National Library of Energy BETA

Sample records for household motor vehicle

  1. EIA - Household Transportation report: Household Vehicles Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series....

  2. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  3. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  4. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  5. Cover Page of Household Vehicles Energy Use: Latest Data & Trends

    Gasoline and Diesel Fuel Update (EIA)

    Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

  6. Household Vehicles Energy Use Cover Page

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback * PrivacySecurity *...

  7. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 (Continued) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor:...

  8. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 43 Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994...

  9. Hybrid vehicle motor alignment

    DOE Patents [OSTI]

    Levin, Michael Benjamin (Ann Arbor, MI)

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  10. Energy Information Administration/Household Vehicles Energy Consumptio...

    U.S. Energy Information Administration (EIA) Indexed Site

    , Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related...

  11. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel, diesel motor fuel, electric, and natural gas, excluding propane because NHTSA's CAFE program does not track these vehicles. See Gasoline, Gasohol, Unleaded Gasoline, Leaded...

  12. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    were imputed as disposed vehicles. To impute vehicle stock changes in the 1991 RTECS, logistic regression equations were used to compute a predicted probability (or propensity)...

  13. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    more fuel-efficient vehicles, and the implementation of Corporate Average Fuel Economy (CAFE) 6 standards. Figure 13. Average Fuel Efficiency of All Vehicles, by Model Year 6...

  14. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    production vehicles in order to assess compliance with Corporate Average Fuel Economy (CAFE) standards. The EPA Composite MPG is based on the assumption of a "typical" vehicle-use...

  15. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    a comparison between the 1991 and previous years RTECS designs; (2) the sample design; (3) the data-collection procedures; (4) the Vehicle Identification Number (VIN); (5)...

  16. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  17. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C.

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  18. Fact #614: March 15, 2010 Average Age of Household Vehicles

    Broader source: Energy.gov [DOE]

    The average age of household vehicles has increased from 6.6 years in 1977 to 9.2 years in 2009. Pickup trucks have the oldest average age in every year listed. Sport utility vehicles (SUVs), first...

  19. Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles

    Broader source: Energy.gov [DOE]

    When a household has more than one vehicle, the secondary vehicles travel fewer miles than the primary vehicle. In a two-vehicle household, the second vehicle travels less than half of the miles...

  20. Fact #618: April 12, 2010 Vehicles per Household and Other Demographic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    per Household and Other Demographic Statistics Fact 618: April 12, 2010 Vehicles per Household and Other Demographic Statistics Since 1969, the number of vehicles per ...

  1. Table 2. Percent of Households with Vehicles, Selected Survey...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08...

  2. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    vehicle type, and vehicle model year. "600" - represents a "match" based on EIA expert analysis using subject matter experience, in conjunction with past RTECS. Additionally,...

  3. Nevada Department of Motor Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Nevada Department of Motor Vehicles Name: Nevada Department of Motor Vehicles Address: 555 Wright Way Place: Carson City, Nevada Zip: 89711 Phone Number: 702-486-4368 Website:...

  4. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    Laboratory (ORNL), Engineering Science Technology Division, Center for Transportation Analysis. For 1,262 vehicles, the work conducted by ORNL did not result in a viable annual VMT...

  5. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    E : C H R O N O L O G Y O F W O R L D O I L M A R K E T E V E N T S ENERGY INFORMATION ADMINISTRATIONHOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS 177 APPENDIX E A P P E N D...

  6. Physical context management for a motor vehicle

    DOE Patents [OSTI]

    Dixon, Kevin R.; Forsythe, James C.; Lippitt, Carl E.; Lippitt, legal representative, Lois Diane

    2009-10-27

    Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

  7. Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles

    Broader source: Energy.gov [DOE]

    Household vehicle ownership has changed over the last six decades. In 1960, over twenty percent of households did not own a vehicle, but by 2010, that number fell to less than 10%. The number of...

  8. Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics

    Broader source: Energy.gov [DOE]

    Since 1969, the number of vehicles per household has increased by 66% and the number of vehicles per licensed driver has increased by 47%. The number of workers per household has changed the least...

  9. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  10. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  11. Fuel-based motor vehicle emission inventory

    SciTech Connect (OSTI)

    Singer, B.C.; Harley, R.A.

    1996-06-01

    A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Using this method, a fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Results of the study are presented and a conclusion is provided. 40 refs., 4 figs., 6 tabs.

  12. Texas Department of Motor Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Name: Texas Department of Motor Vehicles Abbreviation: TxDMV Address: 4000 Jackson Ave. Place: Austin, Texas Zip: 78731 Phone Number: 1-888-368-4689 Website:...

  13. Vehicle Technologies Office: Electric Motors Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Technologies Office: Electric Motors Research and Development Vehicle Technologies Office: Electric Motors Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to improve motors in hybrid and plug-in electric vehicles, with a particular focus on reducing the use of rare earth materials currently used for permanent magnet-based motors. In an electric drive

  14. Electric machine for hybrid motor vehicle

    DOE Patents [OSTI]

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  15. Commercial viability of hybrid vehicles : best household use and cross national considerations.

    SciTech Connect (OSTI)

    Santini, D. J.; Vyas, A. D.

    1999-07-16

    Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

  16. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Vehicle ...

  17. Exposure to motor vehicle emissions: An intake fraction approach

    SciTech Connect (OSTI)

    Marshall, Julian D.

    2002-05-01

    Motor vehicles are a significant source of population exposure to air pollution. Focusing on California's South Coast Air Basin as a case study, the author combines ambient monitoring station data with hourly time-activity patterns to determine the population intake of motor vehicle emissions during 1996-1999. Three microenvironments are considered wherein the exposure to motor vehicle emissions is higher than in ambient air: in and near vehicles, inside a building that is near a freeway, and inside a residence with an attached garage. Total motor vehicle emissions are taken from the EMFAC model. The 15 million people in the South Coast inhale 0.0048% of primary, nonreactive compounds emitted into the basin by motor vehicles. Intake of motor vehicle emissions is 46% higher than the average ambient concentration times the average breathing rate, because of microenvironments and because of temporal and spatial correlation among breathing rates, concentrations, and population densities. Intake fraction (iF) summarizes the emissions-to-intake relationship as the ratio of population intake to total emissions. iF is a population level exposure metric that incorporates spatial, temporal, and interindividual variability in exposures. iFs can facilitate the calculation of population exposures by distilling complex emissions-transport-receptor relationships. The author demonstrates this point by predicting the population intake of various primary gaseous emissions from motor vehicles, based on the intake fraction for benzene and carbon monoxide.

  18. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles ...

  19. Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State Fact 784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State The...

  20. EIA - Appendix B: Estimation Methodologies of Household Vehicles...

    U.S. Energy Information Administration (EIA) Indexed Site

    production vehicles in order to assess compliance with Corporate Average Fuel Economy (CAFE) standards. The EPA Composite MPG is based on the assumption of a "typical" vehicle-use...

  1. Household Vehicles Energy Use: Latest Data and Trends

    Reports and Publications (EIA)

    2005-01-01

    This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

  2. Motor vehicle output and GDP, 1968-2007.

    SciTech Connect (OSTI)

    Santini, D. J.; Poyer, D. A.

    2008-01-01

    In this paper, we assess the performance of the BEA series 'value of motor vehicle output' as an indicator of the business cycle over the period 1968-2007. We statistically assess the causal relationship between real motor vehicle output (RMVO) and real gross domestic product (RGDP). This is accomplished by standard estimation and statistical methods used to assess vector autoregressive models. This assessment represents the initial results of a more encompassing research project, the intent of which is to determine the dynamic interaction of the transport sector with the overall economy. It's a start to a more comprehensive assessment of how transport and economic activity interrelate.

  3. Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose

    Broader source: Energy.gov [DOE]

    In 2009, getting to and from work accounted for about 27% of household vehicle-miles of travel (VMT). Work-related business was 8.4% of VMT in 2001, but declined to 6.7% in 2009, possibly due to...

  4. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  5. Fact #784: June 17, 2013 Direct Employment of Motor Vehicle Parts Manufacturing by State

    Broader source: Energy.gov [DOE]

    The manufacture of motor vehicle parts accounts for a substantial amount of employment, particularly in the Midwest and in the South. Motor vehicle parts manufacturing directly employed more than...

  6. Method for controlling a motor vehicle powertrain

    DOE Patents [OSTI]

    Burba, Joseph C.; Landman, Ronald G.; Patil, Prabhakar B.; Reitz, Graydon A.

    1990-01-01

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

  7. Method for controlling a motor vehicle powertrain

    DOE Patents [OSTI]

    Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

    1990-05-22

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

  8. Solar panel driven air purging apparatus for motor vehicles

    SciTech Connect (OSTI)

    Bobier, J.A.; Brown, G.E.

    1992-02-18

    This patent describes improvement in a motor vehicle having an enclosable cabin an internal combustion engine, a battery, an ignition switch having an on position for enabling the internal combustion engine and an off position, an electric motor coupled in driving relationship with an air circulating fan for circulating air through the cabin. The improvement comprises: a solar panel mounted upon the vehicle having a panel output exhibiting variable voltage levels including a peak voltage level and substantially constant current; a power transfer regulator for transferring power form the panel to the motor when enabled, including: energy storage means connectable across the panel output and chargeable by the current to variable charge levels; solid-state switch means connected in energy transfer relationship with the energy storage means and actuable between conducting and non-conducting states when the power transfer regulator is enabled; inductor means connected with the solid-state switch means and connectable with the electric motor for conveying current thereto from the panel and the energy storage means when the solid-state switch means is in the conducting state.

  9. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  10. Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction | Department of Energy Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction Presentation given by UQM Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unique lanthide-free motor construction. PDF icon ape044_lutz_2014_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015:

  11. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    This report describes the progress made on the research and development projects funded by the Advanced Power Electronics and Electric Motors subprogram in the Vehicle Technologies Office.

  12. Vermont Single Trip Permit to Operate a Motor Vehicle in Excess...

    Open Energy Info (EERE)

    Single Trip Permit to Operate a Motor Vehicle in Excess of Statutory Weight or Dimension Limits (Form OSD-002) Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  13. Fact #637: August 23, 2010 World Motor Vehicle Production

    Broader source: Energy.gov [DOE]

    The number of vehicles produced, including cars, trucks, and buses, rose substantially from 1950 to 2005. In 1950, the majority of the vehicles were produced in the U.S. and Western Europe. In 2009...

  14. Fact #601: December 14, 2009 World Motor Vehicle Production

    Broader source: Energy.gov [DOE]

    The number of vehicles produced, including cars, trucks, and buses, has risen substantially from 1950 to 2008. In 1950, the majority of the vehicles were produced in the U.S. and Western Europe. In...

  15. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect (OSTI)

    Yang, Ming; Kraft-Oliver, T.; Guo Xiao Yan

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  16. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todayís EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powerís motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  17. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  18. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect (OSTI)

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  19. Chapter 31: Transportation: Motor Vehicles (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Vehicle Technologies Program Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ...

  20. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todayís large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldorís motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  1. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  2. Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies.

  3. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect (OSTI)

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  4. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  5. Motor vehicle MPG and market shares report: model year 1984

    SciTech Connect (OSTI)

    Hu, P.S.; Holcomb, M.C.

