAFETY, SECURITY, AND QUALITY ENVIRONMENTAL MANAGEMENT Annual Workforce Analysis and Staffing Plan Report for Environmental Management The Office of Environmental Management performed a technical workforce analysis per Department of Energy Order 426.1, Federal Technical Capability Order, and your memorandum of October 24, 2012, "Annual Workforce Analysis and Staffing Plan Report of Calendar Year 2012." A summary report, using the template provided in your memorandum, is attached for Federal Technical Capability Panel (FTCP) review and incorporation into the FTCP Annual Report to the Secretary of Energy.

427

2010 Annual Workforce Analysis and Staffing Plan Report - SC HQ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Off ice of Science Off ice of Science Washington, DC 20585 December 15, 2010 MEMORANDUM TO KAREN L. BOARDMAN CHAIRPERSON FROM: SUBJECT: FEDERAL TECHNICAL CAP ABILITY PANEL Annual Workforce Analysis and Staffing Plan Report for Calendar Year 20 l 0 In response to your memo dated October 28, 2010, enclosed is the Office of Science (SC) Headquarters Workforce Analysis and Staffing Plan Report for Calendar Year 2010. The subject report was prepared in accordance with your guidance and represents the necessary resources required to provide oversight of Building 325 at Pacific Northwest National Laboratory, the only defense nuclear facility overseen by SC-Headquarters. If you have any questions regarding this memorandum, please contact Carol Sohn at carol.sohn@pnso.science.doe.gov or (509) 375-2320.

428

C:\Forms\HQ F 3305.7.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

305.7 305.7 (07-90) U.S. DEPARTMENT OF ENERGY Applicant Name: Thank you for applying for consideration for our Senior Executive Service vacancy of: Your application was received in our office postmarked on Although you were found to meet the basic qualifications required for this position, we regret to inform you that another candidate has been selected for this position. The competitive process for filing this position has been cancelled due to: Your application could not be forwarded for competitive consideration because: Your interest in employment with the Department of Energy is appreciated and we regret that our response to you could not be favorable for this particular vacancy. The noncompetitive reassignment or transfer of a current Senior Executive Service (SES) employee

429

2012 Annual Workforce Analysis and Staffing Plan Report- NNSA HQ  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

430

2011 Annual Workforce Analysis and Staffing Plan Report- NNSA HQ  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

431

2013 Annual Workforce Analysis and Staffing Plan Report- NNSA HQ  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

432

2014 Annual Workforce Analysis and Staffing Plan Report- NNSA HQ  

Energy.gov (U.S. Department of Energy (DOE))

Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

433

California department of education HQ block 225: California's valedictorian  

E-Print Network (OSTI)

G L A N C E intensity (EUI) of 43 kBtu/ft 2 yr demonstratefor an ENERGY STAR label. The EUI has improved by about 15%,

Bauman, Fred; Webster, Tom; Dickerhoff, Darryl J; Fentress, Curtis; Popowski, Matt

2009-01-01T23:59:59.000Z

434

DOE HQ F 1420.7 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or copying, and distribution andor mailing. Print Requisition More Documents & Publications Customer Services Handbook, 2010, Office of Administration DOE F 1340.3A DOE F 1340.3...

435

FOIA Requests received by DOE Headquarters (HQ) since December...  

Energy Savers (EERE)

copy of the investigation conducted by the Office of Health Studies related to brain cancers among DOE workers employed at the Forrestal building 762009 Closed on 729...

436

California department of education HQ block 225: California's valedictorian  

E-Print Network (OSTI)

and fully integrated design resulted in a building that out-integrated into the exterior envelope design and are capable of generating up to 2% of the buildingdesign-build office building in the states history. The integrated

Bauman, Fred; Webster, Tom; Dickerhoff, Darryl J; Fentress, Curtis; Popowski, Matt

2009-01-01T23:59:59.000Z

437

California department of education HQ block 225: California's valedictorian  

E-Print Network (OSTI)

Education headquarters. Electrical Engineer Rosendin Electric, The Engineering Enterprise Energy Modeler Taylor Engineering Sustainable

Bauman, Fred; Webster, Tom; Dickerhoff, Darryl J; Fentress, Curtis; Popowski, Matt

