National Library of Energy BETA

Sample records for housing units air

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Use of central air conditioning equipment for another housing unit also ...

  2. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Use of central air conditioning equipment for another housing unit also ...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... central air conditioning equipment for a business or farm building as well as another ... for Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... central air conditioning equipment for a business or farm building as well as another ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters ... Vacant housing units, seasonal units, second homes, military housing, and group quarters ...

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters ... Vacant housing units, seasonal units, second homes, military housing, and group quarters ...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Housing units are classified as urban or rural using definitions created by ...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Use of heating equipment for another housing unit also includes the use of ...

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Cooking includes fuels used by the major cooking equipment (ovens, cooktops, ...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ... Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Energy Star is a joint program of the U.S. Environmental Protection Agency ...

  14. 1997 Housing Characteristics Tables Housing Unit Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Million U.S. Households; 45 pages, 128 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 1997 4 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 1997 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 1997 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 1997 3 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Characteristics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" "Structural and ...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... the use of the heating equipment for a business or farm building as well as another ... for Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... the use of the heating equipment for a business or farm building as well as another ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  18. 1997 Housing Characteristics Tables Housing Unit Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of U.S. Households; 45 pages, 121 kb) Contents Pages HC1-1b. Housing Unit Characteristics by Climate Zone, Percent of U.S. Households, 1997 4 HC1-2b. Housing Unit Characteristics by Year of Construction, Percent of U.S. Households, 1997 4 HC1-3b. Housing Unit Characteristics by Household Income, Percent of U.S. Households, 1997 4 HC1-4b. Housing Unit Characteristics by Type of Housing Unit, Percent of U.S. Households, 1997 3 HC1-5b. Housing Unit Characteristics by Type of Owner-Occupied

  19. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Total square footage includes all basements, finished or conditioned (heated ...

  20. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... includes households that occupy their primary housing unit without payment of rent. ... includes households that occupy their primary housing unit without payment of rent. ...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Space Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to ...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 ...

  3. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",37.1,13.7,10.9,6,3.2,1.6,0.6,1.1,10.1 "Payment Method for Energy Bills" "All Paid by ... their primary housing unit without payment of rent. 4Participation in assistance ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Water ...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Water Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, ... to 1989","1990 to 1999","2000 to 2009" "Water Heating" "Total Homes",113.6,14.4,5.2,13.5...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, ...","Own","Rent","Own","Rent","Own","Rent" "Water Heating" "Total Homes",113.6,76.5,37.1,63....

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Water Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ... Cold","Mixed- Humid","Mixed-Dry" "Water Heating",,"Cold",,"Hot-Dry","Hot-Humid","M...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Water Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ... to 119,999","120,000 or More" "Water Heating" "Total Homes",113.6,23.7,27.5,21....

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment"

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Routine Service or Maintenance" "Performed on Central Air" ... unit 3Only includes routine service or maintenance performed in the last year. 4Energy ...

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings ... Housing Unit" ,"RSEs for Housing Units ","Single-Family Units",,"Apartments in Buildings ...

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 ...

  13. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    Contact: Robert Latta, Survey Manager (rlatta@eia.doe.gov) World Wide Web: http:www.eia.doe.govemeuconsumption Table HC1-1a. Housing Unit Characteristics by Climate Zone, ...

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Routine Service or Maintenance" "Performed on Main Heating Equipment3" ... 3Only includes routine service or maintenance performed in the last year. 4Housing ...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Routine Service or Maintenance" "Performed on Main Heating Equipment3" ... 3Only includes routine service or maintenance performed in the last year. 4Housing ...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Routine Service or Maintenance" "Performed on Main Heating Equipment4" ... 4Only includes routine service or maintenance performed in the last year. 5Housing ...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Water Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing ... (millions)" ,,,,,,"5 or More Members" "Water Heating",,"1 Member","2 Members","3 ...

  18. Total U.S. Housing Units.................................

    U.S. Energy Information Administration (EIA) Indexed Site

    At Home Behavior Home Used for Business Yes......Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units ...

  19. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Space ... ,,"RSEs for UrbanRural Location (as Self-Reported)" ,"RSEs for Housing Units " "Space ...

  20. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Living ... ,,"RSEs for UrbanRural Location (as Self-Reported)" ,"RSEs for Housing Units (millions)" ...

  1. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Unconditioned and unfinished areas in attics and attached garages are excluded. 3Housing units are classified as urban or rural using definitions created by the U.S. Census Bureau, ...

  2. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Department of Energy's Office of Energy and Efficiency and Renewable Energy (EERE). 5Rented includes households that occupy their primary housing unit without payment of rent. ...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Routine Service or Maintenance" "Performed on Central Air" ... 3Only includes routine service or maintenance performed in the last year. 4Energy ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Routine Service or Maintenance" "Performed on Central Air" ... 3Only includes routine service or maintenance performed in the last year. 4Energy ...

  5. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of

  6. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  7. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  8. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Home Electronics Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating Characteristics by UrbanRural Location, 2005" " Million U.S. Housing Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Water Heating ...

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing ... Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,"Detached","Atta...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Air Conditioning",94,65.8,28.3,54.6,6.5,3.4,2.2,1.1,5.1,2,13.2,4.7,1.2 "Water Heating",47.1,30.8,16.4,23.9,3.6,1.3,1.1,0.3,3,1,7.7,4.2,1 "Cooking",71.2,48.4,22.8,40.8,5....

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Air Conditioning",94,22.4,15,4.3,3.1,1.8,5.9,7.4,2.3,3.4,1.7 "Water Heating",47.1,7.6,4.8,0.7,0.8,0.7,2.7,2.8,1,1.4,0.4 "Cooking",71.2,15.4,9.7,1.6,1.9,1.6,4.7...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Air Conditioning",94,40.5,21.2,2.8,3.4,6.7,3.2,5.1,6.9,2.4,4.5,12.4,8.2,4.1 "Water Heating",47.1,27.3,16.1,1.8,1.8,6.2,2.2,4.2,5,1.8,3.1,6.2,4,2.3 "Cooking",71.2,31.7,17.9,2....

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...3,1.3,0.6,0.7,2.9,1,1.5,0.4 "Air Conditioning",94,16.5,3.9,1.9,2,12.6,5.3,4.4,2.9 "Water Heating",47.1,5.1,1.4,0.5,0.9,3.7,1.2,2.1,0.4 "Cooking",71.2,10.1,3.6,1.4,2.3,6.5,2.3,3.2,1 ...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Air Conditioning",94,14.6,5.7,2.4,0.9,1.4,3.3,2.1,1.2,8.9,6.9,2.1 "Water Heating",47.1,7,2.5,0.9,0.3,0.6,1.6,1.2,0.4,4.5,1.4,3.1 "Cooking",71.2,13.9,5.1,3,1.4,1.6,2...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...5,3.6,2.5,1.5,3.1,3.5 "Air Conditioning",94,18.3,22.3,17.9,11.9,8.1,5.1,10.4,12.8 "Water Heating",47.1,11.4,12.8,8.9,5.6,3.2,1.7,3.5,8.2 "Cooking",71.2,14.2,17.1,13.4,9.2,6,3.5,7.7...

  19. Total U.S. Housing Units...................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Space Heating Usage Indicators Million U.S. Housing Units Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing ...

  20. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC5.9 Home Appliances Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to ...

  1. Total U.S. Housing Units..................................

    U.S. Energy Information Administration (EIA) Indexed Site

    At Home Behavior Home Used for Business Yes......Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached ...

  2. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Appliances in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,,,,,"5 or More Units","Mobile Homes" "Appliances",,"Detached","Attached","2 to 4 Units" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Cooking Appliances" "Stoves (Units With

  3. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Holloway, P.; Podorson, D.; Varshney, K.

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  4. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  5. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Holloway, Parker; Podorson, David; Varshney, Kapil

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  6. " Million U.S. Housing Units" ,,"2005...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Household Income, 2005" " Million U.S. Housing Units" ... to 79,999","80,000 or More" "Living Space Characteristics" "Total",111.1,26.7,28.8,2...