    1985-01-01

    This issue of the publication reports the sales, market shares, estimated sales-weighted fuel economies, and other estimated sales-weighted vehicle characteristics of automobiles and light trucks for the model year 1984 and for the previous five model years. Comparisons and observations are made on the trends in these vehicles from one model year to the next. An improved methodology is used to allocate the yearly MPG changes among eight components, rather than the four reported in the previous reports. Sales of automobiles showed an increase of 16.6% from model year 1983. An even more striking increase was observed in the sales of light trucks: 30.5% from model year 1983. The 1984 model year experienced a gain of 0.23 mpg in sales-weighted automobile fuel economy. In contrast, light trucks experienced a loss of 0.59 mpg in fuel economy, from 20.50 mpg in model year 1983 to 19.91 mpg in model year 1984.

  6. Motor vehicle MPG and market shares report: model year 1985

    SciTech Connect (OSTI)

    Hu, P.S.

    1986-02-01

    Sales of automobiles jumped dramatically from 10,211,058 units in model year 1984 to 10,968,515 units in model year 1985, an incease of 7.4%. Light trucks had an even more striking increase in sales, rising 17.2% from the previous model year. The sales-weighted fuel economy for the entire automobile fleet continued to climb in model year 1985, from 26.3 mpg in model year 1984 to 27.0 mpg in this model year. The sales-weighted fuel economies in light trucks have remained relatively constant since model year 1979. The trends of various vehicle characteristics from model year 1978 through 1985 are illustrated. 34 figs., 45 tabs.

  7. Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow¬źs automobiles will function as a unified system to improve fuel efficiency.

  8. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions

    SciTech Connect (OSTI)

    Marr, L.C.; Kirchstetter, T.W.; Harley, R.A.; Hammond, S.K.; Miguel, A.H.; Hering, S.V.

    1999-09-15

    Motor vehicles are a significant source of polycyclic aromatic hydrocarbon (PAH) emissions. Improved understanding of the relationship between fuel composition and PAH emissions is needed to determine whether fuel reformulation is a viable approach for reducing PAH emissions. PAH concentrations were quantified in gasoline and diesel fuel samples collected in summer 1997 in northern California. Naphthalene was the predominant PAH in both fuels, with concentrations of up to 2,600 mg L{sup {minus}1} in gasoline and 1,600 mg L{sup {minus}1} in diesel fuel. Particle-phase PAH size distributions and exhaust emission factors were measured in two bores of a roadway tunnel. Emission factors were determined separately for light-duty vehicles and for heavy-duty diesel trucks, based on measurements of PAHs, CO, and CO{sub 2}. Particle-phase emission factors, expressed per unit mass of fuel burned, ranged up to 21 {micro}g kg{sup {minus}1} for benzo[ghi]perylene for light-duty vehicles and up to {approximately} 1,000 {micro}g kg{sup {minus}1} for pyrene for heavy-duty diesel vehicles. Light-duty vehicles were found to be a significant source of heavier (four- and five-ring) PAHs, whereas heavy-duty diesel engines were the dominant source of three-ring PAHs, such as fluoranthene and pyrene. While no correlation between heavy-duty diesel truck PAH emission factors and PAH concentrations in diesel fuel was found, light-duty vehicle PAH emission factors were found to be correlated with PAH concentrations in gasoline, suggesting that gasoline reformulation may be effective in reducing PAH emissions from motor vehicles.

  9. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    A Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles Alex Schroeder National Renewable Energy Laboratory Technical Report NREL/TP-5400-60975 August 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  10. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate that by allowing uncontained growth in the number of motor vehicles and pursuing only incremental improvements in fuel economy, China may face severe consequences in terms of oil use and CO{sub 2} emissions. Many argue that China--and, in fact, the world--will not be able to accommodate such uncontained vehicle growth. The potential problems related to transportation energy use and CO{sub 2} emissions in China are, indeed, global problems; solving these problems will require international collaboration.

  11. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    None, None

    2012-01-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  12. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOE Patents [OSTI]

    Tamor, Michael Alan; Gale, Allan Roy

    1999-01-01

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  13. A fuel-based motor vehicle emission inventory for the San Francisco Bay area

    SciTech Connect (OSTI)

    Black, D.R.; Singer, B.C.; Harley, R.A.; Martien, P.T.; Fanai, A.K.

    1997-12-31

    Traditionally, regional motor vehicle emission inventories (MVEI) have been estimated by combining travel demand model and emission factor model predictions. The accuracy of traditional MVEIs is frequently challenged, and development of independent methods for estimating vehicle emissions has been identified as a high priority for air quality research. In this study, an alternative fuel-based MVEI was developed for the San Francisco Bay Area using data from 1990--1992. To estimate CO emissions from motor vehicles in the Bay Area, estimates of gasoline sales were combined with infrared remote sensing measurements of CO and CO{sub 2} exhaust concentrations from over 10,000 light-duty vehicles in summer 1991. Once absolute estimates of CO emissions have been computed, it is possible to use ambient NO{sub x}/CO and NMOC/CO ratios from high traffic areas to estimate emissions for NO{sub x} and NMOC (excluding some resting loss and diurnal evaporative emissions). Ambient ratios were generated from special-study measurements of NMOC and CO in 1990 and 1992, and from routine sampling of NO{sub x} and CO in 1991. All pollutant concentrations were measured on summer mornings at Bay Area monitoring sites in areas with high levels of vehicle traffic and no other significant sources nearby. Stabilized CO emissions calculated by the fuel-based method for cars and light-duty trucks were 1720{+-}420 tons/day. This value is close to California`s MVEI 7G model estimates. Total on-road vehicle emissions of CO in the Bay Area were estimated to be 2900{+-}800 tons/day. Emissions of NMOC were estimated to be 570{+-}200 tons/day, which is 1.6{+-}0.6 times the value predicted by MVEI 7G. In the present study, emissions of NO{sub x} from on-road vehicles were estimated to be 250{+-}90 tons/day, which is 0.6{+-}0.2 times the value predicted by MVEI 7G.

  14. Myers Motors | Open Energy Information

    Open Energy Info (EERE)

    Myers Motors Jump to: navigation, search Name: Myers Motors Place: Tallmadge, Ohio Zip: 44278 Sector: Vehicles Product: Myers Motors produces three wheeled electric vehicles....

  15. Air pollution EPA'S efforts to control gasoline vapors from motor vehicles

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This report examines ozone, often called smog, which is a respiratory irritant, and long-term exposure may cause permanent lung damage. Attempts by EPA to reduce gasoline vapors, a major contributor to ozone, by requiring refiners to lower the volatility (evaporation rate) of gasoline sold during the summer months when most high ozone levels occur and auto manufacturers to install vapor recovery equipment (onboard controls) on motor vehicles. Beginning in 1989 (Phase I), the maximum volatility of gasoline sold during the summer would fall to 10.5 pounds per square inch and beginning in 1992 (Phase II), the maximum volatility would fall to 9.0 pounds per square inch. EPA has not yet acted on Phase II reductions because it disagrees with the Department of Transportation on the dangers of adding onboard controls to vehicles. DOT believes the onboard controls may pose an increased risk of fire during crashes. In this report's view, the Stage II controls are a practical and feasible way to control refueling vapors and that onboard controls may well surpass the effectiveness of Phase II controls and therefore should not be abandoned as a way to reduce gasoline vapors.

  16. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  17. Composition of motor-vehicle organic emissions under elevated-temperature summer driving conditions (75 to 105 deg F)

    SciTech Connect (OSTI)

    Stump, F.D.; Knapp, K.T.; Ray, W.D.; Snow, R.; Burton, C.

    1992-01-01

    Emissions from seven late-model popular V-6 and V-8 motor vehicles were characterized at three test temperatures. The Urban Dynamometer Driving Schedule was used for vehicle tailpipe testing. Six vehicles fueled by port fuel injection (PFI) and one vehicle with a carbureted fuel system were tested at temperatures of 75, 90, and 105 F with unleaded regular summer grade gasoline. Tailpipe and evaporative emissions were determined at each test temperature. Measured emissions were the total hydrocarbons (THCs), speciated hydrocarbons, speciated aldehydes, carbon monoxide (CO), oxides of nitrogen (NOx), benzene, and 1,3-butadiene. In general, tailpipe emissions of THC, benzene, and 1,3-butadiene from the vehicles were not temperature sensitive, but the CO and NOx emissions showed some temperature sensitivity. Formaldehyde, acetaldehyde, and total aldehyde emissions from the PFI vehicles were also not temperature dependent, while formaldehyde emissions from the carbureted vehicle decreased slightly with increasing test temperature. Evaporative THC emissions generally increased with increasing test temperature. Hydrocarbon emissions saturated and broke through the evaporative carbon canister of one PFI vehicle during the 105 F hot soak while the other six vehicles showed no hydrocarbon breakthrough.

  18. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  19. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  20. Motors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    motor fails? When a motor fails, the user or owner faces three choices: to rewind to a lower efficiency; to rewind and maintain the original efficiency; or to replace it with a...

  1. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  2. Federal certification test results for 1992 model year. Control of air pollution from new motor vehicles and new motor vehicle engines

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Each manufacturer of a passenger car, (light-duty-vehicle), light-duty truck, motorcycle, heavy-duty gasoline engine, and heavy-duty diesel engine is required to demonstrate compliance with the applicable exhaust emission standard. This report contains all of the individual tests that were required by the certification-procedures found in Title 40 of the Code of Federal Regulations in Part 86. These data were submitted to the Environmental Protection Agency's Certification Division at the National Vehicle and Fuel Emissions Laboratory.

  3. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

  4. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. EIA - Household Transportation report: Household Vehicles Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    National Research Council, Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards (Washington, DC: National Academy of Sciences, 2002), p. 85. 4 8.3 million...

  6. Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  7. Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

  8. Vehicle Technologies Office Merit Review 2014: Convective Cooling and Passive Stack Improvements in Motors

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  9. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  10. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Aurica Motors | Open Energy Information

    Open Energy Info (EERE)

    Aurica Motors Jump to: navigation, search Name: Aurica Motors Place: California Product: California-based Aurica Motors is planning to develop and manufacture an electric vehicle...

  12. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape013elrefaie2010o

  13. Vehicle Technologies Office Merit Review 2015: Non-Rare Earth Motor Development

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about non-rare earth...

  14. Vehicle Technologies Office Merit Review 2015: Multi-Speed Range Electric Motor R&D

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-speed...

  15. Vehicle Technologies Office Merit Review 2014: Scalable Non-Rare Earth Motor Development

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scalable non...

  16. Vehicle Technologies Office Merit Review 2014: SAE J2907 Hybrid Motor Ratings Support

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SAE J2907...

  17. Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor Construction

    Broader source: Energy.gov [DOE]

    Presentation given by UQM Technologies, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unique lanthide-free...

  18. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

    SciTech Connect (OSTI)

    McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D.

    1997-12-31

    Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

  19. Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.

    1983-10-01

    The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

  20. Latest techniques and equipment for the conversion of motor vehicles to LPG/petroleum use

    SciTech Connect (OSTI)

    Armstrong, R.

    1980-01-01

    Liquified petroleum gases (LPG) has been used for transportation in Europe, the United States, Japan and to a much lesser extent in Australia for many years. In most cases, the vehicles have been powered by engines designed for petrol operation and subsequently converted to use LPG. The application of LPG as an automotive fuel in different countries depends heavily on the availability of the fuel and the tax policy of the government. The demand for dual fuel equipment is increasing. Some of the problems facing Australia to convert vehicles to LPG use emphasize the institutional and hardware obstacles. Before LPG can be considered to be a safe, viable alternative fuel to petrol, improvements will have to be made in safety standards, in reduced exhaust emissions, in increased fuel efficiency, and in the involvement of car manufacturers. (SAC)

  1. Household Vehicles Energy Consumption 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    DC, October 1995), Table DL-1B. 5. "Chained dollars" is a measure used to express real prices. Real prices are those that have been adjusted to remove the effect of changes...