2009-01-01T23:59:59.000Z

438

California department of education HQ block 225: California's valedictorian  

E-Print Network (OSTI)

on underfloor fan-coil units. The ease of repositioningUnderfloor variable speed fan-coil units at the buildingvariable speed fan-coil units are ducted to linear bar

Bauman, Fred; Webster, Tom; Dickerhoff, Darryl J; Fentress, Curtis; Popowski, Matt

2009-01-01T23:59:59.000Z

439

H.Q. Klingons of Ohio Issue 1  

E-Print Network (OSTI)

fovortble li9ht. conventi on Schedul e KLilNGONS Vy'e corbe resahed at rht sddEts beloc/: Msjl in those con?tt entrjes f?Jt, o3 $'e $'6lrt'to have our next edition out by Ocbber 1991 | Qalla! Klingons of ohi o 1487 W. Fifth AYe. Suite I 07 Columbus... 6llov u3 to csrrv on vith grovth a3 vos discu33ed st the l?3t orgsnjz6tionll meetjng The reoresentalive of the Council, slso put to re3t the feErs ,nit hud b..n raised aoout some of the rllusl3 lnst theU condlcted in their Nev York conventions...

1991-01-01T23:59:59.000Z

440

DOE HQ F 5631.2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AND NOTIFICATION More Documents & Publications 2014 Headquarters Facilities Master Security Plan - Chapter 3, Personnel Security The DOE Security Plan for the Energy Employees...

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

HTWOS and System Planning Briefing to DOE-HQ  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Plan Waste Feed Delivery Projects Plan ORP-Approved System Plan Assumptions Technology Development Roadmap WTP Contract WTP PMB WTP Flowsheet and Design Tank...

442

HQ Employee/Labor Management Relations Division (HC-33) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and support services to Headquarters employees covering such areas as child care, elder care, employee assistance programs, health and wellness, career transition and programs...

443

2012 Annual Workforce Analysis and Staffing Plan Report - HSS HQ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2013 3, 2013 MEMORANDUM FOR KAREN L. BOARDMAN CHAIRPERSON FEDERAL TECHNICAL CAPABILITY PANEL (FTCP) FROM: PATRICIA R. WORTHINGTON, Phrf'\vJ DIRECTOR ~ SUBJECT: OFFICE OF HEALTH AND SAFETY OFFICE OF HEALTH, SAFETY AND SECURITY Office of Health, Safety and Security Annual Workforce Analysis and Staffing Plan Report for Calendar Year 2012 In accordance with the guidance memo of October 24, 2012, the Annual Workforce Analysis and Staffing Plan Report for the Office of Health, Safety and Security (HSS), is attached. If you have any questions, please call me at (30 I) 903-5926. Attachment @ Printed with soy ink on recycled paper Annual Workforce Analysis and Staffing Plan Report as of December 31, 2012 Reporting Office: Office of Health, Safety and Security

444

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents (OSTI)

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

445

Mr. John E. Kieling, Chief Hazardous Was te Bureau  

NLE Websites -- All DOE Office Websites (Extended Search)

John E. Kieling, Chief John E. Kieling, Chief Hazardous Was te Bureau Depa rtment of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 NOV 0 5 2013 New Mexico Environment Department 2905 Rodeo Park Drive East. Building 1 Santa Fe, New Mexico 87505-6303 Subject: Panel 6 Closure and Final Waste Emplacement Notifications Dear Mr. Kieling : The purpose of this leiter is 1 0 notify th e New Mexico Environment Department (NMEO) that the

