National Library of Energy BETA

Sample records for housing units space

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters ... Vacant housing units, seasonal units, second homes, military housing, and group quarters ...

  2. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters ... Vacant housing units, seasonal units, second homes, military housing, and group quarters ...

  3. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Space ... ,,"RSEs for UrbanRural Location (as Self-Reported)" ,"RSEs for Housing Units " "Space ...

  4. "Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  5. "Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Use of central air conditioning equipment for another housing unit also ...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Housing units are classified as urban or rural using definitions created by ...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Use of heating equipment for another housing unit also includes the use of ...

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Use of central air conditioning equipment for another housing unit also ...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Space Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to ...

  11. Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel

  12. Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    .4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Space Heating Equipment....... 1.2 0.6 Q Q Q 0.3 Q Have Main Space Heating Equipment.......... 109.8 32.3 8.0 3.3 5.8 14.1 1.1 Use Main Space Heating Equipment............ 109.1 31.8 8.0 3.2 5.6 13.9 1.1 Have Equipment But Do Not Use It.............. 0.8 0.5 N Q Q Q Q Main Heating Fuel

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  14. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Cooking includes fuels used by the major cooking equipment (ovens, cooktops, ...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ... Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19...

  18. Total U.S. Housing Units...................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Space Heating Usage Indicators Million U.S. Housing Units Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing ...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Energy Star is a joint program of the U.S. Environmental Protection Agency ...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... central air conditioning equipment for a business or farm building as well as another ... for Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... central air conditioning equipment for a business or farm building as well as another ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  2. 1997 Housing Characteristics Tables Housing Unit Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Million U.S. Households; 45 pages, 128 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 1997 4 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 1997 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 1997 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 1997 3 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Characteristics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" "Structural and ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... the use of the heating equipment for a business or farm building as well as another ... for Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... the use of the heating equipment for a business or farm building as well as another ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  6. 1997 Housing Characteristics Tables Housing Unit Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of U.S. Households; 45 pages, 121 kb) Contents Pages HC1-1b. Housing Unit Characteristics by Climate Zone, Percent of U.S. Households, 1997 4 HC1-2b. Housing Unit Characteristics by Year of Construction, Percent of U.S. Households, 1997 4 HC1-3b. Housing Unit Characteristics by Household Income, Percent of U.S. Households, 1997 4 HC1-4b. Housing Unit Characteristics by Type of Housing Unit, Percent of U.S. Households, 1997 3 HC1-5b. Housing Unit Characteristics by Type of Owner-Occupied

  7. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... includes households that occupy their primary housing unit without payment of rent. ... includes households that occupy their primary housing unit without payment of rent. ...

  8. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Total square footage includes all basements, finished or conditioned (heated ...

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 ...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Water ...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Water Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, ... to 1989","1990 to 1999","2000 to 2009" "Water Heating" "Total Homes",113.6,14.4,5.2,13.5...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, ...","Own","Rent","Own","Rent","Own","Rent" "Water Heating" "Total Homes",113.6,76.5,37.1,63....

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Water Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ... Cold","Mixed- Humid","Mixed-Dry" "Water Heating",,"Cold",,"Hot-Dry","Hot-Humid","M...

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Water Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ... to 119,999","120,000 or More" "Water Heating" "Total Homes",113.6,23.7,27.5,21....

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",37.1,13.7,10.9,6,3.2,1.6,0.6,1.1,10.1 "Payment Method for Energy Bills" "All Paid by ... their primary housing unit without payment of rent. 4Participation in assistance ...

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings ... Housing Unit" ,"RSEs for Housing Units ","Single-Family Units",,"Apartments in Buildings ...

  17. " Million U.S. Housing Units" ,,"2005...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Household Income, 2005" " Million U.S. Housing Units" ... to 79,999","80,000 or More" "Living Space Characteristics" "Total",111.1,26.7,28.8,2...

  18. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 ...

  19. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    Contact: Robert Latta, Survey Manager (rlatta@eia.doe.gov) World Wide Web: http:www.eia.doe.govemeuconsumption Table HC1-1a. Housing Unit Characteristics by Climate Zone, ...

  20. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Routine Service or Maintenance" "Performed on Main Heating Equipment3" ... 3Only includes routine service or maintenance performed in the last year. 4Housing ...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Routine Service or Maintenance" "Performed on Main Heating Equipment3" ... 3Only includes routine service or maintenance performed in the last year. 4Housing ...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Routine Service or Maintenance" "Performed on Main Heating Equipment4" ... 4Only includes routine service or maintenance performed in the last year. 5Housing ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Water Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing ... (millions)" ,,,,,,"5 or More Members" "Water Heating",,"1 Member","2 Members","3 ...

  5. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Living ... ,,"RSEs for UrbanRural Location (as Self-Reported)" ,"RSEs for Housing Units (millions)" ...

  6. Total U.S. Housing Units.................................

    U.S. Energy Information Administration (EIA) Indexed Site

    At Home Behavior Home Used for Business Yes......Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units ...

  7. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Department of Energy's Office of Energy and Efficiency and Renewable Energy (EERE). 5Rented includes households that occupy their primary housing unit without payment of rent. ...

  8. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Unconditioned and unfinished areas in attics and attached garages are excluded. 3Housing units are classified as urban or rural using definitions created by the U.S. Census Bureau, ...

  9. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Have Space Heating Equipment But Do " "Not Use It",2.4,"Q","Q","Q","N","N","N","N","N" "Do Not Have Space Heating Equipment",1.2,"N","N","N","N","N","N","N","N" ...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Have Space Heating Equipment But Do " "Not Use It",2.4,"Q","Q","Q","Q","N","N","Q","N","Q","N" "Do Not Have Space Heating Equipment",1.2,"Q","Q","N","Q","N","Q","N",...

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  14. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Home Electronics Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating Characteristics by UrbanRural Location, 2005" " Million U.S. Housing Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Water Heating ...

  17. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing ... Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,"Detached","Atta...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Routine Service or Maintenance" "Performed on Central Air" ... unit 3Only includes routine service or maintenance performed in the last year. 4Energy ...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Solar",1.2,1.1,"Q","Q","Q","Q" "Electricity End Uses2" "(more than one may apply)" "Space ... that use these fuels. However, Consumption and Expenditures estimates only ...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Solar",1.2,0.5,0.1,0.3,0.3,0.1 "Electricity End Uses3" "(more than one may apply)" "Space ... that use these fuels. However, Consumption and Expenditures estimates only ...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Solar",1.2,0.2,0.2,0.3,0.5 "Electricity End Uses2" "(more than one may apply)" "Space ... that use these fuels. However, Consumption and Expenditures estimates only ...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Solar",1.2,0.2,0.6,0.2,0.1,0.1 "Electricity End Uses2" "(more than one may apply)" "Space ... that use these fuels. However, Consumption and Expenditures estimates only ...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    But Do " "Not Use It",2.4,1.6,0.1,"Q","Q","N",0.1,0.1,"Q",1.5,1.4,"Q" "Do Not Have Space Heating Equipment",1.2,0.8,"Q","N","N","N","Q","Q","N",0.8,0.3,0.5 "Main Heating ...

  4. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC5.9 Home Appliances Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  5. Total U.S. Housing Units..................................

    U.S. Energy Information Administration (EIA) Indexed Site

    At Home Behavior Home Used for Business Yes......Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached ...

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Appliances in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,,,,,"5 or More Units","Mobile Homes" "Appliances",,"Detached","Attached","2 to 4 Units" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Cooking Appliances" "Stoves (Units With

  7. Million U.S. Housing Units Total U.S. Housing Units........................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Units........................................ 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Heating Equipment........................... 1.2 Q Q N 0.3 0.8 Have Space Heating Equipment............................. 109.8 10.9 26.0 27.3 23.7 22.0 Use Space Heating Equipment.............................. 109.1 10.9 26.0 27.3 23.2 21.7 Have But Do Not Use Equipment.......................... 0.8 N N Q 0.5 Q Space Heating Usage During 2005 Heated Floorspace (Square Feet)

  8. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment"

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ... to 5,499 HDD","Less than 4,000 HDD" "Water Heating Characteristics" ...

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,30,34.8,18.4,15.9,12 "Do Not Have Heating Equipment",1.2,0.3,0.3,"Q",0.2,0.2

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    than 4,000 HDD",22.8,11.4,3.1,4.4,3.9 "Type of Housing Unit" "Single-Family Detached",72.1,24.3,12.9,17,17.8 "Single-Family Attached",7.6,4.7,1.2,1.5,"Q" "Apartments in 2-4 Unit ...

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit",15.2,7.8,1,1.2,3.3,1.9 "For Two Housing Units",0.9,"Q","N","Q",0.6,"N" "Heat Pump",9.2,7.4,0.3,"Q",0.7,0.5 "Portable Electric Heater",1.6,0.8,"Q","Q","Q",0.3 "Other ...

  14. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit",15.2,0.3,1.2,2,4.6,7.1 "For Two Housing Units",0.9,"N","Q","Q","Q",0.5 "Heat Pump",9.2,"Q",0.4,2.7,1.8,4.2 "Portable Electric Heater",1.6,"N","Q","Q",0.6,0.7 "Other ...

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit",15.2,4.4,3.8,2.6,2.4,1.9 "For Two Housing Units",0.9,0.4,"Q","Q","Q","Q" "Heat Pump",9.2,2.2,3.6,1.5,1.2,0.7 "Portable Electric Heater",1.6,0.4,0.3,0.3,"Q",0.3 "Other ...

  16. Vale Slaughter House Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Slaughter House Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Slaughter House Space Heating Low Temperature Geothermal Facility Facility...

  17. Before House Committee on Science, Space, and Technology - Subcommitte...

    Energy Savers [EERE]

    House Committee on Science, Space, and Technology - Subcommittees on Environment and Energy Before House Committee on Science, Space, and Technology - Subcommittees on Environment ...

  18. Before the House Science, Space, and Technology Subcommittee...

    Energy Savers [EERE]

    Technology Laboratory Before the House Science, Space, and Technology Subcommittee on ... the Subcommittee on Energy -- House Science, Space, and Technology Committee Before ...

  19. Before the House Science, Space, and Technology Subcommittee...

    Energy Savers [EERE]

    House Science, Space, and Technology Subcommittee on Investigations and Oversight Before the House Science, Space, and Technology Subcommittee on Investigations and Oversight...

  20. Hearing Before the House Science, Space, and Technology Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Science, Space, and Technology Subcommittee on Energy, and Subcommittee on Oversight Hearing Before the House Science, Space, and Technology Subcommittee on Energy, and ...

  1. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Rural",22.3,3.7,4.8,5,5,3.9 "Type of Housing Unit" "Single-Family Detached",72.1,8.1,16.6,16.4,15.5,15.5 "Single-Family Attached",7.6,0.8,2,2.5,1.6,0.7 "Apartments in 2-4 ...

  2. Testimony Before the House Committee on Science, Space, and Technology

    Broader source: Energy.gov [DOE]

    Secretary Moniz's full written testimony prepared for the House Committee on Science, Space, and Technology.

  3. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,72.1,7.6,7.8,16.7,6.9 "Indoor Lights

  4. " Million U.S. Housing Units" ,,"2005...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...5.2,4.4,4.4,2.6,1.5,2.3,3,6 "For Two Housing Units",0.9,0.3,0.4,"Q","Q","N","Q",0.4 "Heat Pump",9.2,1.2,2.2,2,1.3,2.4,0.6,1.9 "Portable Electric Heater",1.6,0.7,0.6,"Q","N","Q",0.4...

  5. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Living Space Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Floorspace (Square Feet)" ...

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Appliances in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Appliances",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Appliances in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Appliances",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

  8. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Appliances in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,"Total U.S.1 (millions)","Census Region" "Appliances",,"Northeast","Midwest","South","West" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)" "Use a Stove",102.3,19.2,23.9,38.2,20.9

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ," Housing Units (millions) ","Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Cooking

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Home Appliances Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S.",111.1,72.1,7.6,7.8,16.7,6.9 "Cooking

  11. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Appliances in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Appliances in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD,

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Appliances in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD"

  14. Before the House Committee on Science, Space and Technology Subcommitt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science, Space and Technology Subcommittee on Energy Before the House Committee on Science, Space and Technology Subcommittee on Energy Testimony of Dr. Imre Gyuk, Program Manger ...

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Appliances in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Appliances" "Total

  16. Before the House Science, Space, and Technology Committee | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Science, Space, and Technology Committee Before the House Science, Space, and Technology Committee Before the House Science, Space, and Technology Committee By: Dr. Arun Majumdar, Director Advanced Research Projects Agency (ARPA-E) Subject: DOE's Clean Energy R&D Activities 6-15-11_Final_Testimony_Majumdar.pdf (99.69 KB) More Documents & Publications Before the House Subcommittee on Investigations and Oversight Committee on Science, Space and Technology Overview on Energy

  17. " Million U.S. Housing Units" ,,"2005 Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ... to 79,999","80,000 or More" "Water Heating Characteristics" ...

  18. Data mining of space heating system performance in affordable housing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ren, Xiaoxin; Yan, Da; Hong, Tianzhen

    2015-02-16

    The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems inmore » terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from this study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.« less

  19. Data mining of space heating system performance in affordable housing

    SciTech Connect (OSTI)

    Ren, Xiaoxin; Yan, Da; Hong, Tianzhen

    2015-02-16

    The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems in terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from this study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.

  20. Before House Committee on Science, Space and Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Science, Space and Technology Before House Committee on Science, Space and Technology Before House Committee on Science, Space and Technology By: Secretary Steven Chu Subject: FY 2013 Budget Request to Congress 3-1-12_SecretaryChu_FT.pdf (34.67 KB) More Documents & Publications FY 2013 Budget Hearing Before the House Subcommittee on Energy and Power - Committee on Energy and Commerce Before the Senate Energy and Natural Resources Committee

  1. Before the House Committee on Science, Space, and Technology | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Committee on Science, Space, and Technology Before the House Committee on Science, Space, and Technology Testimony of Secretary Ernest Moniz Before the House Committee on Science, Space, and Technology 2-25-15_Ernest_Moniz FT HSST.pdf (112.18 KB) More Documents & Publications FY16 Budget Rollout Fact Sheet Before the House Subcommittee on Energy and Power, Committee on Energy and Commerce Before the Senate Committee on Energy and Natural Resources

  2. Before the House Committee on Science, Space, and Technology...

    Broader source: Energy.gov (indexed) [DOE]

    8-13SecretaryErnestMonizFTHSST.pdf More Documents & Publications Before the Senate Energy and Natural Resources Committee Before House Committee on Science, Space and...

  3. Before the House Science, Space, and Technology Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the House Science, Space, and Technology Subcommittee on Energy and Environment By: Victor Der, Assistant Secretary Office of Fossil Energy Subject: Offshore Drilling Safety ...

  4. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Year of Construction, 2005" " Million U.S. Housing ... to 1989","1990 to 1999","2000 to 2005" "Water Heating Characteristics" ...

  5. Table HC1.1.1 Housing Unit Characteristics by

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Housing Unit Characteristics by" " Total, Heated, and Cooled Floorspace, 2005" ,,,"Total Square Footage" ,"Housing Units",,"Total",,"Heated",,"Cooled" "Housing Unit Characteristics","Millions","Percent","Billions","Percent","Billions","Percent","Billions","Percent" "Total",111.1,100,256.5,100,179.8,100,114.5,100 "Census Region

  6. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Lighting Usage Indicators" "Total U.S. Housing Units",111.1,30,34.8,18.4,15.9,12 "Indoor Lights Turned On During Summer" "Number of Lights Turned

  7. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Lighting Usage Indicators",,"City","Town","Surburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per

  8. Total U.S. Housing Units.............................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Space Heating Usage Indicators Below Poverty Line Eligible for Federal Assistance 1 ... Space Heating Usage Indicators Below Poverty Line Eligible for Federal Assistance 1 ...

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Basements" "Basement in Single-Family Homes" "and Apartments in 2-4 Unit ... "Attics" "Attic in Single-Family Homes and" "Apartments in 2-4 Unit ...

  10. 120 years of U.S. residential housing stock and floor space

    SciTech Connect (OSTI)

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; Zhou, Wei -Xing

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.

  11. Total U.S. Housing Units.......................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Space Heating Usage Indicators UrbanRural Location (as Self-Reported) City Town Suburbs ... Space Heating Usage Indicators UrbanRural Location (as Self-Reported) City Town Suburbs ...

  12. Before the Subcommittee on Energy -- House Science, Space, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testimony of Christopher Smith, Acting Assistant Secretary Before the Subcommittee on Energy -- House Science, Space, and Technology Committee 7-25-13ChristopherSmith FT HSST.pdf ...