  2. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    Matching: A model-based procedure used to impute for item nonresponse. This method uses logistic models to compute predicted means that are used to statistically match each...

  3. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    selected tabulations were produced using two different software programs, Table Producing Language (TPL) and Statistical Analysis System (SAS). Energy Information Administration...

  4. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    for 1994, will continue the 3-year cycle. The RTECS, a subsample of the Residential Energy Consumption Survey (RECS), is an integral part of a series of surveys designed by...

  5. Motor vehicle mpg and market shares report: first six months of model year 1984

    SciTech Connect (OSTI)

    Hu, P.S.; Greene, D.L.; Till, L.E.

    1984-10-01

    This issue of the publication reports the sales, market shares, estimated sales-weighted fuel economies, and other estimated sales-weighted vehicle characteristics of automobiles and light trucks for the first six months of model year 1984 and for the previous five model years. Comparisons and observations are made on the trends in these vehicles from one model year to the next. An improved methodology is used to allocate the yearly mpg changes among eight components, rather than the four reported in the previous reports. Sales of automobiles showed an increase of 21.8% from the first half of model year 1983. An even more striking increase was observed in the sales of light trucks: 42.2% from the first half of model year 1983. The first six months of model year 1984 experienced a gain of 0.21 mpg in sales-weighted automobile fuel economy. In contrast, light trucks experienced a loss of 0.83 mpg in fuel economy, from 20.52 mpg in model year 1983 to 19.69 mpg in the first half of model year 1984.

  6. Magnet Motor Corp | Open Energy Information

    Open Energy Info (EERE)

    Magnet Motor Corp Jump to: navigation, search Name: Magnet Motor Corp. Place: Starnberg, Germany Zip: 82319 Sector: Vehicles Product: Magnet motor Corp has been developing and...

  7. Aptera Motors | Open Energy Information

    Open Energy Info (EERE)

    Aptera Motors Jump to: navigation, search Name: Aptera Motors Address: 2778 Loker Avenue West Place: Carlsbad, California Zip: 92008 Region: Southern CA Area Sector: Vehicles...

  8. AGNI Motors | Open Energy Information

    Open Energy Info (EERE)

    India Zip: 370 230 Sector: Vehicles Product: UK-based manufacturer of DC Motors and Battery Management Systems for Electric Vehicles References: AGNI Motors1 This article is a...

  9. Motor vehicle fuel analyzer

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1997-08-05

    A gas detecting system is described for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable ``signature``. The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use. 14 figs.

  10. Motor vehicle fuel analyzer

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1997-01-01

    A gas detecting system for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable "signature". The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use.

  11. Vehicle Technologies Office Merit Review 2015: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  12. Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  13. Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  14. Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Development of Radically...

  15. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  16. Vehicle Technologies Office Merit Review 2015: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  17. Household magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household magnets Chances are very good that you have experimented with magnets. People have been fascinated with magnetism for thousands of years. As familiar to us as they may be, magnets still have some surprises for us. Here is a small collection of some of our favorite magnet experiments. What happens when we break a magnet in half? Radio Shack sells cheap ceramic magnets in several shapes. Get a ring shaped magnet and break it with pliers or a tap with a hammer. Try to put it back

  18. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-04-10

    Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

  19. Vehicle Technologies Office Merit Review 2015: Brushless and Permanent Magnet Free Wound Field Synchronous Motors for EV Traction

    Broader source: Energy.gov [DOE]

    Presentation given by U of Wisconsin-Madison at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about brushless and...

  20. Trexa Motor Corporation TMC | Open Energy Information

    Open Energy Info (EERE)

    Trexa Motor Corporation TMC Jump to: navigation, search Name: Trexa Motor Corporation (TMC) Place: Los Angeles, California Sector: Vehicles Product: Los Angeles - based subsidiary...

  1. Alternative Motor Fuel Use Model

    Energy Science and Technology Software Center (OSTI)

    1992-11-16

    AMFU is a tool for the analysis and prediction of motor fuel use by highway vehicles. The model advances the art of vehicle stock modeling by including a representation of the choice of motor fuel for flexible and dual fuel vehicles.

  2. Fact #747: October 1, 2012 Behind Housing, Transportation is the Top Household Expenditure

    Broader source: Energy.gov [DOE]

    Except for housing, transportation was the largest single expenditure for the average American household in 2010. The average household spends more on transportation in a year than on food. Vehicle...

  3. NDMV - Longer Combination Vehicle (LCV) Permit Application |...

    Open Energy Info (EERE)

    Vehicle (LCV) Permit Application Abstract This form is the Nevada Department of Motor Vehicles LCV Application. Form Type ApplicationNotice Form Topic Longer Combination...

  4. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  5. Electric Motor Thermal Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ape030_bennion_2012_o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

  6. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    C : Q U A L I T Y O F T H E D ATA APPENDIX C A P P E N D I X C QUALITY OF THE DATA INTRODUCTION This section discusses several issues relating to the quality of the National...

  7. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    Federal Highway Administration. Accessed on the world-wide web at http:www.fhwa.dot.govenvironmentcmaqpgsamaq03cmaq1fig3.htm on July 11, 2005. ENERGY INFORMATION...

  8. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    (EERE) program in the U.S. Department of Energy (DOE), Transportation Energy Data Book: Edition 24. Note: * a recession year. Estimates are displayed as rounded values....

  9. Household Vehicles Energy Consumption 1994 - Appendix C

    U.S. Energy Information Administration (EIA) Indexed Site

    discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on...

  10. A New Class of Switched Reluctance Motors without Permanent Magnets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors without Permanent Magnets A New Class of Switched Reluctance Motors without Permanent Magnets 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program ...

  11. Li ion Motors Corp formerly EV Innovations Inc | Open Energy...

    Open Energy Info (EERE)

    Vegas, Nevada Zip: 89110 Sector: Vehicles Product: Las Vegas - based manufacturer of lithium-powered plug-in vehicles. References: Li-ion Motors Corp (formerly EV Innovations...

  12. Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2009propulsionmaterials.pdf More Documents & Publications Magnetic Material for PM Motors Permanent Magnet Development for Automotive Traction Motors Vehicle ...

  13. Vehicle Technologies Office Merit Review 2014: Unique Lanthide...

    Broader source: Energy.gov (indexed) [DOE]

    lanthide-free motor construction. PDF icon ape044lutz2014o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor ...

  14. Vehicle Technologies Office Merit Review 2015: Unique Lanthide...

    Broader source: Energy.gov (indexed) [DOE]

    lanthide-free motor construction. PDF icon edt044gilbert2015o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor ...

  15. DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors PDF icon 2009meritreview3.pdf More ...

  16. Advanced Motors

    SciTech Connect (OSTI)

    Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

    2012-12-14

    Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?Motors and Generators for the 21st Century√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ě. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

  17. Describing current and potential markets for alternative-fuel vehicles

    SciTech Connect (OSTI)

    1996-03-26

    Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

  18. NREL: Transportation Research - Electric Motor Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Motor Thermal Management A photo of a piece of laboratory testing equipment. NREL research in electric motors is helping to improve the performance and reliability of electric-drive vehicles. Photo by Kevin Bennion, NREL NREL's electric motor thermal management research generates experimental data and simulation processes for the modeling, analysis, design, and construction of new electric motors. Electric motor thermal management involves a multifaceted interaction of motor operating

  19. Honda Motor Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Motor Co Ltd Jump to: navigation, search Name: Honda Motor Co Ltd Place: Tokyo, Tokyo, Japan Zip: 107-8556 Sector: Vehicles Product: Leading global car manufacturer which began...

  20. EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1)

    Broader source: Energy.gov [DOE]

    Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts.

  1. Tesla Motors Inc | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Product: California-based producer of luxury electric vehicles, such as sports cars. References: Tesla Motors Inc1 This article is a stub. You can help OpenEI by...

  2. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and ...

  3. Co-Optimization of Fuels and Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Fuels and Vehicles Jim Anderson, Ford Motor Company Bioenergy 2015 June ... LDV Pathways Source: DOE Hydrogen and Fuel Cells Program Record 14006, http:...

  4. Vehicle Technologies Office: Integration, Validation and Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    emulate vehicle environments with realistic control system interfaces and interactions. ... the battery pack, the electric traction motor, the transmission, and the generator. ...

  5. Celebrating Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles Celebrating Electric Vehicles September 29, 2015 - 4:01pm Addthis The United States has the largest electric vehicle fleet in the world, which includes cars like the Chevrolet Volt. | Photo courtesy of General Motors The United States has the largest electric vehicle fleet in the world, which includes cars like the Chevrolet Volt. | Photo courtesy of General Motors Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS More than 1 million plug-in

  6. Try This: Household Magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household Magnets Household Magnets Chances are very good that you have experimented with magnets. People have been fascinated with magnetism for thousands of years. As familiar to us as they may be, magnets still have some surprises for us. Here is a small collection of some of our favorite magnet experiments. What happens when we break a magnet in half? Radio Shack sells cheap ceramic magnets in several shapes. Get a ring shaped magnet and break it with pliers or a tap with a hammer. Try to

  7. Electric vehicles | Open Energy Information

    Open Energy Info (EERE)

    existence in the mid-19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not...

  8. usage_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  9. housingunit_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  10. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  11. ac_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  12. Electric Motor Thermal Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape030_bennion_2011_o.pdf More Documents & Publications Motor Thermal Control Electric Motor Thermal Management Electric Motor Thermal Management

  13. Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model

    Reports and Publications (EIA)

    2011-01-01

    The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

  14. Fact #673: May 2, 2011 U.S. Trade Balance for Transportation Vehicles

    Broader source: Energy.gov [DOE]

    Motor vehicles, aircraft, ships, and rail locomotives are imported to and exported from the U.S. The trade balance (exports minus imports) shows that the U.S. imports more motor vehicles and parts...

  15. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W.T.; Ferrante, T.A.

    1998-10-13

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

  16. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W. Thor; Ferrante, Todd A.

    1998-01-01

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

  17. Workplace Charging Challenge Partner: Ford Motor Company | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Joined the Challenge: January 2013 Headquarters: Dearborn, MI Charging Location: Dearborn, MI Domestic Employees: 69,000 Ford's strong commitment to electrification includes six all-new electrified vehicles available in 2013-including three hybrid electric vehicles (HEVs) and three plug-in electric vehicles (PEVs). Workplace charging is consistent with

  18. JV between Hybrid Electric and Mullen Motors | Open Energy Information

    Open Energy Info (EERE)

    Name: JV between Hybrid Electric and Mullen Motors Product: Joint Venture to develop a vehicle fitted with hybrid and lithium technologies References: JV between Hybrid Electric...

  19. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor ...

  20. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  1. Vehicle Technologies Office Merit Review 2014: Overview of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motor R&D Program Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program ...

  2. Vehicle Technologies Office Merit Review 2014: Wireless Charging |

    Energy Savers [EERE]

    Construction | Department of Energy Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction Presentation given by UQM Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unique lanthide-free motor construction. PDF icon ape044_lutz_2014_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015:

  3. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  4. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  5. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  6. Vehicle Technologies Office Merit Review 2014: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  7. Vehicle Technologies Office Merit Review 2015: Brushless and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brushless and Permanent Magnet Free Wound Field Synchronous Motors for EV Traction Vehicle Technologies Office Merit Review 2015: Brushless and Permanent Magnet Free Wound Field...