  7. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ... to 5,499 HDD","Less than 4,000 HDD" "Water Heating Characteristics" ...

  8. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    than 4,000 HDD",22.8,11.4,3.1,4.4,3.9 "Type of Housing Unit" "Single-Family Detached",72.1,24.3,12.9,17,17.8 "Single-Family Attached",7.6,4.7,1.2,1.5,"Q" "Apartments in 2-4 Unit ...

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit",15.2,7.8,1,1.2,3.3,1.9 "For Two Housing Units",0.9,"Q","N","Q",0.6,"N" "Heat Pump",9.2,7.4,0.3,"Q",0.7,0.5 "Portable Electric Heater",1.6,0.8,"Q","Q","Q",0.3 "Other ...

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit",15.2,0.3,1.2,2,4.6,7.1 "For Two Housing Units",0.9,"N","Q","Q","Q",0.5 "Heat Pump",9.2,"Q",0.4,2.7,1.8,4.2 "Portable Electric Heater",1.6,"N","Q","Q",0.6,0.7 "Other ...

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit",15.2,4.4,3.8,2.6,2.4,1.9 "For Two Housing Units",0.9,0.4,"Q","Q","Q","Q" "Heat Pump",9.2,2.2,3.6,1.5,1.2,0.7 "Portable Electric Heater",1.6,0.4,0.3,0.3,"Q",0.3 "Other ...

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Rural",22.3,3.7,4.8,5,5,3.9 "Type of Housing Unit" "Single-Family Detached",72.1,8.1,16.6,16.4,15.5,15.5 "Single-Family Attached",7.6,0.8,2,2.5,1.6,0.7 "Apartments in 2-4 ...

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not

  14. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,72.1,7.6,7.8,16.7,6.9 "Indoor Lights

  15. " Million U.S. Housing Units" ,,"2005...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...5.2,4.4,4.4,2.6,1.5,2.3,3,6 "For Two Housing Units",0.9,0.3,0.4,"Q","Q","N","Q",0.4 "Heat Pump",9.2,1.2,2.2,2,1.3,2.4,0.6,1.9 "Portable Electric Heater",1.6,0.7,0.6,"Q","N","Q",0.4...

  16. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Appliances in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Appliances",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

  17. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Appliances in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Appliances",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Appliances in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,"Total U.S.1 (millions)","Census Region" "Appliances",,"Northeast","Midwest","South","West" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)" "Use a Stove",102.3,19.2,23.9,38.2,20.9

  19. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ," Housing Units (millions) ","Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Cooking

  20. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Home Appliances Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S.",111.1,72.1,7.6,7.8,16.7,6.9 "Cooking

  1. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Appliances in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  2. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Appliances in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD,

  3. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Appliances in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD"

  4. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Appliances in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Appliances" "Total

  5. " Million U.S. Housing Units" ,,"2005 Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ... to 79,999","80,000 or More" "Water Heating Characteristics" ...

  6. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Year of Construction, 2005" " Million U.S. Housing ... to 1989","1990 to 1999","2000 to 2005" "Water Heating Characteristics" ...

  7. Million U.S. Housing Units Total U.S. Housing Units........................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Units........................................ 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Heating Equipment........................... 1.2 Q Q N 0.3 0.8 Have Space Heating Equipment............................. 109.8 10.9 26.0 27.3 23.7 22.0 Use Space Heating Equipment.............................. 109.1 10.9 26.0 27.3 23.2 21.7 Have But Do Not Use Equipment.......................... 0.8 N N Q 0.5 Q Space Heating Usage During 2005 Heated Floorspace (Square Feet)

  8. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Lighting Usage Indicators" "Total U.S. Housing Units",111.1,30,34.8,18.4,15.9,12 "Indoor Lights Turned On During Summer" "Number of Lights Turned

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Lighting Usage Indicators",,"City","Town","Surburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per

  10. Table HC1.1.1 Housing Unit Characteristics by

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Housing Unit Characteristics by" " Total, Heated, and Cooled Floorspace, 2005" ,,,"Total Square Footage" ,"Housing Units",,"Total",,"Heated",,"Cooled" "Housing Unit Characteristics","Millions","Percent","Billions","Percent","Billions","Percent","Billions","Percent" "Total",111.1,100,256.5,100,179.8,100,114.5,100 "Census Region

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Basements" "Basement in Single-Family Homes" "and Apartments in 2-4 Unit ... "Attics" "Attic in Single-Family Homes and" "Apartments in 2-4 Unit ...

  12. United Cool Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon UnitedCoolAir.pdf More Documents & Publications AeroSys: Noncompliance Determination (2010-SE-0302) Haier: Compromise Agreement (2011-SE-1428) GE Appliances: Order ...

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Living Space Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Floorspace (Square Feet)" ...

  14. High Performance Residential Housing Units at U.S. Coast Guard Base Kodiak: Preprint

    SciTech Connect (OSTI)

    Romero, R.; Hickey, J.

    2013-10-01

    The United States Coast Guard (USCG) constructs residential housing throughout the country using a basic template that must meet the minimum Leadership in Energy and Environmental Design (LEED) Silver criteria or better for the units. In Kodiak, Alaska, USCG is procuring between 24 and 100 residential multi-family housing units. Priorities for the Kodiak project were to reduce overall energyconsumption by at least 20% over existing units, improve envelope construction, and evaluate space heating options. USCG is challenged with maintaining similar existing units that have complicated residential diesel boilers. Additionally, fuel and material costs are high in Kodiak. While USCG has worked to optimize the performance of the housing units with principles of improved buildingenvelope, the engineers realize there are still opportunities for improvement, especially within the heating, ventilation, and air conditioning (HVAC) system and different envelope measures. USCG staff also desires to balance higher upfront project costs for significantly reduced life-cycle costs of the residential units that have an expected lifetime of 50 or more years. To answer thesequestions, this analysis used the residential modeling tool BEoptE+ to examine potential energy- saving opportunities for the climate. The results suggest criteria for achieving optimized housing performance at the lowest cost. USCG will integrate the criteria into their procurement process. To achieve greater than 50% energy savings, USCG will need to specify full 2x 6 wood stud R-21 insulationwith two 2 inches of exterior foam, R-38 ceiling insulation or even wall insulation in the crawl space, and R-49 fiberglass batts in a the vented attic. The air barrier should be improved to ensure a tight envelope with minimal infiltration to the goal of 2.0 ACH50. With the implementation of an air source heat pump for space heating requirements, the combination of HVAC and envelope savings inthe residential unit can save

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Lighting Usage Indicators" "Total U.S. Housing Units",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,30,34.8,18.4,15.9,12 "Do Not Have Heating Equipment",1.2,0.3,0.3,"Q",0.2,0.2

  17. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC6.9 Home Appliances Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Home Appliances Characteristics" "Total U.S.",111.1,30,34.8,18.4,15.9,12 "Cooking Appliances" "Conventional Ovens" "Use an

  18. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC8.9 Home Appliances Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Appliances Characteristics",,"City","Town","Suburbs","Rural" "Total U.S.",111.1,47.1,19,22.7,22.3 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,46.2,18.8,22.5,22.1

  19. Million U.S. Housing Units Total.....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment....................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................... 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment..................................... 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Air-Conditioning Equipment 1, 2 Central

  20. Million U.S. Housing Units Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment........................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment........................................ 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment......................................... 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it........................ 1.9 1.1 0.8 Q N Q Q Air-Conditioning Equipment 1, 2 Central System...................................................... 65.9 51.7 43.9 2.5 0.7

  1. Million U.S. Housing Units Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment........................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment........................................ 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment......................................... 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it........................ 1.9 0.8 Q Q 0.2 0.3 Q Air-Conditioning Equipment 1, 2 Central System...................................................... 65.9 14.1 3.6 1.5

