National Library of Energy BETA

Sample records for housing unit single-family

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  2. Chicagoland Single-Family Housing Characterization

    SciTech Connect (OSTI)

    Spanier, J.; Scheu, R.; Brand, L.; Yang, J.

    2012-06-01

    In this report, the PARR team identifies housing characteristics and energy use for fifteen housing types (groups) in the Chicagoland (Cook County, Illinois) region and specifies measure packages that provide an optimum level of energy savings based on a BEopt analysis. The analysis is based on assessor data and actual energy consumption data on 432,605 houses representing approximately 30% of the population.

  3. Chicagoland Single-Family Housing Characterization

    SciTech Connect (OSTI)

    Spanier, J.; Scheu, R.; Brand, L.; Yang, J.

    2012-06-01

    In this report, the PARR team identifies housing characteristics and energy use for fifteen housing types in the Chicagoland (Cook County, Illinois) region and specifies measure packages that provide an optimum level of energy savings based on a BEopt analysis. The analysis is based on assessor data and actual energy consumption data on 432,605 houses representing approximately 30% of the population.

  4. "Table HC1.1.3 Housing Unit Characteristics by Average Floorspace--"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Housing Unit Characteristics by Average Floorspace--" " Single-Family Housing Units and Mobile Homes, 2005" ,,"Single- Family and Mobile Homes (millions)","Average Square Feet per Housing Unit-- Single-Family and Mobile Homes" ," Housing Units (millions)" ,,,"Single-Family Detached",,,"Single-Family Attached",,,"Mobile Homes" "Housing Unit

  5. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Televisions in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  8. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Space Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  10. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Household Demographics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" "Household

  11. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Computers and Other Electronics in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Air Conditioning in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Air

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Appliances in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,,,,,"5 or More Units","Mobile Homes" "Appliances",,"Detached","Attached","2 to 4 Units" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Cooking Appliances" "Stoves (Units With

  14. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment"

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Space Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Space Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Space Heating Equipment" "Use

  16. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Storage Tank Water Heaters"

  17. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Televisions in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Televisions" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Televisions" "Number of

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Computers and Other Electronics" "Total Homes",113.6,71.8,6.7,9,19.1,6.9

  19. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Household Demographics of U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Household Demographics" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Household

  20. "Table HC3.1 Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005" " Million Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Housing Unit Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  1. "Table HC4.1 Housing Unit Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Renter-Occupied Housing Unit, 2005" " Million Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Housing Unit Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  2. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Housing Unit Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Census Region and

  3. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Structural and Geographic Characteristics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Structural and Geographic

  4. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuels Used and End Uses in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Fuels Used and End

  5. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not

  6. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Household Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  7. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Household Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  8. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,72.1,7.6,7.8,16.7,6.9 "Indoor Lights

  9. 1997 Housing Characteristics Tables Housing Unit Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Million U.S. Households; 45 pages, 128 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 1997 4 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 1997 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 1997 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 1997 3 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ," Housing Units (millions) ","Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Cooking

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Home Electronics Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Personal

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Home Electronics Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Personal

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Household Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Household Size" "1

  14. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Floorspace (Square Feet)"

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not Have Space Heating

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not Have Cooling

  17. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Usage Indicators",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Do Not Have Cooling

  18. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Home Appliances Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S.",111.1,72.1,7.6,7.8,16.7,6.9 "Cooking

  19. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,72.1,7.6,7.8,16.7,6.9 "Number of Water

  20. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Fuels Used and End Uses" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Fuels Used for Any

  1. Table HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,

    U.S. Energy Information Administration (EIA) Indexed Site

    5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.4 0.4 1.8 2.1 1.4 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Census Region and Division Northeast ......................................

  2. 1997 Housing Characteristics Tables Housing Unit Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of U.S. Households; 45 pages, 121 kb) Contents Pages HC1-1b. Housing Unit Characteristics by Climate Zone, Percent of U.S. Households, 1997 4 HC1-2b. Housing Unit Characteristics by Year of Construction, Percent of U.S. Households, 1997 4 HC1-3b. Housing Unit Characteristics by Household Income, Percent of U.S. Households, 1997 4 HC1-4b. Housing Unit Characteristics by Type of Housing Unit, Percent of U.S. Households, 1997 3 HC1-5b. Housing Unit Characteristics by Type of Owner-Occupied

  3. Wind-induced Ground-surface Pressures Around a Single-Family House

    SciTech Connect (OSTI)

    Riley, W.J.; Gadgil, A.J.; Nazaroff, W.W.

    1996-02-01

    Wind induces a ground-surface pressure field around a building that can substantially affect the flow of soil gas and thereby the entry of radon and other soil-gas contaminants into the building. To quantify the effect of the wind-induced groundsurface pressure field on contaminant entry rates, the mean ground-surface pressure field was experimentally measured in a wind tunnel for several incidence angles of the wind, two atmospheric boundary layers, and two house geometries. The experimentally measured ground-surface pressure fields are compared with those predicted by a k-e turbulence model. Despite the fundamental limitations in applying a k-e model to a system with flow separation, predictions from the numerical simulations were good for the two wind incidence angles tested.

  4. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Single-Family",78.6,2422,2002,1522,880,727,553 "Census

  5. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    Contact: Robert Latta, Survey Manager (rlatta@eia.doe.gov) World Wide Web: http:www.eia.doe.govemeuconsumption Table HC1-1a. Housing Unit Characteristics by Climate Zone, ...

  6. "Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  7. "Table HC3.11 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  8. "Table HC3.12 Home Electronics Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Home Electronics Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  9. "Table HC3.13 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  10. "Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions) " ,,,"Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  11. "Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  12. "Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  13. "Table HC3.6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  14. "Table HC3.8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  15. "Table HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  16. "Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  17. "Table HC4.11 Home Electronics Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Home Electronics Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  18. "Table HC4.13 Lighting Usage Indicators by Renter-Occupied Housing Unit Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Renter-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  19. "Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Renter-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  20. "Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  1. "Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  2. "Table HC4.6 Air Conditioning Characteristics by Renter-Occupied Housing Units, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Renter-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  3. "Table HC4.7 Air-Conditioning Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  4. "Table HC4.8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  5. "Table HC4.12 Home Electronics Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Home Electronics Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More

  6. "Table HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More

  7. Table HC7-6a. Home Office Equipment by Type of Rented Housing Unit,

    U.S. Energy Information Administration (EIA) Indexed Site

    6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.0 0.9 3.0 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Households Using Office Equipment .......................... 28.7 9.2 6.5 12.1 0.9 7.5 Personal Computers 1

  8. The Standard Work Specifications for Single-Family Home Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Single-Family Home Energy Upgrades are now available via a user-friendly online tool, with specifications for manufactured housing and multifamily homes to follow. ...

  9. Table HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit,

    U.S. Energy Information Administration (EIA) Indexed Site

    5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.3 2.1 3.0 1.6 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Households Using Office Equipment .......................... 67.5 59.0 2.0 1.7 4.8 7.0

  10. The earth-coupled heat pump: Utilizing innovative technology in single family rehabilitation strategies

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    The study examines the feasibility of incorporating the use of earth-coupled heat pump technology in single-family housing rehabilitation projects, based on energy conservation attributes and financial considerations. Following evaluation of a theoretical model which indicated that installations of the heat pumps were feasible, the heat pumps were tested under actual conditions in five single family housing units which were part of the Urban Homesteading Program, and were matched with comparable units which did not receive special treatment. Energy consumption information was collected for all units for twelve months. Variables were identified, and the data was analyzed for individual housing units and compared with the results predicted by the theoretical model to determine the practicality of incorporating such technology in large scale rehabilitation projects. 14 refs., 14 figs., 3 tabs.

  11. Building America Whole-House Solutions for New Homes: EcoVillage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    neighborhood called the Third Residential EcoVillage Experience (TREE). This community-scale project consists of 40 housing units-15 apartments and 25 single family residences. ...

  12. "Table HC2.1 Structural and Geographic Characteristics of U.S. Homes, By Housing Unit Type, 2009"

    U.S. Energy Information Administration (EIA) Indexed Site

    Structural and Geographic Characteristics of U.S. Homes, By Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,,,"2 to 4 Units","5 or More Units","Mobile Homes" ,,"Detached","Attached" "Total

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Home Appliances in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Home

  14. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Household Demographics of Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Household

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Televisions in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT"

  16. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Air Conditioning in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Air

  17. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Appliances in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Appliances",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Appliances in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Appliances",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

  19. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Appliances in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,"Total U.S.1 (millions)","Census Region" "Appliances",,"Northeast","Midwest","South","West" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)" "Use a Stove",102.3,19.2,23.9,38.2,20.9

  20. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC.1.11 Fuels Used and End Uses in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total

  1. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Space Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  2. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Household Demographics of Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT,

  3. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Fuels Used and End Uses in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total

  4. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Structural and Geographic Characteristics of Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" "Structural

  5. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Structural and Geographic Characteristics of Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" "Structural and Geographic

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Appliances in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Televisions in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD,

  8. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Televisions in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Computers and Other Electronics in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total

  10. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Computers and Other Electronics in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total

  11. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Space Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC,

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Air Conditioning in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC,

  14. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT,

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Household Demographics of Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total

  16. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Appliances in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD,

  17. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Air Conditioning in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE,

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Fuels Used and End Uses in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Fuels Used and End Uses",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Fuels Used for Any Use"

  19. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Fuels Used and End Uses in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Fuels Used and End

  20. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Structural and Geographic Characteristics of U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,,,,,"5 or More Members" ,,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Census Region and Division"

  1. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Structural and Geographic Characteristics of Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" "Structural and Geographic Characteristics",,"Total Northeast",,,"CT, ME, NH, RI, VT"

  2. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Total Midwest",,,,," IN,

  3. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Appliances in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD"

  4. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Televisions in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Televisions",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Televisions" "Number of Televisions" 0,1.5,0.6,0.4,0.2,0.2,0.2

  5. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC4.9 Televisions in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD"

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Computers and Other Electronics in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Computers and Other Electronics",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Computers" "Number of Computers"

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Computers and Other Electronics in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Computers and Other

  8. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Computers and Other Electronics in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD" "Computers and Other

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Space

  10. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Space Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" " ",,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD" "Space

  11. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air Conditioning in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Air Conditioning" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Air Conditioning Equipment" "Use Air Conditioning Equipment",94,16.5,22.4,40.5,14.6 "Have Air Conditioning Equipment But" "Do Not Use

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Water

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,,,,,"IA, MN, ND, SD" "Water

  14. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Household Demographics of U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Household Demographics",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Number of Household Members" "1

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Fuels Used and End Uses in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Fuels Used and End Uses",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Fuels Used for Any Use"

  16. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Fuels Used and End Uses in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD" "Fuels Used and End

  17. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Structural and Geographic Characteristics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Total

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Structural and Geographic Characteristics of U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Very Cold/","Mixed- Humid","Mixed-Dry/" ,,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Census Region and Division"

  19. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Structural and Geographic Characteristics of U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Northeast","Midwest","South","West" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Urban and Rural2" "Urban",88.1,18,19.9,28.6,21.5 "Rural",25.5,2.8,6,13.4,3.3

  20. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Computers and Other Electronics in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Computers and Other Electronics" "Total

  1. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Space Heating",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Space Heating Equipment" "Use Space Heating

  2. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Space Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Space Heating",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Space Heating Equipment" "Use Space Heating

  3. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Space Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Space Heating" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Space Heating Equipment" "Use Space Heating Equipment",110.1,20.8,25.8,41.1,22.4 "Have Space Heating Equipment But Do " "Not Use

  4. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Air Conditioning in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Air Conditioning",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Air Conditioning Equipment" "Use Air Conditioning

  5. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Household Demographics of Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD" "Household

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD" "Air

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Household Demographics of U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Number of Household Members",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "2009 Annual Household Income" "Less than

  8. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Water Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Water Heating" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Number of Storage Tank Water Heaters" 0,2.9,1.3,0.4,0.7,0.5 1,108.1,19.3,25,40.2,23.6 "2 or More",2.7,0.2,0.5,1.2,0.7 "Number of Tankless Water

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Fuels Used and End Uses in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Fuels Used and End Uses" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6

  10. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Fuels Used and End Uses in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Fuels Used and End Uses" "Total

  11. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Fuels Used and End Uses in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Fuels Used and End Uses" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Fuels Used for Any Use" "Electricity",113.6,20.8,25.9,42.1,24.8 "Natural Gas",69.2,13.8,19.4,17.7,18.3

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Televisions in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Televisions" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Televisions"

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Televisions in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Televisions",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Televisions" "Number of Televisions" 0,1.5,1,0.3,"Q","Q",0.1

  14. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Televisions in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Televisions" "Total

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Water Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Water Heating" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Number of Storage

  16. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Water Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Water Heating",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Number of Storage Tank Water Heaters" 0,2.9,0.9,0.8,0.4,0.4,0.3

  17. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Water Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Water Heating" "Total

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Appliances" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Cooking Appliances"

  19. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Appliances in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Appliances" "Total

  20. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Televisions in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Televisions" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Televisions" "Number of Televisions" 0,1.5,0.4,0.3,0.5,0.4 1,24.2,4.6,5.4,8.1,6.1 2,37.5,7,8,13.8,8.5 3,26.6,4.5,6.1,10.5,5.3 4,14.2,2.2,3.4,5.7,2.9 "5 or

  1. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Computers and Other Electronics in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Computers and Other Electronics" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Computers" "Number of Computers" 0,27.4,4.7,6.7,11.1,4.8 1,46.9,8.7,10.6,17.2,10.3 2,24.3,4.3,5.5,8.7,5.8

  2. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Space Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Space Heating" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Space Heating

  3. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Space Heating" "Total

  4. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Air Conditioning in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Air Conditioning" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Air

  5. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Water Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Water Heating",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Number of Storage Tank Water Heaters" 0,2.9,1.3,0.8,0.4,0.4,0.1

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Demographics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Household Demographics" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Household Demographics of U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Number of Household Members" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Number of Household Members" "1 Person",31.3,6,7.4,11.5,6.3 "2 Persons",35.8,6.3,8.5,13.4,7.6 "3

  8. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Computers and Other Electronics in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Computers and Other Electronics"

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Air Conditioning in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Air Conditioning" "Total

  10. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Household Demographics of U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000 or More" "Household Demographics" "Total

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Housing Unit Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Census

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Housing Unit Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Census Region and Division" "Northeast",20.6,5.5,6.5,3.4,3,2.1 "New

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Housing Unit Characteristics",,"City","Town","Surburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Census Region and Division" "Northeast",20.6,6.9,6,4.4,3.2 "New England",5.5,2.2,1.9,0.5,0.9 "Middle

  14. Million U.S. Housing Units Total U.S. Housing Units........................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Units........................................ 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Heating Equipment........................... 1.2 Q Q N 0.3 0.8 Have Space Heating Equipment............................. 109.8 10.9 26.0 27.3 23.7 22.0 Use Space Heating Equipment.............................. 109.1 10.9 26.0 27.3 23.2 21.7 Have But Do Not Use Equipment.......................... 0.8 N N Q 0.5 Q Space Heating Usage During 2005 Heated Floorspace (Square Feet)

  15. Table HC1.1.1 Housing Unit Characteristics by

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Housing Unit Characteristics by" " Total, Heated, and Cooled Floorspace, 2005" ,,,"Total Square Footage" ,"Housing Units",,"Total",,"Heated",,"Cooled" "Housing Unit Characteristics","Millions","Percent","Billions","Percent","Billions","Percent","Billions","Percent" "Total",111.1,100,256.5,100,179.8,100,114.5,100 "Census Region

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Housing Unit Characteristics",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Do Not Have Cooling Equipment",17.8,8.5,2.7,2.6,4 "Have Cooling Equipment",93.3,38.6,16.2,20.1,18.4 "Use Cooling