  8. Vehicle Technologies Office Merit Review 2014: A Combined Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined ...

  9. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & ... Plug-in hybrid electric vehicles (PHEVs) use batteries to power an electric motor and use ...

  10. Vehicle Technologies Office: Power Electronics Research and Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    They also control the speed of the motor, and the torque it produces. Finally, power electronics convert and distribute electrical power to other vehicle systems such as heating ...

  11. Extended Battery Life in Electric Vehicles | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Fuel Cell Bus Uses New Durathon(tm) Battery 3-4-2-v A World-Class Traction Motor for Hybrid and Electric Vehicles Q&A About Electric Vehicle Flow Battery Technology

  12. Propulsion and stabilization system for magnetically levitated vehicles

    DOE Patents [OSTI]

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  13. Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motor R&D Program Susan Rogers Steven Boyd Advanced Power Electronics and Electric Motors Vehicle Technologies Office June 17, 2014 VEHICLE TECHNOLOGIES OFFICE 2 APEEM R&D Program Vehicle Technologies Office Hybrid Electric Systems R&D Vehicle Systems Advanced Power Electronics & Electric Motors (APEEM) R&D Industry Federal Agencies Academia National Labs Energy Storage 3 APEEM R&D Mission and Budget Develop advanced power electronics,

  14. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  15. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  16. Next Generation Household Refrigerator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Household Refrigerator Next Generation Household Refrigerator Embraco's high efficiency, oil-free linear compressor.
    Credit: Whirlpool Embraco's high ...

  17. Strategies for Collecting Household Energy Data | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collecting Household Energy Data Strategies for Collecting Household Energy Data Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Strategies for ...

  18. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  19. ac_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    0a. Air Conditioning by Midwest Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 20.5 13.6 6.8 2.2 Air Conditioners Not Used ........................... 2.1 0.3 Q Q 27.5 Households Using Electric Air-Conditioning 1

  20. ac_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    1a. Air Conditioning by South Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 37.2 19.3 6.4 11.5 1.5 Air Conditioners Not Used ........................... 2.1 0.4 Q Q Q 28.2 Households Using Electric Air-Conditioning 1

  1. Permanent Magnet Development for Automotive Traction Motors | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape015_anderson_2012_o.pdf More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction

  2. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  3. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  4. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

  5. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, J.T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  6. ac_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.8 Households With Electric Air-Conditioning Equipment ...

  7. char_household2001.pdf

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Contact: Stephanie J. Battles, Survey Manager (stephanie.battles@eia.doe.gov) World Wide Web: http:www.eia.doe.govemeuconsumption Table HC2-1a. Household Characteristics by ...

  8. char_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... Income Relative to Poverty Line Below 100 Percent ...... 15.0 13.2 1.8 Q ...

  9. homeoffice_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... 29.1 5.3 22.7 3.8 1 Below 150 percent of poverty line or 60 percent of median State ...

  10. homeoffice_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    107.0 7.1 12.3 7.7 6.3 NE Households Using Office Equipment ... NE RSE row factor not estimated because RSE's for all statistics in this row are between ...

  11. homeoffice_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    ......... 107.0 24.5 17.1 7.4 NE Households Using Office Equipment ... NE RSE row factor not estimated because RSE's for all statistics in this row are between ...

  12. homeoffice_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    107.0 38.9 20.3 6.8 11.8 NE Households Using Office Equipment ... NE RSE row factor not estimated because RSE's for all statistics in this row are between ...

  13. homeoffice_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    ......... 107.0 23.3 6.7 16.6 NE Households Using Office Equipment ... NE RSE row factor not estimated because RSE's for all statistics in this row are between ...

  14. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    ... location is over a period of one year, relative to a base temperature of 65 degrees Fahrenheit. A household is assigned to a climate zone according to the 30-year average annual ...

  15. ac_household2001.pdf

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Four Most Populated ... New York California Texas Florida 0.4 1.1 1.7 1.2 1.2 Households With Electric Air-Conditi...

  16. ac_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to ...

  17. ac_household2001.pdf

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2a. Air Conditioning by West Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total ...

  18. ac_household2001.pdf

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8a. Air Conditioning by UrbanRural Location, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total UrbanRural Location 1 RSE Row Factors City ...

  19. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  20. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  1. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  2. Motor Fuel Excise Taxes

    SciTech Connect (OSTI)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  3. NREL: Transportation Research - Electric Vehicle Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Vehicle Grid Integration Illustration of a house with a roof-top photovoltaic system. A wind turbine and utility towers appear in the background. A car, parked in the garage, is connected via a power cord to a household outlet. A sustainable transportation future will rely on multiple solutions, including innovative systems connecting vehicles, utilities, renewable energy sources, and buildings. Illustration by Josh Bauer, NREL Photo of two cars parked under a solar array. NREL uses

  4. Co-Optimization of Fuels and Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Optimization of Fuels and Vehicles Co-Optimization of Fuels and Vehicles Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Vehicles James E. Anderson, Technical Expert, Ford Motor Company PDF icon anderson_bioenergy_2015.pdf More Documents & Publications A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Co-Optima Stakeholder Listening Day Summary Report Co-Optimization of Fuels and Vehicles Chapter 8 - Advancing

  5. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use advanced power electronics and electric motors that face barriers because their subcomponents have specific material limitations. Novel propulsion materials

  6. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  7. Electric Motors

    Broader source: Energy.gov [DOE]

    Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

  8. Household Vehicles Energy Use: Latest Data and Trends - Table...

    Gasoline and Diesel Fuel Update (EIA)

    ... 9.6 5.0 100 4.4 6.2 4.5 0.8 6.8 4.5 Income Relative to Poverty Line Below 100 Percent... 11.4 6.0 116 5.1 5.6...

  9. Household Vehicles Energy Use: Latest Data and Trends - Table...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    11.5 0.8 1.0 0.9 0.8 0.7 0.8 0.7 1.6 1.4 0.8 0.5 0.2 0.1 0.7 0.4 Income Relative to Poverty Line Below 100 Percent... 13.3 0.3 0.4 0.4 0.6...

  10. Household Vehicles Energy Use: Latest Data and Trends - Table...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 6.5 1.5 15.4 957 1,031 Income Relative to Poverty Line Below 100 Percent... 7.9 1.4 14.7 942 937...

  11. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  12. Vehicle Technologies Office Merit Review 2015: Lean Miller Cycle System Development for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lean miller cycle system...

  13. Vehicle Aerodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  14. Executive Fleet Vehicles Report | Department of Energy

    Energy Savers [EERE]

    Fleet Vehicles Report Executive Fleet Vehicles Report On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50), executive fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; and be midsize or smaller

  15. Vehicle Energy Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Vehicle Energy Management Vehicles are complex systems with multiple power sources (such as an internal combustion engine and battery), multiple power conversion components (such as the motor and gearbox) and must satisfy numerous safety and comfort constraints, under various environmental constraints (such as temperature or grade). At Argonne, we explore how to control all these variables to make cars and trucks as energy-efficient as possible. Furthermore, vehicles are increasingly

  16. Alternative High-Performance Motors with Non-Rare Earth Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Motors with Non-Rare Earth Materials Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  17. Microsoft Word - 20050821_Appendix_A.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    0. U.S. Number of Vehicles, Vehicle-Kilometers, Motor Fuel Consumption and Expenditures, 2001 ENERGY INFORMATION ADMINISTRATION HOUSEHOLD VEHICLES ENERGY USE: LATEST A N D TRENDS...

  18. Alternative High-Performance Motors with Non-Rare Earth Materials |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape045_elrefaie_2012_o.pdf More Documents & Publications Alternative High-Performance Motors with Non-Rare Earth Materials Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials Vehicle Technologies Office Merit Review 2015: Alternative High-Performance Motors with Non-Rare Earth

  19. Fact #748: October 8, 2012 Components of Household Expenditures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Household Expenditures on Transportation, 1984-2010 Fact 748: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 The overall share of annual household ...

  20. homeoffice_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... 29.1 5.3 22.7 3.8 1 Below 150 percent of poverty line or 60 percent of median State income

  1. Microsoft Word - Household Energy Use CA

    U.S. Energy Information Administration (EIA) Indexed Site

    US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 ... households use 62 million Btu of energy per home, 31% less than the U.S. average. ...

  2. Hybrid and Electric Traction Motor | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A World-Class Traction Motor for Hybrid and Electric Vehicles Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) A World-Class Traction Motor for Hybrid and Electric Vehicles Engineers at GE Global Research are advancing motor technology that could have a substantial impact on hybrid and electric vehicles (EVs) of the

  3. Vehicle Technologies Program - Multi-Year Program Plan 2011-2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D 2.1 - 1 2.1.2 ADVANCED POWER ELECTRONICS AND ELECTRIC MOTORS R&D 2.1-14 2.2 ... vehicles: advanced batteries and power electronics & electric motors (the electric drive). ...

  4. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  5. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  6. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources: U.S. Department of Energy, Alternative Fuels Data Center, "Developing Infrastructure to Charge Plug-In Electric Vehicles," website accessed 3042016. Tesla Motors, ...

  7. New York: EERE-Funded Project Used on Toyota Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York: EERE-Supported Catalyst Licensed for Use in Fuel Cell Hybrid Advanced Vehicles ... Partners Brookhaven National Laboratory, N.E. Chemcat Corporation, Toyota Motor Company

  8. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  9. Fact #678: June 6, 2011 Manufacturer Market Share of Hybrid Vehicles, 2010

    Broader source: Energy.gov [DOE]

    From a total of 274,210 hybrid vehicle sales in 2010, over two thirds (69%) were manufactured by the Toyota Motor Company. Ford and Honda together accounted for about a quarter of hybrid vehicle...

  10. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOE Patents [OSTI]

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  11. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOE Patents [OSTI]

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  12. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  13. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  14. Tool - Vehicle System Simulation (Autonomie) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool - Vehicle System Simulation (Autonomie) Tool - Vehicle System Simulation (Autonomie) Autonomie s a most powerful and robust system simulation tool for vehicle energy consumption and performance analysis. Developed in collaboration with General Motors, Autonomie is a MATLAB©-based software environment and framework for automotive control-system design, simulation, and analysis. Its application covers energy consumption, performance analysis throughout the entire vehicle development process

  15. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy A Vehicle Manufacturer's Perspective on Higher-Octane Fuels A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company PDF icon leone_biomass_2014.pdf More Documents & Publications Co-Optimization of Fuels and Vehicles A

  16. EV Everywhere: Electric Vehicle Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits EV Everywhere: Electric Vehicle Benefits EV Everywhere: Electric Vehicle Benefits Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions and even save you money. Fueling with electricity offers some advantages not available in conventional internal combustion engine vehicles. Because electric motors react quickly, EVs are very responsive and have very good torque. EVs are often more digitally connected than

  17. 10 Questions with Advanced Tech Vehicle Engineer, Pam Fletcher | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy with Advanced Tech Vehicle Engineer, Pam Fletcher 10 Questions with Advanced Tech Vehicle Engineer, Pam Fletcher March 3, 2015 - 3:39pm Addthis Pamela Fletcher, GM Executive Chief Engineer for Electrified Vehicles, poses with the 2016 Chevrolet Volt at the 2015 North American International Auto Show | Photo Courtesy of General Motors, Steve Fecht. Pamela Fletcher, GM Executive Chief Engineer for Electrified Vehicles, poses with the 2016 Chevrolet Volt at the 2015 North American

  18. Preliminary Assessment of Overweight Mainline Vehicles

    SciTech Connect (OSTI)

    Siekmann, Adam; Capps, Gary J; Lascurain, Mary Beth

    2011-11-01

    The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

  19. Average household expected to save $675 at the pump in 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Average household expected to save $675 at the pump in 2015 Although retail gasoline prices have risen in recent weeks U.S. consumers are still expected to save about $675 per household in motor fuel costs this year. In its new monthly forecast, the U.S. Energy Information Administration says the average pump price for regular grade gasoline in 2015 will be $2.43 per gallon. That's about 93 cents lower than last year's average. The savings for consumers will be even bigger during the

  20. Therma motor

    DOE Patents [OSTI]

    Kandarian, R.