446

Mission: Possible. Center of Excellence for Hazardous Materials Management  

SciTech Connect

The Center of Excellence for Hazardous Materials Management (CEHMM) was established in May 2004 as a nonprofit research organization. Its purpose is to develop a sustainable technical/scientific community located in Carlsbad, New Mexico, that interacts worldwide to find solutions to hazardous materials management issues. An important part of the mission is to achieve improved protection of worker safety, human health, and the environment. Carlsbad has a large technical community due to the presence of the Waste Isolation Pilot Plant (WIPP) and its many contractors and support organizations. These groups include the Carlsbad Environmental Monitoring and Research Center, Washington Group International, Los Alamos National Laboratory, and Sandia National Laboratories. These organizations form the basis of a unique knowledge community with strengths in many areas, such as geosciences, actinide chemistry, environmental monitoring, and waste transportation. CEHMM works cooperatively with these organizations and others to develop projects that will maintain this knowledge community beyond the projected closure date of WIPP. At present, there is an emphasis in bio-monitoring, air monitoring, hazardous materials educational programs, and endangered species remediation. CEHMM is also currently working with a group from the American Nuclear Society to help facilitate their conference scheduled for April 2006 in Carlsbad. CEHMM is growing rapidly and is looking forward to a diverse array of new projects. (authors)

Bartlett, W.T.; Prather-Stroud, W. [Center of Excellence for Hazardous Materials Management, 505 North Main Street, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

447

Fire hazard analysis of the radioactive mixed waste trenchs  

SciTech Connect

This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

1995-04-27T23:59:59.000Z

448

Ross Hazardous and Toxic Materials Handling Facility: Environmental Assessment.  

SciTech Connect

The Bonneville Power Administration (BPA) owns a 200-acre facility in Washington State known as the Ross Complex. Activities at the Ross Complex routinely involve handling toxic substances such as oil-filled electrical equipment containing polychlorinated biphenyls (PCBs), organic and inorganic compounds for preserving wood transmission poles, and paints, solvents, waste oils, and pesticides and herbicides. Hazardous waste management is a common activity on-site, and hazardous and toxic substances are often generated from these and off-site activities. The subject of this environmental assessment (EA) concerns the consolidation of hazardous and toxic substances handling at the Complex. This environmental assessment has been developed to identify the potential environmental impacts of the construction and operation of the proposal. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) to determine if the proposed action is likely to have a significant impact on the environment. In addition to the design elements included within the project, mitigation measures have been identified within various sections that are now incorporated within the project. This facility would be designed to improve the current waste handling practices and to assist BPA in meeting Federal and state regulations.

URS Consultants, Inc.

1992-06-01T23:59:59.000Z

449

Method for encapsulating hazardous wastes using a staged mold  

DOE Patents (OSTI)

A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

1989-01-01T23:59:59.000Z

450

QUOTIENTS OF STANDARD HILBERT MODULES WILLIAM ARVESON  

E-Print Network (OSTI)

normal if the self-commutators T k Tj - TjT k of its ambient operators are all compact, and more, appropriately, to linear relations through an iteration procedure, and we give a concrete description specifically, p-essentially normal if the self-commutators belong to the Schatten class Lp - p being a number

Arveson, William

451

Kazhdan quotients of GolodShafarevich groups  

Science Journals Connector (OSTI)

......Let p be the pro-p completion of (then p is a GGS...group). Find a finite index subgroup K of p which...number of subgroups of index m in an abstract group...of open subgroups of index m in the profinite completion G of G: am(G......

Mikhail Ershov

2011-04-01T23:59:59.000Z

452

Bicyclic semigroups of left I-quotients  

E-Print Network (OSTI)

In this article we study left I-orders in the bicyclic monoid $\\mathcal{B}$. We give necessary and sufficient conditions for a subsemigroup of $\\mathcal{B}$ to be a left I-oreder in $\\mathcal{B}$. We then prove that any left I-order in $\\mathcal{B}$ is straight.

Ghroda, Nassraddin

2011-01-01T23:59:59.000Z

453

Alternate airborne release fraction determination for hazardous waste management storage repository hazard categorization at the Lawrence Livermore National Laboratory  