  2. Million U.S. Housing Units Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Cooling Equipment........................... 17.8 3.2 4.7 3.6 5.5 0.9 Have Cooling Equipment........................................ 93.3 7.7 21.4 23.7 18.5 21.9 Use Cooling Equipment......................................... 91.4 7.6 21.0 23.4 17.9 21.7 Have Equipment But Do Not Use it........................ 1.9 Q 0.4 0.4 0.6 0.3 Type of Air-Conditioning Equipment 2, 3 Central System..................................................... 65.9 4.8

  3. United_Cool_Air.pdf

    Office of Environmental Management (EM)

    of Energy United States Fuel Resiliency: US Fuels Supply Infrastructure United States Fuel Resiliency: US Fuels Supply Infrastructure Report: United States Fuel Resiliency - U.S. Fuels Supply Infrastructure Study: (1) Infrastructure Characterization; (II) Vulnerability to Natural and Physical Threats; and (III) Vulnerability and Resilience This report assesses the U.S. fuels supply transportation, storage, and distribution (TS&D) infrastructure, its vulnerabilities (natural and physical

  4. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Lighting Usage Indicators" "Total",111.1,10.9,26.1,27.3,24,22.8 "Indoor Lights

  5. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Home Appliances Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Home Appliances Characteristics" "Total U.S.",111.1,10.9,26.1,27.3,24,22.8

  6. The Next Generation Air Particle Detectors for the United States...

    Office of Scientific and Technical Information (OSTI)

    The Next Generation Air Particle Detectors for the United States Navy Citation Details In-Document Search Title: The Next Generation Air Particle Detectors for the United States ...

  7. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use As ... One such technology- retrofitting rooftop air- conditioning units with an advanced rooftop ...

  8. New Whole-House Solutions Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania

    SciTech Connect (OSTI)

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania, to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. The team evaluated a market-available through-wall air transfer fan system that provides air to the bedrooms.The relative ability of this system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability.

  9. Table HC1.1.2 Housing Unit Characteristics by Average Floorspace, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Housing Unit Characteristics by Average Floorspace, 2005 " ,,"Average Square Feet per--" ," Housing Units (millions)" ,,"Housing Unit",,,"Household Member" "Housing Unit Characteristics",,"Total1","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,2171,1618,1031,845,630,401 "Census Region and Division" "Northeast",20.6,2334,1664,562,911,649,220

  10. Table HC1.1.4 Housing Unit Characteristics by Average Floorspace--Apartments, 2

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Housing Unit Characteristics by Average Floorspace--Apartments, 2005" ,,,"Average Square Feet per Apartment in a --" ," Housing Units (millions)" ,,,"2 to 4 Unit Building",,,"5 or More Unit Building" ,,"Apartments (millions)" "Housing Unit Characteristics",,,"Total","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,24.5,1090,902,341,872,780,441

  11. Construction details of an earth-sheltered passive solar thermosiphon air house

    SciTech Connect (OSTI)

    Ashelman, R.B.; Hagen, G.C.

    1980-01-01

    Construction details are presented for Sunrise, a passive solar, earth-sheltered house in eastern West Virginia. Particular attention is paid to the thermosiphon air system, as well as structural, waterproofing and insulation details.

  12. "Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  13. "Table HC3.13 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  14. "Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  15. "Table HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  16. "Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  17. "Table HC4.13 Lighting Usage Indicators by Renter-Occupied Housing Unit Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Renter-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  18. "Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  19. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Air Conditioning Characteristics"

  20. "Table HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More

  1. Table HC7-6a. Home Office Equipment by Type of Rented Housing Unit,

    U.S. Energy Information Administration (EIA) Indexed Site

    6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.0 0.9 3.0 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Households Using Office Equipment .......................... 28.7 9.2 6.5 12.1 0.9 7.5 Personal Computers 1

  2. Existing Whole-House Solutions Case Study: Passive Room-to-Room Air Transfer, Fresno, California

    SciTech Connect (OSTI)

    D. Stecher and A. Poershke

    2014-02-01

    In this project, IBACOS, a U.S. Department of Energy Building America team, assessed a strategy for providing conditioned air to bedrooms when the bedroom doors are closed and measured potential thermal discomfort that occupants may experience when this strategy is used. Builders can use this information to discuss space conditioning options for low-load houses with their clients to determine acceptable comfort levels for occupants in these cost-optimized, energy-efficient houses.

  3. Measure Guideline. Five Steps to Implement the Public Housing Authority Energy-Efficient Unit Turnover Checklist

    SciTech Connect (OSTI)

    Liaukus, Christine

    2015-07-09

    Five Steps to Implementing the PHA Energy Efficient Unit Turnover Package (ARIES, 2014) is a guide to prepare for the installation of energy efficient measures during a typical public housing authority unit turnover. While a PHA is cleaning, painting and readying a unit for a new resident, there is an opportunity to incorporate energy efficiency measures to further improve the unit's performance. The measures on the list are simple enough to be implemented by in-house maintenance personnel, inexpensive enough to be folded into operating expenses without needing capital budget, and fast enough to implement without substantially changing the number of days between occupancies, a critical factor for organizations where the demand for dwelling units far outweighs the supply. The following guide lays out a five step plan to implement the EE Unit Turnover Package in your PHA, from an initial Self-Assessment through to Package Implementation.

  4. Earth sheltered housing in the south central United States

    SciTech Connect (OSTI)

    Grondzik, W.T. (Oklahoma State Univ., Stillwater); Grondzik, C.S.

    1982-01-01

    A detailed study of identified, occupied earth sheltered residences in the south central United States has been conducted by the Oklahoma State University. Selected results from this investigation of more than 150 residences in the states of Arkansas, Colorado, Iowa, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, and Texas are presented, focusing upon the issues of habitability and energy performance of such structures.

  5. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    SciTech Connect (OSTI)

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds

  6. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found

  7. Eielson Air Force Base Operable Unit 2 baseline risk assessment

    SciTech Connect (OSTI)

    Lewis, R.E.; Jarvis, T.T.; Jarvis, M.R.; Whelan, G.

    1994-10-01

    Operable Unit 2 at Eielson Air Force Base (AFB) near Fairbanks, is one of several operable units characterized by petroleum, oil, and lubricant contamination, and by the presence of organic products floating at the water table, as a result of Air Force operations since the 1940s. The base is approximately 19,270 acres in size, and comprises the areas for military operations and a residential neighborhood for military dependents. Within Operable Unit 2, there are seven source areas. These source areas were grouped together primarily because of the contaminants released and hence are not necessarily in geographical proximity. Source area ST10 includes a surface water body (Hardfill Lake) next to a fuel spill area. The primary constituents of concern for human health include benzene, toluene, ethylbenzene, and xylenes (BTEX). Monitored data showed these volatile constituents to be present in groundwater wells. The data also showed an elevated level of trace metals in groundwater.

