Powered by Deep Web Technologies
Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 2. Percent of Households with Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of Households with Vehicles, Selected Survey Years " Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08566108 "Household Characteristics" "Census Region and Division" " Northeast",77.22222222,"NA",79.16666667,82.9015544,75.38461538,85.09615385 " New England",88.37209302,"NA",81.81818182,82.9787234,82,88.52459016 " Middle Atlantic ",73.72262774,"NA",78.37837838,82.31292517,74.30555556,83.67346939 " Midwest ",85.51401869,"NA",90.66666667,90.17094017,92.30769231,91.47286822 " East North Central",82,"NA",88.81987578,89.88095238,91.51515152,90.55555556

2

Delivering Energy Efficiency to Middle Income Single Family Households  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivering Energy Efficiency to Middle Income Single Family Households Delivering Energy Efficiency to Middle Income Single Family Households Title Delivering Energy Efficiency to Middle Income Single Family Households Publication Type Report Year of Publication 2011 Authors Zimring, Mark, Merrian Borgeson, Ian M. Hoffman, Charles A. Goldman, Elizabeth Stuart, Annika Todd, and Megan A. Billingsley Pagination 102 Date Published 12/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract The question posed in this report is: How can programs motivate these middle income single family households to seek out more comprehensive energy upgrades, and empower them to do so? Research methods included interviews with more than 35 program administrators, policy makers, researchers, and other experts; case studies of programs, based on interviews with staff and a review of program materials and data; and analysis of relevant data sources and existing research on demographics, the financial status of Americans, and the characteristics of middle income American households. While there is no 'silver bullet' to help these households overcome the range of barriers they face, this report describes outreach strategies, innovative program designs, and financing tools that show promise in increasing the attractiveness and accessibility of energy efficiency for this group. These strategies and tools should be seen as models that are currently being honed to build our knowledge and capacity to deliver energy improvements to middle income households. However, the strategies described in this report are probably not sufficient, in the absence of robust policy frameworks, to deliver these improvements at scale. Instead, these strategies must be paired with enabling and complementary policies to reach their full potential.

3

Household Energy Expenditure and Income Groups: Evidence from Great Britain  

E-Print Network (OSTI)

  and  0.024  for  district heating However, as income is not observed its effect cannot be analysed.  Wu et al. (2004) examine the demand for space heating in Armenia, Moldova, and  Kyrgyz  Republic  using  household  survey  data.  In  these  countries...  and in some regions incomes are not sufficient to  afford space heating from district heating systems making these systems unviable.  We  analyse  electricity,  gas  and  overall  energy  spending  for  a  large  sample  of  households  in  Great  Britain.  We  discern  inflection  points  and  discuss...

Jamasb, Tooraj; Meier, H

4

Effect of Income on Appliances in U.S. Households, The  

Reports and Publications (EIA)

This web page page entails how people live, the factors that cause the most differences in home lifestyle, including energy use in Geographic Location, Socioeconomics and Household Income.

Michael Laurence

2004-01-01T23:59:59.000Z

5

Delivering Energy Efficiency to Middle Income Single Family Households  

NLE Websites -- All DOE Office Websites (Extended Search)

AHPwES - Assisted Home Performance with ENERGY STAR AMI - Area Median Income APS - Arizona Public Service ARRA - American Reinvestment and Recovery Act ASEC - Annual Social and...

6

Residential energy consumption and expenditure patterns of low-income households in the United States  

SciTech Connect

The principal objective of this study is to compare poor and non-poor households with respect to energy consumption and expenditures, housing characteristics, and energy-related behavior. We based our study on an analysis of a national data base created by the US Department of Energy, the 1982-1983 Residential Energy Consumption Survey (RECS). RECS includes detailed information on individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances, recent conservation actions taken by the household, and fuel consumption and costs for April 1982-March 1983. We found a number of statistically significant (at the 0.05 level) differences between the two income groups in terms of demographics, heating/cooling/water heating systems, appliance saturation, the thermal integrity of their home, energy conservation behavior, energy consumption, energy expenditures, and the percentage of income spent on energy costs. For example, the non-poor used 22% more energy and paid 25% more money on utilities than the poor; however, the poor spent 20% more energy per square foot than the non-poor and spent about 25% of their income on energy expenditures, compared to 7% for the non-poor. These differences suggest different approaches that might be taken for targeting energy conservation programs to low-income households. Since the poor's ''energy burden'' is large, informational, technical, and financial assistance to low-income households remains an urgent, national priority. 13 refs., 26 tabs.

Vine, E.L.; Reyes, I.

1987-09-01T23:59:59.000Z

7

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

8

"Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Household Income, 2005" 0 Home Appliances Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Appliances Usage Indicators" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,2.9,2.5,1.3,0.5,1,2.4,4.6 "2 Times A Day",24.6,6.5,7,4.3,3.2,3.6,4.8,10.3 "Once a Day",42.3,8.8,9.8,8.7,5.1,10,5,12.9

9

Table HC1-3a. Housing Unit Characteristics by Household Income,  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Housing Unit Characteristics by Household Income, 3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Census Region and Division Northeast ...................................... 20.3 3.3 4.2 4.9 7.8 2.6 6.8 6.4 New England .............................. 5.4 0.8 1.1 1.3 2.3 0.6 1.6 9.9 Middle Atlantic ............................ 14.8 2.6 3.2 3.5 5.6 2.0 5.2 7.7 Midwest ......................................... 24.5 3.7 5.2 6.8 8.9 2.8 7.4 5.8 East North Central ......................

10

Own-price and income elasticities for household electricity demand : a survey of literature using meta-regression analysis.  

E-Print Network (OSTI)

??Maria Wist Langmoen Own-price and income elasticities for household electricity demand -A Literature survey using meta-regression analysis Economists have been modelling the electricity demand for… (more)

Langmoen, Maria Wist

2004-01-01T23:59:59.000Z

11

Effects on minority and low-income households of the EPA proposal to reduce leaded gasoline use  

DOE Green Energy (OSTI)

To reduce the potentially harmful environmental effects of lead in the environment, the US Environmental Protection Agency (EPA) has proposed a reduction in the amount of lead used in leaded gasoline. This report examines the potential impacts of such action on minority and low-income households in the US. The benefits of the EPA's proposal would presumably accrue primarily to households that contain small children and that are located in the central cities of metropolitan areas. This is because small children (under age seven) are particularly susceptible to the effects of lead and also because the automobile traffic density in central cities is higher than in any other area. Potential costs are examined in terms of households that own vehicles requiring leaded gasoline. Costs could accrue either because of higher gasoline prices due to reduced lead content or because of higher vehicle repair costs for engines that must use leaded gasoline to prevent excessive wear. Because of their location and number, minority and low-income households with small children would benefit more than the average US household. No costs would be incurred by the relatively large segment of minority and low-income households that own no vehicles. However, the Hispanic and other minority (except black) and low-income households that do own vehicles have a greater than average share of vehicles that require leaded gasoline; costs to these households because of the EPA's proposed action would be comparatively high.

Rose, K.; LaBelle, S.; Winter, R.; Klein, Y.

1985-04-01T23:59:59.000Z

12

Department of Energy Provides Nearly $88 Million to Low-Income...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

spend 5 percent of their income on paying energy bills, but for lower-income households the costs average 16 percent. These costs can include anything from heating and...

13

Department of Energy Provides Nearly $112 Million to Low-Income...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

spend five percent of their income on paying energy bills, but for lower-income households the costs average 16 percent. These costs can include anything from heating and...

14

Energy Department Provides $140.3 Million to Low-Income Families...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

spend 3.5 percent of their income on paying energy bills, but for lower-income households the costs average 14 percent. These costs can include anything from heating and...

15

The Impact of Carbon Control on Low-Income Household Electricity and Gasoline Expenditures  

SciTech Connect

In July of 2007 The Department of Energy's (DOE's) Energy Information Administration (EIA) released its impact analysis of 'The Climate Stewardship And Innovation Act of 2007,' known as S.280. This legislation, cosponsored by Senators Joseph Lieberman and John McCain, was designed to significantly cut U.S. greenhouse gas emissions over time through a 'cap-and-trade' system, briefly described below, that would gradually but extensively reduce such emissions over many decades. S.280 is one of several proposals that have emerged in recent years to come to grips with the nation's role in causing human-induced global climate change. EIA produced an analysis of this proposal using the National Energy Modeling System (NEMS) to generate price projections for electricity and gasoline under the proposed cap-and-trade system. Oak Ridge National Laboratory integrated those price projections into a data base derived from the EIA Residential Energy Consumption Survey (RECS) for 2001 and the EIA public use files from the National Household Transportation Survey (NHTS) for 2001 to develop a preliminary assessment of impact of these types of policies on low-income consumers. ORNL will analyze the impacts of other specific proposals as EIA makes its projections for them available. The EIA price projections for electricity and gasoline under the S.280 climate change proposal, integrated with RECS and NHTS for 2001, help identify the potential effects on household electric bills and gasoline expenditures, which represent S.280's two largest direct impacts on low-income household budgets in the proposed legislation. The analysis may prove useful in understanding the needs and remedies for the distributive impacts of such policies and how these may vary based on patterns of location, housing and vehicle stock, and energy usage.

Eisenberg, Joel Fred [ORNL

2008-06-01T23:59:59.000Z

16

The Impact of Carbon Control on Low-Income Household Electricity and Gasoline Expenditures  

SciTech Connect

In July of 2007 The Department of Energy's (DOE's) Energy Information Administration (EIA) released its impact analysis of 'The Climate Stewardship And Innovation Act of 2007,' known as S.280. This legislation, cosponsored by Senators Joseph Lieberman and John McCain, was designed to significantly cut U.S. greenhouse gas emissions over time through a 'cap-and-trade' system, briefly described below, that would gradually but extensively reduce such emissions over many decades. S.280 is one of several proposals that have emerged in recent years to come to grips with the nation's role in causing human-induced global climate change. EIA produced an analysis of this proposal using the National Energy Modeling System (NEMS) to generate price projections for electricity and gasoline under the proposed cap-and-trade system. Oak Ridge National Laboratory integrated those price projections into a data base derived from the EIA Residential Energy Consumption Survey (RECS) for 2001 and the EIA public use files from the National Household Transportation Survey (NHTS) for 2001 to develop a preliminary assessment of impact of these types of policies on low-income consumers. ORNL will analyze the impacts of other specific proposals as EIA makes its projections for them available. The EIA price projections for electricity and gasoline under the S.280 climate change proposal, integrated with RECS and NHTS for 2001, help identify the potential effects on household electric bills and gasoline expenditures, which represent S.280's two largest direct impacts on low-income household budgets in the proposed legislation. The analysis may prove useful in understanding the needs and remedies for the distributive impacts of such policies and how these may vary based on patterns of location, housing and vehicle stock, and energy usage.

Eisenberg, Joel Fred [ORNL

2008-06-01T23:59:59.000Z

17

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Household Income, 2005" 3 Household Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Household Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Household Size" "1 Person",30,13.5,8.5,4.3,2,1.8,5.9,13.1 "2 Persons",34.8,6,8.8,7.3,4.4,8.4,3.5,8.4 "3 Persons",18.4,3.1,4.7,3.4,2.5,4.6,2,5.8 "4 Persons",15.9,2.2,3.5,3.3,2.7,4.3,2.2,5.1

18

Patterns of residential energy demand by type of household: white, black, Hispanic, and low- and nonlow-income  

SciTech Connect

This report compares patterns of residential energy use by white, black, Hispanic, low-income, and nonlow-income households. The observed downward trend in residential energy demand over the period of this study can be attributed primarily to changes in space-heating energy demand. Demand for space-heating energy has experienced a greater decline than energy demand for other end uses for two reasons: (1) it is the largest end use of residential energy, causing public attention to focus on it and on strategies for conserving it; and (2) space-heating expenditures are large relative to other residential energy expenditures. The price elasticity of demand is thus greater, due to the income effect. The relative demand for space-heating energy, when controlled for the effect of climate, declined significantly over the 1978-1982 period for all fuels studied. Income classes do not differ significantly. In contrast, black households were found to use more energy for space heating than white households were found to use, although those observed differences are statistically significant only for houses heated with natural gas. As expected, the average expenditure for space-heating energy increased significantly for dwellings heated by natural gas and fuel oil. No statistically significant increases were found in electricity expenditures for space heating. Electric space heat is, in general, confined to milder regions of the country, where space heating is relatively less essential. As a consequence, we would expect the electricity demand for space heating to be more price-elastic than the demand for other fuels.

Klein, Y.; Anderson, J.; Kaganove, J.; Throgmorton, J.

1984-10-01T23:59:59.000Z

19

Factors influencing county level household fuelwood use  

Science Conference Proceedings (OSTI)

This study explains household fuelwood consumption behavior at the county level by linking it to economic and demographic conditions in counties. Using this link, counties are identified where potential fuelwood use problems and benefits are greatest. A probit equation estimates household probability of wood use (percent woodburners in a county heating degree days, household income, nonwood fuel price, fuelwood price, percent forest land, population density, and fraction of households using various types of heating equipment. A linear-in-parameters equation estimates average wood consumed by a woodburner based on county heating degree days, household income, percent forest land, and price of nonwood fuel divided by fuelwood price. Parameters are estimated using fuelwood use data for individual households from a 1908-81 nationwide survey. The probit equation predicts percentage of wood burns well over a wide range of county conditions. The wood consumption equation overpredicts for counties with high income and high population density (over 6000 persons per square mile). The model shows average woodburning per household over all households decreases with increasing population density, and the influence of county economic characteristics varies with density.

Skog, K.E.

1986-01-01T23:59:59.000Z

20

PRELIMINARY DATA Housing Unit and Household Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

PRELIMINARY DATA Housing Unit and Household Characteristics RSE Column Factor: Total Households (million) Households With Fans (million) Percent of Households With Fans Number of...

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Household Income, 2005" 8 Water Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Water Heating Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Number of Water Heaters" "1.",106.3,25.8,28,19.6,12.7,20.2,16,37.3 "2 or More",3.7,0.3,0.5,0.9,0.4,1.7,"Q",0.5 "Do Not Use Hot Water",1.1,0.6,0.3,"Q","N","Q",0.5,0.8

22

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Characteristics by Household Income, 2005" Housing Unit Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Housing Unit Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Census Region and Division" "Northeast",20.6,4.9,5.4,3.5,2.4,4.3,3.2,8.1 "New England",5.5,1.3,1.3,1,0.6,1.2,0.7,2.3 "Middle Atlantic",15.1,3.7,4.1,2.5,1.8,3.1,2.5,5.8 "Midwest",25.6,6.5,6.6,4.7,3,4.8,3.5,9.4

23

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Household Income, 2005" 4 Space Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Space Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Main Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Main Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

24

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

HC7.9 Home Appliances Characteristics by Household Income, 2005" HC7.9 Home Appliances Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Appliances Characteristics" "Total U.S.",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,26.1,28.5,20.2,12.9,21.8,16.3,37.8 "1.",103.3,25.1,27.1,19.2,12.3,19.6,15.8,36.3 "2 or More",6.2,0.9,1.4,1,0.6,2.2,0.5,1.5

25

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Home Electronics Characteristics by Household Income, 2005" 1 Home Electronics Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Electronics Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Personal Computers" "Do Not Use a Personal Computer ",35.5,17.1,10.8,4.2,1.8,1.6,10.3,20.6 "Use a Personal Computer",75.6,9.6,18,16.4,11.3,20.3,6.4,17.9 "Number of Desktop PCs" "1.",50.3,8.3,14.2,11.4,7.2,9.2,5.3,14.2

26

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Living Space Characteristics by Household Income, 2005" 2 Living Space Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Living Space Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than 500",3.2,1.9,0.9,"Q","Q","Q",1.3,2.3 "500 to 999",23.8,10.5,7.3,3.3,1.4,1.2,6.6,12.9 "1,000 to 1,499",20.8,5.8,7,3.8,2.2,2,3.9,8.9

27

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Household Income, 2005" 3 Lighting Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Lighting Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,20.8,23.6,17,11.3,19.1,13,30.7 "1.",28.6,9.4,9.1,4.5,2.4,3.2,5.7,12.6 "2.",29.5,6.8,8,5.8,3.7,5.2,4.2,10.2

28

Residential energy consumption of low-income and elderly households: how non-discretionary is it  

SciTech Connect

The energy literature is replete with opinions that the poor and elderly have cut their residential energy consumption to a minimum. This paper challenges such conclusions through an analysis of data on a sample of 319 Decatur, Illinois homeowners. The data include utility bill histories and survey information on housing characteristics, energy-related behaviors, attitudes, and socio-economic and demographic characteristics. It shows that residential energy consumption per square foot of living space is significantly higher for the elderly and poor than for other groups of Decatur homeowners. By breaking energy use into seasonal components, the paper estimates consumption for various household uses. This information, combined with the survey data, suggests that both subgroups heat and cool their homes inefficiently, due in part to the conditions of their homes, but also due to energy-related behaviors. The public policy implications of the findings are discussed.

Brown, M.A.; Rollinson, P.A.

1984-01-01T23:59:59.000Z

29

Housing Diversity and Consolidation in Low-Income Colonias: Patterns of House Form and Household Arrangements in Colonias of the US-Mexico Border  

E-Print Network (OSTI)

Colonias are low-income settlements on the US-Mexico border characterized by poor infrastructure, minimum services, and an active housing construction with a high self-help and self-management component. Housing in colonias is very diverse showing house forms that include temporary and permanent structures, campers, trailers or manufactured houses and conventional homes. Most of this housing does not meet construction standards and codes and is considered substandard. Colonias households are also of diverse nature and composition including single households, nuclear and extended families, as well as multiple households sharing lots. This wide variety of house forms and households in colonias fits poorly within the nuclear household, single family detached housing idealized by conventional low-income housing projects, programs and policies. As a result, colonias marginally benefit from the resources available to them and continue to depend mostly on the individual efforts of their inhabitants. This research identifies the housing diversity and the process of housing consolidation in colonias of the US-Mexico border by looking at the patterns of house form and household arrangements in colonias of South Texas. Ten colonias located to the east of the city of Laredo along Highway 359 in Webb County, Texas were selected based on their characteristics, data availability and accessibility. Data collected included periodic aerial images of the colonias spanning a period of 28 years, household information from the 2000 census disaggregated at the block level for these colonias, and information from a field survey and a semi structured interview made to a random sample of 123 households between February and June 2007. The survey collected information about house form and household characteristics. The survey also incorporated descriptive accounts on how households completed their house from the initial structure built or set on the lot until the current house form. Data was compiled and analyzed using simple statistical methods looking for identifiable patterns on house form and household characteristics and changes over time. Findings showed that housing in colonias is built and consolidated following identifiable patterns of successive changes to the house form. Findings also showed that households in colonias share characteristics that change over time in similar ways. These results suggest similarities of colonias with extra-legal settlements in other developing areas. Based on these findings, the study reflects on possible considerations that could improve the impact of projects, programs and policies directed to support colonias and improve colonias housing.

Reimers-Arias, Carlos Alberto

2009-08-01T23:59:59.000Z

30

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Air Conditioning Characteristics by Household Income, 2005" 6 Air Conditioning Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Air Conditioning Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Cooling Equipment",17.8,5.3,4.7,2.8,1.9,3.1,3.6,7.5 "Have Cooling Equipment",93.3,21.5,24.1,17.8,11.2,18.8,13,31.1 "Use Cooling Equipment",91.4,21,23.5,17.4,11,18.6,12.6,30.3 "Have Equipment But Do Not Use it",1.9,0.5,0.6,0.4,"Q","Q",0.5,0.8

31

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Household Tables Household Tables (Million U.S. Households; 24 pages, 122 kb) Contents Pages HC2-1a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 2 HC2-2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 2 HC2-3a. Household Characteristics by Household Income, Million U.S. Households, 2001 2 HC2-4a. Household Characteristics by Type of Housing Unit, Million U.S. Households, 2001 2 HC2-5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2 HC2-6a. Household Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 2 HC2-7a. Household Characteristics by Four Most Populated States, Million U.S. Households, 2001 2

32

This Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Single Family Households." For the full report and other resources visit: http://middleincome.lbl.gov  

E-Print Network (OSTI)

This Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income://middleincome.lbl.gov March 6, 2012 Scaling Energy Efficiency in the Heart of the Residential Market: Increasing Middle America's Access to Capital for Energy Improvements Middle income American households ­ broadly defined

33

Top Incomes in Indonesia, 1920-2004 *  

E-Print Network (OSTI)

Using taxation and household survey data, this paper estimates top income shares for Indonesia during 1920-2004. Our results suggest that top income shares grew during the 1920s and 1930s, but fell in the post-war era. In more recent decades, we observe a sharp rise in top income shares during the late-1990s, coincident with the economic downturn, and some evidence that top income shares fell in the early-2000s. For prewar Indonesia, we decompose top income shares by income source, and find that for groups below the top 0.5 percent, a majority of income was derived from wages. Throughout the twentieth century, top income shares in Indonesia have been higher than in India, broadly comparable to Japan, and somewhat lower than levels prevailing in the

Andrew Leigh; Pierre Van Der Eng

2006-01-01T23:59:59.000Z

34

Assumptions to the Annual Energy Outlook 2002 - Household Expenditures...  