    The disclosure is directed to a thermal motor utilizing two tapered prestressed parallel adjacent cylinders lengthwise disposed about one third in a coolant. Heat is applied to contacting portions of the cylinders outside the coolant to cause them to deform and turn. Heat sources such as industrial waste heat, geothermal hot water, solar radiation, etc. can be used.

  1. Electrical Motor Drive Apparatus and Method - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Find More Like This Return to Search Electrical Motor Drive Apparatus and Method Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThis invention discloses an electrical motor drive topology that can significantly reduce the inverter dc bus ripple currents and thus the requirement of the dc bus capacitance. It enables the inverter to cost-effectively operate in

  2. Permanent Magnet Development for Automotive Traction Motors | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape015_anderson_2011_o.pdf More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive

  3. Brake blending strategy for a hybrid vehicle

    DOE Patents [OSTI]

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  4. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    0a. Space Heating by Midwest Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Heat Home .................................................... 106.0 24.5 17.1 7.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.8 No

  5. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    1a. Space Heating by South Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.3 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Heat Home .................................................... 106.0 38.8 20.2 6.8 11.8 NE Do Not Heat Home

  6. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  7. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  10. Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Ernest Moniz today highlighted key improvements to the Department’s Advanced Technology Vehicles Manufacturing (ATVM) Loan Program at the Motor & Equipment Manufacturers Association (MEMA) Legislative Summit.

  11. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Ford Motor Company DOE "Biomass 2014" meeting Washington, D.C. July 29, 2014 2 Octane rating of fuel The ...

  12. Household energy consumption and expenditures, 1990

    SciTech Connect (OSTI)

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  13. Vehicle Technologies Office: Laboratory Facilities and Collaborative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research for Electric Drive Technologies | Department of Energy Electric Drive Technologies Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Electric Drive Technologies The Vehicle Technologies Office (VTO) works with a variety of U.S. Department of Energy (DOE) National Laboratories to maintain unique user facilities and conduct research and development (R&D) on power electronics, electric motors, and other aspects of electric drive technology. The

  14. Table 5.2. U.S. per Household Vehicle-Miles Traveled, Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    75,000 or More ... 8.2 2.3 28.5 1,443 1,692 5.2 Below Poverty Line 100 Percent ... 9.0 1.4 14.7 769 890 7.3 125...

  15. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, ďPlug-in Hybrid Ethanol Research PlatformĒ, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  16. Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 09 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual Progress Report PDF icon 2009_propulsion_materials.pdf More Documents & Publications Magnetic Material for PM Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office: 2011 Propulsion Materials

  17. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  18. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todayís best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  19. Battery/Heat Engine Vehicle Analysis

    Energy Science and Technology Software Center (OSTI)

    1991-03-01

    MARVEL performs least-life-cycle-cost analyses of battery/heat engine/hybrid vehicle systems to determine the combination of battery and heat engine characteristics for different vehicle types and missions. Simplified models are used for the transmission, motor/generator, controller, and other vehicle components, while a rather comprehensive model is used for the battery. Battery relationships available include the Ragone curve, peak power versus specific energy and depth-of-discharge (DOD), cycle life versus DOD, effects of battery scale, and capacity recuperation duemore¬†¬Ľ to intermittent driving patterns. Energy management in the operation of the vehicle is based on the specified mission requirements, type and size of the battery, allowable DOD, size of the heat engine, and the management strategy employed. Several optional management strategies are available in MARVEL. The program can be used to analyze a pure electric vehicle, a pure heat engine vehicle, or a hybrid vehicle that employs batteries as well as a heat engine. Cost comparisons for these vehicles can be made on the same basis. Input data for MARVEL are contained in three files generated by the user using three preprocessors which are included. MVDATA processes vehicle specification and mission requirements information, while MBDATA creates a file containing specific peak power as a function of specific energy and DOD, and MPDATA produces the file containing vehicle velocity specification data based on driving cycle information.¬ę¬†less

  20. Heavy and Overweight Vehicle Defects Interim Report

    SciTech Connect (OSTI)

    Siekmann, Adam; Capps, Gary J

    2012-12-01

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  1. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries...

    Office of Environmental Management (EM)

    Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries ...

  2. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  3. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  4. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  5. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  6. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  7. Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motor R&D Program | Department of Energy Power Electronics and Electric Motor R&D Program Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Advanced Power Electronics and

  8. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  9. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  10. Vehicle Technologies Office: Electric Drive Technologies Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Electric Drive Technologies Research and Development Vehicle Technologies Office: Electric Drive Technologies Research and Development Electric drive technologies, including the electric motor, inverter, boost converter, and on-board charger, are essential components of hybrid and plug-in electric vehicles (PEV) propulsion systems. The Vehicle Technologies Office (VTO) supports research and development (R&D) to reduce the cost and improve the

  11. NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the

  12. Transportation Fact of the Week - 2010 Archive | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earnings August 30, 2010 637 World Motor Vehicle Production August 23, 2010 636 ... Trip Length March 22, 2010 614 Average Age of Household Vehicles March 15, 2010 613 ...

  13. Household Response To Dynamic Pricing Of Electricity: A Survey...

    Open Energy Info (EERE)

    Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic...

  14. Fact #565: April 6, 2009 Household Gasoline Expenditures by Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Household Gasoline Expenditures by Income Quintile Bar graph showing the household gasoline expenditures by income quintile in the years 1989, 1997, and 2007. For more detailed ...

  15. Loan Programs for Low- and Moderate-Income Households | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs for Low- and Moderate-Income Households Loan Programs for Low- and Moderate-Income Households Better Buildings Residential Network Multifamily and Low-Income Housing Peer ...

  16. Kingston Creek Hydro Project Powers 100 Households | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kingston Creek Hydro Project Powers 100 Households Kingston Creek Hydro Project Powers 100 Households August 21, 2013 - 12:00am Addthis Nevada-based contracting firm Nevada ...

  17. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    SciTech Connect (OSTI)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  18. Transferring 2001 National Household Travel Survey

    SciTech Connect (OSTI)

    Hu, Patricia S; Reuscher, Tim; Schmoyer, Richard L; Chin, Shih-Miao

    2007-05-01

    Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle Atlantic, and Pacific), MSA size, and the availability of rail. Extrapolating NHTS data within small geographic areas could risk developing and subsequently using unreliable estimates. For example, if a planning agency in City X of State Y estimates travel rates and other travel characteristics based on survey data collected from NHTS sample households that were located in City X of State Y, then the agency could risk developing and using unreliable estimates for their planning process. Typically, this limitation significantly increases as the size of an area decreases. That said, the NHTS contains a wealth of information that could allow statistical inferences about small geographic areas, with a pre-determined level of statistical certainty. The question then becomes whether a method can be developed that integrates the NHTS data and other data to estimate key travel characteristics for small geographic areas such as Census tract and transportation analysis zone, and whether this method can outperform other, competing methods.

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  20. Vehicle & Systems Simulation & Testing

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary

  1. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  2. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  3. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  4. Design of wheel motor using Maxwell 2D simulation

    SciTech Connect (OSTI)

    Chen, G.H.; Tseng, K.J.

    1995-12-31

    This paper presents a high efficiency direct wheel motor drive for electric vehicles (EVs). The proposed motor is a permanent magnet square-wave motor whose rotor with rare earth magnets forms the outside of the motor to be set within each rear wheel tire to realize the direct drive. The inner stator with its windings is rigidly linked to the suspension and frame structure of the vehicle. In order to achieve the direct drive without any mechanical transmission for EVs, the wheel motor has been designed as a low-speed high-torque motor. The design and optimization of the motor was done with the aid of finite element electromagnetic field analysis using the Maxwell 2D Simulator software. The motor parameters and characteristics can be accurately calculated and predicted in terms of field computation and analysis results. The design procedure of the 6.6 kW, 1,000 rpm wheel motor and its technical data are given in this paper.

  5. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  6. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  7. Motor Systems Assessment Training, Including Use of the Motor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Motor Systems Assessment Training Big Picture Perspectives: Industrial Motor ... for 23% of U.S. electrical sales. 5 Motor Systems Assessment Training Ultimate goal ? ...

  8. Vehicle Technologies Office Merit Review 2015: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  9. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office FY 2016 Budget At-A-Glance Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Vehicle Technologies Office FY 2017 Budget ...

  10. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle ...

  11. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems ...

  12. Motor Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance ¬Ľ Motor Systems Motor Systems Dramatic energy and cost savings can be achieved in motor systems by applying best energy management practices and purchasing energy-efficiency equipment. Use the software tools, training, and publications listed below to save energy in motors. Motors Tools Tools to assess your energy system: MotorMaster+ MotorMaster+ International Motors Case Studies Improving Efficiency of Tube Drawing Bench Motor System Upgrades Smooth the Way to Savings of

  13. AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

  14. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  15. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  16. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  17. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  18. General Motors | Open Energy Information

    Open Energy Info (EERE)

    Motors Jump to: navigation, search Name: General Motors Place: Detroit, MI Website: www.generalmotors.com References: General Motors1 Information About Partnership with NREL...

  19. Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

  20. Report on Toyota Prius Motor Thermal Management

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-02-11

    In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

  1. As Electric Vehicles Take Charge, Costs Power Down | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down January 13, 2012 - 1:29pm Addthis Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Thanks to a cost-sharing project with the Energy Department, General Motors has been

  2. MotorWeek Fuel Cell Video | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Video MotorWeek Fuel Cell Video Learn how fuel cells are being used in specialty vehicles, auxiliary power, standby power generators, and for supplying power and heat to buildings and warehouse operations. Text Version MotorWeek Host: The emergence of cars like the Nissan Leaf and Chevrolet Volt have generated a lot of buzz for electric drive vehicles lately. But hydrogen fuel cells, seen by many as one of the most promising long-term clean driving solutions, are making their way into

  3. The Role of Reluctance in PM Motors

    SciTech Connect (OSTI)

    Otaduy, P.J.

    2005-06-16

    The international research community has lately focused efforts on interior permanent magnet (IPM) motors to produce a traction motor for hybrid electric vehicles (HEV). One of the beneficial features of this technology is the additional torque produced by reluctance. The objective of this report is to analytically describe the role that reluctance plays in permanent magnet (PM) motors, to explore ways to increase reluctance torque without sacrificing the torque produced by the PMs, and to compare three IPM configurations with respect to torque, power, amount of magnet material required (cost), and percentage of reluctance torque. Results of this study will be used to determine future research directions in utilizing reluctance to obtain maximum torque and power while using a minimum amount of magnet material.