  8. Table 2.7 Type of Heating in Occupied Housing Units, 1950-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Type of Heating in Occupied Housing Units, 1950-2009 Year Coal 1 Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Natural Gas Electricity Wood Solar Other 2 None 3 Total Number of Occupied Housing Units<//td> 1950 14,483,420 9,460,560 [4] 975,435 11,121,860 276,240 4,171,690 NA 769,390 1,567,686 42,826,281 1960 6,455,565 17,158,401 [4] 2,685,770 22,851,216 933,023 2,236,866 NA 223,015 480,019 53,023,875 1970 1,821,000 16,473,000 [4] 3,807,000 35,014,000 4,876,000 794,000 NA 266,000

  9. Table HC1-2a. Housing Unit Characteristics by Year of Construction,

    U.S. Energy Information Administration (EIA) Indexed Site

    2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.6 1.2 1.0 1.1 1.1 0.8 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Census Region and Division Northeast ...................................... 20.3 1.5 2.4 2.1 2.8 3.0 8.5 8.8 New

  10. Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel

  11. Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    .4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Space Heating Equipment....... 1.2 0.6 Q Q Q 0.3 Q Have Main Space Heating Equipment.......... 109.8 32.3 8.0 3.3 5.8 14.1 1.1 Use Main Space Heating Equipment............ 109.1 31.8 8.0 3.2 5.6 13.9 1.1 Have Equipment But Do Not Use It.............. 0.8 0.5 N Q Q Q Q Main Heating Fuel

  12. Table HC11.1 Housing Unit Characteristics by Northeast Census Region, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    1.1 Housing Unit Characteristics by Northeast Census Region, 2005 Total......................................................................... 111.1 20.6 15.1 5.5 Urban/Rural Location (as Self-Reported) City....................................................................... 47.1 6.9 4.7 2.2 Town..................................................................... 19.0 6.0 4.2 1.9 Suburbs................................................................ 22.7 4.4 4.0 0.5

  13. Table HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit,

    U.S. Energy Information Administration (EIA) Indexed Site

    5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.3 2.1 3.0 1.6 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Households Using Office Equipment .......................... 67.5 59.0 2.0 1.7 4.8 7.0

  14. Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, IBACOS, a U.S. Department of Energy Building America team, assessed a strategy for providing conditioned air to bedrooms when the bedroom doors are closed and measured potential thermal discomfort that occupants may experience when this strategy is used. Builders can use this information to discuss space conditioning options for low-load houses with their clients to determine acceptable comfort levels for occupants in these cost-optimized, energy-efficient houses.

  15. TEE-0062- In the Matter of United CoolAir Corp.

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Decision and Order considers an Application for Exception filed by United CoolAir Corporation (United CoolAir) seeking exception relief from the provisions of 10 C.F.R. Part 431, Subpart F,...

  16. Table HC2.11 Home Electronics Characteristics by Type of Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    Million U.S. Housing Units Total................................................................... 111.1 72.1 7.6 7.8 16.7 6.9 Personal Computers Do Not Use a Personal Computer ............... 35.5 17.8 3.1 3.7 7.3 3.6 Use a Personal Computer............................. 75.6 54.2 4.5 4.0 9.4 3.4 Number of Desktop PCs 1.............................................................. 50.3 33.9 3.1 3.0 7.6 2.7 2.............................................................. 16.2 12.7 0.9 0.7 1.4

  17. Table HC2.9 Home Appliances Characteristics by Type of Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    Million U.S. Housing Units Total U.S............................................................ 111.1 72.1 7.6 7.8 16.7 6.9 Cooking Appliances Conventional Ovens Use an Oven............................................... 109.6 71.3 7.4 7.7 16.4 6.8 1.............................................................. 103.3 66.2 7.2 7.4 15.9 6.7 2 or More................................................. 6.2 5.1 Q 0.3 0.5 Q Do Not Use an Oven................................... 1.5 0.7 Q Q 0.4 Q

  18. EFFECT OF TEMPERATURE AND HUMIDITY ON FORMALDEHYDE EMISSIONS IN TEMPORARY HOUSING UNITS

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-04-01

    The effect of temperature and humidity on formaldehyde emissions from samples collected from temporary housing units (THUs) was studied. The THUs were supplied by the U.S Federal Emergency Management Administration (FEMA) to families that lost their homes in Louisiana and Mississippi during the Hurricane Katrina and Rita disasters. Based on a previous study 1, 2, four of the composite wood surface materials that dominated contributions to indoor formaldehyde were selected to analyze the effects of temperature and humidity on the emission factors. Humidity equilibration experiments were carried out on two of the samples to determine how long the samples take to equilibrate with the surrounding environmental conditions. Small chamber experiments were then conducted to measure emission factors for the four surface materials at various temperature and humidity conditions. The samples were analyzed for formaldehyde via high performance liquid chromatography. The experiments showed that increases in temperature or humidity contributed to an increase in emission factors. A linear regression model was built using natural log of percentage relative humidity (RH) and inverse of temperature (in K) as predictor variables, and natural log of emission factors as the target variable. The coefficients of both inverse temperature and log relative humidity with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. This study should assist to retrospectively estimate indoor formaldehyde exposures of occupants of temporary housing units (THUs).

  19. United Cool Air Ex Parte Meeting Memo 10/2/12 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Ex Parte Meeting Memo 10/2/12 United Cool Air Ex Parte Meeting Memo 10/2/12 Thank you for providing the opportunity to meet with your group to discuss the regulations for commercial air conditioning as it relates to small business. United_CoolAir_Ex Parte Meeting Memo.pdf (47.82 KB) More Documents & Publications TEE-0062 - In the Matter of United CoolAir Corp. 2013 Reliability & Markets Peer Review ISSUANCE 2015-08-21: Energy Conservation Program: Test Procedures for Central Air

  20. Automated Proactive Techniques for Commissioning Air-Handling Units

    SciTech Connect (OSTI)

    Katipamula, Srinivas ); Brambley, Michael R. ); Luskay, Larry

    2003-08-30

    Many buildings today use sophisticated building automation systems (BASs) to manage a wide and varied range of building systems. Although the capabilities of the BASs seem to have increased over time, many buildings still are not properly commissioned, operated or maintained. Lack of or improper commissioning, the inability of the building operators to grasp the complex controls, and lack of proper maintenance leads to inefficient operations and reduced lifetimes of the equipment. If regularly scheduled manual maintenance or re-commissioning practices are adopted, they can be expensive and time consuming. Automated proactive commissioning and diagnostic technologies address two of the main barriers to commissioning: cost and schedules. Automated proactive continuous commissioning tools can reduce both the cost and time associated with commissioning, as well as enhance the persistence of commissioning fixes. In the long run, automation even offers the potential for automatically correcting problems by reconfiguring controls or changing control algorithms dynamically. This paper will discuss procedures and processes that can be used to automate and continuously commission the economizer operation and outdoor-air ventilation systems of an air-handling unit.

  1. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis

  2. Written Statement of Dr. Monica Regalbuto Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives (February 11 2016)

    Broader source: Energy.gov [DOE]

    Written Statement of Dr. Monica Regalbuto Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives February 11, 2016.

  3. Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Energy and Water Development Committee on Appropriations United States House of Representatives

    Broader source: Energy.gov [DOE]

    Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Energy and Water Development Committee on Appropriations United States House of Representatives (March 18, 2015)

  4. Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives (March 24, 2015)

    Broader source: Energy.gov [DOE]

    Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives March 24, 2015

  5. Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

    SciTech Connect (OSTI)

    Carden, R.S.

    1993-08-18

    The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

  6. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Lighting Usage Indicators" "Total U.S. Housing

  7. United_CoolAir_Ex Parte Meeting Memo.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rod Beever [mailto:rbeever@unitedcoolair.com] Sent: Friday, October 05, 2012 10:02 AM To: Cymbalsky, John; Adin, Lucas; Barhydt, Laura; Tong, Clarence Cc: Athar Khan; Neil Tucker; Jack Bardol; maureen_o'dea@casey.senate.gov; brett_doyle@toomey.senate.gov; kevin_stanton@casey.senate.gov Subject: Meeting 10-2-12 at DOE Thank you for providing the opportunity to meet with your group to discuss the regulations for commercial air conditioning as it relates to small business. Our conversation included

  8. DOE ZERH Case Study: United Way of Long Island Housing Development Corporation, Patchogue, NY

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning affordable home in the mixed-humid climate that got HERS 40 without PV, -3 with PV, with 2x4 16: on center walls with R-13.5 dense packed cellulose and 1.5” polyiso rigid; basement with 2.5: polyiso on interior; unvented attic with R-48 ocsf under roof deck; ERV tied to wall hung boiler with hydro coil.

  9. United States Office of Radiation and EP A Environmental Protection Indoor Air August 1997

    Office of Legacy Management (LM)

    EP A Environmental Protection Indoor Air August 1997 Agency Washington, DC 20460 EPA-402-R-97-015 GEPA Offsite Environmental RECEIVED Monitoring Report , , , , , , 0 . S T I Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1996 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Governrnent. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied,

  10. Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect (OSTI)

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-07-01

    This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

  11. Whole house fenestration energy consumption as a function of variable window air leakage rates

    SciTech Connect (OSTI)

    Kehrli, D.