Annual Energy Outlook 2012 (EIA)

Expenditures Module The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and...

35

Correlation between Median Household Income and LEED Sustainable Site Criteria for Public Transportation Access and a Regression Model Predicting Appraised Unit Value of Unimproved Parcels in Houston, Texas  

E-Print Network (OSTI)

The Leadership in Energy and Environmental Design (LEED) Green Building Rating System provides third-party verification for environmentally sustainable construction. LEED certified buildings often provide healthier work and living environments, however, it does not provide any direct economic incentives to the owners and developers. An early research suggested that there was a significant correlation between appraised unit value of a parcel and LEED sustainable site criteria for public transportation access. Moreover, the regression model for predicting appraised unit value of a parcel suggested that the coefficient of Number of Light Rail Stations was positive, while the coefficient of Number of Bus Stops was negative. This result contradicted our original expectation that both number of bus stops and light rail stations could have a positive effect on the appraised unit value. Hence it becomes important to conduct further research to explain this phenomenon. In this research, Pearson correlation was examined to determine whether there is a significant correlation between median household income and the number of bus stops and light rail stations for a given parcel that meet LEED sustainable site criteria for public transportation access. After confirming no significant correlation exists, multiple regression analysis was applied to establish a regression model for predicting unit value of a given parcel using number of bus stops and light rail stations for a given parcel that meet LEED sustainable site criteria for public transportation access, median household income and parcel area as the independent variables. Result of Pearson correlation indicated that there was no significant correlation exists between median household income and the number of bus stops and light rail stations for a given parcel which met LEED sustainable site criteria for public transportation access. Findings of multiple regression analysis suggested that all independent variables were significant predictors for unit value of a parcel. Besides, this regression model had a higher adjusted R- square value than that of the model which was established by Bhagyashri Joshi. It means that this regression model could better predict appraised unit value of an unimproved parcel.

Ji, Qundi

2010-05-01T23:59:59.000Z

36

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Supply and Disposition by State, 1996 Table State Estimated Proved Reserves (dry) Marketed Production Total Consumption Alabama................................................................... 3.02 2.69 1.48 Alaska ...................................................................... 5.58 2.43 2.04 Arizona..................................................................... NA 0 0.55 Arkansas.................................................................. 0.88 1.12 1.23 California.................................................................. 1.25 1.45 8.23 Colorado .................................................................. 4.63 2.90 1.40 Connecticut.............................................................. 0 0 0.58 D.C...........................................................................

37

This Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Single Family Households." For the full report and other resources visit: http://middleincome.lbl.gov  

E-Print Network (OSTI)

This Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income households. This paper is part of the LBNL Clean Energy Financing Policy Brief series. To join the email list in this Policy Brief was funded by the Department of Energy Office of Energy Efficiency and Renewable Energy

38

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Delivered to Consumers by State, 1996 Table State Residential Commercial Industrial Vehicle Fuel Electric Utilities Alabama..................................... 1.08 0.92 2.27 0.08 0.23 Alaska ........................................ 0.31 0.87 0.85 - 1.16 Arizona....................................... 0.53 0.92 0.30 3.91 0.70 Arkansas.................................... 0.88 0.98 1.59 0.11 1.24 California.................................... 9.03 7.44 7.82 43.11 11.64 Colorado .................................... 2.12 2.18 0.94 0.58 0.20 Connecticut................................ 0.84 1.26 0.37 1.08 0.38 D.C............................................. 0.33 0.52 - 0.21 - Delaware.................................... 0.19 0.21 0.16 0.04 0.86 Florida........................................

39

2 The Financial and Economic Crises: Implications for Consumer Finance and for Households in Michigan  

E-Print Network (OSTI)

IPPSR and MSUE at Michigan State University for financial support. This paper was partially written while a Visiting Scholar at the National Poverty Center at the University of Michigan, and its Michigan is an epicenter of the recent economic and financial crises. Median personal income was 8 percent above the national average at the beginning of the decade and was 8 percent below the national average by the end of it. Between 2008 and 2009, personal income fell for the first time since 1958. Rates of unemployment and foreclosure activity remain high and above the national average. Indeed, the Michigan economy is changing in dramatic and important ways, but there is little information on household responses to this changing environment. How are Michigan households responding to economic and financial shocks? Are they smoothing income, consumption, or both? What mechanisms are they using to achieve these outcomes? On which factors does the degree of adjustment depend? Using data collected from recent household surveys,

Lisa D. Cook; Lisa D. Cook; Ann Marie Schneider; Lauren Meunier; Lisa D. Cook

2010-01-01T23:59:59.000Z

40

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

42

usage_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Usage Indicators Tables Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5 HC6-6a. Usage Indicators by Type of Rented Housing Unit, Million U.S. Households, 2001 5 HC6-7a. Usage Indicators by Four Most Populated States, Million U.S. Households, 2001 5

43

housingunit_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Tables Housing Unit Tables (Million U.S. Households; 49 pages, 210 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 5 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 2001 4 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 4 HC1-6a. Housing Unit Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 4 HC1-7a. Housing Unit Characteristics by Four Most Populated States, Million U.S. Households, 2001 4

44

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Home Office Equipment Tables Home Office Equipment Tables (Million U.S. Households; 12 pages, 123 kb) Contents Pages HC7-1a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 1 HC7-2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 1 HC7-3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 1 HC7-4a. Home Office Equipment by Type of Housing Unit, Million U.S. Households, 2001 1 HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 1 HC7-6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 1 HC7-7a. Home Office Equipment by Four Most Populated States, Million U.S. Households, 2001 1

45

Nationwide Survey on Household Energy Use  

U.S. Energy Information Administration (EIA)

4 ~ Apartment in house or building divided into 2, 3, or 4 apartments ... of your family (living in your household). Include income from all sources--before taxes

46

Energy Spending and Vulnerable Households  

E-Print Network (OSTI)

 off than before. In particular large households with low  incomes seem to have been adversely affected by the new tariff structures since  they have comparably large energy expenditure (Bennet et al., 2002).    5. Vulnerable Households and Energy Spending  The...  tariffs can play an important part in the public debate  on  eradicating  fuel  poverty  and  helping  the  vulnerable  households.  Smart  metering  can  provide  consumers  with  information  on  the  actual  energy  consumption and might  lead  to...

Jamasb, Tooraj; Meier, Helena

2011-01-26T23:59:59.000Z

47

Car Sharing within Households –  

E-Print Network (OSTI)

The objective of this paper was to analyse two activities: who rents a car and why? Which households share the driving of their cars? In order to do that, the Parc-Auto (Car-Fleet) database, built from annual postal surveys conducted with a panel of 10,000 French households, has been processed. Among approximately one hundred questions in the survey, two key questions have been crossed against many social, economic, demographic, geographic or time variables. KQ1: “During the last 12 months, did you — or another person from your home — rent a car in France for personal purposes? ” KQ2: “Is this car occasionally used by other persons?” Here are the main findings. Renting households are mainly working, high income households, living in the core of big cities, and in particular in Paris. Most of them have two wage-sheets and two cars, one of which is generally a recent, high power, high quality car. Car rental is mainly an occasional practice. Yet for a minority of renters, it is a sustained habit. Households with more licence holders than cars share the most: about three quarters of them share their cars. On the contrary, single driver-single car households have less opportunity to share: only 15 % share. Household car sharing shed light on the gender role within households: while 58 % of the main users of the shared cars are male, 55 % of secondary users are female. Household car sharing is mainly a regular practice. Finally, without diminishing the merits of innovative transport solutions proposed here and there, it is not a waste of time to give some insight on self established behaviour within households. This reveals that complex patterns have been built over time by the people themselves, to cope with diverse situations that cannot be easily handled by straightforward classifications. The car cannot be reduced to a personal object. Household car sharing also carries strong links with the issue of car dependency. Sifting car availability and choice

Francis Papon; Laurent Hivert

2008-01-01T23:59:59.000Z

48

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

E-Print Network (OSTI)

of Household Income and Appliance Ownership. ECEEE Summerof decreasing prices of appliances, if price data becomesForecasting Household Appliance Ownership in a Growing

Letschert, Virginie

2010-01-01T23:59:59.000Z

49

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Household Characteristics by Household Income, 3a. Household Characteristics by Household Income, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Household Size 1 Person ....................................... 28.2 9.7 -- -- -- 6.5 11.3 5.7 2 Persons ...................................... 35.1 4.3 -- -- -- 2.0 7.8 5.8 3 Persons ...................................... 17.0 -- 3.3 -- -- 2.2 5.2 7.3 4 Persons ...................................... 15.6 -- 2.2 -- -- -- 4.3 8.1 5 Persons ...................................... 7.1

50

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Air Conditioning Tables Air Conditioning Tables (Million U.S. Households; 24 pages, 138 kb) Contents Pages HC4-1a. Air Conditioning by Climate Zone, Million U.S. Households, 2001 2 HC4-2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 2 HC4-3a. Air Conditioning by Household Income, Million U.S. Households, 2001 2 HC4-4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 2 HC4-5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2 HC4-6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 2 HC4-7a. Air Conditioning by Four Most Populated States, Million U.S. Households, 2001 2 HC4-8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 2

51

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book (EERE)

Program Definitions DOE Weatherization: Department of Energy's Weatherization Assistance Program DOE Weatherization Eligible Households: Households with incomes at or below 125% of the Federal poverty level, which varies by family size; however, a State may instead elect to use the LIHEAP income standard if its State LIHEAP income standard is at least 125% of the Federal poverty level. Data listed in this chapter include previously weatherized units. DOE Weatherization Eligible Households are a subset of Federally Eligible Households. DOE Weatherization Recipient Households: Households that have received weatherization under DOE Weatherization funding. Federally Eligible Households: Households with incomes below the Federal maximum standard of 150% to 200% of the poverty

52

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Air Conditioning by Household Income, 3a. Air Conditioning by Household Income, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.9 1.5 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 12.3 17.4 21.5 31.7 9.6 23.4 3.9 Air Conditioners Not Used ............ 2.1 0.4 0.7 0.5 0.5 0.4 0.9 20.8 Households Using Electric Air-Conditioning 2 .......................... 80.8 11.9 16.7 21.0 31.2 9.1 22.6 3.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 6.2 10.7 15.2 25.3 4.5 12.4 5.3 Without a Heat Pump .................. 46.2 4.9 9.1 12.1 20.1 3.6 10.4 6.1 With a Heat Pump

53

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

54

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Home Office Equipment by Household Income, 3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.4 1.9 1.2 1.0 0.6 1.9 0.9 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 47.6 3.0 Households Using Office Equipment .......................... 96.2 13.2 19.8 25.5 37.7 10.7 38.8 3.2 Personal Computers 2 ................... 60.0 3.7 8.7 16.0 31.6 3.7 17.4 4.6 Number of Desktop PCs 1 .................................................. 45.1 2.8 7.1 12.8 22.4 2.8 13.6 5.1 2 or more .................................... 9.1 0.6 0.7 1.7 6.2 0.6 2.2 13.0 Number of Laptop PCs

55

Meeting the Challenge: The Prospect of Achieving 30 Percent Savings Through the Weatherization Assistance Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's (DOE's) Weatherization Assistance Program has been installing energy-efficiency measures in low-income houses for over 25 years, achieving savings exceeding 30 percent of natural gas used for space heating. Recently, as part of its Weatherization Plus initiative, the Weatherization Assistance Program adopted the goal of achieving 30 percent energy savings for all household energy usage. The expansion of the Weatherization Assistance Program to include electric baseload components such as lighting and refrigerators provides additional opportunities for saving energy and meeting this ambitious goal. This report documents an Oak Ridge National Laboratory study that examined the potential savings that could be achieved by installing various weatherization measures in different types of dwellings throughout the country. Three different definitions of savings are used: (1) reductions in pre-weatherization expenditures; (2) savings in the amount of energy consumed at the house site, regardless of fuel type (''site Btus''); and (3) savings in the total amount of energy consumed at the source (''source Btus''), which reflects the fact that each Btu* of electricity consumed at the household level requires approximately three Btus to produce at the generation source. In addition, the effects of weatherization efforts on carbon dioxide (CO{sub 2}) emissions are examined.

Schweitzer, M.

2002-05-31T23:59:59.000Z

56

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Space Heating by Household Income, 3a. Space Heating by Household Income, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Heat Home ..................................... 106.0 18.4 22.7 26.8 38.1 14.6 33.4 3.3 Do Not Heat Home ........................ 1.0 0.3 Q 0.3 0.3 0.3 0.4 23.4 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 35.0 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q 0.2 0.3 22.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 18.4 22.7

57

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Appliances by Household Income, 3a. Appliances by Household Income, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.8 1.6 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2 1 ................................................ 95.2 17.3 21.1 24.8 32.0 13.8 31.1 3.4 2 or More .................................. 6.5 0.8 0.9 1.3 3.6 0.6 1.5 13.1 Most Used Oven ........................ 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2

58

EIA - Household Transportation report: Household Vehicles ...  

U.S. Energy Information Administration (EIA)

This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of ...

59

An Analysis of the Price Elasticity of Demand for Household Appliances  

E-Print Network (OSTI)

Customers’ Choice of Appliance Efficiency Level: CombiningThe Effect of Income on Appliances in U.S. Households. U.S.Household’s Choice of Appliance Efficiency Level. Review of

Dale, Larry

2008-01-01T23:59:59.000Z

60

U.S. Percent Utilization of Refinery Operable Capacity (Percent)  

U.S. Energy Information Administration (EIA)

Annual : Download Data (XLS File) U.S. Percent Utilization of Refinery Operable Capacity (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 74.0 ...

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. household expenditures for gasoline account for nearly 4% ...  

U.S. Energy Information Administration (EIA)

Gasoline expenditures in 2012 for the average U.S. household reached $2,912, or just under 4% of income before taxes, according to EIA estimates.

62

Did Household Consumption Become More Volatile?  

E-Print Network (OSTI)

I show that after accounting for predictable variation arising from movements in real interest rates, preferences, income shocks, liquidity constraints and measurement errors, volatility of household consumption in the US increased between 1970 and 2004. For households headed by nonwhite and/or poorly educated individuals, this rise was significantly larger. This stands in sharp contrast with the dramatic fall in instability of the aggregate U.S. economy over the same period. Thus, while aggregate shocks affecting households fell over time, idiosyncratic shocks increased. This finding may lead to significant welfare implications.

Olga Gorbachev

2009-01-01T23:59:59.000Z

63

Smoothing consumption across households and time : essays in development economics  

E-Print Network (OSTI)

This thesis studies two strategies that households may use to keep their consumption smooth in the face of fluctuations in income and expenses: credit (borrowing and savings) and insurance (state contingent transfers between ...

Kinnan, Cynthia Georgia

2010-01-01T23:59:59.000Z

64

Low income home energy assistance  

Science Conference Proceedings (OSTI)

The Low Income Home Energy Assistance Program provides eligible households with assistance for home energy costs. Assistance is available to (1) help families pay heating and cooling costs, (2) prevent energy cutoff in crisis situations, and (3) help families make their homes more energy efficient. This report provides background information on the program in preparation for the program's reauthorization in 1990.

Not Available

1990-10-01T23:59:59.000Z

65

Section J: HOUSEHOLD CHARACTERISTICS  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey Form EIA-457A (2001)--Household Questionnaire OMB No.: 1905-0092, Expiring February 29, 2004 42 Section J: HOUSEHOLD ...

66

Urban household energy use in Thailand  

SciTech Connect

Changes in household fuel and electricity use that accompany urbanization in Third World countries bear large economic and environmental costs. The processes driving the fuel transition, and the policy mechanisms by which it can be influenced, need to be better understood for the sake of forecasting and planning, especially in the case of electricity demand. This study examines patterns of household fuel use and electrical appliance utilization in Bangkok, Chieng Mai and Ayutthaya, Thailand, based on the results of a household energy survey. Survey data are statistically analyzed using a variety of multiple regression techniques to evaluate the relative influence of various household and fuel characteristics on fuel and appliance choice. Results suggest that changes to the value of women's time in urban households, as women become increasingly active in the labor force, have a major influence on patterns of household energy use. The use of the home for small-scale commercial activities, particularly food preparation, also has a significant influence on fuel choice. In general, household income does not prove to be an important factor in fuel and appliance selection in these cities, although income is closely related to total electricity use. The electricity use of individual household appliances is also analyzed using statistical techniques as well as limited direct metering. The technology of appliance production in Thailand is evaluated through interviews with manufacturers and comparisons of product performance. These data are used to develop policy recommendations for improving the efficiency of electrical appliances in Thailand by relying principally on the dynamism of the consumer goods market, rather than direct regulation. The annual electricity savings from the recommended program for fostering rapid adoption of efficient technologies are estimated to reach 1800 GWh by the year 2005 for urban households alone.

Tyler, S.R.

1992-01-01T23:59:59.000Z

67

Indiana, Illinois, and Kentucky Refining District Percent ...  

U.S. Energy Information Administration (EIA)

Indiana, Illinois, and Kentucky Refining District Percent Utilization of Refinery Operable Capacity (Percent)

68

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

0. Estimated rail transportation rates for coal, state to state, 2009" 0. Estimated rail transportation rates for coal, state to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $13.59",," W",," $63.63"," 21.4%"," 3,612"," W"," 100.0%"

69

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

1. Estimated rail transportation rates for coal, basin to state, 2008" 1. Estimated rail transportation rates for coal, basin to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Delaware"," W"," $28.49",," W",," $131.87"," 21.6%", 59," W"," 100.0%"

70

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

9. Estimated rail transportation rates for coal, state to state, 2008" 9. Estimated rail transportation rates for coal, state to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $14.43",," W",," $65.38"," 22.1%"," 4,509"," W"," 81.8%"

71

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

2. Estimated rail transportation rates for coal, basin to state, 2009" 2. Estimated rail transportation rates for coal, basin to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Florida"," W"," $38.51",," W",," $140.84"," 27.3%", 134," W"," 100.0%"

72

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

73

Energy and household expenditure patterns  

Science Conference Proceedings (OSTI)

Since households account, either directly or indirectly, for two-thirds of the energy consumed in the US, changes in household activities will affect energy use. Expected changes in prices, personal income, and family spending over the next 20 years are looked at as well as the implications for energy consumption. The analysis shows that direct energy purchases will break with past trends, dropping from 2.6% to 0.2% annual growth for the rest of the century. Growth in spending on energy-using goods is also likely to slow down. The year 2000 will see a marked decrease in the growth of national energy consumption. 58 references, 3 figures, 35 tables.

Lareau, T.J.; Darmstadter, J.

1983-01-01T23:59:59.000Z

74

The Other Energy Crisis: Managing Urban Household Energy Use in Senegal  

E-Print Network (OSTI)

for 62 percent of national energy consumption, or over 1 .1energy consumption, and (2) residential, because of the dominant role that households play in national

Leitmann, Josef

1989-01-01T23:59:59.000Z

75

This Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Single Family Households." For the full report and other resources visit: http://middleincome.lbl.gov  

E-Print Network (OSTI)

This Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Purcell, Deputy Director at Home This paper is part of the LBNL Clean Energy Financing Policy Brief series://eetd.lbl.gov/EAP/EMP/. The work described in this Policy Brief was funded by the Department of Energy Office of Energy Efficiency

76

This Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Single Family Households." For the full report and other resources visit: http://middleincome.lbl.gov  

E-Print Network (OSTI)

This Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income of the LBNL Clean Energy Program Policy Brief series. These working papers highlight emerging program models and industry). Energy conservation in new and existing buildings plays a key role in the plan's ambitious goals

77

This Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Single Family Households." For the full report and other resources visit: http://middleincome.lbl.gov  

E-Print Network (OSTI)

This Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Clean Energy Financing Policy Brief series. To join the email list to receive these policy briefs for Credit: Case Study on Clean Energy Works Oregon Launched as a Portland-based pilot in April 2010, Clean

78

Econometric analysis of energy use in urban households  

SciTech Connect

This article analyzes the pattern of energy carrier consumption in the residential sector of Bangalore, a major city in south India. A 1,000-household survey was used to study the type of energy carrier used by households in different income groups for different end-uses, such as cooking, water heating, and lighting. The dependence of income on the carrier utilized is established using a carrier dependence index. Using regression analysis, the index analyses the impact of different explanatory variables such as family income, family size, and price of energy carrier on consumption. The results show that income plays an important role not only in the selection of an energy carrier but also on the quantity of consumption per household. Also, a source-service matrix is prepared for Bangalore`s residential sector, which shows the disaggregation of energy consumption by the type of energy carrier and end-use.

Reddy, B.S. [Indira Gandhi Inst. of Development Research, Bombay (India)

1995-05-01T23:59:59.000Z

79

char_household2001.pdf  

Annual Energy Outlook 2012 (EIA)

9a. Household Characteristics by Northeast Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row...