SciTech Connect

Hazardous Waste Management (HWM) facilities are used in the handling and processing of solid and liquid radioactive, hazardous, mixed, and medical wastes generated at Lawrence Livermore National Laboratory (LLNL). Waste may be treated or stored in one of the HWM facility units prior to shipment off site for treatment or disposal. Planned facilities such as the Decontamination and Waste Treatment Facility (DWTF) and the Building 280 Container Storage Unit are expected to handle similar waste streams. A hazard classification was preformed in each facility safety analysis report (SAR) according to the DOE Standard 1027-92 `Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports.` The general methodology practiced by HWM to determine alternate airborne release fractions (ARFs) in those SARs was based upon a beyond evaluation basis earthquake accident scenario characterized by the release of the largest amount of respirable, airborne radioactive material. The alternate ARF was calculated using a three-factor formula consisting of the fraction of failed waste containers, fraction of material released from failed waste containers,and the fraction of material entrained to the environment. Recently, in deliberation with DOE-Oakland representatives, HWM decided to modify this methodology. In place of the current detailed analysis, a more straightforward process was proposed based upon material form, credible accident environments, and empirical data. This paper will discuss the methodology and derivation of ARFs specific to HWM treatment and storage facilities that are alternative to those presented in DOE-STD-1027-92.

Brumburgh, G.P.

1998-05-01T23:59:59.000Z

454

Application of Hazard Analysis to Quality Modelling H. Zhu, at al. 05/02/02 Application of Hazard Analysis to Software Quality Modelling  

E-Print Network (OSTI)

applications, software engineers are seeking for quality models that can provide useful insight informationApplication of Hazard Analysis to Quality Modelling H. Zhu, at al. 05/02/02 Application of Hazard Analysis to Software Quality Modelling Hong Zhu, Yanlong Zhang, Qingning Huo and Sue Greenwood Dept

Zhu, Hong

455

Hazardous Gases VASILIS M. FTHENAKIS Department of Applied Science  

Office of Scientific and Technical Information (OSTI)

Mitigation Options for Mitigation Options for Accidental Releases of Hazardous Gases VASILIS M. FTHENAKIS Department of Applied Science Brookhaven National Laboratory Upton, N Y 11973 ABSTRACT The objective of this paper is to review and compare technologies available for mitigation of unconfined releases of toxic and flammable gases. These technologies indude: secondary confinement, de- inventory, vapor barriers, foam spraying, and water sprays/monitors. Guidelines for the design and/or operation of effective post-release mitigation systems and case studies involving actual industrial mitigation systems are also presented. 1. ACCIDENT PREVENTION & MITIGATION OPTIONS Accident prevention and mitigation in the process industries is based on the military concept of defense in

456

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Facility 10-Year Natural Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final Results V. July 2010 Event VI. Emergency Planning VII.What's Next Pantex The Pantex Plant, located 17 miles northeast of Amarillo, Texas, in Carson County, is charged with maintaining the safety, security and reliability of the nation's nuclear weapons stockpile. Worked performed at Pantex supports three core missions. * Stockpile Stewardship * Nonproliferation and * Safeguards and Security Pantex (cont.) - Location Pantex (cont.) - Weather Patterns * Precipitation is typical for Southwest climate, mainly in the form of Spring and

457

Compact cyclone filter train for radiological and hazardous environments  

DOE Patents (OSTI)

A compact cyclone filter train for the removal of hazardous and radiologi particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

Bench, Thomas R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

458

Compact cyclone filter train for radiological and hazardous environments  

DOE Patents (OSTI)

A compact cyclone filter train is disclosed for the removal of hazardous and radiological particles from a gaseous fluid medium. This filter train permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired. 3 figs.

Bench, T.R.

1998-04-28T23:59:59.000Z

459

Environmental Hazards Assessment Program. Quarterly report, July--September 1993  

SciTech Connect

The objectives of the EHAP program stated in the proposal to DOE are to: (1) develop a holistic, national basis for risk assessment, risk management, and risk communication which recognizes the direct impact of environmental hazards on the health and well-being of all, (2) develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects, and (3) identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management.

Not Available

1993-12-01T23:59:59.000Z

460

The WIPP Hazardous Waste Facility Permit Improvements--2007 Update  

SciTech Connect

The most significant changes to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit to date were completed during the past year with the implementation of significant revisions to the Waste Analysis Plan and the authorization to dispose of remote-handled transuranic waste. The modified Permit removes the requirement for reporting headspace gas sampling and analysis results for every container of transuranic mixed waste and provides for the use of radiography and visual examination to confirm a statistically representative subpopulation of the waste stream in each waste shipment as well as other changes that streamline the analytical data management process. Implementation began on November 17, 2006. (authors)