  13. Total U.S. Housing Units........................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Heating Equipment........................... 1.2 Q Q N Have Space Heating Equipment............................ 109.8 25.6 17.7 7.9 Use Space Heating Equipment............................. 109.1 25.6 17.7 7.9 Have But Do Not Use Equipment.......................... 0.8 N N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 0.5 Q Q 1 to

  14. Total U.S. Housing Units........................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Heating Equipment........................... 1.2 Q Q N Q Have Space Heating Equipment............................ 109.8 40.3 21.4 6.9 12.0 Use Space Heating Equipment............................. 109.1 40.1 21.2 6.9 12.0 Have But Do Not Use Equipment.......................... 0.8 Q Q N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 0.8 0.7 Q Q 1 to

  15. Total U.S. Housing Units............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 7.1 7.0 8.0 12.1 Do Not Have Heating Equipment............................... 1.2 Q Q Q 0.2 Have Space Heating Equipment................................ 109.8 7.1 6.8 7.9 11.9 Use Space Heating Equipment................................. 109.1 7.1 6.6 7.9 11.4 Have But Do Not Use Equipment.............................. 0.8 N Q N 0.5 Space Heating Usage During 2005 Heated Floorspace (Square Feet) None...................................................................... 3.6 Q 0.7 Q 1.3 1

  16. Total U.S. Housing Units.................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .... 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Heating Equipment.................... 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Space Heating Equipment..................... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Space Heating Equipment...................... 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have But Do Not Use Equipment................... 0.8 Q Q Q Q 0.3 Q N Q Space Heating Usage During 2005 Heated Floorspace (Square Feet)

  17. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Lighting Usage Indicators" "Total U.S. Housing Units",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2

  18. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC6.9 Home Appliances Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Home Appliances Characteristics" "Total U.S.",111.1,30,34.8,18.4,15.9,12 "Cooking Appliances" "Conventional Ovens" "Use an

  19. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC8.9 Home Appliances Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Appliances Characteristics",,"City","Town","Suburbs","Rural" "Total U.S.",111.1,47.1,19,22.7,22.3 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,46.2,18.8,22.5,22.1

  20. Hearing Before the House Science, Space and Technology Subcommittee on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy Space and Technology Subcommittee on Energy Hearing Before the House Science, Space and Technology Subcommittee on Energy 5-11-16_Christopher_Smith FT HSST (128.74 KB) More Documents & Publications Fossil Energy FY 2015 Budget in Brief Fossil Energy FY 2013 Budget-in-Brief FE FY 2017 BUDGET REQUEST PRESENTATION

  1. 120 Years of U.S. Residential Housing Stock and Floor Space

    SciTech Connect (OSTI)

    Pinto de Moura, Maria C.; Smith, Steven J.; Belzer, David B.

    2015-08-11

    Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions. Floor space is a major driver of building energy demand. This paper develops a historical time series of total residential floor space for 1891-2010 and examines the role of socio-economic drivers GDP, population and household size on floor space. Using primarily data from the U.S. Census Bureau, we develop new construction and vintage-disaggregated housing stock for three building types, and address various data inconsistency issues. An examination of the long-term relationship of GDP and total residential floor space shows a remarkably constant trend over the period. While population increases five times over the period, a 50% decrease in household size contributes towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. Total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years.

  2. High Performance Residential Housing Units at U.S. Coast Guard Base Kodiak: Preprint

    SciTech Connect (OSTI)

    Romero, R.; Hickey, J.

    2013-10-01

    The United States Coast Guard (USCG) constructs residential housing throughout the country using a basic template that must meet the minimum Leadership in Energy and Environmental Design (LEED) Silver criteria or better for the units. In Kodiak, Alaska, USCG is procuring between 24 and 100 residential multi-family housing units. Priorities for the Kodiak project were to reduce overall energyconsumption by at least 20% over existing units, improve envelope construction, and evaluate space heating options. USCG is challenged with maintaining similar existing units that have complicated residential diesel boilers. Additionally, fuel and material costs are high in Kodiak. While USCG has worked to optimize the performance of the housing units with principles of improved buildingenvelope, the engineers realize there are still opportunities for improvement, especially within the heating, ventilation, and air conditioning (HVAC) system and different envelope measures. USCG staff also desires to balance higher upfront project costs for significantly reduced life-cycle costs of the residential units that have an expected lifetime of 50 or more years. To answer thesequestions, this analysis used the residential modeling tool BEoptE+ to examine potential energy- saving opportunities for the climate. The results suggest criteria for achieving optimized housing performance at the lowest cost. USCG will integrate the criteria into their procurement process. To achieve greater than 50% energy savings, USCG will need to specify full 2x 6 wood stud R-21 insulationwith two 2 inches of exterior foam, R-38 ceiling insulation or even wall insulation in the crawl space, and R-49 fiberglass batts in a the vented attic. The air barrier should be improved to ensure a tight envelope with minimal infiltration to the goal of 2.0 ACH50. With the implementation of an air source heat pump for space heating requirements, the combination of HVAC and envelope savings inthe residential unit can save

  3. 120 years of U.S. residential housing stock and floor space

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; Zhou, Wei -Xing

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million squaremore » feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.« less

  4. Hearing Before the House Science, Space, and Technology Subcommittee on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, and Subcommittee on Oversight | Department of Energy Space, and Technology Subcommittee on Energy, and Subcommittee on Oversight Hearing Before the House Science, Space, and Technology Subcommittee on Energy, and Subcommittee on Oversight 03-03-16_HSST_McCall (60.27 KB) More Documents & Publications REFF West Presentation/Prepared Remarks DOE-LPO_Email-Update_001_Through_11 Presentation: DOE Loan Programs

  5. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Lighting Usage Indicators" "Total",111.1,10.9,26.1,27.3,24,22.8 "Indoor Lights

  6. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Home Appliances Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Home Appliances Characteristics" "Total U.S.",111.1,10.9,26.1,27.3,24,22.8

  7. FY 2017 Budget Request Before the House Science, Space, and Technology...

    Office of Environmental Management (EM)

    Request Before the House Science, Space, and Technology Committee FY 2017 Budget Request Before the House Science, Space, and Technology Committee 03-22-16SecretaryMonizTestimon...

  8. FY 2017 Budget Request Before the House Science, Space, and Technology Committee

    Broader source: Energy.gov [DOE]

    DOE's FY 2017 Budget Request Before the House Science, Space and Technology Committee. Testimony of Secretary Moniz.

  9. Table HC1.1.2 Housing Unit Characteristics by Average Floorspace, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Housing Unit Characteristics by Average Floorspace, 2005 " ,,"Average Square Feet per--" ," Housing Units (millions)" ,,"Housing Unit",,,"Household Member" "Housing Unit Characteristics",,"Total1","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,2171,1618,1031,845,630,401 "Census Region and Division" "Northeast",20.6,2334,1664,562,911,649,220

  10. Before the Subcommittee on Energy - House Committee on Science, Space, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Testimony of David Danielson, Assistant Secretary, Office of Energy Efficiency and Renewable Energy Before the Subcommittee on Energy - House Committee on Science, Space, and Technology 3-24-15_David_Danielson FT HSST.pdf (526.26 KB) More Documents & Publications EERE Strategic Plan

  11. Shared Space vs. In-Unit Upgrades in Multifamily Buildings |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shared Space vs. In-Unit Upgrades in Multifamily Buildings Shared Space vs. In-Unit Upgrades in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Peer...

  12. Shared Space vs. In-Unit Upgrades in Multifamily Buildings |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shared Space vs. In-Unit Upgrades in Multifamily Buildings Shared Space vs. In-Unit Upgrades in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Peer ...

  13. Table HC1.1.4 Housing Unit Characteristics by Average Floorspace--Apartments, 2

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Housing Unit Characteristics by Average Floorspace--Apartments, 2005" ,,,"Average Square Feet per Apartment in a --" ," Housing Units (millions)" ,,,"2 to 4 Unit Building",,,"5 or More Unit Building" ,,"Apartments (millions)" "Housing Unit Characteristics",,,"Total","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,24.5,1090,902,341,872,780,441

  14. "Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  15. "Table HC3.13 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  16. "Table HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  17. "Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  18. "Table HC4.13 Lighting Usage Indicators by Renter-Occupied Housing Unit Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Renter-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  19. "Table HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More

  20. Table HC7-6a. Home Office Equipment by Type of Rented Housing Unit,

    U.S. Energy Information Administration (EIA) Indexed Site

    6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.0 0.9 3.0 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Households Using Office Equipment .......................... 28.7 9.2 6.5 12.1 0.9 7.5 Personal Computers 1

  1. Measure Guideline. Five Steps to Implement the Public Housing Authority Energy-Efficient Unit Turnover Checklist

    SciTech Connect (OSTI)

    Liaukus, Christine

    2015-07-09

    Five Steps to Implementing the PHA Energy Efficient Unit Turnover Package (ARIES, 2014) is a guide to prepare for the installation of energy efficient measures during a typical public housing authority unit turnover. While a PHA is cleaning, painting and readying a unit for a new resident, there is an opportunity to incorporate energy efficiency measures to further improve the unit's performance. The measures on the list are simple enough to be implemented by in-house maintenance personnel, inexpensive enough to be folded into operating expenses without needing capital budget, and fast enough to implement without substantially changing the number of days between occupancies, a critical factor for organizations where the demand for dwelling units far outweighs the supply. The following guide lays out a five step plan to implement the EE Unit Turnover Package in your PHA, from an initial Self-Assessment through to Package Implementation.

  2. Earth sheltered housing in the south central United States

    SciTech Connect (OSTI)

    Grondzik, W.T. (Oklahoma State Univ., Stillwater); Grondzik, C.S.

    1982-01-01

    A detailed study of identified, occupied earth sheltered residences in the south central United States has been conducted by the Oklahoma State University. Selected results from this investigation of more than 150 residences in the states of Arkansas, Colorado, Iowa, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, and Texas are presented, focusing upon the issues of habitability and energy performance of such structures.

  3. Shared Space vs. In-Unit Upgrades in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Multifamily Peer Exchange Call: Shared Space vs. In-Unit Upgrades in Multifamily Buildings, Call Slides and Summary, May 9, 2013.

  4. Final Expert Meeting Report: Simplified Space Conditioning Strategies for Energy Efficient Houses

    SciTech Connect (OSTI)

    Stecher, D.

    2011-07-01

    More research is needed to evaluate the level of energy efficiency and the conditions where simplified space conditioning systems will work in new and retrofitted houses. Guidance is needed on the design and installation of these systems to support a wider adoption throughout the new construction and retrofit market. The purpose of this expert meeting was to recap the current state of knowledge in this area and to provide a peer review of IBACOS's research plan for new and existing unoccupied test houses with minimized space conditioning systems.

  5. Table 2.7 Type of Heating in Occupied Housing Units, 1950-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Type of Heating in Occupied Housing Units, 1950-2009 Year Coal 1 Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Natural Gas Electricity Wood Solar Other 2 None 3 Total Number of Occupied Housing Units<//td> 1950 14,483,420 9,460,560 [4] 975,435 11,121,860 276,240 4,171,690 NA 769,390 1,567,686 42,826,281 1960 6,455,565 17,158,401 [4] 2,685,770 22,851,216 933,023 2,236,866 NA 223,015 480,019 53,023,875 1970 1,821,000 16,473,000 [4] 3,807,000 35,014,000 4,876,000 794,000 NA 266,000

  6. Table HC1-2a. Housing Unit Characteristics by Year of Construction,

    U.S. Energy Information Administration (EIA) Indexed Site

    2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.6 1.2 1.0 1.1 1.1 0.8 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Census Region and Division Northeast ...................................... 20.3 1.5 2.4 2.1 2.8 3.0 8.5 8.8 New

  7. Table HC11.1 Housing Unit Characteristics by Northeast Census Region, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    1.1 Housing Unit Characteristics by Northeast Census Region, 2005 Total......................................................................... 111.1 20.6 15.1 5.5 Urban/Rural Location (as Self-Reported) City....................................................................... 47.1 6.9 4.7 2.2 Town..................................................................... 19.0 6.0 4.2 1.9 Suburbs................................................................ 22.7 4.4 4.0 0.5

  8. Table HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit,

    U.S. Energy Information Administration (EIA) Indexed Site

    5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.3 2.1 3.0 1.6 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Households Using Office Equipment .......................... 67.5 59.0 2.0 1.7 4.8 7.0

  9. Traction sheave elevator, hoisting unit and machine space

    DOE Patents [OSTI]

    Hakala, Harri; Mustalahti, Jorma; Aulanko, Esko

    2000-01-01

    Traction sheave elevator consisting of an elevator car moving along elevator guide rails, a counterweight moving along counterweight guide rails, a set of hoisting ropes (3) on which the elevator car and counterweight are suspended, and a drive machine unit (6) driving a traction sheave (7) acting on the hoisting ropes (3) and placed in the elevator shaft. The drive machine unit (6) is of a flat construction. A wall of the elevator shaft is provided with a machine space with its open side facing towards the shaft, the essential parts of the drive machine unit (6) being placed in the space. The hoisting unit (9) of the traction sheave elevator consists of a substantially discoidal drive machine unit (6) and an instrument panel (8) mounted on the frame (20) of the hoisting unit.

  10. Table HC2.11 Home Electronics Characteristics by Type of Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    Million U.S. Housing Units Total................................................................... 111.1 72.1 7.6 7.8 16.7 6.9 Personal Computers Do Not Use a Personal Computer ............... 35.5 17.8 3.1 3.7 7.3 3.6 Use a Personal Computer............................. 75.6 54.2 4.5 4.0 9.4 3.4 Number of Desktop PCs 1.............................................................. 50.3 33.9 3.1 3.0 7.6 2.7 2.............................................................. 16.2 12.7 0.9 0.7 1.4

  11. Table HC2.9 Home Appliances Characteristics by Type of Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    Million U.S. Housing Units Total U.S............................................................ 111.1 72.1 7.6 7.8 16.7 6.9 Cooking Appliances Conventional Ovens Use an Oven............................................... 109.6 71.3 7.4 7.7 16.4 6.8 1.............................................................. 103.3 66.2 7.2 7.4 15.9 6.7 2 or More................................................. 6.2 5.1 Q 0.3 0.5 Q Do Not Use an Oven................................... 1.5 0.7 Q Q 0.4 Q

  12. Building America Technology Solutions Case Study: Sealed Crawled Spaces with Integrated Whole-House Ventilation in a Cold Climate

    Broader source: Energy.gov [DOE]

    The Building America team Consortium for Advanced Residential Buildings (CARB) investigated a hybrid ventilation method that included the exhaust air from the crawl space as part of an ASHRAE 62.2-compliant whole-house ventilation strategy.

  13. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  14. EFFECT OF TEMPERATURE AND HUMIDITY ON FORMALDEHYDE EMISSIONS IN TEMPORARY HOUSING UNITS

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-04-01

    The effect of temperature and humidity on formaldehyde emissions from samples collected from temporary housing units (THUs) was studied. The THUs were supplied by the U.S Federal Emergency Management Administration (FEMA) to families that lost their homes in Louisiana and Mississippi during the Hurricane Katrina and Rita disasters. Based on a previous study 1, 2, four of the composite wood surface materials that dominated contributions to indoor formaldehyde were selected to analyze the effects of temperature and humidity on the emission factors. Humidity equilibration experiments were carried out on two of the samples to determine how long the samples take to equilibrate with the surrounding environmental conditions. Small chamber experiments were then conducted to measure emission factors for the four surface materials at various temperature and humidity conditions. The samples were analyzed for formaldehyde via high performance liquid chromatography. The experiments showed that increases in temperature or humidity contributed to an increase in emission factors. A linear regression model was built using natural log of percentage relative humidity (RH) and inverse of temperature (in K) as predictor variables, and natural log of emission factors as the target variable. The coefficients of both inverse temperature and log relative humidity with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. This study should assist to retrospectively estimate indoor formaldehyde exposures of occupants of temporary housing units (THUs).

  15. Table HC1.2.1. Living Space Characteristics by

    U.S. Energy Information Administration (EIA) Indexed Site

    Space Characteristics by" " Total, Heated, and Cooled Floorspace, 2005" ,,,"Total Square Footage" ,"Housing Units",,"Total1",,"Heated",,"Cooled" "Living Space Characteristics","Mil...

  16. Technology Solutions Case Study: Sealed Crawl Space with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    W. Zoeller, J. Williamson, and S. Puttagunta

    2015-09-01

    The Building America team Consortium for Advanced Residential Buildings (CARB) investigated a hybrid ventilation method that included the exhaust air from the crawl space as part of an ASHRAE 62.2-compliant whole-house ventilation strategy. The CARB team evaluated this hybrid ventilation method through long-term field monitoring of temperature, humidity, and pressure conditions within the crawl spaces of two homes (one occupied and one unoccupied) in New York state.

  17. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found

  18. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  19. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    SciTech Connect (OSTI)

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds

  20. Written Statement of Dr. Monica Regalbuto Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives (February 11 2016)

    Broader source: Energy.gov [DOE]

    Written Statement of Dr. Monica Regalbuto Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives February 11, 2016.

  1. Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Energy and Water Development Committee on Appropriations United States House of Representatives

    Broader source: Energy.gov [DOE]

    Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Energy and Water Development Committee on Appropriations United States House of Representatives (March 18, 2015)

  2. Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives (March 24, 2015)

    Broader source: Energy.gov [DOE]

    Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives March 24, 2015

  3. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis

  4. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Lighting Usage Indicators" "Total U.S. Housing

  5. DOE ZERH Case Study: United Way of Long Island Housing Development Corporation, Patchogue, NY

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning affordable home in the mixed-humid climate that got HERS 40 without PV, -3 with PV, with 2x4 16: on center walls with R-13.5 dense packed cellulose and 1.5” polyiso rigid; basement with 2.5: polyiso on interior; unvented attic with R-48 ocsf under roof deck; ERV tied to wall hung boiler with hydro coil.

  6. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    Zoeller, William; Williamson, James; Puttafunta, Srikanth

    2015-07-30

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent

  7. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    Zoeller, William; Williamson, James; Puttagunta, Srikanth

    2015-07-01

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests that observed temperature, humidity, and pressure conditions through the home and crawlspace.