80

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Household Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.0 1.5 1.5 Total .............................................................. 107.0 7.1 12.3 7.7 6.3 NE Household Size 1 Person ...................................................... 28.2 2.2 2.4 1.8 1.7 7.3 2 Persons .................................................... 35.1 2.2 4.0 2.4 2.0 6.9 3 Persons .................................................... 17.0 1.1 2.0 1.2 1.2 9.5 4 Persons .................................................... 15.6 0.8 1.9 1.3 0.9 11.2 5 Persons .................................................... 7.1 0.4 1.1 0.4 0.5 19.8 6 or More Persons ....................................... 4.0 0.4 0.9 0.4 0.1 16.4 2001 Household Income Category

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Variable Average Absolute Percent Differences  

U.S. Energy Information Administration (EIA) Indexed Site

Variable Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 1.0 42.6 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 35.2 18.6 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 34.7 19.7 Total Petroleum Consumption (Table 4) 6.2 66.5 Crude Oil Production (Table 5) 6.0 59.6 Petroleum Net Imports (Table 6) 13.3 67.0 Natural Gas Natural Gas Wellhead Prices (Constant $) (Table 7a) 30.7 26.1 Natural Gas Wellhead Prices (Nominal $) (Table 7b) 30.0 27.1 Total Natural Gas Consumption (Table 8) 7.8 70.2 Natural Gas Production (Table 9) 7.1 66.0 Natural Gas Net Imports (Table 10) 29.3 69.7 Coal Coal Prices to Electric Generating Plants (Constant $)** (Table 11a)

82

Model documentation: household model of energy  

Science Conference Proceedings (OSTI)

The Household Model of Energy is an econometric model, meaning that energy use is determined quantitatively with the use of economic variables such as fuel prices and income. HOME is also primarily a structural model, meaning that energy use is determined as the result of interactions of intermediate components such as the number of households, the end use fuel shares and the energy use per household. HOME forecasts energy consumption in all occupied residential structures (households) in the United States on an annual basis through 1990. The forecasts are made based upon a number of initial conditions in 1980, various estimated elasticities, various parameters and assumptions, and a set of forecasted fuel prices and income. In addition to the structural detail, HOME operates on a more disaggregated level. This includes four end-use services (space heating, water heating, air conditioning, and others), up to seven fuel/technology types (dependent upon the end use service), two housing types, four structure vintages, and four Census regions. When the model is run as a module in IFFS, a sharing scheme further disaggregates the model to 10 Federal regions.

Holte, J.A.

1984-02-01T23:59:59.000Z

83

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

84

Energy Information Administration/Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

, , Energy Information Administration/Household Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related characteristics of highway vehicles available for personal use by members of U.S. households. The data were collected in the 1994 Residential Transportation Energy Consumption Survey, the final cycle in a series of nationwide energy consumption surveys conducted during the 1980's and 1990's by the Energy Information Administrations. Engines Became More Powerful . . . Percent Distribution of Total Residential Vehicle Fleet by Number of Cylinders, 1988 and 1994 Percent Distribution of Vehicle Fleet by Engine Size, 1988 and 1994 Percent Percent 4 cyl Less than 2.50 liters 6 cyl 2.50- 4.49 liters 8 cyl 4.50 liters or greater 20 20 40 40 Vehicle

85

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

86

A Framework for Corporate Householding  

E-Print Network (OSTI)

Previous research on corporate household and corporate householding has presented examples, literature review, and working definitions. In this paper, we first improve our ...

Madnick, Stuart

2003-03-21T23:59:59.000Z

87

Racial and demographic differences in household travel and fuel purchase behavior  

Science Conference Proceedings (OSTI)

Monthly fuel purchase logs from the Residential Energy Consumption Survey's Household Transportation Panel (TP) were analyzed to determine the relationship between various household characteristics and purchase frequency, tank inventories, vehicle-miles traveled, and fuel expenditures. Multiple classification analysis (MCA) was used to relate observed differences in dependent variables to such index-type household characteristics as income and residence location, and sex, race and age of household head. Because it isolates the net effect of each parameter, after accounting for the effects of all other parameters, MCA is particularly appropriate for this type of analysis. Results reveal clear differences in travel and fuel purchase behavior for four distinct groups of vehicle-owning households. Black households tend to own far fewer vehicles with lower fuel economy, to use them more intensively, to purchase fuel more frequently, and to maintain lower fuel inventories than white households. Similarly, poor households own fewer vehicles with lower fuel economy, but they drive them less intensively, purchase fuel more frequently, and maintain lower fuel inventories than nonpoor households. Elderly households also own fewer vehicles with lower fuel economy. But since they drive them much less intensively, their fuel purchases are much less frequent and their fuel inventories are higher than nonelderly households. Female-headed households also own fewer vehicles but with somewhat higher fuel economy. They drive them less intensively, maintain higher fuel inventories, and purchase fuel less frequently than male-headed households. 13 refs., 8 tabs.

Gur, Y.; Millar, M.

1987-01-01T23:59:59.000Z

88

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network (OSTI)

Home Energy Management DIY – Do-It-Yourself HERS – Homeare completed. Do-It-Yourself (DIY) Improvements. About oneand financial incentives for DIY improvements.    Flexible

Zimring, Mark

2012-01-01T23:59:59.000Z

89

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network (OSTI)

rentalhousing/Energy_Efficiency_Project/COB_rebates_8.2.11.PDS/rentalhousing/Energy_Efficiency_Project/SmartRegs_Final_s residential energy efficiency loan program November 2010-

Zimring, Mark

2012-01-01T23:59:59.000Z

90

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network (OSTI)

and Renewable Energy (DOE EERE), Weatherization andand Roya Stanley (DOE EERE) for their support of thisfor Humanity International DOE EERE – Department of Energy

Zimring, Mark

2012-01-01T23:59:59.000Z

91

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network (OSTI)

HVAC replacement, air sealing, duct sealing, additionaltoday – for example, air sealing and climate-appropriatesome combination of air sealing, insulation, lighting

Zimring, Mark

2012-01-01T23:59:59.000Z

92

Projecting household energy consumption within a conditional demand framework  

SciTech Connect

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-01-01T23:59:59.000Z

93

Projecting household energy consumption within a conditional demand framework  

Science Conference Proceedings (OSTI)

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-12-31T23:59:59.000Z

94

The Determinants of Homeonwership in Presence of Shocks Experienced by Mexican Households  

E-Print Network (OSTI)

Homeownership is both an individual and society objective, because of the positive neighborhood effects associated with areas of higher homeownership. To help realize these positive effects, the Mexican government has several programs directed to increasing homeownership. Many factors, however, may influence homeownership including shocks experienced by households. Shocks such as death in family, illness or accidents, unemployment, and business, crop, or livestock loss affect homeownership if households are unable to cushion the impact of the shock. Government income support programs, however, may help cushion the effect of a shock. The main objective is to determine how shocks that households’ experience and government income support programs influence homeownership in Mexico. A secondary objective is to determine how socio-demographic variables influence homeownership in Mexico. Based on the Random Utility Model, logit models of homeownership are estimated using data are from the 2002 Mexican National Survey on Living Levels of Households. Two models are estimated; with and without income. Income is excluded because of a large number of households that did not report income. Generally, inferences from the two models are similar. Homeownership appears to not be affected by shocks experienced by households. It appears households are able to cushion the impact of shocks. The two income support programs, the Program of Direct Rural Support of Mexico (PROGRESA) and the Program of Direct Rural Support of Mexico (PROCAMPO), appear to be increasing homeownership. These social welfare programs provide cash transfers to households. For whatever reason, PROGRESA has a larger effect on homeownership than PROCAMPO. Households with older heads have a larger probability of being a homeowner than households with younger heads. No statistically significance relationship exists between education and homeownership. Regional differences are seen in homeownership, with households located in the northwest region having a higher probability of homeownership than other regions. Differences in the significance of variable representing the household head’s gender, marital status, and occupation on homeownership exist between logit models that include and do not include current income. The most likely reason for these differences is interactions between the variables and a wealth effect.

Lopez Cabrera, Jesus 1977-

2012-12-01T23:59:59.000Z

95

Energy and Ventilation Research in Highrise Apartments  

NLE Websites -- All DOE Office Websites (Extended Search)

the percent of household income spent for energy-is several times higher for these households than for single-family households. Historically, multifamily buildings have been the...

96

Household Vehicles Energy Use Cover Page  

U.S. Energy Information Administration (EIA) Indexed Site

Household Vehicles Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback *...

97

Percent Yield and Mass of Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Percent Yield and Mass of Water Percent Yield and Mass of Water Name: Lisa Status: educator Grade: 9-12 Location: CA Country: USA Date: Winter 2011-2012 Question: When doing a percent yield activity in lab, we use MgCl hexahydrate and CaSO4. How do we factor the mass of the water that is released during the reaction? Replies: Lisa, Based on your question, I am not quite sure what the experiment is. Are you heating the hydrates and looking at the percent-yield of water removed during the heating? If so, then you would calculate the theoretical yield (using stoichiometry and the balanced chemical equation: MgCl2.6H2O --> MgCl2 + 6H2O) of water released, and compare it to the actual yield of water released in the experiment to get percent yield. Greg (Roberto Gregorius) Canisius College

98

The federal energy policy: An example of its potential impact on energy consumption and expenditures in minority and poor households  

SciTech Connect

This report presents an analysis of the relative impacts of the National Energy Strategy on majority and minority households and on nonpoor and poor households. (Minority households are defined as those headed by black or Hispanic persons; poor households are defined as those having combined household income less than or equal to 125% of the Office of Management and Budget`s poverty-income threshold.) Energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1987 to 2009 are reported. Projected consumptions of electricity and nonelectric energy over this period are also reported for each group. An analysis of how these projected values are affected under different housing growth scenarios is performed. The analysis in this report presents a preliminary set of projections generated under a set of simplifying assumptions. Future analysis will rigorously assess the sensitivity of the projected values to various changes in a number of these assumptions.

Poyer, D.A.

1991-09-01T23:59:59.000Z

99

Equitable economic energy efficiency : creating good jobs in low-income efficiency programming  

E-Print Network (OSTI)

Energy efficiency is an important consideration in energy policy-making. So, a federal program aimed at funding "energy efficiency retrofits" for low-income households could be an important step in increasing the overall ...

Sarin, Amit

2009-01-01T23:59:59.000Z

100

The forgotten class : reconceptualizing contemporary middle-income housing in New York City  

E-Print Network (OSTI)

New York City's costly real estate poses housing affordability challenges for not only low- or even moderate-income households, but also for the so-called "middle class." Because New York is predominantly a renter's market, ...

Milchman, Karina (Karina Faye)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Michigan Natural Gas Percent Sold to The Commercial Sectors by ...  

U.S. Energy Information Administration (EIA)

Michigan Natural Gas Percent Sold to The Commercial Sectors by Local Distribution Companies (Percent)

102

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

103

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

104

Household waste disposal in Mekelle city, Northern Ethiopia  

SciTech Connect

In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes on household solid waste disposal are investigated using data from household survey. Household level data are then analyzed using multinomial logit estimation to determine the factors that affect household waste disposal decision making. Results show that demographic features such as age, education and household size have an insignificant impact over the choice of alternative waste disposal means, whereas the supply of waste facilities significantly affects waste disposal choice. Inadequate supply of waste containers and longer distance to these containers increase the probability of waste dumping in open areas and roadsides relative to the use of communal containers. Higher household income decreases the probability of using open areas and roadsides as waste destinations relative to communal containers. Measures to make the process of waste disposal less costly and ensuring well functioning institutional waste management would improve proper waste disposal.

Tadesse, Tewodros [Agricultural Economics and Rural Policy Group, Wageningen University, Hollandseweg 1 6706 KN Wageningen (Netherlands)], E-mail: tewodroslog@yahoo.com; Ruijs, Arjan [Environmental Economics and Natural Resources Group, Wageningen University, P.O. Box 8130, 6700 EW Wageningen (Netherlands); Hagos, Fitsum [International Water Management Institute (IWMI), Subregional Office for the Nile Basin and East Africa, P.O. Box 5689, Addis Ababa (Ethiopia)

2008-07-01T23:59:59.000Z

105

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products  

E-Print Network (OSTI)

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products containing toxic chemicals. These wastes CANNOT be disposed of in regular garbage. Any should be considered hazardous. You cannot treat hazardous wastes like other kinds of garbage

de Lijser, Peter

106

The welfare effects of raising household energy prices in Poland  

Science Conference Proceedings (OSTI)

We examine the welfare effects from increasing household energy prices in Poland. Subsidizing household energy prices, common in the transition economies, is shown to be highly regressive. The wealthy spend a larger portion of their income on energy and consume more energy in absolute terms. We therefore rule out the oft-used social welfare argument for delaying household energy price increases. Raising prices, while targeting relief to the poor through a social assistance program is the first-best response. However, if governments want to ease the adjustment, several options are open, including: in-kind transfers to the poor, vouchers, in-cash transfers, and lifeline pricing for electricity. Our simulations show that if raising prices to efficient levels is not politically feasible at present and social assistance targeting is sufficiently weak, it may be socially better to use lifeline pricing and a large price increase than an overall, but smaller, price increase.

Freund, C.L. [Columbia Univ., New York, NY (United States); Wallich, C.I. [World Bank, Washington, DC (United States)

1996-06-01T23:59:59.000Z

107

District of Columbia Natural Gas Percent Sold to The Commercial...  

U.S. Energy Information Administration (EIA) Indexed Site

Percent Sold to The Commercial Sectors by Local Distribution Companies (Percent) District of Columbia Natural Gas Percent Sold to The Commercial Sectors by Local Distribution...

108

Percent of Industrial Natural Gas Deliveries in South Dakota...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Percent of Industrial Natural Gas Deliveries in South Dakota Represented by the Price (Percent) Percent of Industrial Natural Gas...

109

Percent of Commercial Natural Gas Deliveries in South Dakota...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Percent of Commercial Natural Gas Deliveries in South Dakota Represented by the Price (Percent) Percent of Commercial Natural Gas...

110

Elasticities of Electricity Demand in Urban Indian Households  

E-Print Network (OSTI)

Energy demand, and in particular electricity demand in India has been growing at a very rapid rate over the last decade. Given, current trends in population growth, industrialisation, urbanisation, modernisation and income growth, electricity consumption is expected to increase substantially in the coming decades as well. Tariff reforms could play a potentially important role as a demand side management tool in India. However, the effects of any price revisions on consumption will depend on the price elasticity of demand for electricity. In the past, electricity demand studies for India published in international journals have been based on aggregate macro data at the country or sub-national / state level. In this paper, price and income elasticities of electricity demand in the residential sector of all urban areas of India are estimated for the first time using disaggregate level survey data for over thirty thousand households. Three electricity demand functions have been estimated using monthly data for the following seasons: winter, monsoon and summer. The results show electricity demand is income and price inelastic in all three seasons, and that household, demographic and geographical variables are important in determining electricity demand, something that is not possible to determine using aggregate macro models alone. Key Words Residential electricity demand, price elasticity, income elasticity Short Title Electricity demand in Indian households Acknowledgements: The authors would like to gratefully acknowledge the National Sample Survey Organisation, Department of Statistics of the Government of India, for making available to us the unit level, household survey data. We would also like to thank Prof. Daniel Spreng for his support of our research. 2 1.

Shonali Pachauri

2002-01-01T23:59:59.000Z

111

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

112

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

113

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

114

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

115

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

116

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

117

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

118

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

119

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

120

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

122

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

123

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

124

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

125

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

126

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

127

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

128

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

129

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

130

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

131

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

132

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

133

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

134

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

135

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

136

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

137

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

138

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

139

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

140

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

142

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

143

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

144

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

145

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

146

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

147

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

148

Income Tax Capital Credit (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Income Tax Capital Credit (Alabama) Income Tax Capital Credit (Alabama) Income Tax Capital Credit (Alabama) < Back Eligibility Commercial Construction Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Corporate Tax Incentive The purpose of this law is to create jobs and to stimulate business and economic growth in the state by providing an income tax capital credit for approved projects. The Income Tax Capital Credit is a credit of five percent (5%) of the capital costs of a qualifying project offered by the Alabama Department of Revenue. The credits is applied to the Alabama income tax liability or financial institution excise tax generated by the project income, each year for 20 years. This credit cannot be carried forward or

149

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

150

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

DOEEIA-0464(91) Distribution Category UC-950 Household Vehicles Energy Consumption 1991 December 1993 Energy Information Administration Office of Energy Markets and End Use U.S....

151

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

a regular basis at the time of the 1990 RECS personal interviews. Electricity: See Main Heating Fuel. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991...

152

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AdministrationHousehold Vehicles Energy Consumption 1994 110 Electricity: See Main Heating Fuel. Energy Used in the Home: For electricity or natural gas, the quantity is the...

153

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

154

Do homeowners increase consumption after the last mortgage payment? An alternative test of the permanent income hypothesis  

E-Print Network (OSTI)

The maturity date of a mortgage loan marks the end of monthly mortgage payments for homeowners. In the period after the last payment, homeowners experience an increase in their monthly disposable income that is equal to the average monthly mortgage payment. Our study interprets this event as an anticipated increase in income, and analyzes consumption behavior over the transition period. In particular, we test whether households smooth consumption as predicted by the rational expectation Life-Cycle/Permanent Income Hypothesis (Re-LC/PIH). We find that they do. Households do not alter nondurable goods consumption in the period following the last mortgage payment despite the increase in disposable income.

Brahima Coulibaly; Geng Li

2006-01-01T23:59:59.000Z

155

Household energy handbook: an interim guide and reference manual. World Bank technical paper  

SciTech Connect

A standard framework for measuring and assessing technical information on the household energy sector in developing countries is needed. The handbook is intended as a first step toward creating such a framework. Chapter I discusses energy terms and principles underlying the energy units, definitions, and calculations presented in the following chapters. Chapter II describes household consumption patterns and their relationship to income, location, and household-size variables. Chapter III evaluates energy end uses and the technologies that provide cooking, lighting, refrigeration, and space-heating services. Chapter IV examines household energy resources and supplies, focusing on traditional biomass fuels. Finally, Chapter V demonstrates simple assessment methods and presents case studies to illustrate how household energy data can be used in different types of assessments.

Leach, G.; Gowen, M.

1987-01-01T23:59:59.000Z

156

Portfolio Substitution and the Revenue Cost of the Federal Income Tax Exemption for State and Local Government Bonds  

E-Print Network (OSTI)

This paper illustrates how different assumptions about household portfolio behavior influence estimates of the amount of individual income tax revenue that would be collected if the interest tax exemption for state and ...

Poterba, James M.

157

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

158

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

159

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

160

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

162

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

163

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

164

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

165

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

166

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

167

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

168

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

169

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

170

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

171

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

172

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

173

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

174

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

175

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

176

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

177

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

178

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

179

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

180

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

182

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

183

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

184

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

185

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

186

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

187

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

188

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

189

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

190

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

191

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

192

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

193

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

194

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

195

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

196

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

197

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

198

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

199

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by West Census Region, 2a. Household Characteristics by West Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.8 1.1 Total .............................................................. 107.0 23.3 6.7 16.6 NE Household Size 1 Person ...................................................... 28.2 5.6 1.8 3.8 5.4 2 Persons .................................................... 35.1 7.3 1.9 5.5 4.9 3 Persons .................................................... 17.0 3.5 0.9 2.6 7.6 4 Persons .................................................... 15.6 3.5 1.1 2.4 6.4 5 Persons .................................................... 7.1 2.0 0.6 1.4 9.7 6 or More Persons

200

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Household Characteristics by Midwest Census Region, 0a. Household Characteristics by Midwest Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 24.5 17.1 7.4 NE Household Size 1 Person ...................................................... 28.2 6.7 4.7 2.0 6.2 2 Persons .................................................... 35.1 8.0 5.4 2.6 5.0 3 Persons .................................................... 17.0 3.8 2.7 1.1 7.9 4 Persons .................................................... 15.6 3.5 2.5 1.0 8.1 5 Persons .................................................... 7.1 1.7

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Extending Efficiency Services to Underserved Households: NYSERDA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Extending Efficiency Services to Underserved Households: NYSERDA's Assisted Home Performance with ENERGY STAR Program Title Extending Efficiency Services to Underserved Households:...

202

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

203

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

204

Residential energy use and conservation actions: analysis of disaggregate household data  

Science Conference Proceedings (OSTI)

The Energy Information Administration recently published data they collected from the National Interim Energy Consumption Survey (NIECS). NIECS includes detailed information on 4081 individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances therein, recent conservation actions taken by the household, and fuel consumption and cost for the April 1978 to March 1979 one-year period. This data set provides a new and valuable resource for analysis. The NIECS data on household energy consumption - total energy use, electricity use, and use of the primary space heating fuel, are summarized and analyzed. The regression equations constructed explain roughly half the variation in energy use among households. These equations contain ten or fewer independent variables, the most important of which are fuel price, year house was built, floor area, and heating degree days. Regression equations were developed that estimate the energy saving achieved by each household based on their recent retrofit actions. These equations predict 20 to 40% of the variation among households. Total annual energy use is the most important determinant of retrofit energy saving; other significant variables include age of household head, household income, year house was built, housing tenure, and proxies for the cost of heating and air conditioning the house.