Kehrman, R.; Most, W. [Washington Regulatory and Environmental Services, Carlsbad, NM (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Control of hazardous energy sources (lockout/tagout procedures)  

SciTech Connect

The Occupational Safety and Health Administration (OSHA) Standard 29 CFR 1910.147 addresses practices and procedures that are necessary to disable machinery or equipment and to prevent the release of potentially hazardous energy during maintenance operations. The standard contains definitive criteria for establishing an effective program for locking out or tagging out energy isolating devices. The standard contains major training requirements for those authorized to use the energy isolating devices and those that are affected by their use. Periodic inspections are required at least annually to ensure that the energy control procedures continue to be implemented properly.

Seidel, K.G.

1991-01-01T23:59:59.000Z

462

GRR/Section 18-UT-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

UT-b - Hazardous Waste Permit Process UT-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-UT-b - Hazardous Waste Permit Process 18UTBHazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies Hazardous Waste Rules R315-1 et seq Triggers None specified Click "Edit With Form" above to add content 18UTBHazardousWastePermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A hazardous waste is specifically listed by the Utah Solid and Hazardous Waste Rules or exhibits a characteristic such as ignitability, corrosivity,

463

OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Hazardous Waste Operations and Emergency Response 3/21/95 5 Hazardous Waste Operations and Emergency Response 3/21/95 OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95 The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are adequately protected. The surveillance also evaluates the effectiveness of programs implemented to protect the health and safety of emergency response personnel who may be called upon to mitigate upset conditions at a facility where hazardous waste operations are conducted. Finally, the surveillance includes evaluations of the contractor's compliance with specific requirements regarding hazardous waste operations and emergency response. OSS19-05.doc

464

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

SciTech Connect

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

465

Small sample size power for some tests of constant hazard function  

E-Print Network (OSTI)

. This method has been applied to testing for a fit of the exponential distribution. Four different. tests of constant hazard function were used in this research. They are described in detail in Section 2. Two of the tests were developed by Epstein [1960... that on a whole these four particular tests would give a definite insight into the behavior of power for constant hazard function tests. SECTION 2 CONSTANT HAZARD FUNCTION TESTS Background As stated in Section 1, four different tests of constant...

Fercho, Wayne Ward

2012-06-07T23:59:59.000Z

466

Experiment Hazard Classes at the Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiment Hazard Classes at the Advanced Photon Source Experiment Hazard Classes at the Advanced Photon Source January 18, 2012 Beamline Operation: HC1 APS Base Low Temperatures: HC2 Cryogenic Systems High Temperatures: HC3.1 Electric Furnace HC3.2 Optical Furnace HC3.3 Other High Temperature Lasers: HC4.2 Laser, Class 2 HC4.3a Laser, Class 3a HC4.3b Laser, Class 3b HC4.4 Laser, Class 4 High Pressures: HC5.1 High Pressure, DAC HC5.2 High Pressure, LVP HC5.3 High Pressure Vessels HC5.4 High Pressure Comp. Gas Chemicals: HC6.0 Chemicals, General HC6.1 Chemicals, Carcinogen HC6.2 Chemicals, Corrosive HC6.3 Chemicals, Toxic HC6.4 Chemicals, Flammable HC6.5 Chemicals, Oxidizer HC6.6 Chemicals, Other HC6.7 Chemicals, Explosive/Energetic Materials Biosafety: HC7.1 Biosafety Level 1 HC7.2 Biosafety Level 2 HC7.3 Biosafety Level 3

467

Hazard Categorization Reduction via Nature of the Process Argument  

SciTech Connect

This paper documents the Hazard Categorization (HC) and Critical Safety Evaluation (CSE) for activities performed using an Inspection Object (IO) in excess of the single parameter subcritical limit of 700 g of U-235. By virtue of exceeding the single parameter subcritical limit and the subsequent potential for criticality, the IO HC is initially categorized as HC2. However, a novel application of the nature of the process argument was employed to reduce the IO HC from HC2 to less than HC3 (LTHC3). The IO is composed of five separate uranium metal plates that total no greater than 3.82 kg of U-235 (U(20)). The IO is planned to be arranged in various configurations. As the IO serves as a standard for experimentation aimed at establishing techniques for detection of fissionable materials, it may be placed in close proximity to various reflectors, moderators, or both. The most reactive configurations of the IO were systematically evaluated and shown that despite the mass of U-235 and potential positioning near various reflectors and moderators, the IO cannot be assembled into a critical configuration. Therefore, the potential for criticality does not exist. With Department of Energy approval, a Hazards Assessment Document with high-level (facility-level) controls on the plates negates the potential for criticality and satisfies the nature of the process argument to reduce the HC from HC2 to LTHC3.