  4. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Monday, 28 November 2011 14:52 Movement is fundamental to life. It...

  5. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Office of Environmental Management (EM)

    (all-electric, compressed natural gas, diesel, hybrid-electric, neighborhood-electric, plug-in hybrid electric, and stop-start vehicles) as well as medium- and heavy-duty vehicles. ...

  6. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles have a 27 percent lower fuel economy running on E85. Fortunately, designing flexible fuel vehicles to run specifically on E85 rather than gasoline can help close that gap. ...

  7. UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While most plug-in electric vehicles (PEVs) use motors with rare earth metals, these materials are expensive, their prices have been highly volatile (from 80kg to 750kg), and ...

  8. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery On-Board Battery Charger Bi-directional Converter Electric Motor Inverter DC-DC Converter Ancillary Loads 120 V AC 240 V AC Fast Charger 6 | Vehicle Technologies ...

  9. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  10. Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy has reduced the costs of producing electric vehicle batteries by more than 35%. ... EERE'S WORK IN VEHICLE TECHNOLOGIES Batteries and Energy Storage Addresses energy storage ...

  11. VP 100: UQM revving up electric motor production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UQM revving up electric motor production VP 100: UQM revving up electric motor production July 15, 2010 - 9:06am Addthis UQM will manufacture electric vehicle propulsion systems like this at its new facility in Longmont, Colo. | Photo courtesy of UQ UQM will manufacture electric vehicle propulsion systems like this at its new facility in Longmont, Colo. | Photo courtesy of UQ Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Business is booming at UQM Technologies, a

  12. Motor Current Data Collection System

    Energy Science and Technology Software Center (OSTI)

    1992-12-01

    The Motor Current Data Collection System (MCDCS) uses IBM compatible PCs to collect, process, and store Motor Current Signature information.

  13. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  14. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicle Basics Photo of a parked blue compact car with large decals on the doors stating that it is a plug-in hybrid achieving more than 120 miles per gallon. This Toyota Prius hybrid electric car was converted to a plug-in hybrid for research purposes. Credit: Keith Wipke Image of the cutaway top view of a passenger vehicle showing the drive train that contains an electric motor and a small internal combustion engine side by side in front. The motors are connected by

  15. Fact #617: April 5, 2010 Changes in Vehicles per Capita around the World

    Broader source: Energy.gov [DOE]

    The graphs below show the number of motor vehicles per thousand people for various countries. The data for the U.S. are displayed in the line which goes from 1900 to 2008. The points labeled on...

  16. Vehicle Technologies Office Merit Review 2015: Polyalkylene Glycol (PAG) Based Lubricant for Light & Medium Duty Axles

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about polyalkylene glycol (PAG)...

  17. Vehicle Technologies Office Merit Review 2015: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  18. Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  19. Vehicle Technologies Office Merit Review 2014: Fuel Properties to Enable Lifted Flame Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel properties to enable...

  20. Fact #577: June 29, 2009 Changes in Vehicles per Capita around the World

    Broader source: Energy.gov [DOE]

    The graphs below show the number of motor vehicles per thousand people for various countries. The data for the U.S. are displayed in the line which goes from 1900 to 2007. The points labeled on...

  1. Fact #745: September 17, 2012 Vehicles per Thousand People: U.S. Compared to Other Countries

    Broader source: Energy.gov [DOE]

    The graphs below show the number of motor vehicles per thousand people for various countries. The data for the United States are displayed in the line which goes from 1900 to 2010. The points...

  2. Fact #841: October 6, 2014 Vehicles per Thousand People: U.S. vs. Other World Regions

    Broader source: Energy.gov [DOE]

    The graphs below show the number of motor vehicles per thousand people for select countries and regions. The data for the United States are displayed in the line which goes from 1900 to 2012. The...

  3. Fact #790: July 29, 2013 States Beginning to Tax Electric Vehicles for Road Use

    Broader source: Energy.gov [DOE]

    The maintenance of our highways has traditionally been funded from a combination or Federal and state taxes collected at the pump from the sale of motor fuels. Because electric vehicles (EVs) do...

  4. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  5. Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle

    Broader source: Energy.gov [DOE]

    General Motors has been gathering feedback from customers who purchased the 2011 Chevrolet Volt, which is the only plug-in hybrid vehicle (PHEV) on the market today. Through May 2011, about 2,100...

  6. Motorized support jack

    DOE Patents [OSTI]

    Haney, Steven J. (Tracey, CA); Herron, Donald Joe (Manteca, CA)

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  7. Motorized support jack

    DOE Patents [OSTI]

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  8. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  9. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  10. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  11. Determinants of Household Use of Selected Energy Star Appliances - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Determinants of Household Use of Selected Energy Star Appliances Release date: May 25, 2016 Introduction According to the 2009 Residential Energy Consumption Survey (RECS), household appliances1accounted for 35% of U.S. household energy consumption, up from 24% in 1993. Thus, improvements in the energy performance of residential appliances as well as increases in the use of more efficient appliances can be effective in reducing household energy consumption and

  12. Electric Motor Thermal Management

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system

  14. Motor Fuel Excise Taxes (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Motor Fuel Excise Taxes A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues-creating substantial funding shortfalls that have

  15. Strategies for Collecting Household Energy Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collecting Household Energy Data Strategies for Collecting Household Energy Data Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Strategies for Collecting Household Energy Data, Call Slides and Discussion Summary, July 19, 2012. PDF icon Call Slides and Discussion Summary More Documents & Publications Homeowner and Contractor Surveys Mastermind: Jim Mikel, Spirit Foundation Generating Energy Efficiency Project Leads and Allocating Leads to Contractors

  16. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Vehicles Watch this video to learn about the benefits of electric vehicles -- including improved fuel efficiency, reduced emissions and lower maintenance costs. Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy, moving people and goods across the country. From funding research into technologies that will save Americans money at the pump to increasing the fuel economy of gasoline-powered vehicles to encouraging the development

  17. Registrations and vehicle miles of travel of light duty vehicles, 1985--1995

    SciTech Connect (OSTI)

    Hu, P.S.; Davis, S.C.; Schmoyer, R.L.

    1998-02-01

    To obtain vehicle registration data that consistently and accurately reflect the distinction between automobiles and light-duty trucks, Oak Ridge National Laboratory (ORNL) was asked by FHWA to estimate the current and historical vehicle registration numbers of automobiles and of other two-axle four-tire vehicles (i.e., light-duty trucks), and their associated travel. The term automobile is synonymous with passenger car. Passenger cars are defined as all sedans, coupes, and station wagons manufactured primarily for the purpose of carrying passengers. This includes taxicabs, rental cars, and ambulances and hearses on an automobile chassis. Light-duty trucks refer to all two-axle four-tire vehicles other than passenger cars. They include pickup trucks, panel trucks, delivery and passenger vans, and other vehicles such as campers, motor homes, ambulances on a truck chassis, hearses on a truck chassis, and carryalls. In this study, light-duty trucks include four major types: (1) pickup truck, (2) van, (3) sport utility vehicle, and (4) other 2-axle 4-tire truck. Specifically, this project re-estimates statistics that appeared in Tables MV-1 and MV-9 of the 1995 Highway Statistics. Given the complexity of the approach developed in this effort and the incompleteness and inconsistency of the state-submitted data, it is recommended that alternatives be considered by FHWA to obtain vehicle registration data. One alternative is the Polk`s NVPP data (via the US Department of Transportation`s annual subscription to Polk). The second alternative is to obtain raw registration files from individual states` Departments of Motor Vehicles and to decode individual VINs.

  18. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  19. ORNL Lightweighting Research Featured on MotorWeek

    SciTech Connect (OSTI)

    2014-04-15

    PBS MotorWeek, television's longest running automotive series, featured ORNL lightweighting research for vehicle applications in an episode that aired in early April 2014. The crew captured footage of research including development of new metal alloys, additive manufacturing, carbon fiber production, advanced batteries, power electronics components, and neutron imaging applications for materials evaluation.

  20. ORNL Lightweighting Research Featured on MotorWeek

    ScienceCinema (OSTI)

    None

    2014-06-03

    PBS MotorWeek, television's longest running automotive series, featured ORNL lightweighting research for vehicle applications in an episode that aired in early April 2014. The crew captured footage of research including development of new metal alloys, additive manufacturing, carbon fiber production, advanced batteries, power electronics components, and neutron imaging applications for materials evaluation.

  1. Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report PDF icon 2008_avtae_hvso.pdf More Documents & Publications Vehicle Technologies

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt072vssmackie2011

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt072vssmackie2012

  4. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066vsskarner2011

  5. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066vsskarner2012

  6. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect (OSTI)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  7. Household energy consumption and expenditures, 1987

    SciTech Connect (OSTI)

    Not Available

    1989-10-10

    Household Energy Consumption and Expenditures 1987, Part 1: National Data is the second publication in a series from the 1987 Residential Energy Consumption Survey (RECS). It is prepared by the Energy End Use Division (EEUD) of the Office of Energy Markets and End Use (EMEU), Energy Information Administration (EIA). The EIA collects and publishes comprehensive data on energy consumption in occupied housing units in the residential sector through the RECS. 15 figs., 50 tabs.

  8. Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  9. New Methodology for Estimating Fuel Economy by Vehicle Class

    SciTech Connect (OSTI)

    Chin, Shih-Miao; Dabbs, Kathryn; Hwang, Ho-Ling

    2011-01-01

    Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

  10. Vehicle Technologies Office Merit Review 2014: Improving Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire ...

  11. Training: Motor Systems

    Broader source: Energy.gov [DOE]

    Learn about the available training courses for Motor Systems: 1-day workshops.The courses are taught by highly qualified instructors who have met rigorous standards.

  12. Household and environmental characteristics related to household energy-consumption change: A human ecological approach

    SciTech Connect (OSTI)

    Guerin, D.A.

    1988-01-01

    This study focused on the family household as an organism and on its interaction with the three environments of the human ecosystem (natural, behavioral, and constructed) as these influence energy consumption and energy-consumption change. A secondary statistical analysis of data from the US Department of Energy Residential Energy Consumption Surveys (RECS) was completed. The 1980 and 1983 RECS were used as the data base. Longitudinal data, including household, environmental, and energy-consumption measures, were available for over 800 households. The households were selected from a national sample of owner-occupied housing units surveyed in both years. Results showed a significant( p = <.05) relationship between the dependent-variable energy-consumption change and the predictor variables heating degree days, addition of insulation, addition of a wood-burning stove, year the housing unit was built, and weighted number of appliances. A significant (p = <.05) relationship was found between the criterion variable energy-consumption change and the discriminating variables of age of the head of the household, cooling degree days, heating degree days, year the housing unit was built, and number of stories in the housing unit.

  13. Avoid Nuisance Tripping with Premium Efficiency Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... premium efficiency motor standards, see Motor Systems Tip ... motor-driven system efficiency and to download the MotorMaster+ software tool, visit the Advanced Manufacturing Office ...

  14. Voltage Vehicles | Open Energy Information

    Open Energy Info (EERE)

    distributor specializing in the full spectrum of electric vehicles (EV) and full-performance alternative fuel vehicles (AFV). References: Voltage Vehicles1 This article is a...

  15. Fleet Vehicles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Vehicles General Information: The Materials and Transportation Fleet Vehicle section provides acquisition, utilization and maintenance records, and disposal of vehicles used...