  17. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Lighting Usage Indicators" "Total U.S. Housing Units",111.1,30,34.8,18.4,15.9,12 "Indoor Lights Turned On During Summer" "Number of Lights Turned

  18. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Lighting Usage Indicators",,"City","Town","Surburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per

  19. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Housing Unit Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Census Region

  20. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Space Heating Usage Indicators" "Total U.S. Housing

  1. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Year of Construction Unit, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Household Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Household

  2. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Lighting Usage Indicators" "Total U.S. Housing Units",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2

  3. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,30,34.8,18.4,15.9,12 "Do Not Have Heating Equipment",1.2,0.3,0.3,"Q",0.2,0.2

  4. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Home Appliances Usage Indicators" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2

  5. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Home Electronics Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Home Electronics Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2

  6. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Home Electronics Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Home Electronics Usage Indicators" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2

  7. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Living Space Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Floorspace

  8. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Living Space Characteristics",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than 500",3.2,2.1,0.6,"Q",0.4 "500 to

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Household Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Household Size" "1 Person",30,11.5,6.2,2.1,3.2 "2

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Air Conditioning Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Do

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Air Conditioning Usage Indicators" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Home Electronics Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Home Electronics Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Personal Computers" "Do Not Use a Personal Computer

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Home Electronics Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Home Electronics Usage Indicators" "Total",111.1,30,34.8,18.4,15.9,12 "Personal Computers" "Do Not Use a Personal

  14. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Household Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Household Size" "1

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Household Characteristics",,"City","Town","Surburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Household Size" "1 Person",30,14.7,5.1,5.1,5.1 "2 Persons",34.8,12.8,6.1,7.5,8.5 "3

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating Characteristics",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Do Not Have Space Heating Equipment",1.2,0.7,"Q",0.2,"Q" "Have Main Space Heating

  17. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Air-Conditioning Usage Indicators",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Do Not Have Cooling Equipment",17.8,8.5,2.7,2.6,4 "Have Cooling Equipment",93.3,38.6,16.2,20.1,18.4 "Use

  18. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Household Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Household Size" "1 Person",30,5.5,3.8,1.7 "2 Persons",34.8,6.5,4.8,1.7 "3

  19. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Household Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Household Size" "1 Person",30,7.3,5,2.3 "2 Persons",34.8,8.4,5.7,2.7 "3

  20. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Living Space Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than

  1. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Space Heating Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Do Not Have Space Heating Equipment",1.2,0.3,0.3,"Q",0.2,0.2 "Have Main

  2. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Air-Conditioning Usage Indicators" "Total",111.1,30,34.8,18.4,15.9,12 "Do Not Have Cooling Equipment",17.8,5.4,5.3,2.7,2.5,2 "Have Cooling

  3. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC6.9 Home Appliances Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Home Appliances Characteristics" "Total U.S.",111.1,30,34.8,18.4,15.9,12 "Cooking Appliances" "Conventional Ovens" "Use an

  4. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Home Electronics Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Electronics Characteristics",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Personal Computers" "Do Not Use a Personal Computer ",35.5,16.9,6.5,4.6,7.6 "Use a Personal

  5. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC8.9 Home Appliances Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Appliances Characteristics",,"City","Town","Suburbs","Rural" "Total U.S.",111.1,47.1,19,22.7,22.3 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,46.2,18.8,22.5,22.1

  6. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Water Heating Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Number

  7. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Air Conditioning Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Do Not Have Cooling Equipment",17.8,5.4,5.3,2.7,2.5,2 "Have Coolling

  8. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2 Members","3 Members","4 Members","5 or More Members" "Water Heating Characteristics" "Total",111.1,30,34.8,18.4,15.9,12 "Number of Water Heaters" "1.",106.3,28.8,33.4,17.4,15.3,11.4 "2 or

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Water Heating Characteristics",,"City","Town","Surburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Number of Water Heaters" "1.",106.3,45.5,18.2,21.6,21 "2 or More",3.7,1,0.6,0.9,1.1 "Do Not Use Hot

  10. Experimental plan for the Single-Family Study

    SciTech Connect (OSTI)

    Berry, L.G.; Brown, M.A.; Wright, T.; White, D.L.

    1991-09-01

    The national evaluation of the Weatherization Assistance Program (WAP) consists of five separate studies. The Single-Family Study is one of three studies that will estimate program energy savings and cost effectiveness in principal WAP submarkets. This report presents the experimental plan for the Single-Family Study, which will be implemented over the next three years (1991--1993). The Single-Family Study will directly estimate energy savings for a nationally representative sample of single-family and small multifamily homes weatherized in the 1989 program year. Savings will be estimated from gas and electric utility billing records using the Princeton Scorekeeping Method (PRISM). The study will also assess nonenergy impacts (e.g., health, comfort, safety, and housing affordability), estimate cost effectiveness, and analyze factors influencing these outcomes. For homes using fuels such as wood, coal, fuel oil, kerosene, and propane as the primary source of space conditioning, energy savings will be studied indirectly. The study will assemble a large nationally representative data base. A cluster sampling approach will be used, in which about 400 subgrantees are selected in a first stage and weatherized homes are selected in a second range. To ensure that the Single-Family Study is able to identify promising opportunities for future program development, two purposively selected groups of subgrantees will be included: (1) subgrantees that install cooling measures (such as more efficient air conditioning equipment or radiant barriers), and (2) exemplary subgrantees that use state-of-the-art technologies and service delivery procedures (such as advanced audit techniques, blower door tests, infrared scanners, extensive client education, etc.). These two groups of subgrantees will be analyzed to identify the most effective program elements in specific circumstances. 14 refs., 4 figs., 3 tabs.

  11. CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE The Chicago Metropolitan Agency for Planning (CMAP) and its partners created Energy Impact Illinois (EI2) to promote home energy upgrades in single-family homes, multifamily housing units, and commercial buildings to help the region meet its 2008 Chicago Climate Action Plan and longer term GO TO 2040 Strategic Plan. EI2 enlisted the help of the Elevate Energy, a

  12. North Shore Gas- Single Family Direct Install

    Broader source: Energy.gov [DOE]

    Owners of single-family homes, condos, townhomes and two-flats may be eligible for a free installation of new programmable thermostats, pipe insulation, showerheads, Compact Fluorescent Bulbs (CFLs...

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Household Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Household Size" "1 Person",30,5.7,1.5,4.2 "2 Persons",34.8,7.4,2.9,4.5 "3 Persons",18.4,3.9,1.2,2.7

  14. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Space Heating Characteristics" "Total",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2 "Do Not

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC5.9 Home Appliances Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2005" "Home Appliances Characteristics" "Total U.S.",111.1,14.7,7.4,12.5,12.5,18.9,18.6,17.3,9.2

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Home Electronics Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Home Electronics Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8

  17. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Household Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Household Size" "1 Person",30,5.5,7.3,11.5,5.7 "2 Persons",34.8,6.5,8.4,12.5,7.4 "3 Persons",18.4,3.4,4.1,7,3.9 "4

  18. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Lighting Usage Indicators" "Total",111.1,10.9,26.1,27.3,24,22.8 "Indoor Lights

  19. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Living Space Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Floorspace

  20. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Household Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Household

  1. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Space Heating Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Do Not

  2. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Air Conditioning Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Do

  3. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Air-Conditioning Usage Indicators" "Total",111.1,10.9,26.1,27.3,24,22.8 "Do

  4. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Home Appliances Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Home Appliances Characteristics" "Total U.S.",111.1,10.9,26.1,27.3,24,22.8

  5. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Water Heating Characteristics" "Total",111.1,10.9,26.1,27.3,24,22.8 "Number of

  6. The Standard Work Specifications for Single-Family Home Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Standard Work Specifications for Single-Family Home Energy Upgrades are now available at your fingertips The Standard Work Specifications for Single-Family Home Energy ...

  7. Standard Work Specifications for Single-Family Home Energy Upgrades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard Work Specifications for Single-Family Home Energy Upgrades Summary Fact Sheet Standard Work Specifications for Single-Family Home Energy Upgrades Summary Fact Sheet The ...

  8. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Northeast",20.8,2121,1663,921,836,656,363 "Northeast Divisions and

  9. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Midwest",25.9,2272,1898,1372,912,762,551 "Midwest Divisions and

  10. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Average Square Footage of South Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total South",42.1,1867,1637,1549,732,642,607 "South Divisions and

  11. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Square Footage of West Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total West",24.8,1708,1374,800,628,506,294 "West Divisions and States"

  12. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Multi-Family",28.1,930,807,535,453,393,261 "Census Region"

  13. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Mobile Homes",6.9,1087,985,746,413,375,283 "Census Region"

  14. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total",113.6,1971,1644,1230,766,639,478 "Census Region"

  15. " Million U.S. Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Structural and Geographic Characteristics of U.S. Homes, by Household Income, 2009" " Million U.S. Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,,,,,,"Below Poverty Line2" "Structural and Geographic Characteristics",,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 to $99,999","$100,000 to $119,999","$120,000

  16. Table HC1.1.2 Housing Unit Characteristics by Average Floorspace, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Housing Unit Characteristics by Average Floorspace, 2005 " ,,"Average Square Feet per--" ," Housing Units (millions)" ,,"Housing Unit",,,"Household Member" "Housing Unit Characteristics",,"Total1","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,2171,1618,1031,845,630,401 "Census Region and Division" "Northeast",20.6,2334,1664,562,911,649,220

  17. "Table HC11.1 Housing Unit Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units" ,,,"Census Division" ,,"Total Northeast" "Housing Unit Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Urban/Rural Location (as Self-Reported)" "City",47.1,6.9,4.7,2.2 "Town",19,6,4.2,1.9

  18. "Table HC12.1 Housing Unit Characteristics by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Housing Unit Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Urban/Rural Location (as Self-Reported)" "City",47.1,9.7,7.3,2.4

  19. "Table HC13.1 Housing Unit Characteristics by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Housing Unit Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Urban/Rural Location (as Self-Reported)"

  20. "Table HC14.1 Housing Unit Characteristics by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Housing Unit Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Urban/Rural Location (as Self-Reported)" "City",47.1,12.8,3.2,9.6 "Town",19,3,1.1,1.9

  1. Table HC1.1.4 Housing Unit Characteristics by Average Floorspace--Apartments, 2

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Housing Unit Characteristics by Average Floorspace--Apartments, 2005" ,,,"Average Square Feet per Apartment in a --" ," Housing Units (millions)" ,,,"2 to 4 Unit Building",,,"5 or More Unit Building" ,,"Apartments (millions)" "Housing Unit Characteristics",,,"Total","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,24.5,1090,902,341,872,780,441

  2. Table HC1-10a. Housing Unit Characteristics by Midwest Census Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    0a. Housing Unit Characteristics by Midwest Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.8 Total .............................................................. 107.0 24.5 17.1 7.4 NE Census Region and Division Northeast ..................................................... 20.3 -- -- -- NF New England

  3. Table HC1-12a. Housing Unit Characteristics by West Census Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    2a. Housing Unit Characteristics by West Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.1 Total .............................................................. 107.0 23.3 6.7 16.6 NE Census Region and Division Northeast ..................................................... 20.3 -- -- -- NF New England ............................................. 5.4 --

  4. Measure Guideline. Five Steps to Implement the Public Housing Authority Energy-Efficient Unit Turnover Checklist

    SciTech Connect (OSTI)

    Liaukus, Christine

    2015-07-09

    Five Steps to Implementing the PHA Energy Efficient Unit Turnover Package (ARIES, 2014) is a guide to prepare for the installation of energy efficient measures during a typical public housing authority unit turnover. While a PHA is cleaning, painting and readying a unit for a new resident, there is an opportunity to incorporate energy efficiency measures to further improve the unit's performance. The measures on the list are simple enough to be implemented by in-house maintenance personnel, inexpensive enough to be folded into operating expenses without needing capital budget, and fast enough to implement without substantially changing the number of days between occupancies, a critical factor for organizations where the demand for dwelling units far outweighs the supply. The following guide lays out a five step plan to implement the EE Unit Turnover Package in your PHA, from an initial Self-Assessment through to Package Implementation.

  5. Earth sheltered housing in the south central United States

    SciTech Connect (OSTI)

    Grondzik, W.T. (Oklahoma State Univ., Stillwater); Grondzik, C.S.

    1982-01-01

    A detailed study of identified, occupied earth sheltered residences in the south central United States has been conducted by the Oklahoma State University. Selected results from this investigation of more than 150 residences in the states of Arkansas, Colorado, Iowa, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, and Texas are presented, focusing upon the issues of habitability and energy performance of such structures.

  6. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    5 2010 Construction Method of Single-Family Homes, by Region (Thousand Units and Percent of Total Units) Region Total Northeast 49 10% 4 33% 2 18% 54 Midwest 76 16% 3 25% 2 18% 82 South 247 52% 4 33% 6 55% 258 West 101 21% 1 8% 1 9% 103 Total 473 100% 12 100% 11 100% 497 Source(s): Stick-Built Modular Panelized/Precut DOC, Manufacturing, Mining and Construction Statistics, New Residential Construction: Type of Construction Method of New Single-Family Houses Completed

  7. Table HC1-11a. Housing Unit Characteristics by South Census Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    1a. Housing Unit Characteristics by South Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.4 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Census Region and Division Northeast ..................................................... 20.3 -- -- -- -- NF New England

  8. Table HC1-3a. Housing Unit Characteristics by Household Income,

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Census Region and Division Northeast

  9. Table HC1-7a. Housing Unit Characteristics by Four Most Populated States,

    U.S. Energy Information Administration (EIA) Indexed Site

    7a. Housing Unit Characteristics by Four Most Populated States, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.0 1.0 1.3 1.7 Total .............................................................. 107.0 7.1 12.3 7.7 6.3 NE Census Region and Division Northeast ..................................................... 20.3 7.1 -- -- -- NF New England

  10. Table HC1-8a. Housing Unit Characteristics by Urban/Rural Location,

    U.S. Energy Information Administration (EIA) Indexed Site

    8a. Housing Unit Characteristics by Urban/Rural Location, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.3 1.3 1.4 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.2 Census Region and Division Northeast ..................................................... 20.3 7.7 4.5 4.7 3.4 7.4 New England .............................................

  11. Table HC1-9a. Housing Unit Characteristics by Northeast Census Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    9a. Housing Unit Characteristics by Northeast Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Census Region and Division Northeast ..................................................... 20.3 20.3 14.8 5.4 NF New England

  12. "Table HC10.1 Housing Unit Characteristics by U.S. Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0.1 Housing Unit Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Housing Unit Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Census Region and Division" "Northeast",20.6,20.6,"N","N","N" "New

  13. "Table HC15.1 Housing Unit Characteristics by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Four Most Populated States, 2005" " Million Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Housing Unit Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Census Region and Division" "Northeast",20.6,7.1,"N","N","N" "New

  14. 10th Annual North American Passive House Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Passive House Institute US, this five-day conference will target both multifamily and single family housing design, engineering, and development along with Passive House certification.