    1995-09-01

    Residential building energy consumption is dependent on many variables. The heat loss or gain attributable to fenestration products can be a significant portion of the whole building load. The fenestration industry is current developing and implementing new test methods and rating procedures to more accurately account for fenestration energy transfer. One of the tools being developed by the National Fenestration Rating Council (NFRC) is a PC-based program called Residential Fenestration (RESFEN) heating and cooling load use and costs. This paper will provide a review of the energy and cost impacts that variable air leakage rates of several types of window products can have on overall window energy usage as modeled in four typical building designs located in the US. The analysis was performed with the RESFEN software as part of an NFRC sensitivity study on this issue.

  12. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC7.9 Home Appliances Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Appliances Characteristics" "Total

  13. Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Passive Room-to-Room Air Transfer Fresno, California PROJECT INFORMATION Construction: Retrofit Type: Single-family Builder: GreenEarthEquities (retrofit); http://greenearthequities.com/ Size: 1,621 ft 2 Price range: About $140,000 Date completed: 2011 Climate zone: Mixed-dry PERFORMANCE DATA HERS index: Not available Builder standard practice: Not available Case study house: 1,621 ft 2 With renewables: Not applicable Without renewables: 50.1% Projected annual energy cost savings: Not available

  14. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  15. Rooftop Unit Tune-Ups: The AirCare Plus Program from ComEd and CLEAResult |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rooftop Unit Tune-Ups: The AirCare Plus Program from ComEd and CLEAResult Rooftop Unit Tune-Ups: The AirCare Plus Program from ComEd and CLEAResult August 17, 2016 12:00PM to 1:00PM EDT Are you getting the most out of your rooftop units (RTUs)? Extreme climates like Chicago can be harsh on RTUs and they need a little TLC to keep them running at peak performance. ComEd and CLEAResult have teamed up to offer the AirCare Plus RTU tune-up program with results in excess of

  16. Building America Whole-House Solutions for New Homes: Evluating Through-Wall Air Transfer Fans, Pittburgh, Pennsylvania

    Broader source: Energy.gov [DOE]

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate HVAC distribution systems during heating, cooling, and midseason conditions.

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Have Space Heating Equipment But Do " "Not Use It",2.4,"Q","Q","Q","N","N","N","N","N" "Do Not Have Space Heating Equipment",1.2,"N","N","N","N","N","N","N","N" ...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    But Do " "Not Use It",2.4,1.6,0.1,"Q","Q","N",0.1,0.1,"Q",1.5,1.4,"Q" "Do Not Have Space Heating Equipment",1.2,0.8,"Q","N","N","N","Q","Q","N",0.8,0.3,0.5 "Main Heating ...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Have Space Heating Equipment But Do " "Not Use It",2.4,"Q","Q","Q","Q","N","N","Q","N","Q","N" "Do Not Have Space Heating Equipment",1.2,"Q","Q","N","Q","N","Q","N",...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2,0.2,0.1,0.1,1.7,0.5,0.6,0.6 "Only A Few Times When Needed",19.6,2.7,0.6,0.3,0.3,2.2,0.6,...2.2,0.5,0.2,0.3,1.7,1,0.5,0.2 "Only A Few Times When Needed",13.9,5.9,2.1,1,1,3.8,2.4,0.9,...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...10.1,3.3,1.7,0.8,0.9,1.7,1,0.7,6.7,5,1.8 "Plasma",9.7,2.4,0.6,0.3,0.1,0.2,0.4,0.2,0.1,1.7,...,1.7,0.8,0.3,0.4,0.9,0.6,0.4,3.7,2.8,0.9 "Plasma",3.8,0.9,0.2,0.1,"Q","Q",0.1,0.1,"Q",0.7,...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,10.4,16,7.5,7,5.1 "Plasma",9.7,1.6,3,1.9,1.8,1.6 ... "LCD",25.4,4,8.7,5.2,4.4,3.1 "Plasma",3.8,0.6,1.2,0.6,0.7,0.8 ...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,8.8,2.2,1,1.2,6.6,3.2,1.9,1.6 "Plasma",9.7,1.7,0.4,0.2,0.2,1.3,0.5,0.4,0.3 ... "LCD",25.4,5,1.2,0.5,0.7,3.8,1.8,1.1,0.9 "Plasma",3.8,0.7,0.2,0.1,0.1,0.5,0.2,0.2,"Q" ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2.9,27.8,3.2,1.7,1,0.7,2.4,1.1,6,1.7,0.4 "Plasma",9.7,7.1,2.6,6.1,0.6,0.4,0.2,0.1,0.5,0.2,...17.1,1.8,1.1,0.4,0.4,0.8,0.6,2.2,0.8,0.2 "Plasma",3.8,2.7,1.1,2.4,0.3,0.1,0.1,"Q",0.2,"Q",...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,31,2.8,3,7.1,2.1 "Plasma",9.7,6.7,0.6,0.7,1.5,0.3 ... "LCD",25.4,18.9,1.5,1.2,2.8,1 "Plasma",3.8,2.7,0.2,0.2,0.6,"Q" ...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,1.4,2.7,1.3,2.2,2.9,1.1,1.8,4.7,3.3,1.4 "Plasma",9.7,3.7,2,0.3,0.2,0.6,0.3,0.5,0.4,0.2,0....,0.9,1.6,0.8,1.1,1.6,0.5,1.1,2.8,1.9,0.9 "Plasma",3.8,1.5,0.7,0.1,0.1,0.2,"Q","Q",0.1,"Q",...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,6.5,9.9,9,6.6,4.7,2.8,6.5,4.7 "Plasma",9.7,1.3,1.8,1.9,1.3,1,0.6,1.8,1 ...CD",25.4,2.9,4.8,4.5,3.7,2.9,1.8,4.7,2.2 "Plasma",3.8,0.4,0.7,0.8,0.5,0.4,0.3,0.8,0.3 ...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,5.5,1.6,5.2,5,7.5,6.6,7.4,7.2 "Plasma",9.7,1,0.5,1,1.1,1.2,1.6,1.5,1.9 ...CD",25.4,2.4,0.9,2.7,2.8,3.9,3.6,4.2,4.8 "Plasma",3.8,0.4,0.2,0.5,0.4,0.4,0.6,0.5,0.9 ...

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,15.6,14.9,5.7,7.3,2.4 "Plasma",9.7,3,3.1,1.4,1.7,0.6 ... "LCD",25.4,8.1,8.4,3.2,4.3,1.3 "Plasma",3.8,1,1.2,0.6,0.8,0.2 ...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "LCD",46,8.8,10.4,16.7,10.1 "Plasma",9.7,1.7,2,3.7,2.4 "Projection",5,0.6,0.9... "LCD",25.4,5,5.4,9.6,5.3 "Plasma",3.8,0.7,0.7,1.5,0.9 ...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,46,10.4,7,1.7,1.4,0.9,3,3.4,0.9,1.6,0.8 "Plasma",9.7,2,1.4,0.5,0.4,0.2,0.4,0.6,0.2,0.3,0....,5.4,3.6,1.1,0.7,0.4,1.4,1.7,0.6,0.8,0.4 "Plasma",3.8,0.7,0.5,0.2,"Q","Q",0.2,0.2,0.1,0.1,...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Solar",1.2,1.1,"Q","Q","Q","Q" "Electricity End Uses2" "(more than one may apply)" "Space ... that use these fuels. However, Consumption and Expenditures estimates only ...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Solar",1.2,0.5,0.1,0.3,0.3,0.1 "Electricity End Uses3" "(more than one may apply)" "Space ... that use these fuels. However, Consumption and Expenditures estimates only ...