Chelise A. Van De Graaff; Dr. Chad Pope; J. Todd Taylor

2012-05-01T23:59:59.000Z

468

Hazardous Waste/Mixed Waste Treatment Building throughput study  

SciTech Connect

The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

England, J.L.; Kanzleiter, J.P.

1991-12-18T23:59:59.000Z

469

Environmental Hazards Assessment Program quarterly report, January--March 1995  

SciTech Connect

The objectives of the Environmental Hazards Assessment Program (EHAP) stated in the proposal to DOE are to: develop a holistic, national basis for risk assessment, risk management, and risk communication that recognizes the direct impact of environmental hazards on the health and well-being of all; develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects; and identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management. This report describes activities and reports on progress for the third quarter (January--March) of the third year of the grant. It reports progress against these grant objectives and the Program Implementation Plan published at the end of the first year of the grant. Questions, comments, or requests for further information concerning the activities under this grant can be forwarded to Jack Davis in the EHAP office of the Medical University of South Carolina at (803) 727-6450.

NONE

1995-04-30T23:59:59.000Z

470

Fire hazard analysis for Plutonium Finishing Plant complex  

SciTech Connect

A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

MCKINNIS, D.L.

1999-02-23T23:59:59.000Z

471

A hazards analysis of a nuclear explosives dismantlement  

SciTech Connect

This paper describes the methodology used in a quantitative hazard assessment of a nuclear weapon disassembly process. Potential accident sequences were identified using an accident-sequence fault tree based on operational history, weapon safety studies, a hazard analysis team composed of weapons experts, and walkthroughs of the process. The experts provided an initial screening of the accident sequences to reduce the number of accident sequences that would be quantified. The accident sequences that survived the screening process were developed further using event trees. Spreadsheets were constructed for each event tree, the accident sequences associated with that event tree were entered as rows on the spreadsheet, and that spreadsheet was linked to spreadsheets with initiating-event frequencies, enabling event probabilities, and weapon response probabilities. The probability and frequency distribution estimates used in these spreadsheets were gathered from weapon process operational data, surrogate industrial data, expert judgment, and probability models. Frequency distributions were calculated for the sequences whose point-value frequency represented 99% of the total point-value frequency using a Monte Carlo simulation. Partial differential importances of events and distributions of accident frequency by weapon configuration, location, process, and other parameters were calculated.

Bott, T.F.; Eisenhawer, S.W.

1995-07-01T23:59:59.000Z

472

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01T23:59:59.000Z

473

A Probabilistic Seismic Hazard Analysis Updates Review for Two DOE Sites  

Energy.gov (U.S. Department of Energy (DOE))

A Probabilistic Seismic Hazard Analysis Updates Review for Two DOE Sites Lawrence Salomone Pinnacle Specialty Group, Inc. DOE NPH Meeting October 21-22, 2014

474

CRAD, Hazard Analysis- July 25, 2014 (IEA CRAD 31-1, REV. 0)  

Energy.gov (U.S. Department of Energy (DOE))

Criteria Review and Approach Document (IEA CRAD 31-1, REV. 0) provides objectives, criteria, and approaches for reviewing Nuclear Facility Hazard Analysis.

475

Application of hazard analysis (HACCP) in starch production by the wet milling of maize.  

E-Print Network (OSTI)

??This study is based on the Hazard Analysis in the Wet Milling of maize for the production of starch at the Bellville plant of African (more)

Samuels, R. C.

1993-01-01T23:59:59.000Z

476

Applying System-Theoretic Accident Model and Processes (STAMP) to Hazard Analysis.  