  15. Table 2.7 Type of Heating in Occupied Housing Units, 1950-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Type of Heating in Occupied Housing Units, 1950-2009 Year Coal 1 Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Natural Gas Electricity Wood Solar Other 2 None 3 Total Number of Occupied Housing Units<//td> 1950 14,483,420 9,460,560 [4] 975,435 11,121,860 276,240 4,171,690 NA 769,390 1,567,686 42,826,281 1960 6,455,565 17,158,401 [4] 2,685,770 22,851,216 933,023 2,236,866 NA 223,015 480,019 53,023,875 1970 1,821,000 16,473,000 [4] 3,807,000 35,014,000 4,876,000 794,000 NA 266,000

  16. Table HC1-1a. Housing Unit Characteristics by Climate Zone,

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.8 1.0 1.1 1.2 1.1 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 8.0 Census Region and Division Northeast

  17. Table HC1-2a. Housing Unit Characteristics by Year of Construction,

    U.S. Energy Information Administration (EIA) Indexed Site

    2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.6 1.2 1.0 1.1 1.1 0.8 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Census Region and Division Northeast ...................................... 20.3 1.5 2.4 2.1 2.8 3.0 8.5 8.8 New

  18. Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel

  19. Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    .4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Space Heating Equipment....... 1.2 0.6 Q Q Q 0.3 Q Have Main Space Heating Equipment.......... 109.8 32.3 8.0 3.3 5.8 14.1 1.1 Use Main Space Heating Equipment............ 109.1 31.8 8.0 3.2 5.6 13.9 1.1 Have Equipment But Do Not Use It.............. 0.8 0.5 N Q Q Q Q Main Heating Fuel

  20. Table HC11.1 Housing Unit Characteristics by Northeast Census Region, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    1.1 Housing Unit Characteristics by Northeast Census Region, 2005 Total......................................................................... 111.1 20.6 15.1 5.5 Urban/Rural Location (as Self-Reported) City....................................................................... 47.1 6.9 4.7 2.2 Town..................................................................... 19.0 6.0 4.2 1.9 Suburbs................................................................ 22.7 4.4 4.0 0.5

  1. Housing characteristics, 1987: Residential Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1989-05-26

    This report is the first of a series of reports based on data from the 1987 RECS. The 1987 RECS is the seventh in the series of national surveys of households and their energy suppliers. These surveys provide baseline information on how households in the United States use energy. A cross section of housing types such as single-family detached homes, townhouses, large and small apartment buildings, condominiums, and mobile homes were included in the survey. Data from the RECS and a companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are available to the public in published reports such as this one and on public use tapes. 10 figs., 69 tabs.

  2. Table HC2.11 Home Electronics Characteristics by Type of Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    Million U.S. Housing Units Total................................................................... 111.1 72.1 7.6 7.8 16.7 6.9 Personal Computers Do Not Use a Personal Computer ............... 35.5 17.8 3.1 3.7 7.3 3.6 Use a Personal Computer............................. 75.6 54.2 4.5 4.0 9.4 3.4 Number of Desktop PCs 1.............................................................. 50.3 33.9 3.1 3.0 7.6 2.7 2.............................................................. 16.2 12.7 0.9 0.7 1.4

  3. Table HC2.9 Home Appliances Characteristics by Type of Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    Million U.S. Housing Units Total U.S............................................................ 111.1 72.1 7.6 7.8 16.7 6.9 Cooking Appliances Conventional Ovens Use an Oven............................................... 109.6 71.3 7.4 7.7 16.4 6.8 1.............................................................. 103.3 66.2 7.2 7.4 15.9 6.7 2 or More................................................. 6.2 5.1 Q 0.3 0.5 Q Do Not Use an Oven................................... 1.5 0.7 Q Q 0.4 Q

  4. EFFECT OF TEMPERATURE AND HUMIDITY ON FORMALDEHYDE EMISSIONS IN TEMPORARY HOUSING UNITS

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-04-01

    The effect of temperature and humidity on formaldehyde emissions from samples collected from temporary housing units (THUs) was studied. The THUs were supplied by the U.S Federal Emergency Management Administration (FEMA) to families that lost their homes in Louisiana and Mississippi during the Hurricane Katrina and Rita disasters. Based on a previous study 1, 2, four of the composite wood surface materials that dominated contributions to indoor formaldehyde were selected to analyze the effects of temperature and humidity on the emission factors. Humidity equilibration experiments were carried out on two of the samples to determine how long the samples take to equilibrate with the surrounding environmental conditions. Small chamber experiments were then conducted to measure emission factors for the four surface materials at various temperature and humidity conditions. The samples were analyzed for formaldehyde via high performance liquid chromatography. The experiments showed that increases in temperature or humidity contributed to an increase in emission factors. A linear regression model was built using natural log of percentage relative humidity (RH) and inverse of temperature (in K) as predictor variables, and natural log of emission factors as the target variable. The coefficients of both inverse temperature and log relative humidity with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. This study should assist to retrospectively estimate indoor formaldehyde exposures of occupants of temporary housing units (THUs).

  5. Zero Energy-Ready Single-Family Homes - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy-Ready Single-Family Homes - Building America Top Innovation Zero Energy-Ready Single-Family Homes - Building America Top Innovation Photo of a zero-energy, ...

  6. National impacts of the Weatherization Assistance Program in single-family and small multifamily dwellings

    SciTech Connect (OSTI)

    Brown, M.A.; Berry, L.G.; Balzer, R.A.; Faby, E.

    1993-05-01

    Since 1976, the US Department of Energy (DOE) has operated one of the largest energy conservation programs in the nation -- the low-income Weatherization Assistance Program. The program strives to increase the energy efficiency of dwellings occupied by low-income persons in order to reduce their energy consumption, lower their fuel bills, increase the comfort of their homes, and safeguard their health. It targets vulnerable groups including the elderly, people with disabilities, and families with children. The most recent national evaluation of the impacts of the Program was completed in 1984 based on energy consumption data for households weatherized in 1981. DOE Program regulations and operations have changed substantially since then: new funding sources, management principles, diagnostic procedures, and weatherization technologies have been incorporated. Many of these new features have been studied in isolation or at a local level; however, no recent evaluation has assessed their combined, nationwide impacts to date or their potential for the future. In 1990, DOE initiated such an evaluation. This evaluation is comprised of three ``impact`` studies (the Single-Family Study, High-Density Multifamily Study, and Fuel-Oil Study) and two ``policy`` studies. Altogether, these five studies will provide a comprehensive national assessment of the Weatherization Assistance Program as it existed in the 1989 Program Year (PY 1989). This report presents the results of the first phase of the Single-Family Study. It evaluates the energy savings and cost effectiveness of the Program as it has been applied to the largest portion of its client base -- low-income households that occupy single-family dwellings, mobile homes, and small (2- to 4-unit) multifamily dwellings. It is based upon a representative national sample that covers the full range of conditions under which the program was implemented in PY 1989.

  7. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  8. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Housing Unit Characteristics"

  9. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    4 Region Single-Family Multi-Family Mobile Homes Northeast 54 11% 26 17% 4 8% 84 12% Midwest 82 17% 25 16% 6 11% 113 16% South 258 52% 59 38% 34 68% 351 50% West 103 21% 45 29% 6 13% 154 22% Total 496 100% 155 100% 50 100% 702 100% Source(s): 2010 New Homes Completed/Placed, by Census Region (Thousand Units and Percent of Total Units) Total DOC, Manufacturing, Mining and Construction Statistics: New Residential Construction: New Privately Owned Housing Units Completed, 2010; and DOC,

  10. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found to be higher than values reported in comparable housing by Hodgson et al.,3. Emissions of phenol were also found to be slightly higher than values reported in earlier studies1,2,3. This study can assist in retrospective formaldehyde exposure assessments of THUs where estimates of the occupants indoor formaldehyde exposures are needed.

  11. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    SciTech Connect (OSTI)

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds, formaldehyde was the only one with toxicological significance at the observed concentrations. Whole THU formaldehyde emissions ranged from 173 to 266 mu g m-2 h 1 in the morning and 257 to 347 mu g m-2 h-1 in the afternoon. Median formaldehyde emissions in previously studied site-built and manufactured homes were 31 and 45 mu g m-2 h-1, respectively. Only one of the composite wood materials that was tested appeared to exceed the HUD formaldehyde emission standard (430 mu g/m2 h-1 for particleboard and 130 mu g/m2 h-1 for plywood). The high loading factor (material surface area divided by THU volume) of composite wood products in the THUs and the low fresh air exchange relative to the material surface area may be responsible for the excessive concentrations observed for some of the VOCs and formaldehyde.

  12. California Solar Initiative- Single-Family Affordable Solar Housing (SASH) Program

    Broader source: Energy.gov [DOE]

    The California Solar Initiative (CSI), enacted by SB 1 of 2006, provides financial incentives for installing solar technologies through a variety of smaller sub-programs. Of the $3.2 billion in t...

  13. California Solar Initiative- Single-Family Affordable Solar Housing (SASH) Program

    Broader source: Energy.gov [DOE]

    The California Solar Initiative (CSI) provides financial incentives for installing solar technologies through a variety of smaller sub-programs. Of the $3.2 billion in total funding for the CSI, ...

  14. Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Energy and Water Development Committee on Appropriations United States House of Representatives

    Broader source: Energy.gov [DOE]

    Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Energy and Water Development Committee on Appropriations United States House of Representatives (March 18, 2015)

  15. Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives (March 24, 2015)

    Broader source: Energy.gov [DOE]

    Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives March 24, 2015

  16. Zero Energy-Ready Single-Family Homes - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Zero Energy-Ready Single-Family Homes - Building America Top Innovation Zero Energy-Ready Single-Family Homes - Building America Top Innovation Photo of a zero-energy, single-family home. Building homes that are zero energy ready is a goal of the U.S. Department of Energy's (DOE) Building America program and one embodied in Building America's premier home certification program, the Challenge Home (now Zero Energy Ready Home) program. This Top Innovation highlights

  17. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    SciTech Connect (OSTI)

    Dean, J.; VanGeet, O.; Simkus, S.; Eastment, M.

    2012-03-01

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or within a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.

  18. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Lighting Usage Indicators" "Total U.S. Housing

  19. DOE ZERH Case Study: United Way of Long Island Housing Development Corporation, Patchogue, NY

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning affordable home in the mixed-humid climate that got HERS 40 without PV, -3 with PV, with 2x4 16: on center walls with R-13.5 dense packed cellulose and 1.5” polyiso rigid; basement with 2.5: polyiso on interior; unvented attic with R-48 ocsf under roof deck; ERV tied to wall hung boiler with hydro coil.

  20. Analysis of Installed Measures and Energy Savings for Single-Family Residential Better Buildings Projects

    SciTech Connect (OSTI)

    Heaney, M.; Polly, B.

    2015-04-30

    This report presents an analysis of data for residential single-family projects reported by 37 organizations that were awarded federal financial assistance (cooperative agreements or grants) by the U.S. Department of Energy’s Better Buildings Neighborhood Program.1 The report characterizes the energy-efficiency measures installed for single-family residential projects and analyzes energy savings and savings prediction accuracy for measures installed in a subset of those projects.

  1. The Standard Work Specifications for Single-Family Home Energy Upgrades are

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    now available€ at your fingertips! | Department of Energy The Standard Work Specifications for Single-Family Home Energy Upgrades are now available€ at your fingertips! The Standard Work Specifications for Single-Family Home Energy Upgrades are now available€ at your fingertips! This announcement contains information on the availability of the SWS Online Tool. PDF icon sws_tool_available.pdf More Documents & Publications Guidelines for Home Energy Professionals: Request for

  2. Critical Question #7: What are the Best Practices for Single-Family

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation in All Climate Regions? | Department of Energy 7: What are the Best Practices for Single-Family Ventilation in All Climate Regions? Critical Question #7: What are the Best Practices for Single-Family Ventilation in All Climate Regions? Why ventilate? What are the ultimate goals of ventilation requirements in codes and standards? What are the characteristics of an effective ventilation system in new vs. existing construction? What are the risks and solutions associated with

  3. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Home Electronics Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Electronics Characteristics"

  4. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Living Space Characteristics"

  5. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Household Characteristics"

  6. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Characteristics"

  7. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Air Conditioning Characteristics"

  8. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Air-Conditioning Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Air-Conditioning Usage Indicators"

  9. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    HC7.9 Home Appliances Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Appliances Characteristics" "Total

  10. " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Water Heating Characteristics"

  11. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    SciTech Connect (OSTI)

    Pigg, Scott; Cautley, Dan; Francisco, Paul; Hawkins, Beth A; Brennan, Terry M

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  12. Yakama Nation Housing Authority, Adams View: System Retrofit Research Report and Case Study Summary; 23 February 2004--15 January 2005

    SciTech Connect (OSTI)

    CARB

    2005-11-01

    The Yakama Nation is the largest tribe in the Pacific Northwest. The Yakama Nation Housing Authority (YNHA) is working to rehabilitate single family homes (two to four bedrooms) in its Adams View project using public and tax credit financing. It is in need of a major rehabilitation as a result of wear and tear after many years of use and overcrowding. The scope for the current CARB ''gut rehab'' project is 25 of the 40 homes in the Adams View development, but the proposed strategies could be replicated for the remaining 15 homes as well as for several other similar developments of the YNHA. On a larger scale, the system rehabilitation strategy developed for the Adam's View project should be replicable for most of the more than 4,300 housing units that were constructed in the Northwest (Washington, Oregon, and Idaho) under the US Department of Housing and Urban Development (HUD) Housing Act of 1937.

  13. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  14. Standard Work Specifications for Single-Family Home Energy Upgrades Summary (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) and numerous industry stakeholders developed the Standard Work Specifications for Single-Family Home Energy Upgrades to define the minimum requirements for high-quality residential energy upgrades. Today, the Standard Work Specifications provide a unique source for defining high-quality home energy upgrades, establishing clear expectations for homeowners, contractors, trainers, workers, program administrators, and organizations that provide financing for energy upgrades.

  15. Standard Work Specifications for Single-Family Home Energy Upgrades Summary Fact Sheet

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) and numerous industry stakeholders developed the Standard Work Specifications for Single-Family Home Energy Upgrades to define the minimum requirements for high-quality residential energy upgrades. Today, the Standard Work Specifications provide a unique source for defining high-quality home energy upgrades, establishing clear expectations for homeowners, contractors, trainers, workers, program administrators, and organizations that provide financing for energy upgrades.

  16. "Table HC1.3 Heated Floorspace Usage Indicators, 2005" " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Heated Floorspace Usage Indicators, 2005" " Million U.S. Housing Units" ,,"Heated Floorspace (square feet)" ,"Housing Units (millions)" ,,"Fewer than 500","500 to 999","1,000 to 1,499","1,500 to 1,999","2,000 to 2,499","2,500 to 2,999","3,000 or More" "Usage Indicators" "Total",111.1,6.1,27.7,26,17.6,10,"7 7.8",11.6 "No Main Space Heating

  17. "Table HC1.4 Cooled Floorspace Usage Indicators, 2005" " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Cooled Floorspace Usage Indicators, 2005" " Million U.S. Housing Units" ,,"Cooled Floorspace (square feet)" ,"Housing Units (millions)" ,,"Fewer than 500","500 to 999","1,000 to 1,499","1,500 to 1,999","2,000 to 2,499","2,500 to 2,999","3,000 or More" "Usage Indicators" "Total",111.1,49.2,15.1,15.6,11.1,7,5.2,8 "Have Cooling

  18. HIA 2015 DOE Zero Energy Ready Home Case Study: United Way of Long Island Housing Development Corporation, Patchogue, NY

    Energy Savers [EERE]

    Way of Long Island Housing Development Corporation Patchogue, NY DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced

  19. DOE Zero Energy Ready Home Case Study: United Way of Long Island Housing Development Corporation, Patchogue, NY

    Broader source: Energy.gov [DOE]

    Case study of a DOE 2015 Housing Innovation Award winning affordable home in the mixed-humid climate that got HERS 40 without PV, -3 with PV, with 2x4 16: on center walls with R-13.5 dense packed cellulose and 1.5” polyiso rigid; basement with 2.5: polyiso on interior; unvented attic with R-48 ocsf under roof deck; ERV tied to wall hung boiler with hydro coil.