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Solar",1.2,0.2,0.2,0.3,0.5 "Electricity End Uses2" "(more than one may apply)" "Space ... that use these fuels. However, Consumption and Expenditures estimates only ...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Solar",1.2,0.2,0.6,0.2,0.1,0.1 "Electricity End Uses2" "(more than one may apply)" "Space ... that use these fuels. However, Consumption and Expenditures estimates only ...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....5,1.2,1.3,0.7,2.3,2.4,0.7,1.1,0.6 "Have Wireless Internet Access" "Yes",51.9,11.6,7.9,2.4...,0.3,0.3,0.2,0.3,0.7,0.2,0.3,0.2 "Device Charging Pattern" "Always Plugged ...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Access",32.5,15.8,1.8,3.7,7.3,3.9 "Have Wireless Internet Access" "Yes",51.9,36.4,3.2,3.5... than 8",7.9,6.4,0.4,0.3,0.6,0.3 "Device Charging Pattern" "Always Plugged ...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....5,5.5,1.2,0.6,0.6,4.3,2.1,1.7,0.5 "Have Wireless Internet Access" "Yes",51.9,9.6,2.9,1.3,...,1.4,0.4,0.2,0.3,0.9,0.3,0.3,0.3 "Device Charging Pattern" "Always Plugged ...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Access",32.5,5.5,7.9,13.1,6 "Have Wireless Internet Access" "Yes",51.9,9.6,11.6,18.... "More than 8",7.9,1.4,1.7,2.8,2 "Device Charging Pattern" "Always Plugged ...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,1.9,1,1.8,2.6,0.9,1.7,4.2,2.5,1.7 "Have Wireless Internet Access" "Yes",51.9,18.5,10.4,1....,0.3,0.3,0.5,0.2,0.3,0.8,0.5,0.2 "Device Charging Pattern" "Always Plugged ...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Access",32.5,14.5,9,3.7,2.5,2.8 "Have Wireless Internet Access" "Yes",51.9,8.7,16.5,10,... than 8",7.9,0.4,1.3,1.6,2.3,2.4 "Device Charging Pattern" "Always Plugged ...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....1,1,0.5,0.4,1.1,0.6,0.5,3.9,2.9,1 "Have Wireless Internet Access" "Yes",51.9,12.1,3.7,1.9...,0.2,0.2,0.2,0.1,0.1,1.4,0.9,0.5 "Device Charging Pattern" "Always Plugged ...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...13,2.9,0.8,1,0.3,3.4,0.5,6.8,2.9,1 "Have Wireless Internet Access" "Yes",51.9,37.6,14.3,32...,0.2,0.2,"Q",0.3,"Q",0.5,0.2,"Q" "Device Charging Pattern" "Always Plugged ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...32.5,4.4,2,4.4,4.4,5.7,5.2,3.8,2.6 "Have Wireless Internet Access" "Yes",51.9,6.5,2,5.4,5....,0.9,0.3,0.9,0.8,1.2,1.2,1.4,1.3 "Device Charging Pattern" "Always Plugged ...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....9,0.5,1,0.3,0.8,1.3,1,0.3 "Full Bathrooms" ...Q",0.3,"Q",0.2,"Q","Q","Q" "Part",5.5,0.8,0.7,0.2,"Q","N",0.... "Some of the Time",36,12.4,6.7,1,1.1,1.4,1.2,...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...Q","Q","Q","Q","Q",0.1,"Q" "Full Bathrooms" ....3,0.2,0.2,"N","N","N","N" "Part",5.5,5,0.5,4.7,0.3,0.2,0.1,... "Some of the Time",36,24.2,11.8,19.6,3.1,1.3,...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Homes",6.9,1.6,2.4,0.8,2,0.2 "Year of Construction" "Before 1940",14.4,7.7,4.5,0.8,0.6,0.... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Homes",6.9,0.5,1.1,3.9,1.4 "Year of Construction" "Before 1940",14.4,5.6,4.6,2.4,1.9 ... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",0.3,"Q","Q",0.5,0.2,0.2,0.1 "Year of Construction" "Before 1940",14.4,4.6,3.5,1,0.8,0.5,... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...5,0.1,"Q","Q",0.4,0.1,0.3,"Q" "Year of Construction" "Before 1940",14.4,5.6,1.8,1,0.8,3.8,... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...omes",6.9,1.9,2.1,1.2,0.8,0.9 "Year of Construction" "Before 1940",14.4,4.8,4.5,2,1.8,1.4 ... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Total U.S.1 (millions)",,,..."Below Poverty Line2" ,,"Less than 20,000","20,000 to ... the number of households below the poverty line, the annual household income and ...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Total U.S.1 (millions)",,,..."Below Poverty Line2" ,,"Less than 20,000","20,000 to ... the number of households below the poverty line, the annual household income and ...

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,2.9,0.8,0... the number of households below the poverty line, the annual household income and ...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,3.7,2.9,0... the number of households below the poverty line, the annual household income and ...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,6.7,10.1,... the number of households below the poverty line, the annual household income and ...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,7.2,3.4,0... the number of households below the poverty line, the annual household income and ...

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,5,3.9,2.9... the number of households below the poverty line, the annual household income and ...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,3.1,0.9,0... the number of households below the poverty line, the annual household income and ...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line3" "Below 100 Percent",16.9,5.4,5.6,2... the number of households below the poverty line, the annual household income and ...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,2.9,3.7,7... the number of households below the poverty line, the annual household income and ...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,6.9,0.9,2... the number of households below the poverty line, the annual household income and ...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Income Relative to Poverty Line2" "Below 100 Percent",16.9,2.4,1,2.1... the number of households below the poverty line, the annual household income and ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million ... Midwest",,,..."IA, MN, ND, SD" "Water Heating",,,,"IL","MI","WI","IN, ...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million ... MD, WV",,,,"AL, KY, MS",,,"AR, LA, OK" "Water Heating",,,,"VA","GA","FL",,"NC, ...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million ... Northeast",,,"CT, ME, NH, RI, VT" "Water Heating",,,,"MA",,,"NY","PA","NJ" "Total ...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million ... WY",,,,"Total Pacific",,"AK, HI, OR, WA" "Water Heating",,,,,"CO",,,"AZ","NM, NV",,"CA" ...

  8. Optimal integrated design of air separation unit and gas turbine block for IGCC systems

    SciTech Connect (OSTI)

    Kamath, R.; Grossman, I.; Biegler, L.; Zitney, S.

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine

  9. Optimal Integrated Design of Air Separation Unit and Gas Turbine Block for IGCC Systems

    SciTech Connect (OSTI)

    Ravindra S. Kamath; Ignacio E. Grossmann; Lorenz T. Biegler; Stephen E. Zitney

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine

  10. Public Housing: A Tailored Approach to Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Podorson, D.; Alaigh, K.

    2014-06-01

    Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.

  11. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  12. Eielson Air Force Base operable unit 2 and other areas record of decision

    SciTech Connect (OSTI)

    Lewis, R.E.; Smith, R.M.

    1994-10-01

    This decision document presents the selected remedial actions and no action decisions for Operable Unit 2 (OU2) at Eielson Air Force Base (AFB), Alaska, chosen in accordance with state and federal regulations. This document also presents the decision that no further action is required for 21 other source areas at Eielson AFB. This decision is based on the administrative record file for this site. OU2 addresses sites contaminated by leaks and spills of fuels. Soils contaminated with petroleum products occur at or near the source of contamination. Contaminated subsurface soil and groundwater occur in plumes on the top of a shallow groundwater table that fluctuates seasonally. These sites pose a risk to human health and the environment because of ingestion, inhalation, and dermal contact with contaminated groundwater. The purpose of this response is to prevent current or future exposure to the contaminated groundwater, to reduce further contaminant migration into the groundwater, and to remediate groundwater.

  13. Operable Unit 1 remedial investigation report, Eielson Air Force Base, Alaska

    SciTech Connect (OSTI)

    Gilmore, T.J.; Fruland, R.M.; Liikala, T.L.