  8. Dynamic analysis of the urban-based low-carbon policy using system dynamics: Focused on housing and green space

    SciTech Connect (OSTI)

    Hong, Taehoon; Kim, Jimin Jeong, Kwangbok; Koo, Choongwan

    2015-02-09

    To systematically manage the energy consumption of existing buildings, the government has to enforce greenhouse gas reduction policies. However, most of the policies are not properly executed because they do not consider various factors from the urban level perspective. Therefore, this study aimed to conduct a dynamic analysis of an urban-based low-carbon policy using system dynamics, with a specific focus on housing and green space. This study was conducted in the following steps: (i) establishing the variables of urban-based greenhouse gases (GHGs) emissions; (ii) creating a stock/flow diagram of urban-based GHGs emissions; (iii) conducting an information analysis using the system dynamics; and (iv) proposing the urban-based low-carbon policy. If a combined energy policy that uses the housing sector (30%) and the green space sector (30%) at the same time is implemented, 2020 CO{sub 2} emissions will be 7.23 million tons (i.e., 30.48% below 2020 business-as-usual), achieving the national carbon emissions reduction target (26.9%). The results of this study could contribute to managing and improving the fundamentals of the urban-based low-carbon policies to reduce greenhouse gas emissions.

  9. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Air Conditioning Characteristics"

  10. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC7.9 Home Appliances Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Appliances Characteristics" "Total

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....5,1.2,1.3,0.7,2.3,2.4,0.7,1.1,0.6 "Have Wireless Internet Access" "Yes",51.9,11.6,7.9,2.4...,0.3,0.3,0.2,0.3,0.7,0.2,0.3,0.2 "Device Charging Pattern" "Always Plugged ...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Access",32.5,15.8,1.8,3.7,7.3,3.9 "Have Wireless Internet Access" "Yes",51.9,36.4,3.2,3.5... than 8",7.9,6.4,0.4,0.3,0.6,0.3 "Device Charging Pattern" "Always Plugged ...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....5,5.5,1.2,0.6,0.6,4.3,2.1,1.7,0.5 "Have Wireless Internet Access" "Yes",51.9,9.6,2.9,1.3,...,1.4,0.4,0.2,0.3,0.9,0.3,0.3,0.3 "Device Charging Pattern" "Always Plugged ...

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Access",32.5,5.5,7.9,13.1,6 "Have Wireless Internet Access" "Yes",51.9,9.6,11.6,18.... "More than 8",7.9,1.4,1.7,2.8,2 "Device Charging Pattern" "Always Plugged ...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,1.9,1,1.8,2.6,0.9,1.7,4.2,2.5,1.7 "Have Wireless Internet Access" "Yes",51.9,18.5,10.4,1....,0.3,0.3,0.5,0.2,0.3,0.8,0.5,0.2 "Device Charging Pattern" "Always Plugged ...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Access",32.5,14.5,9,3.7,2.5,2.8 "Have Wireless Internet Access" "Yes",51.9,8.7,16.5,10,... than 8",7.9,0.4,1.3,1.6,2.3,2.4 "Device Charging Pattern" "Always Plugged ...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....1,1,0.5,0.4,1.1,0.6,0.5,3.9,2.9,1 "Have Wireless Internet Access" "Yes",51.9,12.1,3.7,1.9...,0.2,0.2,0.2,0.1,0.1,1.4,0.9,0.5 "Device Charging Pattern" "Always Plugged ...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...13,2.9,0.8,1,0.3,3.4,0.5,6.8,2.9,1 "Have Wireless Internet Access" "Yes",51.9,37.6,14.3,32...,0.2,0.2,"Q",0.3,"Q",0.5,0.2,"Q" "Device Charging Pattern" "Always Plugged ...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...32.5,4.4,2,4.4,4.4,5.7,5.2,3.8,2.6 "Have Wireless Internet Access" "Yes",51.9,6.5,2,5.4,5....,0.9,0.3,0.9,0.8,1.2,1.2,1.4,1.3 "Device Charging Pattern" "Always Plugged ...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....9,0.5,1,0.3,0.8,1.3,1,0.3 "Full Bathrooms" ...Q",0.3,"Q",0.2,"Q","Q","Q" "Part",5.5,0.8,0.7,0.2,"Q","N",0.... "Some of the Time",36,12.4,6.7,1,1.1,1.4,1.2,...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...Q","Q","Q","Q","Q",0.1,"Q" "Full Bathrooms" ....3,0.2,0.2,"N","N","N","N" "Part",5.5,5,0.5,4.7,0.3,0.2,0.1,... "Some of the Time",36,24.2,11.8,19.6,3.1,1.3,...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Homes",6.9,1.6,2.4,0.8,2,0.2 "Year of Construction" "Before 1940",14.4,7.7,4.5,0.8,0.6,0.... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Homes",6.9,0.5,1.1,3.9,1.4 "Year of Construction" "Before 1940",14.4,5.6,4.6,2.4,1.9 ... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",0.3,"Q","Q",0.5,0.2,0.2,0.1 "Year of Construction" "Before 1940",14.4,4.6,3.5,1,0.8,0.5,... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...5,0.1,"Q","Q",0.4,0.1,0.3,"Q" "Year of Construction" "Before 1940",14.4,5.6,1.8,1,0.8,3.8,... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...omes",6.9,1.9,2.1,1.2,0.8,0.9 "Year of Construction" "Before 1940",14.4,4.8,4.5,2,1.8,1.4 ... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Total U.S.1 (millions)",,,..."Below Poverty Line2" ,,"Less than 20,000","20,000 to ... the number of households below the poverty line, the annual household income and ...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Total U.S.1 (millions)",,,..."Below Poverty Line2" ,,"Less than 20,000","20,000 to ... the number of households below the poverty line, the annual household income and ...

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,2.9,0.8,0... the number of households below the poverty line, the annual household income and ...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,3.7,2.9,0... the number of households below the poverty line, the annual household income and ...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,6.7,10.1,... the number of households below the poverty line, the annual household income and ...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,7.2,3.4,0... the number of households below the poverty line, the annual household income and ...

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,5,3.9,2.9... the number of households below the poverty line, the annual household income and ...

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,3.1,0.9,0... the number of households below the poverty line, the annual household income and ...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line3" "Below 100 Percent",16.9,5.4,5.6,2... the number of households below the poverty line, the annual household income and ...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,2.9,3.7,7... the number of households below the poverty line, the annual household income and ...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,6.9,0.9,2... the number of households below the poverty line, the annual household income and ...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,2.4,1,2.1... the number of households below the poverty line, the annual household income and ...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Routine Service or Maintenance" "Performed on Central Air" ... 3Only includes routine service or maintenance performed in the last year. 4Energy ...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Routine Service or Maintenance" "Performed on Central Air" ... 3Only includes routine service or maintenance performed in the last year. 4Energy ...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...10.1,3.3,1.7,0.8,0.9,1.7,1,0.7,6.7,5,1.8 "Plasma",9.7,2.4,0.6,0.3,0.1,0.2,0.4,0.2,0.1,1.7,...,1.7,0.8,0.3,0.4,0.9,0.6,0.4,3.7,2.8,0.9 "Plasma",3.8,0.9,0.2,0.1,"Q","Q",0.1,0.1,"Q",0.7,...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,10.4,16,7.5,7,5.1 "Plasma",9.7,1.6,3,1.9,1.8,1.6 ... "LCD",25.4,4,8.7,5.2,4.4,3.1 "Plasma",3.8,0.6,1.2,0.6,0.7,0.8 ...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,8.8,2.2,1,1.2,6.6,3.2,1.9,1.6 "Plasma",9.7,1.7,0.4,0.2,0.2,1.3,0.5,0.4,0.3 ... "LCD",25.4,5,1.2,0.5,0.7,3.8,1.8,1.1,0.9 "Plasma",3.8,0.7,0.2,0.1,0.1,0.5,0.2,0.2,"Q" ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2.9,27.8,3.2,1.7,1,0.7,2.4,1.1,6,1.7,0.4 "Plasma",9.7,7.1,2.6,6.1,0.6,0.4,0.2,0.1,0.5,0.2,...17.1,1.8,1.1,0.4,0.4,0.8,0.6,2.2,0.8,0.2 "Plasma",3.8,2.7,1.1,2.4,0.3,0.1,0.1,"Q",0.2,"Q",...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,31,2.8,3,7.1,2.1 "Plasma",9.7,6.7,0.6,0.7,1.5,0.3 ... "LCD",25.4,18.9,1.5,1.2,2.8,1 "Plasma",3.8,2.7,0.2,0.2,0.6,"Q" ...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,1.4,2.7,1.3,2.2,2.9,1.1,1.8,4.7,3.3,1.4 "Plasma",9.7,3.7,2,0.3,0.2,0.6,0.3,0.5,0.4,0.2,0....,0.9,1.6,0.8,1.1,1.6,0.5,1.1,2.8,1.9,0.9 "Plasma",3.8,1.5,0.7,0.1,0.1,0.2,"Q","Q",0.1,"Q",...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,6.5,9.9,9,6.6,4.7,2.8,6.5,4.7 "Plasma",9.7,1.3,1.8,1.9,1.3,1,0.6,1.8,1 ...CD",25.4,2.9,4.8,4.5,3.7,2.9,1.8,4.7,2.2 "Plasma",3.8,0.4,0.7,0.8,0.5,0.4,0.3,0.8,0.3 ...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,5.5,1.6,5.2,5,7.5,6.6,7.4,7.2 "Plasma",9.7,1,0.5,1,1.1,1.2,1.6,1.5,1.9 ...CD",25.4,2.4,0.9,2.7,2.8,3.9,3.6,4.2,4.8 "Plasma",3.8,0.4,0.2,0.5,0.4,0.4,0.6,0.5,0.9 ...

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,15.6,14.9,5.7,7.3,2.4 "Plasma",9.7,3,3.1,1.4,1.7,0.6 ... "LCD",25.4,8.1,8.4,3.2,4.3,1.3 "Plasma",3.8,1,1.2,0.6,0.8,0.2 ...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,8.8,10.4,16.7,10.1 "Plasma",9.7,1.7,2,3.7,2.4 "Projection",5,0.6,0.9... "LCD",25.4,5,5.4,9.6,5.3 "Plasma",3.8,0.7,0.7,1.5,0.9 ...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,46,10.4,7,1.7,1.4,0.9,3,3.4,0.9,1.6,0.8 "Plasma",9.7,2,1.4,0.5,0.4,0.2,0.4,0.6,0.2,0.3,0....,5.4,3.6,1.1,0.7,0.4,1.4,1.7,0.6,0.8,0.4 "Plasma",3.8,0.7,0.5,0.2,"Q","Q",0.2,0.2,0.1,0.1,...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Air Conditioning",94,40.5,21.2,2.8,3.4,6.7,3.2,5.1,6.9,2.4,4.5,12.4,8.2,4.1 "Water Heating",47.1,27.3,16.1,1.8,1.8,6.2,2.2,4.2,5,1.8,3.1,6.2,4,2.3 "Cooking",71.2,31.7,17.9,2....

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Air Conditioning",94,65.8,28.3,54.6,6.5,3.4,2.2,1.1,5.1,2,13.2,4.7,1.2 "Water Heating",47.1,30.8,16.4,23.9,3.6,1.3,1.1,0.3,3,1,7.7,4.2,1 "Cooking",71.2,48.4,22.8,40.8,5....

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...3,1.3,0.6,0.7,2.9,1,1.5,0.4 "Air Conditioning",94,16.5,3.9,1.9,2,12.6,5.3,4.4,2.9 "Water Heating",47.1,5.1,1.4,0.5,0.9,3.7,1.2,2.1,0.4 "Cooking",71.2,10.1,3.6,1.4,2.3,6.5,2.3,3.2,1 ...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Air Conditioning",94,22.4,15,4.3,3.1,1.8,5.9,7.4,2.3,3.4,1.7 "Water Heating",47.1,7.6,4.8,0.7,0.8,0.7,2.7,2.8,1,1.4,0.4 "Cooking",71.2,15.4,9.7,1.6,1.9,1.6,4.7...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Air Conditioning",94,14.6,5.7,2.4,0.9,1.4,3.3,2.1,1.2,8.9,6.9,2.1 "Water Heating",47.1,7,2.5,0.9,0.3,0.6,1.6,1.2,0.4,4.5,1.4,3.1 "Cooking",71.2,13.9,5.1,3,1.4,1.6,2...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...5,3.6,2.5,1.5,3.1,3.5 "Air Conditioning",94,18.3,22.3,17.9,11.9,8.1,5.1,10.4,12.8 "Water Heating",47.1,11.4,12.8,8.9,5.6,3.2,1.7,3.5,8.2 "Cooking",71.2,14.2,17.1,13.4,9.2,6,3.5,7.7...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million ... Midwest",,,..."IA, MN, ND, SD" "Water Heating",,,,"IL","MI","WI","IN, ...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million ... MD, WV",,,,"AL, KY, MS",,,"AR, LA, OK" "Water Heating",,,,"VA","GA","FL",,"NC, ...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million ... Northeast",,,"CT, ME, NH, RI, VT" "Water Heating",,,,"MA",,,"NY","PA","NJ" "Total ...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million ... WY",,,,"Total Pacific",,"AK, HI, OR, WA" "Water Heating",,,,,"CO",,,"AZ","NM, NV",,"CA" ...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2,0.2,0.1,0.1,1.7,0.5,0.6,0.6 "Only A Few Times When Needed",19.6,2.7,0.6,0.3,0.3,2.2,0.6,...2.2,0.5,0.2,0.3,1.7,1,0.5,0.2 "Only A Few Times When Needed",13.9,5.9,2.1,1,1,3.8,2.4,0.9,...

  3. Simplified Space Conditioning in Low-Load Homes: Results from the Fresno, California, Retrofit Unoccupied Test House

    SciTech Connect (OSTI)

    Stecher, Dave; Poerschke, Andrew

    2014-02-01

    In this study, the Building America team, IBACOS, sought to determine cost-effective, energy-efficient solutions for heating and cooling houses. To this end, the team performed field testing in a retrofit unoccupied test house in Fresno, California, to evaluate three air-based heating, ventilation, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. These included a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  4. DOE Zero Energy Ready Home Case Study: United Way of Long Island Housing Development Corporation, Patchogue, NY

    Broader source: Energy.gov [DOE]

    Case study of a DOE 2015 Housing Innovation Award winning affordable home in the mixed-humid climate that got HERS 40 without PV, -3 with PV, with 2x4 16: on center walls with R-13.5 dense packed cellulose and 1.5” polyiso rigid; basement with 2.5: polyiso on interior; unvented attic with R-48 ocsf under roof deck; ERV tied to wall hung boiler with hydro coil.

  5. HIA 2015 DOE Zero Energy Ready Home Case Study: United Way of Long Island Housing Development Corporation, Patchogue, NY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Way of Long Island Housing Development Corporation Patchogue, NY DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced

  6. Before the Subcommittee on Energy - House Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the Subcommittee on Energy - House Committee on Science, Space, and Technology Before the Subcommittee on Energy - House Committee on Science, Space, and Technology ...

  7. Simplified Space Conditioning in Low-Load Homes: Results from Pittsburgh, Pennsylvania, New Construction Unoccupied Test House

    SciTech Connect (OSTI)

    Poerschke, A.; Stecher, D.

    2014-06-01

    Field testing was performed in a new construction unoccupied test house in Pittsburgh, Pennsylvania. Four air-based heating, ventilation, and air conditioning distribution systems--a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms--were evaluated during heating, cooling, and midseason conditions. The relative ability of each system was assessed with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  8. Simplified Space Conditioning in Low-Load Homes: Results from Pittsburgh, Pennsylvania, New Construction Unoccupied Test House

    SciTech Connect (OSTI)

    Poerschke, Andrew; Stecher, Dave

    2014-06-01

    Field testing was performed in a new construction unoccupied test house in Pittsburgh, PA. Four air-based heating, ventilation, and air conditioning distribution systems—a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms—were evaluated during heating, cooling, and midseason conditions. The relative ability of each system was assessed with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  9. Forward House

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating and Ventilation Forward House UW-Madison UW-Milwaukee Faculty Advisors Professor Mark Keane | UW-Milwaukee Dr. Michael Cheadle | UW-Madison Professor Lesley Sager | UW-Madison Nic Dan Laura Jake Rob Jonnie Nasim Drew 1 2 Industry Partners Special Thanks to Professionals Professor Linda Keane | The School of the Art Institute of Chicago Cozette Moffatt | Interior Designer Students Emily Cruz | UW-Madison Marilyn Grace Cervantes | UW-Madison Rebecca Cohn | UW-Madison S t o r y A r c

  10. Simplified Space Conditioning in Low-Load Homes: Results from the Fresno, California, Retrofit Unoccupied Test House

    SciTech Connect (OSTI)

    Stecher, D.; Poerschke, A.

    2014-02-01

    Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems -- a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms -- were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  11. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    ... RSE Column Factor: Total 1997 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 1997 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  12. Energy House

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students learn about energy conservation and efficiency by using various materials to insulate a cardboard house.

  13. Building America Case Study: Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate, Ithaca, New York

    SciTech Connect (OSTI)

    2015-09-01

    "9One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests that observed temperature, humidity, and pressure conditions through the home and crawlspace. Additionally, CARB worked with NREL to perform multi-point tracer gas testing on six separate ventilation strategies - varying portions of 62.2 required flow supplied by the crawlspace fan and an upstairs bathroom fan. The intent of the tracer gas testing was to identify effective Reciprocal Age of Air (RAoA), which is equivalent to the air change rate in well-mixed zones, for each strategy while characterizing localized infiltration rates in several areas of the home.

  14. Self-adjustable supplemental support system for a cylindrical container in a housing

    DOE Patents [OSTI]

    Blaushild, Ronald M.

    1987-01-01

    A self-adjustable supplementary support system for a cylindrical container coaxially disposed in a cylindrical housing by upper flanged supports has a plurality of outwardly extending bracket units on the external surface of the container which coact with inwardly extending resiliently outwardly extending bracket units on the inner wall of the cylindrical housing. The bracket units have flanges which form a concave surface that seats on support bars, attached by links to torsion bars that are secured to ring segments annularly spaced about the inner wall of the cylindrical housing and the bracket units and support bars coact with each other to radially position and support the container in the housing during movement of the two components from a vertical to a horizontal position, and during transportation of the same.