  20. 1997 Housing Characteristics Tables Housing Unit Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    ... RSE Column Factor: Total 1997 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 1997 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  1. Measured energy savings and economics of retrofitting existing single- family homes: An update of the BECA-B database

    SciTech Connect (OSTI)

    Cohen, S.D.; Goldman, C.A.; Harris, J.P.

    1991-02-01

    These appendices are the companion volume to report number LBL--28147 Vol.1, with the same title. The summary data tables include physical characteristics, energy consumption, savings, and the retrofit measures installed and their costs for each retrofit project. Each existing single family residential building'' retrofit project in the BECA-B database is described. 99 refs. (BM)

  2. Energy House

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students learn about energy conservation and efficiency by using various materials to insulate a cardboard house.

  3. Ventilation Effectiveness Research at UT-Typer Lab Houses | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ventilation Effectiveness Research at UT-Typer Lab Houses Ventilation Effectiveness Research at UT-Typer Lab Houses This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq7_ventilation_lab_houses_rudd.pdf More Documents & Publications Critical Question #7: What are the Best Practices for Single-Family Ventilation in All Climate Regions? Building America Technology Solutions

  4. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect (OSTI)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  5. Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 25, 2014

    Broader source: Energy.gov [DOE]

    Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, U.S. Department of Energy, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 25, 2014, to discuss the President’s Fiscal Year (FY) 2015 budget for the Department of Energy’s (DOE) Office of Electricity Delivery and Energy Reliability (OE).

  6. Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 17, 2015

    Broader source: Energy.gov [DOE]

    Statement Of Patricia Hoffman, Assistant Secretary For Electricity Delivery and Energy Reliability, U.S. Department of Energy, Before The United States House of Representatives Appropriations Subcommittee on Energy and Water Development, March 17, 2015, to discuss the President’s Fiscal Year (FY) 2016 budget for the Department of Energy’s (DOE) Office of Electricity Delivery and Energy Reliability (OE).

  7. A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-08-01

    The current state of Deep Energy Retrofit (DER) performance in the U.S. has been assessed in 116 homes in the United States, using actual and simulated data gathered from the available domestic literature. Substantial airtightness reductions averaging 63% (n=48) were reported (two- to three-times more than in conventional retrofits), with average post-retrofit airtightness of 4.7 Air Changes per House at 50 Pascal (ACH50) (n=94). Yet, mechanical ventilation was not installed consistently. In order to avoid indoor air quality (IAQ) issues, all future DERs should comply with ASHRAE 62.2-2013 requirements or equivalent. Projects generally achieved good energy results, with average annual net-site and net-source energy savings of 47%±20% and 45%±24% (n=57 and n=35), respectively, and carbon emission reductions of 47%±22% (n=23). Net-energy reductions did not vary reliably with house age, airtightness, or reported project costs, but pre-retrofit energy usage was correlated with total reductions (MMBtu).

  8. Education Office Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Office Housing Housing A housing forum and listings for housing in and around Los Alamos. Contact Postdoc Housing Email LANL Students' Association Email LANL postdoc...

  9. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With ... Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With ...

  10. ac_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile ... Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile ...

  11. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings ... Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings ...

  12. ac_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings ... Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings ...

  13. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile ... Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile ...

  14. ac_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With ... Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With ...

  15. White House | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    White House

  16. Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Affordable Cold Climate Infill Housing with Hybrid Insulation Approach Wyandotte, Michigan PROJECT INFORMATION Construction: New home Type: Single-family, affordable Builder: City of Wyandotte with various local homebuilders www.wyandotte.net Size: 1,150 to 1,500 ft 2 Price Range: $113,000-$138,000 Date completed: 2012 Climate Zone: Cold PERFORMANCE DATA HERS index: * 2009 IECC = 102 * Case study house 1,475 ft 2 * With renewables = NA * Without renewables = 75 Projected annual energy cost

  17. DOE Tour of Zero: Mutual Housing at Spring Lake by Mutual Housing

    Energy Savers [EERE]

    California | Department of Energy Mutual Housing at Spring Lake by Mutual Housing California DOE Tour of Zero: Mutual Housing at Spring Lake by Mutual Housing California Addthis 1 of 14 Mutual Housing built this 62-unit multifamily affordable housing development near Sacramento, California, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 14 In addition to DOE Zero Energy Ready Home, the high-efficiency construction meets the

  18. "Table HC1.2.3 Living Space Characteristics by Average Floorspace--"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Living Space Characteristics by Average Floorspace--" " Single-Family Housing Units and Mobile Homes, 2005" ,,"Single- Family and Mobile Homes (millions)","Average Square Feet per Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Detached",,,"Single-Family Attached",,,"Mobile Homes" "Housing Unit

  19. Postdoc Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoc Housing Postdoc Housing Point your career towards Los Alamos Laboratory: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. CONTACT Postdoc Program Office Email Housing in Los Alamos, nearby communities Disclaimer: Los Alamos National Security, LLC (LANS) provides these listings as a convenience for students and prospective students who will be working or participating in programs at Los Alamos National

  20. Meadowlark House

    Broader source: Energy.gov [DOE]

    This poster describes the energy efficiency features and sustainable materials used in the Greensburg GreenTown Chain of Eco-Homes Meadowlark House in Greensburg, Kansas.

  1. ALF HOUSE

    Broader source: Energy.gov [DOE]

    Western New York may not be known as a hotbed of solar energy innovation just yet, but the ultra-efficient Alf House could soon change that.

  2. A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-03-01

    The current state of Deep Energy Retrofit (DER) performance in the U.S. has been assessed in 116 homes in the United States (US), using actual and simulated data gathered from the available domestic literature. Substantial airtightness reductions averaging 63% (n=48) were reported (two- to three-times more than in conventional retrofits), with average post-retrofit airtightness of 4.7 Air Changes per House at 50 Pascal (ACH50) (n=94). Yet, mechanical ventilation was not installed consistently. In order to avoid indoor air quality (IAQ) issues, all future DERs should comply with ASHRAE 62.2-2013 requirements or equivalent. Projects generally achieved good energy results, with average annual net-site and net-source energy savings of 47%±20% and 45%±24% (n=57 and n=35), respectively, and carbon emission reductions of 47%±22% (n=23). Net-energy reductions did not vary reliably with house age, airtightness, or reported project costs, but pre-retrofit energy usage was correlated with total reductions (MMBtu). Annual energy costs were reduced $1,283±$804 (n=31), from a pre-retrofit average of $2,738±$1,065 to $1,588±$561 post-retrofit (n=25 and n=39). The average reported incremental project cost was $40,420±$30,358 (n=59). When financed on a 30-year term, the median change in net-homeownership cost was only $1.00 per month, ranging from $149 in savings to an increase of $212 (mean=$15.67±$87.74; n=28), and almost half of the projects resulted in reductions in net-cost. The economic value of a DER may be much greater than is suggested by these net-costs, because DERs entail substantial non-energy benefits (NEBs), and retrofit measures may add value to a home at resale similarly to general remodeling, PV panel installation, and green/energy efficient home labels. These results provide estimates of the potential of DERs to address energy use in existing homes across climate zones that can be used in future estimates of the technical potential to reduce household energy use and greenhouse gas emissions through DERs.

  3. Untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    unit. A manufactured house assembled on site is a single-family housing unit, not a mobile home. Occupied Housing Unit: A unit in which someone was living as his or her usual or...

  4. Before the House Oversight and Government Reform Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reform, United States House of Representatives Written Statement By: Owen Barwell, Acting Chief Financial Officer, United States Department of Energy Subject: DOE Financial ...

  5. Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Study Performance of a Hot-Dry Climate Whole-House Retrofit Stockton, California PROJECT INFORMATION Construction: Whole-house retrofit Type: Single-family, affordable Partners: Builder: Green Home Solutions, greenbygrupe.com Alliance for Residential Building Innovation, http://arbi.davisenergy.com Size: 2,152 ft 2 Date completed: 2011 Climate Zone(s): Hot-Dry PERFORMANCE DATA HERS Index: Pre-retrofit rating = 314; post-retrofit rating = 156 Projected annual energy cost savings: $837 Incremental

  6. EASI HOUSE

    Broader source: Energy.gov [DOE]

    A first-time Solar Decathlon entrant in 2015, the Western New England University, Universidad Tecnológica de Panamá, and Universidad Tecnológica Centroamericana team is seeking a blend in its Efficient, Affordable, Solar, Innovation--or EASI--House.

  7. SURE HOUSE

    Broader source: Energy.gov [DOE]

    Inspired by the devastation inflicted on the East Coast by superstorm Sandy in 2012, the Stevens Institute of Technology team designed its Solar Decathlon 2015 project, SURE HOUSE, to withstand future storms while fighting climate change with energy-saving innovations.

  8. Buildings Energy Data Book: 2.9 Low-Income Housing

    Buildings Energy Data Book [EERE]

    9 2005 Housing Unit Ownership, by Income Level and Weatherization Eligibility (Millions) Single-Family Multi-Family Unit Mobile Home 2005 Household Income Own Rent Own Rent Own Rent Less than $15,000 6.1 2.4 0.3 7.1 1.6 N.A. $15,000 to $30,000 11.0 3.0 0.4 5.8 2.2 0.3 $30,000 to $49,999 15.7 2.5 N.A 3.9 1.2 N.A. All Households 68.2 10.7 4.2 20.1 5.7 1.0 Federally Eligible 10.9 4.5 1.1 9.4 2.5 0.6 Federally Ineligible 57.3 6.2 3.1 10.7 3.2 0.4 Below 100% Poverty Line 5.3 2.4 0.7 6.1 1.5 0.3

  9. Education Office Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Office Housing Housing A housing forum and listings for housing in and around Los Alamos. Contact Postdoc Housing Email LANL Students' Association Email LANL postdoc program housing The LANL Postdoc Program has a Postdoc Housing listing. If you are interested in posting a housing opportunity, send an email with the pertinent information to postdocprogram@lanl.gov. Housing listings will be posted for 1 month. If you wish for the listing to remain on the web site longer, please contact

  10. Methodology and assumptions for evaluating heating and cooling energy requirements in new single-family residential buildings: Technical support document for the PEAR (Program for Energy Analysis of Residences) microcomputer program

    SciTech Connect (OSTI)

    Huang, Y.J.; Ritschard, R.; Bull, J.; Byrne, S.; Turiel, I.; Wilson, D.; Hsui, C.; Foley, D.

    1987-01-01

    This report provides technical documentation for a software package called PEAR (Program for Energy Analysis of Residences) developed by LBL. PEAR offers an easy-to-use and accurate method of estimating the energy savings associated with various energy conservation measures used in site-built, single-family homes. This program was designed for use by non-technical groups such as home builders, home buyers or others in the buildings industry, and developed as an integral part of a set of voluntary guidelines entitled Affordable Housing Through Energy Conservation: A Guide to Designing and Constructing Energy Efficient Homes. These guidelines provide a method for selecting and evaluating cost-effective energy conservation measures based on the energy savings estimated by PEAR. This work is part of a Department of Energy program aimed at conducting research that will improve the energy efficiency of the nation's stock of conventionally-built and manufactured homes, and presenting the results to the public in a simplified format.

  11. DOE Zero Energy Ready Home Case Study: Transformations, Inc., Custom House, Devens, Massachusetts

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This single-family home features a superinsulated shell with 12-inch double walls filled with open cell spray foam, as well as R-5 triple-pane windows. The 18.33 kW photovoltaic system can produce all the electricity the home can use in a year with enough left over to power an electric car for 30,000 miles.These features helped the builder to win a 2013 Housing Innovation Award in the custom home category.

  12. house of representatives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    house of representatives

  13. Superinsulated houses

    SciTech Connect (OSTI)

    Shurcliff, W.A.

    1986-01-01

    Superinsulation is a direct response to the fast-rising cost of home heating. Of the many kinds of responses, superinsulation is proving to be the simplest and most cost-effective. Until the oil embargo of 1973 there was little interest in saving heat. When the oil shortage arrived and fuel costs doubled and redoubled, many architects responded, at first, by invoking solar energy. They examined the designs of existing solar-heated houses and proposed a great variety of new designs, most of which appeared - to the uninitiated - to have great promise. Most of the early designs were of the active type; some were of the passive type; a few were of the hybrid design.

  14. Written Statement of David Huizenga Senior Advisor for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Armed Services Committee United States House of Representatives (May 9, 2013)

    Broader source: Energy.gov [DOE]

    Senior Advisor David Huizenga represented the Department of Energy’s (DOE) Office of Environmental Management (EM) before the Subcommittee on Strategic Forces Armed Services Committee United States...

  15. Benchmarking for electric utilities, tree trimming benchmarking, service line installation to single family residence, and distribution revenue meter testing and repair

    SciTech Connect (OSTI)

    Harder, J.

    1994-12-31

    An American Public Power Association (APPA) task force study on benchmarking for electric utilities is presented. Benchmark studies were made of three activities: (1) Tree trimming; (2) Service line installation to single family residence; (3) Distribution revenue meter testing and repair criteria. The results of the study areas are summarized for 15 utilities. The methodologies used for data collection and analysis are discussed. 28 figs., 9 tabs.

  16. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    SciTech Connect (OSTI)

    Dean, J.; Van Geet, O.; Simkus, S.; Eastment, M.

    2012-04-01

    This abbreviated report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project.

  17. DOE ZERH Case Study: Mutual Housing California, Mutual Housing...

    Office of Scientific and Technical Information (OSTI)

    Housing California, Mutual Housing at Spring Lake, Woodland, CA Case study of a DOE 2015 Housing Innovation Award winning multifamily project of 62 affordable-housing...

  18. 2015 Arizona Housing Forum

    Broader source: Energy.gov [DOE]

    The 12th annual Arizona Housing Forum provides a platform for affordable housing professionals to network and share ideas to improve and create housing choices for Arizona. Registration is $350.

  19. Developing Alaskan Sustainable Housing

    Broader source: Energy.gov [DOE]

    The Association of Alaska Housing Authorities is holding a 3-day training event for housing development professionals titled Developing Alaskan Sustainable Housing (DASH). This is a unique...

  20. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  1. Protocol for House Parties

    Broader source: Energy.gov [DOE]

    Protocol for House Parties, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  2. Simulating a Nationally Representative Housing Sample Using EnergyPlus

    SciTech Connect (OSTI)

    Hopkins, Asa S.; Lekov, Alex; Lutz, James; Rosenquist, Gregory; Gu, Lixing

    2011-03-04

    This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies. The RECS contains information regarding the construction and location of each sampled home, as well as its appliances and other energy-using equipment. We combined this data with the home simulation prototypes developed by Huang et al. to simulate homes that match the RECS sample wherever possible. Where data was not available, we used distributions, calibrated using the RECS energy use data. Each home was assigned a best-fit location for the purposes of weather and some construction characteristics. RECS provides some detail on the type and age of heating, ventilation, and air-conditioning (HVAC) equipment in each home; we developed EnergyPlus models capable of reproducing the variety of technologies and efficiencies represented in the national sample. This includes electric, gas, and oil furnaces, central and window air conditioners, central heat pumps, and baseboard heaters. We also developed a model of duct system performance, based on in-home measurements, and integrated this with fan performance to capture the energy use of single- and variable-speed furnace fans, as well as the interaction of duct and fan performance with the efficiency of heating and cooling equipment. Comparison with RECS revealed that EnergyPlus did not capture the heating-side behavior of heat pumps particularly accurately, and that our simple oil furnace and boiler models needed significant recalibration to fit with RECS. Simulating the full RECS sample on a single computer would take many hours, so we used the 'cloud computing' services provided by Amazon.com to simulate dozens of homes at once. This enabled us to simulate the full RECS sample, including multiple versions of each home to evaluate the impact of marginal changes, in less than 3 hours. Once the tool was calibrated, we were able to address several policy questions. We made a simple measurement of the heat replacement effect and showed that the net effect of heat replacement on primary energy use is likely to be less than 5%, relative to appliance-only measures of energy savings. Fuel switching could be significant, however. We also evaluated the national and regional impacts of a variety of 'overnight' changes in building characteristics or occupant behavior, including lighting, home insulation and sealing, HVAC system efficiency, and thermostat settings. For example, our model shows that the combination of increased home insulation and better sealed building shells could reduce residential natural gas use by 34.5% and electricity use by 6.5%, and a 1 degree rise in summer thermostat settings could save 2.1% of home electricity use. These results vary by region, and we present results for each U.S. Census division. We conclude by offering proposals for future work to improve the tool. Some proposed future work includes: comparing the simulated energy use data with the monthly RECS bill data; better capturing the variation in behavior between households, especially as it relates to occupancy and schedules; improving the characterization of recent construction and its regional variation; and extending the general framework of this simulation tool to capture multifamily housing units, such as apartment buildings.