    1994-06-01

    This remedial investigation report for operable Unit 1 (OU-1) at Eielson Air Force Base presents data, calculations, and conclusions as to the nature and extent of surface and subsurface contamination at the eight source areas that make up OU-1. The information is based on the 1993 field investigation result and previous investigations. This report is the first in a set of three for OU-1. The other reports are the baseline risk assessment and feasibility study. The information in these reports will lead to a Record of Decision that will guide and conclude the environmental restoration effort for OU-1 at Eielson Air Force Base. The primary contaminants of concern include fuels and fuel-related contaminants (diesel; benzene, toluene, ethylbenzene, and xylene; total petroleum hydrocarbon; polycyclic aromatic hydrocarbons), maintenance-related solvents and cleaners (volatile chlorinated hydrocarbons such as trichloroothylene), polychlorinated biphenyls, and dichlorodiphenyltrichloroethane (DDT). The origins of contaminants of concern include leaks from storage tanks, drums and piping, and spills. Ongoing operations and past sitewide practices also contribute to contaminants of concern at OU-1 source areas. These include spraying mixed oil and solvent wastes on unpaved roads and aerial spraying of DDT.

  14. HIA 2015 DOE Zero Energy Ready Home Case Study: United Way of Long Island Housing Development Corporation, Patchogue, NY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Way of Long Island Housing Development Corporation Patchogue, NY DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced

  15. DOE Zero Energy Ready Home Case Study: United Way of Long Island Housing Development Corporation, Patchogue, NY

    Broader source: Energy.gov [DOE]

    Case study of a DOE 2015 Housing Innovation Award winning affordable home in the mixed-humid climate that got HERS 40 without PV, -3 with PV, with 2x4 16: on center walls with R-13.5 dense packed cellulose and 1.5” polyiso rigid; basement with 2.5: polyiso on interior; unvented attic with R-48 ocsf under roof deck; ERV tied to wall hung boiler with hydro coil.

  16. New Whole-House Solutions Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    SciTech Connect (OSTI)

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient; the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Building America team Consortium for Advanced Residential Building's (CARB) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in three multifamily buildings.

  17. Public Housing: A Tailored Approach to Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, Jordan; Conlin, Francis; Podorson, David; Alaigh, Kunal

    2014-06-01

    More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation 10 ten housing units. Total source energy consumption savings was estimated at 6%-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.

  18. "Table HC4.6 Air Conditioning Characteristics by Renter-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings ... Unit" ,"RSEs for Housing Units " ,,,"Single-Family Units",,"Apartments in Buildings ...

  19. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect (OSTI)

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  20. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  1. A Semi-automated Commissioning Tool for VAV Air Handling Units:Functional Test Analyzer

    SciTech Connect (OSTI)

    Haves, Philip; Kim, Moosung; Najafi, Massieh; Xu, Peng

    2007-01-01

    A software tool that automates the analysis of functional tests for air-handling units is described. The tool compares the performance observed during manual tests with the performance predicted by simple models of the components under test that are configured using design and of information catalog data. Significant differences between observed and expected performance indicate the presence faults. Fault diagnosis is performed by analyzing the variation of these differences with operating points using expert rules and fuzzy inferencing. The tool has a convenient user interface to facilitate manual entry of measurements made during a test. A graphical display compares the measured and expected performance, highlighting significant differences that indicate the presence of faults. The tool is designed to be used by commissioning providers conducting functional tests as part of either new building commissioning or retrocommissioning as well as by building owners and operators conducting routine tests to check the performance of their HVAC systems. This paper describes the input data requirements of the tool, the software structure, and the graphical interface and summarizes the development and testing process used.

  2. CLIMATE CHANGE FUEL CELL PROGRAM UNITED STATES COAST GUARD AIR STATION CAPE COD BOURNE, MASSACHUSETTS

    SciTech Connect (OSTI)

    John K. Steckel Jr

    2004-06-30

    This report covers the first year of operation of a fuel cell power plant, installed by PPL Spectrum, Inc. (PPL) under contract with the United States Coast Guard (USCG), Research and Development Center (RDC). The fuel cell was installed at Air Station Cape Cod in Bourne, MA. The project had the support of the Massachusetts Technology Collaborative (MTC), the Department of Energy (DOE), and Keyspan Energy. PPL selected FuelCell Energy, Inc. (FCE) and its fuel cell model DFC{reg_sign}300 for the contract. Grant contributions were finalized and a contract between PPL and the USCG for the manufacture, installation, and first year's maintenance of the fuel cell was executed on September 24, 2001. As the prime contractor, PPL was responsible for all facets of the project. All the work was completed by PPL through various subcontracts, including the primary subcontract with FCE for the manufacture, delivery, and installation of the fuel cell. The manufacturing and design phases proceeded in a relatively timely manner for the first half of the project. However, during latter stages of manufacture and fuel cell testing, a variety of issues were encountered that ultimately resulted in several delivery delays, and a number of contract modifications. Final installation and field testing was completed in April and May 2003. Final acceptance of the fuel cell was completed on May 16, 2003. The fuel cell has operated successfully for more than one year. The unit achieved an availability rate of 96%, which exceeded expectations. The capacity factor was limited because the unit was set at 155 kW (versus a nameplate of 250 kW) due to the interconnection with the electric utility. There were 18 shutdowns during the first year and most were brief. The ability of this plant to operate in the island mode improved availability by 3 to 4%. Events that would normally be shutdowns were simply island mode events. The mean time between failure was calculated at 239 hours, or slightly less

  3. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    ... RSE Column Factor: Total 1997 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 1997 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  4. Energy House

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students learn about energy conservation and efficiency by using various materials to insulate a cardboard house.

  5. New Whole-House Solutions Case Study: Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware

    SciTech Connect (OSTI)

    2014-01-01

    In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).

  6. Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.

  7. Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 17, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, U.S. Department of Energy, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 17, 2015, to discuss the President’s Fiscal Year (FY) 2016 budget for the Department of Energy’s (DOE) Office of Electricity Delivery and Energy Reliability (OE).

  8. Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 25, 2014

    Broader source: Energy.gov [DOE]

    Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, U.S. Department of Energy, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 25, 2014, to discuss the President’s Fiscal Year (FY) 2015 budget for the Department of Energy’s (DOE) Office of Electricity Delivery and Energy Reliability (OE).

  9. Education Office Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Office Housing Housing A housing forum and listings for housing in and around Los Alamos. Contact Postdoc Housing Email LANL Students' Association Email LANL postdoc...

  10. Building America Whole-House Solutions for Existing Homes: Passive...

    Energy Savers [EERE]

    Air Transfer, Fresno, California (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet) In this ...

  11. DOE Tour of Zero: Mutual Housing at Spring Lake by Mutual Housing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero: Mutual Housing at Spring Lake by Mutual Housing California 1 of 14 Mutual Housing built this 62-unit multifamily affordable housing development near Sacramento, California, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 14 In addition to DOE Zero Energy Ready Home, the high-efficiency construction meets the requirements of

  12. Report on Preliminary Engineering Study for Installation of an Air Cooled Steam Condenser at Brawley Geothermal Plant, Unit No. 1

    SciTech Connect (OSTI)

    1982-03-01

    The Brawley Geothermal Project comprises a single 10 MW nominal geothermal steam turbine-generator unit which has been constructed and operated by the Southern California Edison Company (SCE). Geothermal steam for the unit is supplied through contract by Union Oil Company which requires the return of all condensate. Irrigation District (IID) purchases the electric power generated and provides irrigation water for cooling tower make-up to the plant for the first-five years of operation, commencing mid-1980. Because of the unavailability of irrigation water from IID in the future, SCE is investigating the application and installation of air cooled heat exchangers in conjunction with the existing wet (evaporative) cooling tower with make-up based on use of 180 gpm (nominal) of the geothermal condensate which may be made available by the steam supplier.