  15. Self-adjustable supplemental support system for a cylindrical container in a housing

    DOE Patents [OSTI]

    Blaushild, R.M.

    1987-01-30

    A self-adjustable supplementary support system for a cylindrical container coaxially disposed in a cylindrical housing by upper flanged supports has a plurality of outwardly extending bracket units on the external surface of the container which coact with inwardly extending resiliently outwardly extending bracket units on the inner wall of the cylindrical housing. The bracket units have flanges which form a concave surface that seats on support bars, attached by links to torsion bars that are secured to ring segments annularly spaced about the inner wall of the cylindrical housing and the bracket units and support bars coact with each other to radially position and support the container in the housing during movement of the two components from a vertical to a horizontal position, and during transportation of the same. 14 figs.

  16. Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 25, 2014

    Broader source: Energy.gov [DOE]

    Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, U.S. Department of Energy, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 25, 2014, to discuss the President’s Fiscal Year (FY) 2015 budget for the Department of Energy’s (DOE) Office of Electricity Delivery and Energy Reliability (OE).

  17. Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 17, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, U.S. Department of Energy, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 17, 2015, to discuss the President’s Fiscal Year (FY) 2016 budget for the Department of Energy’s (DOE) Office of Electricity Delivery and Energy Reliability (OE).

  18. Education Office Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Office Housing Housing A housing forum and listings for housing in and around Los Alamos. Contact Postdoc Housing Email LANL Students' Association Email LANL postdoc...

  19. Before the House Subcommittee on Energy - Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the House Science and Technology Subcommittee on Energy and Environment Microsoft Word - Second ITER Council Press Release.doc Before the House Committee on Space, Science, ...

  20. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the House Subcommittee on Energy, Committee on Science, Space and Technology Testimony of Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House ...

  1. Before the House Subcommittee on Energy and Environment - Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Before the House Subcommittee on Energy and Environment - Committee on Science, Space, and Transportation Before the House Subcommittee on Energy and Environment -...

  2. "Table HC10.5 Space Heating Usage Indicators by U.S. Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Usage Indicators",,"Northeast","Midwest","South","West" "Total U.S. Housing Units",111.1,20.6,25.6,40.7,24.2 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Space Heating

  3. "Table HC14.5 Space Heating Usage Indicators by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Space Heating Usage Indicators",,,"Mountain","Pacific" "Total U.S. Housing Units",111.1,24.2,7.6,16.6 "Do Not Have Heating Equipment",1.2,0.7,"Q",0.7 "Have Space Heating

  4. "Table HC15.5 Space Heating Usage Indicators by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Space Heating Usage Indicators",,"New York","Florida","Texas","California" "Total U.S. Housing Units",111.1,7.1,7,8,12.1 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Space Heating

  5. "Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating Usage Indicators",,"City","Town","Suburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Do Not Have Heating Equipment",1.2,0.7,"Q",0.2,"Q" "Have Space Heating

  6. DOE Tour of Zero: Mutual Housing at Spring Lake by Mutual Housing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero: Mutual Housing at Spring Lake by Mutual Housing California 1 of 14 Mutual Housing built this 62-unit multifamily affordable housing development near Sacramento, California, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 14 In addition to DOE Zero Energy Ready Home, the high-efficiency construction meets the requirements of

  7. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,0.5,1030,968,711,524,492,362 "Year of Construction" "Before 1940",5.6,1991,1428,573,826,5... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  8. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...4.1,2090,1718,523,752,618,188 "Year of Construction" "Before 1940",10.1,2603,1836,963,1002... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  9. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...3.9,1128,1008,894,423,378,335 "Year of Construction" "Before 1940",2.4,2048,1477,1138,828,... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  10. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",1.4,995,867,466,369,322,173 "Year of Construction" "Before 1940",1.9,1646,1077,274,671,4... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  11. Meadowlark House

    Broader source: Energy.gov [DOE]

    This poster describes the energy efficiency features and sustainable materials used in the Greensburg GreenTown Chain of Eco-Homes Meadowlark House in Greensburg, Kansas.

  12. Open House Archive | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open House Archive 2014 Open House 2012 Open House 2010 Open House 2007 Open House 2005 Open House 2003 Open House 2001 Open House Back to the main Open House Page

  13. "Table HC11.5 Space Heating Usage Indicators by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Space Heating Usage Indicators",,,"Middle Atlantic","New England" "Total U.S. Housing Units",111.1,20.6,15.1,5.5 "Do Not Have Heating Equipment",1.2,"Q","Q","Q"

  14. "Table HC12.5 Space Heating Usage Indicators by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Usage Indicators",,,"East North Central","West North Central" "Total U.S. Housing Units",111.1,25.6,17.7,7.9 "Do Not Have Heating Equipment",1.2,"Q","Q","N"

  15. "Table HC13.5 Space Heating Usage Indicators by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Space Heating Usage Indicators",,,"South Atlantic","East South Central","West South Central" "Total U.S. Housing Units",111.1,40.7,21.7,6.9,12.1 "Do Not Have Heating

  16. Student Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In order to create a profile you will need a temporary access password. If you would like to take advantage of this housing resource you can request an access password at: ...

  17. Space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Links Fascinating Fluids Household Magnets Nanoscience Pi Day Rocks Favorite Science Questions Space Squishy Circuits Sweet Surface Area Bradbury Science Museum 1350 Central ...

  18. Before the House Subcommittee on Energy - Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Committee on Science, Space, and Technology Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting...

  19. Before the House Subcommittees on Energy and Oversight - Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittees on Energy and Oversight - Committee on Science, Space, and Technology Before the House Subcommittees on Energy and Oversight - Committee on Science, Space, and...

  20. Before the House Subcommittees on Oversight and Energy - Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittees on Oversight and Energy - Committee on Science, Space, and Technology Before the House Subcommittees on Oversight and Energy - Committee on Science, Space, and ...

  1. Education Office Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Office Housing Housing A housing forum and listings for housing in and around Los Alamos. Contact Postdoc Housing Email LANL Students' Association Email LANL postdoc program housing The Lab's postdoc program has a postdoc housing listing. If you are interested in posting a housing opportunity, send an email with the pertinent information to postdocprogram@lanl.gov. Housing listings will be posted for 1 month. If you wish for the listing to remain on the web site longer, please contact

  2. Building America Whole-House Solutions for Existing Homes: Islip Housing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Authority Energy Efficiency Turnover Protocols, Islip, New York | Department of Energy Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York Building America Whole-House Solutions for Existing Homes: Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York In this project, ARIES worked with two public housing authorities (PHA) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement at the time when units

  3. New Whole-House Solutions Case Study: Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware

    SciTech Connect (OSTI)

    2014-01-01

    In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).

  4. Before the House Subcommittee on Investigations and Oversight Committee on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science, Space and Technology | Department of Energy Investigations and Oversight Committee on Science, Space and Technology Before the House Subcommittee on Investigations and Oversight Committee on Science, Space and Technology Before the House Subcommittee on Investigations and Oversight Committee on Science, Space and Technology By: Dr. Arun Majumdar Subject: ARPA-E R&D Activities 1-24-12_ArunMajumdar_FT.pdf (34.29 KB) More Documents & Publications Before the House Science,

  5. Before the House Subcommittee on Investigations and Oversight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (34.29 KB) More Documents & Publications Before the House Science, Space, and Technology Committee Audit Report: OAS-M-14-08 Before the House Science and Technology Committee

  6. Solar space heater: do-it-yourself manual for low-cost passive solar panels

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    A passive solar space heating unit for installation on 20 houses of low-income families was designed and constructed. The unit was planned to be low cost and easy to construct. A brochure showing step by step construction is included. (MHR)

  7. Written Statement of David Huizenga Senior Advisor for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Armed Services Committee United States House of Representatives (May 9, 2013)

    Broader source: Energy.gov [DOE]

    Senior Advisor David Huizenga represented the Department of Energy’s (DOE) Office of Environmental Management (EM) before the Subcommittee on Strategic Forces Armed Services Committee United States...

  8. Cooling with a Whole House Fan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Cooling with a Whole House Fan Cooling with a Whole House Fan This whole-house fan is installed on the ceiling between the attic and living space. The louvers close when the fan is not operating. | Photo courtesy of Allison Casey. This whole-house fan is installed on the ceiling between the attic and living space. The louvers close when the fan is not operating. | Photo courtesy of Allison Casey. Whole house cooling using a whole house fan can

  9. Superinsulated houses

    SciTech Connect (OSTI)

    Shurcliff, W.A.

    1986-01-01

    Superinsulation is a direct response to the fast-rising cost of home heating. Of the many kinds of responses, superinsulation is proving to be the simplest and most cost-effective. Until the oil embargo of 1973 there was little interest in saving heat. When the oil shortage arrived and fuel costs doubled and redoubled, many architects responded, at first, by invoking solar energy. They examined the designs of existing solar-heated houses and proposed a great variety of new designs, most of which appeared - to the uninitiated - to have great promise. Most of the early designs were of the active type; some were of the passive type; a few were of the hybrid design.

  10. DOE ZERH Case Study: Mutual Housing California, Mutual Housing...

    Office of Scientific and Technical Information (OSTI)

    Housing California, Mutual Housing at Spring Lake, Woodland, CA Case study of a DOE 2015 Housing Innovation Award winning multifamily project of 62 affordable-housing...

  11. 2015 Arizona Housing Forum

    Broader source: Energy.gov [DOE]

    The 12th annual Arizona Housing Forum provides a platform for affordable housing professionals to network and share ideas to improve and create housing choices for Arizona. Registration is $350.

  12. Developing Alaskan Sustainable Housing

    Broader source: Energy.gov [DOE]

    The Association of Alaska Housing Authorities is holding a 3-day training event for housing development professionals titled Developing Alaskan Sustainable Housing (DASH). This is a unique...

  13. Before the House Subcommittee on Energy and Environment - Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Before the House Subcommittee on Energy and Environment - Committee on Science, Space, and Technology Testimony of Charles McConnell, Assistant Secretary of Fossil...

  14. Before the Subcommittee on Energy and Environment - House Committee...

    Broader source: Energy.gov (indexed) [DOE]

    Director National Energy Technology Laboratory Before the Subcommittee on Energy and Environment - House Committee on Science, Space, and Technology 11-30-12AnthonyCugini FT HSST...

  15. Before the Subcommittee on Energy - House Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the Senate Energy and Natural Resources Committee Before the Subcommittee on Energy and Power - Committee on Energy and Commerce Before House Committee on Science, Space, ...

  16. Before the House Subcommittees on Energy and Oversight - Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Oversight - Committee on Science, Space, and Technology Testimony of Christopher Smith, Principal Deputy Assistant Secretary for Fossil Energy Before the House Subcommittees...

  17. "Table HC11.2 Living Space Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Living Space Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than 500",3.2,0.9,0.5,0.4

  18. International science and technology policies: Testimony before the Subcommittee on International Scientific Cooperation, Committee on Science, Space, and Technology, United States House of Representatives, April 4, 1990

    SciTech Connect (OSTI)

    Trivelpiece, A.W.

    1990-04-04

    This paper reflects testimony before a congressional committee on International Science and Technology Policies. (FSD)

  19. Before the Committee on Energy and Natural Resources United States Senate |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy and Natural Resources United States Senate Before the Committee on Energy and Natural Resources United States Senate Statement Before the Committee on Energy and Natural Resources, United States Senate By: Steven Chu Secretary of Energy Subject: Energy Research & Development 1-21-10_Final_Testimony_(Secretary_Chu).pdf (30.08 KB) More Documents & Publications Before the House Subcommittee on Investigations and Oversight Committee on Science, Space and

  20. Protocol for House Parties

    Broader source: Energy.gov [DOE]

    Protocol for House Parties, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  1. CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE The Chicago Metropolitan Agency for Planning (CMAP) and its partners created Energy Impact Illinois (EI2) to promote home energy upgrades in single-family homes, multifamily housing units, and commercial buildings to help the region meet its 2008 Chicago Climate Action Plan and longer term GO TO 2040 Strategic Plan. EI2 enlisted the help of the Elevate Energy, a

  2. The Absent House: The Ecological House of Puerto Rico

    High Performance Buildings Database

    Vega Alta, PR The Absent House takes advantage of the benevolent climate of the humid tropics of Puerto Rico to play with the ambiguity of interior and exterior spaces. Main spaces include: a kitchenette and master bathroom suite; a guest tower with a bedroom, bathroom, and small library; an open, public pavilion for cooking, dining, and porch activities; a bathroom for visitors; an infrastructure pavilion for electricity and water consumption management; and an organic garden. The Patio of the Sun and the Stars, the most important s

  3. Space Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Videos Space

  4. AHFC Affordable Housing Summit

    Broader source: Energy.gov [DOE]

    The Alaska Housing Finance Corporation (AHFC) is hosting a summit to bring together Alaskans from across the state to identify the barriers and seek budget-neutral solutions to the numerous housing challenges facing Alaskans.

  5. 2015 Housing Innovation Awards

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE) Housing Innovation Awards recognize the very best in innovation on the path to zero energy ready homes. DOE Zero Energy Ready Home (ZERH) Housing Innovation...

  6. Insulator for laser housing

    DOE Patents [OSTI]

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  7. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "No Insulation",0.3,"N","Q","Q","Q","Q" "Don't Know",0.9,"Q","Q","Q","Q",0.3 "Home Is Too ... of the Time",2.2,"Q",0.5,0.8,0.5,0.4 "Don't Know",2.2,"Q",0.4,0.5,0.3,0.8 "Unusually ...

  8. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "No Insulation",0.3,"Q","Q","Q","Q","Q" "Don't Know",0.9,0.4,"Q","Q","Q","Q" "Home Is Too ... of the Time",2.2,0.5,0.7,0.3,0.5,"Q" "Don't Know",2.2,0.5,0.7,0.4,0.3,0.4 "Unusually ...

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... For this report, the heating or cooling degree-days are a measure of how cold or how hot a location is over a period of one year, relative to a base temperature of 65 degrees ...

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...Rented",33,8,3.4,5.9,14.4,1.2 "Year of Construction" "Before 1940",14.7,9.8,1,2.4,1.4,"Q" ... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line" "Below 100 Percent",16.6,8.9,2.6,1.... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line" "Below 100 Percent",16.6,6.5,1.4,2.... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  13. " Million U.S. Housing Units,...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Total U.S.1 (millions)",,,..."Below Poverty Line2" "Structural and Geographic ... the number of households below the poverty line, the annual household income and ...

  14. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line" "Below 100 Percent",16.6,7.5,4.9,0.... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  15. " Million U.S. Housing Units" ,,"2005...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ... for 2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ...

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line" "Below 100 Percent",16.6,3.2,2.5,0.... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  17. " Million U.S. Housing Units" ,,"2005...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ... "Income Relative to Poverty Line" "Below 100 Percent",16.6,15.6,1.1,"...

  18. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line" "Below 100 Percent",16.6,6.5,3.2,1.... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  19. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line" "Below 100 Percent",16.6,1,4.2,4.2,... weather station. 2. Below 150 percent of poverty line or 60 percent of median State ...

  20. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    More",14.2,3,2.2,0.8 "Income Relative to Poverty Line" "Below 100 Percent",16.6,3.5,2.6,0.... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  1. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line" "Below 100 Percent",16.6,9.1,1.5,1,... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  2. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line" "Below 100 Percent",16.6,3.2,3.5,6.... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  3. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    More",14.2,4,1.1,3 "Income Relative to Poverty Line" "Below 100 Percent",16.6,3.4,0.9,2.... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  4. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line" "Below 100 Percent",16.6,5.9,3.5,2,... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  5. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line" "Below 100 Percent",16.6,3.1,1.6,2.... " 1. Below 150 percent of poverty line or 60 percent of median State ...

  6. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "At Home Behavior" "Home Used for Business" "Yes",6.4,1.8,0.8,1.9,2 ... "At Home Behavior" "Home Used for Business" "Yes",7,12.8,21,14,11.3 ...

  7. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "At Home Behavior" "Home Used for Business" "Yes",6.4,5.4,"Q","Q",0.4,"Q" ... "At Home Behavior" "Home Used for Business" "Yes",7,7.6,31.1,51.1,26.6,42.5 ...

  8. " Million U.S. Housing Units" ,,"2005...

    U.S. Energy Information Administration (EIA) Indexed Site

    or More",0.6,"Q","Q","Q","Q","Q","N","Q" "Plasma Television Sets",3.6,0.6,0.8,0.5,0.6,1.2,...e",22.3,101.4,59.1,50.2,44.4,37.3,0,57.3 "Plasma Television Sets",10.8,25.1,22.2,22,24.5,1...

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ore",0.6,"Q","N","Q","Q","Q","Q","Q","Q" "Plasma Television Sets",3.6,"Q",0.2,0.5,0.4,0.5,...2.3,69.5,0,70.5,58.9,60.4,43.7,70.8,55.6 "Plasma Television Sets",10.8,54.5,28.9,25.3,30.5...

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "3 or More",0.6,"Q","Q","Q","Q","Q" "Plasma Television Sets",3.6,0.5,1.2,0.5,0.8,0.5 ... or More",22.3,71.6,48.8,40.4,46.6,56.8 "Plasma Television Sets",10.8,27.8,15.3,23.6,20.1...

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "3 or More",0.6,"Q","Q","Q","Q","Q" "Plasma Television Sets",3.6,0.2,0.8,0.7,0.9,1 ... or More",22.3,99.2,44.7,37.8,65.3,44.6 "Plasma Television Sets",10.8,30.5,29.9,22,24.4,1...

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "3 or More",0.6,"Q","Q","Q","Q" "Plasma Television Sets",3.6,1.5,0.6,1.2,0.4 ... "3 or More",22.3,46.9,40.4,37.1,69.4 "Plasma Television Sets",10.8,16.7,22.3,18.3,28.3 ...