Hirst, E.; Goeltz, R.; Carney, J.

1981-03-01T23:59:59.000Z

205

Federal Government Increases Renewable Energy Use Over 1000 Percent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal...

206

Texas Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas % of Total Residential - Sales (Percent) Texas Natural Gas % of Total Residential - Sales (Percent) Decade...

207

Hawaii Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Hawaii Natural Gas % of Total Residential - Sales (Percent) Hawaii Natural Gas % of Total Residential - Sales (Percent)...

208

Missouri Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Missouri Natural Gas % of Total Residential - Sales (Percent) Missouri Natural Gas % of Total Residential - Sales (Percent)...

209

Alaska Natural Gas % of Total Residential - Sales (Percent)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Alaska Natural Gas % of Total Residential - Sales (Percent) Alaska Natural Gas % of Total Residential - Sales (Percent)...

210

Arizona Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Arizona Natural Gas % of Total Residential - Sales (Percent) Arizona Natural Gas % of Total Residential - Sales (Percent)...

211

Iowa Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Iowa Natural Gas % of Total Residential - Sales (Percent) Iowa Natural Gas % of Total Residential - Sales (Percent) Decade...

212

Alabama Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Alabama Natural Gas % of Total Residential - Sales (Percent) Alabama Natural Gas % of Total Residential - Sales (Percent)...

213

Florida Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Florida Natural Gas % of Total Residential - Sales (Percent) Florida Natural Gas % of Total Residential - Sales (Percent)...

214

Wyoming Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Wyoming Natural Gas % of Total Residential - Sales (Percent) Wyoming Natural Gas % of Total Residential - Sales (Percent)...

215

Kentucky Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Kentucky Natural Gas % of Total Residential - Sales (Percent) Kentucky Natural Gas % of Total Residential - Sales (Percent)...

216

Illinois Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Illinois Natural Gas % of Total Residential - Sales (Percent) Illinois Natural Gas % of Total Residential - Sales (Percent)...

217

Nevada Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Nevada Natural Gas % of Total Residential - Sales (Percent) Nevada Natural Gas % of Total Residential - Sales (Percent)...

218

Oregon Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Oregon Natural Gas % of Total Residential - Sales (Percent) Oregon Natural Gas % of Total Residential - Sales (Percent)...

219

Kansas Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Kansas Natural Gas % of Total Residential - Sales (Percent) Kansas Natural Gas % of Total Residential - Sales (Percent)...

220

Tennessee Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Tennessee Natural Gas % of Total Residential - Sales (Percent) Tennessee Natural Gas % of Total Residential - Sales (Percent)...

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Maine Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Maine Natural Gas % of Total Residential - Sales (Percent) Maine Natural Gas % of Total Residential - Sales (Percent) Decade...

222

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

W as hi ng to n, DC DOEEIA-0464(94) Distribution Category UC-950 Household Vehicles Energy Consumption 1994 August 1997 Energy Information Administration Office of Energy Markets...

223

ac_household2001.pdf  

Annual Energy Outlook 2012 (EIA)

2a. Air Conditioning by West Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total...

224

Household savings and portfolio choice  

E-Print Network (OSTI)

This thesis consists of three essays that examine household savings and portfolio choice behavior. Chapter One analyses the effects of employer matching contributions and tax incentives on participation and contribution ...

Klein, Sean Patrick

2010-01-01T23:59:59.000Z

225

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

226

Cover Page of Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

227

Utility investments in low-income-energy-efficiency programs  

SciTech Connect

The objective of this study is to describe the energy-efficiency programs being operated by utilities for low-income customers. The study focuses, in particular, on programs that install major residential weatherization measures free-of-charge to low-income households. A survey was mailed to a targeted list of 600 utility program managers. Follow-up telephone calls were made to key non- respondents, and a random sample of other non-respondents also was contacted. Completed surveys were received from 180 utilities, 95 of which provided information on one or more of their 1992 low-income energy-efficiency programs for a total of 132 individual programs. These 132 utility programs spent a total of $140.6 million in 1992. This represents 27% of the total program resources available to weatherize the dwellings of low-income households in that year. Both the total funding and the number of programs has grown by 29% since 1989. A majority of the 132 programs are concentrated in a few regions of the country (California, the Pacific Northwest, the Upper Midwest, and the Northeast). Although a majority of the programs are funded by electric utilities, gas utilities have a significantly greater average expenditure per participant ($864 vs. $307 per participant). The most common primary goal of low-income energy-efficiency programs operating in 1992 was {open_quotes}to make energy services more affordable to low-income customers{close_quotes}. Only 44% of the programs were operated primarily to provide a cost-effective energy resource. Based on a review of household and measure selection criteria, equity and not the efficiency of resource acquisition appears to dominate the design of these programs.

Brown, M.A. [Oak Ridge National Lab., TN (United States); Beyer, M.A. [Aspen Systems Corp., Oak Ridge, TN (United States); Eisenberg, J.; Power, M. [Economic Opportunity Research Institute, Washington, DC (United States); Lapsa, E.J. [Manhattan Data Systems, Knoxville, TN (United States)

1994-09-01T23:59:59.000Z

228

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book (EERE)

2 2 Energy Burden Definitions Energy burden is an important statistic for policy makers who are considering the need for energy assistance. Energy burden can be defined broadly as the burden placed on household incomes by the cost of energy, or more simply, the ratio of energy expenditures to household income. However, there are different ways to compute energy burden, and different interpretations and uses of the energy burden statistics. DOE Weatherization primarily uses mean individual burden and mean group burden since these statistics provide data on how an "average" individual household fares against an "average" group of households (that is, how burdens are distributed for the population). DOE Weatherization (and HHS) also uses the median individual burden which shows

229

Weatherizing the Homes of Low-Income Home Energy Assistance Program Clients: A Programmatic Assessment  

SciTech Connect

The purpose of this project was to assess the relationships between two federal programs that support low income households, the Weatherization Assistance Program (WAP) and the Low Income Home Energy Assistance Program (LIHEAP). The specific question addressed by this research is: what impact does weatherizing homes of LIHEAP recipients have on the level of need for LIHEAP assistance? The a priori expectation is that the level of need will decrease. If this is the case, then it can be argued that a non-energy benefit of WAP is the reduction in the level of need for LIHEAP assistance for households receiving weatherization assistance. The study area for this project was Boston, Massachusetts, which is representative of large northern urban areas. Additionally, Boston was chosen because one of its social service agencies, Action for Boston Community Development (ABCD), administers both WAP and LIHEAP programs. ABCD has a substantial client base of low-income households and was willing to cooperate in this study. In the State of Massachusetts, an income test is used to determine whether low-income households qualify for standard LIHEAP benefits. Benefits provided to eligible households are determined by a schedule that gauges benefit levels based on household income and number of members in the household. Additionally, households that consume large amounts of primary heating fuel can also qualify an additional high energy subsidy. It was expected that weatherization's biggest influence on the LIHEAP program would be in reducing the number of households qualifying for high energy subsidies. Data were collected for three groups of households that received both weatherization and LIHEAP assistance and for one control group that only received LIHEAP assistance. Table ES-1 indicates the sample sizes, weatherization dates, and winter time periods when changes in energy consumption and receipt of LIHEAP benefits could be expected to be observed. The reason why there is a lag of one year when weatherization impacts upon LIHEAP benefits might be observed is that LIHEAP benefits--specifically high energy benefits--are based on the previous year's primary heat fuel bills.

Tonn, B.

2002-09-16T23:59:59.000Z

230

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Household Characteristics by Type of Owner-Occupied Housing Unit, 5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.3 0.4 2.0 2.9 1.3 Total Owner-Occupied Units ....... 72.7 63.2 2.1 1.8 5.7 6.7 Household Size 1 Person ....................................... 15.8 12.5 0.8 0.9 1.6 10.3 2 Persons ...................................... 25.9 23.4 0.5 0.5 1.5 10.1 3 Persons ...................................... 11.6 9.6 0.5 Q 1.3 12.1 4 Persons ...................................... 11.8 10.9 Q Q 0.7 15.7 5 Persons ...................................... 5.1 4.5 Q Q 0.4 24.2 6 or More Persons

231

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Household Characteristics by South Census Region, 1a. Household Characteristics by South Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.1 1.5 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Household Size 1 Person ...................................................... 28.2 9.9 5.0 1.8 3.1 6.3 2 Persons .................................................... 35.1 13.0 6.7 2.5 3.8 4.2 3 Persons .................................................... 17.0 6.6 3.7 1.2 1.7 8.8 4 Persons .................................................... 15.6 6.0 3.3 0.8 1.9 10.7 5 Persons ....................................................

232

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Household Characteristics by Urban/Rural Location, 8a. Household Characteristics by Urban/Rural Location, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.1 Household Size 1 Person ...................................................... 28.2 14.6 5.3 4.8 3.6 6.4 2 Persons .................................................... 35.1 15.7 5.7 6.9 6.8 5.4 3 Persons .................................................... 17.0 7.6 2.8 3.5 3.1 7.2 4 Persons .................................................... 15.6 6.8 2.3 4.1 2.4 8.1 5 Persons .................................................... 7.1 3.1 1.3 1.3 1.4 12.3 6 or More Persons

233

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Household Characteristics by Climate Zone, a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Household Size 1 Person ....................................... 28.2 2.5 8.1 6.5 4.8 6.2 9.9 2 Persons ...................................... 35.1 3.1 9.4 8.2 6.5 7.9 8.7 3 Persons ...................................... 17.0 1.3 4.3 4.0 3.3 4.1 10.7 4 Persons ...................................... 15.6 1.4 3.9 3.4 3.4 3.5 10.5 5 Persons ......................................

234

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Household Characteristics by Type of Rented Housing Unit, 6a. Household Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total Rented Units ........................ 34.3 10.5 7.4 15.2 1.1 6.9 Household Size 1 Person ....................................... 12.3 2.5 2.6 7.0 0.3 10.0 2 Persons ...................................... 9.2 2.5 2.5 4.1 Q 11.8 3 Persons ...................................... 5.4 2.0 1.1 2.0 0.4 13.9 4 Persons ...................................... 3.8 1.6 0.7 1.4 Q 17.7 5 Persons ...................................... 2.0 0.9 0.4 0.6 Q 24.1 6 or More Persons ........................

235

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by Year of Construction, 2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.0 1.2 1.2 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Household Size 1 Person ....................................... 28.2 2.5 4.5 5.1 4.0 3.7 8.3 7.5 2 Persons ...................................... 35.1 4.8 6.2 6.6 4.5 5.3 7.8 5.8 3 Persons ...................................... 17.0 2.5 3.3 2.9 2.3 1.9 4.1 8.4 4 Persons ...................................... 15.6 3.4 2.8 2.3 1.9 1.8 3.4 9.6 5 Persons ...................................... 7.1 1.6 1.2 1.3 0.6 0.7 1.6 14.3 6 or More Persons

236

S:\VM3\RX97\TBL_LIST.WPD  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of U.S. Households; 13 pages, 54 kb) Percent of U.S. Households; 13 pages, 54 kb) Contents Pages HC2-1b. Household Characteristics by Climate Zone, Percent of U.S. Households, 1997 2 HC2-2b. Household Characteristics by Year of Construction, Percent of U.S. Households, 1997 1 HC2-3b. Household Characteristics by Household Income, Percent of U.S. Households, 1997 1 HC2-4b. Household Characteristics by Type of Housing Unit, Percent of U.S. Households, 1997 1 HC2-5b. Household Characteristics by Type of Owner-Occupied Housing Unit, Percent of U.S. Households, 1997 1 HC2-6b. Household Characteristics by Type of Rented Housing Unit, Percent of U.S. Households, 1997 1 HC2-7b. Household Characteristics by Four Most Populated States, Percent of U.S. Households, 1997 1

237

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

HOW MANY HYBRID HOUSEHOLDS IN THE CALIFORNIA NEW CAR MARKET?average 2.43 cars per household, then the hybrid householdnumber of multi-car households that fit our hybrid household

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

238

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book (EERE)

4 4 Weatherization Population Facts - Roughly 25% of Federally eligible households move in and out of poverty "classification" each year. - The average income of Federally eligible households in FY 2005 was $16,264, based on RECS and Bureau of the Census' Current Population Survey (CPS) data. - States target the neediest, especially the elderly, persons with disabilities, and families with children. - Since the inception of the Weatherization Assistance Program in 1976, over 6.3 million households have received weatherization services with DOE and leveraged funding. - In FY 2009, the energy burden on Federally eligible households was about four times the burden on Federally ineligible households (14% versus 4%). Source(s): ORNL, Weatherization Works: Final Report on the National Weatherization Evaluation, Sept. 1994, p. 1 for migrating poor; ORNL, 1996 for targeting; HHS,

239

Household energy in South Asia  

Science Conference Proceedings (OSTI)

This research study on the use of energy in South Asis (India, Pakistan, Sri Lanka and Bangladesh) was sponsored by the Food and Agriculture Organization of the UN, the International Bank for Reconstruction and Development (the World Bank), and the Directorate-General for Development of the Commission of the European Communities. The aim of this book is to improve the understanding of household energy and its linkages, by reviewing the data resources on household energy use, supply, prices and other relevant factors that exist in South Asia.

Leach, G.

1987-01-01T23:59:59.000Z

240

Household energy use in urban Venezuela: Implications from surveys in Maracaibo, Valencia, Merida, and Barcelona-Puerto La Cruz  

Science Conference Proceedings (OSTI)

This report identifies the most important results of a comparative analysis of household commercial energy use in Venezuelan urban cities. The use of modern fuels is widespread among all cities. Cooking consumes the largest share of urban household energy use. The survey documents no use of biomass and a negligible use of kerosene for cooking. LPG, natural gas, and kerosene are the main fuels available. LPG is the fuel choice of low-income households in all cities except Maracaibo, where 40% of all households use natural gas. Electricity consumption in Venezuela`s urban households is remarkably high compared with the levels used in households in comparable Latin American countries and in households of industrialized nations which confront harsher climatic conditions and, therefore, use electricity for water and space heating. The penetration of appliances in Venezuela`s urban households is very high. The appliances available on the market are inefficient, and there are inefficient patterns of energy use among the population. Climate conditions and the urban built form all play important roles in determining the high level of energy consumption in Venezuelan urban households. It is important to acknowledge the opportunities for introducing energy efficiency and conservation in Venezuela`s residential sector, particularly given current economic and financial constraints, which may hamper the future provision of energy services.

Figueroa, M.J.; Sathaye, J.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Smoking, Drinking, and Income  

E-Print Network (OSTI)

A growing literature identifies a beneficial effect of moderate and even heavy drinking on wages and a negative effect of smoking on wages. An outstanding issue is whether these results obtain because of a causal effect of substance use on wages or whether the observed correlations reflect the effects of income on consumption or other endogeneity problems. This paper presents full information estimates of the structural parameters of a simultaneous model of drinking and smoking status and income using repeated cross--section data. With all else in the system held constant, both smoking and drinking behaviour still have large effects on income, and the income elasticities of smoking and drinking are shown to be larger in magnitude when controlling for endogeneity. JEL Classification: I12 Keywords: alcohol, tobacco, simultaneous equations, maximum simulated likelihood, multinomial probit, limited dependent variables 1 I thank Cam Donaldson, Herb Emery, David Feeny, Chris Ferrall, Jon ...

Mingshan Lu; James Mackinnon; Ken Mckenzie; Harry Paarsche; Seminar Participants; M. Christopher Auld; M. Christopher Auld

1999-01-01T23:59:59.000Z

242

Table WH1. Total Households Using Water Heating Equipment, 2005 ...  

U.S. Energy Information Administration (EIA)

Table WH1. Total Households Using Water Heating Equipment, 2005 Million U.S. Households Fuels Used (million U.S. households) Number of Water Heaters Used

243

Utah Natural Gas % of Total Residential Deliveries (Percent)  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

244

Illinois Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Illinois Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

245

Wisconsin Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Wisconsin Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

246

California Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

247

Ohio Natural Gas % of Total Residential Deliveries (Percent)  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Ohio Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

248

Colorado Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

249

Vermont Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Vermont Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

250

Alabama Natural Gas Percentage Total Industrial Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

251

Alabama Natural Gas Percentage Total Commercial Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

252

Michigan Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Michigan Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

253

Idaho Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Idaho Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

254

New Mexico Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

255

New Mexico Natural Gas % of Total Vehicle Fuel Deliveries (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Deliveries (Percent) New Mexico Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

256

Texas Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Texas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

257

Utah Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Utah Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

258

West Virginia Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

259

Kansas Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Kansas Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

260

Kentucky Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Kentucky Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mississippi Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Mississippi Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

262

West Virginia Percent of Historical Oil Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

263

Federal Gulf Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

Federal Gulf Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

264

Alabama Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Alabama Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

265

North Dakota Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

North Dakota Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

266

Pennsylvania Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

Pennsylvania Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

267

Florida Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

268

California Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

California Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

269

Alaska Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

270

Colorado Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Colorado Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

271

Texas Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

272

United States Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

273

Oklahoma Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Oklahoma Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

274

North Dakota Percent of Historical Oil Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

North Dakota Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

275

Wyoming Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Wyoming Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

276

Florida Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

277

Michigan Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Michigan Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

278

United States Percent of Historical Oil Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

279

Federal Gulf Percent of Historical Oil Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

Federal Gulf Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

280

South Dakota Percent of Historical Oil Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

South Dakota Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Texas Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

282

Household Energy Consumption and Expenditures 1993 -- Executive ...  

U.S. Energy Information Administration (EIA)

national level data on energy-related issues on households and energy expenditures in the residential sector.

283

The impact of the Persian Gulf crisis on household energy consumption and expenditure patterns  

Science Conference Proceedings (OSTI)

The Iraqi invasion of the Kingdom of Kuwait on August 2, 1990, and the subsequent war between Iraq and an international alliance led by the United States triggered first immediate and then fluctuating world petroleum prices. Increases in petroleum prices and in U.S. petroleum imports resulted in increases in the petroleum prices paid by U.S. residential, commercial, and industrial consumers. The result was an immediate price shock that reverberated throughout the U.S. economy. The differential impact of these price increases and fluctuations on poor and minority households raised immediate, significant, and potentially long-term research, policy, and management issues for a variety of federal, state, and local government agencies, including the U.S. Department of Energy (DOE). Among these issues are (1) the measurement of variations in the impact of petroleum price changes on poor, nonpoor, minority, and majority households; (2) how to use the existing policy resources and policy innovation to mitigate regressive impacts of petroleum price increases on lower-income households; and (3) how to pursue such policy mitigation through government agencies severely circumscribed by tax and expenditure limitations. Few models attempt to assess household energy consumption and energy expenditure under various alternative price scenarios and with respect to the inclusion of differential household choices correlated with such variables as race, ethnicity, income, and geographic location. This paper provides a preliminary analysis of the nature and extent of potential impacts of petroleum price changes attributable to the Persian Gulf War and its aftermath on majority, black, and Hispanic households and on overlapping poor and nonpoor households. At the time this was written, the Persian Gulf War had concluded with Iraq`s total surrender to all of the resolutions and demands of the United Nations and United States.

Henderson, L. [Univ. of Baltimore, MD (United States); Poyer, D.; Teotia, A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

284

Patterns of rural household energy use: a study in the White Nile province - the Sudan  

Science Conference Proceedings (OSTI)

The study investigates rural household domestic energy consumption patterns in a semiarid area of the Sudan. It describes the socioeconomic and evironmental context of energy use, provides an estimation of local woody biomass production and evaluates ecological impacts of increased energy demand on the local resource base. It is based on findings derived from field surveys, a systematic questionnaire and participant observations. Findings indicate that households procure traditional fuels by self-collection and purchases. Household members spent on average 20% of their working time gathering fuels. Generally per caput and total annual expenditure and consumption of domestic fuels are determined by household size, physical availability, storage, prices, income, conservation, substitution and competition among fuel resource uses. Households spend on average 16% of their annual income on traditional fuels. Aggregation of fuels on heat equivalent basis and calculation of their contribution shows that on average firewood provides 63%, charcoal 20.7%, dung 10.4%, crop residues 3.4% and kerosene/diesel 2.5% of the total demand for domestic purposes. Estimated total household woodfuel demand exceeds woody biomass available from the local forests. This demand is presently satisfied by a net depletion of the local forests and purchases from other areas. Degradation of the resource base is further exacerbated by development of irrigation along the White Nile River, increasing livestock numbers (overgrazing) and forest clearance for rainfed cultivation. The most promising relevant and appropriate strategies to alleviate rural household domestic energy problems include: conservation of the existing forest, augmentation through village woodlots and community forestry programmes and improvements in end-use (stoves) and conversion (wood to charcoal) technologies.

Abdu, A.S.E.

1985-01-01T23:59:59.000Z

285

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

286

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Home Office Equipment by Midwest Census Region, 0a. Home Office Equipment by Midwest Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Households Using Office Equipment ......................................... 96.2 22.4 15.7 6.7 1.3 Personal Computers 1 ................................. 60.0 14.1 9.9 4.2 3.7 Number of Desktop PCs 1 ................................................................ 45.1 10.4 7.2 3.2 3.7 2 or more ................................................... 9.1 2.3 1.6 0.7 10.1 Number of Laptop PCs 1 ................................................................