  3. DOE ZERH Case Study: Mutual Housing California, Mutual Housing...

    Office of Scientific and Technical Information (OSTI)

    Title: DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA Case study of a DOE 2015 Housing Innovation Award winning multifamily project of ...

  4. Tribal Housing Authorities: Advancing Energy Projects Through Informed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaboration | Department of Energy Tribal Housing Authorities: Advancing Energy Projects Through Informed Collaboration Tribal Housing Authorities: Advancing Energy Projects Through Informed Collaboration May 10, 2016 - 4:00pm Addthis Six PV arrays generate 32 kW of energy to power 20 units at the AHA Sunrise Acres housing complex on the Saint Regis Mohawk Reservation. Photo by Rachel Sullivan, National Renewable Energy Laboratory. Six PV arrays generate 32 kW of energy to power 20 units

  5. 2015 Housing Innovation Awards

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE) Housing Innovation Awards recognize the very best in innovation on the path to zero energy ready homes. DOE Zero Energy Ready Home (ZERH) Housing Innovation...

  6. AHFC Affordable Housing Summit

    Broader source: Energy.gov [DOE]

    The Alaska Housing Finance Corporation (AHFC) is hosting a summit to bring together Alaskans from across the state to identify the barriers and seek budget-neutral solutions to the numerous housing challenges facing Alaskans.

  7. New Whole-House Solutions Case Study: EcoVillage: A Net Zero Energy Ready Community, Ithaca, New York

    SciTech Connect (OSTI)

    2015-04-01

    The Consortium for Advanced Residential Buildings is working with the EcoVillage co-housing community and builder AquaZephyr in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community-scale project consists of 40 housing units—15 apartments, and 25 single family residences that range in size from 1,250 ft2–1,664 ft2 and cost from $80,000 to $235,000. The community is pursing DOE Zero Energy Ready Home (ZERH), US Green Building Council Leadership in Energy and Environmental Design (LEED) Gold, and ENERGY STAR certifications for the entire project.

  8. Insulator for laser housing

    DOE Patents [OSTI]

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  9. Total U.S. Housing Units.............................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Heating Equipment................ 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Space Heating Equipment................. 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Space Heating Equipment.................. 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have But Do Not Use Equipment............... 0.8 0.3 0.3 Q Q N 0.4 0.6 Space Heating Usage During 2005 Heated Floorspace (Square Feet) None...................................................... 3.6 1.2 1.2

  10. Total U.S. Housing Units.................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Heating Equipment.................... 1.2 0.6 0.3 N Q Q Q Have Space Heating Equipment..................... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Space Heating Equipment...................... 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have But Do Not Use Equipment................... 0.8 0.3 Q N Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None........................................................... 3.6 1.5 0.9 Q Q Q 0.3 1 to

  11. Total U.S. Housing Units.................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .... 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Heating Equipment.................... 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Space Heating Equipment..................... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Space Heating Equipment...................... 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have But Do Not Use Equipment................... 0.8 Q Q Q Q 0.3 Q N Q Space Heating Usage During 2005 Heated Floorspace (Square Feet)

  12. Total U.S. Housing Units..................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment..................... 1.2 0.4 Q Q 0.4 Q Have Space Heating Equipment...................... 109.8 71.7 7.5 7.6 16.3 6.8 Use Space Heating Equipment....................... 109.1 71.5 7.4 7.4 16.0 6.7 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................ 3.6 1.1 Q 0.5 1.3 0.4 1 to 499....................................................... 6.1 2.0 0.4

  13. Total U.S. Housing Units...................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 33.0 8.0 3.4 5.9 14.4 Do Not Have Heating Equipment...................... 1.2 0.6 Q Q Q 0.3 Have Space Heating Equipment....................... 109.8 32.3 8.0 3.3 5.8 14.1 Use Space Heating Equipment........................ 109.1 31.8 8.0 3.2 5.6 13.9 Have But Do Not Use Equipment..................... 0.8 0.5 N Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................. 3.6 2.1 Q Q 0.4 1.1 1 to

  14. Total U.S. Housing Units........................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Heating Equipment........................... 1.2 Q Q Q 0.7 Have Space Heating Equipment............................ 109.8 20.5 25.6 40.3 23.4 Use Space Heating Equipment............................. 109.1 20.5 25.6 40.1 22.9 Have But Do Not Use Equipment.......................... 0.8 N N Q 0.6 Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 Q 0.5 0.8 2.1 1 to

  15. Total U.S. Housing Units........................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.1 5.5 Do Not Have Heating Equipment........................... 1.2 Q Q Q Have Space Heating Equipment............................ 109.8 20.5 15.1 5.4 Use Space Heating Equipment............................. 109.1 20.5 15.1 5.4 Have But Do Not Use Equipment.......................... 0.8 N N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 Q Q Q 1 to

  16. Total U.S. Housing Units........................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Heating Equipment........................... 1.2 Q Q N Have Space Heating Equipment............................ 109.8 25.6 17.7 7.9 Use Space Heating Equipment............................. 109.1 25.6 17.7 7.9 Have But Do Not Use Equipment.......................... 0.8 N N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 0.5 Q Q 1 to

  17. Total U.S. Housing Units........................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Heating Equipment........................... 1.2 Q Q N Q Have Space Heating Equipment............................ 109.8 40.3 21.4 6.9 12.0 Use Space Heating Equipment............................. 109.1 40.1 21.2 6.9 12.0 Have But Do Not Use Equipment.......................... 0.8 Q Q N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 0.8 0.7 Q Q 1 to

  18. Total U.S. Housing Units........................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Heating Equipment........................... 1.2 0.7 Q 0.2 Q Have Space Heating Equipment............................ 109.8 46.3 18.9 22.5 22.1 Use Space Heating Equipment............................. 109.1 45.6 18.8 22.5 22.1 Have But Do Not Use Equipment.......................... 0.8 0.7 Q N N Space Heating Usage During 2005 Heated Floorspace (Square Feet) None................................................................. 3.6 2.4 0.3 0.4 0.4 1 to

  19. Total U.S. Housing Units............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 7.1 7.0 8.0 12.1 Do Not Have Heating Equipment............................... 1.2 Q Q Q 0.2 Have Space Heating Equipment................................ 109.8 7.1 6.8 7.9 11.9 Use Space Heating Equipment................................. 109.1 7.1 6.6 7.9 11.4 Have But Do Not Use Equipment.............................. 0.8 N Q N 0.5 Space Heating Usage During 2005 Heated Floorspace (Square Feet) None...................................................................... 3.6 Q 0.7 Q 1.3 1

  20. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day...... 8.2 3.4 1.0 0.4 0.6 1.2 Q 2 Times ...

  1. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Digital Video Disc Players (DVD)...... ) 89.3 25.8 6.8 2.8 4.5 11.0 0.8 1...... 56.4 16.9 4.0 1.7 3.4 7.3 0.5 ...

  2. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Digital Video Disc Players (DVD)...... ) 89.3 63.5 52.6 3.3 1.3 1.8 4.5 1...... 56.4 39.5 32.1 2.1 0.8 1.3 3.2 ...

  3. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Digital Video Disc Players (DVD)...... 89.3 11.0 5.5 9.6 9.6 15.3 15.7 14.7 7.9 1...... 56.4 7.2 3.7 6.4 6.3 10.2 ...

  4. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Other Appliances Used Auto BlockEngineBattery Heater...... 0.8 0.7 0.7 N Q N Q Hot Tub or Spa......

  5. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Other Appliances Used Auto BlockEngineBattery Heater...... 0.8 Q Q Q Q Q Q Q Q Hot Tub or Spa...... 6.7 ...

  6. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Other Appliances Used Auto BlockEngineBattery Heater...... 0.8 0.7 Q Q N Q Hot Tub or Spa...... 6.7 6.4 Q ...

  7. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Other Appliances Used Auto BlockEngineBattery Heater...... 0.8 0.5 0.2 N N N Hot Tub or Spa...... 6.7 0.9 ...

  8. Million U.S. Housing Units Total......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Personal Computers Do Not Use a Personal Computer.................... 35.5 5.7 3.3 4.6 4.7 5.8 5.7 4.0 1.7 Use a Personal Computer................................ 75.6 9.0 4.1 7.9 7.8 13.1 12.9 13.3 7.5 Most-Used Personal Computer Type of PC Desk-top Model........................................... 58.6 6.7 3.5 6.3 6.2 10.3 9.9 10.2 5.6 Laptop Model............................................... 16.9 2.3 0.7 1.7 1.5 2.8 2.9 3.1 1.9 Hours Turned on

  9. Million U.S. Housing Units Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment........................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment........................................ 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment......................................... 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it........................ 1.9 1.1 0.8 Q N Q Q Air-Conditioning Equipment 1, 2 Central System...................................................... 65.9 51.7 43.9 2.5 0.7

  10. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    8.1 64.1 4.2 1.8 2.3 5.7 Personal Computers Do Not Use a Personal Computer......................... 35.5 20.3 14.8 1.2 0.6 0.9 2.8 Use a Personal Computer...................................... 75.6 57.8 49.2 2.9 1.2 1.4 3.0 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 45.8 38.9 2.2 1.0 1.1 2.6 Laptop Model.................................................... 16.9 12.0 10.3 0.8 0.2 Q 0.4 Hours Turned on Per Week Less than 2

  11. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Personal Computers Do Not Use a Personal Computer......................... 35.5 15.3 3.0 1.9 3.1 6.4 0.8 Use a Personal Computer...................................... 75.6 17.7 5.0 1.6 2.8 8.0 0.4 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 12.8 4.0 1.1 2.0 5.4 0.3 Laptop Model.................................................... 16.9 4.9 1.0 0.4 0.8 2.6 Q Hours Turned on Per Week Less than 2

  12. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer......................... 35.5 3.2 8.3 8.9 7.7 7.5 Use a Personal Computer...................................... 75.6 7.8 17.8 18.4 16.3 15.3 Most-Used Personal Computer Type of PC Desk-top Model................................................. 58.6 6.2 14.3 14.2 12.1 11.9 Laptop Model.................................................... 16.9 1.6 3.5 4.3 4.2 3.4 Hours Turned on Per Week Less than 2 Hours.............................................

  13. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass...... Q Q Q N Q Q Proportion of Windows Replaced All......

  14. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump......

  15. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump......

  16. New energy-conserving passive solar single-family homes. Cycle 5, Category 2 HUD solar heating and cooling demonstration program

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The 91 new single-family, energy-conserving passive solar homes described represent award winning designs of the series of five demonstration cycles of the HUD program. Information is presented to help builders and lenders to understand passive solar design, to recognize passive solar buildings, and to provide specific design, construction, and marketing suggestions and details. The first section describes the concept of passive solar energy, explains the various functions which passive solar systems must perform, and discusses the various types of passive systems found in the Cycle 5 projects. The second section discusses each of the 91 solar homes. The third section details the issues of climate requirements and site design concerns, gives examples of building construction, and suggests how to market solar homes. The appendices address more technical aspects of the design and evaluation of passive solar homes.

  17. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    SciTech Connect (OSTI)

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    2013-09-01

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.

  18. Statement of Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, before the House Appropriations Subcommittee on Energy and Water Development, March 30, 2011

    Broader source: Energy.gov [DOE]

    Statement of Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, before the United States House of Representatives House Appropriations Subcommittee on Energy and...

  19. United States

    Office of Legacy Management (LM)

    onp5fGonal Ruord United States of America . I. .' - PROCEEDINGS AND DEBATES OF THE 9t?lh CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Wash!ogtm. 0.C 20402 OFFICIAL BUSINESS Penalty for pwate use. sco Congressmal Record (USPS 087-390) Postage and Fees Pad I.) s ~lJ"er"ment Prlntlng OffIce 375 SECOND CLASS NEWSPAPER -...~-- -~- -- --- H 45' 78 ' cCJ~GRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 213: Mr. BOLAND, Mr. WAXM.UG Mr. OBERSTAR.

  20. United States

    Office of Legacy Management (LM)

    onSres;eional atecord United States of America :- PROCEEDINGS AND DEBATES OF THE 981h CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washwtn. D C 20402 OFFICIAL BUSINESS Penalty for plvate use. $300 Congressmnal Record (USPS 087-390) Postage and Fees Pad U S Government Prtnttng Offlce 375 SECOND CLASS NEWSPAPER H 45' 78 * C.QvGRESSIONAL RECORD - HOUSE .-. June 28, 1983 H.J. Res. 273: Mr. BOLAND. Mr. Whxrdhr?. Mr. OBERsThx. Mi. BEDELL, Mr. BONER of

  1. Existing Whole-House Case Study: Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions, Chicago, Illinois

    SciTech Connect (OSTI)

    2014-07-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for 15 Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these 15 housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations.

  2. House Simulation Protocols Report

    Broader source: Energy.gov [DOE]

    Building America's House Simulation Protocols report is designed to assist researchers in tracking the progress of multiyear, whole-building energy reduction against research goals for new and...

  3. White House Solar Champions of Change - Watch Now | Department of Energy

    Energy Savers [EERE]

    White House Solar Champions of Change - Watch Now White House Solar Champions of Change - Watch Now April 17, 2014 - 10:29am Addthis On April 17, 2014 the White House honored solar energy deployment Champions of Change from across the United States. The honorees included several current and former SunShot awardees. The event live streamed from the White House - check out the video above. Additional Resources White House Fact Sheet: Building Progress, Supporting Solar Deployment and Jobs White

  4. Before the Subcommittee on Strategic Forces House Committee on Armed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services | Department of Energy House Committee on Armed Services Before the Subcommittee on Strategic Forces House Committee on Armed Services Testimony of Mark Whitney, Acting Assistant Secretary for Environmental Management Before the Subcommittee on Strategic Forces House Committee on Armed Services PDF icon 3.24.15_Mark_Whitney FT HASC.pdf More Documents & Publications Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United States Department

  5. TableHC2.12.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electonics Usage Indicators Detached Attached 2 to 4 Units Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or

  6. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  7. Multiple pump housing

    DOE Patents [OSTI]

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  8. Housing And Mounting Structure

    DOE Patents [OSTI]

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.

    2005-03-08

    This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.

  9. White House Launches the Generation Indigenous Native Youth Challenge

    Broader source: Energy.gov [DOE]

    On February 17, Director of the White House Domestic Policy Council Cecilia Muñoz announced the launch of the Generation Indigenous Native Youth Challenge at the 2015 United National Indian Tribal Youth (UNITY) Midyear Conference.