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "3 or More",0.6,0.4,"Q","N","Q","N" "Plasma Television Sets",3.6,2.6,0.3,"Q",0.4,"Q" ... "3 or More",22.3,26.1,96.8,0,46.6,0 "Plasma Television Sets",10.8,13,32.3,38.4,26.5,5...

  14. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Personal Computers" "Do Not Use a Personal Computer",35.5,17.8,3.1,3.7,7.3,3.6 "Use a Personal Computer",75.6,54.2,4.5,4,9.4,3.4 "Most-Used Personal Computer" ...

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Personal Computers" "Do Not Use a Personal Computer",35.5,16.3,9.4,4,2.7,3.2 "Use a Personal Computer",75.6,13.8,25.4,14.4,13.2,8.8 "Most-Used Personal Computer" ...

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Number of Household Members, 2005" " Million U.S. ... Members","4 Members","5 or More Members" "Water Heating Characteristics" ...

  17. Million U.S. Housing Units Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Personal Computers Do Not Use a Personal Computer ............... 35.5 20.3 14.8 1.2 0.6 0.9 2.8 Use a Personal Computer............................. 75.6 57.8 49.2 2.9 1.2 1.4 3.0 Number of Desktop PCs 1.............................................................. 50.3 37.0 30.5 2.2 0.8 1.1 2.4 2.............................................................. 16.2 13.1 11.6 0.6 0.2 Q 0.4 3 or More................................................. 9.0 7.7 7.2 Q Q Q Q

  18. Million U.S. Housing Units Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Personal Computers Do Not Use a Personal Computer ............... 35.5 15.3 3.0 1.9 3.1 6.4 0.8 Use a Personal Computer............................. 75.6 17.7 5.0 1.6 2.8 8.0 0.4 Number of Desktop PCs 1.............................................................. 50.3 13.3 3.4 0.9 2.2 6.5 0.3 2.............................................................. 16.2 3.1 1.1 0.3 0.5 1.2 Q 3 or More................................................. 9.0 1.3 0.5 0.3 Q 0.3 N

  19. Million U.S. Housing Units Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Personal Computers Do Not Use a Personal Computer ............... 35.5 5.7 3.3 4.6 4.7 5.8 5.7 4.0 1.7 Use a Personal Computer............................. 75.6 9.0 4.1 7.9 7.8 13.1 12.9 13.3 7.5 Number of Desktop PCs 1.............................................................. 50.3 5.8 2.8 6.1 5.1 9.3 8.7 7.8 4.8 2.............................................................. 16.2 2.2 0.8 1.3 1.8 2.4 2.7 3.2 1.8 3 or

  20. Million U.S. Housing Units Total.....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment....................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................... 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment..................................... 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Air-Conditioning Equipment 1, 2 Central

  1. Million U.S. Housing Units Total......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Personal Computers Do Not Use a Personal Computer.................... 35.5 5.7 3.3 4.6 4.7 5.8 5.7 4.0 1.7 Use a Personal Computer................................ 75.6 9.0 4.1 7.9 7.8 13.1 12.9 13.3 7.5 Most-Used Personal Computer Type of PC Desk-top Model........................................... 58.6 6.7 3.5 6.3 6.2 10.3 9.9 10.2 5.6 Laptop Model............................................... 16.9 2.3 0.7 1.7 1.5 2.8 2.9 3.1 1.9 Hours Turned on

  2. Million U.S. Housing Units Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment........................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment........................................ 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment......................................... 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it........................ 1.9 1.1 0.8 Q N Q Q Air-Conditioning Equipment 1, 2 Central System...................................................... 65.9 51.7 43.9 2.5 0.7

  3. Million U.S. Housing Units Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment........................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment........................................ 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment......................................... 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it........................ 1.9 0.8 Q Q 0.2 0.3 Q Air-Conditioning Equipment 1, 2 Central System...................................................... 65.9 14.1 3.6 1.5

  4. Million U.S. Housing Units Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Cooling Equipment........................... 17.8 3.2 4.7 3.6 5.5 0.9 Have Cooling Equipment........................................ 93.3 7.7 21.4 23.7 18.5 21.9 Use Cooling Equipment......................................... 91.4 7.6 21.0 23.4 17.9 21.7 Have Equipment But Do Not Use it........................ 1.9 Q 0.4 0.4 0.6 0.3 Type of Air-Conditioning Equipment 2, 3 Central System..................................................... 65.9 4.8

  5. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Oven Use an Oven......................................................... 109.6 71.3 7.4 7.7 16.4 6.8 More Than Once a Day..................................... 8.9 5.7 0.5 0.6 1.3 0.7 Once a Day....................................................... 19.2 13.3 1.3 1.4 2.1 1.0 Between Once a Day and Once a Week........... 32.0 22.7 2.1 1.8 4.0 1.5 Once a Week.................................................... 19.1 12.2 1.2 1.3 3.0 1.4 Less than Once a

  6. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    8.1 64.1 4.2 1.8 2.3 5.7 Personal Computers Do Not Use a Personal Computer......................... 35.5 20.3 14.8 1.2 0.6 0.9 2.8 Use a Personal Computer...................................... 75.6 57.8 49.2 2.9 1.2 1.4 3.0 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 45.8 38.9 2.2 1.0 1.1 2.6 Laptop Model.................................................... 16.9 12.0 10.3 0.8 0.2 Q 0.4 Hours Turned on Per Week Less than 2

  7. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Personal Computers Do Not Use a Personal Computer......................... 35.5 15.3 3.0 1.9 3.1 6.4 0.8 Use a Personal Computer...................................... 75.6 17.7 5.0 1.6 2.8 8.0 0.4 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 12.8 4.0 1.1 2.0 5.4 0.3 Laptop Model.................................................... 16.9 4.9 1.0 0.4 0.8 2.6 Q Hours Turned on Per Week Less than 2

  8. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 0.4 1.7 2.1 2.2 1.7 2 Times A Day...................................................... 24.6 2.3 6.0 5.9 5.5 5.0 Once a Day........................................................... 42.3 5.6 10.3 9.7 8.1 8.7 A Few Times Each Week..................................... 27.2 2.1 6.1 7.2 6.0 5.7 About Once a Week.............................................. 3.9 0.3 0.7 1.0 1.1 0.8

  9. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer......................... 35.5 3.2 8.3 8.9 7.7 7.5 Use a Personal Computer...................................... 75.6 7.8 17.8 18.4 16.3 15.3 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 6.2 14.3 14.2 12.1 11.9 Laptop Model.................................................... 16.9 1.6 3.5 4.3 4.2 3.4 Hours Turned on Per Week Less than 2 Hours.............................................

  10. Million U.S. Housing Units Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.......................................... 8.2 1.0 0.8 1.0 1.2 1.4 1.2 1.0 0.6 2 Times A Day....................................................... 24.6 3.6 1.7 2.3 2.9 4.6 3.8 3.9 1.9 Once a Day............................................................ 42.3 5.4 2.5 4.7 4.5 7.0 7.9 6.6 3.8 A Few Times Each Week...................................... 27.2 3.6 1.6 3.4 2.8 4.7 4.5

  11. Million U.S. Housing Units Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 4.7 3.8 Q Q Q 0.6 2 Times A Day.............................................................. 24.6 16.0 13.3 0.8 0.4 Q 1.3 Once a Day.................................................................. 42.3 32.1 26.5 1.6 0.7 1.1 2.2 A Few Times Each Week............................................. 27.2 19.3 15.8 1.3 0.4 0.6 1.3 About Once a

  12. Million U.S. Housing Units Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.4 1.0 0.4 0.6 1.2 Q 2 Times A Day.............................................................. 24.6 8.6 2.3 1.0 1.6 3.5 0.2 Once a Day.................................................................. 42.3 10.1 2.3 1.1 2.1 4.3 0.4 A Few Times Each Week............................................. 27.2 7.8 2.0 0.7 1.3 3.6 Q About Once a

  13. Total U.S. Housing Units.......................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Energy Information Administration 2005 Residential Energy ... Type of Supplemental Heating Equipment Used Heat Pump......0.6 SteamHot Water System......

  14. Total U.S. Housing Units.......................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1.3 Q Q Q Energy Information Administration ... Type of Supplemental Heating Equipment Used Heat Pump......Q Q SteamHot Water System......

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "2,500 to 2,999",10.3,9.4,0.6,"Q","Q","Q" "3,000 to 3,499",6.7,6.3,0.3,"Q","N","N" "3,500 to 3,999",5.2,4.9,"Q","Q","Q","N" "4,000 or More",13.3,12.7,0.6,"Q","Q","N" ...

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ever",1.4,"Q",0.3,"Q",0.6,0.2 "Only a Few Times When Needed",11.4,1.7,3.1,2.3,3.5,0.9 ...ever",0.6,"Q","Q","Q","Q","Q" "Only a Few Times When Needed",12.1,1.5,4.2,3.8,1.7,0.9 ...

  17. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ever",1.4,0.4,0.3,"Q","Q",0.3 "Only a Few Times When Needed",11.4,3.5,3.4,1.6,1.6,1.2 ...ever",0.6,"Q",0.2,"Q","Q","Q" "Only a Few Times When Needed",12.1,4.6,3.1,1.7,1.5,1.1 ...

  18. " Million U.S. Housing Units" ,,"2005...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...4,0.4,0.4,0.3,"Q","Q",0.5,0.6 "Only a Few Times When Needed",11.4,2.4,2.9,2,1.5,2.6,1.2,3....6,"Q","Q","Q","Q","Q","Q",0.2 "Only a Few Times When Needed",12.1,4.2,3.2,1.9,1.4,1.4,2.5,...

  19. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Never",1.4,0.7,"Q","Q","Q" "Only a Few Times When Needed",11.4,4.9,1.8,2.9,1.8 "Quite a ... "Never",0.6,0.3,"Q","Q","Q" "Only a Few Times When Needed",12.1,5.8,2.2,1.7,2.4 "Quite a ...

  20. Peoria Tribal Housing Authority: Weatherization Training Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program 2009 Program Review Denver Colorado  Jason Dollarhide, Second Chief  Peoria Tribe of Indians of Oklahoma  Deputy Director, Housing Authority of the Peoria Tribe  The Peoria Tribe is located in Miami, Oklahoma  We currently have an enrollment of 2,900 Tribal members  The Peoria Tribal operations and Housing Authority employ 39 persons.  The Peoria Tribe and Housing Authority work in partnership with the Ottawa Tribe of Oklahoma. We manage 127 low-rent units in various

  1. Statement of Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, before the House Appropriations Subcommittee on Energy and Water Development, March 30, 2011

    Broader source: Energy.gov [DOE]

    Statement of Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, before the United States House of Representatives House Appropriations Subcommittee on Energy and...

  2. EcoHouse Program Overview

    Broader source: Energy.gov [DOE]

    Provides an overview of the Indianapolis Better Buildings program, the EcoHouse program, and Indianapolis Neighborhood Housing partnership (INHP).

  3. "Table HC9.5 Space Heating Usage Indicators by Climate Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Space Heating Usage Indicators" "Total U.S. Housing

  4. Table HC1.2.4 Living Space Characteristics by Average Floorspace--Apartments, 2

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Living Space Characteristics by Average Floorspace--Apartments, 2005" ,,,"Average Square Feet per Apartment in a --" ," Housing Units (millions)" ,,,"2 to 4 Unit Building",,,"5 or More Unit Building" ,,"Apartments (millions)" "Living Space Characteristics",,,"Total","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,24.5,1090,902,341,872,780,441

  5. White House Solar Champions of Change - Watch Now | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    On April 17, 2014 the White House honored solar energy deployment Champions of Change from across the United States. The honorees included several current and former SunShot awardees. The event live streamed from the White House - check out the video above. Additional Resources White House Fact Sheet: Building Progress, Supporting Solar Deployment and Jobs White House Blog Post: Building our Progress in Solar Deployment Addthis Related Articles White House Spotlights Solar Innovation as Summit

  6. A Field Study Comparison of the Energy and Moisture Performance Characteristics of Ventilated Versus Sealed Crawl Spaces in the South

    SciTech Connect (OSTI)

    Bruce Davis; Cyrus Dastur; William E. Warren; Shawn Fitzpatrick; Christine Maurer; Rob Stevens; Terry Brennan; William Rose

    2005-06-22

    This study compared the performance of closed crawl spaces, which had sealed foundation wall vents, a sealed polyethylene film liner and various insulation and drying strategies, to traditional wall-vented crawl spaces with perimeter wall vents and polyethylene film covering 100% of the ground surface. The study was conducted at 12 owner-occupied, all electric, single-family detached houses with the same floor plan located on one cul-de-sac in the southeastern United States. Using the matched pairs approach, the houses were divided into three study groups of four houses each. Comparative data was recorded for each house to evaluate sub-metered heat pump energy consumption, relative humidity, wood moisture content, duct infiltration, house infiltration, temperature, radon, and bioaerosol levels. Findings indicated that in the humid conditions of the southeastern United States, a properly closed crawl space is a robust construction measure that produces a substantially drier crawl space and significantly reduces occupied space conditioning energy use on an annual basis.

  7. Solar Affordable Housing Program

    Office of Environmental Management (EM)

    Solar Affordable Housing Program Why Solar for Tribes ... from a clean, renewable energy source Green jobs training ... with Other Tribal Communities The Great Plains Montana ...

  8. Commissioning of the Fresno, California, Retrofit Unoccupied Test House

    SciTech Connect (OSTI)

    Stecher, D.; Imm, C.

    2013-06-01

    Commissioning of instrumentation and limited short-term testing have been completed on a retrofit unoccupied test house in Fresno, California. This house is intended to be used as a laboratory in which several different methods of space conditioning distribution will be evaluated. This report provides background on the project, including specifications of the house and models used in its development, along with models to be evaluated through its operation.

  9. Before the House Subcommittee on Oversight and Investigations - Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commerce Committee | Department of Energy Oversight and Investigations - Energy and Commerce Committee Before the House Subcommittee on Oversight and Investigations - Energy and Commerce Committee Testimony of Peter W. Davidson, Executive Director, Loan Programs Office Before the House Subcommittee on Oversight and Investigations - Energy and Commerce Committee 5-30-14_Peter_Davidson FT HEC.pdf (60.78 KB) More Documents & Publications Hearing Before the House Science, Space, and

  10. Building a 40% Energy Saving House in the Mixed-Humid Climate

    SciTech Connect (OSTI)

    Christian, Jeffrey E; Bonar, Jacob

    2011-10-01

    This report describes a home that uses 40% less energy than the energy-efficient Building America standard - a giant step in the pursuit of affordable near-zero-energy housing through the evolution of five near-zero-energy research houses. This four-bedroom, two-bath, 1232-ft2 house has a Home Energy Rating System (HERS) index of 35 (a HERS rating of 0 is a zero-energy house, a conventional new house would have a HERS rating of 100), which qualifies it for federal energy efficiency and solar incentives. The house is leading to the planned construction of a similar home in Greensburg, Kansas, and 21 staff houses in the Walden Reserve, a 7000-unit "deep green" community in Cookville, Tennessee. Discussions are underway for construction of similar houses in Charleston, South Carolina, Seattle, Washington, Knoxville and Oak Ridge, Tennessee, and upstate New York. This house should lead to a 40% and 50% Gate-3, Mixed-Humid-Climate Joule for the DOE Building America Program. The house is constructed with structurally-insulated-panel walls and roof, raised metal-seam roof with infrared reflective coating, airtight envelope (1.65 air changes per hour at 50 Pascal), supply mechanical ventilation, ducts inside the conditioned space, extensive moisture control package, foundation geothermal space heating and cooling system, ZEHcor wall, solar water heater, and a 2.2 kWp grid-connected photovoltaic (PV) system. The detailed specifications for the envelope and the equipment used in ZEH5 compared to all the houses in this series are shown in Tables 1 and 2. Based on a validated computer simulation of ZEH5 with typical occupancy patterns and energy services for four occupants, energy for this all-electric house is predicted to cost only $0.66/day ($0.86/day counting the hookup charges). By contrast, the benchmark house would require $3.56/day, including hookup charges (these costs are based on a 2006 residential rates of $0.07/kWh and solar buyback at $0.15/kWh). The solar

  11. Multiple pump housing

    DOE Patents [OSTI]

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  12. Table HC9.4 Space Heating Characteristics by Climate Zone, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total......................................................................... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Space Heating Equipment................ 1.2 Q Q N 0.3 0.8 Have Main Space Heating Equipment.................... 109.8 10.9 26.0 27.3 23.7 22.0 Use Main Space Heating Equipment..................... 109.1 10.9 26.0 27.3 23.2 21.7 Have Equipment But Do Not Use It........................ 0.8 N N Q

  13. Before the House Subcommittee on Energy, Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dr. Peter Lyons, Assistant Secretary for Nuclear Energy Before the House Subcommittee on Energy, Committee on Science, Space and Technology 12-11-14Peter Lyons FT HSST.pdf More...

  14. New Whole-House Solutions Case Study: Quadrant Homes

    SciTech Connect (OSTI)

    none,

    2013-02-01

    Quadrant moved ducts and high efficiency furnace inside conditioned space on nearly all 300 customizable house plans. The builder uses dry, true factory-assembled walls, extensive air sealing, and just in time delivery for pre-sold homes.

  15. Housing And Mounting Structure

    DOE Patents [OSTI]

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.

    2005-03-08

    This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.

  16. Greenbuilt Retrofit Test House Final Report

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Earle, L.; Booten, C.; Tabares-Velasco, P. C.; Barker, G.; Hancock, C. E.