  16. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Monday, 28 November 2011 14:52 Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin

  17. NREL: Transportation Research - Hybrid Electric Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Test & Evaluation Hybrid Electric Vehicles Electric & Plug-In Hybrid Vehicles Hydraulic Hybrid Vehicles Alternative Fuel Vehicles Vehicle Operating Data Truck...

  18. Stepping motor controller

    DOE Patents [OSTI]

    Bourret, Steven C. (Los Alamos, NM); Swansen, James E. (Los Alamos, NM)

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  19. Stepping motor controller

    DOE Patents [OSTI]

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  20. Improve Motor System Performance with MotorMaster+

    SciTech Connect (OSTI)

    2010-08-01

    Fact sheet describes how industrial plants can improve their motor system performance using DOE-AMO's MotorMaster+ software tool.

  1. BSA Motors | Open Energy Information

    Open Energy Info (EERE)

    BSA Motors Jump to: navigation, search Name: BSA Motors Place: India Product: India-based maker of 2-wheel electric scooters. References: BSA Motors1 This article is a stub. You...

  2. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  6. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Motor Thermal Control

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  9. Motor Vehicle Emission Simulator (MOVES) | Open Energy Information

    Open Energy Info (EERE)

    AgencyCompany Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Softwaremodeling...

  10. MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information

    Open Energy Info (EERE)

    of low-emission development strategies (LEDS). Key Outputs Greenhouse gas and air toxic emissions. How to Use This Tool Training Available Training available at http:...

  11. Motor Vehicle Emission Simulator (MOVES) 2010: User Guide (EPA...

    National Nuclear Security Administration (NNSA)

    ... MOVES2010 is intended for official use. Please see the MOVES2010 policy statement available on the EPA's MOVES web site http:www.epa.govotaqmodelsmovesindex.htm for EPA's ...

  12. Motor Vehicle Emission Simulator (MOVES) 2010: User Guide (EPA...

    National Nuclear Security Administration (NNSA)

    ... Users may wish to leave it blank. 2.2.9.5 Saving and Transferring Strategy Files ... Using the File menu to save and open RunSpecs automatically saves and loads the Strategies ...

  13. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  14. AQWON Motors | Open Energy Information

    Open Energy Info (EERE)

    search Name: AQWON-Motors Place: Speinshart, Germany Zip: 92676 Sector: Hydro, Hydrogen Product: AQWON-Motors has developed the first hydrogen powered 2 stroke-engine...

  15. Brandl Motor | Open Energy Information

    Open Energy Info (EERE)

    Brandl Motor Jump to: navigation, search Name: Brandl Motor Address: Calvinstr 24 Place: Berlin Zip: 10557 Region: Germany Sector: Marine and Hydrokinetic Phone Number: +49 30 39...

  16. Motor VFDs | Open Energy Information

    Open Energy Info (EERE)

    VFDs Jump to: navigation, search TODO: Add description List of Motor VFDs Incentives Retrieved from "http:en.openei.orgwindex.php?titleMotorVFDs&oldid521368" Feedback...

  17. Improve Motor System Efficiency for a Broad Range of Motors with MotorMaster+ International

    SciTech Connect (OSTI)

    2005-05-01

    Available at no charge, MotorMaster+ International is designed to support motor systems improvement planning at industrial facilities by identifying the most cost-effective choice when deciding to repair or replace older motor models.

  18. Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting

    SciTech Connect (OSTI)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand; Ivanic, Ziga; Francfort, James

    2015-04-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs and public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.

  19. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  20. Household energy consumption and expenditures 1987

    SciTech Connect (OSTI)

    Not Available

    1990-01-22

    This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

  1. Vehicle Technologies Office Merit Review 2015: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of...

  2. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  3. Delivering Energy Efficiency to Middle Income Single Family Households

    SciTech Connect (OSTI)

    none,

    2011-12-01

    Provides state and local policymakers with information on successful approaches to the design and implementation of residential efficiency programs for households ineligible for low-income programs.

  4. Barriers to household investment in residential energy conservation: preliminary assessment

    SciTech Connect (OSTI)

    Hoffman, W.L.

    1982-12-01

    A general assessment of the range of barriers which impede household investments in weatherization and other energy efficiency improvements for their homes is provided. The relationship of similar factors to households' interest in receiving a free energy audits examined. Rates of return that underly household investments in major conservation improvements are assessed. A special analysis of household knowledge of economically attractive investments is provided that compares high payback improvements specified by the energy audit with the list of needed or desirable conservation improvements identified by respondents. (LEW)

  5. Household energy consumption and expenditures, 1990. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  6. Loan Programs for Low- and Moderate-Income Households

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Multifamily and Low-Income Housing Peer Exchange Call Series: Loan Programs for Low- and Moderate-Income Households, March 13, 2014.

  7. System and method for motor parameter estimation

    DOE Patents [OSTI]

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  8. MotorWeek

    ScienceCinema (OSTI)

    None

    2013-04-19

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  9. MotorWeek

    SciTech Connect (OSTI)

    2009-01-01

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  10. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts PDF icon 2009_merit_review_1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials

  11. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation and Testing | Department of Energy 0 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development merit review results PDF icon 2010_amr_01.pdf More Documents & Publications 2010 Annual Merit Review Results Summary 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies DOE Vehicle

  12. Motor Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  13. High reduction transaxle for electric vehicle

    DOE Patents [OSTI]

    Kalns, Ilmars

    1987-01-01

    A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

  14. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  15. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  16. VEHICLE ACCESS PORTALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffc Lane 1: Closed except for emergencies and maintenance operations. Traffc Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identifcation to Protective Force offcers. Drivers may proceed upon direction of the offcers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs

  17. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Vehicle and Fuel Use

    Broader source: Energy.gov [DOE]

    The team evaluates and incorporates the requirements for vehicle and fuel use, as deemed appropriate for LM operations and approved by LM, as defined in:

  20. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  1. Energy 101: Electric Vehicles

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  2. Light Duty Vehicle Pathways

    Broader source: Energy.gov [DOE]

    Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

  3. Integrated Vehicle Thermal Management

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. Railway vehicle body structures

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finite element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.

  5. Vehicle Model Validation

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  6. Ford's CNG vehicle research

    SciTech Connect (OSTI)

    Nichols, R.J.

    1983-06-01

    Several natural gas vehicles have been built as part of Ford's Alternative Fuel Demonstration Fleet. Two basic methods, compressed gas (CNG), and liquified gas (LNG) were used. Heat transfer danger and the expense and special training needed for LNG refueling are cited. CNG in a dual-fuel engine was demonstrated first. The overall results were unsatisfactory. A single fuel LNG vehicle was then demonstrated. Four other demonstrations, testing different tank weights and engine sizes, lead to the conclusion that single fuel vehicles optimized for CNG use provide better fuel efficiency than dual-fuel vehicles. Lack of public refueling stations confines use to fleet operations.

  7. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  8. Vehicle & Systems Simulation & Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Developed technologies to reduce parasitic loads (ANL, LLNL) - Continued to Build Fleet DNA Database to assist partners with vehicle technology adoption (NREL, ORNL) 15 ...

  9. Fuel Consumption per Vehicle.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Selected Survey Years (Gallons) Survey Years Household Composition Households With Children... NA NA 609 597 625 665 Age of Oldest Child Under...

  10. An Analysis of the Impact of Sport Utility Vehicles in the United States

    SciTech Connect (OSTI)

    Davis, S.C.; Truett, L.F.

    2000-08-01

    It may be labeled sport utility vehicle, SUV, sport-ute, suburban assault vehicle, or a friend of OPEC (Organization for Petroleum Exporting Countries). It has been the subject of comics, the object of high-finance marketing ploys, and the theme of Dateline. Whatever the label or the occasion, this vehicle is in great demand. The popularity of sport utility vehicles (SUVs) has increased dramatically since the late 1970s, and SUVs are currently the fastest growing segment of the motor vehicle industry. Hoping to gain market share due to the popularity of the expanding SUV market, more and more manufacturers are adding SUVs to their vehicle lineup. One purpose of this study is to analyze the world of the SUV to determine why this vehicle has seen such a rapid increase in popularity. Another purpose is to examine the impact of SUVs on energy consumption, emissions, and highway safety.

  11. Table 5.17. U.S. Number of Households by Vehicle Fuel Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    More ... 8.2 Q 1.7 1.9 1.7 2.6 6.1 2.0 Q Q Q 16.7 Below Poverty Line 100 Percent ... 9.0 2.5 3.6 1.3 1.0 0.6 Q...

  12. Table 5.12. U.S. Average Vehicle-Miles Traveled by Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 30.8 25.1 28.9 42.6 27.1 Q Q Q 25.2 31.8 23.3 13.7 Below Poverty Line 100 Percent ... 16.6 15.4 16.2 19.5 12.8 Q...

  13. Table 5.18. U.S. Average Household and Vehicle Energy Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 8.5 3,447 0.3 1,676 8.2 3,519 1,827 1,692 8.6 Below Poverty Line 100 Percent ... 14.7 1,600 5.7 935 9.0 2,022...

  14. MotorMaster+ Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MotorMaster+ Tool MotorMaster+ Tool This presentation discusses industrial motor systems and introduces the MotorMaster+ Tool Suite. PDF icon MotorMaster+ Tool Presentation (March 19, 2009) More Documents & Publications AMO Software Tools MotorMaster+ User Manual MotorMaster+ Software Tool Brochure

  15. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  16. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown ... Population and Vehicle Growth Comparison, 1950-2012 Graph showing population and vehicle ...

  17. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY ...

  18. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY ...

  19. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY ...

  20. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report 2010 ...

  1. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  2. MotorMaster+ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MotorMaster+ April 10, 2014 - 3:17pm Addthis MotorMaster+ MotorMaster+ is a free online National Electrical Manufacturers Association (NEMA) Premium¬ģ efficiency motor selection and management tool that supports motor and motor systems planning by identifying the most efficient action for a given repair or motor purchase decision. The tool includes a catalog of more than 20,000 low-voltage induction motors, and features motor inventory management tools, maintenance log tracking, efficiency

  3. VEHICLE ACCESS PORTALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jemez Road (Map 2) VEHICLE ACCESS PORTALS Changes Effective January 11, 2010 Traffc Lane 1: No stop required. Drivers must slow down to 15 MPH while nearing and driving through the lane Traffc Lane 2: Closed except for random inspections. Note: All vehicles (commercial, private, government) are subject to random inspections while on Laboratory property. More Information: spp-questions@lanl.gov

  4. American Electric Vehicles Inc | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Inc Jump to: navigation, search Name: American Electric Vehicles Inc Place: Palmer Lake, Colorado Zip: 80133 Sector: Vehicles Product: American Electric Vehicles (AEV)...

  5. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  6. Bent shaft motor

    DOE Patents [OSTI]

    Benavides, G.L.

    1998-05-05

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  7. Bent shaft motor

    DOE Patents [OSTI]

    Benavides, Gilbert L.

    1998-01-01

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  8. Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report PDF icon 2009_avtae_hvso.pdf More Documents & Publications Well-to-Wheels Analysis of

  9. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Systems Annual Progress Report Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric

  10. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Vehicle Testing Activity (AVTA) Data and Results Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). This effort collects performance data from a wide range of light-duty alternative fuel and advanced technology

  11. Vehicle Technologies Office: Key Activities in Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About the Vehicle Technologies Office ¬Ľ Vehicle Technologies Office: Key Activities in Vehicles Vehicle Technologies Office: Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean

  12. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program (VTP) (Fact Sheet) | Department of Energy Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are

  13. When to Purchase Premium Efficiency Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    three-phase, low-voltage induction motors rated between ... Energy Tips: MOTOR SYSTEMS Motor Systems Tip Sheet 1 Table ... jobs and enhance the global competitiveness of the ...