287

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Home Office Equipment by Northeast Census Region, 9a. Home Office Equipment by Northeast Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.1 1.4 1.2 Total .............................................................. 107.0 20.3 14.8 5.4 NE Households Using Office Equipment ......................................... 96.2 17.9 12.8 5.0 1.3 Personal Computers 1 ................................. 60.0 10.9 7.7 3.3 3.1 Number of Desktop PCs 1 ................................................................ 45.1 8.7 6.2 2.5 3.7 2 or more ................................................... 9.1 1.4 0.9 0.5 12.9 Number of Laptop PCs 1 ................................................................

288

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book (EERE)

Level and Weatherization Eligibility (Millions) Single-Family Multi-Family Unit Mobile Home 2005 Household Income Own Rent Own Rent Own Rent Less than 15,000 6.1 2.4 0.3 7.1 1.6...

289

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Air Conditioning by Midwest Census Region, 0a. Air Conditioning by Midwest Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 20.5 13.6 6.8 2.2 Air Conditioners Not Used ........................... 2.1 0.3 Q Q 27.5 Households Using Electric Air-Conditioning 1 ........................................ 80.8 20.2 13.4 6.7 2.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 14.3 9.5 4.8 3.8 Without a Heat Pump ................................ 46.2 13.6 9.0 4.6 3.9 With a Heat Pump .....................................

290

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Air Conditioning by Urban/Rural Location, 8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 36.8 13.6 18.9 13.6 4.3 Air Conditioners Not Used ........................... 2.1 1.2 0.2 0.4 0.3 21.4 Households Using Electric Air-Conditioning 2 ........................................ 80.8 35.6 13.4 18.6 13.3 4.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 ............................ 57.5 23.6 8.6 15.8 9.4 5.1 Without a Heat Pump ................................ 46.2 19.3 7.4 13.1 6.4 6.3 With a Heat Pump ..................................... 11.3 4.4

291

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Air Conditioning by Type of Owner-Occupied Housing Unit, 5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 59.5 58.7 6.5 12.4 5.3 5.2 Air Conditioners Not Used ............ 1.2 1.1 Q 0.6 Q 23.3 Households Using Electric Air-Conditioning 1 .......................... 58.2 57.6 6.3 11.8 5.1 5.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 44.7 43.6 3.2 7.1 3.5 7.0 Without a Heat Pump .................. 35.6 35.0 2.4 6.1 2.7 7.7 With a Heat Pump .......................

292

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Air Conditioning by Type of Rented Housing Unit, 6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.8 0.5 1.4 1.2 1.6 Households With Electric Air-Conditioning Equipment ........ 23.4 58.7 6.5 12.4 5.3 6.1 Air Conditioners Not Used ............ 0.9 1.1 Q 0.6 Q 23.0 Households Using Electric Air-Conditioning 1 .......................... 22.5 57.6 6.3 11.8 5.1 6.2 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 12.7 43.6 3.2 7.1 3.5 8.5 Without a Heat Pump .................. 10.6 35.0 2.4 6.1 2.7 9.3 With a Heat Pump ....................... 2.2 8.6 0.8 1.0

293

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Air Conditioning by South Census Region, 1a. Air Conditioning by South Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 37.2 19.3 6.4 11.5 1.5 Air Conditioners Not Used ........................... 2.1 0.4 Q Q Q 28.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 36.9 19.0 6.4 11.5 1.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 30.4 16.1 5.0 9.2 2.8 Without a Heat Pump ................................ 46.2 22.1 10.4 3.4 8.3 5.6 With a Heat Pump

294

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Air Conditioning by Northeast Census Region, 9a. Air Conditioning by Northeast Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.8 Households With Electric Air-Conditioning Equipment ...................... 82.9 14.5 11.3 3.2 3.3 Air Conditioners Not Used ........................... 2.1 0.3 0.3 Q 28.3 Households Using Electric Air-Conditioning 1 ........................................ 80.8 14.2 11.1 3.2 3.4 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 5.7 4.9 0.8 8.9 Without a Heat Pump ................................ 46.2 5.2 4.5 0.7 9.2 With a Heat Pump .....................................

295

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Air Conditioning by Year of Construction, 2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.1 1.2 1.1 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 13.6 16.0 14.7 10.4 10.5 17.6 4.7 Air Conditioners Not Used ............ 2.1 Q 0.3 0.5 0.3 0.4 0.5 27.2 Households Using Electric Air-Conditioning 2 .......................... 80.8 13.4 15.8 14.2 10.1 10.2 17.1 4.7 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 12.6 13.7 11.0 7.1 6.6 6.4 5.9 Without a Heat Pump .................. 46.2 10.1 10.4 8.0 6.1 5.9 5.7 7.0 With a Heat Pump ....................... 11.3 2.5 3.3

296

Inconsistent pathways of household waste  

Science Conference Proceedings (OSTI)

The aim of this study was to provide policy-makers and waste management planners with information about how recycling programs affect the quantities of specific materials recycled and disposed of. Two questions were addressed: which factors influence household waste generation and pathways? and how reliable are official waste data? Household waste flows were studied in 35 Swedish municipalities, and a wide variation in the amount of waste per capita was observed. When evaluating the effect of different waste collection policies, it was found to be important to identify site-specific factors influencing waste generation. Eleven municipal variables were investigated in an attempt to explain the variation. The amount of household waste per resident was higher in populous municipalities and when net commuting was positive. Property-close collection of dry recyclables led to increased delivery of sorted metal, plastic and paper packaging. No difference was seen in the amount of separated recyclables per capita when weight-based billing for the collection of residual waste was applied, but the amount of residual waste was lower. Sixteen sources of error in official waste statistics were identified and the results of the study emphasize the importance of reliable waste generation and composition data to underpin waste management policies.

Dahlen, Lisa [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden)], E-mail: lisa.dahlen@ltu.se; Aberg, Helena [Department of Food, Health and Environment, University of Gothenburg, P.O. Box 12204, SE, 402 42 Gothenburg (Sweden); Lagerkvist, Anders [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden); Berg, Per E.O. [HB Anttilator, Stagnellsgatan 3, SE, 652 23, Karlstad (Sweden)

2009-06-15T23:59:59.000Z

297

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Air Conditioning by Type of Housing Unit, 4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.6 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 82.9 58.7 6.5 12.4 5.3 4.9 Air Conditioners Not Used ............ 2.1 1.1 Q 0.6 Q 21.8 Households Using Electric Air-Conditioning 1 .......................... 80.8 57.6 6.3 11.8 5.1 4.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 57.5 43.6 3.2 7.1 3.5 6.7 Without a Heat Pump .................. 46.2 35.0 2.4 6.1 2.7 7.7 With a Heat Pump ....................... 11.3 8.6 0.8 1.0 0.8 19.7 Room Air-Conditioning

298

Sizing Wind/Photovoltaic Hybrids for Households in Inner Mongolia  

DOE Green Energy (OSTI)

Approximately 140,000 wind turbines currently provide electricity to about one-third of the non-grid-connected households in Inner Mongolia. However, these households often suffer from a lack of power during the low-wind summer months. This report describes an analysis of hybrid wind/photovoltaic (PV) systems for such households. The sizing of the major components is based on a subjective trade-off between the cost of the system and the percent unmet load, as determined by the Hybrid 2 software in conjunction with a simplified time-series model. Actual resource data (wind speed and solar radiation) from the region are processed so as to best represent the scenarios of interest. Small wind turbines of both Chinese and U.S. manufacture are considered in the designs. The results indicate that combinations of wind and PV are more cost-effective than either one alone, and that the relative amount of PV in the design increases as the acceptable unmet load decreases and as the average wind sp eed decreases.

Barley, C. D.; Lew, D. J.; Flowers, L. T.

1997-06-01T23:59:59.000Z

299

Utah Percent of Historical Oil Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Utah Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

300

Texas Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Texas Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

302

West Virginia Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

303

Oklahoma Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Oklahoma Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

304

Pennsylvania Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Pennsylvania Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

305

California Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

California Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

306

Ohio Percent of Historical Gas Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Ohio Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

307

Alaska Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

308

Wt% = Weight percent of undissolved solids in the slurry = Density ...  

high-level radioactive waste stored in underground, tanks at the Hanford site. The ability to continuously monitor the solids weight percent of mixed slurries in these

309

United States Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

310

United States Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

311

Michigan Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Michigan Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

312

Montana Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Montana Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

313

Ohio Percent of Historical Oil Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Ohio Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

314

Florida Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

315

Kentucky Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Kentucky Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

316

Arkansas Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Arkansas Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

317

Tennessee Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Tennessee Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

318

West Virginia Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

319

Colorado Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Colorado Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

320

Missouri Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Missouri Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wyoming Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Wyoming Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

322

Alaska Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

323

South Dakota Natural Gas % of Total Residential - Sales (Percent...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas % of Total Residential - Sales (Percent) South Dakota Natural Gas % of Total Residential - Sales...

324

South Dakota Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

South Dakota Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

325

South Dakota Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas % of Total Residential Deliveries (Percent) South Dakota Natural Gas % of Total Residential Deliveries...

326

New Mexico Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

New Mexico Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

327

North Dakota Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) North Dakota Natural Gas % of Total Residential - Sales (Percent) North Dakota Natural Gas % of Total Residential - Sales...

328

New Jersey Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) New Jersey Natural Gas % of Total Residential - Sales (Percent) New Jersey Natural Gas % of Total Residential - Sales...

329

North Carolina Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) North Carolina Natural Gas % of Total Residential - Sales (Percent) North Carolina Natural Gas % of Total Residential - Sales...

330

West Virginia Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) West Virginia Natural Gas % of Total Residential - Sales (Percent) West Virginia Natural Gas % of Total Residential - Sales...

331

Massachusetts Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Massachusetts Natural Gas % of Total Residential - Sales (Percent) Massachusetts Natural Gas % of Total Residential - Sales...

332

Extending Efficiency Services to Underserved Households: NYSERDAs Assisted Home Performance with ENERGY STAR Program  

NLE Websites -- All DOE Office Websites (Extended Search)

N April 4, 2012 Extending Efficiency Services to Underserved Households: NYSERDA's Assisted Home Performance with ENERGY STAR Program Since 2001, New York residents have completed over 39,000 energy upgrades through NYSERDA's Home Performance with ENERGY STAR (HPwES) initiative. Approximately one third of these projects have been completed through the Assisted HPwES track, which offers large incentives to middle income

333

An economic assessment of the impact of two crude oil price scenarios on households  

SciTech Connect

The impact of two possible future crude oil price scenarios -- high and low price cases -- is assessed for three population groups: majority (non-Hispanic and nonblack), black, and Hispanic. The two price scenarios were taken from the energy security'' report published by the US Department of Energy in 1987. Effects of the two crude oil price scenarios for the 1986--95 period are measured for energy demand and composition and for share of income spent on energy by the three population groups at both the national and census-region levels. The effects on blacks are marginally more adverse than on majority householders, while effects on Hispanics are about the same as those on the majority. Little change is seen in percentage of income spent on energy over the forecast period. Both Hispanic and black households would spend a larger share of their incomes on energy than would majority households. The relatively adverse effects in the higher price scenario shift from the South and West Census regions to the Northeast and Midwest. 24 refs., 7 figs., 22 tabs.

Poyer, D.A.; Teotia, A.P.S.; Hemphill, R.C.; Hill, L.G.; Marinelli, J.L.; Rose, K.J.; Santini, D.J.

1990-02-01T23:59:59.000Z

334

Impacts of a 10-Percent Renewable Portfolio Standard  

Reports and Publications (EIA)

This service report addresses the renewable portfolio standard provision of S. 1766. At Senator Murkowski's request it also includes an analysis of the impacts of a renewable portfolio standard patterned after the one called for in S. 1766, but where the required share is based on a 20 percent RPS by 2020 rather than the 10 percent RPS called for in S. 1766.

Alan Beamon

2002-03-01T23:59:59.000Z

335

Low-income energy assistance: State responses to funding reductions  

SciTech Connect

Appropriations for the Low Income Home Energy Assistance Program have declined each year since FY 1986, from a level of about $2.0 billion to about $1.5 billion in FY 1988. The President's budget for FY 1989 has proposed a further reduction to about $1.2 billion. The reduction was proposed in recognition of the hundreds of millions of dollars in oil overcharge settlements available to states for this and certain other activities. GAO reviewed 13 states for information on the availability and use of oil overcharge funds; federal allotments to LIHEAP, total LIHEAP funding, and a projection of possible FY 1989 funding; the number of LIHEAP households provided heating assistance; heating benefit levels per household; LIHEAP transfers to and from other block grants; and perceptions of interest groups of past and proposed LIHEAP budget cuts.

Not Available

1988-01-01T23:59:59.000Z

336

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7a Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

337

Home > Households, Buildings & Industry > Energy Efficiency ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 4 Total Square Feet of U.S. Housing Units

338

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 5c Glossary U.S. Residential Housing Site Page Last Revised: July 2009

339

Residential Energy Usage by Origin of Householder  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Residential Home Page > Energy Usage by Origin of Householder. Consumption and Expenditures. NOTE: To View and/or Print PDF's ...

340

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7b Glossary U.S. Residential Housing Primary Energy Intensity

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

342

Alston S. Householder Fellowship | Careers | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

in Scientific Computing honors Dr. Alston S. Householder, founding Director of the Mathematics Division (now Computer Science and Mathematics Division) at the Oak Ridge National...

343

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

344

Energy and Economic Impacts of Implementing Both a 25-Percent RPS and a 25-Percent RFS by 2025  

Reports and Publications (EIA)

This report responds to a request by Senator James Inhofe for analysis of a "25-by-25" proposal that combines a requirement that a 25-percent share of electricity sales be produced from renewable sources by 2025 with a requirement that a 25-percent share of liquid transportation fuel sales also be derived from renewable sources by 2025.

John J. Conti

2007-09-11T23:59:59.000Z

345

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Home Office Equipment by Year of Construction, 2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.4 1.1 1.1 1.2 1.2 1.0 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Households Using Office Equipment .......................... 96.2 14.9 16.7 17.0 12.2 13.0 22.4 4.4 Personal Computers 2 ................... 60.0 11.0 11.6 10.3 7.2 7.8 12.0 5.3 Number of Desktop PCs 1 .................................................. 45.1 8.0 9.0 7.7 5.3 6.1 9.1 5.8 2 or more .................................... 9.1 1.8 1.6 2.0 1.1 1.0 1.6 11.8 Number of Laptop PCs 1 ..................................................

346

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.7 1.2 1.2 Households With Electric Air-Conditioning Equipment ...................... 82.9 4.9 6.0 7.4 6.2 2.4 Air Conditioners Not Used ........................... 2.1 0.1 0.8 Q 0.1 23.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 4.7 5.2 7.4 6.1 2.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 1.3 3.9 6.2 5.7 6.7 Without a Heat Pump ................................ 46.2 1.2 3.2 5.5 3.8 8.1 With a Heat Pump ..................................... 11.3 Q 0.8 0.6 1.9 14.7 Room Air-Conditioning ................................ 23.3 3.4 1.2 1.2 0.3 13.6 1 Unit

347

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Home Office Equipment by South Census Region, 1a. Home Office Equipment by South Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Households Using Office Equipment ......................................... 96.2 34.6 18.4 6.0 10.1 1.2 Personal Computers 1 ................................. 60.0 20.7 11.7 3.2 5.8 4.0 Number of Desktop PCs 1 ................................................................ 45.1 15.5 8.6 2.6 4.3 4.9 2 or more ................................................... 9.1 3.1 2.0 0.4 0.7 9.6 Number of Laptop PCs

348

Electricity Prices for Households - EIA  

Gasoline and Diesel Fuel Update (EIA)

Households for Selected Countries1 Households for Selected Countries1 (U.S. Dollars per Kilowatthour) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA 0.023 NA NA Australia 0.091 0.092 0.094 0.098 NA NA NA NA NA Austria 0.144 0.154 0.152 0.163 0.158 0.158 0.178 0.201 NA Barbados NA NA NA NA NA NA NA NA NA Belgium NA NA NA NA NA NA NA NA NA Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA 0.145 0.171 NA Canada 0.067 0.069 0.070 0.071 0.076 0.078 NA NA NA Chile NA NA NA NA NA NA 0.140 0.195 NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 0.075 0.071 0.074 0.076 0.079 0.079 0.080 0.086 NA Colombia NA NA NA NA NA NA 0.111 0.135 NA

349

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Home Office Equipment by Climate Zone, a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.2 1.1 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.9 Households Using Office Equipment .......................... 96.2 8.4 26.2 21.1 19.0 21.5 7.8 Personal Computers 2 ................... 60.0 5.7 16.7 13.1 12.1 12.6 7.4 Number of Desktop PCs 1 .................................................. 45.1 4.2 12.8 9.6 8.8 9.6 7.8 2 or more .................................... 9.1 0.8 2.4 2.3 2.0 1.7 12.1 Number of Laptop PCs 1 ..................................................

350

"Table HC15.3 Household Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Four Most Populated States, 2005" 3 Household Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Household Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Household Size" "1 Person",30,1.8,1.9,2,3.2 "2 Persons",34.8,2.2,2.3,2.4,3.2 "3 Persons",18.4,1.1,1.3,1.2,1.8 "4 Persons",15.9,1,0.9,1,2.3 "5 Persons",7.9,0.6,0.6,0.9,0.9 "6 or More Persons",4.1,0.4,"Q",0.5,0.7 "2005 Annual Household Income Category" "Less than $9,999",9.9,0.8,0.7,0.9,1 "$10,000 to $14,999",8.5,0.8,0.4,0.6,0.7

351

WORKINGPAPER SERIES Number 150CAP AND DIVIDEND: HOW TO CURB GLOBAL WARMING WHILE PROTECTING THE INCOMES OF AMERICAN FAMILIES  

E-Print Network (OSTI)

This essay examines the distributional effects of a “cap-and-dividend ” policy for reducing carbon emission in the United States: a policy that auctions carbon permits and rebates the revenue to the public on an equal per capita basis. The aim of the policy is to reduce U.S. emissions of carbon dioxide, the main pollutant causing global warming, while at the same time protecting the real incomes of middle-income and lower-income American families. The number of permits is set by a statutory cap on carbon emissions that gradually diminishes over time. The sale of carbon permits will generate very large revenues, posing the critical question of who will get the money. The introduction of carbon permits – or, for that matter, any policy to curb emissions – will raise prices of fossil fuels, Key words: Global warming; fossil fuels; climate change; carbon permits; cap-and-dividend; cap-and-auction; cap-and-trade. and have a regressive impact on income distribution, since fuel expenditures represent a larger fraction of income for lower-income households than for upper-income households. The net effect of carbon emission-reduction policies depends on who gets the money that households pay in higher prices. We find that a cap-and-dividend policy would have a strongly progressive net effect. Moreover, the majority of U.S. households would be net winners in purely monetary terms: that is, their real incomes, after paying higher fuel prices and receiving their dividends, would rise. From the standpoints of both distributional equity and political feasibility, a cap-and-dividend policy is therefore an attractive way to curb carbon emissions. s s

James K. Boyce; Matthew Riddle; James K. Boyce; Matthew Riddle

2007-01-01T23:59:59.000Z

352

Household energy handbook: an interim guide and reference manual. World Bank technical paper. Manuel d'energie domestique: memento et guide interimaire  

Science Conference Proceedings (OSTI)

A standard framework for measuring and assessing technical information on the household energy sources in developing countries is needed. This handbook is intended as a first step toward creating such a framework. Chapter 1 discusses energy terms and principals underlying the energy units, definitions, and calculations presented in the following chapters. Chapter 2 describes household consumption patterns and their relationship to income, location and household use variables. Chapter 3 evaluates energy end-uses and the technologies that provide cooking, lighting, refrigeration, and space heating services. Chapter 4 examines household energy resources and supplies, focusing on traditional biomass fuels. Finally, Chapter 5 demonstrates simple assessment methods and presents case studies to illustrate how household energy data can be used in different types of assessments.

Leach, G.; Gowen, M.

1989-01-01T23:59:59.000Z

353

Federal Government Increases Renewable Energy Use Over 1000 Percent since  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Government Increases Renewable Energy Use Over 1000 Percent Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy consumer in the nation, the federal government now uses 2375 Gigawatt hours (GWh) of renewable energy -- enough to power 225,000 homes or a city the size of El Paso, Texas, for a year. "Particularly in light of tight oil and gas supplies caused by Hurricanes Katrina and Rita, it is important that all Americans - including the

354

Federal Government Increases Renewable Energy Use Over 1000 Percent since  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Government Increases Renewable Energy Use Over 1000 Percent Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy consumer in the nation, the federal government now uses 2375 Gigawatt hours (GWh) of renewable energy -- enough to power 225,000 homes or a city the size of El Paso, Texas, for a year. "Particularly in light of tight oil and gas supplies caused by Hurricanes Katrina and Rita, it is important that all Americans - including the

355

BOSS Measures the Universe to One-Percent Accuracy  

NLE Websites -- All DOE Office Websites (Extended Search)

This and future measures at this precision are the key to determining the nature of dark energy. "One-percent accuracy in the scale of the universe is the most precise such...