    2014-06-01

    The Greenbuilt house is a 1980's era house in the Sacramento area that was a prominent part of Sacramento Municipal Utility District's (SMUD) Energy Efficient Remodel Demonstration Program. The house underwent an extensive remodel, aimed at improving overall energy efficiency with a goal of reducing the home's energy use by 50%. NREL researchers performed a number of tests on the major systems touched by the retrofit to ensure they were working as planned. Additionally, SMUD rented the house from Greenbuilt Construction for a year to allow NREL to perform a number of tests on the cooling system and the water heating system. The goal of the space conditioning tests was to find the best ways to cut cooling loads and shift the summer peak. The water heating system, comprised of an add-on heat pump water heater and an integrated collector-storage solar water heater, was operated with a number of different draw profiles to see how varying hot water draw volume and schedule affected the performance of the system as a whole. All the experiments were performed with the house empty, with a simulated occupancy schedule running in the house to mimic the load imposed by real occupants.

  17. Before the House Science and Technology Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arun Majumdar, Director Advanced Research Projects Agency - Energy (ARPA-E) Subject: Oversight Hearing: Status of ARPA-E Program and Path Forward 1-27-10_Final_Testimony_(Majumdar).pdf (866.16 KB) More Documents & Publications Before the House Subcommittee on Investigations and Oversight Committee on Science, Space and Technology Before the House Science, Space, and Technology Committee Advanced Research Projects Agency - Energy Program Specific Recovery Plan

  18. Assistant Secretary Triay's Written Statement before the House

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appropriations Subcommittee on Energy and Water Development (March 16, 2010) | Department of Energy 16, 2010) Assistant Secretary Triay's Written Statement before the House Appropriations Subcommittee on Energy and Water Development (March 16, 2010) Statement of Inès Triay, Assistant Secretary for Environmental Management United States Department of Energy. Before the Subcommittee on Energy and Water Development Committee on Appropriations United States House of Representatives to answer

  19. Assistant Secretary Triay's Written Statement before the House

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appropriations Subcommittee on Energy and Water Development (March 30, 2011) | Department of Energy 30, 2011) Assistant Secretary Triay's Written Statement before the House Appropriations Subcommittee on Energy and Water Development (March 30, 2011) Written Statement of Inès Triay, Assistant Secretary for Environmental Management, United States Department of Energy, before the Subcommittee on Energy and Water Development Committee on Appropriations, United States House of Representatives,

  20. Assistant Secretary Triay's Written Statement before the House Armed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Subcommittee on Strategic Forces (April 5, 2011) | Department of Energy April 5, 2011) Assistant Secretary Triay's Written Statement before the House Armed Services Subcommittee on Strategic Forces (April 5, 2011) Written Statement of Inès Triay, Assistant Secretary for Environmental Management, United States Department of Energy, before the Subcommittee on Strategic Forces, Committee on Armed Services, United States House of Representatives, on April 5, 2011, to answer questions

  1. Existing Whole-House Solutions Case Study: Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York

    SciTech Connect (OSTI)

    J. Dentz, F. Conlin, D. Podorson, and K. Alaigh

    2014-08-01

    In this project, Building America team ARIES worked with two public housing authorities (PHA) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement at the time when units are refurbished between occupancies.

  2. Developing Alaskan Sustainable Housing Training

    Broader source: Energy.gov [DOE]

    Hosted by the Association of Alaska Housing Authorities (AAHA), this three-day training event covers strategies and technical issues related to sustainable housing development.

  3. Whole-House Systems Approach

    Broader source: Energy.gov [DOE]

    A whole-house systems approach considers the house as an energy system with interdependent parts, each of which affects the performance of the entire system.

  4. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  5. Bathtub Row Houses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bathtub Row Houses Manhattan Project in Los Alamos: Bathtub Row Houses Los Alamos was where efforts of the Manhattan Project came together to discover the science necessary to succeed-inventing the technical processes then producing and testing two nuclear devices. In Los Alamos, the park experience is a partnership among the Department of Energy, the National Park Service, private landowners, and Los Alamos County. Guest Cottage, Los Alamos Ranch School, 1942 6. Historical Museum Built as the

  6. Short-Term Monitoring Results for Advanced New Construction Test House - Roseville, California

    SciTech Connect (OSTI)

    Stecher, D.; Brozyna, K.; Imm, C.

    2013-09-01

    A builder (K. Hovnanian® Homes®), design consultant, and trades collaborated to identify a systems integrated measures package for a 2,253-ft² slab-on-grade ranch house to achieve a modeled energy savings of 60% with respect to the Building America House Simulation Protocols, while minimizing construction costs and without requiring changes to the drawing that would impact local code or zoning approval. The key building improvements were applying R-10 insulation to the slab edge, increasing exterior wall cavity insulation from R-13 to R-15, and increasing attic insulation from R-30 to R-38. Also, the air handling unit was relocated from the attic to conditioned space, and ductwork was relocated along the attic floor with an insulated bulkhead built above it. Short-term testing results showed that duct air leakage was low due to short duct runs and the placement of ductwork in conditioned space. However, during commissioning, the lack of access for servicing the ductwork and dampers in the bulkhead area prevented retroactive balancing of individual branches, resulting in significant differences between specified and measured airflow values for some duct runs. Thermal imaging results performed on the house when operating in both heating and cooling modes validated historic stratification issues of ceiling supply registers with high supply air temperatures. Long-term monitoring results will be detailed in a future report.

  7. U.S. Navy Moanalua Terrace Housing Project, Oahu, Hawaii | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Navy Moanalua Terrace Housing Project, Oahu, Hawaii U.S. Navy Moanalua Terrace Housing Project, Oahu, Hawaii Photo of the Moanalua Terrace U.S. Navy Housing Project on Oahu, Hawaii Moanalua Terrace is a U.S. Navy housing project on Oahu, Hawaii. At this site the Navy had demolished 752 units of family housing, which were being rebuilt in four phases. The Hawaiian Electric Company's (HECO's) $1,500 per unit rebate for solar water heaters installed on new construction projects was an

  8. Public Housing: A Tailored Approach to Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, Jordan; Conlin, Francis; Podorson, David; Alaigh, Kunal

    2014-06-01

    More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation 10 ten housing units. Total source energy consumption savings was estimated at 6%-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.

  9. Public Housing: A Tailored Approach to Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Podorson, D.; Alaigh, K.

    2014-06-01

    Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.

  10. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Air Distribution Retrofit Strategies for Affordable Housing | Department of Energy Air Distribution Retrofit Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies for Affordable Housing Jordan Dentz, Advanced Residential Integrated Energy Solutions (ARIES), and Francis Conlin, High Performance Building Solutions, Inc., presenting Air Distribution Retrofit Strategies for Affordable Housing.

  11. Buffalo Pushes Energy-Efficient Affordable Housing in New York | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Buffalo Pushes Energy-Efficient Affordable Housing in New York Buffalo Pushes Energy-Efficient Affordable Housing in New York Better Buildings Residential Network member PUSH (People United for Sustainable Housing) Buffalo broke ground in March 2014 on its Massachusetts Avenue Sustainable Homes (MASH) project. The initiative will create energy-efficient, affordable housing by renovating two vacant historic buildings and building one new multifamily structure. Part of the project's

  12. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, David

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  13. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  14. THE WHITE HOUSE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE WHITE HOUSE THE WHITE HOUSE THE WHITE HOUSE (13.56 KB) More Documents & Publications Audit Report: IG-0473 Lapse Documents Inspection Report: IG-0397

  15. OPEN HOUSE - Climate Prisms: Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OPEN HOUSE - Climate Prisms: Arctic OPEN HOUSE - Climate Prisms: Arctic WHEN: Jul 17, 2015 12:00 PM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, ...

  16. Manhattan Project: The "Big House"

    Office of Scientific and Technical Information (OSTI)

    The "Big House" was the dormitory for the Los Alamos Boys Ranch School. Students slept year-round on its unheated porches. During the Manhattan Project, the Big House contained, ...

  17. Interaction of Unvented Attics With Living Space in Three Northeast Homes

    SciTech Connect (OSTI)

    Puttagunta, S.; Faakye, O.

    2015-02-01

    Unvented roof assemblies are becoming common in North American construction. It is estimated that over 100,000 have been constructed since 1995 (Schumacher 2007). According to RECS 2011, more than 30% of homes with attics can be found in the very cold/cold climate areas, which equals about 10.4 million housing units. The magnitude of these numbers emphases the significance of properly understanding how the attic conditions vary with respect to the conditioned space below.

  18. White House Tribal Youth Gathering

    Broader source: Energy.gov [DOE]

    The White House will host the first-ever White House Tribal Youth Gathering to provide American Indian and Alaska Native youth from across the country the opportunity to interact directly with senior Administration officials and the White House Council on Native American Affairs. Registration is due May 8, 2015.

  19. Housing characteristics 1993

    SciTech Connect (OSTI)

    1995-06-01

    This report, Housing Characteristics 1993, presents statistics about the energy-related characteristics of US households. These data were collected in the 1993 Residential Energy Consumption Survey (RECS) -- the ninth in a series of nationwide energy consumption surveys conducted since 1978 by the Energy Information Administration of the US Department of Energy. Over 7 thousand households were surveyed, representing 97 million households nationwide. A second report, to be released in late 1995, will present statistics on residential energy consumption and expenditures.

  20. Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Islip Housing Authority Energy Efficiency Turnover Protocols Islip, New York PROJECT INFORMATION Project Name: Islip Housing Authority Unit Turnover Retrofit Program Location: Islip, NY Partners: Islip Housing Authority, http://www.rhaonline.com/ Advanced Residential Integrated Solutions Collaborative (ARIES), http://levypartnership.com/ Building Component: Whole building Application: Retrofit; single and multifamily Year Tested: 2013 Applicable Climate Zone(s): All PERFORMANCE DATA Cost of

  1. Kai'i Kai Hale Housing Center, Honolulu, Hawaii | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kai'i Kai Hale Housing Center, Honolulu, Hawaii Kai'i Kai Hale Housing Center, Honolulu, Hawaii Photo of U.S. Coast Guard Housing in Honolulu, Hawaii The U.S. Coast Guard (USCG) housing in Honolulu, Hawaii, is located at the Kia'i Kai Hale Housing Area. The USCG converted 278 units in the complex from electric water heaters to solar water-heating systems with assistance from the Federal Energy Management Program (FEMP) and rebates from the local power providers. The solar water-heating systems

  2. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Simulation Protocols (Building America Benchmark) - Building America Top Innovation House Simulation Protocols (Building America Benchmark) - Building America Top Innovation ...

  3. Strengthening Relationships Between Energy Programs and Housing...

    Energy Savers [EERE]

    Relationships Between Energy Programs and Housing Programs Strengthening Relationships Between Energy Programs and Housing Programs Better Buildings Residential Network Multifamily ...

  4. Comparison of Advanced Residential Water Heating Technologies in the United States

    SciTech Connect (OSTI)

    Maguire, Jeff; Fang, Xia; Wilson, Eric

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  5. 1997 Housing Characteristics Tables Home Office Equipment Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of U.S. Households; 13 pages, 48 kb) Contents Pages HC7-1b. Home Office Equipment by Climate Zone, Percent of U.S. Households, 1997 1 HC7-2b. Home Office Equipment by Year of Construction, Percent of U.S. Households, 1997 1 HC7-3b. Home Office Equipment by Household Income, Percent of U.S. Households, 1997 1 HC7-4b. Home Office Equipment by Type of Housing Unit, Percent of U.S. Households, 1997 1 HC7-5b. Home Office Equipment by Type of Owner-Occupied Housing Unit, Percent of U.S.

  6. Underground house book

    SciTech Connect (OSTI)

    Campbell, S.

    1980-01-01

    Aesthetics, attitudes, and acceptance of earth-covered buildings are examined initially, followed by an examination of land, money, water, earth, design, heat, and interior factors. Contributions made by architect Frank Lloyd Wright are discussed and reviewed. Contemporary persons, mostly designers, who contribute from their experiences with underground structures are Andy Davis; Rob Roy; Malcolm Wells; John Barnard, Jr.; Jeff Sikora; and Don Metz. A case study to select the site, design, and prepare to construct Earthtech 6 is described. Information is given in appendices on earth-protected buildings and existing basements; financing earth-sheltered housing; heating-load calculations and life-cycle costing; and designer names and addresses. (MCW)

  7. CAMDOpenHouse2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Advanced Microstructures and Devices OPEN HOUSE FREE & open to the public Hands on Science Demonstrations Tours of the Laboratory LSU CAMD 6980 Jefferson Hwy Baton Rouge, LA 70806 Phone: 225.578.8887 Fax: 225.578.6954 E-mail:evstev@lsu.edu Website: www.camd.lsu.edu *Located between College Drive and Corporate Boulevard Activities for all ages S a t u r d a y O c t o b e r 1 5 , 2 0 1 6 1 0 A . M . - 2 P . M .

  8. Development of Basic Housing Systems for Maximum Affordability

    SciTech Connect (OSTI)

    Aglan, H.; Gibbons, A.; McQueen, T.M.; Morris, C.; Raines, J.; Wendt, R.L.

    1999-04-19

    The ability to provide safe, habitable, comfortable housing for very low income residents within the target budget of $10,000 presents unique design and construction challenges. However, a number of preliminary conclusions have been inferred as being important concepts relative to the study of affordable housing. The term affordable housing can have many meanings and research is needed to define this explicitly. As it is most often used, affordable housing refers to an economic relationship between the price of housing, household income and current interest rates available from a lending institution. There is no direct relationship between architectural style, construction technology or user needs and the concept of affordability. For any home to be affordable, the home owner must balance the combination of housing needs and desires within the limits of an actual budget. There are many misconceptions that affordable housing must be defined as housing for those who cannot afford the free-market price. The concept of affordable housing must also include a component that recognizes the quality of the housing as an important element of the design and construction. In addition, responses to local climate impacts are necessary and are always part of a regional expression of architectural design. By using careful planning and design it may be possible to construct a limited dwelling unit today for a sum of approximately $10,000. Since the organization of the construction process must involve the owner/occupants as well as other volunteers, the project must not only be well conceived, but well developed and coordinated.

  9. Comfort and HVAC Performance for a New Construction Occupied Test House in Roseville, California

    SciTech Connect (OSTI)

    Burdick, A.

    2013-10-01

    K. Hovnanian® Homes constructed a 2,253-ft2 single-story slab-on-grade ranch house for an occupied test house (new construction) in Roseville, California. One year of monitoring and analysis focused on the effectiveness of the space conditioning system at maintaining acceptable temperature and relative humidity levels in several rooms of the home, as well as room-to-room differences and the actual measured energy consumption by the space conditioning system. In this home, the air handler unit (AHU) and ducts were relocated to inside the thermal boundary. The AHU was relocated from the attic to a mechanical closet, and the ductwork was located inside an insulated and air-sealed bulkhead in the attic. To describe the performance and comfort in the home, the research team selected representative design days and extreme days from the annual data for analysis. To ensure that temperature differences were within reasonable occupant expectations, the team followed Air Conditioning Contractors of America guidance. At the end of the monitoring period, the occupant of the home had no comfort complaints in the home. Any variance between the modeled heating and cooling energy and the actual amounts used can be attributed to the variance in temperatures at the thermostat versus the modeled inputs.

  10. Comfort and HVAC Performance for a New Construction Occupied Test House in Roseville, California

    SciTech Connect (OSTI)

    Burdick, A.

    2013-10-01

    K. Hovnanian(R) Homes(R) constructed a 2,253-ft2 single-story slab-on-grade ranch house for an occupied test house (new construction) in Roseville, California. One year of monitoring and analysis focused on the effectiveness of the space conditioning system at maintaining acceptable temperature and relative humidity levels in several rooms of the home, as well as room-to-room differences and the actual measured energy consumption by the space conditioning system. In this home, the air handler unit (AHU) and ducts were relocated to inside the thermal boundary. The AHU was relocated from the attic to a mechanical closet, and the ductwork was located inside an insulated and air-sealed bulkhead in the attic. To describe the performance and comfort in the home, the research team selected representative design days and extreme days from the annual data for analysis. To ensure that temperature differences were within reasonable occupant expectations, the team followed Air Conditioning Contractors of America guidance. At the end of the monitoring period, the occupant of the home had no comfort complaints in the home. Any variance between the modeled heating and cooling energy and the actual amounts used can be attributed to the variance in temperatures at the thermostat versus the modeled inputs.

  11. Building America Expert Meeting: Simplified Space Conditioning Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Energy Efficient Houses | Department of Energy Simplified Space Conditioning Strategies for Energy Efficient Houses Building America Expert Meeting: Simplified Space Conditioning Strategies for Energy Efficient Houses The Building America research team IBACOS conducted an expert meeting on March 11, 2011, at the Seaport Hotel in Boston, Massachusetts on the topic of simplified space conditioning systems in low load homes. This meeting provided a forum for presentations and discussions on

  12. SURE HOUSE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    blend in its Efficient, Affordable, Solar, Innovation--or EASI--House. Learn More AGGIE SOL The University of California, Davis, has strong pedigrees in both sustainable projects...

  13. High Performance Factory Built Housing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Factory Built Housing 2015 Building Technologies Office Peer Review Jordan Dentz, jdentz@levypartnership.com ARIES The Levy Partnership, Inc. Project Summary ...

  14. THE WHITE HOUSE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1, 2013 EXECUTIVE ORDER - - - - - - - PREPARING THE UNITED STATES FOR THE IMPACTS OF CLIMATE CHANGE By the authority vested in me as President by the Constitution and the laws of the United States of America, and in order to prepare the Nation for the impacts of climate change by undertaking actions to enhance climate preparedness and resilience, it is hereby ordered as follows: Section 1. Policy. The impacts of climate change -- including an increase in prolonged periods of excessively

  15. Chamberlain Heights Redevelopment: A Large Scale, Cold Climate Study of Affordable Housing Retrofits

    SciTech Connect (OSTI)

    Donnelly, K.; Mahle, M.