E-Print Network (OSTI)

?? Although traditional hazard analysis techniques, such as failure modes and effect analysis (FMEA), and fault tree analysis (FTA) have been used for a long (more)

Song, Yao

2012-01-01T23:59:59.000Z

477

Bootstrap bandwidth selection in kernel hazard rate estimation / S. Jansen van Vuuren.  

E-Print Network (OSTI)

??The purpose of this study is to thoroughly discuss kernel hazard function estimation, both in the complete sample case as well as in the presence (more)

Van Vuuren, Stefan Jansen

2011-01-01T23:59:59.000Z

478

H.A.R. 11-265 - Hazardous Management: Interim Status Standard...  

Open Energy Info (EERE)

Status Standard for Owners and OperatorsLegal Abstract The Hawaii State Department of Health regulates hazardous waste management through this chapter of the administrative rules....

479

E-Print Network 3.0 - agency hazardous waste Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Ash Memorandum Conrad Simon Summary: water monitoring comparable to those required for handling hazardous wastes under Subtitle C, the Agency... waste from classification and...

480

OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are...

Note: This page contains sample records for the topic "hq hazard quotient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

482

HM-ACCESS Project (Framework for the Use of Electronic Shipping Papers for the Transport of Hazardous Materials)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline and Hazardous Materials Pipeline and Hazardous Materials Safety Administration Pipeline and Hazardous Materials Safety Administration HM-ACCESS Initiative James Simmons Acting Chief, Research and Development Office of Hazardous Materials Safety Engineering and Research Division May 2012 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration 2 H-azardous M-aterials A-utomated C-argo C-ommunication for E-fficient and S-afe S-hipments U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Background Purpose: To identify and eliminate barriers to the use of paperless hazard communication technologies to improve the delivery of critical hazardous materials (HM) safety information throughout the transportation chain.

483

Chemical Process Hazards Analysis (DOE-HDBK-1100-2004)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENGLISH ENGLISH DOE-HDBK-1100-2004 August 2004 Superseding DOE-HDBK-1100-96 February 1996 DOE HANDBOOK CHEMICAL PROCESS HAZARDS ANALYSIS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1100-2004

484

DOE Standard Natural Phenomena Hazards Site Characterization Criteria  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-94 2-94 March 1994 Change Notice No. 1 January 1996 Reaffirmed with Errata April 2002 DOE STANDARD NATURAL PHENOMENA HAZARDS SITE CHARACTERIZATION CRITERIA U.S. Department of Energy AREA FACR Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Environment Safety and Health Technical Information Services, U.S. Department of Energy, (800) 473-4376, Fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. DOE-STD-1022-94 ERRATA FOR DOE-STD-1022-94 REVISED FOREWORD ADDED REFERENCE TO DOE G 420.1-2

485

Design characteristics for facilities which process hazardous particulate  

SciTech Connect

Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

Abeln, S.P.; Creek, K.; Salisbury, S.

1998-12-01T23:59:59.000Z

486

Seismic Hazard Assessment of the Sheki-Ismayilli Region, Azerbaijan  

SciTech Connect

Seismic hazard assessment is an important factor in disaster management of Azerbaijan Republic. The Shaki-Ismayilli region is one of the earthquake-prone areas in Azerbaijan. According to the seismic zoning map, the region is located in intensity IX zone. Large earthquakes in the region take place along the active faults. The seismic activity of the Shaki-Ismayilli region is studied using macroseismic and instrumental data, which cover the period between 1250 and 2003. Several principal parameters of earthquakes are analyzed: maximal magnitude, energetic class, intensity, depth of earthquake hypocenter, and occurrence. The geological structures prone to large earthquakes are determined, and the dependence of magnitude on the fault length is shown. The large earthquakes take place mainly along the active faults. A map of earthquake intensity has been developed for the region, and the potential seismic activity of the Shaki-Ismayilli region has been estimated.

Ayyubova, Leyla J. [Geology Institute, Azerbaijan National Academy of Sciences, 29A, H. Javid Ave., Baku 1143 (Azerbaijan)

2006-03-23T23:59:59.000Z

487

Apparatus for the plasma destruction of hazardous gases  

DOE Patents (OSTI)

A plasma cell for destroying hazardous gases. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required.