356

Impacts of a 15-Percent Renewable Portfolio Standard  

Reports and Publications (EIA)

This analysis responds to a request from Senator Jeff Bingaman that the Energy Information Administration (EIA) analyze a renewable portfolio standard (RPS) requiring that 15 percent of U.S. electricity sales be derived from qualifying renewable energy resources.

Alan Beamon

2007-06-11T23:59:59.000Z

357

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book (EERE)

7 7 Residential Energy Burdens, by Weatherization Eligibility and Year (1) 1987 Mean Mean Mean Mean Mdn Mean Mean Mdn Mean Group Indvdl Group Indvdl Indvdl Group Indvdl Indvdl Group Total U.S. Households 4.0% 6.8% 3.2% 6.1% 3.5% 2.4% 7.2% 4.4% 3.2% Federally Eligible 13.0% 14.4% 10.1% 12.1% 7.9% 7.7% 13.8% 9.6% 10.0% Federally Ineligible 4.0% 3.5% N.A. 3.0% 2.6% 2.0% 3.6% 3.1% 2.6% Below 125% Poverty Line 13.0% N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. Note(s): Source(s): 1990 FY 2000 (2) FY 2009 (3) 1) Energy burden can be defined broadly as the burden placed on household incomes by the cost of energy, or the ratio of energy expenditures to income for a household. DOE Weatherization primarily uses mean individual burden and mean group burden since these statistics provide data on how an "average" individual household fares against an "average" group of households (that is, how burdens are

358

Earned Income Credit  

E-Print Network (OSTI)

This management advisory report presents the results of our review of the effectiveness of the Internal Revenue Service’s (IRS) administration of the Earned Income Credit (EIC). 1 The objective of this review was to evaluate the history of the EIC, difficulties the IRS has faced involving the EIC in the past, and the problems the IRS faces in the future. This is the first in a series of audits on the EIC. Currently, the Treasury Inspector General for Tax Administration has the following five audits in process involving the EIC: • The EIC Recertification Process. • Duplicate Dependent Claims. • Revenue Protection Strategy on Improving Taxpayer Compliance. • Educating and Assisting Taxpayers on the EIC.

Review Process; Pamela J. Gardiner

2000-01-01T23:59:59.000Z

359

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Appliances by Northeast Census Region, 9a. Appliances by Northeast Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.3 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 19.6 14.5 5.2 1.1 1 .............................................................. 95.2 18.2 13.3 4.9 1.1 2 or More ................................................. 6.5 1.4 1.1 0.3 11.7 Most Used Oven ...................................... 101.7 19.6 14.5 5.2 1.1 Electric .....................................................

360

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Space Heating by South Census Region, 1a. Space Heating by South Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.3 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Heat Home .................................................... 106.0 38.8 20.2 6.8 11.8 NE Do Not Heat Home ....................................... 1.0 Q Q Q Q 20.1 No Heating Equipment ................................ 0.5 Q Q Q Q 39.8 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q Q 39.0 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Space Heating by Northeast Census Region, 9a. Space Heating by Northeast Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 20.3 14.8 5.4 NE Heat Home .................................................... 106.0 20.1 14.7 5.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.9 No Heating Equipment ................................ 0.5 Q Q Q 39.5 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.7 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 20.1 14.7 5.4 NE Natural Gas .................................................

362

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Space Heating by Midwest Census Region, 0a. Space Heating by Midwest Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Heat Home .................................................... 106.0 24.5 17.1 7.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.8 No Heating Equipment ................................ 0.5 Q Q Q 39.2 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.4 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 24.5 17.1 7.4 NE Natural Gas

363

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by West Census Region, 2a. Space Heating by West Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.6 1.0 1.6 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Heat Home .................................................... 106.0 22.6 6.7 15.9 NE Do Not Heat Home ....................................... 1.0 0.7 Q 0.7 10.6 No Heating Equipment ................................ 0.5 0.4 Q 0.4 18.1 Have Equipment But Do Not Use It ............................................... 0.4 0.2 Q 0.2 27.5 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 22.6 6.7 15.9 NE Natural Gas .................................................

364

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by West Census Region, 2a. Appliances by West Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 22.1 6.6 15.5 1.1 1 .............................................................. 95.2 20.9 6.4 14.5 1.1 2 or More ................................................. 6.5 1.2 0.2 1.0 14.6 Most Used Oven ...................................... 101.7 22.1 6.6 15.5 1.1 Electric .....................................................

365

Characterization of household waste in Greenland  

Science Conference Proceedings (OSTI)

The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.

Eisted, Rasmus, E-mail: raei@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2011-07-15T23:59:59.000Z

366

Project #: UM08-Q3Saving among Low-Income Women: Motivation and Obstacles  

E-Print Network (OSTI)

How do low-income households think about saving? What motivations do they identify for saving, and what obstacles to meeting their goals? We use data from qualitative interviews with 51 households in Detroit to shed light on these questions. We find that they wish they could save- primarily for protection against the unexpected or to put children through college- but that most of them cannot. Friends and family surface as a major obstacle to saving, since those who have liquid assets are asked for help. When savings is feasible in this population, it occurs

Helen Levy; Kristin Seefeldt; Helen Levy; Kristin Seefeldt; Ann Arbor; Andrea Fischer Newman; Ann Arbor; Andrew C. Richner; Grosse Pointe; Park S. Martin; Helen Levy; Kristin Seefeldt

2008-01-01T23:59:59.000Z

367

Modeling patterns of hot water use in households  

E-Print Network (OSTI)

7 No Dishwashers . . . . . . . .to households without dishwashers. no_cw is only applied towasher; the absence of a dishwasher; a household consisting

Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

1996-01-01T23:59:59.000Z

368

Probit Model Estimation Revisited: Trinomial Models of Household Car Ownership  

E-Print Network (OSTI)

Household Ownership of Car Davidon, W. C. (1959) VariableStudy Report 9: Models of Car Ownership and License Holding.Trinomial Models of Household Car Ownership. Transportation

Bunch, David S.; Kitamura, Ryuichi

1991-01-01T23:59:59.000Z

369

Low income energy assistance  

Science Conference Proceedings (OSTI)

States are limited in their ability to manage their heating assistance programs because they normally receive funds from the Low Income Home Energy Assistance Program after the heating season has begun and after they have decided on the benefits to be provided to eligible participants. In addition, the Department of Health and Human Services does not have enough flexibility to respond to unanticipated energy cost increases that can occur as a result of unusually severe weather or fuel price increases. HHS and the states could better manage the program if (1) it were forward funded so the states would know exactly how much federal assistance they would receive before they begin handling applications for heating assistance and (2) HHS had some discretion in how funds are allocated to the states to enable it to react to unanticipated energy-related circumstances.

Not Available

1990-10-01T23:59:59.000Z

370

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

SciTech Connect

The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

2009-04-15T23:59:59.000Z

371

NETL: News Release - President's Initiative to Seek 90 Percent Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

April 21, 2004 April 21, 2004 President's Initiative to Seek 90 Percent Mercury Removal We Energies to Test TOXECON(tm) Process in Michigan Coal-fired Power Plant WASHINGTON, DC - The Department of Energy (DOE) and We Energies today initiated a joint venture to demonstrate technology that will remove an unprecedented 90 percent of mercury emissions from coal-based power plants. Presque Isle Power Plant - We Energies' Presque Isle Power Plant located on the shores of Lake Superior in the Upper Peninsula of Michigan. As part of the President's Clean Coal Power Initiative of technology development and demonstration, the new project supports current proposals to reduce mercury emissions in the range of 70 percent through a proposed regulation pending before the Environmental Protection Agency or, in the

372

Low-income energy assistance programs: a profile of need and policy options  

Science Conference Proceedings (OSTI)

This second report of the Fuel Oil Marketing Advisory Committee (FOMAC) of DOE is twofold: to update information on the energy needs of low-income persons and governmental response to such needs; and to emphasize the need for energy-conservation programs that may alleviate the enormous financial burden placed on low-income people by rising energy prices. FOMAC has continued to develop further and refine its initial energy-conservation recommendations. Mainly, the updated assessment document finds that the poor will expend at least 35% of their income directly on energy and will spend at least 21% of their income on household energy. Other economic impacts of rising energy costs on low-income groups are summarized. Appropriations and stipulations by Congress to aid the lo-income people are reviewed. After careful review of various program designs, FOMAC continues to support the income indexing/vendor line of credit approach. This design provides assistance to elgible households based on: energy needed, cost of fuel, and percentage of income. The cost of implementing the FOMAC design nationally would, according to estimates, range from $3.5 to $4.6 billion for the 1980-1981 winter heating season. A figure of $1.6 to $2.2 billion is being discussed in the Congress. Meeting the ongoing energy needs of the poor will require a coherent national policy which consists of aid in paying energy bills and aid in the poor's effort to conserve energy. The report seeks to promote such policies. Needs assessment, government response, FOMAC model, comments on the programs, projected cost of 1980-1981 Energy Assistance Program, need for conservation programs, and program financing are discussed.

Not Available

1980-07-01T23:59:59.000Z

373

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Appliances by Climate Zone, a. Appliances by Climate Zone, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.1 Total .................................................. 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Kitchen Appliances Cooking Appliances Oven .............................................. 101.7 9.1 27.9 23.1 19.4 22.2 7.8 1 ................................................... 95.2 8.7 26.0 21.6 17.7 21.2 7.9 2 or More ..................................... 6.5 0.4 1.9 1.5 1.7 1.0 14.7 Most Used Oven ........................... 101.7 9.1 27.9 23.1 19.4 22.2

374

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Appliances by Type of Housing Unit, 4a. Appliances by Type of Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.5 1.7 1.6 1.9 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 69.1 9.4 16.7 6.6 4.3 1 ................................................ 95.2 63.7 8.9 16.2 6.3 4.3 2 or More .................................. 6.5 5.4 0.4 0.4 0.2 15.9 Most Used Oven ........................ 101.7 69.1 9.4 16.7 6.6 4.3 Electric ...................................... 63.0 43.3 5.2 10.9 3.6

375

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Space Heating by Urban/Rural Location, 8a. Space Heating by Urban/Rural Location, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.6 0.9 1.3 1.3 1.2 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.3 Heat Home .................................................... 106.0 49.1 18.0 21.2 17.8 4.3 Do Not Heat Home ....................................... 1.0 0.7 0.1 0.1 0.1 25.8 No Heating Equipment ................................ 0.5 0.4 0.1 Q 0.1 33.2 Have Equipment But Do Not Use It ............................................... 0.4 0.3 Q Q Q 30.2 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 49.1 18.0 21.2 17.8 4.3 Natural Gas

376

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by Year of Construction, 2a. Space Heating by Year of Construction, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.5 1.1 1.1 1.1 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Heat Home ..................................... 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Do Not Heat Home ........................ 1.0 Q Q Q 0.2 0.3 Q 23.2 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 30.3 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q Q Q 37.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Natural Gas ...................................

377

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Appliances by Type of Owner-Occupied Housing Unit, 5a. Appliances by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.4 2.1 3.1 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Kitchen Appliances Cooking Appliances Oven ........................................... 68.3 59.1 2.0 1.7 5.4 7.0 1 ................................................ 62.9 54.1 2.0 1.6 5.2 7.1 2 or More .................................. 5.4 5.0 Q Q 0.2 22.1 Most Used Oven ........................ 68.3 59.1 2.0 1.7 5.4 7.0 Electric ......................................

378

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Space Heating by Type of Housing Unit, 4a. Space Heating by Type of Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.7 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.4 Heat Home ..................................... 106.0 73.4 9.4 16.4 6.8 4.5 Do Not Heat Home ........................ 1.0 0.3 Q 0.6 Q 19.0 No Heating Equipment .................. 0.5 0.2 Q 0.3 Q 24.2 Have Equipment But Do Not Use It ................................ 0.4 Q Q 0.3 Q 28.1 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 73.4 9.4 16.4 6.8 4.5 Natural Gas ...................................

379

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Space Heating by Type of Owner-Occupied Housing Unit, 5a. Space Heating by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.4 1.9 3.0 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Heat Home ..................................... 72.4 63.0 2.0 1.7 5.7 6.7 Do Not Heat Home ........................ 0.4 0.2 Q Q Q 46.2 No Heating Equipment .................. 0.3 0.2 Q Q Q 39.0 Have Equipment But Do Not Use It ................................ Q Q Q Q Q NF Main Heating Fuel and Equipment (Have and Use Equipment) ............ 72.4 63.0 2.0 1.7 5.7 6.7 Natural Gas

380

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by Year of Construction, 2a. Appliances by Year of Construction, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.5 1.2 1.1 1.2 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 1 ................................................ 95.2 13.1 16.3 16.6 12.1 12.7 24.3 4.4 2 or More .................................. 6.5 1.2 0.9 1.1 0.7 1.0 1.6 14.8 Most Used Oven ........................ 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 Electric ......................................

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Space Heating by Type of Rented Housing Unit, 6a. Space Heating by Type of Rented Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Heat Home ..................................... 33.7 10.4 7.4 14.8 1.1 6.9 Do Not Heat Home ........................ 0.6 Q Q 0.5 Q 21.4 No Heating Equipment .................. 0.2 Q Q Q Q 84.5 Have Equipment But Do Not Use It ................................ 0.4 Q Q 0.3 Q 36.4 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 33.7 10.4 7.4 14.8 1.1 6.9 Natural Gas ...................................

382

Comparative analysis of energy data bases for household residential and transportation energy use  

SciTech Connect

Survey data bases covering household residential and transportation energy use were reviewed from the perspective of energy policy analysts and data base users. Twenty-three surveys, taken from 1972 to 1985, collected information on household energy consumption and expenditures, energy-using capital stock, and conservation activities. Ten of the surveys covered residential energy use only, including that for space heating and cooling, cooking, water heating, and appliances. Six surveys covered energy use only for household travel in personal vehicles. Seven surveys included data on both of these household energy sectors. Complete energy use data for a household in one year can be estimated only for 1983, using two surveys (one residential and one transportation) taken in the same households. The last nine surveys of the 23 were recent (1983--1985). Review of those nine was based on published materials only. The large-scale surveys generally had less-comprehensive data, while the comprehensive surveys were based on small samples. The surveys were timely and useful for analyzing four types of energy policies: economic regulation, environmental regulation, federal energy production, and direct regulation of energy consumption or production. Future surveys of energy use, such as those of residential energy consumption, should try to link their energy-use questions to large surveys, such as the American Housing Survey, to allow more accurate analysis of comparative impacts of energy policies among population categories of interest (e.g., minority/majority, metropolitan/nonmetropolitan area, census regions, and income class). 78 refs., 9 figs., 29 tabs.

Teotia, A.; Klein, Y.; LaBelle, S.

1988-11-01T23:59:59.000Z

383

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 4.3: 4.3: 4.3: ...

384

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 4.4: 4.6: 4.5: 4.3: 4.1: 4.2: 4.4: 4.3: ...

385

Microsoft Word - Household Energy Use CA  

Gasoline and Diesel Fuel Update (EIA)

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

386

Microsoft Word - Household Energy Use CA  

U.S. Energy Information Administration (EIA) Indexed Site

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

387

U.S. Household Electricity Report  

Reports and Publications (EIA)

Brief analysis reports on the amount of electricity consumed annually by U.S. households for each of several end uses, including space heating and cooling, water heating, lighting, and the operation of more than two dozen appliances.

Barbara Fichman

2005-07-14T23:59:59.000Z

388

Household gasoline demand in the United States  

E-Print Network (OSTI)

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

389

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

390

Do Disaster Expectations Explain Household Portfolios?  

E-Print Network (OSTI)

use the American Consumer Expenditure Survey (CEX) for consumption ex- penditure information. The data covers the period between 1983 and 2004. The expenditure information is recorded quarterly with approximately 5000 households in each wave. Every...

Alan, Sule

391

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

SciTech Connect

Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

Letschert, Virginie; McNeil, Michael A.

2009-03-23T23:59:59.000Z

392

A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact  

DOE Green Energy (OSTI)

The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

Cui, Xiaohui [ORNL; Liu, Cheng [ORNL; Kim, Hoe Kyoung [ORNL; Kao, Shih-Chieh [ORNL; Tuttle, Mark A [ORNL; Bhaduri, Budhendra L [ORNL

2011-01-01T23:59:59.000Z

393

"Table HC7.5 Space Heating Usage Indicators by Household Income...  

U.S. Energy Information Administration (EIA) Indexed Site

5,11.2,6.7,13.2,5.8,14.5 "Housing Unit Characteristics Affecting Usage" "Adequacy of Insulation" "Well Insulated",42.8,9,11,8.2,5.1,9.5,4.8,13.1 "Adequately Insulated",46.3,10.4,11...

394

Development of a Dedicated 100 Percent Ventilation Air Heat Pump  

Science Conference Proceedings (OSTI)

The concept of using dedicated 100 percent ventilation makeup air conditioning units to meet indoor air quality standards is attractive because of the inherent advantages. However, it is challenging to design and build direct expansion unitary equipment for this purpose. EPRI teamed with ClimateMaster to develop and test a prototype of a vapor compression heat pump to advance the state of the art in such equipment. The prototype unit provides deep dehumidification and cooling of ventilation air in the su...

2000-12-14T23:59:59.000Z

395

Household and environmental characteristics related to household energy-consumption change: A human ecological approach  

Science Conference Proceedings (OSTI)

This study focused on the family household as an organism and on its interaction with the three environments of the human ecosystem (natural, behavioral, and constructed) as these influence energy consumption and energy-consumption change. A secondary statistical analysis of data from the US Department of Energy Residential Energy Consumption Surveys (RECS) was completed. The 1980 and 1983 RECS were used as the data base. Longitudinal data, including household, environmental, and energy-consumption measures, were available for over 800 households. The households were selected from a national sample of owner-occupied housing units surveyed in both years. Results showed a significant( p = household, cooling degree days, heating degree days, year the housing unit was built, and number of stories in the housing unit.

Guerin, D.A.

1988-01-01T23:59:59.000Z

396

Mitigating Carbon Emissions: the Potential of Improving Efficiencyof Household Appliances in China  

SciTech Connect

China is already the second's largest energy consumer in the world after the United States, and its demand for energy is expected to continue to grow rapidly in the foreseeable future, due to its fast economic growth and its low level of energy use per capita. From 2001 to 2005, the growth rate of energy consumption in China has exceeded the growth rate of its economy (NBS, 2006), raising serious concerns about the consequences of such energy use on local environment and global climate. It is widely expected that China is likely to overtake the US in energy consumption and greenhouse gas (GHG) emissions during the first half of the 21st century. Therefore, there is considerable interest in the international community in searching for options that may help China slow down its growth in energy consumption and GHG emissions through improving energy efficiency and adopting more environmentally friendly fuel supplies such as renewable energy. This study examines the energy saving potential of three major residential energy end uses: household refrigeration, air-conditioning, and water heating. China is already the largest consumer market in the world for household appliances, and increasingly the global production base for consumer appliances. Sales of household refrigerators, room air-conditioners, and water heaters are growing rapidly due to rising incomes and booming housing market. At the same time, the energy use of Chinese appliances is relatively inefficient compared to similar products in the developed economies. Therefore, the potential for energy savings through improving appliance efficiency is substantial. This study focuses particularly on the impact of more stringent energy efficiency standards for household appliances, given that such policies are found to be very effective in improving the efficiency of household appliances, and are well established both in China and around world (CLASP, 2006).

Lin, Jiang

2006-07-10T23:59:59.000Z

397

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

398

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

399

Income Statement -- A Financial Management Tool  

E-Print Network (OSTI)

An income statement measures the success of a business in terms of net income or loss for a period of time. An income statement of a farm business includes items in seven major categories. This publication describes each of these categories and gives a sample income statement.

Klinefelter, Danny A.

2008-09-16T23:59:59.000Z

400

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

402

Competition Helps Kids Learn About Energy and Save Their Households...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition Helps Kids Learn About Energy and Save Their Households Some Money Competition Helps Kids Learn About Energy and Save Their Households Some Money May 21, 2013 - 2:40pm...

403

Vehicle Technologies Office: Fact #259: March 17, 2003 Household...  

NLE Websites -- All DOE Office Websites (Extended Search)

9: March 17, 2003 Household Travel by Gender to someone by E-mail Share Vehicle Technologies Office: Fact 259: March 17, 2003 Household Travel by Gender on Facebook Tweet about...

404

Essays on household decision making in developing countries  

E-Print Network (OSTI)

This dissertation contains three essays on household decision making in the areas of education and health in developing countries. The first chapter explores intra-household decision making in the context of conditional ...

Berry, James W. (James Wesley)

2009-01-01T23:59:59.000Z

405

Development of the Household Sample for Furnace and Boiler Life...  

NLE Websites -- All DOE Office Websites (Extended Search)

households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler...