    2012-03-01

    The City of Meriden Housing Authority (MHA) collaborated with affordable housing developer Jonathon Rose Companies (JRC) to complete a gut renovation of 124 residential units in the Chamberlain Heights retrofit project. The affordable housing community is made up of 36 buildings in duplex and quad configurations located on 22 acres within two miles of downtown Meriden, CT. The final post-retrofit analysis showed 40%-45% source energy savings over the existing pre-retrofit conditions.

  16. Chamberlain Heights Redevelopment: A Large Scale, Cold Climate Study of Affordable Housing Retrofits

    SciTech Connect (OSTI)

    Donnelly, K.; Mahle, M.

    2012-03-01

    The City of Meriden Housing Authority (MHA) collaborated with affordable housing developer Jonathon Rose Companies (JRC) to complete a gut renovation of 124 residential units in the Chamberlain Heights retrofit project. The affordable housing community is made up of 36 buildings in duplex and quad configurations located on 22 acres within two miles of downtown Meriden, CT. The final post-retrofit analysis showed 40-45% source energy savings over the existing pre-retrofit conditions.

  17. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Holloway, P.; Podorson, D.; Varshney, K.

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  18. Housing characteristics, 1987: Residential Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1989-05-26

    This report is the first of a series of reports based on data from the 1987 RECS. The 1987 RECS is the seventh in the series of national surveys of households and their energy suppliers. These surveys provide baseline information on how households in the United States use energy. A cross section of housing types such as single-family detached homes, townhouses, large and small apartment buildings, condominiums, and mobile homes were included in the survey. Data from the RECS and a companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are available to the public in published reports such as this one and on public use tapes. 10 figs., 69 tabs.

  19. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Holloway, Parker; Podorson, David; Varshney, Kapil

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  20. Department of Housing and Urban Development-Independent Agencies Appropriation Act, 1984

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    The budget appropriations for FY 1983 for the National Science Foundation, the National Aeronautics and Space Administration, the Department of Housing and Urban Development-Independent Agencies are presented.

  1. DOE Zero Energy Ready Home Case Study: Mutual Housing California...

    Energy Savers [EERE]

    Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA DOE Zero Energy Ready Home Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA ...

  2. Building America Case Studies for Existing Homes: Philadelphia Housing Authority Energy-Efficiency Turnover Protocols

    Broader source: Energy.gov [DOE]

    The Philadelphia Housing Authority worked with the U.S. Department of Energy’s Building America Program to integrate energy-efficiency measures into the refurbishment process that each unit normally goes through between occupancies.

  3. Multi-Family Housing Loans and Grants

    Broader source: Energy.gov [DOE]

    Multi-family housing programs offer rural rental housing loans to provide affordable multi-family rental housing for very low-, low-, and moderate-income families, the elderly, and persons with...

  4. An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units

    SciTech Connect (OSTI)

    Snyder, James W.; Hohenstein, Edward G.; Luehr, Nathan; Martínez, Todd J.

    2015-10-21

    We recently presented an algorithm for state-averaged complete active space self-consistent field (SA-CASSCF) orbital optimization that capitalizes on sparsity in the atomic orbital basis set to reduce the scaling of computational effort with respect to molecular size. Here, we extend those algorithms to calculate the analytic gradient and nonadiabatic coupling vectors for SA-CASSCF. Combining the low computational scaling with acceleration from graphical processing units allows us to perform SA-CASSCF geometry optimizations for molecules with more than 1000 atoms. The new approach will make minimal energy conical intersection searches and nonadiabatic dynamics routine for molecular systems with O(10{sup 2}) atoms.

  5. Recycling in public housing: The Syracuse Housing Authority

    SciTech Connect (OSTI)

    Foote, K.C.; DeVoe, J.F.

    1997-01-01

    The mission of the Syracuse Housing Authority (SHA, Syracuse, N.Y.) is to provide clean, safe, and affordable housing for low-income citizens of the city of Syracuse. In doing so, it has worked to be innovative. SHA owns and manages 12 federally funded housing developments and one New York state-funded project, in addition to managing two buildings owned by the city. After nearly 60 years of success in providing affordable housing in the Syracuse area, the pioneering SHA took on another daunting mission in the 1990s: modernization of waste collection and recycling. By the beginning of 1990, SHA was facing two mandates: to initiate a recycling program by July 1, as mandated by Onondaga County law, and to reduce its trash bill significantly.

  6. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect (OSTI)

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  7. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect (OSTI)

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida.The gas-fired tank type water heaters in the housing units were replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  8. THE WHITE HOUSE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Action Plan Today, President Barack Obama and President Hu Jintao announced the launch of a new U.S.-China Energy Efficiency Action Plan to strengthen the economy, improve energy security and combat climate change by reducing energy waste in both countries. The United States and China consume over 40 percent of global energy resources, costing businesses and households in the two countries roughly $1.5 trillion per year. Working together to improve energy efficiency in

  9. THE WHITE HOUSE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shale Gas Resource Initiative Today, President Barack Obama and President Hu Jintao announced the launch of a new U.S.-China Shale Gas Resource Initiative. This Initiative will help reduce greenhouse gas emissions, promote energy security and create commercial opportunities for U.S. companies through:  Shale gas resource assessment: The Initiative will use experience gained in the United States to assess China's shale gas potential and promote environmentally sustainable development of shale

  10. Travois Indian Country Affordable Housing & Economic Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Travois Indian Country Affordable Housing & Economic Development Conference Travois Indian Country Affordable Housing & Economic Development Conference April 4, 2016 8:00AM CDT to ...

  11. 2015 Housing Innovation Awards Application Form | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing Innovation Awards Application Form 2015 Housing Innovation Awards Application Form ... The 2015 ceremony will take place at the EEBA Excellence in Building Conference & Expo ...

  12. Peoria Tribe: Housing Authority- 2010 Project

    Broader source: Energy.gov [DOE]

    The Housing Authority of the Peoria Tribe of Indians of Oklahoma (Peoria Housing Authority or PHA) will conduct the "PHA Weatherization Training Project."

  13. Funding Opportunity: Building America High Performance Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity: Building America High Performance Housing Innovation Funding Opportunity: Building America High Performance Housing Innovation November 19, 2015 - 11:51am Addthis The ...

  14. Grandma's House (Weatherization) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grandma's House (Weatherization) Grandma's House (Weatherization) Addthis When you weatherize a home it needs to work as a system. Learn more here

  15. Energy Efficiency Upgrades in Multifamily Housing | Department...

    Energy Savers [EERE]

    Upgrades in Multifamily Housing Energy Efficiency Upgrades in Multifamily Housing Better Buildings Residential Network Case Study: Energy Efficiency Upgrades in Multifamily ...

  16. Solar space heating | Open Energy Information

    Open Energy Info (EERE)

    Solar space heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)1...

  17. SURE HOUSE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    just yet, but the ultra-efficient Alf House could soon change that. Learn More CASA DEL SOL With the 2015 Solar Decathlon taking place in Irvine, California, Team Orange County --...

  18. ALF HOUSE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    was looking for a way to represent its home territory. They found their inspiration in nature: the golden poppy, California's state flower. Learn More DURA URBAN HOUSE People from...

  19. Public Housing Project Performance Benchmarks

    Broader source: Energy.gov [DOE]

    Reports five major performance metrics that can be used to benchmark proposed energy service company projects within public housing, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy

  20. Important notice about using /house

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using house July 6, 2012 Description There have been a lot of issues recently with NFS hangs on the gpint machines. The origin of the gpint hanging has been determined to be...

  1. NNSS Hosts Groundwater Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey of the Bay Area NNSS Hosts Groundwater Open House A RSL helicopter spent part of August conducting aerial radiation flyovers in the California Bay Area. The team rocked the competition and chiseled out an impressive second place finish recently in the Security Protection Officer competition. Groundwater was the topic of discussion at a recent open house. See page 12. See page 5. See page 8. Enterprise Publication "ONEVOICE" Replaces Spotlight and SiteLines The Nevada National

  2. Open House with Environmental Scientists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open House with Environmental Scientists Open House with Environmental Scientists WHEN: Apr 23, 2015 12:00 PM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Laboratory Environmental Research and Monitoring Event Description Ask Laboratory biologists and anthropologists your natural resource questions. In honor of Earth Week, Los Alamos National Laboratory's Environmental

  3. Earth sheltered housing phenomenon

    SciTech Connect (OSTI)

    Boyer, L.L.

    1981-06-21

    Both national and international attention has recently been focused on earth sheltered construction as an emerging energy alternative. This is especially true for the High Plains region of the central United States. Traditionally, inhabitants of this region have been sensitized to the need for windstorm protection. However, the dramatic potentials for energy savings have served as a strong secondary inducement to the burgeoning construction activity in what is now viewed as a contemporary dwelling concept. The typical characteristics of such dwellings are reviewed as well as the educational challenge awaiting professional input to this developing boom in earth sheltered construction. 12 refs.

  4. Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005

  5. Million U.S. Housing Units Total U.S.........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ........................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Cooking Appliances Conventional Ovens Use an Oven............................................. 109.6 77.3 63.4 4.1 1.8 2.3 5.6 1............................................................ 103.3 71.9 58.6 3.9 1.6 2.2 5.5 2 or More............................................... 6.2 5.4 4.8 Q Q Q Q Do Not Use an Oven................................. 1.5 0.8 0.6 Q N Q Q Most-Used Oven Fuel

  6. Million U.S. Housing Units Total U.S.........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 33.0 8.0 3.4 5.9 14.4 1.2 Cooking Appliances Conventional Ovens Use an Oven............................................. 109.6 32.3 7.9 3.3 5.9 14.1 1.1 1............................................................ 103.3 31.4 7.6 3.3 5.7 13.7 1.1 2 or More............................................... 6.2 0.9 0.3 Q Q 0.4 Q Do Not Use an Oven................................. 1.5 0.7 Q Q Q 0.3 Q Most-Used Oven Fuel Electric.................................................. 67.9 19.4 4.5

  7. Million U.S. Housing Units Total U.S.............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .... 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Cooking Appliances Conventional Ovens Use an Oven................................................. 109.6 14.4 7.2 12.4 12.4 18.6 18.3 17.2 9.1 1................................................................ 103.3 13.5 6.8 11.8 11.5 17.7 17.5 16.1 8.4 2 or More................................................... 6.2 1.0 0.4 0.6 0.8 0.9 0.8 1.1 0.7 Do Not Use an Oven..................................... 1.5 0.3 Q Q Q 0.3 0.3 Q Q Most-Used Oven Fuel

  8. Space Nuclear MIssion History

    Office of Energy Efficiency and Renewable Energy (EERE)

    For over fifty years, the Department of Energy has enabled space exploration on 27 missions by providing safe reliable radioistope power systems and radioisotope heater units for NASA, Navy, Air...

  9. Inside the White House: Solar Panels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inside the White House: Solar Panels Inside the White House: Solar Panels

  10. Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.

  11. Housing Innovation Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home » Housing Innovation Awards Housing Innovation Awards HIA Awards.JPG Since 2013, The U.S. Department of Energy's (DOE) Housing Innovation Awards has recognized the very best in innovation on the path to zero energy ready homes. The Housing Innovation Awards recognize forward-thinking builders for delivering American homebuyers with the home of the future, today. Explore these award winning homes on the Tour of Zero. The 2016 Housing Innovation Awards will be held

  12. 2016 Housing Innovation Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 Housing Innovation Awards 2016 Housing Innovation Awards The U.S. Department of Energy's (DOE) Housing Innovation Awards recognize the very best in innovation on the path to zero energy ready homes. DOE Zero Energy Ready Home (ZERH) Housing Innovation Award Winners are selected for each of five categories: custom buyer, custom spec, production, multifamily, and affordable homes. One DOE ZERH Grand Housing Innovation Award Winner will be announced from among the winners in each of these

  13. Ceramic tile expansion engine housing

    DOE Patents [OSTI]

    Myers, B.

    1995-04-11

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.

  14. Ceramic tile expansion engine housing

    DOE Patents [OSTI]

    Myers, Blake

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  15. Constructing earth sheltered housing with concrete

    SciTech Connect (OSTI)

    Spears, R.E.

    1981-01-01

    This manual provides a state - of - the - art review of the design and construction of an earth - sheltered house using cast - in - place concrete, precast concrete, and concrete masonry. Based on a literature survey, theoretical work, and discussions with researchers and engineers in the concrete industry, the text is designed for use by architects, engineers, and homebuilders. The features of concrete construction that are current accepted practice for the concrete products discussed are shown to be applicable with reasonable care to building a safe, dry, and comfortable earth - sheltered house. The main considerations underlying the recommendations were the use of the earth's mass and passive solar effects to minimize energy needs, the structural capacity of the separate concrete products and their construction methods, and drainage principles and waterproofing details. Shelter ranging from those with at least 2 feet of earth cover to those with an uncovered roof of usual construction are included. To be considered an earth - sheltered residential building, at least half of the exterior wall and roof area that is in direct contact with the conditioned living space must be sheltered from the environment by earth berm or earthfill. Siting considerations, the fundamentals of passive solar heating, planning considerations, and structural considerations are discussed. Detailed guidelines are provided on concrete masonry construction, joint details in walls and floors, waterproofing, formwork and form removal, concrete construction practices, concrete masonry, and surface finishes. Numerous illustrations, tables, and a list of 32 references are provided. (Author abstract modified).

  16. SpacePak: Order (2014-SE-16012)

    Broader source: Energy.gov [DOE]

    DOE ordered SpacePak, A Mestek Company to pay a $2,800 civil penalty after finding SpacePak had manufactured and distributed in commerce in the U.S. at least 14 units of Heil brand indoor unit and SpacePak outdoor unit noncompliant central air conditioner.

  17. PLUTONIUM-URANIUM EXTRACTION (PUREX) FACILITY ALARACT DEMONSTRATION FOR FILTER HOUSING

    SciTech Connect (OSTI)

    LEBARON GJ

    2008-11-25

    This document presents an As Low As Reasonably Achievable Control Technology (ALARACT) demonstration for evaluating corrosion on the I-beam supporting filter housing No.9 for the 291-A-l emission unit of the Plutonium-Uranium Extraction (PUREX) Facility, located in the 200 East Area of the Hanford Site. The PUREX facility is currently in surveillance and maintenance mode. During a State of Washington, Department of Health (WDOH) 291-A-l emission unit inspection, a small amount of corrosion was observed at the base of a high-efficiency particulate air (HEPA) filter housing. A series of internal and external inspections identified the source of the corrosion material as oxidation of a small section of one of the carbon steel I-beams that provides support to the stainless steel filter housing. The inspections confirmed the corrosion is isolated to one I-beam support location and does not represent any compromise of the structural support or filter housing integrity. Further testing and inspections of the support beam corrosion and its cause were conducted but did not determine the cause. No definitive evidence was found to support any degradation of the housing. Although no degradation of the housing was found, a conservative approach will be implemented. The following actions will be taken: (1) The current operating filter housing No.9 will be removed from service. (2) The only remaining available filter housings (No.1, No.2, and No.3) will be placed in service. These filter housings have new HEPA filters fitted with stainless steel frames and faceguards which were installed in the spring of 2007. (3) Filter housings No.5 and No.10 will be put on standby as backups. To document the assessment of the unit, a draft ALARACT filter housing demonstration for the PUREX filter housing was prepared, and informally provided to WDOH on August 7, 2008. A follow up WDOH response to the draft ALARACT filter housing demonstration for the PUREX filter housing questioned whether

  18. Important notice about using /house

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Important notice about using /house Important notice about using /house July 6, 2012 Description There have been a lot of issues recently with NFS hangs on the gpint machines. The origin of the gpint hanging has been determined to be a defect in the Isilon filesystem software, and happens when a file being written is simultaneously opened for reading on the same host. This most frequently happens when people tail files being written by the same machine. E.g.: DO NOT DO THIS: gpint17 $

  19. Earth, Space Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences Earth, Space Sciences National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Climate, Ocean and Sea Ice Modeling (COSIM)» Earth and Environmental Sciences Division» Intelligence and Space Research» Earth Read caption + A team of scientists is working to understand how local changes in hydrology might bring about

  20. Before the House Committee on Space, Science, and Technology

    Broader source: Energy.gov [DOE]

    Subject: Role of the Office of Science By: Patricia Dehmer, Acting Director of the Office of Science

  1. Before the House Science, Space, and Technology Committee

    Broader source: Energy.gov [DOE]

    Subject: DOE's Clean Energy R&D Activities By: Henry Kelly, Acting Assistant Secretary Office of Energy Efficiency and Renewable Energy

  2. Before the House Committee on Science, Space, and Technology

    Broader source: Energy.gov [DOE]

    Subject: FY 2014 Budget and Priorities for the Department of Energy By: Ernest Moniz, Secretary of Energy

  3. Before the House Committee on Science, Space and Technology

    Broader source: Energy.gov [DOE]

    Subject: Nuclear Energy Risk Management Hearing By: Peter B. Lyons, Assistant Secretary for Nuclear Energy, U.S. Department of Energy

  4. Before House Committee on Science, Space, and Technology

    Broader source: Energy.gov [DOE]

    Subject: Assessing America's Nuclear Future - A review of the Blue Ribbon Commission's Report to the Secretary of Energy By: Peter Lyons

  5. Before the House Committee on Science, Space and Technology ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistant Secretary for Nuclear Energy, U.S. Department of Energy Subject: Nuclear Energy Risk Management Hearing Microsoft Word - Final Testimony (Lyons 5-13-11).docx More...