  14. MotorMaster+ International Fact Sheet

    Broader source: Energy.gov [DOE]

    This fact sheet describes how industrial plants can improve their motor system performance for a broader range of motors with AMO's MotorMaster+ International software tool.

  15. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles. ...

  16. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles. ...

  17. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  18. Motor current signature analysis method for diagnosing motor operated devices

    DOE Patents [OSTI]

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  19. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported...

  20. Reconstructing householder vectors from Tall-Skinny QR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; Jacquelin, Mathias; Knight, Nicholas; Nguyen, Hong Diep

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstratemore¬†¬Ľ the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.¬ę¬†less

  1. Projecting household energy consumption within a conditional demand framework

    SciTech Connect (OSTI)

    Teotia, A.; Poyer, D.

    1991-01-01

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  2. Projecting household energy consumption within a conditional demand framework

    SciTech Connect (OSTI)

    Teotia, A.; Poyer, D.

    1991-12-31

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  3. Reconstructing householder vectors from Tall-Skinny QR

    SciTech Connect (OSTI)

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; Jacquelin, Mathias; Knight, Nicholas; Nguyen, Hong Diep

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstrate the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.

  4. The Impact of Carbon Control on Low-Income Household Electricity and Gasoline Expenditures

    SciTech Connect (OSTI)

    Eisenberg, Joel Fred

    2008-06-01

    In July of 2007 The Department of Energy's (DOE's) Energy Information Administration (EIA) released its impact analysis of 'The Climate Stewardship And Innovation Act of 2007,' known as S.280. This legislation, cosponsored by Senators Joseph Lieberman and John McCain, was designed to significantly cut U.S. greenhouse gas emissions over time through a 'cap-and-trade' system, briefly described below, that would gradually but extensively reduce such emissions over many decades. S.280 is one of several proposals that have emerged in recent years to come to grips with the nation's role in causing human-induced global climate change. EIA produced an analysis of this proposal using the National Energy Modeling System (NEMS) to generate price projections for electricity and gasoline under the proposed cap-and-trade system. Oak Ridge National Laboratory integrated those price projections into a data base derived from the EIA Residential Energy Consumption Survey (RECS) for 2001 and the EIA public use files from the National Household Transportation Survey (NHTS) for 2001 to develop a preliminary assessment of impact of these types of policies on low-income consumers. ORNL will analyze the impacts of other specific proposals as EIA makes its projections for them available. The EIA price projections for electricity and gasoline under the S.280 climate change proposal, integrated with RECS and NHTS for 2001, help identify the potential effects on household electric bills and gasoline expenditures, which represent S.280's two largest direct impacts on low-income household budgets in the proposed legislation. The analysis may prove useful in understanding the needs and remedies for the distributive impacts of such policies and how these may vary based on patterns of location, housing and vehicle stock, and energy usage.

  5. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  6. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  7. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  8. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  9. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  10. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of small conformational changes that allow them to literally "walk" along microscopic tracks. Motor proteins (in the kinesin and myosin families) have been extensively studied by x-ray crystallography, but

  11. Model Year 2006: Alternative Fuel and Advanced Technology Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Model Year 2006: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal

  12. MotorWeek H2 on the Horizon Video | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H2 on the Horizon Video MotorWeek H2 on the Horizon Video Learn how car makers, energy suppliers, and the government are bringing fuel cell electric vehicles and hydrogen fueling infrastructure to the U.S. market. Text Version MotorWeek Host: Fuel cell electric cars, or FCEVs, provide drivers with the same benefits as current gasoline vehicles with a comparable driving range and refueling in just a few minutes. FCEVs don't use combustion, so they return better fuel economy than today's cars and

  13. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  14. Electric vehicle test report, Cutler-Hammer Corvette

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The work described was part of the effort to characterize vehicles for the state-of-the-art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The vehicle was based on a standard production 1967 chassis and body. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The remainder of the vehicle, and in particular the remainder of the drive-train (clutch, driveshaft, and differential), was stock, except for the transmission. The overall objective of the tests was to develop performance data at the system and subsystem level. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. There was no evaluation of other aspects of the vehicle such as braking, ride, handling, passenger accomodations, etc. Included are a description of the vehicle, the tests performed and a discussion of the results. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant-speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed. (LCL)

  15. Method for assessing motor insulation on operating motors

    DOE Patents [OSTI]

    Kueck, John D. (Oak Ridge, TN); Otaduy, Pedro J. (Oak Ridge, TN)

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  16. Method for assessing motor insulation on operating motors

    DOE Patents [OSTI]

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  17. Magnetically Coupled Adjustable Speed Motor Drives - Motor Tip Sheet #13

    SciTech Connect (OSTI)

    2008-07-01

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump.

  18. Optimization of a CNG series hybrid concept vehicle

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

    1995-09-22

    Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

  19. Vehicle Technologies Office: Propulsion Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  20. Motor Energy Savings Potential Report

    Broader source: Energy.gov [DOE]

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies.

  1. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  2. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  3. Motor gasolines, summer 1985

    SciTech Connect (OSTI)

    Dickson, C.L.; Woodward, P.W.

    1986-06-01

    Samples for this report were collected from service stations throughout the country and were analyzed in laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. Analytical data for the 1571 motor gasoline and 206 motor gasoline/alcohol blend samples were submitted to the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, for reporting. This work is jointly funded by the American Petroleum Institute (API) and the United States Department of Energy (DOE), Bartlesville Project Office (DOE cooperative agreement No. FC22-83FE60149). The data are representative of the products of 62 marketers, large and small, which manufacture and supply gasoline. They are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map shows the marketing areas, districts, and sampling locations. The report includes trend charts of selected properties of motor fuels over the last twenty-five years. Twelve octane distribution graphs for leaded and unleaded grades of gasoline are presented for areas 1, 2, 3, and 4. The average antiknock (octane) index (R + M)/2 of gasoline sold in the United States during June, July, and August 1985 was 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.8 for leaded below 93.0 grades of gasoline. Analyses of motor gasoline containing various alcohols are reported in separate tables beginning with this report. The average antiknock (octane) index (R + M)/2 of gasoline containing alcohols was 88.6 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 90.2 for leaded below 93.0 grades of gasoline. 16 figs., 8 tabs.

  4. Multiple stage miniature stepping motor

    DOE Patents [OSTI]

    Niven, William A. (Livermore, CA); Shikany, S. David (Danville, CA); Shira, Michael L. (Fremont, CA)

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

  5. Housing assembly for electric vehicle transaxle

    DOE Patents [OSTI]

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  6. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  7. Household heating bills expected to be lower this winter

    U.S. Energy Information Administration (EIA) Indexed Site

    In its new forecast, the U.S. Energy Information Administration said households that rely on heating oil which are mainly located in the Northeast will pay the lowest heating ...

  8. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  9. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy within the U.S. Department of Energy is looking for a dynamic, innovative, and experienced executive to lead the efforts of the Vehicle...

  10. TRACKED VEHICLE Rev 75

    SciTech Connect (OSTI)

    Raby, Eric Y.

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parameters of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.

  11. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code

  12. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  13. TRACKED VEHICLE Rev 75

    Energy Science and Technology Software Center (OSTI)

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parametersmore¬†¬Ľ of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.¬ę¬†less

  14. Vehicle Technologies Program Overview

    SciTech Connect (OSTI)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  15. Hybrid vehicle control

    DOE Patents [OSTI]

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  16. Determinants of Household Use of Selected Energy Star Appliances

    U.S. Energy Information Administration (EIA) Indexed Site

    Determinants of Household Use of Selected Energy Star Appliances May 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Determinants of Household Use of Selected Energy Star Appliances i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  17. Motor technology for mining applications advances

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-08-15

    AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

  18. Biotechnology for Clean Vehicles

    Broader source: Energy.gov [DOE]

    The Sustainable Transportation Summit session, Biotechnology for Clean Vehicles: Harnessing Synthetic Biology to Enable Next-Generation Biomaterials and Biofuels, will introduce transportation stakeholders to novel biomaterials and engineered biological systems with unique applicability to vehicle efficiency and sustainability. Further, it will illustrate how synthetic biology tools can be employed to enable the production of new biomaterials and advanced, low-carbon biofuel to benefit and promote a sustainable transportation sector.

  19. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    SciTech Connect (OSTI)

    Love, Lonnie J.

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  20. Vehicle Technologies Office Merit Review 2015: A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined experimental and...

  1. Vehicle Technologies Office Merit Review 2014: A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined experimental and...

  2. Vehicle Technologies Office Merit Review 2014: Development of Modified PAG (polyalkylene glycol) High VI High Fuel Efficient Lubricant for LDV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of modified...

  3. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking - Level 1 | Department of Energy Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 1 advanced technology vehicle lab benchmarking. PDF icon vss030_stutenberg_2014_o.pdf More Documents

  4. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Through Tire Design, Materials, and Reduced Weight | Department of Energy Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel

  5. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Testing | Department of Energy Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Vehicle & Systems Simulation & Testing Program. PDF icon vsst_overview_amr_2014_061114.pdf More Documents

  6. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report 2010 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. PDF icon 2010_vsst_report.pdf

  7. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization. PDF icon

  8. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical

  9. Vehicle Technologies Office: Moving America Forward with Clean Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Moving America Forward with Clean Vehicles Vehicle Technologies Office: Moving America Forward with Clean Vehicles The U.S. Department of Energy's Vehicle Technologies Office supports research, development (R&D), and deployment of efficient and sustainable highway transportation technologies that will improve fuel economy and enable America to use less petroleum. These technologies, which include plug-in electric vehicles (also known as PEVs or electric cars),

  10. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-08-27

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  11. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-01-01

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  12. Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy 5 Electric Drive Technologies Annual R&D Progress Report Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and

  13. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  14. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions May 2005 Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Norman Brinkman, General Motors Corporation Michael Wang, Argonne National Laboratory Trudy Weber, General Motors Corporation Thomas Darlington, Air Improvement Resource, Inc. May

  15. Motor gasolines, summer 1983

    SciTech Connect (OSTI)

    Shelton, E.M.

    1984-02-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. The analytical data for 1583 samples of motor gasoline, were submitted to the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma for study, necessary calculations, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER) and the American Petroleum Institute (API). They represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, and leaded antiknock index (R+M)/2 below 93.0 grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.5 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 89.0 for leaded below 93.0 grades of gasoline. 16 figures, 5 tables.

  16. Motor gasolines, Summer 1982

    SciTech Connect (OSTI)

    Shelton, E.M.

    1983-03-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

  17. Electric Motor R&D

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  19. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  20. Method of converting an existing vehicle powertrain to a hybrid powertrain system

    DOE Patents [OSTI]

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    2001-12-25

    A method of converting an existing vehicle powertrain including a manual transmission to a hybrid powertrain system with an automated powertrain transmission. The first step in the method of attaching a gear train housing to a housing of said manual transmission, said gear train housing receiving as end of drive shaft of said transmission and rotatably supporting a gear train assembly. Secondly, mounting an electric motor/generator to said gear train housing and attaching a motor/generator drive shaft of said electric motor/generator to said gear train assembly. Lastly, connecting an electro-mechanical clutch actuator to a friction clutch mechanism of said manual transmission.