Kang, Michael (Los Alamos, NM)

1995-01-01T23:59:59.000Z

488

Apparatus for the plasma destruction of hazardous gases  

DOE Patents (OSTI)

A plasma cell for destroying hazardous gases is described. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required. 4 figs.

Kang, M.

1995-02-07T23:59:59.000Z

489

Iron phosphate compositions for containment of hazardous metal waste  

DOE Patents (OSTI)

An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

Day, Delbert E. (Rolla, MO)

1998-01-01T23:59:59.000Z

490

Method and apparatus for the management of hazardous waste material  

DOE Patents (OSTI)

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

Murray, H. Jr.

1995-02-21T23:59:59.000Z

491

Standard Operating Procedures Template for Highly Hazardous Chemicals Title of Procedure  

E-Print Network (OSTI)

1 Standard Operating Procedures Template for Highly Hazardous Chemicals Title of Procedure: Date or the procedure.) Examples include: 1) Chemical hazards such as carcinogenic, irritant, corrosive, acutely toxic 2 of exposure associated with the procedure such as inhalation, injection, skin/eye contact) Exposure Limit: (As

492

Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground  

SciTech Connect

This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility.

Gaschott, L.J.

1995-06-16T23:59:59.000Z

493

Optimizing Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk  

E-Print Network (OSTI)

1 Optimizing Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk M. Rapik Saat hazardous materials transport risk by rail · Tank Car Design Optimization Model Tank car weight and capacity model Metrics to assess tank car performance Illustration of the optimization model

Barkan, Christopher P.L.

494

Fire and explosion hazards of oil shale. Report of Investigations/1989  

SciTech Connect

This publication presents the results of investigations into the fire and explosion hazards of oil-shale rocks and dust. Three areas were examined: the explosibility and ignitability of oil-shale dust clouds, the fire hazards of oil-shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles.

Not Available

1989-01-01T23:59:59.000Z

495

Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102  

SciTech Connect

Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

SHULTZ, M.V.

1999-04-05T23:59:59.000Z

496

Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests  

E-Print Network (OSTI)

Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests V. Tsiridis t The environmental hazard of six coal fly ash samples collected from various coal incineration plants were examined- bustion, considerable amounts of coal fly ash are still produced. Although coal fly ash can be moderately

Short, Daniel

497

INTRODUCTION Few post-wildfire hazards are as potentially devastating as a debris flow. Debris flows  

E-Print Network (OSTI)

INTRODUCTION Few post-wildfire hazards are as potentially devastating as a debris flow. Debris the influence of fire, a wildfire can transform a watershed with no recent history of debris flows are developing new techniques to assess the hazards posed by debris flows after wildfires. These techniques can

498

Journal of Hazardous Materials 194 (2011) 1523 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Chromate reduction in FeJournal of Hazardous Materials 194 (2011) 15­23 Contents lists available at ScienceDirect Journal Engineering, University of Leeds, Leeds LS2 9JT, UK d Diamond Light Source, Harwell Science and Innovation

Burke, Ian

499

GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does  

Open Energy Info (EERE)

GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does the Facility Require < GRR‎ | Elements Jump to: navigation, search Edit 18-CA-b.1 - What Level of Hazardous Waste Facility Permit Does the Facility Require California employs a five-tier permitting program which imposes regulatory requirements matching the degree of risk posed by the level of hazardous waste: * The Full Permit Tier includes all facilities requiring a RCRA permit as well as selected non-RCRA activities under Title 22 California Code of Regulations. * The Standardized Permit Tier includes facilities that manage waste not regulated by RCRA, but regulated as hazardous waste in California. * Onsite Treatment Permits (3-Tiered) includes onsite treatment of non-RCRA waste regulated in California.

500

GRR/Section 18 - Waste and Hazardous Material Assessment Process | Open  

Open Energy Info (EERE)

- Waste and Hazardous Material Assessment Process - Waste and Hazardous Material Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18 - Waste and Hazardous Material Assessment Process 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Environmental Protection Agency Regulations & Policies RCRA CERCLA 40 CFR 261 Triggers None specified Click "Edit With Form" above to add content 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The use of underground and above ground storage tanks, discovery of waste