  6. Hearing Before the House Science, Space and Technology Subcommittee...

    Broader source: Energy.gov (indexed) [DOE]

    1-16ChristopherSmith FT HSST (128.74 KB) More Documents & Publications Fossil Energy FY 2015 Budget in Brief Fossil Energy FY 2013 Budget-in-Brief FE FY 2017 BUDGET REQUEST ...

  7. United States Government

    Office of Legacy Management (LM)

    DOEF1325.8 P4 0 * 1 - 1 - Iq \ b- United States Government memorandum pJ .T\ \b Department of Energy DATE: OCT 9 1984 REPLY TO NE-20 All-N OF: .- Authorizations for Actions Under the Formerly Utilized Sites Remedial Action SUBJECT: Program (FUSRAP) at the St. Louis Airport Storage Site, St. Louis, MO. and the W. R. Grace Site at Curtis Bay, Md. To: J. LaGrone, Manager Oak Ridge Operations Office St. Louis Airport Storage Site, MO The House and Senate Reports for the Energy and Water Development

  8. United States Attorney General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    93, 5 U.S. Op. Off. Legal Counsel 1, 1981 WL 30865 (U.S.A.G.) United States Attorney General ***1 *293 January 16, 1981 **1 The President The White House Washington, D.C. 20500 MY DEAR MR. PRESIDENT: You have asked my opinion concerning the scope of currently existing legal and constitutional authorities for the continuance of government functions during a temporary lapse in appropriations, such as the Government sustained on October 1, 1980. As you know, some initial determination concerning

  9. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    5 2004 Number of Industrialized Housing Manufacturers Versus Production (Stick-Builders) Companies Type Panelized Modular (1) HUD-Code Production Builders Component Manufacturers Special (Commercial) Units Note(s): Source(s): 170 1) 170 of these companies also produce panelized homes. Automated Builder Magazine, Mar. 2005, p. 34-35; Automated Builder Magazine, Jan. 2004, p. 16. Number of Companies 3,500 200 90 7,000 2,200

  10. Occupancy Simulation in Three Residential Research Houses

    SciTech Connect (OSTI)

    Boudreaux, Philip R; Gehl, Anthony C; Christian, Jeffrey E

    2012-01-01

    Three houses of similar floor plan are being compared for energy consumption. The first house is a typical builder house of 2400 ft2 (223 m2) in east Tennessee. The second house contains retrofits available to a home owner such as energy efficient appliances, windows and HVAC, as well as an insulated attic which contains HVAC duct work. The third house was built using optimum-value framing construction with photovoltaic modules and solar water heating. To consume energy researchers have set up appliances, lights, and plug loads to turn on and off automatically according to a schedule based on the Building America Research Benchmark Definition. As energy efficiency continues to be a focus for protecting the environment and conserving resources, experiments involving whole house energy consumption will be done. In these cases it is important to understand how to simulate occupancy so that data represents only house performance and not human behavior. The process for achieving automated occupancy simulation will be discussed. Data comparing the energy use of each house will be presented and it will be shown that the third house used 66% less and the second house used 36% less energy than the control house in 2010. The authors will discuss how energy prudent living habits can further reduce energy use in the third house by 23% over the average American family living in the same house.

  11. DOE-HUD Initiative on Energy Efficiency in Housing: A federal partnership. Program summary report

    SciTech Connect (OSTI)

    Brinch, J.

    1996-06-01

    One of the primary goals of the US Department of Housing and urban Development (HUD) is the expansion of home ownership and affordable housing opportunities. Recognizing that energy efficiency is a key component in an affordable housing strategy, HUD and the US Department of Energy (DOE) created the DOE-HUD Initiative on Energy Efficiency in Housing. The DOE-HUD Initiative was designed to share the results of DOE research with housing providers throughout the nation, to reduce energy costs in federally-subsidized dwelling units and improve their affordability and comfort. This Program Summary Report provides an overview of the DOE-HUD Initiative and detailed project descriptions of the twenty-seven projects carried out with Initiative funding.

  12. 2014 Housing Innovation Awards DOE Challenge Home Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing Innovation Awards DOE Challenge Home Application 2014 Housing Innovation Awards DOE Challenge Home Application The U.S. Department of Energy's Housing Innovation Awards ...

  13. Efficient Solutions for New Homes Case Study: Demonstration House...

    Energy Savers [EERE]

    Demonstration House of Cold-Climate Solutions for Affordable Housing Efficient Solutions for New Homes Case Study: Demonstration House of Cold-Climate Solutions for Affordable ...

  14. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    House Natural Resources Committee Before the Subcommittee on Water and Power - House ... More Documents & Publications Before The Subcommittee on Water and Power - House Energy ...

  15. Before House Committee on Oversight and Government Reform | Department...

    Office of Environmental Management (EM)

    House Committee on Oversight and Government Reform Before House Committee on Oversight and Government Reform Before House Committee on Oversight and Government Reform By: Secretary...

  16. Open House | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open House Open House In early 2015, PARC moved it's adminstration offices to Siegle Hall 4th floor on Washington University in St. Louis' campus. In celebration of this move, we...

  17. PARC Open House | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARC Open House PARC Open House Join us for food and refreshments April 10, 2015 - 4:00pm to 6:00pm Washington University in St. Louis, Seigle Hall 4th Floor, Suite 435 We welcome...

  18. Native American Housing: Obstacles and Opportunities

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Housing and Urban Development (HUD), this event will cover tribal housing and how to develop and implement programs based on and conducive to local conditions and...

  19. Whole-House Ventilation | Department of Energy

    Office of Environmental Management (EM)

    - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of iStockphotobrebca. A whole-house ventilation...

  20. Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climate – Volume 12

    SciTech Connect (OSTI)

    Pacific Northwest National Laboratory

    2011-02-01

    This document describes measures builders can use to construct homes that have whole-house energy savings of 40% in the cold and very cold climate region of the United States.

  1. Advanced House Framing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Design for Efficiency » Advanced House Framing Advanced House Framing Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing, sometimes called optimum value engineering (OVE), refers to framing techniques designed to reduce the amount of lumber used and waste generated in the construction of a wood-framed house. These techniques boost energy efficiency by replacing lumber with insulation material while maintaining the

  2. Before the House Subcommittee on Energy and Power, Committee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commerce | Department of Energy Secretary Ernest Moniz Before the House Subcommittee on Energy and Power, Committee on Energy and Commerce 2-11-15_Ernest_Moniz FT HEC.pdf (112.69 KB) More Documents & Publications FY16 Budget Rollout Fact Sheet Before the House Committee on Science, Space, and Technology Before the Senate Committee on Energy and Natural Resources

  3. Existing Whole-House Solutions Case Study: Passive Room-to-Room Air Transfer, Fresno, California

    SciTech Connect (OSTI)

    D. Stecher and A. Poershke

    2014-02-01

    In this project, IBACOS, a U.S. Department of Energy Building America team, assessed a strategy for providing conditioned air to bedrooms when the bedroom doors are closed and measured potential thermal discomfort that occupants may experience when this strategy is used. Builders can use this information to discuss space conditioning options for low-load houses with their clients to determine acceptable comfort levels for occupants in these cost-optimized, energy-efficient houses.

  4. Fifth Annual Native American Housing Conference

    Broader source: Energy.gov [DOE]

    The Fifth Annual Native American Housing Conference will be held in conjunction with the Native American Economic Development Conference. Attendees will hear from top experts in the housing field on the state of housing in Native America and what programs are available to assist you in taking the next step.

  5. THE WHITE HOUSE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE WHITE HOUSE THE WHITE HOUSE THE WHITE HOUSE (66.14 KB) More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation Progress Report on U.S.-China Energy Cooperation

  6. Chicagoland Single-Family Housing Characterization

    SciTech Connect (OSTI)

    Spanier, J.; Scheu, R.; Brand, L.; Yang, J.

    2012-06-01

    In this report, the PARR team identifies housing characteristics and energy use for fifteen housing types (groups) in the Chicagoland (Cook County, Illinois) region and specifies measure packages that provide an optimum level of energy savings based on a BEopt analysis. The analysis is based on assessor data and actual energy consumption data on 432,605 houses representing approximately 30% of the population.

  7. Chicagoland Single-Family Housing Characterization

    SciTech Connect (OSTI)

    Spanier, J.; Scheu, R.; Brand, L.; Yang, J.

    2012-06-01

    In this report, the PARR team identifies housing characteristics and energy use for fifteen housing types in the Chicagoland (Cook County, Illinois) region and specifies measure packages that provide an optimum level of energy savings based on a BEopt analysis. The analysis is based on assessor data and actual energy consumption data on 432,605 houses representing approximately 30% of the population.

  8. Federal Housing Administration's Energy Efficient Mortgage Program

    Broader source: Energy.gov [DOE]

    Describes the U.S. Department of Housing and Urban Development Energy Efficient Mortgage Program which helps homebuyers or homeowners save money on utility bills by enabling them to finance the cost of adding energy efficiency features to new or existing housing. Authors: U.S. Department of Housing and Urban Development

  9. White House Forum on Minorites in Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    On November 13, 2013, the Department of Energy and the White House Office of Science and Technology Policy, the Council for Environmental Quality, and the White House Office of Public Engagement co-hosted the White House Forum on Minorities in Energy. The event included the announcement of the Ambassadors for the Minorities in Energy Initiative.

  10. Remotely serviced filter and housing

    DOE Patents [OSTI]

    Ross, M.J.; Zaladonis, L.A.

    1987-07-22

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

  11. Remotely serviced filter and housing

    DOE Patents [OSTI]

    Ross, Maurice J.; Zaladonis, Larry A.

    1988-09-27

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

  12. Green Future Double Barrel House

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University Green Future Double Barrel House DOE Race to Zero Student Competition 2016 Sean Benson Team Leader - Net Zero Energy Design I & II Bachelor of Science in Architecture, Dec 2016 Alexis Borman Net Zero Energy Design II Bachelor of Science in Architecture, May 2016 Christopher Brown AIA COTE, Net Zero Energy Design I & II Bachelor of Science in Architecture, May 2016 Devonta Magee Net Zero Energy Design II Bachelor of Science in Architecture, Aug 2016 Yasmine Parker Net Zero

  13. Building America House Simulation Protocols

    SciTech Connect (OSTI)

    Hendron, Robert; Engebrecht, Cheryn

    2010-09-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  14. Public Housing Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Housing Project Performance Benchmarks (All ASHRAE Zones) We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach documented in Hopper et

  15. Advanced Controls for Residential Whole-House Ventilation Systems

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  16. Energy efficiency in military housing: Monitoring to support revitalization guidebook

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-11-01

    Oak Ridge National Laboratory is working with the US Army, the US Air Force, and the US Department of Energy to develop a guidebook to be used by architectural and engineering firms in the design phases of military family housing revitalization projects. The purpose of the guidebook is to ensure that energy efficiency is properly addressed in revitalization projects. Monitoring space-heating and cooling energy used in houses both before and after they are revitalized is necessary in order to assess the amount of energy saved by the revitalization process. Three different methods of conducting monitoring experiments are discussed, as well as the methods of data analysis to be used. Houses will be monitored individually using standard gas and electric meters to obtain heating and cooling data for the houses. The authors recommend conducting monitoring programs at Altus Air Force Base, Oklahoma, and Fort Monmouth, New Jersey, because of their project schedules and potential for savings. They do not recommend doing any monitoring at Malmstrom Air Force Base, Montana, because of the relatively small savings that they expect revitalization to accomplish there. They do not recommend seeking out alternative sites for monitoring because of the time required to become familiar with the installation and also because revitalization schedules at alternative sites may be no better than those at the sites they inspected.

  17. Building America Whole-House Solutions for Existing Homes: Community-Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling - Southeastern United States | Department of Energy Community-Scale Energy Modeling - Southeastern United States Building America Whole-House Solutions for Existing Homes: Community-Scale Energy Modeling - Southeastern United States Community-scale energy modeling and testing are useful for determining energy conservation measures that will effectively reduce energy use. To that end, IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption,

  18. The house of the future

    ScienceCinema (OSTI)

    None

    2010-09-01

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  19. DOE ZERH Case Study: Mutual Housing California, Mutual Housing...

    Office of Scientific and Technical Information (OSTI)

    Office (EE-5B) (Building America) Country of Publication: United States Language: English Subject: Building America; Residential Construction; Home Builder; Zero Energy

  20. Whole-House Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation » Whole-House Ventilation Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical whole-house ventilation

  1. Monument Valley Open House | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monument Valley Open House Monument Valley Open House July 18, 2016 - 12:22pm Addthis What does this project do? Goal 6. Engage the public, governments, and interested parties Monument Valley Open House 01.jpg An open house was held at Monument Valley High School in Utah. The U.S. Department of Energy Office of Legacy Management (LM) hosted the Uranium Issues Open House on Saturday, April 9, 2016, at Monument Valley High School in Monument Valley, Utah. Multiple federal agencies and their Navajo

  2. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  3. Healthy and Affordable Housing: Practical Recommendations for Building, Renovating and Maintaining Housing: Read This Before You Move In

    SciTech Connect (OSTI)

    2001-09-06

    This document provides advice for healthy and affordable housing: practical recommendations for building, renovating, and maintaining housing.

  4. Department of Housing and Urban Development-Independent Agencies Appropriations Bill, 1985

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Federal aappropriations for the Department of Housing and Urban Development and for sundry independent agencies, boards, commissions, corporations, and offices are enumerated and discussed. Recommendations by the House Committee on Appropriations are given along with a detailed description of each program considered. Specific programs discussed include: urban research, urban development, urban planning, solar energy, environmental quality, space stations, space shuttle orbiters, scientific research and education, and selective service. This bill, H.R. 5713, makes appropriations for the fiscal year ending September 30, 1985.

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ...

  6. New Whole-House Solutions Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake

    SciTech Connect (OSTI)

    D. Springer and A. German

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, California. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.

  7. DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring

    Office of Scientific and Technical Information (OSTI)

    Lake, Woodland, CA () | SciTech Connect : DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA Citation Details In-Document Search Title: DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA Case study of a DOE 2015 Housing Innovation Award winning multifamily project of 62 affordable-housing apartment home in the hot-dry climate that exceeded CA Title 24-2008 by 35%, with 2x4 16" on center walls with R-21

  8. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  9. Particulate emission abatement for Krakow boiler houses

    SciTech Connect (OSTI)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  10. Sandia National Laboratories: Intern Housing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA Intern Candidates Pre-Employment Instructions NM Employee Candidates CA Employee Candidates NM Intern Candidates CA Intern Candidates Step 1: Complete Your Application Step 2: Accept Your Offer Step 3: Prepare to Start Step 4: Report to Work Your Benefits Your Pay Intern Housing Resources Contacts Pre-Employment_Instructions Intern Housing Resources Livermore, California Before you commit to any housing agreement, be sure to ask about short-term (2-4 months) leasing options and any additional

  11. Sandia National Laboratories: Intern Housing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM Intern Candidates Pre-Employment Instructions NM Employee Candidates CA Employee Candidates NM Intern Candidates Step 1: Complete Your Application Step 2: Accept Your Offer Step 3: Prepare to Start Step 4: Report to Work Your Benefits Your Pay Intern Housing Resources Contacts CA Intern Candidates Pre-Employment_Instructions Intern Housing Resources Albuquerque, New Mexico All housing arrangements need to be made on your own. Unfortunately, Sandia's Student Internship Program is unable to

  12. "Table HC11.4 Space Heating Characteristics by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "For One Housing Unit",15.2,0.2,"Q","Q" "For Two Housing Units",0.9,"Q","Q","Q" "Heat Pump",9.2,"Q","Q","N" "Portable Electric Heaters",1.6,"Q","Q","N" "Other ...

  13. "Table HC10.4 Space Heating Characteristics by U.S. Census Region...

    U.S. Energy Information Administration (EIA) Indexed Site

    One Housing Unit",15.2,0.2,1.3,10.5,3.2 "For Two Housing Units",0.9,"Q","Q",0.6,"Q" "Heat Pump",9.2,"Q",0.8,7.2,1 "Portable Electric Heater",1.6,"Q","Q",0.9,0.5 "Other ...

  14. "Table HC12.4 Space Heating Characteristics by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "For One Housing Unit",15.2,1.3,0.6,0.7 "For Two Housing Units",0.9,"Q","Q","Q" "Heat Pump",9.2,0.8,0.6,"Q" "Portable Electric Heater",1.6,"Q","Q","Q" "Other ...

  15. "Table HC14.4 Space Heating Characteristics by West Census Region...

    U.S. Energy Information Administration (EIA) Indexed Site

    "For One Housing Unit",15.2,3.2,0.9,2.3 "For Two Housing Units",0.9,"Q","Q","Q" "Heat Pump",9.2,1,0.5,0.5 "Portable Electric Heater",1.6,0.5,"Q",0.4 "Other ...

  16. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect (OSTI)

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for

  17. DURA URBAN HOUSE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    blend in its Efficient, Affordable, Solar, Innovation--or EASI--House. Learn More AGGIE SOL The University of California, Davis, has strong pedigrees in both sustainable projects...

  18. The White House's Week of Making

    Broader source: Energy.gov [DOE]

    The White House's Week of Making from June 12-18 will coincide with a National Maker Faire event in Washington, D.C.

  19. Testimony before the House Appropriations Committee, Subcommittee...

    National Nuclear Security Administration (NNSA)

    Testimony before the House Appropriations Committee, Subcommittee on Energy and Water ... for Atomic Energy (Rosatom), and Rostekhnadzor, the Russian nuclear regulatory agency. ...

  20. Energy Conservation Standards for Manufactured Housing. Notice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The IECC was first published in 1998, and it has been updated continuously since that ... the National Fire Protection Association (NFPA) Standard on Manufactured Housing in ...