  13. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,0.5,1030,968,711,524,492,362 "Year of Construction" "Before 1940",5.6,1991,1428,573,826,5... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  14. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...4.1,2090,1718,523,752,618,188 "Year of Construction" "Before 1940",10.1,2603,1836,963,1002... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  15. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...3.9,1128,1008,894,423,378,335 "Year of Construction" "Before 1940",2.4,2048,1477,1138,828,... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  16. ,"Housing Units1","Average Square Footage Per Housing Unit",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",1.4,995,867,466,369,322,173 "Year of Construction" "Before 1940",1.9,1646,1077,274,671,4... "Major Outside Wall Construction" "Siding (Aluminum, Vinyl, ...

  17. Leveraging Limited Scope for Maximum Benefit in Occupied Renovation of Uninsulated Cold Climate Multifamily Housing

    SciTech Connect (OSTI)

    Neuhauser, K.; Bergey, D.; Osser, R.

    2012-03-01

    This project examines a large-scale renovation project within a 500 unit, 1960's era subsidized urban housing community. This research focuses on the airflow control and window replacement measures implemented as part of the renovations to the low-rise apartment buildings. The window replacement reduced the nominal conductive loss of the apartment enclosure by approximately 15%; air sealing measures reduced measured air leakage by approximately 40% on average.

  18. Meadowlark House

    Broader source: Energy.gov [DOE]

    This poster describes the energy efficiency features and sustainable materials used in the Greensburg GreenTown Chain of Eco-Homes Meadowlark House in Greensburg, Kansas.

  19. Air pollution control systems in WtE units: An overview

    SciTech Connect (OSTI)

    Vehlow, J.

    2015-03-15

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.

  20. United States-Canada air services: The role of alliances in a future bilateral agreement

    SciTech Connect (OSTI)

    Lewis, I.

    1995-12-01

    Transborder air services between the U.S. and Canada represent a mixing of two dynamic domestic markets whose relationships with each other is governed by a diplomatically negotiated agreement between governments. Trying to divide up the pie between the carriers of both nations while promoting economic growth is proving to be very difficult; four years of negotiations have yet to reach fruition. The Canadian government and carriers see the pie as fixed; there is only so much transborder traffic and Canadian airlines need their share. In contrast, U.S. carriers, airport operators, and government negotiators see the airline industry as a major instrument of economic growth. In this view, they are joined by many Canadian communities who believe that increased service can be of considerable benefit. More competition and better service can only lead to higher demand and passenger volume, from which Canadian airlines will benefit. Alliances between U.S. and Canadian carriers can help break the deadlock. The two governments need to recognize that their domestic airline industries are not distinct, and that they will share in any liberalization. Alliances need formal recognition, encouragement, and may be one of the few viable instruments available that will promote a greatly needed bilateral air services agreement between the U.S. and Canada.

  1. Air filter

    SciTech Connect (OSTI)

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  2. Decision support model for municipal solid waste recycling at United States Air Force Installations. Master`s thesis

    SciTech Connect (OSTI)

    Williams, G.A.

    1996-12-01

    The United States Air Force requires each installation to operate a municipal solid waste recycling program. Two inherently conflicting objectives, waste material diversion and financial result, have been established for the program. Reducing landfill disposal is the primary objective, but the incentive for profit is strong because each installation can retain profits from the program. Installations can be divided into two distinct areas, commercial and residential, based on the waste stream composition and funding. Structuring of the recycling program is often done in an ad-hoc manner. A decision support model was developed to evaluate four methods for each area. The model combines available Air Force data and information from research literature to determine the results of sixteen strategy combinations. The important variables affecting the results are determined through sensitivity analysis. The results are used to establish an efficient frontier of preferred strategies. The frontier illustrates the trade-offs of each strategy. The frontier can be also be used to inform decision makers prior to final strategy selection and determine preference values which would favor a given strategy. The value free analysis provides an objective foundation for presentation to a decision maker with unknown or changing preference values. The model provides valuable insight into the performance of recycling strategies as part of an overall waste management plan.

  3. Open House Archive | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open House Archive 2014 Open House 2012 Open House 2010 Open House 2007 Open House 2005 Open House 2003 Open House 2001 Open House Back to the main Open House Page

  4. Student Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In order to create a profile you will need a temporary access password. If you would like to take advantage of this housing resource you can request an access password at: ...

  5. Building America Whole-House Solutions for Existing Homes: Cascade Apartments- Deep Energy Multifamily Retrofit (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In December of 2009-10, King County Housing Authority implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington, which resulted in annual energy cost savings of 22%, improved comfort and air quality for residents, and increased durability of the units.

  6. PLUTONIUM-URANIUM EXTRACTION (PUREX) FACILITY ALARACT DEMONSTRATION FOR FILTER HOUSING

    SciTech Connect (OSTI)

    LEBARON GJ

    2008-11-25

    This document presents an As Low As Reasonably Achievable Control Technology (ALARACT) demonstration for evaluating corrosion on the I-beam supporting filter housing No.9 for the 291-A-l emission unit of the Plutonium-Uranium Extraction (PUREX) Facility, located in the 200 East Area of the Hanford Site. The PUREX facility is currently in surveillance and maintenance mode. During a State of Washington, Department of Health (WDOH) 291-A-l emission unit inspection, a small amount of corrosion was observed at the base of a high-efficiency particulate air (HEPA) filter housing. A series of internal and external inspections identified the source of the corrosion material as oxidation of a small section of one of the carbon steel I-beams that provides support to the stainless steel filter housing. The inspections confirmed the corrosion is isolated to one I-beam support location and does not represent any compromise of the structural support or filter housing integrity. Further testing and inspections of the support beam corrosion and its cause were conducted but did not determine the cause. No definitive evidence was found to support any degradation of the housing. Although no degradation of the housing was found, a conservative approach will be implemented. The following actions will be taken: (1) The current operating filter housing No.9 will be removed from service. (2) The only remaining available filter housings (No.1, No.2, and No.3) will be placed in service. These filter housings have new HEPA filters fitted with stainless steel frames and faceguards which were installed in the spring of 2007. (3) Filter housings No.5 and No.10 will be put on standby as backups. To document the assessment of the unit, a draft ALARACT filter housing demonstration for the PUREX filter housing was prepared, and informally provided to WDOH on August 7, 2008. A follow up WDOH response to the draft ALARACT filter housing demonstration for the PUREX filter housing questioned whether

  7. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  8. Superfund Record of Decision (EPA Region 8): F.E. Warren Air Force Base, Operable Unit 2, Cheyenne, WY, September 30, 1997

    SciTech Connect (OSTI)

    1998-01-01

    The site name is F. E. Warren Air Force Base (FEW), and it is located in Cheyenne, Wyoming. This site was placed on the National Priorities List (NPL) in February 1990. This Record of Decision (ROM) addresses the interim remedial action (IRA) at Operable Unit (OU) 2.

  9. Ozone and other air quality related variables affecting visibility in the southeast United States. Master`s thesis

    SciTech Connect (OSTI)

    Brittig, J.S.

    1997-07-11

    An analysis of ozone (03) concentrations and several other air quality related variables was performed to assess their relationship with visibility at five urban and semi-urban locations in the Southeast United States during the summer seasons of 1980 to 1996. The role and impact of ozone on aerosols was investigated to ascertain a relationship with visibility. Regional trend analysis of the 1980s reveals an increase in maximum ozone concentration coupled with a decrease in visibility. However, the 1990s shows a leveling off of both ozone and visibility; in both cases the results were not statistically significant at the 5% level. Site specific trends at Nashville Tennessee followed similar trends. To better ascertain the relationships and forcing mechanisms, the analysis was changed from yearly to daily and hourly averaged values. This increased resolution showed a statistically significant inverse relationship between visibility and ozone. Additionally, by performing back trajectory analysis, it was observed that the visibility degraded both by airmass migration over polluted areas and chemical kinetics.

  10. Whole-House Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation » Whole-House Ventilation Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical whole-house ventilation