  10. Developing Alaskan Sustainable Housing Training

    Broader source: Energy.gov [DOE]

    Hosted by the Association of Alaska Housing Authorities (AAHA), this three-day training event covers strategies and technical issues related to sustainable housing development.

  11. Assistant Secretray Triay's Written Statement before the House

    Energy Savers [EERE]

    Appropriations Subcommittee on Energy and Water Development (March 16, 2010) | Department of Energy 16, 2010) Assistant Secretray Triay's Written Statement before the House Appropriations Subcommittee on Energy and Water Development (March 16, 2010) Statement of Inès Triay, Assistant Secretary for Environmental Management United States Department of Energy. Before the Subcommittee on Energy and Water Development Committee on Appropriations United States House of Representatives to answer

  12. Building America Whole-House Solutions for Existing Homes: Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York

    Broader source: Energy.gov [DOE]

    In this project, ARIES worked with two public housing authorities (PHA) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement at the time when units are refurbished between occupancies. T

  13. Existing Whole-House Solutions Case Study: Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York

    SciTech Connect (OSTI)

    J. Dentz, F. Conlin, D. Podorson, and K. Alaigh

    2014-08-01

    In this project, Building America team ARIES worked with two public housing authorities (PHA) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement at the time when units are refurbished between occupancies.

  14. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  15. U.S. Navy Moanalua Terrace Housing Project, Oahu, Hawaii | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Navy Moanalua Terrace Housing Project, Oahu, Hawaii U.S. Navy Moanalua Terrace Housing Project, Oahu, Hawaii Photo of the Moanalua Terrace U.S. Navy Housing Project on Oahu, Hawaii Moanalua Terrace is a U.S. Navy housing project on Oahu, Hawaii. At this site the Navy had demolished 752 units of family housing, which were being rebuilt in four phases. The Hawaiian Electric Company's (HECO's) $1,500 per unit rebate for solar water heaters installed on new construction projects was an

  16. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    Home Office Equipment RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 ...

  17. Public Housing: A Tailored Approach to Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Podorson, D.; Alaigh, K.

    2014-06-01

    Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.

  18. Public Housing: A Tailored Approach to Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, Jordan; Conlin, Francis; Podorson, David; Alaigh, Kunal

    2014-06-01

    More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation 10 ten housing units. Total source energy consumption savings was estimated at 6%-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.

  19. Building America Case Study: Habitat for Humanity, The Woods at Golden Given, Tacoma, Washington (Fact Sheet), Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Testing Ductless Heat Pumps in High-Performance Affordable Housing The Woods at Golden Given Tacoma, Washington PROJECT INFORMATION Construction: New home Type: Single-family, affordable Partners: Tacoma Public Utilities, mytpu.org Habitat for Humanity of Tacoma/ Pierce County, WA, tpc-habitat.org Building America Partnership for Improved Residential Construction, ba-pirc.org Size: 1,133-1,391 ft 2 (monitored), 950-2500 ft 2 (all homes) Date Completed: 2013-2015 Climate Zone: Marine PRELIMINARY

  20. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect (OSTI)

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for installation labor and materials, and $627 for overhead and management), and the benefit-to-cost ratio was 1.48. A general trend toward higher-than-average fuel-oil savings was observed in houses with high pre-weatherization fuel-oil consumption. Program savings could likely be increased by targeting higher energy consumers for weatherization, although equity issues would have to be considered. Weatherization measures associated with higher-than-average savings were use of a blower door for air-sealing, attic and wall insulation, and replacement space-heating systems. Space-heating system tune-ups were not particularly effective at improving the steady-state efficiency of systems, although other benefits such as improved seasonal efficiency, and system safety and reliability may have resulted. The Program should investigate methods of improving the selection and/or application of space-heating system tune-ups and actively promote improved tune-up procedures that have been developed as a primary technology transfer activity. Houses were more air-tight following weatherization, but still leakier than what is achievable. Additional technology transfer effort is recommended to increase the use of blower doors considering that only half the weatherized houses used a blower door during air sealing. A guidebook developed by a committee of experts and covering a full range of blower-door topics might be a useful technology transfer and training document. Weatherization appeared to make occupants feel better about their house and house environment.

  1. Buffalo Pushes Energy-Efficient Affordable Housing in New York | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Buffalo Pushes Energy-Efficient Affordable Housing in New York Buffalo Pushes Energy-Efficient Affordable Housing in New York Better Buildings Residential Network member PUSH (People United for Sustainable Housing) Buffalo broke ground in March 2014 on its Massachusetts Avenue Sustainable Homes (MASH) project. The initiative will create energy-efficient, affordable housing by renovating two vacant historic buildings and building one new multifamily structure. Part of the project's

  2. Cool Energy House - An Intro to the Cool Energy House Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cool Energy House - An Intro to the Cool Energy House Retrofit Demonstration Project Webinar Cool Energy House - An Intro to the Cool Energy House Retrofit Demonstration Project ...

  3. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  4. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, David

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  5. Manhattan Project: The "Big House"

    Office of Scientific and Technical Information (OSTI)

    The "Big House" was the dormitory for the Los Alamos Boys Ranch School. Students slept year-round on its unheated porches. During the Manhattan Project, the Big House contained, ...

  6. White House Tribal Nations Conference

    Broader source: Energy.gov [DOE]

    The White House will host the seventh annual Tribal Nations Conference to allow tribal leaders to engage with the President, cabinet officials, and the White House Council on Native America Affairs about key issues facing tribes.

  7. White House Tribal Youth Gathering

    Broader source: Energy.gov [DOE]

    The White House will host the first-ever White House Tribal Youth Gathering to provide American Indian and Alaska Native youth from across the country the opportunity to interact directly with senior Administration officials and the White House Council on Native American Affairs. Registration is due May 8, 2015.

  8. Before the House Committee on Armed Services - Subcommittee on Strategic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forces | Department of Energy Armed Services - Subcommittee on Strategic Forces Before the House Committee on Armed Services - Subcommittee on Strategic Forces Testimony of Mark Whitney, Acting Assistant Secretary for Environmental Management Before the House Committee on Armed Services - Subcommittee on Strategic Forces PDF icon 3.24.15_Mark_Whitney FT HASC.pdf More Documents & Publications Written Statement of Mark Whitney Acting Assistant Secretary for Environmental Management United

  9. Housing characteristics 1993

    SciTech Connect (OSTI)

    1995-06-01

    This report, Housing Characteristics 1993, presents statistics about the energy-related characteristics of US households. These data were collected in the 1993 Residential Energy Consumption Survey (RECS) -- the ninth in a series of nationwide energy consumption surveys conducted since 1978 by the Energy Information Administration of the US Department of Energy. Over 7 thousand households were surveyed, representing 97 million households nationwide. A second report, to be released in late 1995, will present statistics on residential energy consumption and expenditures.

  10. Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Islip Housing Authority Energy Efficiency Turnover Protocols Islip, New York PROJECT INFORMATION Project Name: Islip Housing Authority Unit Turnover Retrofit Program Location: Islip, NY Partners: Islip Housing Authority, http://www.rhaonline.com/ Advanced Residential Integrated Solutions Collaborative (ARIES), http://levypartnership.com/ Building Component: Whole building Application: Retrofit; single and multifamily Year Tested: 2013 Applicable Climate Zone(s): All PERFORMANCE DATA Cost of

  11. Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate

    SciTech Connect (OSTI)

    Kerrigan, P.; Norton, P.

    2014-10-01

    This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA.Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.

  12. Technology Solutions Case Study: Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate, New Orleans, Louisiana

    SciTech Connect (OSTI)

    2014-11-01

    The purpose of this project by Building Science Corporation was to evaluate the humidity control performance of new single family high performance homes, and compare the interior conditions and mechanical systems operation between two distinct groups of houses: homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were 10 single-family new construction homes in New Orleans, LA. Data logging equipment was installed at each home in 2012, and interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space; however, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.

  13. Underground house book

    SciTech Connect (OSTI)

    Campbell, S.

    1980-01-01

    Aesthetics, attitudes, and acceptance of earth-covered buildings are examined initially, followed by an examination of land, money, water, earth, design, heat, and interior factors. Contributions made by architect Frank Lloyd Wright are discussed and reviewed. Contemporary persons, mostly designers, who contribute from their experiences with underground structures are Andy Davis; Rob Roy; Malcolm Wells; John Barnard, Jr.; Jeff Sikora; and Don Metz. A case study to select the site, design, and prepare to construct Earthtech 6 is described. Information is given in appendices on earth-protected buildings and existing basements; financing earth-sheltered housing; heating-load calculations and life-cycle costing; and designer names and addresses. (MCW)

  14. 1997 Housing Characteristics Tables Home Office Equipment Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of U.S. Households; 13 pages, 48 kb) Contents Pages HC7-1b. Home Office Equipment by Climate Zone, Percent of U.S. Households, 1997 1 HC7-2b. Home Office Equipment by Year of Construction, Percent of U.S. Households, 1997 1 HC7-3b. Home Office Equipment by Household Income, Percent of U.S. Households, 1997 1 HC7-4b. Home Office Equipment by Type of Housing Unit, Percent of U.S. Households, 1997 1 HC7-5b. Home Office Equipment by Type of Owner-Occupied Housing Unit, Percent of U.S.

  15. Development of Basic Housing Systems for Maximum Affordability

    SciTech Connect (OSTI)

    Aglan, H.; Gibbons, A.; McQueen, T.M.; Morris, C.; Raines, J.; Wendt, R.L.

    1999-04-19

    The ability to provide safe, habitable, comfortable housing for very low income residents within the target budget of $10,000 presents unique design and construction challenges. However, a number of preliminary conclusions have been inferred as being important concepts relative to the study of affordable housing. The term affordable housing can have many meanings and research is needed to define this explicitly. As it is most often used, affordable housing refers to an economic relationship between the price of housing, household income and current interest rates available from a lending institution. There is no direct relationship between architectural style, construction technology or user needs and the concept of affordability. For any home to be affordable, the home owner must balance the combination of housing needs and desires within the limits of an actual budget. There are many misconceptions that affordable housing must be defined as housing for those who cannot afford the free-market price. The concept of affordable housing must also include a component that recognizes the quality of the housing as an important element of the design and construction. In addition, responses to local climate impacts are necessary and are always part of a regional expression of architectural design. By using careful planning and design it may be possible to construct a limited dwelling unit today for a sum of approximately $10,000. Since the organization of the construction process must involve the owner/occupants as well as other volunteers, the project must not only be well conceived, but well developed and coordinated.

  16. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions, Chicago, Illinois (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions Chicago, Illinois PROJECT INFORMATION Construction: Retrofit Type: Single-family homes Building Component: Envelope Location: Chicago, IL Technical Support Partner: Partnership for Advanced Residential Retrofit, www.gastechnology.org/PARR Year Tested: 2013 Climate Zone: Zone 5 (cold) PROJECT HOUSING GROUPS The table below depicts the

  17. SURE HOUSE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    blend in its Efficient, Affordable, Solar, Innovation--or EASI--House. Learn More AGGIE SOL The University of California, Davis, has strong pedigrees in both sustainable projects...

  18. THE WHITE HOUSE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hu Jintao announced the launch of a new U.S.-China Shale Gas Resource Initiative. ... the Initiative, the United States and China will conduct joint technical studies to ...

  19. THE WHITE HOUSE

    Energy Savers [EERE]

    November 1, 2013 EXECUTIVE ORDER - - - - - - - PREPARING THE UNITED STATES FOR THE IMPACTS OF CLIMATE CHANGE By the authority vested in me as President by the Constitution and the laws of the United States of America, and in order to prepare the Nation for the impacts of climate change by undertaking actions to enhance climate preparedness and resilience, it is hereby ordered as follows: Section 1. Policy. The impacts of climate change -- including an increase in prolonged periods of excessively

  20. Chamberlain Heights Redevelopment: A Large Scale, Cold Climate Study of Affordable Housing Retrofits

    SciTech Connect (OSTI)

    Donnelly, K.; Mahle, M.

    2012-03-01

    The City of Meriden Housing Authority (MHA) collaborated with affordable housing developer Jonathon Rose Companies (JRC) to complete a gut renovation of 124 residential units in the Chamberlain Heights retrofit project. The affordable housing community is made up of 36 buildings in duplex and quad configurations located on 22 acres within two miles of downtown Meriden, CT. The final post-retrofit analysis showed 40%-45% source energy savings over the existing pre-retrofit conditions.

  1. Chamberlain Heights Redevelopment: A Large Scale, Cold Climate Study of Affordable Housing Retrofits

    SciTech Connect (OSTI)

    Donnelly, K.; Mahle, M.

    2012-03-01

    The City of Meriden Housing Authority (MHA) collaborated with affordable housing developer Jonathon Rose Companies (JRC) to complete a gut renovation of 124 residential units in the Chamberlain Heights retrofit project. The affordable housing community is made up of 36 buildings in duplex and quad configurations located on 22 acres within two miles of downtown Meriden, CT. The final post-retrofit analysis showed 40-45% source energy savings over the existing pre-retrofit conditions.

  2. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Holloway, P.; Podorson, D.; Varshney, K.

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  3. DOE Zero Energy Ready Home Case Study: Mutual Housing California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA DOE Zero Energy Ready Home Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA ...

  4. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Holloway, Parker; Podorson, David; Varshney, Kapil

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  5. THE WHITE HOUSE | Department of Energy

    Energy Savers [EERE]

    THE WHITE HOUSE THE WHITE HOUSE PDF icon THE WHITE HOUSE More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation Progress Report on U.S.-China Energy Cooperation

    THE WHITE HOUSE THE WHITE HOUSE PDF icon THE WHITE HOUSE More Documents & Publications Audit Report: IG-0473 Lapse Documents Inspection Report: IG-0397

  6. Recycling in public housing: The Syracuse Housing Authority

    SciTech Connect (OSTI)

    Foote, K.C.; DeVoe, J.F.

    1997-01-01

    The mission of the Syracuse Housing Authority (SHA, Syracuse, N.Y.) is to provide clean, safe, and affordable housing for low-income citizens of the city of Syracuse. In doing so, it has worked to be innovative. SHA owns and manages 12 federally funded housing developments and one New York state-funded project, in addition to managing two buildings owned by the city. After nearly 60 years of success in providing affordable housing in the Syracuse area, the pioneering SHA took on another daunting mission in the 1990s: modernization of waste collection and recycling. By the beginning of 1990, SHA was facing two mandates: to initiate a recycling program by July 1, as mandated by Onondaga County law, and to reduce its trash bill significantly.

  7. Building America Case Studies for Existing Homes: Philadelphia Housing Authority Energy-Efficiency Turnover Protocols

    Broader source: Energy.gov [DOE]

    The Philadelphia Housing Authority worked with the U.S. Department of Energy’s Building America Program to integrate energy-efficiency measures into the refurbishment process that each unit normally goes through between occupancies.

  8. Self-adjustable supplemental support system for a cylindrical container in a housing

    DOE Patents [OSTI]

    Blaushild, Ronald M.

    1987-01-01

    A self-adjustable supplementary support system for a cylindrical container coaxially disposed in a cylindrical housing by upper flanged supports has a plurality of outwardly extending bracket units on the external surface of the container which coact with inwardly extending resiliently outwardly extending bracket units on the inner wall of the cylindrical housing. The bracket units have flanges which form a concave surface that seats on support bars, attached by links to torsion bars that are secured to ring segments annularly spaced about the inner wall of the cylindrical housing and the bracket units and support bars coact with each other to radially position and support the container in the housing during movement of the two components from a vertical to a horizontal position, and during transportation of the same.

  9. Self-adjustable supplemental support system for a cylindrical container in a housing

    DOE Patents [OSTI]

    Blaushild, R.M.