406

ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ANALYSIS OF CEE HOUSEHOLD SURVEY ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR ® FOR 2012 TABLE OF CONTENTS Acknowledgements .................................................................................. ii Executive Summary ............................................................................ ES-1 Introduction ............................................................................................... 1 Methodology Overview ............................................................................. 2 Key Findings ............................................................................................. 5 Recognition .................................................................................................................. 5 Understanding ........................................................................................................... 12

407

Household energy and consumption and expenditures, 1990. Supplement, Regional  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

408

Household appliance choice: revision of REEPS behavioral models. Final report  

Science Conference Proceedings (OSTI)

This report describes the analysis of household decisions to install space heating, central cooling, and water heating in new housing as well as decisions to own freezers and second refrigerators. This analysis was conducted as part of the enhancements to the Residential End-Use Energy Planning System (REEPS) under EPRI project RP1918-1. The empirical models used in this analysis were the multinomial logit and its generalization the nested logit. The choice model parameters were estimated statistically on national and regional survey data. The results show that capital and operating costs are significant determinants of appliance market penetrations, and the relative magnitudes of the cost coefficients imply discount rates ranging from 3.4 to twenty-one percent. Several tests were conducted to examine the temporal and geographical stability of the key parameters. The estimated parameters have been incorporated into the REEPS computer code. The revised version of REEPS is now available on a limited release basis to EPRI member utilities for testing on their system.

Goett, A.A.

1984-02-01T23:59:59.000Z

409

Household carbon dioxide production in relation to the greenhouse effect  

SciTech Connect

A survey of 655 households from eastern suburbs of Melbourne was undertaken to determine householders[prime] attitudes to, and understanding of, the greenhouse effect. Carbon dioxide emissions resulting from car, electricity and gas use were computed and household actions which could reduce CO[sub 2] emissions were addressed. Preliminary analysis of the results indicates that householders in this area are aware of, and concerned about, the greenhouse effect, although their understanding of its causes is often poor. Many appreciate the contribution of cars, but are unclear about the relative importance of other household activities. Carbon dioxide emissions from the three sources examined averaged 21[center dot]2 tonnes/year per household and 7[center dot]4 tonnes/year per person. Electricity was the largest contributor (8[center dot]6 tonnes/year), cars the next largest (7[center dot]7 tonnes/year) and gas third (5[center dot] tonnes/year) per household. Emissions varied considerably from household to household. There was a strong positive correlation between availability of economic resources and household CO[sub 2] output from all sources. Carbon dioxide production, particularly from car use, was greater from households which were most distant from a railway station, and from larger households, and numbers of children in the household had little effect on emissions. There were also some economics of scale for households containing more adults. Understanding the causes of the greenhouse bore little relation to change in CO[sub 2] emissions; being concerned about it was associated with a small reduction; but actual actions to reduce car use and household heating, however motivated, produced significant reductions. 12 refs., 9 figs., 6 tabs.

Stokes, D.; Lindsay, A.; Marinopoulos, J.; Treloar, A.; Wescott, G. (Deakin Univ., Clayton (Australia))

1994-03-01T23:59:59.000Z

410

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network (OSTI)

Efficiency of Household Appliances in China Jiang Lin8 Appliance Market inEfficiency of Household Appliances in China Executive

Lin, Jiang

2006-01-01T23:59:59.000Z

411

China's Income Distribution, 1985-2001  

E-Print Network (OSTI)

China’s Income Distribution, 1985-2001 Ximing Wu* andBureau of Statistics of China, for explaining many featuresa new method to estimate China’s income distributions using

Wu, Ximing; Perloff, Jeffrey M.

2005-01-01T23:59:59.000Z

412

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

413

Estimating the Impacts of Low-Income Weatherization Assistance...  

NLE Websites -- All DOE Office Websites (Extended Search)

to estimate the impact of WAP. These approaches compare the consumption of households participating in WAP to the consumption of non-participating households. An...

414

Householder’s Perceptions of Insulation Adequacy and Drafts in the Home in 2001  

E-Print Network (OSTI)

In order to improve the estimation of end-use heating consumption, the Energy Information Administration's (EIA), 2001 Residential Energy Consumption Survey (RECS), for the first time, asked respondents to judge how drafty they perceived their homes to be as a measure of insulation quality. The analysis of the 2001 RECS data shows that householders in newlyconstructed homes perceived their homes to be better insulated and less drafty than do householders in older homes. Single-family homes are perceived to be better insulated and less drafty than are apartments in buildings with two to four units. Cross-variable comparisons also provide the associations between the level of insulation and winter drafts in the homes with household characteristics and location of the home.

Behjat Hojjati

2004-01-01T23:59:59.000Z

415

Household attitudes toward energy conservation in the Pacific Northwest: overview and comparisons  

SciTech Connect

This report presents an overview of a baseline residential energy conservation study for the Pacific Northwest conducted in November 1983 by RMH Research, Inc. It also compares the study results with available data from other surveys. The primary focus of the RMH study is conservation marketing. As such it assesses the attitudes, perceptions, and past conservation actions of the region's residents and provides market segmentation based upon past conservation actions and the propensity to invest in conservation in the future. Excluding renters, who account for about 24% of the region's households, three prospect groups for marketing conservation investments are identified: First Tier Prospects who are very likely to invest in additional conservation measures requiring larger sums of money (estimated at about 547,000 households, or 18 percent of the region's households); Second Tier Prospects who are somewhat likely to invest in full weatherization (estimated at about 22% of the region's households or 695,700); and Non-Prospects who are unlikely to invest in energy conservation in the near future (estimated to be 1,113,400 or 36% of the regional total). A summary comparison of the most important distinguishing attributes of the three prospect groups is presented. Considering the current surplus status of the region's electricity supply situation and the overall strategy in capability building, implications include (1) using public information programs through utilities and the news media to maintain the conservation interests of the first-tier prospects and (2) exploring ways to move the second-tier prospects into the first tier and to reach the so-called non-prospect and rental housing groups.

Fang, J.M.

1985-06-01T23:59:59.000Z

416

Near Zero Emissions at 50 Percent Thermal Efficiency  

SciTech Connect

Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called â??Near-Zero Emission at 50 Percent Thermal Efficiency,â? and was completed in 2007. The second phase was initiated in 2006, and this phase was named â??Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines.â? This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: â?¢ Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. â?¢ Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. â?¢ Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. â?¢ Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. â?¢ Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: â?¢ Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. â?¢ Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. â?¢ Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. â?¢ Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: â?¢ Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. â?¢ The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvemen

None

2012-12-31T23:59:59.000Z

417

ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 to four percent in 2012 and the proportion informed by their lender increased from zero percent in 2011 to one percent in 2012. All other responses were statistically...

418

Table B29. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" 9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled","All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled" "All Buildings ................",4657,1097,1012,751,1796,67338,8864,16846,16966,24662 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,668,352,294,1034,6774,1895,1084,838,2957 "5,001 to 10,000 ..............",1110,282,292,188,348,8238,2026,2233,1435,2544

419

Table B30. Percent of Floorspace Lit When Open, Number of Buildings and Floorspa  

U.S. Energy Information Administration (EIA) Indexed Site

0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" 0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit","All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit" "All Buildings ................",4657,498,835,1228,2096,67338,3253,9187,20665,34233 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,323,351,517,1156,6774,915,1061,1499,3299 "5,001 to 10,000 ..............",1110,114,279,351,367,8238,818,2014,2614,2793

420

Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" 8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All Buildings ................",4657,641,576,627,2813,67338,5736,7593,10745,43264 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,366,230,272,1479,6774,1091,707,750,4227 "5,001 to 10,000 ..............",1110,164,194,149,603,8238,1148,1504,1177,4409

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

F (2001) -- Household Natural Gas Usage Form F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Natural Gas Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

422

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

E (2001) - Household Electricity Usage Form E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

423

Towards sustainable household energy use in the Netherlands, Int  

E-Print Network (OSTI)

Abstract: Households consume direct energy, using natural gas, heating oil, gasoline and electricity, and consume indirect energy, the energy related to the production of goods and the delivery of services for the households. Past trends and present-day household energy use (direct and indirect) are analysed and described. A comparison of these findings with objectives concerning ecological sustainability demonstrates that present-day household energy use is not sustainable. A scenario towards sustainable household energy use is designed containing far-reaching measures with regard to direct energy use. Scenario evaluation shows a substantial reduction of direct energy use; however, this is not enough to meet the sustainability objectiv es. Based on these results, the possibilities and the limitations are discussed to enable households to make their direct and indirect energy use sustainable on the long run.

Jack Van Der Wal; Henri C. Moll

2001-01-01T23:59:59.000Z

424

Analysis of a 10-Percent RPS - Response letter summarizing principal conclusions of supplement  

Reports and Publications (EIA)

Transmittal letter for the supplement to the Service Report 'Analysis of a 10-Percent RenewablePortfolio Standard'

Alan Beamon

2003-06-30T23:59:59.000Z

425

Essays on the effects of demographics on household consumption.  

E-Print Network (OSTI)

??My dissertation analyses the relationship between households' consumption behavior and changes in family demographic characteristics. The first paper studies consumption over the period of the… (more)

Stepanova, Ekaterina, 1977-

2006-01-01T23:59:59.000Z

426

A Model of Household Demand for Activity Participation and Mobility  

E-Print Network (OSTI)

household car ownership, car usage, and travel by differentownership demand, and car usage demand. Modal travel demand,mode), car ownership, and car usage for spatial aggregations

Golob, Thomas F.

1996-01-01T23:59:59.000Z

427

Crime and the Nation’s Households, 2000 By  

E-Print Network (OSTI)

experienced 1 or more violent or property crimes in 2000, according to data from the National Crime Victimization Survey (NCVS). About 4.3 million households had members who experienced 1 or more nonfatal violent crimes, including rape, sexual assault, robbery, and aggravated or simple assault. About 14.8 million households experienced 1 or more property crimes — household burglary, motor vehicle theft, or theft. Vandalism, presented for the first time in a Bureau of Justice Statistics (BJS) report, victimized about 6.1 million households. The households that sustained vandalism were counted separately from those experiencing other crimes. Because vandalism is included for the first time, findings are presented in a box on page 4. Beginning in 2001, NCVS victimizations will be measured both with and without vandalism. Measuring the extent to which households are victimized by crime One measure of the impact of crime throughout the Nation is gained through estimating the number and percentage of households victimized Highlights During 2000, 16 % of U.S. households had a member who experienced a crime, with 4 % having a member victimized by violent crime. During 1994, 25 % of households experienced at least one crime; 7 % a violent crime.

Patsy A. Klaus

2002-01-01T23:59:59.000Z

428

Analysis of the energy requirement for household consumption.  

E-Print Network (OSTI)

??Humans in households use energy for their activities. This use is both direct, for example electricity and natural gas, but also indirect, for the production,… (more)

Vringer, Kees

2005-01-01T23:59:59.000Z

429

Table 1. Household Characteristics by Ceiling Fans, 2001  

U.S. Energy Information Administration (EIA)

A reporting of the number of housing units using ceiling fans in U.S. households as reported in the 2001 Residential Energy Consumption Survey

430

U.S. households are incorporating energy–efficient features ...  

U.S. Energy Information Administration (EIA)

... area of increased efficiency: about 60% of households use at least some energy-efficient compact fluorescent (CFL) or light-emitting diode (LED) ...

431

Householder's Perceptions of Insulation Adequacy and Drafts in the ...  

U.S. Energy Information Administration (EIA)

The 2001 RECS was the first RECS to request household perceptions regarding the presence of winter drafts in the home. The data presented in this report ...

432

1997 Residential Energy Consumption and Expenditures per Household ...  

U.S. Energy Information Administration (EIA)

Return to: Residential Home Page . Changes in the 1997 RECS: Housing Unit Type Per Household Member Per Building Increase. Residential Energy Consumption ...

433

Answers to Frequently Asked Questions About the Household ...  

U.S. Energy Information Administration (EIA)

Form EIA-457E (2001) – Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey

434

Barriers to household investment in residential energy conservation: preliminary assessment  

Science Conference Proceedings (OSTI)

A general assessment of the range of barriers which impede household investments in weatherization and other energy efficiency improvements for their homes is provided. The relationship of similar factors to households' interest in receiving a free energy audits examined. Rates of return that underly household investments in major conservation improvements are assessed. A special analysis of household knowledge of economically attractive investments is provided that compares high payback improvements specified by the energy audit with the list of needed or desirable conservation improvements identified by respondents. (LEW)

Hoffman, W.L.

1982-12-01T23:59:59.000Z

435

Household Responses to the Financial Crisis in Indonesia  

E-Print Network (OSTI)

on farm households in Indonesia and Thailand,” World Bank20. Cameron, Lisa. (1999). “Indonesia: a quarterly review,”The Real Costs of Indonesia's Economic Crisis: Preliminary

Thomas, Duncan; Frankenberg, Elizabeth

2005-01-01T23:59:59.000Z

436

Answers to Frequently Asked Questions About the Household Bottled ...  

U.S. Energy Information Administration (EIA)

Form EIA-457D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey

437

SUPPLEMENTAL ENERGY-RELATED DATA FOR THE 2001 NATIONAL HOUSEHOLD ...  

U.S. Energy Information Administration (EIA)

... vehicle manufacturer, vehicle model, vehicle model year, and vehicle type – several ENERGY INFORMATION ADMINISTRATION/2001 NATIONAL HOUSEHOLD TRAVEL SURVEY K-23 ...

438

Appliance Commitment for Household Load Scheduling  

Science Conference Proceedings (OSTI)

This paper presents a novel appliance commitment algorithm that schedules thermostatically-controlled household loads based on price and consumption forecasts considering users comfort settings to meet an optimization objective such as minimum payment or maximum comfort. The formulation of an appliance commitment problem was described in the paper using an electrical water heater load as an example. The thermal dynamics of heating and coasting of the water heater load was modeled by physical models; random hot water consumption was modeled with statistical methods. The models were used to predict the appliance operation over the scheduling time horizon. User comfort was transformed to a set of linear constraints. Then, a novel linear, sequential, optimization process was used to solve the appliance commitment problem. The simulation results demonstrate that the algorithm is fast, robust, and flexible. The algorithm can be used in home/building energy-management systems to help household owners or building managers to automatically create optimal load operation schedules based on different cost and comfort settings and compare cost/benefits among schedules.

Du, Pengwei; Lu, Ning

2011-06-30T23:59:59.000Z

439

In-vessel composting of household wastes  

Science Conference Proceedings (OSTI)

The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for a period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.

Iyengar, Srinath R. [Civil and Environmental Engineering Department, V.J. Technological Institute, H.R. Mahajani Road, Matunga, Mumbai 400 019 (India)]. E-mail: srinathrangamani@yahoo.com; Bhave, Prashant P. [Civil and Environmental Engineering Department, V.J. Technological Institute, H.R. Mahajani Road, Matunga, Mumbai 400 019 (India)]. E-mail: drppbhave@vsnl.net

2006-07-01T23:59:59.000Z

440

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Upgrade energy building standards and develop rating system for existing low-income housing  

SciTech Connect

The city of Memphis Division of Housing and Community Development (HCD) receives grant funding each year from the U.S. Department of Housing and Urban Development (HUD) to provide local housing assistance to low-income residents. Through the years, HCD has found that many of the program recipients have had difficulty in managing their households, particularly in meeting monthly financial obligations. One of the major operating costs to low-income households is the utility bill. Furthermore, HCD`s experience has revealed that many low-income residents are simply unaware of ways to reduce their utility bill. Most of the HCD funds are distributed to low-income persons as grants or no/low interest loans for the construction or rehabilitation of single-family dwellings. With these funds, HCD builds 80 to 100 new houses and renovates about 500 homes each year. Houses constructed or renovated by HCD must meet HUD`s minimum energy efficiency standards. While these minimum standards are more than adequate to meet local building codes, they are not as aggressive as the energy efficiency standards being promoted by the national utility organizations and the home building industry. Memphis Light, Gas and Water (MLGW), a city-owned utility, has developed an award-winning program named Comfort Plus which promotes energy efficiency{open_quote} in new residential construction. Under Comfort Plus, MLGW models house plans on computer for a fee and recommends cost-effective alterations which improve the energy efficiency of the house. If the builder agrees to include these recommendations, MLGW will certify the house and guarantee a maximum annual heating/cooling bill for two years. While the Comfort Plus program has received recognition in the new construction market, it does not address the existing housing stock.

Muller, D.; Norville, C. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

1993-07-01T23:59:59.000Z

442

An Analysis of the Price Elasticity of Demand for Household Appliances  

SciTech Connect

This report summarizes our study of the price elasticity of demand for home appliances, including refrigerators, clothes washers, and dishwashers. In the context of increasingly stringent appliance standards, we are interested in what kind of impact the increased manufacturing costs caused by higher efficiency requirements will have on appliance sales. We begin with a review of existing economics literature describing the impact of economic variables on the sale of durable goods.We then describe the market for home appliances and changes in this market over the past 20 years, performing regression analysis on the shipments of home appliances and relevant economic variables including changes to operating cost and household income. Based on our analysis, we conclude that the demand for home appliances is price inelastic.

Fujita, Kimberly; Dale, Larry; Fujita, K. Sydny

2008-01-25T23:59:59.000Z

443

The Myth of Post-Reform Income Stagnation: Evidence from Brazil and Mexico  

E-Print Network (OSTI)

This Working Paper should not be reported as representing the views of the IMF. The views expressed in this Working Paper are those of the author(s) and do not necessarily represent those of the IMF or IMF policy. Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate. Economic policies are often judged by a handful of statistics, some of which may be biased during periods of change. We estimate the income growth implied by the evolution of food demand and durable good ownership in post-reform Brazil and Mexico, and find that changes in consumption patterns are inconsistent with official estimates of near stagnant incomes. That is attributed to biases in the price deflator. The estimated unmeasured income gains are higher for poorer households, implying marked reductions in “real ” inequality. These findings challenge the conventional wisdom that post-reform income growth was low and did not benefit the poor. 25BJEL Classification

Irineu De Carvalho Filho; Prepared Irineu; Carvalho Filho; Marcos Chamon

2008-01-01T23:59:59.000Z

444

Measuring the energy efficiency of households: an application of frontier production function analysis  

SciTech Connect

A new method to estimate the energy efficiency of households is presented. Households are viewed as productive units organized to provide the occupants with numerous services requiring fuel as an input: house heating to achieve a desired interior temperature, lighting for recreation, etc. The focus is on the efficiency of energy use, not the demand for energy. The approach to measuring efficiency compares a group of productive units along several dimensions of input resources and service outputs. The comparison identifies a subset of units that are considered efficient because they require the least resources per unit of service provided. The efficient units form a production possibility frontier of best practice in service provision. A regression of the two sets of efficiency scores on other variables reflecting locational, dwelling unit, and occupational characteristics is performed to identify factors accounting for differences in efficiency. The results indicate that the more efficient units used electric heat, had higher ratios of non-electric to electric fuel inputs, were owner-occupied, and were built after 1974. The findings also suggest that both family life cycle and income effects account for efficiency differences.

Baxter, L.W.

1984-01-01T23:59:59.000Z

445

Simulating household activities to lower consumption peaks: demonstration  

Science Conference Proceedings (OSTI)

Energy experts need fine-grained dynamics oriented tools to investigate household activities in order to improve power management in the residential sector. This paper presents the SMACH framework for modelling, simulating and analy- sis of household ... Keywords: agent-based modelling, energy, social simulation

Edouard Amouroux, Francois Sempé, Thomas Huraux, Nicolas Sabouret, Yvon Haradji

2013-05-01T23:59:59.000Z

446

Elements of consumption: an abstract visualization of household consumption  

Science Conference Proceedings (OSTI)

To promote sustainability consumers must be informed about their consumption behaviours. Ambient displays can be used as an eco-feedback technology to convey household consumption information. Elements of Consumption (EoC) demonstrates this by visualizing ... Keywords: a-life, eco-feedback, household consumption, sustainability

Stephen Makonin; Philippe Pasquier; Lyn Bartram

2011-07-01T23:59:59.000Z

447

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

E-Print Network (OSTI)

EPRI EA-3409, "Household Appliance Choice: Revision of REEPSEA",3409: "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPSreport EA-3409, "Household Appliance Choice: Revi- sion of

Wood, D.J.

2010-01-01T23:59:59.000Z

448

Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030  

SciTech Connect

The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

Eisenberg, Joel Fred [ORNL

2008-01-01T23:59:59.000Z

449

Evaluating the income and employment impacts of gas cooling technologies  

SciTech Connect

The purpose of this study is to estimate the potential employment and income benefits of the emerging market for gas cooling products. The emphasis here is on exports because that is the major opportunity for the U.S. heating, ventilating, and air-conditioning (HVAC) industry. But domestic markets are also important and considered here because without a significant domestic market, it is unlikely that the plant investments, jobs, and income associated with gas cooling exports would be retained within the United States. The prospects for significant gas cooling exports appear promising for a variety of reasons. There is an expanding need for cooling in the developing world, natural gas is widely available, electric infrastructures are over-stressed in many areas, and the cost of building new gas infrastructure is modest compared to the cost of new electric infrastructure. Global gas cooling competition is currently limited, with Japanese and U.S. companies, and their foreign business partners, the only product sources. U.S. manufacturers of HVAC products are well positioned to compete globally, and are already one of the faster growing goods-exporting sectors of the U.S. economy. Net HVAC exports grew by over 800 percent from 1987 to 1992 and currently exceed $2.6 billion annually (ARI 1994). Net gas cooling job and income creation are estimated using an economic input-output model to compare a reference case to a gas cooling scenario. The reference case reflects current policies, practices, and trends with respect to conventional electric cooling technologies. The gas cooling scenario examines the impact of accelerated use of natural gas cooling technologies here and abroad.