    1987-01-30

    A self-adjustable supplementary support system for a cylindrical container coaxially disposed in a cylindrical housing by upper flanged supports has a plurality of outwardly extending bracket units on the external surface of the container which coact with inwardly extending resiliently outwardly extending bracket units on the inner wall of the cylindrical housing. The bracket units have flanges which form a concave surface that seats on support bars, attached by links to torsion bars that are secured to ring segments annularly spaced about the inner wall of the cylindrical housing and the bracket units and support bars coact with each other to radially position and support the container in the housing during movement of the two components from a vertical to a horizontal position, and during transportation of the same. 14 figs.

  10. White House Steps Up Commitment to Cultivating Next Generation of Native Leaders

    Broader source: Energy.gov [DOE]

    On July 9, the White House hosted the inaugural Tribal Youth Gathering in collaboration with United National Indian Tribal Youth (UNITY) and the Departments of Justice (DOJ) and Health and Human Services (HHS).

  11. Travois Indian Country Affordable Housing & Economic Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Travois Indian Country Affordable Housing & Economic Development Conference Travois Indian Country Affordable Housing & Economic Development Conference April 4, 2016 8:00AM CDT to ...

  12. Funding Opportunity: Building America High Performance Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity: Building America High Performance Housing Innovation Funding Opportunity: Building America High Performance Housing Innovation November 19, 2015 - 11:51am Addthis The ...

  13. Peoria Tribe: Housing Authority- 2010 Project

    Broader source: Energy.gov [DOE]

    The Housing Authority of the Peoria Tribe of Indians of Oklahoma (Peoria Housing Authority or PHA) will conduct the "PHA Weatherization Training Project."

  14. 2015 Housing Innovation Awards Application Form | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing Innovation Awards Application Form 2015 Housing Innovation Awards Application Form ... The 2015 ceremony will take place at the EEBA Excellence in Building Conference & Expo ...

  15. Grandma's House (Weatherization) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grandma's House (Weatherization) Grandma's House (Weatherization) Addthis When you weatherize a home it needs to work as a system. Learn more here

  16. FY 2017 Budget Hearing Before the House Armed Services Subcommittee on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Forces | Department of Energy Armed Services Subcommittee on Strategic Forces FY 2017 Budget Hearing Before the House Armed Services Subcommittee on Strategic Forces PDF icon 02-11-16_HAS_Strategic_Forces_Regalbuto More Documents & Publications Written Statement of Dr. Monica Regalbuto Assistant Secretary for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces Committee on Armed Services United States House of Representatives

  17. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect (OSTI)

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  18. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect (OSTI)

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida.The gas-fired tank type water heaters in the housing units were replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  19. Important notice about using /house

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using house July 6, 2012 Description There have been a lot of issues recently with NFS hangs on the gpint machines. The origin of the gpint hanging has been determined to be...

  20. Public Housing Project Performance Benchmarks

    Broader source: Energy.gov [DOE]

    Reports five major performance metrics that can be used to benchmark proposed energy service company projects within public housing, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy

  1. Public Housing Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Housing Project Performance Benchmarks (All ASHRAE Zones) We define an ESCO as a company that provides energy efficiency-related and other value-added services and that ...

  2. ALF HOUSE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    was looking for a way to represent its home territory. They found their inspiration in nature: the golden poppy, California's state flower. Learn More DURA URBAN HOUSE People from...

  3. SURE HOUSE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    just yet, but the ultra-efficient Alf House could soon change that. Learn More CASA DEL SOL With the 2015 Solar Decathlon taking place in Irvine, California, Team Orange County --...

  4. Open House with Environmental Scientists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open House with Environmental Scientists Open House with Environmental Scientists WHEN: Apr 23, 2015 12:00 PM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Laboratory Environmental Research and Monitoring Event Description Ask Laboratory biologists and anthropologists your natural resource questions. In honor of Earth Week, Los Alamos National Laboratory's Environmental

  5. White House honors Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White House honors Los Alamos physicist's early career work July 10, 2009 Los Alamos, New Mexico, July 10, 2009-The White House today announced that Los Alamos National Laboratory physicist Ivan Vitev has received a prestigious Presidential Early Career Award for Scientists and Engineers (PECASE). The honor is the highest bestowed by the U.S. government to outstanding scientists early in their careers. Vitev joined Los Alamos National Laboratory in 2004 as a J. Robert Oppenheimer Postdoctoral

  6. NNSS Hosts Groundwater Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey of the Bay Area NNSS Hosts Groundwater Open House A RSL helicopter spent part of August conducting aerial radiation flyovers in the California Bay Area. The team rocked the competition and chiseled out an impressive second place finish recently in the Security Protection Officer competition. Groundwater was the topic of discussion at a recent open house. See page 12. See page 5. See page 8. Enterprise Publication "ONEVOICE" Replaces Spotlight and SiteLines The Nevada National

  7. Earth sheltered housing phenomenon

    SciTech Connect (OSTI)

    Boyer, L.L.

    1981-06-21

    Both national and international attention has recently been focused on earth sheltered construction as an emerging energy alternative. This is especially true for the High Plains region of the central United States. Traditionally, inhabitants of this region have been sensitized to the need for windstorm protection. However, the dramatic potentials for energy savings have served as a strong secondary inducement to the burgeoning construction activity in what is now viewed as a contemporary dwelling concept. The typical characteristics of such dwellings are reviewed as well as the educational challenge awaiting professional input to this developing boom in earth sheltered construction. 12 refs.

  8. Building America Case Study: Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate, New Orleans, Louisiana (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA. Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.

  9. Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate

    SciTech Connect (OSTI)

    Kerrigan, P.

    2014-10-01

    This report describes a research study that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance homes in a hot-humid climate. The purpose of this research project was to observe and compare the humidity control performance. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses; homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were 10 single-family, new construction homes in New Orleans, LA.

  10. Million U.S. Housing Units Total U.S.........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ........................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Cooking Appliances Conventional Ovens Use an Oven............................................. 109.6 77.3 63.4 4.1 1.8 2.3 5.6 1............................................................ 103.3 71.9 58.6 3.9 1.6 2.2 5.5 2 or More............................................... 6.2 5.4 4.8 Q Q Q Q Do Not Use an Oven................................. 1.5 0.8 0.6 Q N Q Q Most-Used Oven Fuel

  11. Million U.S. Housing Units Total U.S.........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 33.0 8.0 3.4 5.9 14.4 1.2 Cooking Appliances Conventional Ovens Use an Oven............................................. 109.6 32.3 7.9 3.3 5.9 14.1 1.1 1............................................................ 103.3 31.4 7.6 3.3 5.7 13.7 1.1 2 or More............................................... 6.2 0.9 0.3 Q Q 0.4 Q Do Not Use an Oven................................. 1.5 0.7 Q Q Q 0.3 Q Most-Used Oven Fuel Electric.................................................. 67.9 19.4 4.5

  12. Million U.S. Housing Units Total U.S...........................

    U.S. Energy Information Administration (EIA) Indexed Site

    .... 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Cooking Appliances Conventional Ovens Use an Oven...... 109.6 14.4 7.2 12.4 12.4 18.6 ...

  13. HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    HVAC Design Strategy for a Hot-Humid Production Builder Houston, Texas PROJECT INFORMATION Construction: New Home Type: Single-family, production builder Builder: David Weekley Homes - Houston www.davidweekleyhomes.com/ new-homes/tx/houston Size: 1,757 ft 2 to 4,169 ft 2 Price Range: about $260,000 to $450,000 Date Completed: 2013 Climate Zone: Hot-humid PERFORMANCE DATA HERS index: Builder standard practice = 66; case study 1,757-ft 2 house = 54 Projected annual energy cost savings: $375

  14. Building America Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House, Mount Joy, Pennsylvania (Fact Sheet), Efficient Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Advanced Extended Plate and Beam Wall System in a Cold-Climate House Mount Joy, Pennsylvania PROJECT INFORMATION Construction: New home Type: Single-family Partner: Home Innovation Research Labs, homeinnovation.com Builder: LCCTC, Mount Joy, PA Size: 2,660 ft 2 above grade, 3,990 ft 2 conditioned area Price Range: $300,000 Date Completed: June 2015 Climate Zone: Cold (IECC 5A) PERFORMANCE DATA HERS index score: 45 (DOE ZERH target index: 48) Projected annual energy cost savings: $1,163

  15. 2016 Housing Innovation Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 Housing Innovation Awards 2016 Housing Innovation Awards The U.S. Department of Energy's (DOE) Housing Innovation Awards recognize the very best in innovation on the path to zero energy ready homes. DOE Zero Energy Ready Home (ZERH) Housing Innovation Award Winners are selected for each of five categories: custom buyer, custom spec, production, multifamily, and affordable homes. One DOE ZERH Grand Housing Innovation Award Winner will be announced from among the winners in each of these

  16. Housing Innovation Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home » Housing Innovation Awards Housing Innovation Awards HIA Awards.JPG Since 2013, The U.S. Department of Energy's (DOE) Housing Innovation Awards has recognized the very best in innovation on the path to zero energy ready homes. The Housing Innovation Awards recognize forward-thinking builders for delivering American homebuyers with the home of the future, today. Explore these award winning homes on the Tour of Zero. The 2016 Housing Innovation Awards will be held

  17. Ceramic tile expansion engine housing

    DOE Patents [OSTI]

    Myers, B.

    1995-04-11

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.

  18. Ceramic tile expansion engine housing

    DOE Patents [OSTI]

    Myers, Blake (4650 Almond Cir., Livermore, CA 94550)

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  19. Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.

  20. New Whole-House Solutions Case Study: Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California

    SciTech Connect (OSTI)

    2013-10-01

    Exterior rigid foam insulation at the edge of the slab foundation was a unique feature for this low-load, unoccupied test house in a hot-dry climate and may be more appropriate for climates with higher heating loads. U.S. Department of Energy Building America research team IBACOS worked with National Housing Quality Award winner Wathen-Castanos Hybrid Homes, Inc., to assess the performance of this feature in a single-family detached ranch house with three bedrooms and two full bathrooms constructed on a slab-on-grade foundation in Fresno, California. One challenge during installation of the system was the attachment of the butyl flashing to the open framing. To solve this constructability issue, the team added a nailer to the base of the wall to properly attach and lap the flashing. In this strategy, R-7.5, 1.5-in.-thick extruded polystyrene was installed on the exterior of the slab for a modeled savings of 4,500 Btu/h on the heating load.

  1. Important notice about using /house

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Important notice about using /house Important notice about using /house July 6, 2012 Description There have been a lot of issues recently with NFS hangs on the gpint machines. The origin of the gpint hanging has been determined to be a defect in the Isilon filesystem software, and happens when a file being written is simultaneously opened for reading on the same host. This most frequently happens when people tail files being written by the same machine. E.g.: DO NOT DO THIS: gpint17 $

  2. OPEN HOUSE - Climate Prisms: Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OPEN HOUSE - Climate Prisms: Arctic OPEN HOUSE - Climate Prisms: Arctic WHEN: Jul 17, 2015 12:00 PM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Climate Prisms: Arctic Event Description Enjoy a first-look at this brand new interactive exhibit still in its development phase. You'll get a chance to meet the creators while enjoying refreshments and conversation. Climate Prisms:

  3. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    5 2004 Number of Industrialized Housing Manufacturers Versus Production (Stick-Builders) Companies Type Panelized Modular (1) HUD-Code Production Builders Component Manufacturers Special (Commercial) Units Note(s): Source(s): 170 1) 170 of these companies also produce panelized homes. Automated Builder Magazine, Mar. 2005, p. 34-35; Automated Builder Magazine, Jan. 2004, p. 16. Number of Companies 3,500 200 90 7,000 2,200

  4. Occupancy Simulation in Three Residential Research Houses

    SciTech Connect (OSTI)

    Boudreaux, Philip R; Gehl, Anthony C; Christian, Jeffrey E

    2012-01-01

    Three houses of similar floor plan are being compared for energy consumption. The first house is a typical builder house of 2400 ft2 (223 m2) in east Tennessee. The second house contains retrofits available to a home owner such as energy efficient appliances, windows and HVAC, as well as an insulated attic which contains HVAC duct work. The third house was built using optimum-value framing construction with photovoltaic modules and solar water heating. To consume energy researchers have set up appliances, lights, and plug loads to turn on and off automatically according to a schedule based on the Building America Research Benchmark Definition. As energy efficiency continues to be a focus for protecting the environment and conserving resources, experiments involving whole house energy consumption will be done. In these cases it is important to understand how to simulate occupancy so that data represents only house performance and not human behavior. The process for achieving automated occupancy simulation will be discussed. Data comparing the energy use of each house will be presented and it will be shown that the third house used 66% less and the second house used 36% less energy than the control house in 2010. The authors will discuss how energy prudent living habits can further reduce energy use in the third house by 23% over the average American family living in the same house.

  5. United States Government

    Office of Legacy Management (LM)

    DOEF1325.8 P4 0 * 1 - 1 - Iq \ b- United States Government memorandum pJ .T\ \b Department of Energy DATE: OCT 9 1984 REPLY TO NE-20 All-N OF: .- Authorizations for Actions Under the Formerly Utilized Sites Remedial Action SUBJECT: Program (FUSRAP) at the St. Louis Airport Storage Site, St. Louis, MO. and the W. R. Grace Site at Curtis Bay, Md. To: J. LaGrone, Manager Oak Ridge Operations Office St. Louis Airport Storage Site, MO The House and Senate Reports for the Energy and Water Development

  6. DOE-HUD Initiative on Energy Efficiency in Housing: A federal partnership. Program summary report

    SciTech Connect (OSTI)

    Brinch, J.

    1996-06-01

    One of the primary goals of the US Department of Housing and urban Development (HUD) is the expansion of home ownership and affordable housing opportunities. Recognizing that energy efficiency is a key component in an affordable housing strategy, HUD and the US Department of Energy (DOE) created the DOE-HUD Initiative on Energy Efficiency in Housing. The DOE-HUD Initiative was designed to share the results of DOE research with housing providers throughout the nation, to reduce energy costs in federally-subsidized dwelling units and improve their affordability and comfort. This Program Summary Report provides an overview of the DOE-HUD Initiative and detailed project descriptions of the twenty-seven projects carried out with Initiative funding.

  7. Open House | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open House Open House In early 2015, PARC moved it's adminstration offices to Siegle Hall 4th floor on Washington University in St. Louis' campus. In celebration of this move, we...

  8. Whole-House Ventilation | Department of Energy

    Office of Environmental Management (EM)

    - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of iStockphotobrebca. A whole-house ventilation...

  9. Native American Housing: Obstacles and Opportunities

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Housing and Urban Development (HUD), this event will cover tribal housing and how to develop and implement programs based on and conducive to local conditions and...

  10. PARC Open House | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARC Open House PARC Open House Join us for food and refreshments April 10, 2015 - 4:00pm to 6:00pm Washington University in St. Louis, Seigle Hall 4th Floor, Suite 435 We welcome...

  11. ZERH Webinar: Successful Strategies for the Housing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Strategies for the Housing Innovation Awards ZERH Webinar: Successful Strategies for the Housing Innovation Awards Since 2013, DOE has recognized 70 Housing Innovation ...

  12. 2014 Housing Innovation Awards DOE Challenge Home Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing Innovation Awards DOE Challenge Home Application 2014 Housing Innovation Awards DOE Challenge Home Application The U.S. Department of Energy's Housing Innovation Awards ...

  13. Winchester/Camberley Homes New Construction Test House Design, Construction, and Short-Term Testing in a Mixed-Humid Climate

    SciTech Connect (OSTI)

    Mallav, D.; Wiehagen, J.; Wood, A.