Hughes, P.J. [Oak Ridge National Lab., TN (United States); Laitner, S.

1995-03-01T23:59:59.000Z

450

Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of  

NLE Websites -- All DOE Office Websites (Extended Search)

0: March 26, 0: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection to someone by E-mail Share Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Facebook Tweet about Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Twitter Bookmark Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Google Bookmark Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Delicious Rank Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Digg

451

Consumption patterns and household hazardous solid waste generation in an urban settlement in Mexico  

SciTech Connect

Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442 ton/day of domestic waste are produced, including 7.1 ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied.

Delgado Otoniel, Buenrostro [Instituto De Investigaciones Agricolas y Forestales, Universidad Michoacana De San Nicolas De Hidalgo, Av. San Juanito Itzicuaro S/N, Col. San Juanito Itzicuaro, C.P. 58330, Morelia-Aeropuerto, Michoacan (Mexico)], E-mail: otonielb@zeus.umich.mx; Liliana, Marquez-Benavides; Gaona Francelia, Pinette [Instituto De Investigaciones Agricolas y Forestales, Universidad Michoacana De San Nicolas De Hidalgo, Av. San Juanito Itzicuaro S/N, Col. San Juanito Itzicuaro, C.P. 58330, Morelia-Aeropuerto, Michoacan (Mexico)

2008-07-01T23:59:59.000Z

452

97 percent of special nuclear material de-inventoried from LLNL...  

NLE Websites -- All DOE Office Websites (Extended Search)

97 percent of special nuclear material de-inventoried from LLNL | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

453

Table AC1. Total Households Using Air-Conditioning Equipment, 2005 ...  

U.S. Energy Information Administration (EIA)

Table AC1. Total Households Using Air-Conditioning Equipment, 2005 Million U.S. Households Type of Air-Conditioning Equipment (millions) Central System

454

Table CE2-3c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household4,a Physical Units of Space-Heating Consumption per Household,3 Where the Main Space-Heating Fuel Is:

455

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

456

Table CE2-12c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

457

Table CE2-4c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

458

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3 Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

459

Table SH1. Total Households Using a Space Heating Fuel, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households Using a Space Heating Fuel, 2005 Million U.S. Households Using a Non-Major Fuel 5 ... Space Heating (millions) Energy Information Administration

460

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

1994) Demand for Electric Vehicles in Hybrid Households: A nand the Household Electric Vehicle Market: A Constraintsthe mar- ket for electric vehicles in California. Presented

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Measurement of nicotine in household dust  

Science Conference Proceedings (OSTI)

An analytical method of measuring nicotine in house dust was optimized and associations among three secondhand smoking exposure markers were evaluated, i.e., nicotine concentrations of both house dust and indoor air, and the self-reported number of cigarettes smoked daily in a household. We obtained seven house dust samples from self-reported nonsmoking homes and 30 samples from smoking homes along with the information on indoor air nicotine concentrations and the number of cigarettes smoked daily from an asthma cohort study conducted by the Johns Hopkins Center for Childhood Asthma in the Urban Environment. House dust nicotine was analyzed by isotope dilution gas chromatography-mass spectrometry (GC/MS). Using our optimized method, the median concentration of nicotine in the dust of self-reported nonsmoking homes was 11.7 ng/mg while that of smoking homes was 43.4 ng/mg. We found a substantially positive association (r=0.67, P<0.0001) between house dust nicotine concentrations and the numbers of cigarettes smoked daily. Optimized analytical methods showed a feasibility to detect nicotine in house dust. Our results indicated that the measurement of nicotine in house dust can be used potentially as a marker of longer term SHS exposure.

Kim, Sungroul [Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Institute for Global Tobacco Control, 627 N. Washington Street, 2nd Floor Baltimore, MD 21205 (United States); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States)], E-mail: srkim@jhsph.edu; Aung, Ther; Berkeley, Emily [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); Diette, Gregory B. [Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); Department of Medicine, Johns Hopkins University School of Medicine (United States); Breysse, Patrick N. [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States)

2008-11-15T23:59:59.000Z

462

Achieving a ten percent greenhouse gas reduction by 2020 Response to  

E-Print Network (OSTI)

ERG/200801 Achieving a ten percent greenhouse gas reduction by 2020 Response to The Nova Scotia. Sandy Cook. #12;Achieving a ten percent greenhouse gas reduction by 2020 1 Introduction In April 2007 matters. Central to the act is the government's commitment to reducing greenhouse gas emissions

Hughes, Larry

463

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could Produce 20 Percent of U.S. Electricity By 2030 Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of harnessing wind power to provide up to 20 percent of the nation's total electricity needs by 2030. Entitled "20 Percent Wind Energy by 2030", the report identifies requirements to achieve this goal including reducing the cost of wind technologies, citing new transmission infrastructure, and

464

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of harnessing wind power to provide up to 20 percent of the nation's total electricity needs by 2030. Entitled "20 Percent Wind Energy by 2030", the report identifies requirements to achieve this goal including reducing the cost of wind technologies, citing new transmission infrastructure, and

465

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688 square miles. Reducing its contaminated footprint to 243 square miles has proven to be a monumental task, and a challenge the EM team was ready to take on from the beginning. Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated More Documents & Publications 2011 ARRA Newsletters

466

Indoor environment quality and energy retrofits in low-income...  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor environment quality and energy retrofits in low-income apartments: retrofit selection protocol Title Indoor environment quality and energy retrofits in low-income...

467

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network (OSTI)

or Rent Gasoline and Motor Oil Income after taxes Number ofor Rent Gasoline and Motor Oil Income after taxes Number of

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

468

Integrating Photovoltaic Systems into Low-Income Housing Developments...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Financing Model and Low-Income Resident Job Training Program SEPTEMBER 2011 SOLAR ENERGY TECHNOLOGIES PROGRAM II Integrating PV Systems into Low-Income Housing...

469

Appliance Standby Power and Energy Consumption in South African Households  

Open Energy Info (EERE)

Appliance Standby Power and Energy Consumption in South African Households Appliance Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South African Households Focus Area: Appliances & Equipment Topics: Policy Impacts Website: active.cput.ac.za/energy/web/DUE/DOCS/422/Paper%20-%20Shuma-Iwisi%20M. Equivalent URI: cleanenergysolutions.org/content/appliance-standby-power-and-energy-co Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance A modified engineering model is proposed to estimate standby power and energy losses in households. The modified model accounts for the randomness of standby power and energy losses due to unpredicted user appliance operational behavior.

470

A Theoretical Basis for Household Energy Conservation UsingProduct...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Theoretical Basis for Household Energy Conservation Using Product-Integrated Feedback Speaker(s): Teddy McCalley Date: October 11, 2002 - 12:00pm Location: Bldg. 90 Seminar Host...

471

Household Preferences for Supporting Renewable Energy, and Barriers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Household Preferences for Supporting Renewable Energy, and Barriers to Green Power Demand Speaker(s): Ryan Wiser Date: May 9, 2002 - 12:00pm Location: Bldg. 90 Nearly 40% of the...

472

Energy Consumption of Refrigerators in Ghana - Outcomes of Household...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of...

473

Profiling energy use in households and office spaces  

Science Conference Proceedings (OSTI)

Energy consumption is largely studied in the context of different environments, such as domestic, corporate, industrial, and public sectors. In this paper, we discuss two environments, households and office spaces, where people have an especially ...

Salman Taherian; Marcelo Pias; George Coulouris; Jon Crowcroft

2010-04-01T23:59:59.000Z

474

Characterizing Household Plug Loads through Self-Administered Load Research  

Science Conference Proceedings (OSTI)

Household miscellaneous loads, which include consumer electronics, are the fastest growing segment of household energy use in the United States. Although the relative energy intensity of applications such as heating and cooling is declining, the DOEAnnual Energy Outlook forecasts that the intensity of residential miscellaneous end uses will increase substantially by 2030. Studies by TIAX and Ecos Consulting reveal that miscellaneous devices8212smaller devices in terms of energy draw but growing in usage8...

2009-12-09T23:59:59.000Z

475

Solar upgrading of low income housing  

SciTech Connect

The design, installation, training and operation experience of retrofitting solar devices (active and passive water heaters, Trombe walls, convective loop window units, etc.) on hundreds of low-income houses along the Southwest Border Region are summarized. The project demonstrates a wide variety of appropriate low-cost solar applications and provides prototypical models for the region's low-income inhabitants. Space heating and cooling systems and water heating systems have been combined with weatherization and conservation techniques. CETA employees, members of various community groups and youth groups, and employees of local non-profit organizations have been trained as installers, and low-income people have been educated in the operation and use of these solar devices. It is anticipated that this transfer of appropriate technology into the region will result in continued retrofitting of solar installations and in the stimulation of local industries, which will create employment opportunities for members of the low-income population.

Lumsdaine, E.; Farrer, R.; Callahan, D.

1980-01-01T23:59:59.000Z

476

Transferring 2001 National Household Travel Survey  

Science Conference Proceedings (OSTI)

Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle Atlantic, and Pacific), MSA size, and the availability of rail. Extrapolating NHTS data within small geographic areas could risk developing and subsequently using unreliable estimates. For example, if a planning agency in City X of State Y estimates travel rates and other travel characteristics based on survey data collected from NHTS sample households that were located in City X of State Y, then the agency could risk developing and using unreliable estimates for their planning process. Typically, this limitation significantly increases as the size of an area decreases. That said, the NHTS contains a wealth of information that could allow statistical inferences about small geographic areas, with a pre-determined level of statistical certainty. The question then becomes whether a method can be developed that integrates the NHTS data and other data to estimate key travel characteristics for small geographic areas such as Census tract and transportation analysis zone, and whether this method can outperform other, competing methods.

Hu, Patricia S [ORNL; Reuscher, Tim [ORNL; Schmoyer, Richard L [ORNL; Chin, Shih-Miao [ORNL

2007-05-01T23:59:59.000Z

477

Source separation of household waste: A case study in China  

SciTech Connect

A pilot program concerning source separation of household waste was launched in Hangzhou, capital city of Zhejiang province, China. Detailed investigations on the composition and properties of household waste in the experimental communities revealed that high water content and high percentage of food waste are the main limiting factors in the recovery of recyclables, especially paper from household waste, and the main contributors to the high cost and low efficiency of waste disposal. On the basis of the investigation, a novel source separation method, according to which household waste was classified as food waste, dry waste and harmful waste, was proposed and performed in four selected communities. In addition, a corresponding household waste management system that involves all stakeholders, a recovery system and a mechanical dehydration system for food waste were constituted to promote source separation activity. Performances and the questionnaire survey results showed that the active support and investment of a real estate company and a community residential committee play important roles in enhancing public participation and awareness of the importance of waste source separation. In comparison with the conventional mixed collection and transportation system of household waste, the established source separation and management system is cost-effective. It could be extended to the entire city and used by other cities in China as a source of reference.

Zhuang Ying; Wu Songwei; Wang Yunlong [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Wu Weixiang [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)], E-mail: weixiang@zju.edu.cn; Chen Yingxu [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

2008-07-01T23:59:59.000Z

478

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

479

Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products  

SciTech Connect

We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.

Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

2008-01-01T23:59:59.000Z

480

file://C:\Documents%20and%20Settings\VM3\My%20Documents\hc6-3a_  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Usage Indicators by Household Income, 3a. Usage Indicators by Household Income, Million U.S. Households, 2001 ___________________________________________________________________________________________________________ | | | | | | | 2001 Household Income | | Eli- | | | | | gible | | |___________________________________| | for | | | | | | | | Fed- |

Note: This page contains sample records for the topic "household income percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

97 percent of special nuclear material de-inventoried from LLNL | National  

National Nuclear Security Administration (NNSA)

97 percent of special nuclear material de-inventoried from LLNL | National 97 percent of special nuclear material de-inventoried from LLNL | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > 97 percent of special nuclear material de-inventoried ... 97 percent of special nuclear material de-inventoried from LLNL Posted By Office of Public Affairs

482

If I generate 20 percent of my national electricity from wind...  

Open Energy Info (EERE)

of generating 20 percent of my total capacity from say wind? And all of it replaces coal powered electricty ? What happended to GDP ? Is the economy a net gain or net loss ?...

483

Figure 75. U.S. electricity demand growth, 1950-2040 (percent, 3 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 75. U.S. electricity demand growth, 1950-2040 (percent, 3-year moving average) Year 3-year moving average Trendline 1950.00

484

Residential demand for natural gas by black and nonblack households in the Midwest  

SciTech Connect

This paper presents a comparative analysis of natural gas demand by black and nonblack households in the Midwest census region. Historically, such comparative analyses have been grounded in comparisons of the share of income spent for energy (see Newman and Day, 1975; Grier, 1979; and Brazzel and Hunter, 1979). Because of theoretical flaws associated with this approach, our analysis is couched within a complete demand system (see Morrissey, 1984) in which certain restrictions required by consumer demand theory are imposed on our energy demand system. This approach should provide more precise measurement of the relative nature of natural gas demand. Philips (1983), Deaton and Muellbauer (1980), and Theil (1980), along with Morrissev, provide fine discussions of the complete demand system. Our working hypothesis is that the structural demand relationship for natural gas is different for black and nonblack households and that this difference reflects the greater vulnerability of blacks to rising prices of natural gas. Because of deficient economic resources and a long legacy of institutional constraints such as financial red-lining and housing discrimination, as well as lingering behavioral characteristics, it remains difficult for blacks to move out of energy-inefficient housing. This, in turn, corresponds directly to a larger energy demand burden for blacks in the Midwest. This paper is organized into four sections. The first section provides the historical background upon which our analysis is based. The second section is a discussion of our demand model. Our empirical results are described in the third section. In the fourth and final section, our conclusions and suggestions for future research are presented. 18 refs., 7 tabs.

Poyer, D.A.; Johnson, G.

1985-10-01T23:59:59.000Z

485

Household solid waste characteristics and management in Chittagong, Bangladesh  

Science Conference Proceedings (OSTI)

Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r{sub xy} = 0.236, p management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.

Sujauddin, Mohammad [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh)], E-mail: mohammad.sujauddin@gmail.com; Huda, S.M.S. [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Hoque, A.T.M. Rafiqul [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Laboratory of Ecology and Systematics (Plant Ecophysiology Section), Faculty of Science, Biology Division, University of the Ryukyus, Okinawa 903-0213 (Japan)

2008-07-01T23:59:59.000Z

486

Energy Consumption of Refrigerators in Ghana - Outcomes of Household  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Robert Van Buskirk Galen Barbose As part of activities to develop refrigerator efficiency standards regulations in Ghana, a national survey on the energy consumption of refrigerators and refrigerator-freezers has been conducted. The survey covered 1000 households in urban, peri-urban and rural communities in various parts of the country. The survey found that, on average, refrigerators and refrigerator-freezers in Ghana use almost three times what is allowed by minimum efficiency standards in the U.S., and a few refrigerators had energy use at levels almost ten times the U.S.

487

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

488

Water Related Energy Use in Households and Cities - an Australian  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Related Energy Use in Households and Cities - an Australian Water Related Energy Use in Households and Cities - an Australian Perspective Speaker(s): Steven Kenway Date: May 12, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon This presentation covers the content of recent journal papers and reports focused on the water-energy nexus and the related theory of urban metabolism. This includes (i) a review of the water-energy nexus focused on cities (ii) quantifying water-related energy in cities (iii) modeling household water-related energy use including key factors, sensitivity and uncertainty analysis, and (iv) relevance and implications of the urban metabolism theoretical framework. Steven's work focuses on understanding the indirect connections between urban water management, energy use and

489

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

490

Modeling patterns of hot water use in households  

Science Conference Proceedings (OSTI)

This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

1996-11-01T23:59:59.000Z

491

Modeling patterns of hot water use in households  

SciTech Connect

This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

1996-01-01T23:59:59.000Z

492

New York Household Travel Patterns: A Comparison Analysis  

SciTech Connect

In 1969, the U. S. Department of Transportation began collecting detailed data on personal travel to address various transportation planning issues. These issues range from assessing transportation investment programs to developing new technologies to alleviate congestion. This 1969 survey was the birth of the Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990 and 1995. Longer-distance travel was collected in 1977 and 1995. In 2001, the survey was renamed to the National Household Travel Survey (NHTS) and collected both daily and longer-distance trips in one survey. In addition to the number of sample households that the national NPTS/NHTS survey allotted to New York State (NYS), the state procured an additional sample of households in both the 1995 and 2001 surveys. In the 1995 survey, NYS procured an addition sample of more than 9,000 households, increasing the final NY NPTS sample size to a total of 11,004 households. Again in 2001, NYS procured 12,000 additional sample households, increasing the final New York NHTS sample size to a total of 13,423 households with usable data. These additional sample households allowed NYS to address transportation planning issues pertinent to geographic areas significantly smaller than for what the national NPTS and NHTS data are intended. Specifically, these larger sample sizes enable detailed analysis of twelve individual Metropolitan Planning Organizations (MPOs). Furthermore, they allowed NYS to address trends in travel behavior over time. In this report, travel data for the entire NYS were compared to those of the rest of the country with respect to personal travel behavior and key travel determinants. The influence of New York City (NYC) data on the comparisons of the state of New York to the rest of the country was also examined. Moreover, the analysis examined the relationship between population density and travel patterns, and the similarities and differences among New York MPOs. The 1995 and 2001 survey data make it possible to examine and identify travel trends over time. This report does not address, however, the causes of the differences and/or trends.

Hu, Patricia S [ORNL; Reuscher, Tim [ORNL

2007-05-01T23:59:59.000Z

493

A Glance at China’s Household Consumption  

SciTech Connect

Known for its scale, China is the most populous country with the world’s third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide?range social marketing activities to promote energy conservation.

Shui, Bin

2009-10-22T23:59:59.000Z

494

Alternative Fuels Data Center: Biodiesel Income Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Income Tax Income Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Income Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Income Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Income Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Income Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Income Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Income Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Income Tax Credit A taxpayer that delivers pure, unblended biodiesel (B100) into the tank of a vehicle or uses B100 as an on-road fuel in their trade or business may be

495

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

496

If I generate 20 percent of my national electricity from wind and solar -  

Open Energy Info (EERE)

If I generate 20 percent of my national electricity from wind and solar - If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home > Groups > DOE Wind Vision Community I think that the economics of fossil fuesl are well understood. Some gets to find the fuel and sell it. The fuel and all associated activities factor into the economic equation of the nation and the wrold. What is the economics of generating 20 percent of my total capacity from say wind? And all of it replaces coal powered electricty ? What happended to GDP ? Is the economy a net gain or net loss ? The value of the electricity came into the system, but no coal is bought or sold. Submitted by Jamespr on 6 May, 2013 - 17:46 0 answers Groups Menu You must login in order to post into this group.

497

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

498

Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone June 3, 2011 - 12:00pm Addthis Media Contacts Donald Metzler Moab Federal Project Director (970) 257-2115 Wendee Ryan S&K Aerospace Public Affairs Manager (970) 257-2145 Grand Junction, CO - One quarter of the uranium mill tailings pile located in Moab, Utah, has been relocated to the Crescent Junction, Utah, site for permanent disposal. Four million tons of the 16 million tons total has been relocated under the Uranium Mill Tailings Remedial Action Project managed by the U.S. Department of Energy (DOE). A little over 2 years ago, Remedial Action Contractor EnergySolutions began

499

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2, 2012 November 2, 2012 WASHINGTON, D.C. - The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688 square miles. Reducing its contaminated footprint to 243 square miles has proven to be a monu- mental task, and a challenge the EM team was ready to take on from the beginning. In 2009, EM identified a goal of 40 percent footprint reduction by September 2011 as its High Priority Performance Goal. EM achieved that goal in April 2011, five months ahead of schedule, and continues to achieve footprint reduction, primarily at Savannah River Site and Hanford. Once

500

Moab Reaches 40-Percent Mark in Tailings Removal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Reaches 40-Percent Mark in Tailings Removal Moab Reaches 40-Percent Mark in Tailings Removal Moab Reaches 40-Percent Mark in Tailings Removal December 24, 2013 - 12:00pm Addthis A haul truck carrying a container is loaded with mill tailings at the Moab site. Once loaded and lidded, the container will be placed on a railcar for shipment by train to the Crescent Junction disposal site. A haul truck carrying a container is loaded with mill tailings at the Moab site. Once loaded and lidded, the container will be placed on a railcar for shipment by train to the Crescent Junction disposal site. MOAB, Utah - The Moab Uranium Mill Tailings Remedial Action Project had a productive year, despite continued budget constraints and a first-ever, three-month curtailment of shipping operations last winter. On June 18, the project reached a significant milestone of having shipped 6