    2012-10-01

    The NAHB Research Center partnered with production builder Winchester/Camberley Homes to build a DOE Building America New Construction Test House (NCTH). This single family, detached house, located in the mixed-humid climate zone of Silver Spring, MD, was completed in June 2011. The primary goal for this house was to improve energy efficiency by 30% over the Building America B10 benchmark by developing and implementing an optimized energy solutions package design that could be cost effectively and reliably constructed on a production basis using quality management practices. The intent of this report is to outline the features of this house, discuss the implementation of the energy efficient design, and report on short-term testing results. During the interactive design process of this project, numerous iterations of the framing, air sealing, insulation, and space conditioning systems were evaluated for energy performance, cost, and practical implementation. The final design featured numerous advanced framing techniques, high levels of insulation, and the HVAC system entirely within conditioned space. Short-term testing confirmed a very tight thermal envelope and efficient and effective heating and cooling. In addition, relevant heating, cooling, humidity, energy, and wall cavity moisture data will be collected and presented in a future long-term report.

  14. Inside the White House: Solar Panels

    Broader source: Energy.gov [DOE]

    Go inside the White House and learn about the installation of solar panels on the roof of the residence.

  15. Before the House Transportation and Infrastructure Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public ...

  16. White House Energy Security Stakeholders Forum

    Broader source: Energy.gov [DOE]

    U.S. Deputy Secretary of Energy Daniel Poneman's remarks at the White House Energy Security Stakeholders Forum.

  17. Advanced House Framing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Design for Efficiency » Advanced House Framing Advanced House Framing Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing, sometimes called optimum value engineering (OVE), refers to framing techniques designed to reduce the amount of lumber used and waste generated in the construction of a wood-framed house. These techniques boost energy efficiency by replacing lumber with insulation material while maintaining the

  18. Fifth Annual Native American Housing Conference

    Broader source: Energy.gov [DOE]

    The Fifth Annual Native American Housing Conference will be held in conjunction with the Native American Economic Development Conference. Attendees will hear from top experts in the housing field on the state of housing in Native America and what programs are available to assist you in taking the next step.

  19. Federal Housing Administration's Energy Efficient Mortgage Program

    Broader source: Energy.gov [DOE]

    Describes the U.S. Department of Housing and Urban Development Energy Efficient Mortgage Program which helps homebuyers or homeowners save money on utility bills by enabling them to finance the cost of adding energy efficiency features to new or existing housing. Authors: U.S. Department of Housing and Urban Development

  20. White House Forum on Minorites in Energy

    Broader source: Energy.gov [DOE]

    On November 13, 2013, the Department of Energy and the White House Office of Science and Technology Policy, the Council for Environmental Quality, and the White House Office of Public Engagement co-hosted the White House Forum on Minorities in Energy. The event included the announcement of the Ambassadors for the Minorities in Energy Initiative.

  1. Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climate – Volume 12

    SciTech Connect (OSTI)

    Pacific Northwest National Laboratory

    2011-02-01

    This document describes measures builders can use to construct homes that have whole-house energy savings of 40% in the cold and very cold climate region of the United States.

  2. Remotely serviced filter and housing

    DOE Patents [OSTI]

    Ross, Maurice J.; Zaladonis, Larry A.

    1988-09-27

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

  3. Remotely serviced filter and housing

    DOE Patents [OSTI]

    Ross, M.J.; Zaladonis, L.A.

    1987-07-22

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

  4. Building America House Simulation Protocols

    SciTech Connect (OSTI)

    Hendron, Robert; Engebrecht, Cheryn

    2010-09-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  5. The house of the future

    ScienceCinema (OSTI)

    None

    2010-09-01

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  6. Whole-House Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation » Whole-House Ventilation Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical whole-house ventilation

  7. Building America Whole-House Solutions for Existing Homes: Community-Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling - Southeastern United States | Department of Energy Community-Scale Energy Modeling - Southeastern United States Building America Whole-House Solutions for Existing Homes: Community-Scale Energy Modeling - Southeastern United States Community-scale energy modeling and testing are useful for determining energy conservation measures that will effectively reduce energy use. To that end, IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption,

  8. Building America Case Study: Greenbelt Homes, Inc. Pilot Retrofit Project, Greenbelt, Maryland (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Greenbelt Homes, Inc. Pilot Retrofit Project Greenbelt, Maryland PROJECT INFORMATION Construction: Existing homes Builder: Greenbelt Homes, Inc., ghi.coop Type: Single-family, configured primarily in sets of 2, 4, or 6 attached homes Pilot Retrofit Project: Envelope upgrade study based on 7 4-unit buildings Size: 800-1,200 ft 2 Price Range: About $70,000-$300,000 Study Period: 2010-2014 Climate Zone: Mixed-humid (IECC climate zone 4A) PERFORMANCE DATA Average per Pilot Home, Normalized Season

  9. The Absent House: The Ecological House of Puerto Rico

    High Performance Buildings Database

    Vega Alta, PR The Absent House takes advantage of the benevolent climate of the humid tropics of Puerto Rico to play with the ambiguity of interior and exterior spaces. Main spaces include: a kitchenette and master bathroom suite; a guest tower with a bedroom, bathroom, and small library; an open, public pavilion for cooking, dining, and porch activities; a bathroom for visitors; an infrastructure pavilion for electricity and water consumption management; and an organic garden. The Patio of the Sun and the Stars, the most important s

  10. Healthy and Affordable Housing: Practical Recommendations for Building, Renovating and Maintaining Housing: Read This Before You Move In

    SciTech Connect (OSTI)

    2001-09-06

    This document provides advice for healthy and affordable housing: practical recommendations for building, renovating, and maintaining housing.

  11. Building America Case Study: Philadelphia Housing Authority Energy-Efficiency Turnover Protocols, Philadelphia, Pennsylvania (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Philadelphia Housing Authority Energy-Efficiency Turnover Protocols Philadelphia, Pennsylvania PROJECT INFORMATION Project Name: Philadelphia Housing Authority Unit Turnover Retrofit Program Location: Philadelphia, PA Partners: Philadelphia Housing Authority, pha.phila.gov Advanced Residential Integrated Solutions Collaborative (ARIES), levypartnership.com Building Component: Whole-building Application: Retrofit; multifamily Year Tested: 2014 Applicable Climate Zones: All, with greater benefits

  12. Performance of a Hot-Dry Climate Whole-House Retrofit

    SciTech Connect (OSTI)

    Weitzel, E.; German, A.; Porse, E.

    2014-06-01

    The Stockton house retrofit is a two-story Tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  13. Performance of a Hot-Dry Climate Whole-House Retrofit

    SciTech Connect (OSTI)

    Weitzel, E.; German, A.; Porse, E.

    2014-06-01

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  14. DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring

    Office of Scientific and Technical Information (OSTI)

    Lake, Woodland, CA () | SciTech Connect : DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA Citation Details In-Document Search Title: DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA Case study of a DOE 2015 Housing Innovation Award winning multifamily project of 62 affordable-housing apartment home in the hot-dry climate that exceeded CA Title 24-2008 by 35%, with 2x4 16" on center walls with R-21

  15. New Whole-House Solutions Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake

    SciTech Connect (OSTI)

    D. Springer and A. German

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, California. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.

  16. White House Announces Eighth Manufacturing Innovation Institute |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy White House Announces Eighth Manufacturing Innovation Institute White House Announces Eighth Manufacturing Innovation Institute April 6, 2016 - 4:49pm Addthis On Thursday, April 1, the White House announced a new institute which will focus on revolutionary fibers and textile manufacturing. This new institute is the eighth manufacturing hub to be awarded as part of the National Network for Manufacturing Innovation (NNMI). Collectively, the federal government's commitment

  17. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Simulation Protocols have helped ensure consistent and accurate energy-efficiency assessments for tens of thousands of new and retrofit homes supported by the Building ...

  18. Slideshow of the White House Energy Datapalooza

    Broader source: Energy.gov [DOE]

    This post included photo's from the Energy Datapalooza hosted jointly by the White House Office of Technology-Policy and the Department of Energy.

  19. Stewards of Affordable Housing for the Future

    Broader source: Energy.gov [DOE]

    Better Buildings Multifamily Peer Exchange Call Featuring: Stewards of Affordable Housing for the Future, call slides and discussion summary, April 7, 2011.

  20. 2016 Housing Innovation Awards Application Form

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE) Housing Innovation Awards recognize the very best in innovation on the path to zero energy ready homes. DOE Zero Energy Ready Home (ZERH) Housing Innovation Award Winners are selected for each of four categories: custom, production, multifamily, and affordable homes. One DOE ZERH Grand Housing Innovation Award Winner will be announced from among the winners in each of these categories at the Housing Innovation Awards ceremony. The 2015 ceremony will take place at the EEBA Excellence in Building Conference & Expo October 6-8, 2015, in Denver, Colorado.

  1. Federal Housing Administration's Energy Efficient Mortgage Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mortgage Program Describes the U.S. Department of Housing and Urban Development Energy Efficient Mortgage Program which helps homebuyers or homeowners save money on utility...

  2. The White House's Week of Making

    Broader source: Energy.gov [DOE]

    The White House's Week of Making from June 12-18 will coincide with a National Maker Faire event in Washington, D.C.

  3. Tribal Housing Authorities: Advancing Energy Projects Through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Cabral, Director of Development for the Northern Pueblos Housing Authority (NPHA) in Santa Fe, New Mexico, to share some of the insights and lessons they culled from their ...

  4. DURA URBAN HOUSE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    blend in its Efficient, Affordable, Solar, Innovation--or EASI--House. Learn More AGGIE SOL The University of California, Davis, has strong pedigrees in both sustainable projects...

  5. Please transfer ALL data off house

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Please transfer ALL data off /house before 12/1/2013 Please transfer ALL data off house September 3, 2013 by Kjiersten Fagnan We are happy to announce that all the file systems: /global/projectb, /global/dna and /webfs are available for use. We now strongly encourage users to begin the data transfer process from /house to the other file systems. House will retire on December 20, 2013! For more information on the best ways to transfer data and what each file system should be used for, check this

  6. Cooling with a Whole House Fan

    Broader source: Energy.gov [DOE]

    A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round.

  7. New Whole-House Solutions Case Study: Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware

    SciTech Connect (OSTI)

    2014-01-01

    In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).

  8. Cool Energy House - An Intro to the Cool Energy House Retrofit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Project Webinar | Department of Energy Cool Energy House - An Intro to the Cool Energy House Retrofit Demonstration Project Webinar Cool Energy House - An Intro to the Cool Energy House Retrofit Demonstration Project Webinar Slides from the Building America webinar on November 14, 2011. PDF icon webinar_cool_ehouse_20111130.pdf More Documents & Publications Building America Overview - 2014 BTO Peer Review Building America Roadmap to High Performance Homes Automated Sealing

  9. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    1 2007 Top Five Manufacturers of Factory-Built Housing Units (1) Company CMH Manufacturing 20% Champion Enterprises, Inc. 19% Palm Harbor Homes, Inc. 10% Fleetwood Enterprises, Inc. 9% Skyline Corporation 6% Note(s): Source(s): 8,207 376.4 1) Data based on mail-in surveys from manufacturers which may not be entirely complete. 2) Market shares based on total gross sales volume of the factory-built home producers included in the list of the top 25 factory-built producers responding to the survey.

  10. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    2 2007 Top Five Manufacturers of Modular/3D Housing Units (1) Company Champion Enterprises, Inc. 27% CMH Manufacturing 14% All American Homes, LLC 10% Palm Harbor Homes, Inc. 10% Excel Homes LLC 7% Note(s): Source(s): 1,200 110.6 1) Data based on mail-in surveys from manufacturers, which may not be entirely complete. 2) Market shares based on total gross sales volume of the Modular/3D home producers included in the list of the top 25 factory-built producers responding to the survey. In 2007,

  11. Mechanical ventilation in HUD-code manufactured housing in the Pacific Northwest

    SciTech Connect (OSTI)

    Lubliner, M.; Stevens, D.T.; Davis, B.

    1997-12-31

    Electric utilities in the Pacific Northwest have spent more than $100 million to support energy-efficiency improvements in the Housing and Urban Development (HUD) code manufactured housing industry in the Pacific Northwest over the past several years. More than 65,000 manufactured housing units have been built since 1991 that exceed the new HUD standards for both thermal performance and mechanical ventilation that became effective in October 1994. All of these units included mechanical ventilation systems that were designed to meet or exceed the requirements of ASHRAE Standard 62-1989. This paper addresses the ventilation solutions that were developed and compares the comfort and energy considerations of the various strategies that have evolved in the Pacific Northwest and nationally. The use and location of a variety of outside air inlets will be addressed, as will the acceptance by the occupants of the ventilation strategy.

  12. United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    l 0 United States Office of Research and Environmental Protection Agency Development Washington, DC 20460 EPA 600/R-94/209 January 1993 Offsite Environment itoring Report adiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS, NEVADA 89193-3478 , 702/798-2100 April 20, 1995 Dear Reader: Since 1954, the U.S.

  13. United States

    Office of Legacy Management (LM)

    - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  14. LIVE from the White House Science Fair

    Broader source: Energy.gov [DOE]

    “If you win the NCAA championship, you come to the White House. Well, if you're a young person and you produce the best experiment or design, the best hardware or software, you ought to be recognized for that achievement, too,” President Obama said at the White House Science Fair, where he was joined by Secretary Chu.

  15. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  16. Final Expert Meeting Report: Simplified Space Conditioning Strategies for Energy Efficient Houses

    Energy Savers [EERE]

    Expert Meeting Report: Simplified Space Conditioning Strategies for Energy Efficient Houses Dave Stecher IBACOS, Inc. July 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

  17. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    Energy Savers [EERE]

    Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Arlan Burdick IBACOS, Inc. October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  18. Cooling with a Whole House Fan | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in hot weather. In addition to whole house fans, the ducts of your central heating and cooling system can be modified to provide whole house cooling. How Whole House Fans Work...

  19. EcoHouse Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EcoHouse Program Overview EcoHouse Program Overview Provides an overview of the Indianapolis Better Buildings program, the EcoHouse program, and Indianapolis Neighborhood Housing partnership (INHP). PDF icon EcoHouse Program Overview More Documents & Publications Loan Programs for Low- and Moderate-Income Households Strengthening Relationships Between Energy Programs and Housing Programs The Better Buildings Neighborhood View -- April 2012

  20. Energy-efficient housing alternatives: a predictive model of factors affecting household perceptions

    SciTech Connect (OSTI)

    Schreckengost, R.L.

    1985-01-01

    The major purpose of this investigation was to assess the impact of household socio-economic factors, dwelling characteristics, energy conservation behavior, and energy attitudes on the perceptions of energy-efficient housing alternatives. Perceptions of passive solar, active solar, earth sheltered, and retrofitted housing were examined. Data used were from the Southern Regional Research Project, S-141, Housing for Low and Moderate Income Families. Responses from 1804 households living in seven southern states were analyzed. A conceptual model was proposed to test the hypothesized relationships which were examined by path analysis. Perceptions of energy efficient housing alternatives were found to be a function of selected household and dwelling characteristics, energy attitude, household economic factors, and household conservation behavior. Age and education of the respondent, family size, housing-income ratio, utility income ratio, energy attitude, and size of the dwelling unit were found to have direct and indirect effects on perceptions of energy-efficient housing alternatives. Energy conservation behavior made a significant direct impact with behavioral energy conservation changes having the most profound influence. Conservation behavior was influenced by selected household and dwelling characteristics, energy attitude, and household economic factors.